WO2023204463A1 - A4galt 유전자 편집을 통한 파브리병의 치료 방법 - Google Patents

A4galt 유전자 편집을 통한 파브리병의 치료 방법 Download PDF

Info

Publication number
WO2023204463A1
WO2023204463A1 PCT/KR2023/003861 KR2023003861W WO2023204463A1 WO 2023204463 A1 WO2023204463 A1 WO 2023204463A1 KR 2023003861 W KR2023003861 W KR 2023003861W WO 2023204463 A1 WO2023204463 A1 WO 2023204463A1
Authority
WO
WIPO (PCT)
Prior art keywords
a4galt
gene
pluripotent stem
induced pluripotent
stem cells
Prior art date
Application number
PCT/KR2023/003861
Other languages
English (en)
French (fr)
Inventor
정병하
임선우
신유진
최성
고은정
이한비
음상훈
양철우
Original Assignee
가톨릭대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가톨릭대학교 산학협력단 filed Critical 가톨릭대학교 산학협력단
Publication of WO2023204463A1 publication Critical patent/WO2023204463A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/48Reproductive organs
    • A61K35/54Ovaries; Ova; Ovules; Embryos; Foetal cells; Germ cells
    • A61K35/545Embryonic stem cells; Pluripotent stem cells; Induced pluripotent stem cells; Uncharacterised stem cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0696Artificially induced pluripotent stem cells, e.g. iPS
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells

Definitions

  • the present invention relates to an A4GALT gene expression inhibitor, A4GALT gene-edited induced pluripotent stem cells (iPSCs), and pharmaceutical compositions and cell therapy products containing the same for preventing or treating Fabry disease.
  • A4GALT gene expression inhibitor A4GALT gene-edited induced pluripotent stem cells (iPSCs)
  • iPSCs induced pluripotent stem cells
  • Fabry disease is a rare It is a related recessive genetic disorder. GLA deficiency results in the accumulation of globotriaosylceramide (Gb3) and related neutral glycosphingolipids in ribosomes, impairing cell morphology and function. Fabry disease is a multisystem disease with life-threatening complications such as stroke, heart failure, cardiac arrhythmia, and end-stage renal disease (ESRD), shortening life expectancy. Fabry disease results from the accumulation of Gb3 in renal cells such as podocytes, glomerular endothelial cells, mesangial cells, tubular epithelial cells, and vascular endothelial cells.
  • Gb3 globotriaosylceramide
  • ESRD end-stage renal disease
  • ERT enzyme replacement therapy
  • agalsidase-beta and agalsidase- ⁇ as alpha-galactosidase
  • ERT is potentially limited by the reaccumulation of Gb3 in podocytes after dose adjustment during the follow-up period and the formation of neutralizing anti-drug antibodies after injection, which reduces the efficacy of ERT by increased cellular Gb3 deposition and a gradual It leads to adverse clinical consequences such as loss of kidney function.
  • Gb3 In research and development of treatments for Fabry disease, a common method is to induce GLA knockout in mice and then study the role of Gb3 accumulation on endothelial dysfunction. In the mouse model in which GLA was knocked out, it was observed that Gb3 was abnormally accumulated in the caveolae of aortic endothelial cells. It has been reported that this abnormal deposition of Gb3 can cause decreased function of calcium channels in GLA knockout endothelial cells.
  • stem cells are cells in the stage before differentiation into each cell that makes up the tissue, and can be obtained from each tissue of the embryo, fetus, and adult. They have the ability to proliferate indefinitely in an undifferentiated state and have specific differentiation ability. It refers to cells with pluripotency, which is the potential to differentiate into cells of various tissues upon stimulation. Stem cells are differentiated into specific cells by stimulation of differentiation (environment), and unlike differentiated cells in which cell division is halted, stem cells can produce cells identical to themselves through cell division (self-renewal), leading to proliferation and expansion. ) and can be differentiated into other cells by different environments or different differentiation stimuli, so it is characterized by plasticity in differentiation.
  • stem cell therapy is a new type of cell therapy that manipulates stem cells collected from the human body outside the body and then reinjects them into the patient. It can be used to prevent, relieve symptoms, or treat incurable diseases through regeneration, repair, and recovery of damaged tissues and cells. Stem cells are in the spotlight as a therapeutic agent because they have the ability to self-renew and can reduce the number of cumbersome treatment processes, which are problems with existing gene therapy.
  • hPSCs Human pluripotent stem cells
  • iPSCs induced pluripotent stem cells
  • hPSCs Human pluripotent stem cells
  • iPSCs induced pluripotent stem cells
  • iPSCs can differentiate into various cell types.
  • iPSCs can be differentiated in vitro and used to treat diseases without immune rejection, and can also be used as a means to understand and evaluate the early mechanisms of diseases.
  • iPSCs derived from patients with various genetic diseases are directly differentiated into cell types related to the disease, they exhibit disease-specific phenotypes.
  • These disease-specific iPSCs can be differentiated into cell types related to the disease, and thus can be usefully used to confirm the specific mechanism of the disease or screen therapeutic agents. Through this, it is possible that iPSCs can be applied as a patient-specific cell therapy product. It is possible to judge the possibilities.
  • the present inventors produced stem cells for the treatment of Fabry disease disease through A4GALT gene editing and manufactured kidney organoids from them. As a result, the results showed that the effect was to suppress Gb3 deposition, a characteristic symptom of Fabry disease disease, and lamellar bodies (zebra bodies). ) was not detected, confirming that the A4GALT gene-edited induced pluripotent stem cells can be useful in treating Fabry disease, thereby completing the present invention.
  • the purpose of the present invention is to provide sgRNA (signal gide RNA) specific to exon 3 of the A4GALT (alpha 1,4-Galactosyltransferase) gene.
  • Another object of the present invention is to provide a pharmaceutical composition for preventing or treating Fabry disease, comprising A4GALT (alpha 1,4-Galactosyltransferase) gene-edited induced pluripotent stem cells (iPSC) as an active ingredient.
  • A4GALT alpha 1,4-Galactosyltransferase gene-edited induced pluripotent stem cells (iPSC)
  • Another object of the present invention is to provide a cell therapy product containing A4GALT (alpha 1,4-Galactosyltransferase) gene-edited induced pluripotent stem cells (iPSC) as an active ingredient.
  • A4GALT alpha 1,4-Galactosyltransferase gene-edited induced pluripotent stem cells (iPSC) as an active ingredient.
  • Another object of the present invention is to provide a pharmaceutical composition for preventing or treating Fabry disease, which contains an expression inhibitor of the A4GALT (alpha 1,4-Galactosyltransferase) gene as an active ingredient.
  • A4GALT alpha 1,4-Galactosyltransferase
  • Another object of the present invention is to administer a pharmaceutically effective amount of A4GALT (alpha 1,4-Galactosyltransferase) gene-edited induced pluripotent stem cells (iPSC) to a subject; including, Fabry disease.
  • A4GALT alpha 1,4-Galactosyltransferase gene-edited induced pluripotent stem cells (iPSC)
  • iPSC induced pluripotent stem cells
  • Another object of the present invention is to provide a method of treating Fabry disease, comprising administering to a subject a pharmaceutically effective amount of an expression inhibitor of the A4GALT (alpha 1,4-Galactosyltransferase) gene.
  • A4GALT alpha 1,4-Galactosyltransferase
  • Another object of the present invention is the CRISPR/Cas system, which uses sgRNA (signal gide RNA) selected from the group consisting of SEQ ID NO: 1 to SEQ ID NO: 7 to produce A4GALT (alpha 1 ,4-Galactosyltransferase) gene-edited A4GALT gene-edited induced pluripotent stem cells are provided.
  • sgRNA signal gide RNA
  • Another object of the present invention is to induce pluripotent stem cells (iPSC) isolated from an individual, by producing a specific gene for exon 3 of A4GALT (alpha 1,4-Galactosyltransferase), SEQ ID NO: 1 to Introducing an RNP (Riboneucleoproteine) complex of sgRNA (signal gide RNA) selected from the group consisting of SEQ ID NO: 7;
  • iPSC pluripotent stem cells isolated from an individual, by producing a specific gene for exon 3 of A4GALT (alpha 1,4-Galactosyltransferase), SEQ ID NO: 1 to Introducing an RNP (Riboneucleoproteine) complex of sgRNA (signal gide RNA) selected from the group consisting of SEQ ID NO: 7;
  • It provides a method for producing induced pluripotent stem cells in which the A4GALT gene has been edited using the CRISPR/Cas system, including the step of confirming A4GALT gene knock-out in the induced pluripotent stem cells into which the Cas9 protein has been introduced. .
  • the present invention provides a signal gide RNA (sgRNA) specific to exon 3 of the A4GALT (alpha 1,4-Galactosyltransferase) gene.
  • sgRNA signal gide RNA
  • the present invention provides a pharmaceutical composition for preventing or treating Fabry disease, comprising A4GALT (alpha 1,4-Galactosyltransferase) gene-edited induced pluripotent stem cells (iPSC) as an active ingredient.
  • A4GALT alpha 1,4-Galactosyltransferase gene-edited induced pluripotent stem cells (iPSC) as an active ingredient.
  • the present invention provides a cell therapy product containing A4GALT (alpha 1,4-Galactosyltransferase) gene-edited induced pluripotent stem cells (iPSC) as an active ingredient.
  • A4GALT alpha 1,4-Galactosyltransferase gene-edited induced pluripotent stem cells (iPSC) as an active ingredient.
  • the present invention provides a pharmaceutical composition for preventing or treating Fabry disease, which contains an expression inhibitor of the A4GALT (alpha 1,4-Galactosyltransferase) gene as an active ingredient.
  • A4GALT alpha 1,4-Galactosyltransferase
  • the present invention provides treatment of Fabry disease, comprising administering to a subject a pharmaceutically effective amount of A4GALT (alpha 1,4-Galactosyltransferase) gene-edited induced pluripotent stem cells (iPSC).
  • A4GALT alpha 1,4-Galactosyltransferase gene-edited induced pluripotent stem cells (iPSC).
  • the present invention provides a method of treating Fabry disease, comprising administering to a subject a pharmaceutically effective amount of an expression inhibitor of the A4GALT (alpha 1,4-Galactosyltransferase) gene.
  • A4GALT alpha 1,4-Galactosyltransferase
  • the present invention is a CRISPR/Cas system using sgRNA (signal gide RNA) selected from the group consisting of SEQ ID NO: 1 to SEQ ID NO: 7 to A4GALT (alpha 1,4) of induced pluripotent stem cells (iPSC).
  • sgRNA signal gide RNA
  • A4GALT alpha 1,4 of induced pluripotent stem cells
  • the present invention relates to the exon 3 position of A4GALT (alpha 1,4-Galactosyltransferase), SEQ ID NO: 1 to SEQ ID NO: Introducing a Riboneucleoproteine (RNP) complex of sgRNA (signal gide RNA) selected from the group consisting of 7;
  • RNP Riboneucleoproteine
  • It provides a method of producing induced pluripotent stem cells in which the A4GALT gene has been edited using the CRISPR/Cas system, including the step of confirming A4GALT gene knock-out in the induced pluripotent stem cells into which the Cas9 protein has been introduced.
  • the present invention relates to an A4GALT gene expression inhibitor, A4GALT gene-edited induced pluripotent stem cells (iPSCs), and pharmaceutical compositions and cell therapy products containing the same for preventing or treating Fabry disease, including the A4GALT gene-edited induced pluripotent stem cells of the present invention.
  • iPSCs induced pluripotent stem cells
  • pharmaceutical compositions and cell therapy products containing the same for preventing or treating Fabry disease, including the A4GALT gene-edited induced pluripotent stem cells of the present invention. has the effect of significantly reducing both the accumulation of Gb3 and the production of zebra bodies, which are pathological characteristics of Fabry disease.
  • Figure 1 shows the production process of A4GALT gene edited disease-treating induced pluripotent stem cells (iPSCs) for the treatment of Fabry disease and the validation results through indel frequency analysis of the produced iPCs. It represents.
  • iPSCs induced pluripotent stem cells
  • FIG. 2 shows normal group (WTC11), disease-specific (WTC11-Fb-GLA(-)), patient-specific (Fb2), and disease treatment type (WTC11-Fb-GLA(-)-A4GALT(-), Fb2-A4GALT( -))
  • WTC11-Fb-GLA(-)-A4GALT(-), Fb2-A4GALT( -) This shows the results of karyotype analysis of each induced pluripotent stem cell (hiPSCs).
  • FIG. 3 shows normal group (WTC11), disease-specific (WTC11-Fb-GLA(-)), patient-specific (Fb2), and disease treatment type (WTC11-Fb-GLA(-)-A4GALT(-), Fb2-A4GALT( -))
  • WTC11-Fb-GLA(-)-A4GALT(-), Fb2-A4GALT( -) This shows the results of morphological analysis of each induced pluripotent stem cell (hiPSCs).
  • Figure 4 shows the standard chromatogram used in liquid chromatography mass-spectrometry (LC-MS) analysis of Lyso-Gb3 and Gb3.
  • Figure 5 shows normal group (WTC11), disease-specific (WTC11-Fb-GLA(-)), patient-specific (Fb2), and disease-treated (WTC11-Fb-GLA(-)-A4GALT(-), Fb2-A4GALT( -))
  • WTC11-Fb-GLA(-)-A4GALT(-), Fb2-A4GALT( -) This shows the results of comparative analysis of the pluripotency and trilineage differentiation ability of each induced pluripotent stem cell (hiPSCs).
  • Figure 6 shows normal group (WTC11), disease-specific (WTC11-Fb-GLA(-)), patient-specific (Fb2), and disease treatment type (WTC11-Fb-GLA(-)-A4GALT(-), Fb2-A4GALT( -))
  • WTC11-Fb-GLA(-)-A4GALT(-), Fb2-A4GALT( -) The results of GLA activity analysis (top) and Gb-3 and Lyso-Gb3 LC-MS analysis (bottom) of each induced pluripotent stem cell (iPCs) are shown.
  • Figure 7 is a schematic diagram showing a protocol for differentiating disease treatment type (WTC11-Fb-GLA(-)-A4GALT(-), Fb2-A4GALT(-)) induced pluripotent stem cells (iPCs) into kidney organoids.
  • WTC11-Fb-GLA(-)-A4GALT(-), Fb2-A4GALT(-) induced pluripotent stem cells (iPCs) into kidney organoids.
  • Figure 8 shows nephron marker staining of kidney organoids differentiated from disease treatment type (WTC11-Fb-GLA(-)-A4GALT(-), Fb2-A4GALT(-)) induced pluripotent stem cells (iPCs). This is the image as a result of confirmation.
  • Figure 9 shows the derivation of disease-specific (WTC11-Fb-GLA(-)), patient-specific (Fb2), and disease-therapeutic (WTC11-Fb-GLA(-)-A4GALT(-), Fb2-A4GALT(-)), respectively.
  • This image shows the results of observing Gb3 deposition in kidney organoids differentiated from pluripotent stem cells (iPCs) using immunofluorescence (IF) and confocal microscopy.
  • the present invention provides a signal gide RNA (sgRNA) specific to exon 3 of the A4GALT (alpha 1,4-Galactosyltransferase) gene.
  • sgRNA signal gide RNA
  • A4GALT alpha 1,4-Galactosyltransferase
  • LacCer lactosylceramide
  • UDP-galactose UDP-galactose
  • Gb3 globotriaosylceramide
  • P(k) antigen of the P blood group system acts as a catalyst to form
  • the sgRNA may include one or more base sequences selected from the group consisting of SEQ ID NO: 1 to SEQ ID NO: 7 or a base sequence complementary thereto.
  • the sgRNA may further include a PAM, a short nucleotide sequence consisting of 3 bases, next to the target nucleotide sequence selected from the group consisting of SEQ ID NOs: 1 to 7 (see Figure 1 ).
  • A, T, C, G and U used in this specification are interpreted as understood by those skilled in the art. Depending on the context and technology, it may be appropriately interpreted as a base, nucleoside, or nucleotide on DNA or RNA.
  • a base when referring to a base, it can be interpreted as adenine (A), thymine (T), cytosine (C), guanine (G), or uracil (U), respectively, and when referring to a nucleoside, it can be interpreted as Each can be interpreted as adenosine (A), thymine (T), cytidine (C), guanosine (G), or uridine (U), and when referring to nucleotides in the sequence, it includes each of the above nucleosides. It should be interpreted to mean the nucleotide that is
  • the sgRNA may be used for CRISPR-Cas9 gene editing.
  • CRISPR clustered regularly interspaced short palindromic repeat
  • Cas9 system is an immune system discovered in bacteria that acts as a defense mechanism against phages. It is an RNA-guided gene scissors that recognizes the target base of the target DNA by single-stranded guide RNA (sgRNA) and causes double strand break (DSB) of DNA by the nuclease activity contained in the Cas9 protein. .
  • sgRNA single-stranded guide RNA
  • DSB double strand break
  • gRNA guide RNA
  • the term "gRNA (guide RNA)" used in the present invention refers to a small RNA of about 45 to 70 nucleotides that has base sequence information that serves as a template for the modification reaction when editing RNA.
  • the 5' side region of gRNA is in a complementary sequence to the part of the mRNA being RNA edited, and is bound to the mRNA through this region. In the 3' side region, there is a base sequence complementary to the final sequence of the mRNA after editing, and the sequence information contains Accordingly, an RNA modification reaction called insertion or deletion of uridine base occurs.
  • the gRNA may use sgRNA (single-guide RNA).
  • sgRNA refers to a single-stranded guide RNA that plays the role of finding the location of a gene to be edited.
  • the sgRNA is adjacent to a protospacer adjacent motif (PAM) site and is 10 to 30 bp of the gene to be edited. It may include, but is not limited to, a base sequence and a complementary sequence.
  • PAM protospacer adjacent motif
  • the gene editing may use sgRNA targeting the base sequence of exon 3 of the A4GALT gene.
  • the protein encoded by the A4GALT gene may catalyze the synthesis of globotriaosylceramide (Gb3).
  • the present invention provides a pharmaceutical composition for preventing or treating Fabry disease, comprising A4GALT (alpha 1,4-Galactosyltransferase) gene-edited induced pluripotent stem cells (iPSC) as an active ingredient.
  • A4GALT alpha 1,4-Galactosyltransferase gene-edited induced pluripotent stem cells (iPSC) as an active ingredient.
  • prevention used in the present invention refers to any action that suppresses or delays the occurrence of Fabry disease by administering the composition.
  • treatment refers to any action in which symptoms due to Fabry disease are improved or beneficially changed by administration of the composition.
  • the A4GALT gene-edited induced pluripotent stem cell may be an induced pluripotent stem cell in which the A4GALT gene has been knocked out.
  • knock-out means partial, substantial, or complete deletion, silencing, inactivation, or down-regulation of a gene.
  • the A4GALT gene-edited induced pluripotent stem cell may have a mutation in the base sequence of exon 3 of the A4GALT gene.
  • the gene editing may use the CRISPR-Cas9 gene editing system.
  • RNA target sequences of guide RNA were selected for GLA gene removal, and sgRNA (sgA4GALT#1 to sgA4GALT#7) for the selected target sequences. were synthesized and introduced into induced pluripotent stem cells (iPSC), thereby producing induced pluripotent stem cells (iPSC) in which the A4GALT gene was edited (knocked out) (see Example 1).
  • iPSC induced pluripotent stem cells
  • iPSC induced pluripotent stem cells
  • the iPSCs introducing the sgRNA may be iPSCs derived from normal people, iPSCs derived from Fabry disease patients (patient-specific iPSCs), or iPSCs with the GLA gene deleted (disease-specific iPSCs).
  • patient-derived iPSCs and iPSCs from which the GLA gene has been removed induced pluripotent stem cells (disease-therapeutic iPSCs; WTC11-Fb-GLA(-)-A4GALT(-) and Fb2-A4GALT() with the A4GALT gene edited (knocked out) -)) was prepared.
  • the A4GALT gene-edited induced pluripotent stem cells may inhibit the accumulation of Gb3, and the A4GALT gene-edited induced pluripotent stem cells may inhibit the production of zebra bodies.
  • A4GALT gene-edited induced pluripotent stem cells were produced by the above method, and the disease-specific iPSCs, patient-specific iPSCs, disease-treatment type iPSCs, and normal iPSCs of the present invention.
  • Disease treatment iPSCs disease treatment iPSCs
  • the disease-specific iPSCs, patient-specific iPSCs, disease-treatment type iPSCs, and normal iPSCs of the present invention For kidney organoids differentiated from each of these iPSCs, GLA activation, the degree of Gb3 accumulation, and the presence of zebra bodies were confirmed through electron microscopy, immunofluorescence staining, and nephron marker staining. As a result, patient-tailored and disease-tailored iPSCs and kidneys were confirmed.
  • Gb3 accumulation is significantly reduced in the disease-treating iPSC and kidney organoids of the present invention, and zebra bodies, a characteristic pathology of Fabry disease, are not generated, proving that Fabry disease can be prevented or treated. (See Examples 2 to 5).
  • induced pluripotent stem cells patient-specific iPSCs derived from Fabry disease patients
  • PBMCs peripheral blood cells
  • iPSCs induced pluripotent stem cells
  • GLA gene-deleted induced pluripotent stem cells refers to induced pluripotent stem cells in which the GLA gene has been knocked out using the CRISPR-Cas9 gene editing system.
  • GLA (galactosidase alpha) gene refers to a gene encoding the alpha-galactosidase A ( ⁇ -GalA) enzyme.
  • sgGLA#4 as sgRNA is used to introduce disease-specific (WTC11-Fb-GLA(-)) induced pluripotent stem cells (iPSCs) in which the GLA gene has been removed by introducing them into iPSCs through gene editing and electroporation. ) was prepared (see Preparation Example 1).
  • the term "organoid” refers to a cell mass with a 3D three-dimensional structure, and is a reduced and simplified version of a mimic organ produced through an artificial culture process that is not collected or acquired from animals, etc. , refers to an artificial in vitro construct that mimics or resembles the functionality and/or histological structure of an organ or part thereof.
  • the organoids may be derived from stem cells such as adult stem cells (ASC), embryonic stem cells (ESC), or induced pluripotent stem cells (iPSC), and can self-renew and Due to its differentiation ability, it can be cultured in three dimensions.
  • the organoid may have an environment that allows cells to interact with the surrounding environment during cell growth.
