WO2023206351A1 - 水下成像设备 - Google Patents

水下成像设备 Download PDF

Info

Publication number
WO2023206351A1
WO2023206351A1 PCT/CN2022/090244 CN2022090244W WO2023206351A1 WO 2023206351 A1 WO2023206351 A1 WO 2023206351A1 CN 2022090244 W CN2022090244 W CN 2022090244W WO 2023206351 A1 WO2023206351 A1 WO 2023206351A1
Authority
WO
WIPO (PCT)
Prior art keywords
imaging device
display
underwater
reflective surface
air
Prior art date
Application number
PCT/CN2022/090244
Other languages
English (en)
French (fr)
Inventor
陈永新
张淼
Original Assignee
深圳盈天下视觉科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳盈天下视觉科技有限公司 filed Critical 深圳盈天下视觉科技有限公司
Priority to PCT/CN2022/090244 priority Critical patent/WO2023206351A1/zh
Priority to CN202280001068.4A priority patent/CN115136228B/zh
Publication of WO2023206351A1 publication Critical patent/WO2023206351A1/zh

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F19/00Advertising or display means not otherwise provided for
    • G09F19/12Advertising or display means not otherwise provided for using special optical effects
    • G09F19/18Advertising or display means not otherwise provided for using special optical effects involving the use of optical projection means, e.g. projection of images on clouds

