WO2023207879A1 - 一种自集尘清洁系统 - Google Patents

一种自集尘清洁系统 Download PDF

Info

Publication number
WO2023207879A1
WO2023207879A1 PCT/CN2023/090203 CN2023090203W WO2023207879A1 WO 2023207879 A1 WO2023207879 A1 WO 2023207879A1 CN 2023090203 W CN2023090203 W CN 2023090203W WO 2023207879 A1 WO2023207879 A1 WO 2023207879A1
Authority
WO
WIPO (PCT)
Prior art keywords
dust
box
fan
cleaning robot
air outlet
Prior art date
Application number
PCT/CN2023/090203
Other languages
English (en)
French (fr)
Inventor
魏云杰
朱泽春
仇立宁
李鹏
王国强
Original Assignee
九阳股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202220997600.XU external-priority patent/CN217365733U/zh
Priority claimed from CN202210448385.2A external-priority patent/CN114795028A/zh
Priority claimed from CN202211082535.9A external-priority patent/CN115644746A/zh
Priority claimed from CN202222788919.4U external-priority patent/CN218899339U/zh
Application filed by 九阳股份有限公司 filed Critical 九阳股份有限公司
Publication of WO2023207879A1 publication Critical patent/WO2023207879A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers

Definitions

  • the present invention relates to the technical field of intelligent cleaning equipment, and specifically to a self-dust-collecting cleaning system.
  • the base stations generate communication signals, and the cleaning robots move to the base stations according to the communication signals.
  • the base stations can extract the garbage from the cleaning robots and store the garbage, thus preventing users from Manually clean up the garbage dust carried by the cleaning robot.
  • a docking interface is set up between the cleaning robot and the base station to connect the dust box of the cleaning robot and the dust collection box of the base station.
  • the docking interface is often set on one side of the cleaning robot, causing the cleaning robot to receive force due to one side of the dock when entering the base station. , the other side is suspended in the air, and it is easy for the fuselage to be skewed and unstable during docking, which makes it difficult to ensure that the fuselage is in the centered position in the base station.
  • the dust box is generally removable and equipped with a dust filter. Dirty filter components.
  • the filter assembly In order to prevent users from missing the filter assembly or dust box, there are relatively complex mechanical structures between the filter assembly and the dust box, and between the dust box and the machine body. Only the dust box with the filter assembly correctly installed can pass through a series of mechanical structures. will be used to trigger detection Push the trigger of the sensor to the set position.
  • the structure of the dust box is relatively complex, and it is also difficult for users to install the filter components, which is not conducive to improving the user experience.
  • the object of the present invention is to provide a self-collecting dust cleaning system.
  • Two docking and mating interfaces are provided between the cleaning robot and the base station to connect the dust collecting box of the base station and the dust box of the cleaning robot.
  • the two interfaces are respectively located on the center line of the base station.
  • a centering structure is formed.
  • the centering structure ensures that the cleaning robot is stably docked to the centering position.
  • the two docking interfaces form two channels between the dust box of the base station and the dust box of the cleaning robot. One channel is used to collect dust in the dust box into the dust box, and the other channel collects dust from the base station.
  • the wind generated by the fan is blown into the dust box, and the wind generated by the fan is recycled to improve the dust collection efficiency.
  • the magnetic induction signal is used to determine whether the dust box or filter component is installed in place, so that there is no need to set up complex mechanical structures between the filter component and the dust box, and between the dust box and the body, thereby reasonably reducing the structural difficulty of the dust box and reasonably reducing the user's The difficulty of installing the filter assembly into the dust box and the difficulty of installing the dust box into the body will improve the user experience.
  • the self-dust-collecting cleaning system of the present invention includes a cleaning robot and a base station that can collect dust for the cleaning robot.
  • the base station is provided with a dust collection box and a docking cavity for the cleaning robot to park.
  • the cavity wall of the docking cavity is provided with a dust collection port and a first air outlet connected to the dust collection box, and the dust collection port and the first air outlet are located on both sides of the center line of the base station;
  • the cleaning robot is provided with a dust box and a first fan that communicate with each other; and the cleaning robot is provided with at least a dust outlet that is docked with the dust collection port on an outer peripheral surface opposite to the cavity wall of the docking cavity. and a second air outlet that is docked and matched with the first air outlet to form a centering structure for the cleaning robot to align when entering the docking cavity.
  • the dust box is provided with a first filter assembly at a connection port connected to the first fan.
  • the base station collects dust from the cleaning robot, the wind generated by the first fan blows toward the third a filter component; and/or the base station is also provided with a second fan, and the wind generated by the second fan blows toward the first filter component.
  • the first filter component and/or the dust box are provided with magnets, and the body of the cleaning robot is provided with a magnetic induction element.
  • the magnetic induction element obtains the magnet signal to determine whether the first filter component and/or the dust box is installed in place to control The working state of the first fan.
  • the first fan is configured to, when the cleaning robot performs cleaning During the cleaning task, the first fan rotates forward, forming a negative pressure in the dust box, sucking the dust in the area to be cleaned into the dust box; when the base station collects dust from the cleaning robot, the The first fan rotates reversely to form a negative pressure in the dust box and discharge the dust in the dust box into the dust box.
  • the second fan is provided between the dust collecting box and the first air outlet.
  • the first fan is configured to reversely rotate or stop rotating when the base station collects dust on the cleaning robot.
  • the butt surface between the dust collection port and the dust outlet, and the butt surface between the first air outlet and the second air outlet are with the cleaning The arc surface adapted to the outer peripheral surface of the robot.
  • the dust collecting inlet and the first air outlet are symmetrically arranged along the center line of the base station.
  • one of them is provided with a protruding structure, and the other one is provided with a protruding structure.
  • a press-in structure is provided for docking and matching with the protruding structure.
  • a seal is provided between the protruding structure and the pressing structure.
  • the sealing member is a rubber ring provided on the protruding structure and/or the pressing structure.
  • the magnet is provided with an offset position offset from the magnetic induction element and a triggering position corresponding to the magnetic induction element.
  • the magnet when the first filter component and/or the dust box is installed on the body, the magnet is moved from the offset position to the trigger position; when the first filter component And/or when the dust box is separated from the body, the magnet moves from the triggering position to the offset position.
  • the first filter component includes a bracket and a filter sheet arranged on the bracket, and the magnet is arranged on the bracket.
  • a dust collecting port and a first air outlet connected to the dust collecting box are provided on the base station.
  • a dust outlet is provided on the outer circumferential surface of the body of the cleaning robot to dock with the dust collecting port and to dock with the first air outlet.
  • the second outlet When the cleaning robot returns to the base station, the cleaning robot is provided with a dust outlet and a second The outer circumferential surface of the air outlet faces the docking cavity of the base station.
  • the dust outlet and the dust collecting inlet are docked and matched.
  • the second air outlet is docked and matched with the first air outlet, and the two butt matched structures are located on both sides of the center line of the base station.
  • the dust outlet of the cleaning robot is docked with the dust collecting port of the base station, and the second air outlet of the cleaning robot is docked with the first air outlet of the base station, a gap is formed between the dust box of the cleaning robot and the dust collecting box of the base station.
  • There are two channels the first channel leads from the dust box to the dust box through the dust outlet and the dust collection port, and the second channel leads from the dust box to the dust box through the first air outlet and the second air outlet.
  • the dust collection box can generate negative pressure through the fan installed in the second channel, and the two channels are connected.
  • the dust in the dust box enters the dust collecting box through the first channel.
  • the wind drawn out by the fan from the dust box enters the dust box through the second channel, and the wind generated by the fan is recycled, which greatly improves the efficiency of dust collection.
  • the present invention realizes the dust collection of the cleaning robot by the base station without the need to install an additional fan on the base station, thus greatly reducing equipment costs.
  • the wind generated by the first fan and/or the second fan is recycled.
  • the direction of the wind generated by the fan is opposite to the direction of the wind generated by the cleaning robot when it performs cleaning tasks in the area to be cleaned.
  • the wind generated by the fan will blow towards the first filter component.
  • the dust deposited on the first filter component is blown away to clean the first filter component, and the remaining dust in the first channel can also be cleaned.
  • the magnetic induction element is triggered when the dust box installed with the filter assembly is assembled with the machine body, so that the control board determines whether the dust box or the filter assembly is installed in place according to the trigger signal of the magnetic induction element. Therefore, only the dust box with the filter assembly installed in the machine body can trigger the magnetic induction element. There is no need to set up a complex mechanical structure between the filter assembly and the dust box, or between the dust box and the machine body, which is beneficial to reasonably reducing the structural difficulty of the dust box, and also It is conducive to reasonably reducing the difficulty for users to install the filter assembly into the dust box and the difficulty for installing the dust box into the body, and is conducive to improving the user experience.
  • the magnet of the present invention can be installed on the bracket of the filter element, allowing the user to clean or replace it as needed, and is integrally linked with the filter assembly. By reasonably setting the installation position of the magnet, the installation position detection can conveniently satisfy the user's need to detect whether there is leakage. Requirements for installing filter components or missing dust boxes.
  • the magnet of the present invention can also be moved Set on the dust box, when the filter component is installed in the dust box, the magnet moves from the offset position to the trigger position. When the filter component is separated from the dust box, the magnet moves from the trigger position to the deflection position.
  • the movement method is simple, low cost, and user-friendly. The experience is greatly improved.
  • Figure 1 is a schematic structural diagram of a cleaning system according to an embodiment of the present application.
  • Figure 2 is a schematic diagram of the internal structure of the cleaning robot in the embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of the dust box in the embodiment of the present application.
  • Figure 4 is a partial cross-sectional schematic diagram of the dust box in the embodiment of the present application.
  • Figure 5 is a front view of the base station in the embodiment of the present application.
  • Figure 6 is a schematic structural diagram of the cleaning robot in the embodiment of the present application.
  • Figure 7 is an exploded view of the dust box according to an embodiment of the present application.
  • Figure 8 is a partial cross-sectional view of the dust box according to an embodiment of the present application.
  • Figure 9 is an enlarged view of part A in Figure 8.
  • Figure 10 is a schematic structural diagram of the dust box cover in one embodiment of the present application.
  • Figure 11 is a diagram of the state after the guide ribs are rotated in an embodiment of the present application.
  • Figure 12 is a schematic structural diagram of the dust box cover in another embodiment of the present application.
  • Figure 13 is a schematic diagram of the docking between the cleaning robot and the base station in the embodiment of the present application.
  • Figure 14 is a schematic diagram of the docking surface formed when the cleaning robot docks with the base station in the embodiment of the present application;
  • Figure 15 is a schematic diagram of the dust box, detection structure and control panel of the cleaning robot according to the embodiment of the present application.
  • Figure 16 is a schematic diagram of the first filter component in the cleaning robot according to the embodiment of the present application.
  • Figure 17 is a schematic structural diagram of the dust box when the magnet is in the trigger position in the cleaning robot according to an embodiment of the present application
  • Figure 18 is an enlarged view of B in Figure 7;
  • Figure 19 is a partial structural view of the magnet in the cleaning robot in an offset position according to an embodiment of the present application.
  • Figure 20 is a partial view of the cleaning robot when the magnet is in the trigger position according to another embodiment of the present application. Structural diagram;
  • Figure 21 is a partial structural diagram of the cleaning robot in another embodiment of the present application when the magnet is in an offset position.
  • the cleaning system of this embodiment includes a cleaning robot 100 and a base station 200.
  • the base station 200 can charge the cleaning robot 100, collect dust, clean mops, and dry mops.
  • the cleaning robot 100 includes a body 101.
  • the bottom of the body 101 is provided with driving wheels, mopping parts and roller brushes (only part of it is shown in the figure).
  • the body 101 is provided with an interconnected dust box 102 and a first fan 103, which can be used to collect dust, debris and other garbage.