  • the term “living organ simulation model” refers to a simulation of the physiological environment in which actual human organs operate, and in the present invention, it may be a kidney organoid.
  • the term “differentiation” refers to a phenomenon in which cells divide and proliferate and become specialized in their structure or function while the entire organism grows. In other words, it refers to the process by which biological cells, tissues, etc. change into appropriate form and function to perform the roles given to each. For example, the process by which pluripotent stem cells such as embryonic stem cells change into ectoderm, mesoderm, and endoderm cells. In addition, the process by which hematopoietic stem cells change into red blood cells, white blood cells, platelets, etc., that is, the process by which progenitor cells express specific differentiation traits, can all be included in differentiation.
  • composition of the present invention may further include a pharmaceutically acceptable carrier.
  • the “pharmaceutically acceptable carrier” may mean a carrier or diluent that does not irritate living organisms and does not inhibit the biological activity and properties of the injected compound.
  • the type of carrier that can be used in the present invention is not particularly limited, and any carrier commonly used in the art and pharmaceutically acceptable can be used.
  • Non-limiting examples of the carrier include saline solution, sterile water, Ringer's solution, buffered saline solution, albumin injection solution, dextrose solution, maltodextrin solution, glycerol, ethanol, etc. These may be used individually or in combination of two or more types.
  • composition containing a pharmaceutically acceptable carrier may be in various oral or parenteral dosage forms. When formulated, it is prepared using diluents or excipients such as commonly used fillers, extenders, binders, wetting agents, disintegrants, and surfactants.
  • solid preparations for oral administration include tablets, pills, powders, granules, capsules, etc., and such solid preparations include the compound with at least one excipient, such as starch, calcium carbonate, sucrose, and lactose. It can be prepared by mixing , gelatin, etc. Additionally, in addition to simple excipients, lubricants such as magnesium stearate and talc can also be used.
  • Liquid preparations for oral use include suspensions, oral solutions, emulsions, and syrups. In addition to the commonly used simple diluents such as water and liquid paraffin, various excipients such as wetting agents, sweeteners, fragrances, and preservatives may be included. there is.
  • Preparations for parenteral administration include sterile aqueous solutions, non-aqueous solutions, suspensions, emulsions, lyophilized preparations, and suppositories.
  • Non-aqueous solvents and suspensions include propylene glycol, polyethylene glycol, vegetable oils such as olive oil, and injectable esters such as ethyl oleate.
  • As a base for suppositories wethepsol, macrogol, Tween 61, cacao, laurin, glycerogelatin, etc. can be used.
  • composition of the present invention can be administered in a pharmaceutically effective amount.
  • the "pharmaceutically effective amount” means an amount sufficient to treat a disease with a reasonable benefit/risk ratio applicable to medical treatment, and the effective dose level is determined by the type and severity of the individual, age, gender, type of infected virus, and the drug's It can be determined based on factors including activity, sensitivity to the drug, time of administration, route of administration and excretion rate, duration of treatment, drugs used simultaneously, and other factors well known in the field of medicine.
  • the composition or a pharmaceutically acceptable salt thereof can be administered at 0.0001 to 1000 mg/kg, preferably 0.001 to 100 mg/kg, per day.
  • the administration means introducing the composition of the present invention into the patient by any appropriate method, and the composition may be administered through any general route as long as it can reach the target tissue. It may be administered intraperitoneally, intravenously, intramuscularly, subcutaneously, intradermally, orally, locally, or intranasally, but is not limited thereto.
  • composition of the present invention may be administered daily or intermittently, and the number of administrations per day may be once or divided into two to three doses. Additionally, the composition of the present invention can be used alone or in combination with other drug treatments to prevent or treat Fabry disease. Considering all of the above factors, it is important to administer an amount that can achieve maximum effect with the minimum amount without side effects, and can be easily determined by a person skilled in the art.
  • the above object refers to all animals including humans, monkeys, cows, horses, sheep, pigs, chickens, turkeys, quails, cats, dogs, mice, rats, rabbits or guinea pigs that have or may develop Fabry disease. do. If the disease can be effectively prevented or treated by administering the pharmaceutical composition of the present invention to the subject, the type of subject is included without limitation.
  • the present invention provides a cell therapy product containing A4GALT (alpha 1,4-Galactosyltransferase) gene-edited induced pluripotent stem cells (iPSC) as an active ingredient.
  • A4GALT alpha 1,4-Galactosyltransferase gene-edited induced pluripotent stem cells (iPSC) as an active ingredient.
  • the term "cell therapy product” refers to a medicine (US FDA regulations) used for the purpose of treatment, diagnosis, and prevention of cells and tissues manufactured through isolation, culture, and special manipulation from an individual. It refers to a medicine used for the purposes of treatment, diagnosis, and prevention through a series of actions such as in vitro proliferation and selection of living autologous, allogeneic, or xenogeneic cells or changing the biological characteristics of cells by other methods in order to restore function. .
  • the present invention provides a pharmaceutical composition for preventing or treating Fabry disease, which contains an expression inhibitor of the A4GALT (alpha 1,4-Galactosyltransferase) gene as an active ingredient.
  • A4GALT alpha 1,4-Galactosyltransferase
  • the inhibitor of expression of the A4GALT gene may include sgRNA targeting the base sequence of exon 3 of the A4GALT gene.
  • the sgRNA may be used as a gene therapy for suppressing the expression of the A4GALT (alpha 1,4-Galactosyltransferase) gene.
  • the present invention provides treatment of Fabry disease, comprising administering to a subject a pharmaceutically effective amount of A4GALT (alpha 1,4-Galactosyltransferase) gene-edited induced pluripotent stem cells (iPSC).
  • A4GALT alpha 1,4-Galactosyltransferase gene-edited induced pluripotent stem cells (iPSC).
  • the treatment method of the present invention includes administering the A4GALT (alpha 1,4-Galactosyltransferase) gene-edited induced pluripotent stem cells or the A4GALT gene expression inhibitor to a subject in a therapeutically effective amount.
  • the specific therapeutically effective amount for a specific subject will depend on the type and degree of response to be achieved, the specific composition, including whether other agents are used as the case may be, the subject's age, weight, general health, gender and diet, and time of administration. It is desirable to apply it differently depending on various factors including the route of administration, secretion rate of the composition, treatment period, drugs used together with or simultaneously with the specific composition, and similar factors well known in the medical field.
  • the daily dosage is 0.0001 to 100 mg/kg, preferably 0.01 to 100 mg/kg, based on the amount of the pharmaceutical composition of the present invention, and can be administered 1 to 6 times a day.
  • the dosage or administration of each active ingredient must be such that the content of each active ingredient is too high and does not cause side effects. Therefore, it is desirable to determine the effective amount of the composition suitable for the purpose of the present invention by considering the above-mentioned matters.
  • the subject is applicable to any mammal, and the mammal includes humans and primates, as well as domestic animals such as cattle, pigs, sheep, horses, dogs and cats.
  • the recombinant peptide or recombinant vector of the present invention can be administered to mammals such as rats, mice, livestock, and humans through various routes. All modes of administration are contemplated, for example, oral, rectal or by intravenous, intramuscular, subcutaneous, intrathecal or intracerebroventricular injection.
  • the present invention provides a method of treating Fabry disease, comprising administering to a subject a pharmaceutically effective amount of an expression inhibitor of the A4GALT (alpha 1,4-Galactosyltransferase) gene.
  • A4GALT alpha 1,4-Galactosyltransferase
  • the present invention is a CRISPR/Cas system using sgRNA (signal gide RNA) selected from the group consisting of SEQ ID NO: 1 to SEQ ID NO: 7 to A4GALT (alpha 1,4) of induced pluripotent stem cells (iPSC).
  • sgRNA signal gide RNA
  • A4GALT alpha 1,4 of induced pluripotent stem cells
  • the present invention relates to the exon 3 position of A4GALT (alpha 1,4-Galactosyltransferase), SEQ ID NO: 1 to SEQ ID NO: Introducing a Riboneucleoproteine (RNP) complex of sgRNA (signal gide RNA) selected from the group consisting of 7;
  • RNP Riboneucleoproteine
  • It provides a method of producing induced pluripotent stem cells in which the A4GALT gene has been edited using the CRISPR/Cas system, including the step of confirming A4GALT gene knock-out in the induced pluripotent stem cells into which the Cas9 protein has been introduced.
  • Fb2 patient A patient with Fabry disease was connected to the Department of Nephrology at Seoul St. Mary's Hospital, and after passing the review by the hospital's clinical research ethics review committee, a Fabry disease patient-tailored (Fb2) inducible pluripotency was administered from blood obtained from the patient (arbitrarily named Fb2 patient).
  • Stem cells induced pluripotent stem cells, iPSCs
  • IRB approval number KC19TISI0901
  • PBMC peripheral blood cells
  • StemSpan culture medium STEM CELL Technological, Vacouver, British Columbia, Canada
  • CC110 cytokine cocktail CC110 cytokine cocktail
  • the virus-treated cells were transferred to a 24-well plate coated with Vitronectin (Life Technologies), plated, centrifuged at 1,160 ⁇ g for 10 minutes at 37°C, and incubated at 37°C in 5% C O2. .
  • the reprogrammed cells were cultured in Te SRTM - E7TM /ReproTe SRTM (STEM CELL) medium.
  • induced pluripotent stem cells 5 ⁇ 10 3 cells were plated on a 6-well plate coated with vitronectin, the culture was maintained, and the morphology of the induced pluripotent stem cells was confirmed using a Motic AE2000 microscope.
  • normal induced pluripotent stem cells (WTC11) were prepared from the blood of normal people.
  • Customized induced pluripotent stem cells for Fabry disease (WTC11-Fb-GLA(-))
  • sgRNA single-guide RNA
  • the target sequence of the GLA#4 guide RNA AGGGATGTCCCAGGAAACGA GGG (PAM) , SEQ ID NO. 9
  • the selected guide RNA was RNP.
  • RNP bonucleoprotein
  • 4D-Nucleofector Longza, P3 Primary Cell 4D-Nucleofector ⁇ Kit
  • the RNP complex was formed by mixing 4 ⁇ g of Cas9 protein and 4 ⁇ g of in vitro transcribed sgRNA [produced according to the manufacturer's protocol using T7 polymerase (New England BioLabs)], and incubated at room temperature. The mixture was incubated for 10 minutes. The RNP complex was electroporated using the nucleofector program CA-137 with 4 ⁇ 10 5 iPSC treated with 20 ⁇ l Primary P3 buffer, and GLA#4 guide RNA was introduced into the iPSC to remove the GLA gene. Fabry disease disease-specific induced pluripotent stem cells (WTC11-Fb-GLA(-)) were produced.
  • sgRNAs single-guide RNAs
  • sgA4GALT#5 Seven sgRNAs (single-guide RNAs) were synthesized and screened in the exon3 region of the A4GALT gene, of which sgA4GALT#5 was selected, and the specific method is described below.
  • off-target effect among the guide sequences predicted at 'http://www.rgenome.net/casdesigner/' was used to knock out the A4GALT gene.
  • the target sequences (PAM-containing base sequences) of the seven selected sgRNAs are shown in Figure 1.
  • the selected guide RNA was introduced as an RNP (Ribonucleoprotein) complex by electroporation using 4D-Nucleofector (Lonza, P3 Primary Cell 4D-Nucleofector ⁇ Kit).
  • RNP Ribonucleoprotein
  • the RNP complex was formed by mixing 4 ⁇ g of Cas9 protein and 4 ⁇ g of in vitro transcribed sgRNA [produced according to the manufacturer's protocol using T7 polymerase (New England BioLabs)], and incubated at room temperature. The mixture was incubated for 10 minutes.
  • the RNP complex was electroporated using 4 ⁇ 10 5 iPSC treated with 20 ⁇ l Primary P3 buffer using the nucleolus program (nucleofector program CA-137).
  • iPSCs that had knocked out the A4GALT gene had genomic DNA (gDNA) extracted using the Genomic DNA Extraction Kit (Favorgen) according to the manufacturer's protocol.
  • gDNA genomic DNA
  • NEB Phusion High-Fidelity DNA Polymerase PCR Polymerase
  • the amplicons were amplified once more using TruSeq HT Dual Index Primers (Illumina, San Diego, CA, USA), and then paired-end sequencing was performed using the Illumina Miniseq System.
  • the indel frequency of the A4GALT gene was calculated from 'http://www.rgenome.net/'.
  • Fabry disease treatment-type induced pluripotent stem cells WTC11-Fb-GLA(-)-A4GALT(-)
  • A4GALT gene was removed by introducing the A4GALT#5 guide RNA into the Fabry disease disease-customized iPSC of Preparation Example 1-2 above
  • single cells were isolated and cultured.
  • a single clone with a +1bp insertion around the target guide RNA sequence (AACGTGCCAGTAGATCATGA TGG , SEQ ID NO. 8) was obtained. .
  • Fabry disease treatment type induced pluripotent stem in which the A4GALT gene was removed by introducing A4GALT#5 guide RNA into the Fabry disease patient-specific iPSC (Fb2) of Preparation Example 1-1 in the same manner as Example 1-2.
  • Cells (Fb2-A4GALT(-)) were produced.
  • Example 2 Analysis of stem cell characteristics of induced pluripotent stem cells for treating Fabry disease disease
  • the fixed cells were treated with PBS containing 5% donkey serum (Millipore, St Louis, MO, USA) and 0.3% Triton It was diluted in buffer (ADB; PBS containing 2% bovine serum albumin and 0.5% Triton X-100) and cultured at 4°C overnight. The next day, the primary antibody was washed with PBS and incubated with secondary antibody Alexa Fluor 488 (Invitrogen, Thermo Fisher Scientific, Pittsburgh, PA) and DAPI at room temperature for 2 hours.
  • ADB PBS containing 2% bovine serum albumin and 0.5% Triton X-100
  • the primary antibodies used in the above experiments are as follows; anti-TRA-1-81 (1:100 dilution, Santa Cruz Biotechnology, Dallas, TX, USA), anti-SSEA4 (1:100 dilution, Santa Cruz Biotechnology), anti-NANOG (1:100 dilution, Santa Cruz Biotechnology) ), anti-PAX6 (ectodermal, 1:100 dilution, Santa Cruz Biotechnology), anti-SM22A (mesodermal, 1:100 dilution, Santa Cruz Biotechnology), anti-FOXA2 (endodermal, 1:100 dilution, Santa Cruz Biotechnology). After mounting the stained cells, the fluorescence results were analyzed using a confocal microscope ZEISS LSM700 (Carl Zeiss, Jena, Germany).
  • WTC11 normal group
  • WTC11-Fb-GLA(-) disease-specific
  • Fb2 patient-specific
  • WTC11-Fb-GLA() disease-treated
  • Anti-SSEA4 was added to 1 ⁇ 10 5 each of induced pluripotent stem cells (-)-A4GALT(-), Fb2-A4GALT(-)), reacted under dark conditions at 4°C, and FACS buffer (0.002% sodium azide, After washing with 0.2% BSA/PBS), the cells were resuspended in FACS buffer and analyzed using a flow cytometer.
  • induced pluripotent stem cells were reacted with cytofix/cytoperm for 30 minutes, washed with Perm wash, anti-TRA-1-81 and anti-NANOG were added respectively, and then reacted under dark conditions at 4°C. After washing with Perm wash, it was resuspended in FACS buffer and analyzed using a flow cytometer.
  • ⁇ -GalA activity was assessed by fluorescence assay using the synthetic substrate 4-methylumbelliferyl- ⁇ -D-galactopyranoside (4MU- ⁇ -Gal, Abcam, Cambridge, UK).
  • Normal group WTC11
  • disease-specific WTC11-Fb-GLA(-)
  • patient-specific Fb2
  • disease-treated WTC11-Fb-GLA(-)-
  • Pellets of each induced pluripotent stem cell were incubated with 5mM 4MU- dissolved in phosphate buffer (0.1M citrate/0.2M phosphate buffer, pH 4.6, 1% Triton X-100). It was mixed with 40 ⁇ l of ⁇ -Gal. The reaction was incubated at 37°C and terminated by adding 100 ⁇ l of 0.5 M glycine buffer (pH 10.3). The release of 4 methylumbelliferone (4 MU) was measured by fluorescence measurements (Ex365/Em450) using a SpectraMax Gemini XS fluorescence reader (Molecular Device, Sunnyvale CA). A standard curve was generated using serial two-fold dilutions of 4 MU. Enzyme activity was expressed as pmol 4MU (pmol/hr/mg) released per 1 mg/1 ml of cells per hour of assay incubation time.
  • phosphate buffer 0.1M citrate/0.2M phosphate buffer, pH 4.6, 1% Triton X-100
  • Globotriaosylsphingosine (Lyso-Gb3) was determined in a similar manner using glucosylsphingosine (Matreya) and lyso-ceramide trihexoside (Lyso-Gb3, Matreya) as internal standards and compared to a standard curve. was created. The standard chromatogram used in Lyso-Gb3 and Gb3 LC-MS analysis is shown in Figure 4.
  • kidney organoid differentiation using each of the induced pluripotent stem cells established through Preparation Example 1 and Example 1 with a passage number between 30 and 60 normal (wild type) kidney organoids and disease-specific kidney organoids are produced.
  • kidney organoid using disease-specific iPSCs with the GLA gene removed patient-specific kidney organoid
  • kidney organoid using patient-specific iPSCs derived from Fb from Fabry disease patients disease treatment kidney organoid (WTC11-Fb-GLA( Kidney organoids using -)-A4GALT(-) or Fb2-A4GALT(-) iPSCs) were produced.
  • each induced pluripotent stem cell was incubated with 1.5% Matrigel.
  • Plating was performed using mTeSR1 culture medium (Stem Cell Technologies) containing 10 ⁇ M Y27632 (BioGems, Rocky Hill, NJ) in a 24-well plate coated with hESC-Qualified Matrix (Corning) (day 1). .
  • culture was performed for 1.5 days (36 hours) with ARPMI medium (Thermo Fisher Scientific) containing L-glutamine and 12 ⁇ M CHIR99021 (Stem Cell Technologies), followed by L-glutamine and B27 supplement ( The culture medium was replaced with ARPMI culture medium (Thermo Fisher Scientific) containing Thermo Fisher Scientific), and the culture medium was changed every 2-3 days thereafter to induce differentiation into kidney organoids. Differentiation was maintained in culture for 18-21 days, and the kidney organoid morphology was confirmed using a Motic AE2000 microscope, and differentiated kidney organoids were obtained from each induced pluripotent stem cell at 21 days after seeding.
  • kidney organoid differentiation protocol is as shown in Figure 7 (Nat Commun. 2015 Oct 23;6:8715. doi: 10.1038).
  • the fixed organoids were treated with PBS containing 5% donkey serum (Millipore, St Louis, MO, USA) and 0.3% Triton Dilution Buffer (ADB; PBS containing 2% bovine serum albumin and 0.5% Triton X-100) was diluted and cultured overnight at 4°C. The next day, the primary antibody was washed with PBS and then incubated with the secondary antibody and DAPI at room temperature for 2 hours.
  • ADB Triton Dilution Buffer
  • the primary antibodies used in the above experiments are as follows; anti-biotinylated LTL (1:100 dilution, Vector Labs, Burlingame, CA), anti-E-cadherin (1:100 dilution, BD Bioscience, San Jose, CA, USA), anti-CD77 (1:100 dilution, BD) Bioscience), anti-PODXL (1:100 dilution, R&D systems, Minneapolis, MN, USA).
  • Kidney organoids differentiated in Example 4 were fixed overnight at 4°C in 0.1 M phosphate buffer containing 4% paraformaldehyde and 2.5% glutaraldehyde. After washing with 0.1 M phosphate buffer, the organoids were fixed in the same buffer containing 1% osmium tetroxide at 4°C for 1 hour, then dehydrated with ethanol solution and acetone and embedded in Epon 812. After obtaining ultrathin sections (70-80 nm) by an ultramicrotome (Leica Ultracut UCT, Germany), the sections were double stained with uranyl acetate and lead citrate and analyzed under a transmission electron microscope (JEM 1010, Japan) at 60 kV. .
  • JEM 1010 transmission electron microscope
  • zebra bodies a characteristic pathology of Fabry disease, were observed in disease-specific (WTC11-Fb-GLA(-)) and patient-specific (Fb2) organoids. It was confirmed that zebra bodies were not detected in the normal group (WTC11) and the disease treatment group (WTC11-Fb-GLA(-)-A4GALT(-), Fb2-A4GALT(-)) (FIG. 11).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Cell Biology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Epidemiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Reproductive Health (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Obesity (AREA)
  • Hematology (AREA)
  • Diabetes (AREA)
  • Immunology (AREA)
  • Gynecology & Obstetrics (AREA)
  • Microbiology (AREA)
  • Virology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Transplantation (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

