WO2023207943A1 - 一种高强度电磁屏蔽铜合金及其制备方法 - Google Patents

一种高强度电磁屏蔽铜合金及其制备方法 Download PDF

Info

Publication number
WO2023207943A1
WO2023207943A1 PCT/CN2023/090491 CN2023090491W WO2023207943A1 WO 2023207943 A1 WO2023207943 A1 WO 2023207943A1 CN 2023090491 W CN2023090491 W CN 2023090491W WO 2023207943 A1 WO2023207943 A1 WO 2023207943A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper alloy
electromagnetic shielding
strength
vacuum
copper
Prior art date
Application number
PCT/CN2023/090491
Other languages
English (en)
French (fr)
Inventor
李冬生
刘丹
陈开斌
张旭贵
张亚楠
张芬萍
王慧瑶
Original Assignee
中国铝业股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国铝业股份有限公司 filed Critical 中国铝业股份有限公司
Priority to KR1020247005944A priority Critical patent/KR20240038039A/ko
Publication of WO2023207943A1 publication Critical patent/WO2023207943A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon

Definitions

  • the present disclosure relates to the technical field of copper alloys, and in particular to a high-strength electromagnetic shielding copper alloy and a preparation method thereof.
  • High-strength electromagnetic shielding copper alloy has high conductivity, good heat dissipation, and electromagnetic shielding properties. It is mainly used in VLSI lead frames, efficient broadband 5G communication equipment, electronic countermeasures, radars, and high-power microwave tubes for national defense and military equipment. High pulse magnetic field conductors, etc., have broad prospects and therefore receive great attention.
  • the purpose of this disclosure is to provide a high-strength electromagnetic shielding copper alloy and a preparation method thereof to solve the technical problem in the prior art that high-strength electromagnetic shielding copper alloys cannot achieve both high strength and high electromagnetic shielding performance.
  • a high-strength electromagnetic shielding copper alloy is provided.
  • the chemical composition of the high-strength electromagnetic shielding copper alloy includes in mass percentage: Fe: 3-9%, Ni: 2-5%, Al : 0.2-0.5%, rare earth metals: 0.01-0.20%, the balance is Cu and inevitable impurities.
  • a method for preparing a high-strength electromagnetic shielding copper alloy as described above includes the following steps: preparing raw materials to obtain raw materials; vacuum melting the raw materials to obtain a copper alloy liquid, The chemical composition of the copper alloy liquid is the same as that of the high-strength electromagnetic shielding copper alloy; the copper alloy liquid is cast to obtain an ingot; the ingot is electromagnetically stirred to obtain a copper alloy round rod; The copper alloy round bar is used as an electrode for vacuum consumable arc melting to obtain a homogenized ingot; the homogenized ingot is forged, hot rolled and cold rolled to obtain a slab; and the slab is aged , to obtain the high-strength electromagnetic shielding copper alloy.
  • Figure 1 illustrates a method flow diagram according to some embodiments of the present disclosure
  • Figure 2 shows a metallographic diagram of a copper alloy round rod according to some embodiments of the present disclosure
  • Figure 3 shows a metallographic image in accordance with some embodiments of the present disclosure.
  • a high-strength electromagnetic shielding copper alloy is provided.
  • the chemical composition of the high-strength electromagnetic shielding copper alloy may include, in terms of mass percentage: Fe: 3-9%, Ni: 2-5%, Al: 0.2-0.5%, rare earth metal: 0.01-0.20%, the balance is Cu and inevitable impurities.
  • the high-strength electromagnetic shielding copper alloy provided by the embodiments of the present disclosure can effectively improve the solubility of iron elements in the copper alloy through the addition of different alloy elements, thereby improving the strength and electromagnetic shielding performance of the copper alloy; in some embodiments, by adding The nickel element forms a face-centered cubic lattice-like continuous solid solution with copper, which not only improves the strength but also increases the solubility of iron in the copper alloy; further, by adding the aluminum element, it forms a compound with nickel, and utilizes the precipitation of this compound The hardening effect greatly improves the strength of the alloy; further adding rare earth metals can refine the grains and increase the grain boundary area, thereby improving the strength, and rare earth metals can effectively increase the magnetic reflection interface, thus enhancing the electromagnetic shielding performance.
  • Fe Iron is a paramagnetic element that can significantly improve the electromagnetic shielding efficiency of low-frequency copper alloys. It can also delay the recrystallization process of copper and improve its strength and hardness.
  • iron The solubility in copper is small. At 1050°C, the solubility of iron in copper is only 3.5%. When the iron content exceeds the maximum solid solubility, it will not only cause serious segregation of the alloy components, but also affect the uniformity of the copper alloy. , and will significantly reduce the strength and conductivity of the material, so the Fe content is controlled to 3-9%.
  • Nickel element can form an infinite solid solution continuous solid solution with copper, showing a face-centered cubic lattice. While improving the strength of the copper alloy, it can also increase the solubility of the iron element in the copper alloy. At 950°C, iron The solubility in copper-nickel alloy is expanded by 4.8%, further improving the electromagnetic shielding performance and tensile strength of copper alloy.
  • NiAl phase or Ni 3 Al phase Aluminum element can form NiAl phase or Ni 3 Al phase with nickel element. NiAl phase or Ni 3 Al phase is distributed radially or reticularly in copper alloy. It has obvious precipitation hardening effect and greatly improves the strength of electromagnetic shielding copper alloy. Improvement, where the nickel/aluminum ratio is 8-10, has the best comprehensive performance, so the Ni content is controlled to 2-5%, and the Al content is controlled to 0.2-0.5%.
  • Rare earth metals The rare earth elements lanthanum, cerium, and yttrium are almost insoluble in copper, so the amount of rare earth elements should not be too much. A small amount of rare earth metals can purify the molten pool and improve the quality of copper alloy castings, so the content of rare earth metals should be controlled is 0.01-0.20%.
  • the rare earth metal may include any one or more combinations of copper-lanthanum alloy, copper-cerium alloy, and copper-yttrium alloy.
  • the rare earth elements lanthanum, cerium, and yttrium can refine the copper alloy grains and increase the grain boundary area, which not only improves the strength of the copper alloy, but also effectively increases the magnetic reflection interface and enhances the electromagnetic Shielding energy efficiency; on the other hand, the rare earth elements lanthanum, cerium, and yttrium are very easy to oxidize, so they are added in the form of copper-lanthanum alloy, copper-cerium alloy, and copper-yttrium alloy master alloy.
  • a method for preparing the high-strength electromagnetic shielding copper alloy provided above is provided, which may include the following steps:
  • the raw materials are vacuum smelted to obtain a copper alloy liquid.
  • the chemical composition of the copper alloy liquid is the same as the chemical composition of the high-strength electromagnetic shielding copper alloy.
  • each step in the preparation method of the above-mentioned high-strength electromagnetic shielding copper alloy are as follows; the function of vacuum smelting is to remove the gas during the smelting process of the copper alloy, reduce the oxidation loss of rare earth elements, and ensure the accuracy of the material composition.
  • the function of electromagnetic stirring is to reduce the segregation of iron elements in the billet during the copper alloy casting process and improve the uniformity of the copper alloy material components.
  • the advantage of using electromagnetic stirring is that it is beneficial to the formation and growth of equiaxed crystals inside the copper alloy casting billet, can increase the equiaxed crystal ratio of the casting billet, refine the solidification structure, improve the distribution of inclusions, and promote uniform composition.
  • the electromagnetic stirring process there is no direct contact with the metal melt and no pollution to the copper alloy melt.