  • the bottom of the dust box 102 is provided with a dust suction port 1025 on the oblique side of the roller brush, and a first rotating baffle 1021 is provided at the dust suction port 1025 to prevent dust from flowing back.
  • the first rotating baffle 1021 can be in the open position and the closed position.
  • the bottom of the body 101 is provided with a dust inlet corresponding to the dust suction port 1025 and connected to the dust box 102 .
  • the roller brush continuously rotates and disturbs to raise or scatter dust or debris on the ground.
  • the first rotating baffle 1021 of the dust box 102 is opened, dust or debris enters the dust box 102 through the dust inlet and the dust suction port 1025.
  • the first rotating baffle 1021 pivots to a closed position to prevent dust in the dust box 102 from being discharged through the dust suction port 1025 .
  • the base station 200 is provided with a dust collection box 201 and a cleaning machine.
  • the docking cavity 202 where the person 100 stops has a dust collection port 203 and a first air outlet 204 connected to the dust collection box 201 on the wall of the docking cavity 202.
  • the dust collection port 203 and the first air outlet 204 are located on the center line of the base station 200. both sides.
  • the cleaning robot 100 is provided with at least a dust outlet 105 that is docked with the dust collection port 203, and a second air outlet 106 that is docked with the first air outlet 204 on the outer peripheral surface opposite to the cavity wall of the docking cavity 202.
  • the dust outlet 105 is connected to the dust box 102, and the second air outlet 106 is connected to the first fan 103.
  • the center line of the base station refers to the center line of the base station in the vertical direction.
  • the base station 200 is provided with a dust collection port 203 and a first air outlet 204 that are connected to the dust collection box 201.
  • a dust outlet that is docked with the dust collection port 203 is provided on the outer peripheral surface of the body 101 of the cleaning robot 100. 105, and the second air outlet 106 that is docked and matched with the first air outlet 204.
  • the outer peripheral surface of the cleaning robot 100 provided with the dust outlet 105 and the second air outlet 106 faces the docking cavity 202 of the base station 200.
  • the dust outlet 105 and the dust collecting port 203 butt fit, the second air outlet 106 and the first air outlet 204 butt fit, and the two butt fit structures are located on both sides of the center line of the base station, forming a centering structure for the cleaning robot 100 to enter the base station 200, and guiding the body 101 of the cleaning robot 100 in
  • the internal alignment of the docking cavity 202 ensures that the docking cavity 202 is docked stably and that the docking cavity 202 enters the centering position.
  • the body 101 of the cleaning robot 100 enters the centering position means that the body 101 is in the docking cavity 202 of the base station 200 and is symmetrical with respect to the center line of the base station.
  • the second air outlet 106 of the cleaning robot 100 is docked with the first air outlet 204 of the base station 200, so that the dust box 102 of the cleaning robot 100 is connected with the first air outlet 204 of the base station 200.
  • Two channels are formed between the dust collecting boxes 201 of the base station 200.
  • the first channel leads from the dust box 102 to the dust collecting box 201 through the dust outlet 105 and the dust collection port 203.
  • the second channel leads from the dust collecting box 201 through the first The air outlet 204 and the second air outlet 106 lead into the dust box 102 .
  • a second rotating baffle 1022 is provided at the outlet of the dust box 102 connected to the dust outlet 105.
  • dust can be collected in the dust box 201 by the fan provided in the second channel. Negative pressure, the second rotating baffle 1022 pivots to the open position, so that the two channels are in a connected state.
  • the dust in the dust box 102 is sucked out from the opened second rotating baffle 1022 and enters the dust collecting box 201 through the first channel.
  • the wind extracted by the fan from the dust collecting box 201 enters the dust box 102 through the second channel, and the wind generated by the fan is recycled, which greatly improves the efficiency of dust collection.
  • the dust box 102 includes a box body 1023 and a cover body 1026.
  • the box body 1023 and the cover body 1026 can be pivoted through a rotating shaft and buckled together, or directly connected to the box body.
  • 1023 and the cover body 1026 are provided with engageable buckle strips around them, so that the cover body 1026 can be easily separated from the top of the box body 1023, and the dirt in the box body 1023 can be easily cleaned.
  • a third air outlet 1024 is provided on one side of the box 1023 to connect the first fan 103 and the second air outlet 106 in sequence. That is, one end of the first fan 103 is connected to the second air outlet 106 and the other end is connected to the third air outlet 1024.
  • the first fan 103 extracts the air in the dust box 102 through the third air outlet, and discharges it out of the body through the second air outlet 106.
  • a first filter component is provided at the third air outlet 1024.
  • the first filter assembly includes a bracket 1027 and a filter piece 1028.
  • the filter piece can be a hypa, a dust filter, or a combination of the two to prevent dust from passing through the third air outlet. 1024 is sucked into the first fan 103.
  • the bracket 1027 extends along the air inlet direction of the third air outlet 1024 to form a filtering air duct, and the air duct opening of the filtering air duct is arranged along the air inlet direction, and the filter piece 1028 is installed at the air duct opening.
  • the third air outlet 1024 is disposed on the top side of the dust box 102, and the air duct opening is disposed opposite to the bottom of the dust box 102.
  • An installation frame 1029 that cooperates with the bracket 1027 can be provided inside the cover 1026.
  • the third air outlet 1024 is provided on the side of the installation frame 1029.
  • the bracket 1027 can be fastened and installed on the installation frame 1029.
  • the bracket 1027 extends along the direction of the third air outlet 1024.
  • the wind direction extends to form a filtering air duct, that is, a filtering air duct is formed between the bracket 1027, the inside of the cover 1026, and the installation frame 1029, and the air duct opening of the filtering air duct is arranged along the air inlet direction, and the filter piece 1028 is installed at the air duct opening.
  • the dust box 102 has at least one guide rib 1030 arranged along the direction of the air duct opening.
  • the guide rib 1030 can be set inside the cover 1026. After the cleaning robot 100 stops in the base station 200, the base station 200 will at least partially absorb the wind generated by the dust collection by the cleaning robot 100. In the filter air duct, the flow is intercepted by the guide ribs 1030 and blown to the filter plate 1028.
  • the bracket 1027 extends in the air inlet direction of the third air outlet 1024 to form a filtered air duct
  • the air duct opening of the filtering air duct is arranged along the air inlet direction, that is, the air outlet direction of the air duct opening is perpendicular to the air inlet direction
  • the filtered air duct is The air outlet direction of the duct is perpendicular to the air inlet direction of the third air outlet, which can expand the air passing area of the air duct outlet, thereby expanding the filtration area of the filter 1028, so that when the cleaning robot 100 is in the cleaning mode, the filter 1028 can The air flow inside is smaller and the probability of dust accumulation is smaller, thereby extending the service life of the filter 1028.
  • guide ribs 1030 are provided in the dust box 102 to intercept the wind in the filtering air duct.
  • the base station 200 collects dust on the cleaning robot 100.
  • the dust collected wind flows back to the base station 200.
  • the wind that has passed through the filter air duct, that is, the dust collected is blown toward the filter plate 1028 in the opposite direction, and the dust deposited on the filter plate 1028 can be blown down into the dust box 102 .
  • reverse refers to the direction opposite to the wind direction of the cleaning robot in cleaning mode.
  • the wind in the filtering air duct is intercepted by the guide ribs 1030, so that a part of the wind in the filtering air duct is gathered in advance and blown to the filter sheet 1028. This prevents most of the air flow from blowing towards the filter plate 1028 at the end of the filter air duct, thereby improving the uniformity of cleaning of the filter plate 1028.
  • the third air outlet 1024 can also be disposed on the box body 1023 of the dust box 102, and can be disposed close to the cover 1026 to facilitate docking with the bracket 1027.
  • the bracket 1027 can also be provided integrally with the cover 1026 .
  • the guide ribs 1030 can be movably installed on the inside of the cover 1026 of the dust box 102 toward the third air outlet 1024. Specifically, it is configured such that when the cleaning robot 100 performs a cleaning task, the first fan 103 forms The airflow flows to the third air outlet 1024 through the filtered air duct, and the guide ribs 1030 open toward the third air outlet 1024 under the action of the air flow.
  • the guide ribs 1030 are opened toward the third air outlet 1024, the vacuum airflow of the cleaning robot 100 can smoothly enter through the air duct opening of the filter air duct and pass through the filter air duct.
  • both ends of the guide ribs 1030 are axially connected to the dust box 102.
  • the dust box 102 is provided with a limiting protrusion 1031.
  • the guide rib 1030 is in contact with the limiting protrusion 1031 on the side away from the third air outlet 1024. , and can rotate toward the third air outlet 1024.
  • both ends of the guide ribs 1030 can be axially connected to the mounting frame 1029 inside the cover 1026 of the dust box 102, and the limiting protrusion 1031 is provided on the cover 1026.
  • a stretching member 1032 is provided at the top of the side away from the third air outlet 1024 and the inside of the cover 1026, which can be a spring or an elastic band. Under the action of the stretching member, the top of the guide rib 1030 and the limiter are The protrusions 1031 are in contact with each other and can rotate toward the third air outlet 1024 .
  • an axle frame 1033 for installing the guide rib 1030 can be provided inside the cover 1026 , and the top of the axle frame 1033 serves as a limiting protrusion 1031 and abuts the top of the guide rib 1032 .
  • shaft holes 10331 are provided at both ends of the shaft connection frame 1033
  • rotating shafts 10301 are provided at both ends of the guide ribs 1030
  • retractors 10261 and 10302 are respectively provided on the inside of the cover body 1026 and on the guide ribs 1030 for fixing the pulley. Both ends of the extension piece 1032.
  • the guide ribs 1030 open toward the third air outlet 1024 under the action of wind, further stretching the tensile member 1032. If the wind flow in this direction stops, the guide ribs 1030 return to the vertical position under the elastic force of the tensile member 1032. Location.
  • the top two ends of the guide ribs 1030 are axially connected to the mounting frame 1029 inside the cover 1026 of the dust box 102, and the limiting protrusion 1031 is provided on the inside of the cover 1026.
  • the guide ribs 1030 is vertically attached to one side of the limiting protrusion 1031 under the action of gravity, and can rotate toward the third air outlet 1024 under the action of wind.
  • the fan that generates dust collection negative pressure in the dust collection box 201 can be the first fan in the cleaning robot 100 103, it may also be a second fan disposed between the dust collecting box 201 and the first air outlet 204.
  • the fan that generates vacuum suction negative pressure in the dust box 201 is the first fan 103 of the cleaning robot 100 .
  • the first fan 103 is configured such that when the cleaning robot 100 performs a cleaning task, the first fan 103 rotates forward to form a negative pressure in the dust box 102 and suck the dust in the area to be cleaned into the dust box 102; when the base station 200 operates on the cleaning robot When 100 is collecting dust, the first fan 103 is reversed to form a negative pressure in the dust box 201, and the dust in the dust box 102 is discharged into the dust box 201.
  • the first fan 103 of the cleaning robot 100 as the dust collection fan of the base station 200, dust collection of the cleaning robot by the base station is realized without the need to install an additional fan on the base station, which greatly reduces equipment costs.
  • the wind generated by it blows towards the first filter component, blowing away the dust deposited on the first filter component, thereby cleaning the first filter component and also cleaning the second filter component. Dust remaining in a channel.
  • the base station 200 is provided with a second fan between the dust box 201 and the first air outlet 204, so that the dust box 201 generates a dust collection load when collecting dust from the dust box 102 of the cleaning robot 100. pressure.
  • the first fan 103 is configured to reversely rotate or stop rotating when the base station 200 collects dust on the cleaning robot 100 .
  • the first fan 103 can reversely rotate or stop. When it reversely rotates, it is consistent with the wind direction of the second fan, which greatly improves dust collection efficiency. When it stops, the wind from the second fan can also enter the dust box 102 through the first fan 103.
  • a circulation channel 300 is formed, so that the wind generated by the first fan 103 and/or the second fan is recycled.
  • the direction of the wind generated by the fan is opposite to the direction of the wind generated when the cleaning robot 100 performs a cleaning task in the area to be cleaned.
  • the first fan 103 and/or the second The wind generated by the fan will blow to the first filter component and blow away the dust deposited on the first filter component, thereby cleaning the first filter component and also cleaning the remaining dust in the first channel.
  • the forward and reverse rotation of the first fan 103 does not limit a specific direction, but only represents The two directions of the impeller in the first fan 103 are shown. For example, if the forward rotation of the first fan 103 means that the inner impeller rotates clockwise, then the reverse rotation of the first fan 103 means that the inner impeller rotates counterclockwise.
  • a second filter component is provided in the dust collecting box 201, and/or a third filter component is provided in the second channel, that is, outside the air outlet of the dust collecting box 201, to prevent dust in the dust collecting box 201 from passing through the second filter component.
  • the passage enters the first fan 103 and/or the second fan.