본 발명은 A4GALT 유전자 발현 억제제 및 A4GALT 유전자 편집된 유도만능줄기세포(iPSCs)에 관한 것으로, 본 발명의 A4GALT 유전자 편집된 유도만능줄기세포는 파브리병의 병리적 특징인 Gb3의 축적 및 층판소체(zebra body) 생성을 모두 효과적으로 감소시킬 수 있으므로, 이를 파브리병 예방 또는 치료용 약학적 조성물 및 세포치료제로 유용하게 이용할 수 있다.

Description

A4GALT 유전자 편집을 통한 파브리병의 치료 방법
본 발명은 A4GALT 유전자 발현 억제제, A4GALT 유전자 편집된 유도만능줄기세포(iPSCs) 및 이를 포함하는 파브리병 예방 또는 치료용 약학적 조성물 및 세포치료제에 관한 것이다.
파브리병(Fabry disease)은 리소좀 효소인 알파 갈락토시다제(α-galactosidase, GLA)의 활성이 없거나 결여된 결과로 인해 글리코스핑고리피드(glycosphingolipid) 대사 경로에 결함을 일으키는 희귀한 X-유전자 관련의 열성 유전 장애이다. GLA 결핍은 리보좀 내에 글로보트리아오실세라마이드(globotriaosylceramide, Gb3) 및 관련 중성 글리코스핑고리피드(neutral glycosphingolipid)의 축적을 초래하여, 세포 형태 및 기능을 손상시킨다. 파브리병은 뇌졸중, 심부전, 심부정맥 및 말기 신장질환(ESRD, End Stage Renal Disease)과 같은 생명을 위협하는 합병증이 있는 다계통 질병으로, 기대 수명을 단축시킨다. 파브리병은 족세포, 사구체 내피 세포, 사구체간질 세포, 세뇨관 상피 세포 및 혈관 내피 세포와 같은 신장 세포에서 Gb3의 축적으로부터 발생한다.
파브리병을 치료하기 위한 방법으로, 알파-갈락토시다제로서 아갈시다제-베타(agalsidase-β) 및 아갈시다제 알파(agalsidase-α)를 사용한 재조합 효소 대체 요법(enzyme replacement therapy, ERT)은 Gb3의 세포 침착물을 제거하고 각각 질병 부담을 개선시킨다. 그러나, ERT는 추적 관찰기간 동안 용량 조절 후 족세포에서 Gb3의 재축적 및 주입 후 중화 항 약물 항체의 형성에 의해 잠재적으로 제한되며, 이는 증가된 세포성 Gb3 침착에 의한 ERT의 효능을 감소시키고 점진적 손실과 같은 신장 기능의 유해한 임상 결과를 초래한다.
파브리 병의 연구 및 치료제 개발에 있어서, 쥐에서 GLA의 넉아웃을 유발한 후, 내피세포 장애(endothelial dysfunction)에 대하여 Gb3 축적의 역할을 연구하는 것이 일반적인 방법이다. 상기 GLA의 넉아웃을 유발한 쥐모델에서는 대동맥 내피 세포(aortic endothelial cell)의 카베올레(caveolae)에 비정상적으로 Gb3가 축적되는 것이 관찰되었다. 이러한 비정상적인 Gb3의 침전(deposit)은 GLA 넉아웃 내피 세포에서 칼슘 채널의 기능 저하를 유발할 수 있는 것으로 보고된 바 있다.
한편, 줄기세포(stem cell)는 조직을 구성하는 각 세포로 분화되기 전단계의 세포로서, 배아, 태아 및 성체의 각 조직에서 얻을 수 있을 수 있으며, 미분화 상태에서 무한 증식이 가능한 자가증식능 및 특정 분화 자극에 의해 다양한 조직의 세포로 분화될 수 있는 잠재적 가능성인 다분화능을 가진 세포를 말한다. 줄기세포는 분화 자극(환경)에 의하여 특정 세포로 분화되며, 세포분열이 정지된 분화된 세포와는 달리 세포분열에 의해 자신과 동일한 세포를 생산(self-renewal)할 수 있어 증식(proliferation, expansion)하는 특성이 있고, 다른 환경 또는 다른 분화 자극에 의해 다른 세포로도 분화될 수 있어 분화에 유연성(plasticity)을 갖는 것이 특징이다.
줄기세포를 이용한 치료제는 고전적 약물 치료와는 다르게 인체에서 채취한 줄기 세포를 체외에서 조작하여 환자에게 다시 주입하는 새로운 방식의 세포치료제의 한 종류이다. 손상된 조직 및 세포의 재생 및 복구, 회복을 통해 난치성 질환 등 예방, 증상완화 또는 치료에 사용될수 있다. 줄기세포는 자가분열(self-renewal) 능력을 가져 기존의 유전자 치료의 문제인 번거로운 치료 과정 또는 횟수를 줄일 수 있기 때문에 치료제로서 각광을 받고 있다.
유도만능줄기세포(induced pluripotent stem cells; iPSCs)를 포함하는 인간 다능성 줄기세포(Human pluripotent stem cells; hPSCs)는 다양한 세포 종류로 분화할 수 있다. iPSC를 시험관 내에서 분화시켜 면역거부반응 없이 질병을 치료하는 데 사용할 수 있고, 질병의 초기 메커니즘을 이해하고 평가하는 수단으로 사용할 수도 있다. 다양한 유전적 질병을 가지는 환자로부터 유래된 iPSC가 질병과 관련있는 세포 종류로 직접 분화되었을 때, 질병 특이적인 표현형(phenotypes)을 나타낸다. 이러한 질병 특이적인 iPSC는 질병과 관련있는 세포 종류로 분화될 수 있으며, 이에 따라 질병의 구체적인 기전을 확인하거나 치료제를 스크리닝 하는데 유용하게 사용될 수 있고, 이를 통해 iPSC가 환자 특이적인 세포치료제로 적용될 수 있을지 가능성을 판단하는 것이 가능하다.
이에 본 발명자들은 A4GALT 유전자 편집을 통해 파브리병 질환 치료를 위한 줄기세포를 제작 및 이로부터 신장 오가노이드를 제조한 결과, 파브리병 질환의 특징적인증상인 Gb3 침착을 억제하는 효과 및 층판소체(zebra body)가 검출되지 않음을 확인하여, 상기 A4GALT 유전자 편집된 유도만능줄기세포가 파브리병 질환 치료에 유용할 수 있음을 확인하여 본 발명을 완성하였다.
본 발명의 목적은 A4GALT(alpha 1,4-Galactosyltransferase) 유전자의 엑손 3번(exon 3) 특이적 sgRNA(signal gide RNA)를 제공하는 것이다.
본 발명의 다른 목적은 A4GALT(alpha 1,4-Galactosyltransferase) 유전자 편집된 유도만능줄기세포(induced pluripotent stem cell, iPSC)를 유효성분으로 포함하는, 파브리병 예방 또는 치료용 약학적 조성물을 제공하는 것이다.
본 발명의 또 다른 목적은 A4GALT(alpha 1,4-Galactosyltransferase) 유전자 편집된 유도만능줄기세포(induced pluripotent stem cell, iPSC)를 유효성분으로 포함하는, 세포치료제를 제공하는 것이다.
본 발명의 또 다른 목적은 A4GALT(alpha 1,4-Galactosyltransferase) 유전자의 발현 억제제를 유효성분으로 포함하는, 파브리병의 예방 또는 치료용 약학적 조성물을 제공하는 것이다.
본 발명의 또 다른 목적은 A4GALT(alpha 1,4-Galactosyltransferase) 유전자 편집된 유도만능줄기세포(induced pluripotent stem cell, iPSC)의 약학적으로 유효한 양을 개체에 투여하는 단계;를 포함하는, 파브리병의 치료 방법을 제공하는 것이다.
본 발명의 또 다른 목적은 A4GALT(alpha 1,4-Galactosyltransferase) 유전자의 발현 억제제의 약학적으로 유효한 양을 개체에 투여하는 단계;를 포함하는, 파브리병의 치료 방법을 제공하는 것이다.
본 발명의 또 다른 목적은 CRISPR/Cas 시스템으로 서열번호 1 내지 서열번호 7로 이루어진 군에서 선택된 sgRNA(signal gide RNA)을 이용하여 유도만능줄기세포(induced pluripotent stem cell, iPSC)의 A4GALT(alpha 1,4-Galactosyltransferase) 유전자가 편집된, A4GALT 유전자 편집 유도만능 줄기세포를 제공하는 것이다.
본 발명의 또 다른 목적은 개체로부터 단리된 유도만능줄기세포(induced pluripotent stem cell, iPSC)에, A4GALT(alpha 1,4-Galactosyltransferase)의 엑손 3번(exon 3) 위치 특이적인, 서열번호 1 내지 서열번호 7로 이루어진 군에서 선택된 sgRNA(signal gide RNA)의 RNP(Riboneucleoproteine) 복합체를 도입하는 단계;
상기 RNP 복합체가 도입된 유도만능줄기세포에, Cas9 단백질을 도입하는 단계; 및
상기 Cas9 단백질이 도입된 유도만능줄기세포에서, A4GALT 유전자 넉아웃(knock-out)을 확인하는 단계;를 포함하는 CRISPR/Cas 시스템으로 A4GALT 유전자가 편집된 유도만능 줄기세포의 제조 방법을 제공하는 것이다.
상기 목적을 달성하기 위하여, 본 발명은 A4GALT(alpha 1,4-Galactosyltransferase) 유전자의 엑손 3번(exon 3) 특이적 sgRNA(signal gide RNA)를 제공한다.
또한, 본 발명은 A4GALT(alpha 1,4-Galactosyltransferase) 유전자 편집된 유도만능줄기세포(induced pluripotent stem cell, iPSC)를 유효성분으로 포함하는, 파브리병 예방 또는 치료용 약학적 조성물을 제공한다.
또한, 본 발명은 A4GALT(alpha 1,4-Galactosyltransferase) 유전자 편집된 유도만능줄기세포(induced pluripotent stem cell, iPSC)를 유효성분으로 포함하는, 세포치료제를 제공한다.
또한, 본 발명은 A4GALT(alpha 1,4-Galactosyltransferase) 유전자의 발현 억제제를 유효성분으로 포함하는, 파브리병의 예방 또는 치료용 약학적 조성물을 제공한다.
또한, 본 발명은 A4GALT(alpha 1,4-Galactosyltransferase) 유전자 편집된 유도만능줄기세포(induced pluripotent stem cell, iPSC)의 약학적으로 유효한 양을 개체에 투여하는 단계;를 포함하는, 파브리병의 치료 방법을 제공한다.
또한, 본 발명은 A4GALT(alpha 1,4-Galactosyltransferase) 유전자의 발현 억제제의 약학적으로 유효한 양을 개체에 투여하는 단계;를 포함하는, 파브리병의 치료 방법을 제공한다.
또한, 본 발명은 CRISPR/Cas 시스템으로 서열번호 1 내지 서열번호 7로 이루어진 군에서 선택된 sgRNA(signal gide RNA)을 이용하여 유도만능줄기세포(induced pluripotent stem cell, iPSC)의 A4GALT(alpha 1,4-Galactosyltransferase) 유전자가 편집된, A4GALT 유전자 편집 유도만능 줄기세포를 제공한다.
또한, 본 발명은 개체로부터 단리된 유도만능줄기세포(induced pluripotent stem cell, iPSC)에, A4GALT(alpha 1,4-Galactosyltransferase)의 엑손 3번(exon 3) 위치 특이적인, 서열번호 1 내지 서열번호 7로 이루어진 군에서 선택된 sgRNA(signal gide RNA)의 RNP(Riboneucleoproteine) 복합체를 도입하는 단계;
상기 RNP 복합체가 도입된 유도만능줄기세포에, Cas9 단백질을 도입하는 단계; 및
상기 Cas9 단백질이 도입된 유도만능줄기세포에서, A4GALT 유전자 넉아웃(knock-out)을 확인하는 단계;를 포함하는 CRISPR/Cas 시스템으로 A4GALT 유전자가 편집된 유도만능 줄기세포의 제조 방법을 제공한다.
본 발명은 A4GALT 유전자 발현 억제제, A4GALT 유전자 편집된 유도만능줄기세포(iPSCs) 및 이를 포함하는 파브리병 예방 또는 치료용 약학적 조성물 및 세포치료제에 관한 것으로, 본 발명의 A4GALT 유전자 편집된 유도만능줄기세포는 파브리병의 병리적 특징인 Gb3의 축적 및 층판소체(zebra body) 생성을 모두 현저하게 감소시키는 효과가 있다.
도 1은 파브리병 치료를 위한 A4GALT 유전자 편집된(A4GALT gene edited) 질환 치료형 유도만능줄기세포(induced pluripotent stem cells, iPSCs)의 제작과정 및 제작된 iPCs의 인델(indel) 빈도 분석을 통한 validation 결과를 나타낸 것이다.
도 2는 정상군 (WTC11), 질환 맞춤형 (WTC11-Fb-GLA(-)), 환자 맞춤형 (Fb2) 및 질환 치료형 (WTC11-Fb-GLA(-)-A4GALT(-), Fb2-A4GALT(-)) 각각의 유도만능줄기세포(hiPSCs)의 핵형 분석 결과를 나타낸 것이다.
도 3은 정상군 (WTC11), 질환 맞춤형 (WTC11-Fb-GLA(-)), 환자 맞춤형 (Fb2) 및 질환 치료형 (WTC11-Fb-GLA(-)-A4GALT(-), Fb2-A4GALT(-)) 각각의 유도만능줄기세포(hiPSCs)의 형태 분석 결과를 나타낸 것이다.
도 4는 Lyso-Gb3 및 Gb3의 liquid chromatography mass-spectrometry(LC-MS) 분석에서 사용한 스탠다드 크로마토그램(standard chromatogram)을 나타낸 것이다.
도 5는 정상군 (WTC11), 질환 맞춤형 (WTC11-Fb-GLA(-)), 환자 맞춤형 (Fb2) 및 질환 치료형 (WTC11-Fb-GLA(-)-A4GALT(-), Fb2-A4GALT(-)) 각각의 유도만능줄기세포(hiPSCs)의 다분화능(pluripotency) 및 3계열(trilineage) 분화능을 비교 분석한 결과를 나타낸 것이다.
도 6은 정상군 (WTC11), 질환 맞춤형 (WTC11-Fb-GLA(-)), 환자 맞춤형 (Fb2) 및 질환 치료형 (WTC11-Fb-GLA(-)-A4GALT(-), Fb2-A4GALT(-)) 각각의 유도만능줄기세포(iPCs)의 GLA 활성화(activity) 분석(상단) 및 Gb-3 및 Lyso-Gb3 LC-MS 분석(하단) 결과를 나타낸 것이다.
도 7은 질환 치료형 (WTC11-Fb-GLA(-)-A4GALT(-), Fb2-A4GALT(-)) 유도만능줄기세포(iPCs)를 신장 오가노이드(kidney organoid)로 분화하는 프로토콜을 나타낸 모식도이다.
도 8은 질환 치료형 (WTC11-Fb-GLA(-)-A4GALT(-), Fb2-A4GALT(-)) 유도만능줄기세포(iPCs)로부터 분화된 신장 오가노이드를 네프론 마커 염색(Nephron marker staining)으로 확인한 결과 이미지이다.
도 9는 질환 맞춤형 (WTC11-Fb-GLA(-)), 환자 맞춤형 (Fb2) 및 질환 치료형 (WTC11-Fb-GLA(-)-A4GALT(-), Fb2-A4GALT(-)) 각각의 유도만능줄기세포(iPCs)로부터 분화된 신장 오가노이드의 Gb3 침착 여부를 면역형광염색(IF) 및 공초점(confocal) 현미경으로 관찰한 결과를 나타낸 이미지이다.
도 10은 정상군 (WTC11), 질환 맞춤형 (WTC11-Fb-GLA(-)), 환자 맞춤형 (Fb2) 및 질환 치료형 (WTC11-Fb-GLA(-)-A4GALT(-), Fb2-A4GALT(-)) 각각의 유도만능줄기세포(iPCs)로부터 분화된 신장 오가노이드의 Gb-3 및 Lyso-Gb3 LC-MS 분석 결과를 나타낸 것이다.
도 11은 정상군 (WTC11), 질환 맞춤형 (WTC11-Fb-GLA(-)), 환자 맞춤형 (Fb2) 및 질환 치료형 (WTC11-Fb-GLA(-)-A4GALT(-), Fb2-A4GALT(-)) 각각의 유도만능줄기세포(iPCs)로부터 분화된 신장 오가노이드의 zebra body 여부를 전자현미경 EM으로 확인한 결과를 나타낸 이미지이다.
이하, 본 발명을 상세히 설명한다.
본 발명은 A4GALT(alpha 1,4-Galactosyltransferase) 유전자의 엑손 3번(exon 3) 특이적 sgRNA(signal gide RNA)를 제공한다.
본 발명의 "A4GALT(alpha 1,4-Galactosyltransferase)"는 락토실세라마이드(LacCer) 수용체 및 UDP-galactose(갈락토스, UDP-Gal) 공여자의 아노머 중심 사이의 알파-글리코시드 1,4 연결의 형성을 촉매하는 효소로서, 이 유전자에 의해 암호화 된 단백질은, 갈락토오스(galactose)를 락토실세라마이드로(lactosylceramide) 전달하여 P 혈액형 시스템의 P (k) 항원인 글로보트리아오실세라마이드(globotriaosylceramide, Gb3)를 형성하는 촉매로 작용한다.
본 발명의 일실시예에 따르면, 상기 sgRNA는 서열번호 1 내지 서열번호 7로 이루어진 군으로부터 선택되는 1종 이상의 염기서열 또는 이와 상보적인 염기서열 포함하는 것일 수 있다.
본 발명의 일실시예에 따르면, 상기 sgRNA는 상기 서열번호 1 내지 7로 이루어진 군으로부터 선택되는 표적 염기 서열 옆에 3개의 염기로 이루어진 짧은 염기서열인 PAM을 추가로 포함할 수 있다(도 1 참조).
본 명세서에서 사용되는 A, T, C, G 및 U 기호는 당업계 통상의 기술자가 이해하는 의미로 해석된다. 문맥 및 기술에 따라 DNA 또는 RNA 상에서 염기, 뉴클레오사이드 또는 뉴클레오타이드로 적절히 해석될 수 있다. 예를들어, 염기를 의미하는 경우는 각각 아데닌(A), 티민(T), 시토신(C), 구아닌(G) 또는 우라실(U) 자체로 해석될 수 있고, 뉴클레오사이드를 의미하는 경우는 각각 아데노신(A), 티민(T), 시티딘(C), 구아노신(G) 또는 유리딘(U)으로 해석될 수 있으며, 서열에서 뉴클레오타이드를 의미하는 경우는 상기 각각의 뉴클레오사이드를 포함하는 뉴클레오타이드를 의미하는 것으로 해석되어야 한다.
본 발명의 일실시예에 따르면, 상기 sgRNA는 CRISPR-Cas9 유전자 편집에 이용하는 것일 수 있다.
CRISPR (clustered regularly interspaced short palindromic repeat) / Cas9 system은 박테리아에서 발견된 면역 시스템 (immune system)으로 파지 (phage)에 대한 방어기작으로 작용한다. 단일가닥 가이드 RNA(sgRNA)에 의해 표적 DNA의 표적 염기가 인식되고 Cas9 단백질이 함유한 뉴클레아제 (nuclease) 활성에 의해 DNA 이중가닥절단 (double strand break, DSB)을 일으키는 RNA 유도형 유전자 가위이다. 기존의 ZFN, TALEN 유전자 가위에 비해, 20개의 염기서열을 인식하는 sgRNA와 Cas9 단백질 인식 PAM (protosapcer adjacent motif) 서열만 있으면 sgRNA의 서열 변화만을 통해 어느 DNA 부위든지 표적하여 편집할 수 있는 장점이 존재한다. 또한 복수의 sgRNA를 이용하여 동시에 복수의 표적도 가능하며, 그 효율 또한 ZFN과 TALEN에 비해 비약적으로 높다. 이는 세포실험과 동물실험을 통해 포유류 세포 및 동물에서도 매우 잘 작동함이 알려져 있다.
본 발명에서 사용되는 용어, "gRNA(guide RNA)"는, RNA를 편집할 때 수식반응의 주형이 되는 염기순서정보를 갖는 45~70 뉴클레오티드 가량의 작은 RNA를 지칭하는데, gRNA의 5'측 영역은 RNA 편집되는 mRNA의 일부와 상보적 순서로 되어 있고, 이 영역을 매개로 하여 mRNA에 결합되며, 3'측 영역에는 편집 후의 최종적 mRNA의 순서에 상보적 염기순서가 존재하고, 그 순서정보에 따라 우리딘(uridine) 염기의 삽입이나 결실이라는 RNA 수식반응이 일어난다.
본 발명에서 상기 gRNA는 sgRNA(single-guide RNA)를 이용하는 것일 수 있다. 본 발명에서 sgRNA는 편집하려는 유전자의 위치를 찾아내는 역할을 수행하는 단일가닥 가이드 RNA를 의미하며, 상기 sgRNA는 근접모티프(PAM; protospacer adjacent motif) 자리와 인접하며, 편집하려는 유전자의 10 내지 30 bp의 염기서열과 상보적인 서열을 포함하는 것일 수 있으나 이에 제한되지 않는다.
본 발명에 있어서, 상기 유전자 편집은 A4GALT 유전자의 엑손 3번(exon 3)의 염기서열을 타겟으로 하는 sgRNA를 이용하는 것일 수 있다.
본 발명의 일실시예에 따르면, 상기 A4GALT 유전자로 코딩된 단백질은 글로보트리아오실세라마이드(globotriaosylceramide, Gb3) 합성을 촉매하는 것일 수 있다.