  • the function of vacuum consumable arc melting is to further purify the copper alloy billet, remove impurity elements, reduce component segregation, and once again improve the uniformity of material components, thereby improving the strength and electromagnetic shielding performance of the copper alloy.
  • the advantage of using vacuum consumable arc melting is that some non-metallic inclusions in the consumable electrode, such as oxides and nitrides, are dissociated or reduced by carbon under vacuum and high temperature conditions and are removed. for further purification purposes. At the same time, it can also remove gas and non-metallic inclusions, as well as certain harmful impurities with low melting points, improving the difference in longitudinal and transverse performance. Ensure the stability and consistency of material properties, thereby significantly improving the plastic deformation performance, mechanical properties, and electromagnetic shielding performance.
  • the role of aging treatment is to eliminate processing stress and improve the uniformity of performance.
  • the vacuum degree before the vacuum melting, the vacuum degree is pre-evacuated to 10 -3 Pa, and then argon gas is filled until the vacuum degree is 0.1-0.9 Pa.
  • the purpose of this operation is to pre-evacuate the air in the vacuum smelting furnace effectively to prevent oxidation.
  • the vacuum reaches 10 -3 Pa
  • the boiling point of the copper element will be reduced to 951°C, causing copper to vaporize during the smelting process.
  • a large amount of volatilization occurs, so filling with argon gas until the vacuum degree is 0.1-0.9Pa for smelting can not only ensure that the material will not be oxidized, but also avoid the volatilization loss of elements.
  • the electromagnetic stirring is performed after the ingot is allowed to stand for 5-20 seconds.
  • the purpose of controlling the resting time is: if the resting time is too short, the melt will be overheated and stirring pits will easily appear, causing casting defects; if the resting time is too long, the ingot will be completely solidified and the stirring effect will not be achieved, so control the resting time.
  • the setting time is 5-20s.
  • the electromagnetic stirring is performed alternately in forward rotation and reverse rotation, the stirring frequency of the electromagnetic stirring is 5-30 Hz, and the current of the electromagnetic stirring is 200-300 A.
  • the electromagnetic stirring takes the form of alternating forward and reverse rotation, which can avoid the occurrence of shrinkage cavities in the ingot caused by a single method.
  • the purpose of controlling the frequency of electromagnetic stirring is that within this range, as the frequency increases, the effect of electromagnetic stirring increases, and the effect of refining the grain size is more obvious.
  • the electromagnetic stirring frequency is too weak to achieve uniform refinement.
  • the frequency is higher than 30Hz, the skin effect and eddy current thermal effect become significant, causing the grains to fuse and grow.
  • Electromagnetic stirring has a negative impact on the solidification structure. The improvement effect becomes worse.
  • the flow in the melt transforms into increasing turbulence, and the uniformity of primary phase distribution tends to deteriorate, that is, the improvement effect of electromagnetic stirring on component segregation also becomes worse.
  • the reason for controlling the current of electromagnetic stirring is that within this range, as the current increases, the intensity of the electromagnetic field increases significantly, the fluidity of the copper alloy melt increases, and the microscopic temperature fluctuates greatly, which is conducive to uniform composition.
  • the current is lower than 200A, the electromagnetic force generated inside the casting is weak, the transformation from columnar crystals to equiaxed crystals is insufficient, and the homogenization effect is not obvious; when the current reaches 300A and the frequency is suitable, continuing to increase the current structure will no longer Changes will cause a waste of electrical energy.
  • the pressure of the vacuum consumable arc melting is 0.1-5 Pa, and the arc length of the vacuum consumable arc melting is 25-80 mm.
  • the reason for controlling the pressure of vacuum consumable arc melting is that the pressure in the furnace affects the arc behavior and the quality of the copper alloy.
  • the residual pressure in the arc zone increases to more than 5Pa, the critical pressure range of glow discharge is reached, and arc combustion cannot Stable, even causing arc extinguishment.
  • the reason for controlling the arc length is: too short will cause frequent short circuits and reduce the quality of the ingot, and too long will cause the arc to move and breakdown the equipment.
  • a gap layer of 50-100 mm is reserved on the peripheral side of the copper alloy round rod.
  • the function of the reserved gap layer is to ensure safety on the one hand and to provide a good channel for gas removal on the other hand.
  • the starting temperature of the hot rolling is 1000-1020°C
  • the final rolling temperature of the hot rolling is 830-850°C
  • the deformation rate of the hot rolling is ⁇ 60%
  • the cold rolling The deformation rate is 45-60%.
  • the temperature of the aging treatment is 250-300°C, and the time of the aging treatment is 24-72 hours.
  • a high-strength electromagnetic shielding copper alloy is provided.
  • the mass percentage of the chemical composition is shown in Table 1.
  • the preparation method of the above-mentioned high-strength electromagnetic shielding copper alloy includes the following steps: (1) Prepare raw materials: prepare relevant raw materials according to weight percentage, iron 4%, nickel 2%, aluminum 0.2%, rare earth lanthanum metal 0.05%, of which rare earth lanthanum It is formulated in the form of copper-lanthanum master alloy, and the balance is copper and other unavoidable impurities.
  • Electromagnetic stirring casting After casting, the copper alloy ingot is allowed to stand for 10 seconds and then electromagnetic stirring is performed. The direction of electromagnetic stirring is: forward rotation 5S + reverse rotation 5S cycle, electromagnetic stirring current: 200A, electromagnetic stirring frequency: 10HZ, thereby obtaining copper alloy round Great.
  • Vacuum consumable arc melting The surface of the copper alloy round bar after electromagnetic stirring casting is peeled, and then used as an electrode to perform vacuum consumable arc melting to remove gases and non-metals in the electromagnetic shielding copper alloy. Inclusions remove harmful impurities with low melting points, improve the difference in longitudinal and transverse properties, and ensure good consistency, uniform composition, and stable performance of copper alloys, thereby improving the plastic deformation performance, mechanical properties, and electromagnetic shielding performance. Significant improvement.
  • the main process conditions of vacuum arc melting are: the pressure in the furnace is controlled at 1Pa, the arc length is controlled at 35mm, the gap between the electrode and the crucible is 60mm, the initial voltage of the melting is 80kW, after the molten pool is formed, the melting power is increased to 120kW, which is higher than
  • the main smelting period is scheduled to compensate for the chilling effect at the bottom of the crucible. During the melting period, the power should remain unchanged at 90kW until the end of the melting period, and finally heat capping is performed to minimize shrinkage and segregation at the head of the ingot and obtain a homogenized ingot with uniform composition.
  • Plastic deformation Forging the homogenized ingot to obtain forgings with dimensions that meet the requirements.
  • the forged copper alloy is subjected to rolling deformation treatment, including hot rolling and cold rolling, to further improve the strength of the material.
  • rolling deformation treatment including hot rolling and cold rolling, to further improve the strength of the material.
  • the starting temperature is 950°C
  • the final rolling temperature is 830-850°C
  • the deformation rate of hot rolling is controlled at 65%.
  • Cold rolling treatment the cold rolling deformation rate is controlled at 50%, and a slab is obtained.
  • Aging treatment is performed on the slab to eliminate processing stress and improve uniformity of performance.