  • the docking surface between the dust collecting port 203 and the dust outlet 105, and the joining surface 104 between the first air outlet 204 and the second air outlet 106 are arcs that are adapted to the outer peripheral surface of the cleaning robot 100. noodle.
  • the cleaning robot 100 enters the base station 200 and deflects at a small angle, the body 101 can be rotated and corrected.
  • the body 101 rotates along the curved surface until dust is collected.
  • the mouth 203 is connected to the dust outlet 105, and the first air outlet 204 is connected to the second air outlet 106, thereby improving the correction efficiency.
  • the dust collecting inlet 203 and the first air outlet 204 can be arranged symmetrically along the center line of the base station 200 , and correspondingly, the dust outlet 105 and the second air outlet 106 can be arranged symmetrically along the center line of the cleaning robot 100 . In this way, when the cleaning robot 100 enters the base station 200, the docking efficiency can be improved through the symmetrically arranged docking structure.
  • one of them is provided with a protruding structure, and the other is provided with a protruding structure. Press-fit construction for butt fit.
  • the dust collection port 203 and the first air port 204 on the base station 200 are protruding structures, and the dust outlet 105 and the second air port 106 on the cleaning robot 100 are press-in structures, as an example, the outer peripheral surface of the cleaning robot 100 There is a concave docking port.
  • the cavity wall of the docking cavity 202 of the base station 200 is provided with a protrusion that turns outward and matches the concave docking port. When the cleaning robot 100 enters the base station 200, the protrusion is gently pressed. into the recessed docking port.
  • At least one of the protruding port or the concave docking port can be set in a cone shape.
  • the protruding port is set in a cone shape.
  • the protrusion enters the concave docking interface. During the entry process, the two will not be hindered from further docking due to friction until the protrusion completely enters the docking interface and is positioned and matched at the bottom of the docking interface. In the same way, the tapered interface can also achieve this effect.
  • a seal can be provided between the protruding structure and the pressed structure.
  • the seal can be made of rubber or silicone to improve the sealing performance of the first channel and the second channel and prevent dust from entering the interface. Run out.
  • the sealing member is a rubber ring provided on the protruding structure and/or the pressed structure.
  • a rubber ring can be sleeved on the protruding structure, or a rubber ring can be wrapped around the inner edge of the pressed-in structure.
  • the detection structure can be used to detect whether the dust box and/or the filter in the dust box is in place, and to detect the dust box and/or whether the filter in the dust box is in place.
  • Bit For example, a detection structure is provided between the dust box and the machine body, a detection structure is provided between the dust box and the main body of the base station, and control panels are provided on both the machine body and the main body of the base station. Taking the detection structure between the dust box and the body of the cleaning robot as an example, the specific setting method and usage principle of the detection structure will be described in detail below.
  • the detection structure in this embodiment includes a magnet 510 provided on the first filter component and a magnetic induction element 520 provided in the body 101.
  • the magnetic induction element 520 is electrically connected to the control board 600.
  • the first filter component including the bracket 1027
  • the dust box 102 and the machine body 101 are equipped with a triggering magnetic induction element 520 to interact with the filter plate 1028) and the magnet 510, so that the control board 600 obtains the installation status signal of the first filter component in the dust box.
  • the control board determines that the dust box is installed in place and the first filter component is installed in place according to the trigger signal of the magnetic induction element.
  • the control panel can start the first fan.
  • the first fan works, it forms a dust suction airflow flowing from the dust inlet to the dust box.
  • the first filter component filters the dust suction airflow to prevent dust and other dirt from flowing into the inside of the first fan. Or the inside of the body may have a negative impact on the electronic devices, so that the overall function of the cleaning robot remains stable.
  • the magnetic induction element cannot be triggered, the control board cannot obtain the detection identification signal, and the control board will not activate the air flow generating component. Only the dust box with the first filter component installed in the machine body can trigger the magnetic induction element. There is no need to set up a complex mechanical structure between the first filter component and the dust box, or between the dust box and the machine body, which is conducive to reasonably reducing the structure of the dust box. The difficulty is also conducive to reasonably reducing the difficulty for users to install the first filter component into the dust box and the difficulty for installing the dust box into the body, which is conducive to improving the user experience.
  • the magnet 510 is provided on the bracket 1027.
  • the bracket 1027 is provided with a mounting hole for installing the magnet 510.
  • the magnet 510 is fixed in the mounting hole.
  • the magnetic induction element 520 is a Hall element and is fixed in the body 101.
  • the filter 1028 is detachably installed on the bracket 1027. The user can clean or replace the filter 1028 as needed, which can reduce the cost of use while ensuring the filtration performance of the first filter component and preventing the dust accumulation of the filter 1028 due to long use. The filtration performance deteriorates due to excessive use.
  • a fool-proof structure is provided between the first filter component and the dust box 102.
  • the fool-proof structure allows the user to install the first filter component easily and correctly, ensuring that the first filter component is clean during cleaning. When the robot is working, the dust suction airflow flowing through the dust box 102 can be fully and effectively filtered.
  • the bracket 1027 of the first filter assembly is provided with a fool-proof boss 413 protruding outward, and the inner wall of the dust box 102 is provided with a fool-proof groove matching the fool-proof boss 413 for installation.
  • the mounting hole of the magnet 510 is provided on the anti-fool boss 413 .
  • the first filter component When installing the first filter component, the first filter component can be smoothly installed into the dust box 102 only when the fool-proof boss 413 faces the direction that matches the fool-proof groove. Otherwise, the fool-proof boss 413 will contact the side wall of the dust box 102 Interference occurs and the first filter component cannot be smoothly installed into the dust box.
  • the user first installs the first filter assembly into the box body 1023 of the dust box 102, then uses the cover 1026 to cover the box body 1023, and then installs the dust box 102 into the body 101, so that the magnet 510 and the magnetic induction element 520 correspond.
  • the control board 600 determines that the dust box 102 and the first filter assembly are installed in place according to the signal fed back by the magnetic induction element 520, and can command the vacuum motor to start. When the vacuum motor is working, a dust suction airflow flows from the dust inlet and enters the dust box 102 through the dust suction port 1025.
  • Dust, hair and other dirt at the bottom of the cleaning robot are sucked into the dust box 102 under the action of the dust suction airflow.
  • the dust suction airflow flows into the first fan 103 after being filtered by the first filter component, and then discharged from the body 101 .
  • the first filter component is used to effectively filter the dust suction airflow flowing to the first fan 103 to avoid dirt following the dust suction airflow and flowing into the dust suction motor, causing the dust suction motor to be scrapped.
  • the mopping member includes a turntable and a mop detachably fixed on the bottom of the turntable.
  • the magnetic induction element 520 can also be a reed switch or other electronic components that can output induction signals according to magnetic changes.
  • the filter piece 1028 can also be directly fixed on the bracket 1027, and the user can replace the filter piece 1028 regularly.
  • fool-proof structure between the first filter component and the dust box is not limited to the fool-proof boss 413 and fool-proof groove shown in the above description and the accompanying drawings, other reasonable structures can also be used.
  • Fool-proof structure such as a special-shaped matching structure between the first filter component and the dust box 102, the first filter component can be successfully installed into the dust box 102 only according to a specific orientation.
  • the mounting holes for installing the magnets 510 can also be provided at other locations on the bracket 1027 except the fool-proof boss 413 .
  • bracket 1027 of the first filter component can be integrally provided with the box cover 1026, and the first filter component can be installed while the box cover 1026 is covering the box body 1023.
  • the cleaning structure at the bottom of the body 101 is not limited to the roller brush, side brush and mopping member described above, and can also be set to other reasonable structures, such as canceling the side brush setting and using a cleaning roller instead of mopping. pieces etc.
  • the magnet 510 is movably disposed on the dust box 102. Refer to Figures 17, 18, and 19 for details.
  • the magnet 510 is provided with an offset position that is offset from the magnetic induction element 520 and is disposed with the magnetic induction element 520. corresponding trigger position.
  • the magnet 510 is moved from the offset position to the triggering position.
  • the magnet 510 is moved from the triggering position to the offset position.
  • the dust box is provided with a rotating frame 530, and the magnet 510 is arranged on the rotating frame 530.
  • the turret 530 drives the magnet 510 to rotate from the offset position to the triggering position.
  • the turret 530 drives the magnet 510 to rotate from the triggering position to the offset position.
  • the turret 530 includes a first frame body 531 and a second frame body 532 arranged at right angles.
  • the first frame body 531 is provided with a hole for installing the magnet 510, and the magnet 510 is embedded in the hole.
  • the side wall of the box body 1023 is provided with a cavity 441 for installing the turret 530 .
  • the second frame body 532 is hinged to the side wall of the box body 1023 through the pin 533 .
  • the turret 530 is located in the cavity 441 .
  • the turret 530 is in a tilted state, so that the magnet 510 is in an offset position, and the end of the second frame body 532 away from the first frame body 531 extends out of the cavity. 441. Even if the dust box 102 is installed into the body 101, the magnet 510 cannot trigger the magnetic induction element 520.
  • a limiting fitting structure is provided between the turret 530 and the dust box 102.
  • the side of the cavity 441 facing the first filter component is provided with a first step surface 442
  • the second frame body 532 is provided with a second step surface 534 that cooperates with the first step surface 442.
  • first frame body part 531 and the second frame body part 532 can also be arranged at an acute angle or an obtuse angle.
  • the angle at which the magnet 510 rotates with the turret 530 between the offset position and the triggering position can be set at 45°, 50°, 55°, 60°, 65°, 70°, 75°, 80°, 85 °, 85°, 90°, 95°, 100° and other reasonable sizes.
  • the limiting fitting structure is not limited to the matching structure of the first stepped surface 442 and the second stepped surface 534 shown in the above description and drawings, and can also be set to other reasonable structures, such as in the cavity 441
  • the cavity wall is provided with a stopper for limiting the rotation angle range of the second frame body 532. When the second frame body 532 rotates to contact the stopper, the rotating frame 530 rotates in place.
  • the magnet 510 is movably disposed on the dust box 102. See Figures 20 and 21.
  • the detection structure includes an elastic member with one end positioned and the other end in contact with the magnet 510.
  • the side wall of the box body 1023 is provided with a recessed hole 443 with one end closed and the other end open.
  • a circle of retaining ribs 444 is provided on the wall of the recessed hole 443.
  • the magnet 510 is provided in the recessed hole 443 and is thick at one end.
  • a stepped column with a thin end, and a spring 540 is used as the elastic member.
  • the wall of the closed end of the concave hole 443 is provided with a convex column 445 protruding toward the open end.
  • One end of the spring 540 is sleeved on the outside of the convex column 445 and connected with the concave hole 443 .
  • the hole walls of the hole 443 are in contact with each other to achieve positioning.
  • the other end of the spring 540 is in contact with the magnet 510 .
  • the spring 540 is in a compressed state and pushes the magnet 510 against the open end of the recessed hole 443 . Due to the blocking effect of the blocking ribs 444, the magnet 510 will not escape from the concave hole 443.
  • the bracket 1027 of the first filter assembly is provided with an outwardly protruding column 414. When the first filter assembly is installed in the dust box 102, the column 414 is inserted into the recessed hole 443 and conflicts with the magnet 510, driving the magnet 510 toward the recessed hole. The closed end of 443 moves and compresses the spring 540.
  • the magnet 510 conflicts with the retaining rib 444 under the action of the spring 540, and the magnet 510 is in a deviated position. Even if the dust box 102 is installed in the body 101, the magnet 510 The magnetic induction element 520 cannot be triggered either.
  • the cylinder 414 is inserted into the recessed hole 443 to conflict with the magnet 510 and drives the magnet 510 to move an end distance toward the closed end of the recessed hole 443 to the triggering position, and the spring 540 is in the column Under the resistance of the body 414, it is further compressed by force.
  • the first filter element will be installed After the dust box 102 is installed into the body 101, the magnet 510 triggers the magnetic induction element 520.
  • the deformed spring 540 drives the magnet 510 to automatically reset and translate from the trigger position to the offset position.
  • the distance that the magnet 510 moves between the offset position and the triggering position can be set to a reasonable size such as 5mm, 6mm, 7mm, 8mm, 9mm, 10mm, 11mm, 12mm, 13mm, 14mm, 15mm, etc. .
  • the elastic member can also be made of other elastic components to meet the requirements of driving the magnet 510 to move between the offset position and the triggering position.