또한, 본 발명은 A4GALT(alpha 1,4-Galactosyltransferase) 유전자 편집된 유도만능줄기세포(induced pluripotent stem cell, iPSC)를 유효성분으로 포함하는, 파브리병 예방 또는 치료용 약학적 조성물을 제공한다.
본 발명에서 사용되는 용어, "예방"은 상기 조성물의 투여에 의해 파브리병을 억제시키거나 발생을 지연시키는 모든 행위를 의미한다.
본 발명에서 사용되는 용어, "치료"는 상기 조성물의 투여에 의해 파브리병에 의한 증세가 호전되거나 이롭게 변경되는 모든 행위를 의미한다.
본 발명에 있어서, 상기 A4GALT 유전자 편집된 유도만능줄기세포는 A4GALT 유전자가 넉아웃된 유도만능줄기세포인 것일 수 있다.
본 발명에서 사용되는 용어, "넉아웃(knock-out)"은 유전자의 부분적, 실질적, 완전한 결실, 침묵(silencing), 비활성화 또는 하향조절(down-regulation)을 의미한다.
본 발명에 있어서, 상기 A4GALT 유전자 편집된 유도만능줄기세포는 A4GALT 유전자의 엑손 3번(exon 3)의 염기서열에 변이가 일어난 것일 수 있다.
본 발명에 있어서, 상기 유전자 편집은 CRISPR-Cas9 유전자 편집 시스템을 이용하는 것일 수 있다.
본 발명의 구체적인 일 실시예에서는 GLA 유전자 제거를 위해 가이드 RNA의 표적서열 7개(서열번호 1 내지 7의 염기서열)를 선별하였으며, 선별된 표적서열에 대한 sgRNA(sgA4GALT#1 내지 sgA4GALT#7)를 각각 합성하여 유도만능줄기세포(iPSC)에 도입함으로써 A4GALT 유전자가 편집(넉아웃)된 유도만능줄기세포(iPSC)를 제조하였다(실시예 1 참조). 이때, 상기 sgRNA를 도입하는 iPSC는 정상인 유래 iPSC, 파브리병 환자 유래 iPSC(환자 맞춤형 iPSC) 또는 GLA 유전자가 제거된 iPSC(질환 맞춤형 iPSC)일 수 있으며, 본 발명의 구체적일 일실시예에서는 파브리병 환자 유래 iPSC 및 GLA 유전자가 제거된 iPSC를 이용하여 A4GALT 유전자가 편집(넉아웃)된 유도만능줄기세포(질환 치료형 iPSC; WTC11-Fb-GLA(-)-A4GALT(-) 및 Fb2-A4GALT(-))를 제조하였다.
본 발명에 있어서, 상기 A4GALT 유전자 편집된 유도만능줄기세포는 Gb3의 축적을 억제시키는 것일 수 있고, 상기 A4GALT 유전자 편집된 유도만능줄기세포는 층판소체(zebra body) 생성을 억제시키는 것일 수 있다.
본 발명의 구체적인 일 실시예에서는 상기 방법으로 A4GALT 유전자 편집된 유도만능줄기세포(질환 치료형 iPSCs)를 제조하였으며, 본 발명의 질환 맞춤형 iPSCs, 환자 맞춤형 iPSCs, 질환 치료형 iPSCs 및 정상군 iPSCs와, 이들 각각의 iPSCs로부터 분화된 신장 오가노이드에 대하여 GLA 활성화, Gb3의 축적 정도, zebra body 존재 여부 등을 전자 현미경, 면역형광염색 및 네프론 마커 염색 등을 통해 확인한 결과, 환자 맞춤형 및 질환 맞춤형 iPSC 및 신장 오가노이드에 비해 본 발명의 질환 치료형 iPSC 및 신장 오가노이드에서 Gb3 축적이 현저히 감소되며, 파브리병의 특징적인 병리현상인 Zebra body가 생성되지 않음을 확인하여 파브리병을 예방 또는 치료할 수 있음을 입증하였다(실시예 2 내지 5 참조).
본 발명에서 용어, "파브리병 환자 유래 유도만능줄기세포(환자 맞춤형 iPSC)"는 파브리병 환자의 말초혈액 세포(Peripheral Blood Cell, PBMC)로부터 리프로그래밍(reprogramming) 과정을 통해 전분화능(pluripotency)을 가지도록 유도된 세포를 의미한다. 본 발명의 구체적인 일 실시예에서는 파브리병 환자 혈액의 PBMC로부터 리프로그래밍을 통하여 환자 맞춤형(Fb2) 유도만능줄기세포(iPSC)를 제조하였다(준비예 1 참조).
본 발명에서 용어, "GLA 유전자 제거 유도만능줄기세포(질환 맞춤형 iPSC)"는 CRISPR-Cas9 유전자 편집 시스템을 이용하여 GLA 유전자가 넉아웃된 유도만능줄기세포를 의미한다. 본 발명에서 용어, "GLA(galactosidase alpha) 유전자"는 alpha-galactosidase A(α-GalA) 효소를 암호화 하는 유전자를 의미한다. 본 발명의 구체적인 일 실시예에서는 sgRNA로 sgGLA#4을 이용하여 유전자 가위 및 전기천공법을 통해 iPSC에 도입하여 GLA 유전자 제거된 질환 맞춤형(WTC11-Fb-GLA(-)) 유도만능줄기세포(iPSC)를 제조하였다(준비예 1 참조).
본 발명에서 용어, "오가노이드(organoid)"란 3D 입체구조를 가지는 세포덩어리를 의미하며 동물 등에서 수집, 취득하지 않은 인공적인 배양과정을 통해 제조한 축소되고 단순화된 버전의 모사(mimic) 장기로서, 기관(organ) 또는 그의 일부의 기능성 및/또는 조직학적 구조(histological structure)를 모사(mimic)하거나 또는 닮은 인공 인 비트로 구조체(in vitro construct)를 의미한다. 상기 오가노이드는 성체줄기세포(adult stem cell, ASC), 배아줄기세포(embryonic stem cell, ESC) 또는 유도만능줄기세포(induced pluripotent stem cell, iPSC) 등의 줄기세포에서 유래될 수 있으며 자가재생 및 분화능력으로 인해 3차원으로 배양될 수 있다. 상기 오가노이드는 세포의 성장 과정에서 주변 환경과 상호 작용하도록 허용되는 환경을 가질 수 있다. 본 발명에서 용어, "생체 장기 모사 모델"은 실제 인체장기가 작동하는 생리환경을 모사한 것을 의미하며, 본 발명에서는 신장 오가노이드 일 수 있다.
본 발명에서 용어, "분화"는 세포가 분열하여 증식하며 전체 개체가 성장하는 동안에 세포의 구조나 기능이 특수화되는 현상을 의미한다. 즉, 생물의 세포, 조직 등이 각각에게 주어지는 역할을 수행하기 위해 적합한 형태 및 기능으로 변하는 과정을 말하며, 예를 들어, 배아줄기세포와 같은 전분화능 줄기세포가 외배엽, 중배엽 및 내배엽 세포로 변하는 과정뿐 아니라 조혈모세포가 적혈구, 백혈구, 혈소판 등으로 변하는 과정, 즉 전구세포가 특정 분화형질을 발현하게 되는 것도 모두 분화에 포함될 수 있다.
본 발명의 상기 조성물은 약학적으로 허용 가능한 담체를 추가로 포함할 수 있다.
상기 "약학적으로 허용 가능한 담체"란 생물체를 자극하지 않으면서, 주입되는 화합물의 생물학적 활성 및 특성을 저해하지 않는 담체 또는 희석제를 의미할 수 있다. 본 발명에 사용 가능한 상기 담체의 종류는 특별히 제한되지 아니하며 당해 기술 분야에서 통상적으로 사용되고 약학적으로 허용되는 담체라면 어느 것이든 사용할 수있다. 상기 담체의 비제한적인 예로는, 식염수, 멸균수, 링거액, 완충 식염수, 알부민 주사 용액, 덱스트로즈용액, 말토 덱스트린 용액, 글리세롤, 에탄올 등을 들 수 있다. 이들은 단독으로 사용되거나 2 종 이상을 혼합하여 사용될 수 있다.
약학적으로 허용 가능한 담체를 포함하는 상기 조성물은 경구 또는 비경구의 여러 가지 제형일 수 있다. 제제화할 경우에는 보통 사용하는 충진제, 증량제, 결합제, 습윤제, 붕해제, 계면활성제 등의 희석제 또는 부형제를 사용하여 조제된다.
상세하게는, 경구 투여를 위한 고형제제에는 정제, 환제, 산제, 과립제, 캡슐제 등이 포함되며, 이러한 고형제제는 상기 화합물에 적어도 하나 이상의 부형제, 예를 들면, 전분, 칼슘카보네이트, 수크로오스, 락토오스, 젤라틴 등을 섞어 조제될 수 있다. 또한, 단순한 부형제 이외에 마그네슘 스테아레이트, 탈크 같은 윤활제들도 사용될 수 있다. 경구를 위한 액상 제제로는 현탁제, 내용액제, 유제, 시럽제 등이 해당되는데, 흔히 사용되는 단순 희석제인 물, 액체 파라핀 이외에 여러 가지 부형제, 예를 들면 습윤제, 감미제, 방향제, 보존제 등이 포함될 수 있다. 비경구 투여를 위한 제제에는 멸균된 수용액, 비수성용제, 현탁제, 유제, 동결건조 제제 및 좌제가 포함된다. 비수성용제, 현탁제로는 프로필렌글리콜, 폴리에틸렌 글리콜, 올리브 오일과 같은 식물성 오일, 에틸올레이트와 같은 주사 가능한 에스테르 등이 사용될 수 있다. 좌제의 기제로는 위텝솔, 마크로골, 트윈 61, 카카오지, 라우린지, 글리세로젤라틴 등이 사용될 수 있다.
본 발명의 상기 조성물은 약학적으로 유효한 양으로 투여할 수 있다.
상기 "약학적으로 유효한 양"은 의학적 치료에 적용 가능한 합리적인 수혜/위험 비율로 질환을 치료하기에 충분한 양을 의미하며, 유효 용량 수준은 개체 종류 및 중증도, 연령, 성별, 감염된 바이러스 종류, 약물의 활성, 약물에 대한 민감도, 투여 시간, 투여 경로 및 배출 비율, 치료 기간, 동시 사용되는 약물을 포함한 요소 및 기타 의학 분야에 잘 알려진 요소에 따라 결정될 수 있다. 예를 들어, 상기 조성물 또는 이들의 약학적으로 허용가능한 염은 각각 1일 0.0001 내지 1000 mg/kg으로, 바람직하게는 0.001 내지 100 mg/kg으로 투여할 수 있다.
상기 투여는 어떠한 적절한 방법으로 환자에게 본 발명의 조성물을 도입하는 것을 의미하며, 상기 조성물의 투여 경로는 목적 조직에 도달할 수 있는 한 어떠한 일반적인 경로를 통하여 투여될 수 있다. 복강 내 투여, 정맥 내 투여, 근육 내 투여, 피하 투여, 피내 투여, 경구 투여, 국소 투여, 비 내 투여될 수 있으나, 이에 제한되지는 않는다.
본 발명의 조성물을 매일 투여 또는 간헐적으로 투여해도 좋고, 1일당 투여 횟수는 1회 또는 2~3회로 나누어 투여하는 것이 가능하다. 또한, 본 발명의 조성물은 파브리병의 예방 또는 치료를 위하여 단독으로, 또는 다른 약물 치료와 병용하여 사용할 수 있다. 상기 요소를 모두 고려하여 부작용 없이 최소한의 양으로 최대 효과를 얻을 수 있는 양을 투여하는 것이 중요하며, 당업자에 의해 용이하게 결정될 수 있다.
상기 개체란, 파브리병이 발병하였거나 발병할 수 있는 인간과, 원숭이, 소, 말, 양, 돼지, 닭, 칠면조, 메추라기, 고양이, 개, 마우스, 쥐, 토끼 또는 기니아피그를 포함한 모든 동물을 의미한다. 본 발명의 약학적 조성물을 개체에게 투여함으로써 상기 질환을 효과적으로 예방 또는 치료할 수 있다면 개체의 종류는 제한없이 포함된다.
또한, 본 발명은 A4GALT(alpha 1,4-Galactosyltransferase) 유전자 편집된 유도만능줄기세포(induced pluripotent stem cell, iPSC)를 유효성분으로 포함하는, 세포치료제를 제공한다.
본 발명에서 사용되는 용어, "세포치료제"는 개체로부터 분리, 배양 및 특수한 조작을 통해 제조된 세포 및 조직으로 치료, 진단 및 예방의 목적으로 사용되는 의약품(미국 FDA 규정)으로서, 세포 혹은 조직의 기능을 복원시키기 위하여 살아있는 자가, 동종, 또는 이종 세포를 체외에서 증식 선별하거나 다른 방법으로 세포의 생물학적 특성을 변화시키는 등의 일련의 행위를 통하여 치료, 진단 및 예방의 목적으로 사용되는 의약품을 의미한다.
또한, 본 발명은 A4GALT(alpha 1,4-Galactosyltransferase) 유전자의 발현 억제제를 유효성분으로 포함하는, 파브리병의 예방 또는 치료용 약학적 조성물을 제공한다.
본 발명에 있어서, 상기 A4GALT 유전자의 발현 억제제는 A4GALT 유전자의 엑손 3번(exon 3)의 염기서열을 타겟으로 하는 sgRNA를 포함하는 것일 수 있다.
본 발명에 있어서, 상기 sgRNA는 A4GALT(alpha 1,4-Galactosyltransferase) 유전자의 발현 억제를 위한 유전자 치료제로 이용되는 것일 수 있다.
또한, 본 발명은 A4GALT(alpha 1,4-Galactosyltransferase) 유전자 편집된 유도만능줄기세포(induced pluripotent stem cell, iPSC)의 약학적으로 유효한 양을 개체에 투여하는 단계;를 포함하는, 파브리병의 치료 방법을 제공한다.
본 발명의 치료 방법은 상기 A4GALT(alpha 1,4-Galactosyltransferase) 유전자 편집된 유도만능줄기세포 또는 상기 A4GALT 유전자 발현 억제제를 치료적 유효량으로 개체에 투여하는 것을 포함한다. 특정 개체에 대한 구체적인 치료적 유효량은 달성하고자 하는 반응의 종류와 정도, 경우에 따라 다른 제제가 사용되는지의 여부를 비롯한 구체적 조성물, 개체의 연령, 체중, 일반건강 상태, 성별 및 식이, 투여 시간, 투여 경로 및 조성물의 분비율, 치료기간, 구체적 조성물과 함께 사용되거나 동시 사용되는 약물을 비롯한 다양한 인자와 의약 분야에 잘 알려진 유사 인자에 따라 다르게 적용하는 것이 바람직하다. 일일 투여량은 본 발명의 약학조성물의 양을 기준으로 0.0001 내지 100 ㎎/㎏이고, 바람직하게는 0.01 내지 100 ㎎/㎏이며, 하루 1 ~ 6 회 투여될 수 있다. 다만, 각 유효성분의 복용량 또는 투여량이 각 유효성분의 함량을 지나치게 높게 포함하여 부작용을 초래하지 않을 정도이어야 함은 당업자에게 자명하다. 따라서 본 발명의 목적에 적합한 조성물의 유효량은 전술한 사항을 고려하여 결정하는 것이 바람직하다.
상기 개체는 임의의 포유동물에 적용가능하며, 상기 포유동물은 인간 및 영장류뿐만 아니라, 소, 돼지, 양, 말, 개 및 고양이 등의 가축을 포함한다.
본 발명의 재조합 펩타이드 또는 재조합 벡터는, 쥐, 생쥐, 가축, 인간 등의 포유동물에 다양한 경로로 투여될 수 있다. 투여의 모든 방식은 예상될 수 있는데, 예를 들면, 경구, 직장 또는 정맥, 근육, 피하, 자궁내 경막 또는 뇌혈관내(intracerebroventricular) 주사에 의해 투여될 수 있다.
또한, 본 발명은 A4GALT(alpha 1,4-Galactosyltransferase) 유전자의 발현 억제제의 약학적으로 유효한 양을 개체에 투여하는 단계;를 포함하는, 파브리병의 치료 방법을 제공한다.
또한, 본 발명은 CRISPR/Cas 시스템으로 서열번호 1 내지 서열번호 7로 이루어진 군에서 선택된 sgRNA(signal gide RNA)을 이용하여 유도만능줄기세포(induced pluripotent stem cell, iPSC)의 A4GALT(alpha 1,4-Galactosyltransferase) 유전자가 편집된, A4GALT 유전자 편집 유도만능 줄기세포를 제공한다.
또한, 본 발명은 개체로부터 단리된 유도만능줄기세포(induced pluripotent stem cell, iPSC)에, A4GALT(alpha 1,4-Galactosyltransferase)의 엑손 3번(exon 3) 위치 특이적인, 서열번호 1 내지 서열번호 7로 이루어진 군에서 선택된 sgRNA(signal gide RNA)의 RNP(Riboneucleoproteine) 복합체를 도입하는 단계;
상기 RNP 복합체가 도입된 유도만능줄기세포에, Cas9 단백질을 도입하는 단계; 및
상기 Cas9 단백질이 도입된 유도만능줄기세포에서, A4GALT 유전자 넉아웃(knock-out)을 확인하는 단계;를 포함하는 CRISPR/Cas 시스템으로 A4GALT 유전자가 편집된 유도만능 줄기세포의 제조 방법을 제공한다.
이하, 본 발명을 실시예에 의해 상세히 설명한다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명이 하기 실시예에 의해 한정되는 것은 아니다.
준비예 1. 파브리병 질환 맞춤형 및 환자 맞춤형 유도만능줄기세포의 준비
1-1. 정상군 (WTC11) 및 파브리병 환자 맞춤형 (Fb2) 유도만능줄기세포
서울 성모 병원 신장내과에서 파브리병 환자가 연결되었고, 병원의 임상연구 윤리 심의위원회의 심사를 통과한 후, 환자(임의로 Fb2 환자로 명명하였음)로부터 획득한 혈액으로부터 파브리병 환자 맞춤형 (Fb2) 유도만능줄기세포(induced pluripotent stem cells, iPSCs)를 제조하였으며, 상기 iPSCs의 제조는 서울 성모병원 가톨릭 대학교의 IRB 승인을 받아 진행하였다(IRB 승인번호: KC19TISI0901).
구체적으로, 전혈을 PBS로 희석하고 피콜농도구배(Ficoll gradient)를 통해 850×g에서 30분간 원심 분리하였다. 분리된 말초혈액 세포(Peripheral Blood Cell, PBMC)는 CC110 사이토카인 칵테일이 보충된 StemSpan 배양액(STEM CELL Technological, Vacouver, British Colubia, Canada)에 재현탁 후 세포를 5% CO2, 37℃에서 5일 동안 배양하였다. 3×105 개의 PBMC를 24-웰 플레이트(well plate)에 플레이팅 한 후, CytoTune-iPSC 센다이 리프로그래밍 키트의 바이러스 형질도입법(3×105개의 세포당 7.5의 다중성 감염 유도)을 이용하여 리프로그래밍을 유도하였다. 바이러스를 처리 후 1,160×g, 37℃에서 30분간 원심분리 한 후 5% CO2, 37℃에서 배양하였다. 다음날 바이러스 처리한 세포를 비트로넥틴(Vitronectin; Life Technologies)으로 코팅한 24-웰 플레이트로 옮겨 플레이팅 한 뒤 1,160×g, 37℃에서 10분간 원심분리 한 후 5% CO2, 37℃에서 배양하였다. 리프로그래밍된 세포는 TeSRTM-E7TM/ReproTeSRTM (STEM CELL) 배양액에서 배양되었다. 적절한 만능유도줄기세포의 콜로니를 얻기 위해 5×103 개의 세포를 비트로넥틴으로 코팅한 6-웰 플레이트에 플레이팅 한 뒤 배양을 유지하며 만능유도줄기세포 형태를 Motic AE2000 현미경을 사용하여 확인하였다.
대조군으로는 정상인의 혈액으로부터 정상군(WTC11) 유도만능줄기세포를 제조하였다.
1-2. 파브리병 질환 맞춤형 (WTC11-Fb-GLA(-)) 유도만능줄기세포
GLA 유전자 제거를 위해 GLA 유전자 exon 1 부위에 sgRNA (single-guide RNA)를 합성하여 GLA#4 가이드 RNA의 표적서열(AGGGATGTCCCAGGAAACGAGGG(PAM), 서열번호 9)을 선별하였으며, 선별한 가이드RNA는 RNP(Ribonucleoprotein) 복합체 상태로 4D-Nucleofector (Lonza, P3 Primary Cell 4D-Nucleofector ×Kit)를 이용하여 전기천공법으로 도입하였다. 파브리병 맞춤 iPSC 제작을 위한 유전자 가위 도입을 위해, RNP 복합체는 4μg Cas9 단백질과 in vitro transcribed sgRNA[T7 polymerase (New England BioLabs)를 활용, 제조사 프로토콜에 따라 제작] 4μg을 혼합하여 형성하고, 실온에서 10분 동안 혼합물을 인큐베이팅하였다. 상기 RNP 복합체는 20μl Primary P3 buffer 처리된 4×105 iPSC와 함께 핵소체 프로그램(nucleofector program) CA-137을 사용하여 전기천공을 수행하였고, GLA#4 가이드 RNA를 iPSC에 도입하여, GLA 유전자를 제거한 파브리병 질환 맞춤형 유도만능줄기세포(WTC11-Fb-GLA(-))를 제작하였다.
실시예 1. 파브리병 질환 치료형 유도만능줄기세포의 준비
파브리병 맞춤 iPSC 제작을 위한 유전자 가위 도입을 위해 4D nucleofector(Lonza, P3 Primary Cell 4D-Nucleofector×Kit)를 이용하여 CA-137 program 으로 전기천공법을 진행하였다.
A4GALT 유전자 exon3 부위에 7개의 sgRNA (single-guide RNA)를 합성하여 스크리닝 하였고, 이중 sgA4GALT#5를 선별하였으며, 구체적인 방법은 하기에 기재하였다.
1-1. A4GALT 유전자 제거 만능유도줄기세포 제작
파브리병 질환 치료형 유도만능줄기세포를 제조하기 위해, 먼저, A4GALT 유전자를 넉아웃하기 위해서 'http://www.rgenome.net/casdesigner/'에서 예측된 가이드 서열 중 비표적효과(off-target effect)가 적게 예상되는 mismatch 1,0,0인 가이드 RNA(guide RNA)의 표적서열을 선별하였다(도 1). 7개의 선별된 sgRNA의 표적서열(PAM 포함 염기서열)은 도 1에 나타난 바와 같다.