  • the temperature of aging treatment is 250°C and the time of aging treatment is 24 hours.
  • a high-strength electromagnetic shielding copper alloy is provided.
  • the mass percentage of the chemical composition is shown in Table 2.
  • the preparation method of the above-mentioned high-strength electromagnetic shielding copper alloy includes the following steps: (1) Prepare raw materials: prepare relevant raw materials according to weight percentage, iron 5.2%, nickel 3.1%, aluminum 0.3%, rare earth cerium metal 0.07%, of which rare earth cerium It is formulated in the form of copper-cerium master alloy, and the balance is copper and other unavoidable impurities.
  • Electromagnetic stirring casting After casting, the copper alloy ingot is allowed to stand for 8 seconds and then electromagnetic stirring is performed. The direction of electromagnetic stirring is: forward rotation 8S + reverse rotation 8S cycle, electromagnetic stirring current: 300A, electromagnetic stirring frequency: 20HZ, thereby obtaining copper alloy round Great.
  • Vacuum consumable arc melting The surface of the copper alloy round bar after electromagnetic stirring casting is peeled, and then used as an electrode to perform vacuum consumable arc melting to remove gases and non-metals in the electromagnetic shielding copper alloy. Inclusions remove harmful impurities with low melting points, improve the difference in longitudinal and transverse properties, and ensure good consistency, uniform composition, and stable performance of copper alloys, thereby improving the plastic deformation performance, mechanical properties, and electromagnetic shielding performance. Significant improvement.
  • the main process conditions of vacuum arc melting are: the pressure in the furnace is controlled at 0.5Pa, the arc length is controlled at 40mm, and the gap between the electrode and the crucible is 60mm, the initial voltage of smelting is 80kw.
  • the smelting power is increased to 120kw, which is higher than scheduled in the main smelting period to compensate for the chilling effect at the bottom of the crucible.
  • the power should remain unchanged at 90kw until the end of the smelting period, and finally heat capping is performed to minimize shrinkage cavities and segregation at the head of the ingot and obtain a homogenized ingot with uniform composition.
  • Plastic deformation Forging the homogenized ingot to obtain forgings with dimensions that meet the requirements.
  • the forged copper alloy is subjected to rolling deformation treatment, including hot rolling and cold rolling, to further improve the strength of the material.
  • rolling deformation treatment including hot rolling and cold rolling, to further improve the strength of the material.
  • the starting temperature is 950°C
  • the final rolling temperature is 830-850°C
  • the deformation rate of hot rolling is controlled at 68%.
  • Cold rolling treatment the cold rolling deformation rate is controlled at 55%, and a slab is obtained.
  • Aging treatment is performed on the slab to eliminate processing stress and improve uniformity of performance.
  • the temperature of aging treatment is 300°C and the time of aging treatment is 24 hours.
  • a high-strength electromagnetic shielding copper alloy is provided.
  • the mass percentage of chemical components is shown in Table 3.
  • the preparation method of the above-mentioned high-strength electromagnetic shielding copper alloy includes the following steps: (1) Prepare raw materials: prepare relevant raw materials according to weight percentage, iron 6.3%, nickel 4.2%, aluminum 0.4%, rare earth yttrium 0.03%, of which rare earth yttrium is The copper-yttrium master alloy is formulated with the remainder being copper and other unavoidable impurities.
  • Electromagnetic stirring casting After casting, the copper alloy ingot is allowed to stand for 10 seconds and then electromagnetic stirring is performed. The direction of electromagnetic stirring is: forward rotation 5S + reverse rotation 5S cycle, electromagnetic stirring current: 300A, electromagnetic stirring frequency: 20HZ, thereby obtaining copper alloy round Great.
  • Vacuum consumable arc melting The surface of the copper alloy round bar after electromagnetic stirring casting is peeled, and then used as an electrode to perform vacuum consumable arc melting to remove gases and non-metals in the electromagnetic shielding copper alloy. Inclusions remove harmful impurities with low melting points, improve the difference in longitudinal and transverse properties, and ensure good consistency, uniform composition, and stable performance of copper alloys, thereby improving the plastic deformation performance, mechanical properties, and electromagnetic shielding performance. Significant improvement.
  • the main process conditions of vacuum arc melting are: the pressure in the furnace is controlled at 2Pa, the arc length is controlled at 35mm, the gap between the electrode and the crucible is 55mm, the initial voltage of the melting is 75kw, after the molten pool is formed, the melting power is increased to 115kw, which is higher than
  • the main smelting period is scheduled to compensate for the chilling effect at the bottom of the crucible. During the melting period, the power should remain unchanged at 85kw until the end of the melting period, and finally heat capping is performed to minimize the shrinkage and segregation at the head of the ingot and obtain a homogenized ingot with uniform composition.
  • Plastic deformation Forging the homogenized ingot to obtain forgings with dimensions that meet the requirements.
  • the forged copper alloy is subjected to rolling deformation treatment, including hot rolling and cold rolling, to further improve the strength of the material.
  • rolling deformation treatment including hot rolling and cold rolling, to further improve the strength of the material.
  • the starting temperature is 955°C
  • the final rolling temperature is 855°C
  • the deformation rate of hot rolling is controlled to be above 65%.
  • Cold rolling treatment the cold rolling deformation rate is controlled at 50%, and a slab is obtained.
  • Aging treatment is performed on the slab to eliminate processing stress and improve uniformity of performance.
  • the temperature of aging treatment is 280°C and the time of aging treatment is 42 hours.
  • a high-strength electromagnetic shielding copper alloy is composed of the following components in weight percentage: Fe20wt%, Ni10wt%, and the balance is Cu.
  • the preparation method is the same as Example 1.
  • a high-strength electromagnetic shielding copper alloy is composed of the following components in weight percentage: Fe10wt%, Ni10wt%, Re0.1wt%, and the balance is Cu.
  • the preparation method is the same as Example 1.
  • a high-strength electromagnetic shielding copper alloy is composed of the following components in weight percentage: Ni25wt%, Al5wt%, and the balance is Cu.
  • the preparation method is the same as Example 1.
  • the electromagnetic shielding performance, conductivity and tensile strength of the high-strength electromagnetic shielding copper alloy provided by Examples 1-3 of the present disclosure have significant advantages compared with Comparative Examples 1-3, and the electromagnetic shielding performance is >110dB. , conductivity>50%IACS, tensile strength>950MPa.
  • the high-strength electromagnetic shielding copper alloy provided by the embodiments of the present disclosure can effectively improve the solubility of iron elements in the copper alloy through the addition of different alloy elements, thereby improving the strength and electromagnetic shielding performance of the copper alloy; in some embodiments, by adding The nickel element forms a face-centered cubic lattice-like continuous solid solution with copper, which not only improves the strength but also increases the solubility of iron in the copper alloy; further, by adding the aluminum element, it forms a compound with nickel, and utilizes the precipitation of this compound The hardening effect greatly improves the strength of the alloy; further adding rare earth metals can refine the grains and increase the grain boundary area, thereby improving the strength, and rare earth metals can effectively increase the magnetic reflection interface, thus enhancing the electromagnetic shielding performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Conductive Materials (AREA)