Landscapes

  • Electric Vacuum Cleaner (AREA)

Abstract

一种自集尘清洁系统,属于清洁设备领域,包括清洁机器人(100)和可进行集尘的基站(200),基站(200)上设有集尘箱(201)和供机器人(100)停入的对接腔(202),对接腔(202)的腔壁上设有与集尘箱(201)连通的位于基站(200)中线两侧的集尘口(203)和第一风口(204);机器人(100)上设有相互连通的尘盒(102)和第一风机(103);以及与集尘口(203)对接配合的出尘口(105),和与第一风口(204)对接配合的第二风口(106),以形成对中结构供机器人(100)进入对接腔(202)时对位;尘盒(102)在与第一风机(103)连通的连接口处设有第一过滤组件,第一风机(103)和/或基站(200)上的第二风机产生的风可正反向吹向第一过滤组件,实现过滤与除尘;第一过滤组件和/或尘盒(102)设有磁铁(510),机器人(100)的机体(101)设有磁感应元件(520),用以判断第一过滤组件和/或尘盒(102)是否安装到位,以控制第一风机(103)的工作状态。

Description

一种自集尘清洁系统
本申请要求以下四件中国专利申请的优先权,其全部内容通过引用结合在本申请中:
2022年4月27日递交中国专利局、申请号为202210448385.2、发明名称为“一种自集尘清洁系统”的中国专利申请;
2022年4月27日递交中国专利局、申请号为202220997600.X、发明名称为“一种对接效果好的自集尘清洁系统”的中国专利申请;
2022年9月6日递交中国专利局、申请号为202211082535.9、发明名称为“一种表面清洁机”的中国专利申请;以及
2022年10月21日递交中国专利局、申请号为202222788919.4、发明名称为“一种方便清洁的自集尘清洁系统”的中国专利申请。
技术领域
本发明涉及智能清洁设备技术领域,具体地说,涉及一种自集尘清洁系统。
背景技术
随着清洁机器人技术的发展,越来越多清洁机器人配置有基站,基站产生通讯信号,清洁机器人根据通讯信号移动至基站,基站便可以抽取清洁机器人的垃圾,并将垃圾进行存储,从而避免用户手动清理清洁机器人携带的垃圾灰尘。
通常在清洁机器人与基站之间设置对接口,连通清洁机器人的尘盒与基站的集尘箱,且对接口往往设置在清洁机器人的一侧,导致清洁机器人在进入基站时由于一侧对接受力,另一侧悬空,容易出现对接时机身歪斜不稳定的现象,这样很难保证机身在基站中处于对中位。
此外,由于清洁机器人的内部设有电机、控制板等电子器件,为了避免灰尘等脏污进入电机内部或进入清洁机器人内部而对电子器件造成不良影响,尘盒内一般可拆卸安装有用于过滤灰尘等脏污的过滤组件。为了防止用户漏装过滤组件或尘盒,在过滤组件与尘盒之间、尘盒与机体之间均设有较复杂的机械结构,只有正确安装了过滤组件的尘盒才能通过一系列机械结构将用于触发检 测传感器的触发件推至设定位置。通常,尘盒的结构较为复杂,用户安装过滤组件时也较为费劲,不利于提高用户的使用体验。
发明内容
本发明的目的是提供一种自集尘清洁系统,在清洁机器人与基站之间设置两个对接配合的接口连通基站的集尘箱与清洁机器人的尘盒,同时两个接口分别位于基站中线的两侧,形成对中结构,在清洁机器人进入基站时,通过该对中结构保证清洁机器人稳定对接到对中位。且两个对接配合的接口使基站的集尘箱与清洁机器人的尘盒之间形成两个通道,一个通道用于将尘盒中的灰尘集到集尘箱中,另一个通道将基站集尘时风机产生的风吹入尘盒中,循环利用风机产生的风,提高集尘效率。另外,利用磁感应信号判断尘盒或过滤组件是否安装到位,使得过滤组件和尘盒之间、尘盒和机体之间无需设置复杂的机械结构,以合理降低尘盒的结构难度,并合理降低用户将过滤组件装入尘盒内的难度及将尘盒装入机体内的难度,从而提高用户的使用体验。
为了实现上述目的,本发明的自集尘清洁系统包括清洁机器人和可对所述清洁机器人进行集尘的基站,所述基站上设有集尘箱和供所述清洁机器人停入的对接腔,所述对接腔的腔壁上设有与所述集尘箱连通的集尘口和第一风口,且所述集尘口与所述第一风口位于基站中线的两侧;
所述清洁机器人上设有相互连通的尘盒和第一风机;且所述清洁机器人在与所述对接腔的腔壁相对的外周面上至少设有与所述集尘口对接配合的出尘口,以及与所述第一风口对接配合的第二风口,以形成对中结构供所述清洁机器人进入所述对接腔时对位。
所述尘盒在与所述第一风机连通的连接口处设有第一过滤组件,当所述基站对所述清洁机器人进行集尘时,所述第一风机产生的风吹向所述第一过滤组件;和/或所述基站上还设有第二风机,第二风机产生的风吹向所述第一过滤组件。
其中,第一过滤组件和/或尘盒设有磁铁,清洁机器人的机体设有磁感应元件,磁感应元件获取磁铁信号,用以判断所述第一过滤组件和/或尘盒是否安装到位,以控制所述第一风机的工作状态。
可选地,在一个实施例中,所述第一风机被配置为,当清洁机器人进行清 洁任务时,所述第一风机正转,所述尘盒内形成负压,将待清洁区域的灰尘吸入所述尘盒内;当所述基站对所述清洁机器人进行集尘时,所述第一风机反转以使所述集尘箱内形成负压,将尘盒中的灰尘排至所述集尘箱内。
可选地,在一个实施例中,所述第二风机设置在所述集尘箱与所述第一风口之间。
可选地,在一个实施例中,所述第一风机被配置为,当所述基站对所述清洁机器人进行集尘时,所述第一风机反向旋转或停止转动。
可选地,在一个实施例中,所述集尘口与所述出尘口之间的对接面,以及所述第一风口与所述第二风口之间的对接面,为与所述清洁机器人的外周面相适应的弧面。
可选地,在一个实施例中,所述集尘口和所述第一风口沿所述基站的中线对称布置。
可选地,在一个实施例中,所述集尘口与所述出尘口之间、所述第一风口与所述第二风口之间,其中一者设有凸出结构,另一者设有与所述凸出结构对接配合的压进结构。
可选地,在一个实施例中,所述凸出结构与所述压进结构之间设有密封件。
可选地,在一个实施例中,所述密封件为设置在所述凸出结构和/或压进结构上的橡胶圈。
可选地,在一个实施例中,所述磁铁设有与所述磁感应元件错位的偏离位置及与所述磁感应元件对应的触发位置。
可选地,在一个实施例中,当所述第一过滤组件和/或所述尘盒安装于所述机体时,使所述磁铁自偏离位置运动至触发位置;当所述第一过滤组件和/或所述尘盒脱离于所述机体时,使所述磁铁自触发位置运动至偏离位置。
可选地,在一个实施例中,所述第一过滤组件包括支架及设于支架上的过滤片,所述磁铁设于所述支架上。
与现有技术相比,本发明的有益之处在于:
本发明在基站上设置与集尘箱连通的集尘口和第一风口,同时,在清洁机器人的机体的外周面上设置与集尘口对接配合的出尘口,以及与第一风口对接配合的第二风口。当清洁机器人返回基站时,清洁机器人设置有出尘口和第二 风口的外周面正对基站的对接腔,随着机体逐渐进入,出尘口与集尘口对接配合,第二风口与第一风口对接配合,且两个对接配合的结构位于基站中线的两侧,形成清洁机器人进入基站的对中结构,引导清洁机器人的机体在对接腔内摆正,一方面保证其对接稳定,另一方面保证其进入对中位。
本发明中由于清洁机器人的出尘口与基站的集尘口对接配合,清洁机器人的第二风口与基站的第一风口对接配合,使得清洁机器人的尘盒与基站的集尘箱之间形成有两个通道,第一通道由尘盒经出尘口和集尘口通入集尘箱,第二通道由集尘箱经第一风口和第二风口通入尘盒。当基站对清洁机器人进行集尘时,集尘箱内可通过设置在第二通道的风机产生集尘负压,两个通道处于连通状态。尘盒内的灰尘经由第一通道进入集尘箱内。同时,风机从集尘箱内抽出的风经由第二通道进入尘盒内,循环利用风机产生的风,大大提高了集尘的效率。
本发明通过利用清洁机器人的第一风机作为基站的集尘风机,在无需额外在基站上设置风机的情况下,实现了基站对清洁机器人的集尘,这样大大降低了设备成本。
本发明由于尘盒与集尘箱之间通过第一通道和第二通道连通,使得第一风机和/或第二风机产生的风被循环利用。此外,在基站对清洁机器人进行集尘的过程中,风机产生的风的方向与清洁机器人在待清洁区域进行清洁任务时产生的风的方向相反,风机产生的风会吹向第一过滤组件,并将沉积在第一过滤组件上的灰尘吹散,起到清理第一过滤组件的作用,同时也可以清理第一通道内残留的灰尘。
本发明由于安装有过滤组件的尘盒与机体装配时触发磁感应元件,使得控制板根据磁感应元件的触发信号判断尘盒或过滤组件是否安装到位。因而只有安装了过滤组件的尘盒装入机体后才能触发磁感应元件,过滤组件和尘盒之间、尘盒和机体之间无需设置复杂的机械结构,有利于合理降低尘盒的结构难度,也有利于合理降低用户将过滤组件装入尘盒内的难度及将尘盒装入机体内的难度,有利于提高用户的使用体验。
本发明磁铁可以设于过滤件的支架上,可使用户按需清洗或拆换,且与过滤组件一体联动,通过合理设置磁铁的安装位置,使安装到位检测能够便利性地满足检测用户是否漏装过滤组件或漏装尘盒的要求。本发明磁铁也可以活动 设于尘盒上,当过滤组件安装于尘盒内使磁铁自偏离位置运动至触发位置,过滤组件脱离尘盒时使磁铁自触发位置又运动至偏离位置,运动方式简单、成本较低、用户体验得到大大提升。
当然,实施本发明的任一产品并不一定需要同时达到以上所述的所有优点。
附图说明
图1为本申请实施例的清洁系统的结构示意图;
图2为本申请实施例中清洁机器人的内部结构示意图;
图3为本申请实施例中尘盒的结构示意图;
图4为本申请实施例中尘盒的部分截面示意图;
图5为本申请实施例中基站的主视图;
图6为本申请实施例中清洁机器人的结构示意图;
图7为本申请一实施例中尘盒的爆炸图;
图8为本申请一实施例中尘盒的部分剖面图;
图9为图8中的A部放大图;
图10为本申请一实施例中尘盒盖体的结构示意图;
图11为本申请一实施例中导向筋旋转后状态图;
图12为本申请另一实施例中尘盒盖体的结构示意图;
图13为本申请实施例中清洁机器人与基站对接的示意图;
图14为本申请实施例中清洁机器人与基站对接时形成的对接面的示意图;
图15为本申请实施例清洁机器人中尘盒、检测结构及控制板的配合示意图;
图16为本申请实施例清洁机器人中第一过滤组件的示意图;
图17为本申请一实施例清洁机器人中磁铁处于触发位置时尘盒的结构示意图;
图18为图7中B处的放大图;
图19为本申请一实施例清洁机器人中磁铁处于偏离位置时的局部结构图;
图20为本申请另一实施例清洁机器人中磁铁处于触发位置时的局部 结构图;
图21为本申请另一实施例清洁机器人中磁铁处于偏离位置时的局部结构图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,以下结合实施例及其附图对本申请作进一步说明。显然,所描述的实施例是本申请的一部分实施例,而不是全部的实施例。基于所描述的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另外定义,本申请使用的技术术语或者科学术语应当为本申请所属领域内具有一般技能的人士所理解的通常意义。本申请中使用的“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
参见图1,本实施例的清洁系统包括清洁机器人100和基站200,基站200可对清洁机器人100进行充电、集尘、拖布清洁、及拖布烘干等工作。