Definitions

  • the present application relates to the field of projection technology, and in particular to an underwater imaging device.
  • the combination of visual images and water is mainly realized through projection or water curtain.
  • Projectors project visual images directly onto the water in their simplest form. This method is simple and low cost. However, the projected image is a two-dimensional image, and a mere glimpse cannot provide sufficient viewing appeal.
  • the water curtain uses a fountain as a curtain, and a projector projects visual images onto the fountain. In order to achieve good visual efficiency, water screen projection is generally carried out in larger waters, and the design and control are relatively complex.
  • One purpose of the embodiments of the present application is to provide another way of using water bodies for image display.
  • an underwater imaging device having a projection area, a real scene area and a viewing area, and the real scene area is located between the projection area and the viewing area.
  • the underwater imaging equipment includes:
  • a water tank is used to load liquid.
  • Above the water tank is the real scene area, and the surface of the liquid is a reflective surface;
  • An imaging structure is located in the projection area.
  • the imaging structure includes a display and an air imaging plate.
  • the display is located on the side of the air imaging plate away from the real scene area and is generated in the real scene area through the air imaging plate.
  • An aerial image the aerial image can be reflected to the viewing area through the reflective surface;
  • a polarizing film is provided on the side of the air imaging plate facing the real scene area.
  • the polarizing film receives the light from the air imaging plate and limits the light to be emitted in the direction of the reflective surface.
  • the angle between the air imaging plate and the horizontal plane is 60°-90°.
  • the air imaging plate is perpendicular to the horizontal plane.
  • the underwater imaging device further includes an adjustment structure for adjusting the position of the display, and the adjustment structure adjusts the position of the display according to the horizontal position of the reflective surface, so that the air imaging can be The reflective surface reflects to the viewing area.
  • the underwater imaging device further includes a measurer and an adjustment structure, the measurer is used to measure the horizontal position of the reflective surface, and the adjustment structure adjusts the position of the display according to the horizontal position, so that The air image can be reflected to the viewing area through the reflective surface.
  • the display moves upward by a distance equal to the movement distance of the reflective surface.
  • the measuring device is an ultrasonic sensor.
  • the measuring device is disposed above the water tank.
  • the underwater imaging device further includes a water collector.
  • the water collector scoops up the liquid, the liquid surface of the water collector is the reflective surface.
  • the water tank has a designed water level for loading the liquid, and the lower surface of the display is flush with the designed water level.
  • the water tank has at least one designed water level, and a water level mark is provided at each of the designed water levels.
  • the underwater imaging device further includes a base and a cover, the air imaging plate is provided on the base, and the cover is provided on the base and connected with the air imaging plate. Enclosed to form a cavity for accommodating the display.
  • the cover is made of opaque material.
  • a surface of the cover facing the display is coated with a reflective layer.
  • the beneficial effect of the underwater imaging device provided by the embodiments of the present application is that the structural design of the underwater imaging device provided by the present application prevents the viewer from seeing the aerial image generated by the imaging structure, but can only see the aerial image corresponding to the aerial image.
  • the display cannot be seen by the viewer through the polarizing film.
  • the invisibility of aerial images and displays means that it is difficult for viewers to know the source of underwater images through direct observation with their eyes, thus stimulating viewers' interest in viewing.
  • the underwater image in this solution can be a two-dimensional plane image or a three-dimensional image, which further increases the viewing appeal. From the above, this application provides another way of using water bodies for image display. Viewers can only see underwater virtual images in the observation area, which increases the attraction of viewing.
  • Figure 1 is a schematic diagram of the principle of an underwater imaging device provided by an embodiment of the present application.
  • Figure 2 is a schematic structural diagram of an underwater imaging device provided by an embodiment of the present application.
  • the underwater imaging equipment has a projection area, a real scene area and a viewing area.
  • the real scene area is located between the projection area and the viewing area.
  • the underwater imaging equipment includes a water tank 1, an imaging structure and a polarizing film 9.
  • Tank 1 is used to load liquid.
  • the top of the water tank 1 is the real scene area, and the liquid surface is the reflective surface 2.
  • the water tank 1 is a container for carrying liquid, and can be in the shape of a cylinder, a bucket, or other shapes. Those skilled in the art can also select the material and size of the water tank 1 according to actual needs, which are not limited here.
  • the liquid can be landscape water, drinking water, etc., or it can be wine or beverages, as long as the liquid surface can reflect light.
  • the imaging structure is located in the projection area.
  • the imaging structure includes a display 4 and an air imaging panel 3.
  • the display 4 is located on the side of the air imaging panel 3 away from the real scene area and generates an aerial image 6 in the real scene area through the air imaging panel 3.
  • the aerial image 6 can be
  • the reflective surface 2 reflects to the viewing area.
  • the polarizing film 9 is disposed on the side of the air imaging plate 3 facing the real scene area.
  • the polarizing film 9 receives the light from the air imaging plate 3 and limits the light to be emitted in the direction of the reflective surface 2 .
  • the upper part of the water tank 1 is the real scene area
  • the upper left part is the viewing area
  • the upper right part is the projection area
  • the underwater imaging device includes a base 13 .
  • the base 13 is located on the right side of the water tank 1, and the water tank 1 is fixedly connected to the base 13.
  • the air imaging panel 3 and the display 4 are arranged on the base 13 .
  • the sink 1 and the base 13 may be an integral structure or may be detachably connected.
  • the water tank 1 can be installed on the side of the base 13 or carried by the base 13, which is not limited here.
  • the base 13 is used to fix and support the imaging structure. More importantly, the base 13 fixes the relative positions of the water tank 1, the air imaging plate 3 and the display 4 to ensure the imaging effect of the underwater image.
  • the imaging structure includes a display 4 and an air imaging plate 3.
  • the air imaging plate 3 is an existing flat lens structure for aerial images 6.
  • the air imaging plate 3 can mirror the image source.
  • the display 4 serves as a light source and image source, and the light rays carrying image information emitted by the display 4 form an aerial image 6 on the other side of the air imaging plate 3 after passing through the air imaging plate 3 .
  • the display 4 is one of LCD, LED, OLED, and LCOS.
  • FIG. 1 Please refer to Figure 1 and take the air imaging plate 3 placed vertically as an example.
  • the imaging structure is located on the upper right side of the water tank 1 (imaging area), and the aerial image 6 generated by the imaging structure is located in the real scene area above the water tank 1.
  • the aerial image 6 is reflected by the reflective surface 2 to form an inverted virtual image, and the virtual image and the aerial image 6 are symmetrical with respect to the reflective surface 2 .
  • the viewer 8 can see the reflective surface 2 and the air image reflected by the reflective surface 2 to form a virtual image that appears to be underwater, achieving the visual effect of the underwater image 7.
  • this virtual image will be collectively referred to as For underwater images 7.
  • the light source emitted by the display 4 penetrates the air imaging plate 3 and emits toward the water tank 1 in an oblique downward direction to form an aerial image 6 above the water tank 1.
  • the propagation path of this light does not pass through the viewing area.
  • the aerial image 6 is formed above the water tank 1.
  • the light cannot directly enter the observer's field of view, so that the viewer 8 cannot see the aerial image 6 .
  • the light forming the aerial image 6 is reflected by the reflective surface 2 and enters the observer's field of view (viewing area), so that the observer can see the underwater image 7 formed by the reflection of the aerial image by the reflective surface 2 . From the above, using the design of this solution, the viewer 8 can see the underwater image 7 but not the aerial image 6.
  • a polarizing film 9 is attached to the side of the air imaging plate 3 facing the real scene area.
  • the polarizing film 9 is used to limit the direction of the light transmitted through the air imaging plate 3 so that it can only be emitted in the direction toward the reflective surface 2 .
  • the incident light emitted from the display 4 penetrates the air imaging plate 3 and is emitted.
  • Most of the emitted light is emitted in the direction of the water tank 1 and focused to form the aerial image 6 .
  • some of the emitted light is emitted. The light radiates in a scattered manner and partially falls into the field of view of the viewer 8, so that the viewer 8 can see the display screen.
  • the arrangement of the polarizing film 9 allows the incident light emitted from the display 4 to penetrate the air imaging plate 3 and then emit outwards through the polarizing film 9 only at a specific angle.
  • the specific angle is from the air imaging plate 3 to the aerial image 6 .
  • the polarizing film 9 only transmits the light required to form the aerial image 6 and blocks or diffusely reflects the light directly entering the viewing area, thereby preventing the viewer 8 from directly observing the display 4 .
  • the underwater imaging device provided by the embodiment of the present application has a structural design such that the viewer 8 cannot see the aerial image 6 generated by the imaging structure, but can only see the underwater image 7 corresponding to the aerial image 6.
  • the membrane 9 is arranged so that the viewer 8 cannot see the display 4 .
  • the aerial image 6 and the display 4 are invisible, that is, it is difficult for the viewer 8 to know the source of the underwater image 7 through direct observation with the eyes, thereby stimulating the viewer 8's interest in viewing.
  • the underwater image 7 in this solution can be a two-dimensional plane image or a three-dimensional stereoscopic image, which further increases the viewing appeal.
  • the underwater imaging device also includes a cover body 12.
  • the cover body 12 is provided on the base 13 and is enclosed with the air imaging plate 3 to form a cavity for accommodating the display 4.
  • the cover body 12 is made of an opaque material. . It can be made of rubber, plastic, metal, etc.
  • the cover body 12, the base 13 and the air imaging panel 3 form a closed cavity, and the display 4 is located in the cavity.
  • This arrangement provides protection and dustproof effects for the display 4.
  • the cover 12 is made of an opaque material to prevent external light from entering the cavity and affecting the normal display of the display 4.