Abstract

本公开涉及一种高强度电磁屏蔽铜合金及其制备方法,属于铜合金技术领域。该合金的化学成分以质量百分比计包括:Fe:3-9%,Ni:2-5%,Al:0.2-0.5%,稀土金属:0.01-0.20%,余量为Cu和不可避免的杂质。其通过不同合金元素的添加,有效提高铁元素在铜合金中的溶解度,从而提升铜合金的强度和电磁屏蔽性能,从而得到电磁屏蔽性能>110dB,电导率>50%IACS,抗拉强度>950MPa的高强度电磁屏蔽铜合金。

Description

一种高强度电磁屏蔽铜合金及其制备方法
相关申请的交叉引用
本公开要求于2022年4月29日提交、申请号为202210473077.5的中国专利申请的优先权,其全部内容通过引用合并于此。
技术领域
本公开涉及铜合金技术领域,特别涉及一种高强度电磁屏蔽铜合金及其制备方法。
背景技术
高强电磁屏蔽铜合金,具有导电率高、散热性好,电磁屏蔽的性能,重点应用于超大规模集成电路引线框架,高效宽频5G通信设备,国防军工装备的电子对抗、雷达、大功率微波管,高脉冲磁场导体等,具有广阔的前景,因而受到极大的重视。
目前现有的高强电磁屏蔽铜合金普遍致力于提升自身的电磁屏蔽性能,但电磁屏蔽性能与强度很难做到同时提高。原因主要有两点:(1)铁在铜中的固溶度较小,导致富余的铁在凝固过程中析出粗大的铁相,劣化铸件品质,降低材料性能;(2)铜铁液相具有较大的正溶解热,在液相线下存在亚稳难混溶间隙,铸件中心和边缘成分偏差大,影响铜铁合金性能。因此,如何同时兼顾较高的强度和较高的电磁屏蔽性能,是目前急需解决的问题。
发明内容
本公开的目的在于提供一种高强度电磁屏蔽铜合金及其制备方法,以解决现有技术中高强度电磁屏蔽铜合金无法兼顾较高的强度和较高的电磁屏蔽性能的技术问题。
依据本公开的一个方面,提供了一种高强度电磁屏蔽铜合金,所述高强度电磁屏蔽铜合金的化学成分以质量百分比计包括;Fe:3-9%,Ni:2-5%,Al:0.2-0.5%,稀土金属:0.01-0.20%,余量为Cu和不可避免的杂质。
依据本公开的另一方面,还提供了一种如上所述的高强度电磁屏蔽铜合金的制备方法,包括如下步骤:配置得到原料;将所述原料进行真空熔炼,得到铜合金液,所述铜合金液的化学成分与所述高强度电磁屏蔽铜合金的化学成分相同;将所述铜合金液进行浇铸,得到铸锭;将所述铸锭进行电磁搅拌,得到铜合金圆棒;以所述铜合金圆棒为电极进行真空自耗电弧熔炼,得到均化铸锭;将所述均化铸锭进行锻造、热轧及冷轧,得到板坯;以及将所述板坯经时效处理,得到所述高强度电磁屏蔽铜合金。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1示出了依据本公开的一些实施方式的方法流程图;
图2示出了依据本公开的一些实施方式的铜合金圆棒的金相图;
图3示出了依据本公开的一些实施方式的的金相图。
具体实施方式
下文将结合具体实施方式和实施例,具体阐述本公开,本公开的优点和各种效果将由此更加清楚地呈现。本领域技术人员应理解,这些具体实施方式和实施例是用于说明本公开,而非限制本公开。
在整个说明书中,除非另有特别说明,本文使用的术语应理解为如本领域中通常所使用的含义。因此,除非另有定义,本文使用的所有技术和科学术语具有与本公开所属领域技术人员的一般理解相同的含义。若存在矛盾,本说明书优先。
除非另有特别说明,本公开中用到的各种原材料、试剂、仪器和设备等,均可通过市场购买获得或者可通过现有方法获得。
根据本公开一种典型的实施方式,提供了一种高强度电磁屏蔽铜合金,所述高强度电磁屏蔽铜合金的化学成分以质量百分比计可以包括:Fe:3-9%, Ni:2-5%,Al:0.2-0.5%,稀土金属:0.01-0.20%,余量为Cu和不可避免的杂质。
本公开实施例提供的高强度电磁屏蔽铜合金,通过不同合金元素的添加,有效提高铁元素在铜合金中的溶解度,从而提升铜合金的强度和电磁屏蔽性能;在一些实施方式中,通过添加镍元素,使其与铜形成面心立方晶格状的连续固溶体,提高强度的同时增大铁在铜合金中的溶解度;进一步通过添加铝元素,使其与镍形成化合物,利用该化合物的沉淀硬化作用,大幅度提高合金的强度;进一步通过添加稀土金属,能够细化晶粒并增大晶界面积,从而提高强度,并且稀土金属能够有效增大磁反射界面,从而增强电磁屏蔽性能。
上述主要化学元素和限定范围详细说明如下:Fe:铁元素为顺磁性元素,能显著提高铜合金中低频率的电磁屏蔽能效,同时能延迟铜的再结晶过程,提高其强度和硬度,但是铁在铜中的溶解度较小,在1050℃条件下,铁在铜中的溶解度仅为3.5%,铁含量超过最大固溶度后,不但会使合金成分形成严重的偏析,影响铜合金的均匀性,而且会显著降低材料的强度及导电性,因此控制Fe含量为3-9%。
Ni:镍元素可与铜形成无限固溶的连续固溶体,呈现面心立方晶格,在提高铜合金强度的同时,可增大铁元素在铜合金中的溶解度,其中在950℃条件下,铁在铜镍合金中的溶解度扩大4.8%,进一步提高铜合金的电磁屏蔽性能和抗拉强度。
Al:铝元素可与镍元素形成NiAl相或Ni3Al相,NiAl相或Ni3Al相在铜合金中呈放射状或网状分布,具有明显的沉淀硬化作用,使电磁屏蔽铜合金的强度大幅提高,其中镍/铝比为8-10时,具有最佳的综合性能,因此控制Ni含量为2-5%,并控制Al含量为0.2-0.5%。
稀土金属:稀土元素镧、铈、钇几乎不固溶于铜,因此稀土元素的加入量不宜过多,少量的稀土金属可起到净化熔池提高铜合金铸件品质的效果,因此控制稀土金属含量为0.01-0.20%。
在一些实施方式中,所述稀土金属可以包括铜镧合金、铜铈合金及铜钇合金中的任意一种或多种组合。
选取上述合金的原因在于:一方面,稀土元素镧、铈、钇可以细化铜合金晶粒,增大晶界面积,不但能提高铜合金的强度,而且能有效增大磁反射界面,增强电磁屏蔽能效;另一方面,稀土元素镧、铈、钇非常易于氧化,因此选择以铜镧合金、铜铈合金、铜钇合金中间合金的形式加入。
根据本公开另一种典型的实施方式,提供了一种如上提供的高强度电磁屏蔽铜合金的制备方法,可以包括如下步骤:
S1、配置得到原料。
S2、将所述原料进行真空熔炼,得到铜合金液,所述铜合金液的化学成分与所述高强度电磁屏蔽铜合金的化学成分相同。
S3、将所述铜合金液进行浇铸,得到铸锭。
S4、将所述铸锭进行电磁搅拌,得到铜合金圆棒。
S5、以所述铜合金圆棒为电极进行真空自耗电弧熔炼,得到均化铸锭。
S6、将所述均化铸锭进行锻造、热轧及冷轧,得到板坯。
S7、将所述板坯经时效处理,得到所述高强度电磁屏蔽铜合金。
上述高强度电磁屏蔽铜合金的制备方法,各步骤的作用具体如下;真空熔炼的作用在于:去除铜合金在熔炼过程中的气体,减少稀土元素的氧化损失,保证材料成分的准确性。
电磁搅拌的作用在于:减少铜合金铸造过程中铁元素在铸坯中的成分的偏析,提铜合金材料成分的均匀性。采取电磁搅拌的好处在于:有利于铜合金铸坯内部等轴晶的形成和生长,能够提高铸坯的等轴晶率、细化凝固组织、改善夹杂物分布,促进成分均匀。电磁搅拌过程中,不直接接触金属熔体,对铜合金熔体无污染。