参见图2至图4,本实施例中,清洁机器人100包括机体101,机体101的底部设有驱动轮、擦拖件和辊刷(图中仅部分示出)。机体101内设有相互连通的尘盒102和第一风机103,可用于收集灰尘、碎屑等垃圾。尘盒102的底部在位于辊刷的斜侧设有吸尘口1025,并在吸尘口1025处设有可防止灰尘倒流的第一旋转挡片1021,第一旋转挡片1021可在打开位置和关闭位置之间活动,机体101的底部设有与吸尘口1025对应以连通至尘盒102的进尘口。
清洁机器人100在进行清洁任务时,辊刷不断旋转扰动将地面上的灰尘或碎屑的垃圾向上扬起或洒落,在第一风机103吸力的作用下,尘盒102的第一旋转挡片1021被打开,灰尘或碎屑依次经进尘口和吸尘口1025进入尘盒102内。第一风机103停止后,第一旋转挡片1021枢转至关闭位置,防止尘盒102中的灰尘通过吸尘口1025排出。
参见图5和图6,本实施例中,基站200上设有集尘箱201和供清洁机器 人100停入的对接腔202,对接腔202的腔壁上设有与集尘箱201连通的集尘口203和第一风口204,且集尘口203与第一风口204位于基站200中线的两侧。参见图6,清洁机器人100在与对接腔202的腔壁相对的外周面上至少设有与集尘口203对接配合的出尘口105,以及与第一风口204对接配合的第二风口106,以形成对中结构供清洁机器人100进入对接腔202时对位;出尘口105与尘盒102连通,第二风口106与第一风机103连通。本申请中,基站中线是指基站在竖直方向的中心线。
本实施例在基站200上设置与集尘箱201连通的集尘口203和第一风口204,同时,在清洁机器人100的机体101的外周面上设置与集尘口203对接配合的出尘口105,以及与第一风口204对接配合的第二风口106。当清洁机器人100返回基站200时,清洁机器人100设置有出尘口105和第二风口106的外周面正对基站200的对接腔202,随着机体101逐渐进入,出尘口105与集尘口203对接配合,第二风口106与第一风口204对接配合,且两个对接配合的结构位于基站中线的两侧,形成清洁机器人100进入基站200的对中结构,引导清洁机器人100的机体101在对接腔202内摆正,一方面保证其对接稳定,另一方面保证其进入对中位。其中,清洁机器人100的机体101进入对中位是指所述机体101在基站200的对接腔202内且相对于基站中线对称。
此外,由于清洁机器人100的出尘口105与基站200的集尘口203对接配合,清洁机器人100的第二风口106与基站200的第一风口204对接配合,使得清洁机器人100的尘盒102与基站200的集尘箱201之间形成有两个通道,第一通道由尘盒102经出尘口105和集尘口203通入集尘箱201,第二通道由集尘箱201经第一风口204和第二风口106通入尘盒102。在尘盒102连通出尘口105的出口处设有第二旋转挡片1022,当基站200对清洁机器人100进行集尘时,集尘箱201内可通过设置在第二通道的风机产生集尘负压,第二旋转挡片1022枢转至打开位置,使两个通道处于连通状态。此时尘盒102内的灰尘由打开的第二旋转挡片1022处被吸出,并经由第一通道进入集尘箱201内。同时,风机从集尘箱201内抽出的风经由第二通道进入尘盒102内,循环利用风机产生的风,大大提高了集尘的效率。
参见图4和图7,本实施例中,尘盒102包括盒体1023和盖体1026,盒体1023和盖体1026可以通过转轴枢接,并通过卡扣扣合,或者直接在盒体 1023和盖体1026的四周设置可卡合的扣接条,以使盖体1026可以轻松地从盒体1023上方分离,方便对盒体1023内的脏污进行清理。在盒体1023一侧设有依次连通第一风机103和第二风口106的第三风口1024,即第一风机103的一端连接第二风口106,另一端连接第三风口1024,在清洁机器人100的清洁模式下,第一风机103将尘盒102内的风经第三风口抽出,并经第二风口106排出机体外。在第三风口1024处设有第一过滤组件,第一过滤组件包括支架1027和过滤片1028,过滤片可以是海帕、防尘网、或者二者的结合等,以阻挡灰尘经第三风口1024被吸入第一风机103内。支架1027沿第三风口1024的进风方向延伸形成过滤风道,且过滤风道的风道口沿进风方向布置,过滤片1028安装在风道口处。
本实施例中,第三风口1024设置在尘盒102的顶部一侧,风道口与尘盒102底部相对设置。可以在盖体1026内侧设有与支架1027配合的安装框1029,第三风口1024设置于安装框1029的侧面,支架1027可以扣合安装在安装框1029上,支架1027沿第三风口1024的进风方向延伸形成过滤风道,即支架1027与盖体1026内侧及安装框1029之间形成过滤风道,且过滤风道的风道口沿进风方向布置,过滤片1028安装在风道口处。尘盒102在沿风道口方向至少布置有一个导向筋1030,可将导向筋1030设置在盖体1026内侧,清洁机器人100停入基站200后,基站200对清洁机器人100集尘形成的风至少部分在过滤风道内经导向筋1030截流吹向过滤片1028。
由于支架1027在第三风口1024的进风方向延伸形成过滤风道,且过滤风道的风道口沿进风方向布置,即风道口的出风方向与进风方向垂直,换句话说,过滤风道的出风方向与第三风口的进风方向垂直,这样可以扩大风道口的过风面积,进而可以扩大过滤片1028的过滤面积,使清洁机器人100在清洁模式下,过滤片1028在单位时间内的过风量更小,灰尘堆积概率更小,从而延长过滤片1028的使用寿命。此外,在尘盒102内设置导向筋1030,可以对过滤风道内的风进行截流,在清洁机器人100停入基站200后,基站200对清洁机器人100进行集尘,此时,集尘的风反向经过过滤风道,即集尘的风反向吹向过滤片1028,可以将过滤片1028上沉积的灰尘吹落至尘盒102内。这里,反向是指与清洁机器人在清洁模式下的风向相反。此时,通过导向筋1030对过滤风道内的风进行截流,使过滤风道内的风提前聚集一部分吹至过滤片1028, 避免大部分风流集中吹向过滤风道末端的过滤片1028,提高了过滤片1028清洁的均匀性。
可以理解的是,本实施例中,第三风口1024也可以设置在尘盒102的盒体1023上,可靠近盖体1026设置,方便与支架1027对接。支架1027也可以与盖体1026一体设置。
为了提高导向筋1030的灵活性,导向筋1030可朝向第三风口1024活动地安装在尘盒102的盖体1026内侧,具体被配置为,当清洁机器人100进行清洁任务时,第一风机103形成的气流经过滤风道流向第三风口1024,导向筋1030在气流作用下朝向第三风口1024打开。导向筋1030朝向第三风口1024打开时,可以使清洁机器人100的吸尘气流顺利经过滤风道的风道口进入并通过过滤风道。
本实施例中,导向筋1030的两端轴接在尘盒102上,尘盒102内设有限位凸起1031,导向筋1030在远离第三风口1024的一侧与限位凸起1031抵接,并可向第三风口1024旋转。
具体的,参见图7至图11,在一实施例中,导向筋1030的两端可以轴接于尘盒102的盖体1026内侧的安装框1029上,限位凸起1031设置于盖体1026的内侧,导向筋1030在远离第三风口1024的一侧顶部与盖体1026内侧设有拉伸件1032,可以是弹簧或弹性带,在拉伸件的作用下,导向筋1030的顶部与限位凸起1031抵接,并可向第三风口1024旋转。该实施例中,可在盖体1026的内侧设置用于安装导向筋1030的轴接框1033,轴接框1033的顶部作为限位凸起1031与导向筋1032的顶部抵接。具体的,在轴接框1033的两端设置轴孔10331,在导向筋1030的两端设置转轴10301,并分别在盖体1026内侧与导向筋1030上设置拉钩10261和拉钩10302,用于固定拉伸件1032的两端。参见图11,导向筋1030在风力作用下朝向第三风口1024一侧打开,进一步拉伸拉伸件1032,若该方向风流停止,导向筋1030在拉伸件1032的弹力作用下恢复至竖直位置。
参见图12,在另一实施例中,导向筋1030的顶部两端轴接于尘盒102的盖体1026内侧的安装框1029上,限位凸起1031设置于盖体1026的内侧,导向筋1030在重力作用下垂直贴于限位凸起1031一侧,可在风力作用下朝向第三风口1024方向旋转。
本实施例中,由于清洁机器人100与基站200对接时会形成相互连通的第一通道和第二通道,使集尘箱201内产生集尘负压的风机可以是清洁机器人100内的第一风机103,也可以是设置在集尘箱201与第一风口204之间的第二风机。
在一个实施例中,集尘箱201内产生吸尘负压的风机为清洁机器人100的第一风机103。第一风机103被配置为,当清洁机器人100进行清洁任务时,第一风机103正转,尘盒102内形成负压,将待清洁区域的灰尘吸入尘盒102内;当基站200对清洁机器人100进行集尘时,第一风机103反转以使集尘箱201内形成负压,将尘盒102中的灰尘排至集尘箱201内。
通过利用清洁机器人100的第一风机103作为基站200的集尘风机,在无需额外在基站上设置风机的情况下,实现了基站对清洁机器人的集尘,这样大大降低了设备成本。
进一步的,第一风机103反转时,其产生的风吹向第一过滤组件,将沉积在第一过滤组件上的灰尘吹散,起到清理第一过滤组件的作用,同时也可以清理第一通道内残留的灰尘。
在另一个实施例中,基站200在集尘箱201与第一风口204之间设有第二风机,以使集尘箱201在对清洁机器人100的尘盒102进行集尘时产生集尘负压。此时,第一风机103被配置为,当基站200对清洁机器人100进行集尘时,第一风机103反向旋转或停止转动。
基站200对清洁机器人100进行集尘时,第一风机103可以反向旋转或停止,当其反向旋转时,其与第二风机的风向一致,大大提高了集尘效率。当其停止时,第二风机的风也可以经过第一风机103进入尘盒102内。
参见图13,由于尘盒102与集尘箱201之间通过第一通道和第二通道连通,形成循环通道300,使得第一风机103和/或第二风机产生的风被循环利用。此外,在基站200对清洁机器人100进行集尘的过程中,风机产生的风的方向与清洁机器人100在待清洁区域进行清洁任务时产生的风的方向相反,第一风机103和/或第二风机产生的风会吹向第一过滤组件,并将沉积在第一过滤组件上的灰尘吹散,起到清理第一过滤组件的作用,同时也可以清理第一通道内残留的灰尘。
需要说明的是,第一风机103的正转和反转,并不限定特定的方向,仅表 示第一风机103内叶轮的两个转向。举例来说,若第一风机103正转指的是内部的叶轮顺时针旋转,那么第一风机103反转指的是内部的叶轮逆时针旋转。
此外,在集尘箱201内设置第二过滤组件,和/或,在第二通道内,即集尘箱201的出风口外设置第三过滤组件,避免集尘箱201内的灰尘经由第二通道进入第一风机103和/或第二风机内。
进一步的,参见图14,集尘口203与出尘口105之间的对接面,以及第一风口204与第二风口106之间的对接面104,为与清洁机器人100的外周面相适应的弧面。当清洁机器人100进入基站200时出现了小角度偏斜时,可以使机体101旋转矫正,在旋转矫正过程中,由于两对接面104均为弧面设置,机体101沿弧面旋转,直至集尘口203与出尘口105对接,以及第一风口204与第二风口106对接,提高了矫正效率。