선별한 가이드RNA는 RNP(Ribonucleoprotein) 복합체 상태로 4D-Nucleofector (Lonza, P3 Primary Cell 4D-Nucleofector×Kit)를 이용하여 전기천공법으로 도입하였다. 파브리병 맞춤 iPSC 제작을 위한 유전자 가위 도입을 위해, RNP 복합체는 4μg Cas9 단백질과 in vitro transcribed sgRNA[T7 polymerase (New England BioLabs)를 활용, 제조사 프로토콜에 따라 제작] 4μg을 혼합하여 형성하고, 실온에서 10분 동안 혼합물을 인큐베이팅하였다. 상기 RNP 복합체는 20μl Primary P3 buffer 처리된 4×105 iPSC와 함께 핵소체 프로그램(nucleofector program) CA-137 을 사용하여 전기천공을 수행하였다. 유전자 제거 확인을 위한 표적화 심층 시퀀싱(Targeted deep sequencing)을 위해 A4GALT 유전자를 넉아웃한 iPSC는 Genomic DNA Extraction Kit(Favorgen)를 이용하여 제조사 프로토콜에 따라 genomic DNA(gDNA)를 추출하였다. 표적 부위 증폭을 위해 Phusion High-Fidelity DNA Polymerase PCR Polymerase (NEB)을 사용하여 100ng genomic DNA(gDNA)를 증폭시켰다. 심층 시퀀싱 라이브러리 생성을 위해 TruSeq HT Dual Index Primers(Illumina, San Diego, CA, USA)를 사용하여 앰플리콘을 한 번 더 증폭시킨 후 Illumina Miniseq System을 이용하여 Paired-end sequencing을 수행하였다. A4GALT 유전자의 인델(indel) 빈도는 'http://www.rgenome.net/'에서 계산하였다.
1-2. 파브리병 질환 맞춤형 유도만능줄기세포를 이용한 A4GALT 유전자 제거 만능유도줄기세포 제작 후 validation 및 심층 시퀀싱
인델빈도를 분석하여 validation한 결과, A4GALT 유전자 제거를 위해 A4GALT 유전자 exon 3 부위에 7개의 sgRNA (single-guide RNA)를 합성하여 스크리닝한 7개의 가이드 RNA중 A4GALT 가이드 RNA가 가장 높은 인델빈도를 보였다(도 1).
A4GALT#5 가이드 RNA를 이용하여 상기 준비예 1-2의 파브리병 질환 맞춤형 iPSC에 도입하여 A4GALT 유전자를 제거한 파브리병 질환 치료형 유도만능줄기세포(WTC11-Fb-GLA(-)-A4GALT(-))를 제작한 후, 단일 세포(single cell) 분리 배양을 실시하였다. 분리된 single cell에 대하여 표적화 심층 시퀀싱(Targeted deep sequencing)에 의해 분석한 결과, 표적 가이드 RNA 서열(AACGTGCCAGTAGATCATGATGG, 서열번호 8) 주위로 +1bp 삽입(insertion)된 단일 클론(single clone)을 확보하였다.
1-3. 파브리병 환자 맞춤형 유도만능줄기세포를 이용한 A4GALT 유전자 제거 유도만능줄기세포의 제작
또한, 상기 실시예 1-2와 동일한 방법으로 A4GALT#5 가이드 RNA를 이용하여 상기 준비예 1-1의 파브리병 환자 맞춤형 iPSC(Fb2)에 도입하여 A4GALT 유전자를 제거한 파브리병 질환 치료형 유도만능줄기세포(Fb2-A4GALT(-))를 제작하였다.
실시예 2. 파브리병 질환 치료용 유도만능줄기세포의 줄기세포 특성 분석
2-1. 유도만능줄기세포의 핵형 분석
핵형분석을 위해 상기 준비예 1 및 실시예 1을 통해 얻어진 정상군 (WTC11), 질환 맞춤형 (WTC11-Fb-GLA(-)), 환자 맞춤형 (Fb2) 및 질환 치료형 (WTC11-Fb-GLA(-)-A4GALT(-), Fb2-A4GALT(-)) 각각의 유도만능줄기세포를 100 ng/ml 콜시미드(colcemid)를 2시간 처리 후 샘플링하였다. 각 세포는 1% 구연산 나트륨(sodium citrate)으로 저장 상태(hypotonic condition)를 구성 후, 카노이 용액(Carnoy's solution)으로 고정시켰다. 핵형분석은 G-분염법(G-banding)을 통해 분석되었다.
2-2. 유도만능줄기세포의 면역형광 분석
면역형광 분석을 위해 상기 준비예 1 및 실시예 1을 통해 얻어진 정상군 (WTC11), 질환 맞춤형 (WTC11-Fb-GLA(-)), 환자 맞춤형 (Fb2) 및 질환 치료형 (WTC11-Fb-GLA(-)-A4GALT(-), Fb2-A4GALT(-)) 각각의 유도만능줄기세포 1×105 개를 1.25 % Matrigel  hESC-Qualified Matrix (Corning, NY, USA)로 코팅한 24-웰 플레이트에 플레이팅 후 3일 동안 배양하였다. 3일 뒤 세포는 4% 포름알데하이드로 15분간 상온에서 고정 후 PBS로 3회 세척하였다. 고정한 세포는 5% 당나귀 혈청 (Millipore, St Louis, MO, USA) 및 0.3% Triton X-100을 함유한 PBS를 처리하여 1시간 동안 상온에서 block한 뒤, 1차 항체를 항체 희석용액 (Antibody Dilution Buffer, ADB; 2% 소혈청 알부민 및 0.5% Triton X-100을 함유한 PBS)에 희석하여 4℃에서 밤새 배양하였다. 다음 날 PBS로 1차 항체를 세척한 뒤 2차 항체인 Alexa Fluor 488 (Invitrogen, Thermo Fisher Scientific, Pittsburgh, PA)과 DAPI를 함께 상온에서 2시간 동안 배양하였다. 상기 실험에서 사용한 1차 항체는 다음과 같다; anti-TRA-1-81 (1:100 dilution, Santa Cruz Biotechnology, Dallas, TX, USA), anti-SSEA4 (1:100 dilution, Santa Cruz Biotechnology), anti-NANOG (1:100 dilution, Santa Cruz Biotechnology), anti-PAX6 (ectodermal, 1:100 dilution, Santa Cruz Biotechnology), anti-SM22A (mesodermal, 1:100 dilution, Santa Cruz Biotechnology), anti-FOXA2 (endodermal, 1:100 dilution, Santa Cruz Biotechnology). 염색이 완료된 세포는 마운팅 후 confocal microscope ZEISS LSM700 (Carl Zeiss, Jena, Germany)을 이용하여 형광 결과를 분석하였다.
2-3. 유도만능줄기세포의 유세포 분석
유세포 분석을 위해 상기 준비예 1 및 실시예 1을 통해 얻어진 정상군 (WTC11), 질환 맞춤형 (WTC11-Fb-GLA(-)), 환자 맞춤형 (Fb2) 및 질환 치료형 (WTC11-Fb-GLA(-)-A4GALT(-), Fb2-A4GALT(-)) 각각의 유도만능줄기세포 1×105개에 anti-SSEA4를 첨가 후 4℃의 암 조건에서 반응시키고, FACS 버퍼(0.002% sodium azide, 0.2% BSA/PBS)로 세척 후, FACS 버퍼에 재부유하여 유세포 분석기로 분석을 진행하였다. 또한, 유도만능줄기세포 1×105개를 cytofix/cytoperm 으로 30분간 반응시킨 다음, Perm wash로 세척한 후 anti-TRA-1-81, anti-NANOG를 각각 첨가 후 4℃의 암 조건에서 반응시키고, Perm wash로 세척 후, FACS 버퍼에 재부유하여 유세포 분석기로 분석을 진행하였다.
2-4. 질환 치료형 유도만능줄기세포의 다분화능 및 3계열 분화능 검증
상기 준비예 1 및 실시예 1을 통해 얻어진 정상군 (WTC11), 질환 맞춤형 (WTC11-Fb-GLA(-)), 환자 맞춤형 (Fb2) 및 질환 치료형 (WTC11-Fb-GLA(-)-A4GALT(-), Fb2-A4GALT(-)) 각각의 유도만능줄기세포의 핵형을 분석한 결과, 핵형은 정상소견을 보여 유도만능줄기세포 분화 과정에서 핵형의 변화는 발생하지 않은 것을 확인하였다(도 2). 또한, 상기 세포들의 콜로니 형성을 통해 전형적인 유도만능줄기세포의 집락 소견을 확인하였다(도 3).
한편, 상기 각 유도만능줄기세포의 다분화능(pluripotency) 및 3계열(trilineage) 분화능을 관련 마커를 이용하여 공초점 현미경과 유세포 분석으로 평가한 결과, 줄기세포성 마커인 NANOG, SSEA-4, TRA-1-81 단백질 및 three germ layer성 마커인 PAX6, SM22A, FOXA2 단백질의 발현이 정상 세포 수준으로 나타나는 것을 확인하였다(도 5).
실시예 3. 파브리병 질환 치료용 유도만능줄기세포의 GLA 활성 및 Gb3 축적량 분석
3-1. α-GalA 활성 분석
α-GalA 활성(GLA activity)은 합성 기질인 4-메틸움벨리페릴-α-D-갈락토피라노시드(4MU-α-Gal, Abcam, Cambridge, UK)를 사용하여 형광 검정으로 평가하였다. 상기 준비예 1 및 실시예 1을 통해 제조된 정상군 (WTC11), 질환 맞춤형 (WTC11-Fb-GLA(-)), 환자 맞춤형 (Fb2) 및 질환 치료형 (WTC11-Fb-GLA(-)-A4GALT(-), Fb2-A4GALT(-)) 각각의 유도만능줄기세포의 펠렛을 인산 완충액(0.1M 시트레이트/0.2M 인산 완충액, pH 4.6, 1% 트리톤 X-100)에 용해된 5mM 4MU-α-Gal 40μl와 혼합하였다. 반응물을 37℃에서 배양하고, 100μl의 0.5M 글리신 완충액(pH 10.3)을 첨가하여 종결시켰다. SpectraMax Gemini XS 형광 판독기(Molecular Device, Sunnyvale CA)를 사용하여 형광 측정(Ex365/Em450)에 의해, 4 메틸움벨리페론(4 MU)의 방출을 측정하였다. 4 MU의 연속 2배 희석을 사용하여 표준 곡선을 생성하였다. 효소 활성은 세포 1mg/1ml당 검정배양시간 1시간당 방출된 pmol 4MU (pmol/hr/mg)로 표시하였다.
3-2. Gb3 및 라이소-Gb3 기질 정량화 및 분석
상기 준비예 1 및 실시예 1을 통해 얻어진 정상군 (WTC11), 질환 맞춤형 (WTC11-Fb-GLA(-)), 환자 맞춤형 (Fb2) 및 질환 치료형 (WTC11-Fb-GLA(-)-A4GALT(-), Fb2-A4GALT(-)) 각각의 유도만능줄기세포에서 파브리 기질인 글로보트리아오실세라마이드(Gb3)를 질량 분광법을 통해 측정하였다. 유도만능줄기세포 3×106개를 PBS로 세척 후, 1 mL의 PBS에서 기계적으로 분쇄하였다. 분쇄한 세포는 300×g, 4℃에서 5분간 원심분리 한 후 상등액을 분리하여 샘플링하였다. 샘플은 침전 용매[내부 표준 N-트리코사노일 세라마이드 트리헥소사이드(C23:0, Matreya)를 용액으로 스파이크한 MeOH]를 첨가한 후 실온에서 30분 배양 후 원심분리하고, 유리 LC-MS 바이알 내의 90μl의 단일 블랭크 매트릭스(DMSO/MeOH 1:1 + 0.1% FA)에 샘플 10μl를 첨가하였다. Gb3 사슬 길이 24:0에 대해 샘플을 분석하고, 세라마이드 트리헥소사이드(Gb3, Matreya)로 생성된 표준 곡선에 대해 측정하였다. 글로보트리아오실스핑고신(라이소-Gb3)은 내부 표준으로서의 글루코실스핑고신(Matreya) 및 라이소-세라마이드 트리헥소사이드(라이소-Gb3, Matreya)를 사용하여, 유사한 방식으로 측정하여 표준 곡선을 생성하였다. Lyso-Gb3 및 Gb3 LC-MS 분석에서 사용한 standard chromatogram은 도 4에 나타난 바와 같다.
3-3. 질환 치료형 유도만능줄기세포에서 GLA 활성 및 Gb3 정량화
상기 준비예 1 및 실시예 1을 통해 얻어진 정상군 (WTC11), 질환 맞춤형 (WTC11-Fb-GLA(-)), 환자 맞춤형 (Fb2) 및 질환 치료형 (WTC11-Fb-GLA(-)-A4GALT(-), Fb2-A4GALT(-)) 각각의 유도만능줄기세포(iPSCs)에 대하여 각각 GLA 활성화와 Lyso-Gb3 및 Gb3의 양을 분석하였다.
정상군인 WTC11 iPSCs에 비해 질환 맞춤형 (WTC11-Fb-GLA(-)), 환자 맞춤형 (Fb2), 질환 치료형 (WTC11-Fb-GLA(-)-A4GALT(-), Fb2-A4GALT(-)) 각각의 iPSCs에서는 GLA 활성(GLA activity)이 현격하게 감소하였다(도 6 상단).
한편, Gb3의 양은 질환 맞춤형 (WTC11-Fb-GLA(-)) 및 환자 맞춤형 (Fb2) iPSCs에 비해 정상군인 WTC11 iPSCs 및 질환 치료형 (WTC11-Fb-GLA(-)-A4GALT(-), Fb2-A4GALT(-)) iPSCs에서는 현격하게 감소됨을 확인하였다(도 6 하단).
실시예 4. 파브리병 질환 치료용 유도만능줄기세포를 이용한 신장 오가노이드 제작
상기 준비예 1 및 실시예 1을 통해 확립한 각각의 유도만능줄기세포의 계대수 30과 60 사이인 것을 사용하여 신장 오가노이드 분화를 통해, 정상군(야생형) 신장 오가노이드, 질환 맞춤형 신장 오가노이드(GLA 유전자 제거된 질환 맞춤형 iPSCs를 이용한 신장 오가노이드), 환자 맞춤형 신장 오가노이드(파브리병 환자 Fb 유래의 환자 맞춤형 iPSCs를 이용한 신장 오가노이드), 질환 치료형 신장 오가노이드(WTC11-Fb-GLA(-)-A4GALT(-) 또는 Fb2-A4GALT(-) iPSCs를 이용한 신장 오가노이드)를 제작하였다.
신장 오가노이드 분화를 위해 각 유도만능줄기세포를 1.5 % Matrigel  hESC-Qualified Matrix (Corning)로 코팅한 24-웰 플레이트에 10 μM Y27632(BioGems, Rocky Hill, NJ)를 함유한 mTeSR1 배양액 (Stem Cell Technologies)을 이용해 플레이팅(시딩, seeding) 하였다(day 1). 다음 날(시딩 후 2일째, day2), 3D 배양을 위해 2.5 % Matrigel  hESC-Qualified Matrix (Corning)을 함유한 mTeSR1 배양액 (Stem Cell Technologies)으로 교환하고, 시딩 후 3일째(day 3)에는 mTeSR1 배양액 (Stem Cell Technologies)으로 교환하였다. 시딩 후 4.5일째(day 4.5)에 L-glutamine과 12 μM CHIR99021 (Stem Cell Technologies)이 함유된 ARPMI 배양액(Thermo Fisher Scientific)으로 1.5일(36시간) 동안 배양한 뒤, L-glutamine과 B27 supplement (Thermo Fisher Scientific)가 함유된 ARPMI 배양액(Thermo Fisher Scientific)으로 교환하며, 이 후로 2-3일마다 배양액을 교환하여 신장 오가노이드로의 분화를 유도하였다. 분화는 18-21일까지 배양을 유지하며 신장 오가노이드 형태를 Motic AE2000 현미경을 사용하여 확인하였으며, 시딩 후 21일째에 각 유도만능줄기세포로부터 분화된 신장 오가노이드를 수득하였다.
신장 오가노이드 분화 프로토콜은 도 7에 나타난 바와 같다(Nat Commun. 2015 Oct 23;6:8715. doi: 10.1038).
실시예 5. 신장 오가노이드의 특성 분석
5-1. 신장 오가노이드의 면역형광 분석
정상군 (WTC11), 질환 맞춤형 (WTC11-Fb-GLA(-)), 환자 맞춤형 (Fb2) 및 질환 치료형 (WTC11-Fb-GLA(-)-A4GALT(-), Fb2-A4GALT(-)) 각각의 유도만능줄기세포로부터 분화된 신장 오가노이드의 면역형광 분석을 위해, 분화된 신장 오가노이드를 4% 포름알데하이드로 15분간 상온에서 고정 후 PBS로 3회 세척하였다. 고정한 오가노이드는 5% 당나귀 혈청 (Millipore, St Louis, MO, USA) 및 0.3% Triton X-100을 함유한 PBS를 처리하여 1시간 동안 상온에서 block한 뒤, 1차 항체를 항체 희석용액 (Antibody Dilution Buffer, ADB; 2% 소혈청 알부민 및 0.5% Triton X-100을 함유한 PBS)에 희석하여 4℃에서 밤새 배양하였다. 다음 날 PBS로 1차 항체를 세척한 뒤 2차 항체와 DAPI를 함께 상온에서 2시간 동안 배양하였다. 상기 실험에서 사용한 1차 항체는 다음과 같다; anti-biotinylated LTL (1:100 dilution, Vector Labs, Burlingame, CA), anti-E-cadherin (1:100 dilution, BD Bioscience, San Jose, CA, USA), anti-CD77 (1:100 dilution, BD Bioscience), anti-PODXL (1:100 dilution, R&D systems, Minneapolis, MN, USA).
5-2. 전자현미경(Electron microscopy, EM) 분석
실시예 4에서 분화된 신장 오가노이드를 4% 파라포름알데하이드 및 2.5% 글루타알데하이드를 포함하는 0.1 M 포스페이트 완충액에서 4 ℃로 밤새 고정시켰다. 0.1 M 포스페이트 완충액으로 세척하고 오가노이드를 1% osmium tetroxide를 포함한 동일한 완충액에서 4 ℃로 1시간 동안 고정시킨 후, 에탄올 용액 및 아세톤으로 탈수화 작업을 거쳐 Epon 812에 매립하였다. Ultramicrotome (Leica Ultracut UCT, Germany)에 의해 초박형 섹션(70-80 nm)을 얻은 뒤, 섹션을 우라닐 아세테이트 및 납 시트레이트로 이중 염색하고, 투과 전자 현미경(JEM 1010, Japan) 60 kV로 분석하였다.
5-3. 질환 치료용 유도만능줄기세포 유래 신장 오가노이드의 특성 확인
질환 치료형 (WTC11-Fb-GLA(-)-A4GALT(-), Fb2-A4GALT(-)) 각각의 유도만능줄기세포를 신장 오가노이드로 분화 후, 조직학적 특성을 Nephron marker staining 면역형광염색(IF) 및 공초점 현미경으로 분석한 결과, 근위세뇨관 마커인 LTL, 원위세뇨관 마커인 E-cadherin 및 족세포 마커인 PODXL를 이용하여 각각의 단백질이 발현을 통해 신장 오가노이드로 분화가 되었음을 확인하였다(도 8).
또한, Gb3 침착 여부를 면역형광염색(IF)으로 확인한 결과, 질환 맞춤형 (WTC11-Fb-GLA(-)) 및 환자 맞춤형 (Fb2) 오가노이드에서는 뚜렷한 Gb3 축적(침착)이 확인되었으나, 질환 치료형 (WTC11-Fb-GLA(-)-A4GALT(-), Fb2-A4GALT(-)) 오가노이드에서는 Gb3 침착이 없는 것으로 확인되었다(도 9).
한편, 정상군 (WTC11), 질환 맞춤형 (WTC11-Fb-GLA(-)), 환자 맞춤형 (Fb2) 및 질환 치료형 (WTC11-Fb-GLA(-)-A4GALT(-), Fb2-A4GALT(-)) 각각의 유도만능줄기세포로부터 분화된 신장 오가노이드에 대하여, 상기 실시예 3과 동일한 방법을 이용하여 Lyso-Gb3 및 Gb3 LC-MS 분석을 실시한 결과, 정상군 (WTC11)에 비해 질환 맞춤형 (WTC11-Fb-GLA(-)), 환자 맞춤형 (Fb2) 오가노이드에서는 Gb3가 현저하게 증가된 것과 반면에, 질환 치료형 (WTC11-Fb-GLA(-)-A4GALT(-), Fb2-A4GALT(-))서는 Gb3가 현저히 감소됨으로써, 질환 치료형 iPCs가 파브리병의 병리적인 증상을 억제하는 효과가 있음을 나타내었다(도 10).
마지막으로, 전자현미경(EM) 분석 결과, 질환 맞춤형 (WTC11-Fb-GLA(-)), 환자 맞춤형 (Fb2) 오가노이드에서는 파브리병의 특징적인 병리현상인 층판소체(Zebra body)가 관찰되었으며, 정상군 (WTC11), 질환 치료형 (WTC11-Fb-GLA(-)-A4GALT(-), Fb2-A4GALT(-))서는 zebra body가 검출되지 않는 것을 확인하였다(도 11).
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예 및 실험예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야 한다.