  • Those skilled in the art can also coat a reflective layer on the side of the cover 12 facing the display 4 so that more light emitted by the display 4 can emit from the air imaging plate 3 to enhance the brightness of the aerial image 6 .
  • the angle between the air imaging plate 3 and the horizontal plane is 60-90°.
  • the angle between the air imaging plate 3 and the horizontal plane refers to the angle between the surface of the air imaging plate 3 facing the water tank 1 as one side and the liquid level of the water tank 1 as the other side.
  • the angle is not greater than 90° to ensure the light source of the display 4 After passing through the air imaging plate 3 and the polarizing film 9, it shoots diagonally downward toward the liquid surface of the water tank 1.
  • the display 4 adjusts the corresponding position according to the angle of the aerial imaging plate 3 so that the display 4 and the aerial image 6 are symmetrical with respect to the aerial imaging plate 3 .
  • the angle between the air imaging plate 3 and the horizontal plane is 60°-90°, which has a better imaging space and a more convenient observation range.
  • Those skilled in the art can specifically set the angle between the air imaging plate 3 and the horizontal plane to 60°, 62°, 63°, 65°, 66°, 68°, 70°, 73°, 74°, 75° according to actual needs. , 76°, 77°, 79°, 80°, 81°, 82°, 84°, 85°, 86°, 88°, 89°, 90°, etc., which are not exclusively limited here.
  • the air imaging plate 3 is perpendicular to the horizontal plane, that is, the angle between the air imaging plate 3 and the horizontal plane is 90°.
  • This setup simplifies structural design.
  • the display 4 needs to be moved.
  • the air imaging plate 3 is perpendicular to the horizontal plane, the reflective surface 2 moves up and down, and the display 4 moves up and down simultaneously. Therefore, this design can simplify control.
  • the water tank 1 has a designed water level for loading liquid, and the lower surface of the display 4 is flush with the designed water level.
  • the lower surface of the display 4 is flush with the designed water level, so that the aerial image 6 formed by the display 4 in the real scene area is close to the liquid surface/reflective surface 2 of the water tank 1, so that the underwater image 7 is close to the liquid surface/reflective surface 2 of the water tank 1. This effectively prevents the underwater image 7 from deviating from the liquid surface of the water tank 1 and exceeding the observation range of the viewer 8 .
  • the bottoms of the air imaging panel 3 and the display 4 are kept at the same level as the liquid level/reflective surface 2 of the water tank 1.
  • the light emitted by the display 4 is concentrated into the air through the air imaging plate 3 to form an aerial image 6 .
  • the aerial image 6 is located at a position symmetrical to the light source of the display screen with respect to the air imaging plate 3 .
  • the aerial image 6 is reflected by the reflective surface 2 to form an underwater image 7 .
  • the air imaging panel 3 has a symmetrical virtual imaging panel 5 with respect to the reflective surface 2.
  • the visual range of the viewer 8 is formed by the eyes and the top and bottom of the virtual imaging panel 5. If the display 4 is far away from the reflective surface 2, Then the underwater image 7 deviates downward from the reflective surface 2 and may leave the visual range of the viewer 8 .
  • the level at which the water tank 1 is filled with liquid is the design water level.
  • the design water level can also be set at 4/5 of the capacity of the water tank 1 or other positions, which is not limited here.
  • the water tank 1 When the design water level is lower than the full load level, the water tank 1 is provided with a water level mark at the design water level to provide guidance for the operator to load liquid into the water tank 1. It should be noted that there can be multiple design water levels, and correspondingly, there can be multiple water level marks.
  • the lower surface of the air imaging plate 3 extends at least to the level of the upper surface of the water tank 1 . While the air imaging panel 3 shapes the image source of the display 4 into an aerial image 6 in the real scene area, the air imaging panel 3 also has the function of shielding the display 4 .
  • the lower surface of the air imaging plate 3 extends to the level of the upper surface of the water tank 1 to avoid the gap between the air imaging plate 3 and the water tank 1 causing the display 4 to be seen by the viewer 8 in the observation area.
  • the air imaging plate 3 is fixed on the base 13 in an embedded manner.
  • Those skilled in the art can also fix the air imaging plate 3 on the side wall of the water tank 1, or use other fixed connection methods. Here Not limited.
  • the underwater imaging device also includes an adjustment structure for adjusting the position of the display 4 .
  • the adjustment structure adjusts the position of the display 4 according to the horizontal position of the reflective surface 2 so that the aerial image 6 can pass through the reflective surface 2 Reflected to the viewing area.
  • the surface on which liquid is loaded in the water tank 1 is the reflective surface 2 .
  • the different volumes of liquid loaded in the water tank 1 make the level of the reflective surface 2 different.
  • the position of the display 4 can be adjusted according to different horizontal positions, so that the distance between the aerial image 6 generated by the display 4 in the real scene area and the reflective surface 2 after passing through the air imaging plate 3 and the polarizing film 9 remains unchanged. From the perspective of the viewer 8 , the distance between the corresponding underwater image 7 and the reflective surface 2 remains unchanged, so that the viewer 8 can see the underwater image 7 at different liquid level heights.
  • the adjustment structure can be a linear module, a transmission screw, or other structures, as long as it can drive the display 4 to move linearly.
  • the adjustment structure can be manually driven or electrically driven.
  • the adjustment structure includes a nut connected to the display 4 and a screw rod screwed to the nut.
  • the screw rod extends vertically.
  • the operator can obtain the horizontal position of the reflective surface 2 by observing the height of the liquid level with human eyes, and rotate the screw rod correspondingly according to the horizontal position height, thereby moving the nut together with the display 4 up and down.
  • the underwater imaging equipment also includes a measurer 10.
  • the measurer 10 is used to measure the horizontal position of the reflective surface 2, and the adjustment structure adjusts the position of the display 4 according to the horizontal position, so that The aerial image 6 can be reflected to the viewing area via the reflective surface 2 .
  • the measuring device 10 can be a water level meter, an ultrasonic sensor, etc. Using the measuring device 10 to measure the horizontal position of the reflective surface 2 is faster and more accurate than human eye observation.
  • the underwater imaging device also includes a controller, which is electrically connected to the display 4, the measuring device 10 and the adjusting structure.
  • the controller collects the water level and height information measured by the measuring device 10 and controls the adjusting structure according to the water level and height information. Work to change the position of monitor 4.
  • the operator adds water to the water tank 1, causing the level to rise.
  • the measuring device 10 obtains the height of the liquid level/reflective surface 2 and transmits the height information to the controller, and the controller controls and adjusts the structural operation based on the water level and height information.
  • the adjustment structure drives the display 4 to rise accordingly under the control of the controller, and the rising distance of the display 4 is the same as the horizontal rising distance. Since the air imaging panel 3 is placed vertically and the display 4 rises, the aerial image 6 rises simultaneously, and the distance between the aerial image 6 and the reflective surface 2 remains consistent. From the perspective of the viewer 8, the water level in the water tank 1 rises and the underwater image 7 also rises dynamically, which is full of interest.
  • the underwater imaging device further includes a water collector 11 .
  • a water collector 11 When the water collector 11 scoops up liquid, the liquid surface of the water collector 11 is the reflective surface 2 .
  • the water dispenser 11 can be a water cup, a bowl, a ladle, a ladle and other water scooping tools, or it can also be a closed palm.
  • the underwater image 7 runs from the water tank 1 to the water dispenser 11, and follows the lifting movement of the water dispenser 11, giving the illusion of grabbing an entity from the water tank 1.
  • aerial image 6 is an upside-down fish
  • underwater image 7 is a forward-facing fish.
  • Viewer 8 saw the “fish” under water in the tank 1 and tried to pick up the “fish” in the tank 1 together with the liquid with his closed hands.
  • the "fish” as the underwater image 7 is indeed transferred from the water tank 1 to the palm of the hand, creating the illusion of picking up a real fish.
  • the underwater imaging device provided in this embodiment uses the water collector 11, the measuring device 10 and the adjustment structure to interact with the underwater image 7 by changing the height of the reflective surface 2, thereby improving the fun of the underwater imaging device. .
  • the water tank 1 can be replaced by a fish tank, and real fish groups can be placed in the fish tank.
  • the underwater imaging device generates an underwater image 7 under the reflective surface 2 in the fish tank.
  • the underwater image 7 can be a brief introduction of some fish, or some virtual swimming fish. This method can improve the viewing experience without harming the real fish.
  • the measuring device 10 is an ultrasonic sensor.
  • the ultrasonic wave emitted by the ultrasonic sensor will be significantly reflected at the interface between air and liquid (reflective surface 2) to form an echo.
  • the position and height of the reflective surface 2 can be obtained through the time analysis of the echo.
  • Using an ultrasonic sensor to measure the height of the reflective surface 2 has the following advantages: it does not have any mechanical transmission parts and does not come into contact with the liquid being measured. It is a non-contact measurement and is not afraid of electromagnetic interference or strong corrosive liquids such as acids and alkalis, so it has stable performance. , high reliability and long life; its response time is short, and it can easily achieve real-time measurement without lag.
  • the position of the reflective surface 2 can be changed by replacing the sink 1 with a cup or other water container, or placing another water container above the sink 1 .
  • the adjustment structure will drive the display 4 to make corresponding position adjustments so that the underwater image 7 is transferred to the water container.
  • a water cup as an example. Drinking water is added to the water cup. The water cup is placed under the ultrasonic sensor so that the ultrasonic sensor senses the position of the liquid surface (reflective surface 2) of the water cup.
  • the aerial imaging device will form an underwater image 7 in the water cup. Due to the ultrasonic waves The sensor is located outside the water cup, which will not affect the viewing experience of the underwater image 7 and will not cause hygiene problems to the drinking water in the cup.
  • the measuring device 10 is installed directly above the water tank 1 .
  • the ultrasonic waves emitted by the ultrasonic sensor are perpendicular to the reflective surface 2, thereby shortening the propagation path of the ultrasonic waves and shortening the response time of the adjustment structure.