此外,可设置集尘口203和第一风口204沿基站200的中线对称布置,对应的,出尘口105与第二风口106沿清洁机器人100的中线对称布置。这样,清洁机器人100在进入基站200时,通过对称设置的对接结构可以提高对接效率。
本发明的一个实施例中,集尘口203与出尘口105之间、第一风口204与第二风口106之间,其中一者设有凸出结构,另一者设有与凸出结构对接配合的压进结构。
比如,以基站200上的集尘口203和第一风口204为凸出结构,清洁机器人100上的出尘口105和第二风口106为压进结构,作为例子,清洁机器人100的外周面上设有内凹的对接口,基站200的对接腔202的腔壁上设有向外翻出且与内凹的对接口配合的凸口,清洁机器人100在进入基站200时,凸口轻轻压入内凹的对接口内。
为了提高对接效率,避免突出结构与压进结构之间出现摩擦阻碍,可将凸口或内凹的对接口中的至少一者设置成锥状,比如,将凸口设置成锥状,锥状的凸口进入内凹的对接口,在进入过程中二者不会因为摩擦阻碍进一步对接,直至凸口完全进入对接口后,在对接口的底部定位配合。同理,锥状的对接口也同样可以实现该效果。
进一步的,可在凸出结构与压进结构之间设置密封件,该密封件可以是由橡胶或硅胶等制成,以提高第一通道和第二通道的密封性,避免灰尘从接口处 跑出。
更进一步的,密封件为设置在凸出结构和/或压进结构上的橡胶圈。比如,可以将橡胶圈套接在凸出结构上,也可以将橡胶圈环绕在压进结构的内缘。
此外,本申请实施例中可通过检测结构来检测尘盒,和/或,尘盒内的过滤件是否在位,以及,检测集尘箱,和/或,集尘箱内的过滤件是否在位。比如,在尘盒与机体之间设置检测结构,在集尘箱与基站主体之间设置检测结构,机体与基站主体上均设有控制板。以下以在清洁机器人的尘盒与机体之间设置检测结构为例,对检测结构的具体设置方式及使用原理进行详细说明。
参见图15,本实施例中检测结构包括设于第一过滤组件上的磁铁510及设于机体101内的磁感应元件520,磁感应元件520电连接于控制板600,第一过滤组件(包括支架1027与过滤片1028)与磁铁510相互联动,尘盒102与机体101装配触发磁感应元件520,以使控制板600获取尘盒内第一过滤组件的安装状态信号。
由于第一过滤组件与磁铁相互联动,安装有第一过滤组件的尘盒安装到机体内时,磁铁触发磁感应元件,控制板根据磁感应元件的触发信号判断尘盒安装到位且第一过滤组件安装到位,控制板可以使第一风机启动,第一风机工作时形成自进尘口流向尘盒的吸尘气流,第一过滤组件对吸尘气流进行过滤,避免灰尘等脏污流入第一风机的内部或机体的内部对电子器件造成不良影响,使清洁机器人整体保持功能稳定。当尘盒未安装第一过滤组件或尘盒未装入机体内时,磁感应元件不能被触发,控制板无法获得检测识别信号,控制板不会使气流发生件启动。只有安装了第一过滤组件的尘盒装入机体后才能触发磁感应元件,第一过滤组件和尘盒之间、尘盒和机体之间无需设置复杂的机械结构,有利于合理降低尘盒的结构难度,也有利于合理降低用户将第一过滤组件装入尘盒内的难度及将尘盒装入机体内的难度,有利于提高用户的使用体验。
参见图15、图16,本实施例中,磁铁510设于支架1027上。在支架1027上设有用于装设磁铁510的安装孔,磁铁510固定于该安装孔中,磁感应元件520采用霍尔元件并固定于机体101内。过滤片1028可拆卸设于支架1027上,用户可以按需求清洗或拆换过滤片1028,可以在降低使用成本的同时保证第一过滤组件的过滤性能,防止过滤片1028因使用过久导致灰尘堆积过多造成的过滤性能变差的情况。
为了防止用户误装第一过滤组件,第一过滤组件与尘盒102之间设有防呆结构,通过防呆结构使用户能轻松、正确的安装第一过滤组件,确保第一过滤组件在清洁机器人工作时能对流经尘盒102的吸尘气流进行充分、有效的过滤。本实施例中,第一过滤组件的支架1027设有向外凸出的防呆凸台413,尘盒102的内壁上设有与该防呆凸台413配合的防呆凹槽,用于安装磁铁510的安装孔设于防呆凸台413上。安装第一过滤组件时,只有防呆凸台413朝向与防呆凹槽配合的方向才能将第一过滤组件顺利装入尘盒102中,否则防呆凸台413会与尘盒102的侧壁发生干涉,第一过滤组件无法顺利装入尘盒中。
使用时,用户先将第一过滤组件装入尘盒102的盒体1023中,然后利用盖体1026盖合盒体1023,再将尘盒102装入机体101中,使磁铁510与磁感应元件520对应。清洁机器人启动后,控制板600根据磁感应元件520反馈的信号判断尘盒102和第一过滤组件安装到位,可以命令吸尘电机启动。吸尘电机工作时,形成自进尘口流入并经过吸尘口1025进入尘盒102内的吸尘气流,清洁机器人底部的灰尘、头发等脏污在吸尘气流的作用下被吸入尘盒102内,吸尘气流经过第一过滤组件的过滤后流入第一风机103,然后排出机体101。利用第一过滤组件对流向第一风机103的吸尘气流进行有效过滤,避免脏污跟随吸尘气流流入吸尘电机内导致吸尘电机报废的情况。
可以理解的是,拖擦件包括转盘及可拆卸固定于转盘底部的拖布。
可以理解的是,磁感应元件520也可以采用干簧管等其他能根据磁性变化输出感应信号的电子元件。
可以理解的是,过滤片1028也可以直接固定在支架1027上,用户可以定期更换过滤片1028。
可以理解的是,第一过滤组件与尘盒之间的防呆结构并不仅局限于上述记载和附图所示的防呆凸台413与防呆凹槽配合的结构,也可以采用其他合理的防呆结构,如第一过滤组件和尘盒102之间采用异形的配合结构,第一过滤组件只有按照特定方位才能顺利装入尘盒102中。
可以理解的是,用于装设磁铁510的安装孔也可以设于支架1027除防呆凸台413以外的其他位置处。
可以理解的是,第一过滤组件的支架1027可以与盒盖1026一体设置,将盒盖1026盖合盒体1023的同时实现第一过滤组件的安装。
可以理解的是,机体101底部的清洁结构并不局限于上述记载的滚刷、边刷及拖擦件,也可以设置成其他合理的结构,如取消边刷的设置、利用清洁辊代替拖擦件等。
可以理解的是,清洁机器人的其他结构可以参考现有技术。
在一实施例中,磁铁510可活动设于尘盒102上,具体参见图17、图18、图19,本实施例中,磁铁510设有与磁感应元件520错位的偏离位置及与磁感应元件520对应的触发位置。第一过滤组件安装于尘盒102内时,使磁铁510自偏离位置运动至触发位置。第一过滤组件脱离尘盒102时,使磁铁510自触发位置运动至偏离位置。
结合图19,尘盒设有转动架530,磁铁510设于转动架530上。第一过滤组件安装于尘盒102内时,使转动架530带动磁铁510自偏离位置转动至触发位置。第一过滤组件脱离尘盒102时,使转动架530带动磁铁510自触发位置转动至偏离位置。具体的,转动架530包括呈直角设置的第一架体部531与第二架体部532,第一架体部531上设有用于安装磁铁510的孔,磁铁510嵌装于该孔中。盒体1023的侧壁上设有用于装设转动架530的凹腔441,第二架体部532通过销轴533铰接于盒体1023的侧壁上,转动架530设于凹腔441处。
结合图19,第一过滤组件未装入盒体1023内时,转动架530处于倾斜状态,使磁铁510处于偏离位置,第二架体部532远离第一架体部531的一端伸出凹腔441,即使将尘盒102装入机体101内,磁铁510也无法触发磁感应元件520。
结合图18,第一过滤组件装入尘盒102中时,第一过滤组件的侧壁与第二架体部532伸出凹腔441的端部抵触并施力于转动架530使转动架530发生转动,转动架530带动磁铁510转动至图18所示的触发位置,尘盒102装入机体101后,磁铁510能顺利触发磁感应元件520。
为了限制转动架530在第一过滤组件装入尘盒102内时的转动角度范围,转动架530与尘盒102之间设有限位配合结构。结合图19,本实施例中,凹腔441面向第一过滤组件的一侧设有第一台阶面442,第二架体部532设有与第一台阶面442配合的第二台阶面534,当转动架530转动至第二台阶面534与第一台阶面442抵触时,转动架530转动到位并保持结构稳定,此时,磁铁 510处于触发位置。
可以理解的是,该实施例中第一架体部531和第二架体部532也可以呈锐角设置或呈钝角设置。
可以理解的是,磁铁510随转动架530在偏离位置和触发位置之间转动的角度可以设置位置45°、50°、55°、60°、65°、70°、75°、80°、85°、85°、90°、95°、100°等合理的大小。
可以理解的是,限位配合结构并不局限于上述记载和附图所示的第一台阶面442与第二台阶面534配合的结构,也可以设置成其他合理的结构,如在凹腔441的腔壁上设置用于限制第二架体部532转动角度范围的挡块,当第二架体部532转动至与挡块接触时转动架530转动到位。
此外,在另一实施例中,磁铁510可移动设于尘盒102上,参见图20、图21,本实施例中,检测结构包括一端定位设置、另一端接触于磁铁510的弹性件。第一过滤组件安装于尘盒102内时与磁铁510抵触,使磁铁510自偏离位置平移至触发位置,且使弹性件受力变形。第一过滤组件脱离尘盒102时,恢复形变的弹性件带动磁铁510自触发位置复位平移至偏离位置。
具体的,盒体1023的侧壁上设有一端封闭且另一端敞口的凹孔443,凹孔443的孔壁上设有一圈挡筋444,磁铁510设于凹孔443中且呈一端粗一端细的阶梯形柱状,弹性件采用弹簧540,凹孔443中封闭端的孔壁上设有朝敞口端凸出的凸柱445,弹簧540的一端套设于凸柱445的外部并与凹孔443的孔壁抵触实现定位设置,弹簧540的另一端与磁铁510抵触,弹簧540处于压缩状态并将磁铁510抵向凹孔443的开口端。由于挡筋444的阻挡作用,磁铁510不会脱离凹孔443。第一过滤组件的支架1027设有向外凸出的柱体414,柱体414在第一过滤组件装入尘盒102内时插入凹孔443中并与磁铁510抵触,带动磁铁510朝凹孔443的封闭端移动并使弹簧540受力压缩。
结合图21,第一过滤组件未装入尘盒102中时,磁铁510在弹簧540的作用下与挡筋444抵触,磁铁510处于偏离位置,即使将尘盒102装入机体101内,磁铁510也无法触发磁感应元件520。
结合图20,第一过滤组件装入尘盒102中时,柱体414插入凹孔443中与磁铁510抵触并带动磁铁510朝凹孔443的封闭端移动一端距离到达触发位置,弹簧540在柱体414的抵触作用下进一步受力压缩。将装有第一过滤组件 的尘盒102安装到机体101内后,磁铁510触发磁感应元件520。
取出尘盒102并拆下第一过滤组件时,恢复形变的弹簧540带动磁铁510从触发位置自动复位平移至偏离位置。
可以理解的是,该实施例中磁铁510在偏离位置和触发位置之间移动的距离可以设置为5mm、6mm、7mm、8mm、9mm、10mm、11mm、12mm、13mm、14mm、15mm等合理的大小。
可以理解的是,弹性件也可以采用其他具有弹性的构件,满足带动磁铁510在偏离位置和触发位置之间移动的要求即可。
本领域技术人员应当理解,上述实施例均是示例性而非限制性的。在不同实施例中出现的不同技术特征可以进行组合,以取得有益效果。本领域技术人员在研究附图、说明书及权利要求书的基础上,应能理解并实现所揭示的实施例的其他变化的实施例。尽管参照前述实施例对本发明进行了详细的说明,本领域技术人员应当理解,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