真空自耗电弧熔炼的作用在于:铜合金铸坯进行进一步的纯化,去除杂质元素,减少成分偏析,再次提高材料成分的均匀性,从而提高铜合金的强度和电磁屏蔽性能。采取真空自耗电弧熔炼的好处在于:随着自耗电极中一些非金属夹杂物,如氧化物、氮化物,在真空和高温条件下,发生离解或被碳还原而被去除掉,达到进一步提纯的目的。同时还能去除气体和非金属夹杂物,以及去除某些低熔点的有害杂质,改善了纵向和横向性能的差异, 保证材料性能的稳定性、一致性,从而使塑形变形性能、力学性能、电磁屏蔽性能物理性能得到明显改善。
时效处理的作用在于消除加工应力,提高性能的均匀性。
在一些实施方式中,所述真空熔炼前,将真空度预抽至10-3Pa,而后充入氩气至真空度为0.1-0.9Pa。
该操作的作用在于:先预抽是为了有效排除真空熔炼炉内的空气,防止氧化,但是当真空度达到10-3Pa时,铜元素的沸点会降低至951℃,熔炼过程中造成铜的大量挥发,因此充入氩气至真空度为0.1-0.9Pa进行熔炼,既能保证材料不会氧化,又能避免元素的挥发损失。
在一些实施方式中,所述铸锭静置5-20s后进行所述电磁搅拌。
控制静置时间的作用在于:静置时间过短,熔体过热度太大,易于出现搅拌坑,形成铸造缺陷;静置时间过长,铸锭完全凝固,无法起到搅拌效果,因此控制静置时间为5-20s。
在一些实施方式中,所述电磁搅拌为正转和反转交替进行,所述电磁搅拌的搅拌频率为5-30Hz,所述电磁搅拌的电流为200-300A。
电磁搅拌采取正转和反转交替进行的形式,能够避免单一方式造成铸锭内缩孔的产生。控制电磁搅拌的频率的作用在于:在此范围内,随着频率的增加,电磁搅拌效果随之增强,对晶粒尺寸的细化效果更为明显。当低于5Hz,电磁搅拌频率太弱,起不到均匀细化的效果,当频率高于30Hz,趋肤效应和涡流热效应变得显著,导致晶粒出现熔合长大趋势,电磁搅拌对凝固组织的改善效果变差。同时,熔体内的流动转变为不断增强的湍流,初生相分布均匀性趋于恶化,即电磁搅拌对成分偏析的改善效果亦变差。
控制电磁搅拌的电流的原因在于:在此范围内,随着电流的提高,电磁场强度明显增大,铜合金熔液流动性增强,微观温度起伏大,有利于成分的均匀。电流低于200A,在铸件内部产生的电磁力较弱,柱状晶向等轴晶的转变不充分,均化效果不明显;当电流达到300A,频率适合的情况下,继续增大电流组织不再发生变化,反而造成电能的浪费。
在一些实施方式中,所述真空自耗电弧熔炼的压力为0.1-5Pa,所述真空自耗电弧熔炼的电弧长度为25-80mm。
控制真空自耗电弧熔炼的压力的原因在于:炉内压力影响电弧行为和铜合金的质量,当电弧区内残余压力增大到5Pa以上时就达到辉光放电的临界压力范围,电弧燃烧不稳定,甚至导致电弧熄灭。
控制电弧长度的原因在于:太短会造成频繁的短路,降低铸锭质量,太长会使电弧移动,击穿设备。
在一些实施方式中,所述铜合金圆棒作为电极时,所述铜合金圆棒周侧预留有50-100mm的间隙层。
预留间隙层的作用在于:一方面确保安全性,另一方面为气体排除提供良好的通道。
在一些实施方式中,所述热轧的起始温度为1000-1020℃,所述热轧的终轧温度为830-850℃;所述热轧的变形率≥60%;所述冷轧的变形率为45-60%。
在一些实施方式中,所述时效处理的温度为250-300℃,所述时效处理的时间为24-72h。
实施例1
提供了一种高强度电磁屏蔽铜合金,化学成分的质量百分比见表1。
表1实施例1的高强度电磁屏蔽铜合金的化学成分
上述高强度电磁屏蔽铜合金的制备方法,包括如下步骤:(1)配置得到原料:按重量百分比配制相关原料,铁4%、镍2%、铝0.2%、稀土镧金属0.05%,其中稀土镧以铜镧中间合金方式配料,余量为铜及其它不可避免杂质。
(2)真空感应熔炼:原材料在装炉前须去氧化皮和油污,对铁棒、电解铜板、电解镍板表面磨光去皮,装料时下紧上松以防架桥,铁棒、铜板、镍板装在坩埚下部,铝锭置于坩埚上部,坩埚材料为碱性坩埚,铜镧合金置于二次加料盘中。随后将浇铸模具内部用砂纸打磨干净,在内壁上涂刷脱模剂(氮化硼+酒精)。关闭真空炉炉盖,先后开启机械泵、罗茨泵进行抽真空,当真空达到10-3Pa时,关闭罗茨泵、机械泵,然后充入氩气至0.4Pa进行熔炼。熔炼开始时以40kW小功率送电10min,再以60kW送电5min,最后以95kW 大功率送电至化清,防止物料熔化过程中架桥。当物料化清后,继续大功率送电,并进行倾动坩埚2-3次,直至温度达到1350℃左右时,降低功率到40kW,在此温度下保持30min左右,进行合金材料的精炼。精炼期结束后即可停电,进行降温结膜,当停电15min后,在熔池液面处会产生轻微的结膜,此时缓慢均匀的加入铜镧合金,然后以95kW功率搅拌熔池,倾动坩埚2-3次,当温度升至1300℃时,保温10min,然后降低功率到40kW,进行调整温度,当温度为1200℃左右时,进行浇铸,得到铸锭。
(3)电磁搅拌铸造:浇铸后铜合金铸锭静置10s后进行电磁搅拌,电磁搅拌方向:正转5S+反转5S循环,电磁搅拌电流:200A,电磁搅拌频率:10HZ,从而得到铜合金圆棒。
(4)真空自耗电弧熔炼:对电磁搅拌铸造后的铜合金圆棒进行表面去皮,然后以其为电极,进行真空自耗电弧熔炼,去除电磁屏蔽铜合金内的气体和非金属夹杂物,去除低熔点的有害杂质,改善了纵向和横向性能的差异,保证铜合金一致性良好、成分均匀、性能的稳定性,从而使塑形变形性能、力学性能、电磁屏蔽性能物理性能得到明显改善。真空电弧熔炼的主要工艺条件为:炉内压力控制在1Pa,电弧长度控制在35mm,电极与坩埚间隙为60mm,熔炼的初始电压在80kW,形成熔池后,将熔炼功率增加到120kW,高于主熔炼期所预定的,以弥补坩埚底部的激冷效应。熔炼期间,功率应保持90kW不变,直到熔炼末期,最后进行热封顶,以便把锭料头部缩孔和偏析减少到最小,得到成分均匀的均化铸锭。
(5)塑性变形:对均化铸锭进行锻造处理,得到尺寸符合要求的锻件。对锻造后的铜合金进行轧制变形处理,包括热轧处理和冷轧处理,来进一步提高材料的强度。热轧处理,其起始温度950℃,终轧温度830-850℃,热轧的变形率控制在65%。冷轧处理,其冷轧的变形率控制在50%,得到板坯。
(6)时效处理:对板坯进行时效处理,以消除加工应力,提高性能的均匀性,时效处理的温度为250℃,时效处理的时间为24h。
实施例2
提供了一种高强度电磁屏蔽铜合金,化学成分的质量百分比见表2。
表2实施例2的高强度电磁屏蔽铜合金的化学成分
上述高强度电磁屏蔽铜合金的制备方法,包括如下步骤:(1)配置得到原料:按重量百分比配制相关原料,铁5.2%、镍3.1%、铝0.3%、稀土铈金属0.07%,其中稀土铈以铜铈中间合金方式配料,余量为铜及其它不可避免杂质。