Landscapes

  • Business, Economics & Management (AREA)
  • Accounting & Taxation (AREA)
  • Marketing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Farming Of Fish And Shellfish (AREA)
  • Overhead Projectors And Projection Screens (AREA)

Abstract

一种水下成像设备,具有投影区、实景区和观赏区,实景区位于投影区和观赏区之间,水下成像设备包括:水槽(1),用于装载液体,水槽(1)的上方为实景区,液体表面为反射面(2);成像结构,位于投影区,成像结构包括显示器(4)和空气成像板(3),显示器(4)位于空气成像板(3)背离实景区的一侧并经空气成像板(3)在实景区生成空中图像(6),空中图像(6)能够经反射面(2)反射至观赏区;偏光膜(9),设于空气成像板(3)朝向实景区的一侧,并限定光线向反射面(2)方向射出。

Description

水下成像设备 技术领域
本申请涉及投影技术领域,尤其涉及一种水下成像设备。
背景技术
在建筑、艺术和展览展示等领域,利用水来进行空间的设计也在顺应着时代发展。
视觉图像与水的结合方式主要以投影或水幕的方式实现。投影仪将视觉图像直接投影至水面是其最简单的方式。该方式简单,成本低。但所投影的影像为二维影像,单纯的浮光掠影难以提供足够的观赏吸引力。水幕是以喷泉为幕布,投影仪将视觉图像投影至喷泉上。为达到良好的视觉效率,水幕投影一般在尺寸较大的水域进行,且设计和控制较为复杂。
技术问题
本申请实施例的目的之一在于:提供另一种利用水体进行图像展示的方式。
技术解决方案
为解决上述技术问题,本申请实施例采用的技术方案是:一种水下成像设备,具有投影区、实景区和观赏区,所述实景区位于所述投影区和所述观赏区之间,所述水下成像设备包括:
水槽,用于装载液体,所述水槽的上方为所述实景区,所述液体表面为反射面;
成像结构,位于所述投影区,所述成像结构包括显示器和空气成像板,所述显示器位于所述空气成像板背离所述实景区的一侧并经所述空气成像板在所述实景区生成空中图像,所述空中图像能够经所述反射面反射至所述观赏区;
偏光膜,设于所述空气成像板朝向所述实景区的一侧,所述偏光膜接收来自所述空气成像板的光线并限定所述光线向所述反射面方向射出。
可选的,所述空气成像板与水平面的夹角为60°-90°。
可选的,所述空气成像板垂直于水平面。
可选的,所述水下成像设备还包括用于调节所述显示器位置的调节结构,所述调节结构根据所述反射面的水平位调节所述显示器的位置,以使所述空气成像能够经所述反射面反射至所述观赏区。
可选的,所述水下成像设备还包括测量器和调节结构,所述测量器用于测量所述反射面的水平位,所述调节结构根据所述水平位调节所述显示器的位置,以使所述空气成像能够经所述反射面反射至所述观赏区。
可选的,在所述反射面向上移动时,所述显示器向上移动且移动的距离与所述反射面移动距离相等。
可选的,所述测量器为超声波传感器。
在其中一实施例中,所述测量器设于所述水槽的上方。
在其中一实施例中,所述水下成像设备还包括取水器,在所述取水器向上舀取所述液体时,所述取水器的液体表面为所述反射面。
在其中一实施例中,所述水槽具有装载所述液体的设计水位,所述显示器的下表面与所述设计水位平齐。
在其中一实施例中,所述水槽至少一个设计水位,并在各所述设计水位处设有水位标记。
在其中一实施例中,所述水下成像设备还包括基座和罩体,所述空气成像板设于所述基座,所述罩体设于所述基座并与所述空气成像板围合形成容置所述显示器的容腔。
在其中一实施例中,所述罩体采用不透光材质制成。
在其中一实施例中,所述罩体朝向所述显示器的表面涂覆有反光层。
有益效果
本申请实施例提供的水下成像设备的有益效果在于:本申请提供的水下成像设备,通过结构设计使得观赏者不能看到成像结构生成的空中图像,而只能看到该空中图像对应的水下图像,通过偏光膜的设置使得观赏者不能看到显示器。空中图像和显示器的不可见,即观赏者难以通过眼睛直接观察的方式获知水下图像的来源,从而激发观赏者的观赏兴致。此外,本方案中的水下图像可以为二维的平面图像也可以为三维立体图像,而进一步增加观赏的吸引力。由上,本申请提供了另一种利用水体进行图像展示的方式,观赏者在观察区仅能看到水下虚拟图像而增加观赏的吸引力。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或示范性技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为本申请实施例提供的水下成像设备的原理示意图;
图2为本申请实施例提供的水下成像设备的结构示意图。
其中,图中各附图标记:
1、水槽;2、反射面;3、空气成像板;9、偏光膜;4、显示器;5、虚拟成像板;6、空中图像;7、水下图像;8、观赏者;10、测量器;11、取水器;12、罩体;13、基座。
本发明的实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
需说明的是,当部件被称为“固定于”或“设置于”另一个部件,它可以直接在另一个部件上或者间接在该另一个部件上。当一个部件被称为是“连接于”另一个部件,它可以是直接或者间接连接至该另一个部件上。术语“上”、“下”、“左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。“多个”的含义是两个或两个以上,除非另有明确具体的限定。
为了说明本申请所述的技术方案,以下结合具体附图及实施例进行详细说明。
请结合图1至图2,水下成像设备具有投影区、实景区和观赏区,实景区位于投影区和观赏区之间。水下成像设备包括水槽1、成像结构和偏光膜9。
水槽1用于装载液体。水槽1的上方为实景区,液体表面为反射面2。需要说明的是,水槽1为装载液体的容器,可以为缸状、桶状或其它形状,本领域技术人员也可以根据实际需要选择水槽1的材质和大小,在此不作限定。液体可以为景观用水、饮用水等,也可以为酒水、饮料,只要其液面能够反射光线即可。
成像结构设于投影区,成像结构包括显示器4和空气成像板3,显示器4位于空气成像板3背离实景区的一侧并经空气成像板3在实景区生成空中图像6,空中图像6能够经反射面2反射至观赏区。