  1. 一种自集尘清洁系统,包括清洁机器人和可对所述清洁机器人进行集尘的基站,其特征在于:
    所述基站上设有集尘箱和供所述清洁机器人停入的对接腔,所述对接腔的腔壁上设有与所述集尘箱连通的集尘口和第一风口,且所述集尘口与所述第一风口位于基站中线的两侧;
    所述清洁机器人上设有相互连通的尘盒和第一风机;且所述清洁机器人在与所述对接腔的腔壁相对的外周面上至少设有与所述集尘口对接配合的出尘口,以及与所述第一风口对接配合的第二风口,以形成对中结构供所述清洁机器人进入所述对接腔时对位;
    所述尘盒在与所述第一风机连通的连接口处设有第一过滤组件,当所述基站对所述清洁机器人进行集尘时,所述第一风机产生的风吹向所述第一过滤组件;和/或所述基站上还设有第二风机,第二风机产生的风吹向所述第一过滤组件;
    其中,第一过滤组件和/或尘盒设有磁铁,清洁机器人的机体设有磁感应元件,磁感应元件获取磁铁信号,用以判断所述第一过滤组件和/或尘盒是否安装到位,以控制所述第一风机的工作状态。
  2. 根据权利要求1所述的自集尘清洁系统,其特征在于,所述第一风机被配置为,当清洁机器人进行清洁任务时,所述第一风机正转,所述尘盒内形成负压,将待清洁区域的灰尘吸入所述尘盒内;当所述基站对所述清洁机器人进行集尘时,所述第一风机反转以使所述集尘箱内形成负压,将尘盒中的灰尘排至所述集尘箱内。
  3. 根据权利要求1所述的自集尘清洁系统,其特征在于,所述第二风机设置在所述集尘箱与所述第一风口之间。
  4. 根据权利要求3所述的自集尘清洁系统,其特征在于,所述第一风机被配置为,当所述基站对所述清洁机器人进行集尘时,所述第一风机反向旋转或停止转动。
  5. 根据权利要求1所述的自集尘清洁系统,其特征在于,所述集尘口与所述出尘口之间的对接面,以及所述第一风口与所述第二风口之间的对接面, 为与所述清洁机器人的外周面相适应的弧面。
  6. 根据权利要求1所述的自集尘清洁系统,其特征在于,所述集尘口与所述出尘口之间、所述第一风口与所述第二风口之间,其中一者设有凸出结构,另一者设有与所述凸出结构对接配合的压进结构。
  7. 根据权利要求6所述的自集尘清洁系统,其特征在于,所述凸出结构与所述压进结构之间设有密封件。
  8. 根据权利要求1所述的自集尘清洁系统,其特征在于,所述磁铁设有与所述磁感应元件错位的偏离位置及与所述磁感应元件对应的触发位置。
  9. 根据权利要求8所述的自集尘清洁系统,其特征在于,当所述第一过滤组件和/或所述尘盒安装于所述机体时,使所述磁铁自偏离位置运动至触发位置;当所述第一过滤组件和/或所述尘盒脱离于所述机体时,使所述磁铁自触发位置运动至偏离位置。
  10. 根据权利要求1所述的自集尘清洁系统,其特征在于,所述第一过滤组件包括支架及设于支架上的过滤片,所述磁铁设于所述支架上。
PCT/CN2023/090203 2022-04-27 2023-04-24 一种自集尘清洁系统 WO2023207879A1 (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN202220997600.XU CN217365733U (zh) 2022-04-27 2022-04-27 一种对接效果好的自集尘清洁系统
CN202210448385.2 2022-04-27
CN202210448385.2A CN114795028A (zh) 2022-04-27 2022-04-27 一种自集尘清洁系统
CN202220997600.X 2022-04-27
CN202211082535.9A CN115644746A (zh) 2022-09-06 2022-09-06 一种表面清洁机
CN202211082535.9 2022-09-06
CN202222788919.4 2022-10-21
CN202222788919.4U CN218899339U (zh) 2022-10-21 2022-10-21 一种方便清洁的自集尘清洁系统