(2)真空感应熔炼:原材料在装炉前须去氧化皮和油污,对铁棒、电解铜板、电解镍板表面磨光去皮,装料时下紧上松以防架桥,铁棒、铜板、镍板装在坩埚下部,铝锭置于坩埚上部,坩埚材料为碱性坩埚,铜镧合金置于二次加料盘中。随后将浇铸模具内部用砂纸打磨干净,在内壁上涂刷脱模剂(氮化硼+酒精)。关闭真空炉炉盖,先后开启机械泵、罗茨泵进行抽真空,当真空达到10-3pa时,关闭罗茨泵、机械泵,然后充入氩气至0.8pa进行熔炼。熔炼开始时以40kw小功率送电10min,再以60kw送电5min,最后以95kw大功率送电至化清,防止物料熔化过程中架桥。当物料化清后,继续大功率送电,并进行倾动坩埚2-3次,直至温度达到1380℃左右时,降低功率到40kw,在此温度下保持30min左右,进行合金材料的精炼。精炼期结束后即可停电,进行降温结膜,当停电15min后,在熔池液面处会产生轻微的结膜,此时缓慢均匀的加入铜镧合金,然后以95kw功率搅拌熔池,倾动坩埚2-3次,当温度升至1350℃时,保温10min,然后降低功率到40kw,进行调整温度,当温度为1220℃左右时,进行浇铸,得到铸锭。
(3)电磁搅拌铸造:浇铸后铜合金铸锭静置8s后进行电磁搅拌,电磁搅拌方向:正转8S+反转8S循环,电磁搅拌电流:300A,电磁搅拌频率:20HZ,从而得到铜合金圆棒。
(4)真空自耗电弧熔炼:对电磁搅拌铸造后的铜合金圆棒进行表面去皮,然后以其为电极,进行真空自耗电弧熔炼,去除电磁屏蔽铜合金内的气体和非金属夹杂物,去除低熔点的有害杂质,改善了纵向和横向性能的差异,保证铜合金一致性良好、成分均匀、性能的稳定性,从而使塑形变形性能、力学性能、电磁屏蔽性能物理性能得到明显改善。真空电弧熔炼的主要工艺条件为:炉内压力控制在0.5Pa,电弧长度控制在40mm,电极与坩埚间隙为 60mm,熔炼的初始电压在80kw,形成熔池后,将熔炼功率增加到120kw,高于主熔炼期所预定的,以弥补坩埚底部的激冷效应。熔炼期间,功率应保持90kw不变,直到熔炼末期,最后进行热封顶,以便把锭料头部缩孔和偏析减少到最小,得到成分均匀的均化铸锭。
(5)塑性变形:对均化铸锭进行锻造处理,得到尺寸符合要求的锻件。对锻造后的铜合金进行轧制变形处理,包括热轧处理和冷轧处理,来进一步提高材料的强度。热轧处理,其起始温度950℃,终轧温度830-850℃,热轧的变形率控制在68%。冷轧处理,其冷轧的变形率控制在55%,得到板坯。
(6)时效处理:对板坯进行时效处理,以消除加工应力,提高性能的均匀性,时效处理的温度为300℃,时效处理的时间为24h。
实施例3
提供了一种高强度电磁屏蔽铜合金,化学成分的质量百分比见表3。
表3实施例3的高强度电磁屏蔽铜合金的化学成分
上述高强度电磁屏蔽铜合金的制备方法,包括如下步骤:(1)配置得到原料:按重量百分比配制相关原料,铁6.3%、镍4.2%、铝0.4%、稀土钇0.03%,其中稀土钇以铜钇中间合金方式配料,余量为铜及其它不可避免杂质。
(2)真空感应熔炼:原材料在装炉前须去氧化皮和油污,对铁棒、电解铜板、电解镍板表面磨光去皮,装料时下紧上松以防架桥,铁棒、铜板、镍板装在坩埚下部,铝锭置于坩埚上部,坩埚材料为碱性坩埚,铜钇合金置于二次加料盘中。随后将浇铸模具内部用砂纸打磨干净,在内壁上涂刷脱模剂(氮化硼+酒精)。关闭真空炉炉盖,先后开启机械泵、罗茨泵进行抽真空,当真空达到10-3pa时,关闭罗茨泵、机械泵,然后充入氩气至0.8pa进行熔炼。熔炼开始时以40kw小功率送电10min,再以60kw送电5min,最后以95kw大功率送电至化清,防止物料熔化过程中架桥。当物料化清后,继续大功率送电,并进行倾动坩埚2-3次,直至温度达到1400℃左右时,降低功率到40kw,在此温度下保持30min左右,进行合金材料的精炼。精炼期结束后即可停电,进行降温结膜,当停电15min后,在熔池液面处会产生轻微的结膜,此时缓 慢均匀的加入铜镧合金,然后以95kw功率搅拌熔池,倾动坩埚2-3次,当温度升至1380℃时,保温10min,然后降低功率到40kw,进行调整温度,当温度为1210℃左右时,进行浇铸,得到铸锭。
(3)电磁搅拌铸造:浇铸后铜合金铸锭静置10s后进行电磁搅拌,电磁搅拌方向:正转5S+反转5S循环,电磁搅拌电流:300A,电磁搅拌频率:20HZ,从而得到铜合金圆棒。
(4)真空自耗电弧熔炼:对电磁搅拌铸造后的铜合金圆棒进行表面去皮,然后以其为电极,进行真空自耗电弧熔炼,去除电磁屏蔽铜合金内的气体和非金属夹杂物,去除低熔点的有害杂质,改善了纵向和横向性能的差异,保证铜合金一致性良好、成分均匀、性能的稳定性,从而使塑形变形性能、力学性能、电磁屏蔽性能物理性能得到明显改善。真空电弧熔炼的主要工艺条件为:炉内压力控制在2Pa,电弧长度控制在35mm,电极与坩埚间隙为55mm,熔炼的初始电压在75kw,形成熔池后,将熔炼功率增加到115kw,高于主熔炼期所预定的,以弥补坩埚底部的激冷效应。熔炼期间,功率应保持85kw不变,直到熔炼末期,最后进行热封顶,以便把锭料头部缩孔和偏析减少到最小,得到成分均匀的均化铸锭。
(5)塑性变形:对均化铸锭进行锻造处理,得到尺寸符合要求的锻件。对锻造后的铜合金进行轧制变形处理,包括热轧处理和冷轧处理,来进一步提高材料的强度。热轧处理,其起始温度955℃,终轧温度855℃,热轧的变形率控制在65%以上。冷轧处理,其冷轧的变形率控制在50%,得到板坯。
(6)时效处理:对板坯进行时效处理,以消除加工应力,提高性能的均匀性,时效处理的温度为280℃,时效处理的时间为42h。
对比例1
一种高强电磁屏蔽铜合金,由以下组分按照重量百分比组成:Fe20wt%,Ni10wt%,余量为Cu。制备方法与实施例1相同。
对比例2
一种高强电磁屏蔽铜合金,由以下组分按照重量百分比组成:Fe10wt%,Ni10wt%,Re0.1wt%,余量为Cu。制备方法与实施例1相同。
对比例3
一种高强电磁屏蔽铜合金,由以下组分按照重量百分比组成:Ni25wt%,Al5wt%,余量为Cu。制备方法与实施例1相同。
实验例1
对实施例1-3和对比例1-3提供的高强度电磁屏蔽铜合金分别进行电磁屏蔽性能检测和抗拉强度检测,结果见下表。
从上表可以看出,本公开实施例1-3提供的高强度电磁屏蔽铜合金的电磁屏蔽性能、电导率及抗拉强度相较对比例1-3具备显著的优势,电磁屏蔽性能>110dB,电导率>50%IACS,抗拉强度>950MPa。
本公开实施例提供的高强度电磁屏蔽铜合金,通过不同合金元素的添加,有效提高铁元素在铜合金中的溶解度,从而提升铜合金的强度和电磁屏蔽性能;在一些实施方式中,通过添加镍元素,使其与铜形成面心立方晶格状的连续固溶体,提高强度的同时增大铁在铜合金中的溶解度;进一步通过添加铝元素,使其与镍形成化合物,利用该化合物的沉淀硬化作用,大幅度提高合金的强度;进一步通过添加稀土金属,能够细化晶粒并增大晶界面积,从而提高强度,并且稀土金属能够有效增大磁反射界面,从而增强电磁屏蔽性能。
最后,还需要说明的是,术语“可以包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得可以包括一系列要素的过程、方法、物品或者设备不仅可以包括那些要素,而且还可以包括没有明确列出的其他要素,或者是还可以包括为这种过程、方法、物品或者设备所固有的要 素。尽管已描述了本公开的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为可以包括优选实施例以及落入本公开范围的所有变更和修改。显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (10)