偏光膜9设于空气成像板3朝向实景区的一侧,偏光膜9接收来自空气成像板3的光线并限定光线向反射面2方向射出。
为便于描述,以图2的示图方向为参照,水槽1的上方为实景区,左上方为观赏区,右上方为投影区。
可以理解,水下成像设备包括基座13。图示结构中,基座13位于水槽1的右侧,水槽1与基座13固定连接。空气成像板3和显示器4设于基座13上。在其它实施例中,水槽1与基座13可以为一体结构,也可以可拆卸连接。水槽1可以设于基座13的侧边也可以由基座13所承载,在此不作限定。
基座13用于固定支撑成像结构,更重要的,基座13将水槽1、空气成像板3和显示器4的相对位置进行固定,以确保水下图像的成像效果。
成像结构包括显示器4和空气成像板3,空气成像板3为现有的空中图像6用平板透镜结构。空气成像板3能够对像源进行镜像成像。显示器4作为光源和像源,其发出的带有图像信息的光线经空气成像板3后在空气成像板3的另一侧形成空中图像6。显示器4为LCD、LED、OLED、LCOS中的一种。
请结合图1,以空气成像板3竖直放置为例。成像结构设于水槽1的右上方(成像区),成像结构所生成的空中图像6位于水槽1上方的实景区。该空中图像6被反射面2反射形成一个倒立的虚像,该虚像与空中图像6关于反射面2对称。观赏者8在观赏区能够看到反射面2以及空气图像通过反射面2反射形成的看似位于水下的虚像,达到水下图像7的视觉效果,为便于描述,后文将该虚像统一称为用水下图像7。
显示器4发出的光源穿透空气成像板3以斜向下的方向向水槽1处射出而在水槽1的上方形成空中图像6,该光线的传播路径不经过观赏区,换言之,形成空中图像6的光线不能够直接进入观察者的视野范围,使得观赏者8看不到空中图像6。形成空中图像6的光线经过反射面2反射而进入观察者的视野范围(观赏区),使得观察者能够看到空气图像通过反射面2反射形成的水下图像7。由上,采用本方案的设计,观赏者8能看到水下图像7而不能看到空中图像6。
本实施例中,在空气成像板3于朝向实景区一侧贴附有偏光膜9。偏光膜9用于限定从空气成像板3透过的光线的方向,使其仅能以朝向反射面2的方向射出。在没有偏光膜9的情况下,从显示器4发出的入射光线穿透空气成像板3后射出,该射出光线大部分向水槽1的方向射出并聚焦形成空中图像6,与此同时,存在部分射出光线以散射的方式向四周辐射而部分落入观赏者8的视野,使得观赏者8能够看到显示屏。而偏光膜9的设置,使得从显示器4发出的入射光线穿透空气成像板3后仅能以特定的角度穿透偏光膜9向外射出,该特定角度为空气成像板3到空中图像6的方向,换言之,偏光膜9仅传输形成空中图像6所需要的光线,而遮挡或漫反射掉直接射入观赏区的光线,从而避免观赏者8直接观察到显示器4。
由上,本申请实施例提供的水下成像设备,通过结构设计使得观赏者8不能看到成像结构生成的空中图像6,而只能看到该空中图像6对应的水下图像7,通过偏光膜9的设置使得观赏者8不能看到显示器4。空中图像6和显示器4的不可见,即观赏者8难以通过眼睛直接观察的方式获知水下图像7的来源,从而激发观赏者8的观赏兴致。此外,本方案中的水下图像7可以为二维平面图像也可以为三维立体图像,而进一步增加观赏的吸引力。
请参照图2,水下成像设备还包括罩体12,罩体12设于基座13并与空气成像板3围合形成容置显示器4的容腔,罩体12采用不透光材质制成。可以为橡胶、塑料、金属材质等。罩体12、基座13和空气成像板3围合形成封闭的容腔,显示器4位于该容腔内。该设置,一方面为显示器4提供保护和防尘的效果,另一方面,罩体12为不透光材料制成,以防止外部光线进入容腔而影响显示器4的正常显示。本领域技术人员也可以在罩体12朝向显示器4的一侧涂覆有反光层,使得显示器4发出的光线更多地从空气成像板3处射出而增强空中图像6的亮度。
在本申请另一实施例中,空气成像板3与水平面的夹角为60-90°。空气成像板3与水平面夹角指的是以空气成像板3朝向水槽1的表面为边、以水槽1的液面为另一边的夹角,该夹角不大于90,以确保显示器4的光源经空气成像板3和偏光膜9后斜向下射向水槽1的液面。在空中图像6位置固定的情况下,显示器4根据空气成像板3的角度调整对应的位置,使得显示器4和空中图像6关于空气成像板3对称。可以理解,在空气成像板3的下端固定的情况下,空气成像板3与水平面的夹角越大,则留给空中图像6成形的空间范围越大。但显示器4与空气成像板3的间距在水平投影上越大,换言之,水下成像设备所占用的横向尺寸较大。反之,空气成像板3与水平面的夹角越小,则留给空中图像6成形的空间范围越小,水下成像设备所能成形的水下图像7的空间越小,且越不便于观赏。经多次实验,空气成像板3与水平面的夹角为60°-90°,具有较好的成像空间和较为便利的观察范围。本领域技术人员可以根据实际需要将空气成像板3与水平面的夹角具体设为60°、62°、63°、65°、66°、68°、70°、73°、74°、75°、76°、77°、79°、80°、81°、82°、84°、85°、86°、88°、89°、90°等,在此不作唯一限定。
图示实施例中,空气成像板3垂直于水平面,即空气成像板3与水平面的夹角为90°。该设置能够简化结构设计。此外,结合后文,在液体的反射面2的水平位移动的情况下,为使空中图像6与反射面2的距离保持固定,需要将显示器4进行移动。在空气成像板3垂直于水平面的情况下,反射面2的上下移动,显示器4同步上下移动即可,因此,该设计能够简化控制。
在本申请实施例中,请参照图1,水槽1具有装载液体的设计水位,显示器4的下表面与设计水位平齐。显示器4的下表面与设计水位平齐,使得显示器4在实景区形成的空中图像6贴近水槽1的液面/反射面2,从而使水下图像7贴近水槽1的液面/反射面2。从而有效避免水下图像7偏离水槽1液面而超过观赏者8的观察范围的情况。
具体的,请参照图1,空气成像板3和显示器4的底部均与水槽1液面/反射面2保持在同一水平面。显示器4发出的光线通过空气成像板3集中到空中,形成一个空中图像6,该空中图像6位于与显示屏光源关于空气成像板3对称的位置。空中图像6被反射面2反射形成水下图像7。假设空气成像板3关于反射面2有一个对称的虚拟成像板5,观赏者8的可视范围是由眼睛与虚拟成像板5的顶部和底部所构成的,如果显示器4远离该反射面2,则水下图像7向下偏离该反射面2而可能离开观赏者8的可视范围。