Publications (1)

Publication Number Publication Date
WO2023207879A1 true WO2023207879A1 (zh) 2023-11-02

Family

ID=88517790

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/090203 WO2023207879A1 (zh) 2022-04-27 2023-04-24 一种自集尘清洁系统

Country Status (1)

Country Link
WO (1) WO2023207879A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN211674025U (zh) * 2019-09-18 2020-10-16 珊口(深圳)智能科技有限公司 自主清洁器
CN214259221U (zh) * 2020-11-06 2021-09-24 追觅创新科技(苏州)有限公司 用于扫地机器人的尘盒、扫地机器人及智能清洁系统
CN214259196U (zh) * 2020-11-19 2021-09-24 深圳市杉川机器人有限公司 一种集尘装置及清洁系统
US20210330156A1 (en) * 2020-04-22 2021-10-28 Omachron Intellectual Property Inc. Robotic vacuum cleaner and docking station for a robotic vacuum cleaner
CN215738707U (zh) * 2021-07-09 2022-02-08 北京小米移动软件有限公司 扫地机器人及扫地系统
CN114305227A (zh) * 2021-12-31 2022-04-12 杭州华橙软件技术有限公司 扫地机器人及集尘装置
CN114795028A (zh) * 2022-04-27 2022-07-29 九阳股份有限公司 一种自集尘清洁系统
CN217365733U (zh) * 2022-04-27 2022-09-06 九阳股份有限公司 一种对接效果好的自集尘清洁系统
CN115644746A (zh) * 2022-09-06 2023-01-31 尚科宁家(中国)科技有限公司 一种表面清洁机

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN211674025U (zh) * 2019-09-18 2020-10-16 珊口(深圳)智能科技有限公司 自主清洁器
US20210330156A1 (en) * 2020-04-22 2021-10-28 Omachron Intellectual Property Inc. Robotic vacuum cleaner and docking station for a robotic vacuum cleaner
CN214259221U (zh) * 2020-11-06 2021-09-24 追觅创新科技(苏州)有限公司 用于扫地机器人的尘盒、扫地机器人及智能清洁系统
CN214259196U (zh) * 2020-11-19 2021-09-24 深圳市杉川机器人有限公司 一种集尘装置及清洁系统
CN215738707U (zh) * 2021-07-09 2022-02-08 北京小米移动软件有限公司 扫地机器人及扫地系统
CN114305227A (zh) * 2021-12-31 2022-04-12 杭州华橙软件技术有限公司 扫地机器人及集尘装置
CN114795028A (zh) * 2022-04-27 2022-07-29 九阳股份有限公司 一种自集尘清洁系统
CN217365733U (zh) * 2022-04-27 2022-09-06 九阳股份有限公司 一种对接效果好的自集尘清洁系统
CN115644746A (zh) * 2022-09-06 2023-01-31 尚科宁家(中国)科技有限公司 一种表面清洁机

Similar Documents

Publication Publication Date Title
CN114305227A (zh) 扫地机器人及集尘装置
CN217365733U (zh) 一种对接效果好的自集尘清洁系统
WO2023207879A1 (zh) 一种自集尘清洁系统
CN111938499A (zh) 一种减振降噪吸尘器
CN214856357U (zh) 手持式吸尘器
CN114795028A (zh) 一种自集尘清洁系统
JP2023041594A (ja) 手持ち型コードレス集塵掃除機
KR100692577B1 (ko) 진공 청소기용 필터감지장치
CN213030577U (zh) 带有吹风功能的桶式吸尘器
CN212186364U (zh) 一种风路组件以及吸尘器
CN219538160U (zh) 一种扫地机器人主机及扫地机器人
CN218606371U (zh) 一种吸尘器挡尘片、挡尘结构及吸尘器
CN218899339U (zh) 一种方便清洁的自集尘清洁系统
CN213030582U (zh) 带有抖尘功能的桶式吸尘器
CN221242741U (zh) 尘盒组件及清洁机器人
CN217524946U (zh) 一种清洁系统
CN213030578U (zh) 多风机吸尘器
CN220631983U (zh) 清洁设备和清洁系统
CN218186696U (zh) 尘盒组件及清洁设备
CN215838682U (zh) 一种手持无线集尘吸尘器
CN218572107U (zh) 一种使用方便的表面清洁机
CN220876672U (zh) 清洁设备、自移动机器人及其尘盒
CN216569756U (zh) 吸尘器清洁头
CN217610771U (zh) 吸尘器
CN219538157U (zh) 尘杯吸口密封件及吸尘器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23795312

Country of ref document: EP

Kind code of ref document: A1