  1. 一种高强度电磁屏蔽铜合金,所述铜合金的化学成分以质量百分比计包括:
    Fe:3-9%,Ni:2-5%,Al:0.2-0.5%,稀土金属:0.01-0.20%,余量为Cu和不可避免的杂质。
  2. 根据权利要求1所述的高强度电磁屏蔽铜合金,其中,所述稀土金属包括铜镧合金、铜铈合金及铜钇合金中的任意一种或多种组合。
  3. 一种如权利要求1或2所述的高强度电磁屏蔽铜合金的制备方法,包括如下步骤:
    按所述铜合金的化学成分,配置得到原料;
    将所述原料进行真空熔炼,得到铜合金液;
    将所述铜合金液进行浇铸,得到铸锭;
    将所述铸锭进行电磁搅拌,得到铜合金圆棒;
    以所述铜合金圆棒为电极进行真空自耗电弧熔炼,得到均化铸锭;
    将所述均化铸锭进行锻造、热轧及冷轧,得到板坯;
    将所述板坯经时效处理,得到所述高强度电磁屏蔽铜合金。
  4. 根据权利要求3所述的高强度电磁屏蔽铜合金的制备方法,其中,所述真空熔炼前,将真空熔炼炉的真空度预抽至10-3Pa,而后充入氩气至所述真空熔炼炉的真空度为0.1-0.9Pa。
  5. 根据权利要求3所述的高强度电磁屏蔽铜合金的制备方法,其中,所述铸锭静置5-20s后进行所述电磁搅拌。
  6. 根据权利要求3所述的高强度电磁屏蔽铜合金的制备方法,其中,所述电磁搅拌为正转和反转交替进行,所述电磁搅拌的搅拌频率为5-30Hz,所述电磁搅拌的电流为200-300A。
  7. 根据权利要求3所述的高强度电磁屏蔽铜合金的制备方法,其中,所述真空自耗电弧熔炼的压力为0.1-5Pa,所述真空自耗电弧熔炼的电弧长度为25-80mm。
  8. 根据权利要求3所述的高强度电磁屏蔽铜合金的制备方法,其中,所述铜合金圆棒作为电极时,所述铜合金圆棒周侧预留有50-100mm的间隙层。
  9. 根据权利要求3所述的高强度电磁屏蔽铜合金的制备方法,其中,所述热轧的起始温度为1000-1020℃,所述热轧的终轧温度为830-850℃;所述热轧的变形率≥60%;所述冷轧的变形率为45-60%。
  10. 根据权利要求3所述的高强度电磁屏蔽铜合金的制备方法,其中,所述时效处理的温度为250-300℃,所述时效处理的时间为24-72h。
PCT/CN2023/090491 2022-04-29 2023-04-25 一种高强度电磁屏蔽铜合金及其制备方法 WO2023207943A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020247005944A KR20240038039A (ko) 2022-04-29 2023-04-25 고강도 전자기 차폐 구리 합금 및 그 제조방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210473077.5A CN114717435B (zh) 2022-04-29 2022-04-29 一种高强度电磁屏蔽铜合金及其制备方法
CN202210473077.5 2022-04-29