本实施例中,水槽1装满液体状态的水平位为设计水位。在其它实施例中,也可以将设计水位位于水槽1容量的4/5或其它位置,在此不作限定。
在设计水位低于满载水位时,水槽1在设计水位处设有水位标记,以为操作人员向水槽1内装载液体提供指引。需要说明的是,设计水位可以有多个,对应的,水位标记有多个。
在本申请另一实施例中,空气成像板3的下表面至少延伸至水槽1上表面的水平位。空气成像板3在将显示器4的像源在实景区成形出空中图像6的同时,空气成像板3还具有遮蔽显示器4的功能。空气成像板3的下表面延伸至水槽1的上表面的水平位,以避免空气成像板3与水槽1之间存在间隙而使显示器4被观察区的观赏者8所看到的情况。
本实施例中,空气成像板3以嵌入的方式固定在基座13上,本领域技术人员也可以将空气成像板3固定在水槽1的侧壁上,或采用其它的固定连接方式,在此不作限定。
在本申请另一实施例中,水下成像设备还包括用于调节显示器4位置的调节结构,调节结构根据反射面2的水平位调节显示器4的位置,以使空中图像6能够经反射面2反射至观赏区。
结合前述,在设计水位有多个的情况下,比如设计水位有五个并分别位于水槽1高度的1/4、1/2、3/4、4/5处。操作人员将液体倒入水槽1并使其液面达到其中一设计水位,然后对应控制调节结构使显示器4达到该设计水位所对应的调节位置。
一般情况下,水槽1所装载液体的表面为反射面2。水槽1内所装载液体体量的不同使得反射面2的水平位不同。调节结构的设置,显示器4能够根据水平位的不同进行位置调整,使得显示器4经空气成像板3和偏光膜9后在实景区所生成的空中图像6与反射面2的距离保持不变。从观赏者8的角度,对应的水下图像7与反射面2的距离也保持不变,从而使观赏者8在不同的液面高度均可看到水下图像7。
调节结构可以为线性模组、传动丝杆或其它结构,只要其能够驱使显示器4线性移动即可。
调节结构可以为手动驱动,也可以为电动驱动。
以调节结构为手动调节为例。调节结构包括连接显示器4的螺母和与螺母螺接的丝杆,丝杆竖直延伸。操作人员可以通过人眼观察液面高度的方式获得反射面2的水平位,根据水平位高度对应旋转丝杆,从而时螺母连同显示器4上下移动。
在本申请另一实施例中,请参照图2,水下成像设备还包括测量器10,测量器10用于测量反射面2的水平位,调节结构根据水平位调节显示器4的位置,以使空中图像6能够经反射面2反射至观赏区。
测量器10可以选用水位计、超声波传感器等。采用测量器10对反射面2的水平位进行测量,相比于人眼观测,更为快速、准确。
可以理解,水下成像设备还包括控制器,控制器与显示器4、测量器10和调节结构电连接,控制器收取来自测量器10所测量的水位高度信息,并根据该水位高度信息控制调节结构作业,以改变显示器4的位置。
结合使用场景,操作人员向水槽1内加水,使得水平位上升。测量器10获得液面/反射面2的高度并将高度信息传递至控制器,控制器根据该水位高度信息控制调节结构作业。调节结构在控制器的控制下驱使显示器4随之上升,且显示器4上升的距离与水平位上升的距离相同。由于空气成像板3竖直放置,显示器4上升使得空中图像6同步上升,则空中图像6与反射面2的距离保持一致。在观赏者8的角度,水槽1内水位上升而水下图像7也随着动态上升,而充满趣味性。
在本申请另一实施例中,水下成像设备还包括取水器11,在取水器11向上舀取液体时,取水器11的液体表面为反射面2。取水器11可以为水杯、碗、瓢、勺等舀水工具,也可以为合拢的手掌。
请参照图2,在取水器11舀取液体并将该液体抬高L2的距离,位于取水器11的液体表面(反射面2)也随之升高L2,此时,调节结构将显示器4向上抬升L1距离(图2中显示器4向上移动L1距离至虚线框处),显示器4经空气成像板3和偏光膜9后在实景区所生成的空中图像6也向上抬升L1的距离,L1=L2,使得空中图像6与反射面2的距离保持不变,对应的,水下图像7与反射面2的距离也保持不变,水下图像7从水槽内向上移动L2而位于取水器11内的虚线框处。从观赏者8的角度,水下图像7从水槽1跑到取水器11中,并随取水器11抬升动作,而具有从水槽1捞取实体的错觉。比如空中图像6为一条倒置的鱼,则水下图像7为一条正向的鱼。观赏者8看到水槽1内位于水下的“鱼”,试图用合拢的双手将水槽1内的“鱼”连同液体一起捧起。在将液体捧起时,作为水下图像7的“鱼”也确实从水槽1转移至手掌心内,而产生将一条实体的鱼捧起来的错觉。此时,若将手松开,手掌内的液体落入水槽1,而水下图像7的“鱼”也重新回到水槽1内。换言之,本实施例提供的水下成像设备,借由取水器11、测量器10和调节结构,通过改变反射面2的高度实现与水下图像7进行交互,而提高水下成像设备的趣味性。
在另外的实施例中,水槽1可以替代为鱼缸,鱼缸内可以放置有真实的鱼群。水下成像设备在鱼缸内的反射面2下生成水下图像7,该水下图像7可以为一些鱼类的简单介绍,或者是一些虚拟游动的鱼。通过这种方法能提高观赏体验又不会伤害真实的鱼群。
在本实施例中,测量器10为超声波传感器。超声波传感器所发出的超声波在空气和液体的分界面(反射面2)会产生显著反射形成反射成回波,通过回波的时间分析得出反射面2的位置高度。采用超声波传感器测量反射面2的高度,具有以下优点:无任何机械传动部件,也不接触被测液体,属于非接触式测量,不怕电磁干扰,不怕酸碱等强腐蚀性液体等,因此性能稳定、可靠性高、寿命长;其响应时间短,可以方便的实现无滞后的实时测量。
由于超声波传感器为非接触式测量,使得通过将水槽1替换为水杯或其它盛水容器,或在水槽1上方置入另外的盛水容器,而改变反射面2的位置。只要盛水容器的液面(反射面2)位于超声波传感器的感知范围内,调节结构就会驱使显示器4做出相应的位置调整,使得水下图像7转移至该盛水容器中。以水杯为例,水杯中加入饮用水,水杯置于超声波传感器的下方以使超声波传感器感知水杯液面(反射面2)的位置,空中成像设备将在水杯内形成一个水下图像7,由于超声波传感器位于水杯的外部,不会影响水下图像7的观赏体验,也不会对杯中的饮用水带来卫生问题。
本实施例中,测量器10设于水槽1的正上方。超声波传感器所发射的超声波垂直于反射面2,而缩短超声波传播的路径,缩短调节结构的响应时间。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内所作的任何修改、等同替换或改进等,均应包含在本申请的保护范围之内。