Claims (25)

  1. A4GALT(alpha 1,4-Galactosyltransferase) 유전자의 엑손 3번(exon 3) 특이적 sgRNA(signal gide RNA).
  2. 제 1항에 있어서,
    상기 sgRNA는 서열번호 1 내지 서열번호 7로 이루어진 군으로부터 선택되는 1종 이상의 염기서열 또는 이와 상보적인 염기서열 포함하는 것인, sgRNA.
  3. 제 1항에 있어서,
    상기 sgRNA는 CRISPR-Cas9 유전자 편집에 이용하는 것인, sgRNA.
  4. 제 1항에 있어서,
    상기 A4GALT 유전자로 코딩된 단백질은 글로보트리아오실세라마이드(globotriaosylceramide, Gb3) 합성을 촉매하는 것인, sgRNA.
  5. A4GALT(alpha 1,4-Galactosyltransferase) 유전자 편집된 유도만능줄기세포(induced pluripotent stem cell, iPSC)를 유효성분으로 포함하는, 파브리병 예방 또는 치료용 약학적 조성물.
  6. 제 5항에 있어서,
    상기 A4GALT 유전자 편집된 유도만능줄기세포는 A4GALT 유전자가 넉아웃된 유도만능줄기세포인 것을 특징으로 하는, 파브리병 예방 또는 치료용 약학적 조성물.
  7. 제 5항에 있어서,
    상기 A4GALT 유전자 편집된 유도만능줄기세포는 A4GALT 유전자의 엑손 3번(exon 3)의 염기서열에 변이가 일어난 것을 특징으로 하는, 파브리병 예방 또는 치료용 약학적 조성물.
  8. 제 5항에 있어서,
    상기 유전자 편집은 CRISPR-Cas9 유전자 편집 시스템을 이용하는 것을 특징으로 하는, 파브리병 예방 또는 치료용 약학적 조성물.
  9. 제 5항에 있어서,
    상기 유전자 편집은 A4GALT 유전자의 엑손 3번(exon 3)의 염기서열을 타겟으로 하는 sgRNA를 이용하는 것을 특징으로 하는, 파브리병 예방 또는 치료용 약학적 조성물.
  10. 제 9항에 있어서,
    상기 sgRNA는 서열번호 1 내지 서열번호 7로 이루어진 군으로부터 선택되는 1종 이상의 염기서열 또는 이와 상보적인 염기서열 포함하는 것을 특징으로 하는, 파브리병 예방 또는 치료용 약학적 조성물.
  11. 제 5항에 있어서,
    상기 A4GALT 유전자 편집된 유도만능줄기세포는 Gb3의 축적을 억제시키는 것을 특징으로 하는, 파브리병 예방 또는 치료용 약학적 조성물.
  12. 제 5항에 있어서,
    상기 A4GALT 유전자 편집된 유도만능줄기세포는 층판소체(zebra body) 생성을 억제시키는 것을 특징으로 하는, 파브리병 예방 또는 치료용 약학적 조성물.
  13. A4GALT(alpha 1,4-Galactosyltransferase) 유전자 편집된 유도만능줄기세포(induced pluripotent stem cell, iPSC)를 유효성분으로 포함하는, 세포치료제.
  14. 제 13항에 있어서,
    상기 A4GALT 유전자 편집된 유도만능줄기세포는 A4GALT 유전자의 엑손 3번(exon 3)의 염기서열에 변이가 일어난 것을 특징으로 하는, 세포치료제.
  15. 제 13항에 있어서,
    상기 유전자 편집은 A4GALT 유전자의 엑손 3번(exon 3)의 염기서열을 타겟으로 하는 sgRNA를 이용하는 것을 특징으로 하는, 세포치료제.
  16. 제 13항에 있어서,
    상기 sgRNA는 서열번호 1 내지 서열번호 7로 이루어진 군으로부터 선택되는 1종 이상의 염기서열 또는 이와 상보적인 염기서열 포함하는 것을 특징으로 하는, 세포치료제.
  17. A4GALT(alpha 1,4-Galactosyltransferase) 유전자의 발현 억제제를 유효성분으로 포함하는, 파브리병의 예방 또는 치료용 약학적 조성물.
  18. 제 17항에 있어서,
    상기 A4GALT 유전자의 발현 억제제는 A4GALT 유전자의 엑손 3번(exon 3)의 염기서열을 타겟으로 하는 sgRNA를 포함하는 것을 특징으로 하는, 파브리병 예방 또는 치료용 약학적 조성물.
  19. 제 18항에 있어서,
    상기 sgRNA는 서열번호 1 내지 서열번호 7로 이루어진 군으로부터 선택되는 1종 이상의 염기서열 또는 이와 상보적인 염기서열 포함하는 것을 특징으로 하는, 파브리병 예방 또는 치료용 약학적 조성물.
  20. A4GALT(alpha 1,4-Galactosyltransferase) 유전자 편집된 유도만능줄기세포(induced pluripotent stem cell, iPSC)의 약학적으로 허용가능한 양을 개체에 투여하는 단계;를 포함하는, 파브리병의 치료 방법.
  21. A4GALT(alpha 1,4-Galactosyltransferase) 유전자의 발현 억제제의 약학적으로 허용가능한 양을 개체에 투여하는 단계;를 포함하는, 파브리병의 치료 방법.
  22. 제 21항에 있어서,
    상기 A4GALT 유전자의 발현 억제제는 A4GALT 유전자의 엑손 3번(exon 3)의 염기서열을 타겟으로 하는 sgRNA를 포함하는 것을 특징으로 하는, 방법.
  23. 제 21항에 있어서,
    상기 sgRNA는 서열번호 1 내지 서열번호 7로 이루어진 군으로부터 선택되는 1종 이상의 염기서열 또는 이와 상보적인 염기서열 포함하는 것을 특징으로 하는, 방법.
  24. CRISPR/Cas 시스템으로 서열번호 1 내지 서열번호 7로 이루어진 군에서 선택된 sgRNA(signal gide RNA)을 이용하여 유도만능줄기세포(induced pluripotent stem cell, iPSC)의 A4GALT(alpha 1,4-Galactosyltransferase) 유전자가 편집된, A4GALT 유전자 편집 유도만능 줄기세포.
  25. 개체로부터 단리된 유도만능줄기세포(induced pluripotent stem cell, iPSC)에, A4GALT(alpha 1,4-Galactosyltransferase)의 엑손 3번(exon 3) 위치 특이적인, 서열번호 1 내지 서열번호 7로 이루어진 군에서 선택된 sgRNA(signal gide RNA)의 RNP(Riboneucleoproteine) 복합체를 도입하는 단계;
    상기 RNP 복합체가 도입된 유도만능줄기세포에, Cas9 단백질을 도입하는 단계; 및
    상기 Cas9 단백질이 도입된 유도만능줄기세포에서, A4GALT 유전자 넉아웃(knock-out)을 확인하는 단계;를 포함하는 CRISPR/Cas 시스템으로 A4GALT 유전자가 편집된 유도만능 줄기세포의 제조 방법.
PCT/KR2023/003861 2022-04-19 2023-03-23 A4galt 유전자 편집을 통한 파브리병의 치료 방법 WO2023204463A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0048317 2022-04-19
KR1020220048317A KR20230149381A (ko) 2022-04-19 2022-04-19 A4galt 유전자 편집을 통한 파브리병의 치료 방법