Publications (1)

Publication Number Publication Date
WO2023207943A1 true WO2023207943A1 (zh) 2023-11-02

Family

ID=82244935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/090491 WO2023207943A1 (zh) 2022-04-29 2023-04-25 一种高强度电磁屏蔽铜合金及其制备方法

Country Status (3)

Country Link
KR (1) KR20240038039A (zh)
CN (1) CN114717435B (zh)
WO (1) WO2023207943A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114717435B (zh) * 2022-04-29 2023-01-20 中国铝业股份有限公司 一种高强度电磁屏蔽铜合金及其制备方法
CN115612888A (zh) * 2022-09-26 2023-01-17 陕西科技大学 一种火箭发动机用耐热冲击铜合金材料及其制备方法
CN115466875A (zh) * 2022-09-26 2022-12-13 陕西科技大学 一种火箭发动机用高强高导铜合金材料及其制备方法
CN115851011B (zh) * 2022-11-28 2023-07-25 中铝郑州有色金属研究院有限公司 电磁屏蔽涂料及其应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000256766A (ja) * 1999-03-05 2000-09-19 Sanyo Special Steel Co Ltd CuNiFe合金の熱間加工方法
CN101709400A (zh) * 2009-12-11 2010-05-19 江西省科学院应用物理研究所 硼、银、稀土元素添加Cu-Fe原位复合材料及其制备方法
JP2012207275A (ja) * 2011-03-30 2012-10-25 Kobe Steel Ltd 電磁波シールド材用銅合金
CN103388090A (zh) * 2013-07-10 2013-11-13 河南科技大学 一种高强、高导电、高延伸性稀土铜合金及其制备方法
CN105671356A (zh) * 2014-11-21 2016-06-15 北京有色金属研究总院 一种高强高导铜合金屏蔽材料及其制备方法
CN114717435A (zh) * 2022-04-29 2022-07-08 中国铝业股份有限公司 一种高强度电磁屏蔽铜合金及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0314229D0 (en) * 2003-06-19 2003-07-23 Meighs Ltd Alloys
CN106471144B (zh) * 2014-06-30 2019-04-12 日立金属株式会社 铜合金、冷轧板材以及其的制造方法
CN106555075A (zh) * 2015-09-25 2017-04-05 上海造币有限公司 一种玫瑰金色造币用铜合金材料及其制备方法
CN106048296A (zh) * 2016-06-11 2016-10-26 江苏迅达电磁线有限公司 一种护环用高强高韧Cu‑Al‑Fe‑Ni‑RE材料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000256766A (ja) * 1999-03-05 2000-09-19 Sanyo Special Steel Co Ltd CuNiFe合金の熱間加工方法
CN101709400A (zh) * 2009-12-11 2010-05-19 江西省科学院应用物理研究所 硼、银、稀土元素添加Cu-Fe原位复合材料及其制备方法
JP2012207275A (ja) * 2011-03-30 2012-10-25 Kobe Steel Ltd 電磁波シールド材用銅合金
CN103388090A (zh) * 2013-07-10 2013-11-13 河南科技大学 一种高强、高导电、高延伸性稀土铜合金及其制备方法
CN105671356A (zh) * 2014-11-21 2016-06-15 北京有色金属研究总院 一种高强高导铜合金屏蔽材料及其制备方法
CN114717435A (zh) * 2022-04-29 2022-07-08 中国铝业股份有限公司 一种高强度电磁屏蔽铜合金及其制备方法

Also Published As

Publication number Publication date
CN114717435B (zh) 2023-01-20
KR20240038039A (ko) 2024-03-22
CN114717435A (zh) 2022-07-08

Similar Documents

Publication Publication Date Title
WO2023207943A1 (zh) 一种高强度电磁屏蔽铜合金及其制备方法
WO2021018203A1 (zh) 一种非真空下引连铸铜铁合金扁锭的生产工艺
CN107008873B (zh) 多模式电磁场均质化金属连铸坯的制备方法及其装置
CN101440436B (zh) 一种高温合金返回料的纯净化冶炼工艺
WO2021184827A1 (zh) 一种再生变形铝合金熔体的复合处理方法
WO2020237943A1 (zh) 一种高强高导铜合金管及其制备方法
EP3971316A1 (en) Superfine extra-high-strength steel wire, steel wire rod, and production method of the steel wire rod
CN109136599B (zh) 高熵合金孕育亚共晶铝硅合金制备工艺
CN109913702A (zh) 一种具有高含量难熔元素的镍基高温合金的制备工艺
CN114540729A (zh) 采用悬浮熔炼下引工艺制备铜铬触头用合金铸锭的方法
CN115852267A (zh) 一种高强高导电率低膨胀铁镍钼合金丝材及其生产方法
CN103526038A (zh) 一种高强度高塑性twip钢电渣重熔生产方法
CN110983081A (zh) 一种采用真空熔炼设备制备超低氧白铜的方法
CN112795797B (zh) 一种制备高强韧铝基高熵合金复合带材的方法
CN111321361A (zh) 溅射靶材用铜铬镍硅合金背板的制作方法
CN111607726B (zh) 一种稀土镁合金及其制备方法
JP4414861B2 (ja) 活性高融点金属含有合金の長尺鋳塊製造法
WO2015003934A1 (en) Method of producing aluminium alloys containing lithium
CN117127036A (zh) 一种通过添加稀土元素Ce强韧化NCu30-4-2-1合金的制备方法
JPH06287661A (ja) 高融点金属溶製材の製造法
CN115216637A (zh) 精密可伐合金箔材用合金锭的制备方法
CN113403514B (zh) 一种高强铸造铝合金及制备方法
CN114905010A (zh) 镍基合金线材及其制备方法
WO2023015608A1 (zh) 高强高导抗晶间腐蚀铝合金及其制备方法
CN106702285A (zh) 一种压裂泵液力端用钢及其制备工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23795376

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20247005944

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020247005944

Country of ref document: KR