Claims (14)

  1. 一种水下成像设备,其特征在于,所述水下成像设备具有投影区、实景区和观赏区,所述实景区位于所述投影区和所述观赏区之间,所述水下成像设备包括:
    水槽,用于装载液体,所述水槽的上方为所述实景区,所述液体表面为反射面;
    成像结构,位于所述投影区,所述成像结构包括显示器和空气成像板,所述显示器位于所述空气成像板背离所述实景区的一侧并经所述空气成像板在所述实景区生成空中图像,所述空中图像能够经所述反射面反射至所述观赏区;
    偏光膜,设于所述空气成像板朝向所述实景区的一侧,所述偏光膜接收来自所述空气成像板的光线并限定所述光线向所述反射面方向射出。
  2. 如权利要求1所述的水下成像设备,其特征在于,所述空气成像板与水平面的夹角为60°-90°。
  3. 如权利要求1所述的水下成像设备,其特征在于,所述空气成像板垂直于水平面。
  4. 如权利要求1所述的水下成像设备,其特征在于,所述水下成像设备还包括用于调节所述显示器位置的调节结构,所述调节结构根据所述反射面的水平位调节所述显示器的位置,以使所述空气成像能够经所述反射面反射至所述观赏区。
  5. 如权利要求1所述的水下成像设备,其特征在于,所述水下成像设备还包括测量器和调节结构,所述测量器用于测量所述反射面的水平位,所述调节结构根据所述水平位调节所述显示器的位置,以使所述空气成像能够经所述反射面反射至所述观赏区。
  6. 如权利要求5所述的水下成像设备,其特征在于,在所述反射面向上移动时,所述显示器向上移动且移动的距离与所述反射面移动距离相等。
  7. 如权利要求5所述的水下成像设备,其特征在于,所述测量器为超声波传感器。
  8. 如权利要求7所述的水下成像设备,其特征在于,所述测量器设于所述水槽的上方。
  9. 如权利要求5所述的水下成像设备,其特征在于,所述水下成像设备还包括取水器,在所述取水器向上舀取所述液体时,所述取水器的液体表面为所述反射面。
  10. 如权利要求1至9任一所述的水下成像设备,其特征在于,所述水槽具有装载所述液体的设计水位,所述显示器的下表面与所述设计水位平齐。
  11. 如权利要求4所述的水下成像设备,其特征在于,所述水槽至少一个设计水位,并在各所述设计水位处设有水位标记。
  12. 如权利要求1至9任一所述的水下成像设备,其特征在于,所述水下成像设备还包括基座和罩体,所述空气成像板设于所述基座,所述罩体设于所述基座并与所述空气成像板围合形成容置所述显示器的容腔。
  13. 如权利要求12所述的水下成像设备,其特征在于,所述罩体采用不透光材质制成。
  14. 如权利要求12所述的水下成像设备,其特征在于,所述罩体朝向所述显示器的表面涂覆有反光层。
PCT/CN2022/090244 2022-04-29 2022-04-29 水下成像设备 WO2023206351A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/090244 WO2023206351A1 (zh) 2022-04-29 2022-04-29 水下成像设备
CN202280001068.4A CN115136228B (zh) 2022-04-29 2022-04-29 水下成像设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/090244 WO2023206351A1 (zh) 2022-04-29 2022-04-29 水下成像设备