Publications (1)

Publication Number Publication Date
WO2023204463A1 true WO2023204463A1 (ko) 2023-10-26

Family

ID=88420282

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/003861 WO2023204463A1 (ko) 2022-04-19 2023-03-23 A4galt 유전자 편집을 통한 파브리병의 치료 방법

Country Status (2)

Country Link
KR (1) KR20230149381A (ko)
WO (1) WO2023204463A1 (ko)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102253326B1 (ko) * 2020-05-13 2021-05-18 가톨릭대학교 산학협력단 파브리병의 생체 장기 모사 모델 및 이의 제조방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102140321B1 (ko) 2018-10-04 2020-07-31 한국과학기술원 Tsp1 단백질 억제제를 유효성분으로 함유하는 파브리 병의 예방 또는 치료용 약학적 조성물

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102253326B1 (ko) * 2020-05-13 2021-05-18 가톨릭대학교 산학협력단 파브리병의 생체 장기 모사 모델 및 이의 제조방법

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CUI SHENG, SHIN YOO JIN, FANG XIANYING, LEE HANBI, EUM SANG HUN, KO EUN JEONG, LIM SUN WOO, SHIN EUNJI, LEE KANG IN, LEE JAE YOUNG: "CRISPR/Cas9-mediated A4GALT suppression rescues Fabry disease phenotypes in a kidney organoid model", TRANSLATIONAL RESEARCH, ELSEVIER, AMSTERDAM, NL, vol. 258, 1 August 2023 (2023-08-01), NL , pages 35 - 46, XP093100908, ISSN: 1931-5244, DOI: 10.1016/j.trsl.2023.02.005 *
DATABASE Nucleotide 8 November 2021 (2021-11-08), ANONYMOUS : "Homo sapiens alpha 1,4-galactosyltransferase (P blood group) (A4GALT), - Nucleotide - NCBI", XP093100903, retrieved from NCBI Database accession no. NM_001318038.3 *
KIM YOUNG-KYU; YU JI HOON; MIN SANG-HYUN; PARK SANG-WOOK: "Generation of a GLA knock-out human-induced pluripotent stem cell line, KSBCi002-A-1, using CRISPR/Cas9", STEM CELL RESEARCH, ELSEVIER, NL, vol. 42, 4 December 2019 (2019-12-04), NL , XP085988073, ISSN: 1873-5061, DOI: 10.1016/j.scr.2019.101676 *
KOK KEN, ZWIERS KIMBERLEY C., BOOT ROLF G., OVERKLEEFT HERMEN S., AERTS JOHANNES M. F. G., ARTOLA MARTA: "Fabry Disease: Molecular Basis, Pathophysiology, Diagnostics and Potential Therapeutic Directions", BIOMOLECULES, vol. 11, no. 2, pages 271, XP093100905, DOI: 10.3390/biom11020271 *

Also Published As

Publication number Publication date
KR20230149381A (ko) 2023-10-27

Similar Documents

Publication Publication Date Title
WO2022145832A1 (ko) 역분화줄기세포(ipsc) 유래 자연 살해 세포 및 이의 용도
CN113646423B (zh) 促进多能干细胞的胸腺上皮细胞和胸腺上皮细胞祖细胞的分化的方法
WO2011043524A1 (ko) 인간 유래 성체 줄기세포를 함유하는 항암용 조성물
WO2020235944A1 (ko) 장관 오가노이드의 제조 방법 및 이의 용도
WO2021230678A1 (ko) 효능이 증진된 줄기세포를 포함하는 세포 생착능 증진용 조성물
WO2019198995A1 (ko) 엑소좀 기반의 면역세포의 교차분화 방법
CN116264825A (zh) 包含干细胞来源外泌体的组合物及其制备方法
WO2012008733A2 (ko) 1기 태반조직 유래 줄기세포 및 이를 함유하는 세포치료제
WO2012173358A2 (ko) 정소의 체세포-유래의 다능성 줄기세포, 이의 제조방법 및 이를 포함하는 발기부전 치료용 약학 조성물
WO2018030630A1 (ko) Sox 유전자가 이입된 비바이러스성 미니써클 벡터 및 이의 제조방법
WO2021230609A1 (ko) 파브리병의 생체 장기 모사 모델 및 이의 제조방법
WO2023204463A1 (ko) A4galt 유전자 편집을 통한 파브리병의 치료 방법
WO2023219434A1 (ko) 혈액 적합성을 갖는 혈관 내 이식용 세포, 이의 제조방법 및 용도
WO2022019649A1 (ko) 효능이 증진된 줄기세포를 포함하는 항암용 조성물
WO2021125839A1 (ko) 인간 만능 줄기세포로부터 3d 오가노이드를 이용하여 미세교세포를 다량 확보하는 미세교세포의 분화방법
US20100330043A1 (en) Gpr125 as a marker for stem and progenitor cells and methods use thereof
WO2020209636A1 (ko) 소변세포로부터 신장전구세포로의 직접 역분화를 유도하는 방법 및 이의 방법으로 역분화된 신장전구세포를 포함하는 신장세포 손상 질환 예방 또는 치료용 약학 조성물
US11898168B2 (en) Methods of promoting esophageal differentiation of pluripotent stem cells
WO2021125844A1 (ko) 인간 만능 줄기세포로부터 제작된 3d 오가노이드를 해체하여 희소돌기아교세포를 다량 확보하는 분화방법
Yuan et al. Primary culture of germ cells that portray stem cell characteristics and recipient preparation for autologous transplantation in the rhesus monkey
WO2016048052A1 (ko) 비만세포 과립을 처리한 줄기세포 또는 그 배양물을 포함하는 면역질환 또는 염증질환의 예방 또는 치료용 약학조성물
WO2021002554A1 (ko) Cp1p 또는 이의 약학적으로 허용가능한 염을 유효성분으로 포함하는 줄기세포 증식 촉진용 조성물
WO2021107234A1 (ko) Hiv 감염 치료 또는 예방을 위한 ccr5/cxcr4 유전자 동시 넉아웃 환자맞춤형 조혈모세포 및 이의 제조방법
WO2019117454A1 (ko) 세포 소기관 스트레스 조절 인자를 이용하는 고효율 세포전환용 배지 첨가제
WO2024014721A1 (ko) 줄기세포 유래 엑소좀을 포함하는 항암 조성물 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23792043

Country of ref document: EP

Kind code of ref document: A1