Publications (1)

Publication Number Publication Date
WO2023206351A1 true WO2023206351A1 (zh) 2023-11-02

Family

ID=83387536

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/090244 WO2023206351A1 (zh) 2022-04-29 2022-04-29 水下成像设备

Country Status (2)

Country Link
CN (1) CN115136228B (zh)
WO (1) WO2023206351A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5793470A (en) * 1995-05-22 1998-08-11 The Walt Disney Company Latent-image projection system and method
JP2003323144A (ja) * 2002-05-08 2003-11-14 Toppan Printing Co Ltd 映像表示システム
CN102819178A (zh) * 2011-05-06 2012-12-12 迪斯尼实业公司 投影到水体上表面的系统和方法
CN108389531A (zh) * 2018-02-28 2018-08-10 北京眸合科技有限公司 一种空中悬浮显示系统
CN110119208A (zh) * 2019-05-15 2019-08-13 京东方科技集团股份有限公司 悬浮显示成像装置及悬浮显示触控方法
CN111338177A (zh) * 2020-04-17 2020-06-26 荆门市探梦科技有限公司 反射式几何全息显示系统
JP7008379B1 (ja) * 2021-05-24 2022-01-25 株式会社ネットアプリ 飲料用演出グラス及び記憶媒体
CN114026487A (zh) * 2021-09-23 2022-02-08 深圳盈天下视觉科技有限公司 空中成像装置、空中成像系统以及空中成像方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10282919A (ja) * 1997-03-31 1998-10-23 Ishikawa Kogaku Zokei Kenkyusho:Kk 透明球画像表示装置
JP4341308B2 (ja) * 2003-02-28 2009-10-07 ソニー株式会社 空中像表示装置
CN101191899B (zh) * 2006-12-01 2012-05-30 上海太壹信息科技有限公司 全方位虚拟成像系统
CN202067058U (zh) * 2011-02-21 2011-12-07 中国石油大学(华东) 基于偏振识别的水下摄像系统
JP2017068234A (ja) * 2015-09-14 2017-04-06 日東電工株式会社 展示装置
WO2019039600A1 (ja) * 2017-08-25 2019-02-28 林テレンプ株式会社 空中像表示装置
CN108762660B (zh) * 2018-05-29 2021-03-23 京东方科技集团股份有限公司 悬浮显示装置和用于悬浮显示装置的指示触控位置的方法
CN111948812A (zh) * 2019-05-17 2020-11-17 未来(北京)黑科技有限公司 一种抬头显示系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5793470A (en) * 1995-05-22 1998-08-11 The Walt Disney Company Latent-image projection system and method
JP2003323144A (ja) * 2002-05-08 2003-11-14 Toppan Printing Co Ltd 映像表示システム
CN102819178A (zh) * 2011-05-06 2012-12-12 迪斯尼实业公司 投影到水体上表面的系统和方法
CN108389531A (zh) * 2018-02-28 2018-08-10 北京眸合科技有限公司 一种空中悬浮显示系统
CN110119208A (zh) * 2019-05-15 2019-08-13 京东方科技集团股份有限公司 悬浮显示成像装置及悬浮显示触控方法
CN111338177A (zh) * 2020-04-17 2020-06-26 荆门市探梦科技有限公司 反射式几何全息显示系统
JP7008379B1 (ja) * 2021-05-24 2022-01-25 株式会社ネットアプリ 飲料用演出グラス及び記憶媒体
CN114026487A (zh) * 2021-09-23 2022-02-08 深圳盈天下视觉科技有限公司 空中成像装置、空中成像系统以及空中成像方法

Also Published As

Publication number Publication date
CN115136228B (zh) 2024-05-14
CN115136228A (zh) 2022-09-30

Similar Documents

Publication Publication Date Title
US20110211059A1 (en) Contact microscope using point source illumination
CN108196243A (zh) 一种基于mems微镜的三维扫描激光雷达
CN106442544A (zh) 全景成像系统
EP2725348A1 (en) Optical quality control device
CN104797972A (zh) 显示装置
CN112946673B (zh) 一种激光测距方法、对焦方法、激光测距系统及对焦系统
WO2023206351A1 (zh) 水下成像设备
JP2007248292A (ja) 外観検査装置
KR101785693B1 (ko) 계수용 장치
CN207676027U (zh) 空气中成像全息显示装置
CN103453854A (zh) 平行度检测装置及检测方法
WO2024007540A1 (zh) 一种3d激光雷达及应用其的足式机器人和清洁机器人
CN203422071U (zh) 平行度检测装置
CN216782664U (zh) 一种光源装置及光固化打印机
RU2007111450A (ru) Устройство для определения количества жидкости, перемещаемой поверхностно-активным веществом, и дальности распространения микроволн по поверхности слоя жидкости
JP6812931B2 (ja) 液面レベル検出装置の調整用治具および調整方法
CN208818934U (zh) 一种电湿润微棱镜及3d显示器
TW200817656A (en) Image monitoring and stock detection integrated system applied in liquid storage tank and method thereof
CN208255551U (zh) 大视角空中成像设备
CN213704559U (zh) 液位测量装置、树脂槽及应用其的3d打印设备
CN106290254B (zh) 一种折射率测量设备、折射率测量方法和装置
TWI730694B (zh) 智慧化水平精度系統
CN208043704U (zh) 一种含有激光准直器的智能射线机
KR200207033Y1 (ko) 수직,수평 측정장치
CN207516723U (zh) 曝光机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22939200

Country of ref document: EP

Kind code of ref document: A1