WO2023204169A1 - 熱硬化性樹脂、その製造方法および利用 - Google Patents

熱硬化性樹脂、その製造方法および利用 Download PDF

Info

Publication number
WO2023204169A1
WO2023204169A1 PCT/JP2023/015294 JP2023015294W WO2023204169A1 WO 2023204169 A1 WO2023204169 A1 WO 2023204169A1 JP 2023015294 W JP2023015294 W JP 2023015294W WO 2023204169 A1 WO2023204169 A1 WO 2023204169A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
cured
thermosetting resin
prepreg
aromatic
Prior art date
Application number
PCT/JP2023/015294
Other languages
English (en)
French (fr)
Inventor
真理 吉武
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Publication of WO2023204169A1 publication Critical patent/WO2023204169A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G12/00Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
    • C08G12/02Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes
    • C08G12/04Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with acyclic or carbocyclic compounds
    • C08G12/06Amines
    • C08G12/08Amines aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G14/00Condensation polymers of aldehydes or ketones with two or more other monomers covered by at least two of the groups C08G8/00 - C08G12/00
    • C08G14/02Condensation polymers of aldehydes or ketones with two or more other monomers covered by at least two of the groups C08G8/00 - C08G12/00 of aldehydes
    • C08G14/04Condensation polymers of aldehydes or ketones with two or more other monomers covered by at least two of the groups C08G8/00 - C08G12/00 of aldehydes with phenols
    • C08G14/06Condensation polymers of aldehydes or ketones with two or more other monomers covered by at least two of the groups C08G8/00 - C08G12/00 of aldehydes with phenols and monomers containing hydrogen attached to nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/04Condensation polymers of aldehydes or ketones with phenols only of aldehydes
    • C08G8/08Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ
    • C08G8/16Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ with amino- or nitrophenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/34Condensation polymers of aldehydes or ketones with monomers covered by at least two of the groups C08L61/04, C08L61/18 and C08L61/20
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the present invention relates to a thermosetting resin, its manufacturing method, and its use.
  • Patent Document 1 discloses a curable resin composition containing a benzoxazine compound, a film and a prepreg using the same, and the like.
  • thermosetting resin that is decomposable after being cured.
  • thermosetting resin according to one embodiment of the present invention has a benzoxazine ring structure represented by general formula (I) in its main chain.
  • Ar 1 and Ar 2 represent trivalent aromatic groups derived from the phenol compound (A), Ar 1 and Ar 2 may be the same or different, R 1 represents a divalent aromatic group derived from the aromatic diamine compound (B1) and represented by any one or more of general formulas (II) to general formulas (V), R 2 represents a divalent aromatic group derived from the aromatic diamine compound (B2), R 1 and R 2 may be the same or different, n indicates 1 or more. ]
  • the asterisk indicates a bond;
  • the positional relationship of the main chain bonds other than R bonded to the four aromatic rings is meta or para, respectively, L4 and L6 each represent an oxy group, L5 represents any one or more of a single bond, an isopropylidene group, a sulfonyl group, a carbonyl group, and a 9,9-fluorenyl group, R is a substituent on the aromatic ring, and represents an aliphatic group having 1 to 10 carbon atoms, the number of R in each aromatic ring is 0 or 1 or more, and the number of R is 2 or more may be the same or different from each other, m7 and m8 each represent 0 or 1.
  • a method for producing a thermosetting resin is a method for producing a thermosetting resin having a benzoxazine ring structure in the main chain, a step (s1) of reacting the phenol compound (A), the aromatic diamine compound (B1), and the aldehyde compound (C); Furthermore, a step (s2) of reacting the aromatic diamine compound (B2), in this order,
  • the phenol compound (A) has an aldehyde group
  • the aromatic diamine compound (B1) is represented by one or more of the general formulas (IIa) to (Va).
  • R is a substituent on an aromatic ring, and represents an aliphatic group having 1 to 10 carbon atoms, and the number of R's is 0 or 1 or more, and when the number of R's is 2 or more, they are the same as each other. may be or be different; m1 and m2 each represent 0 or 1. ]
  • L1 represents any one or more of a single bond, an isopropylidene group, a sulfonyl group, a carbonyl group, a 9,9-fluorenyl group
  • R is a substituent on the aromatic ring, and represents an aliphatic group having 1 to 10 carbon atoms
  • the number of R in each aromatic ring is 0 or 1 or more
  • the number of R is 2 or more may be the same or different from each other
  • m3 and m4 each represent 0 or 1.
  • L2 and L3 each represent an oxy group
  • R is a substituent on the aromatic ring, and represents an aliphatic group having 1 to 10 carbon atoms
  • the number of R in each aromatic ring is 0 or 1 or more
  • the number of R is 2 or more may be the same or different from each other
  • m5 and m6 each represent 0 or 1.
  • L4 and L6 each represent an oxy group
  • L5 represents any one or more of a single bond
  • R is a substituent on the aromatic ring, and represents an aliphatic group having 1 to 10 carbon atoms
  • the number of R in each aromatic ring is 0 or 1 or more
  • the number of R is 2 or more may be the same or different from each other
  • m7 and m8 each represent 0 or 1.
  • thermosetting resin is a thermosetting resin having a benzoxazine ring structure in its main chain
  • the uncured molded article formed by molding the thermosetting resin has remoldability and toughness
  • the remoldability refers to the property that the uncured molded body can be divided into a plurality of parts and then integrated by heating at 200 ° C. or less
  • the toughness refers to the property that the uncured molded product does not break or crack before and after the heating, Even if the division and integration and the heating are repeated one or more times, the remoldability and toughness are maintained.
  • thermosetting resin that can be decomposed after being cured.
  • FIG. 3 is a diagram showing the results of a degradability evaluation test in each example and comparative example.
  • FIG. 7 is a diagram showing the evaluation results of remoldability of the uncured film of Example 12. It is a figure explaining the production method of carbon fiber reinforced plastic (CFRP).
  • FIG. 7 is a diagram showing the results of observing the presence or absence of voids inside the plate-shaped CFRP obtained in Example 14 using a digital camera for a microscope. It is a figure showing the result of amine decomposition property evaluation of CFRP in each example and comparative example.
  • FIG. 7 is a diagram showing the recovery results of recycled carbon fiber (r-CF) in Example 22.
  • FIG. 7 is a diagram showing the results of SEM observation of recycled carbon fiber (r-CF) of Example 23. It is a figure which shows the procedure of the repeated deformability test of the prepreg laminated body in an Example and a comparative example. It is a figure which shows the procedure of the free-standing property test of the prepreg laminated body in an Example and a comparative example.
  • thermosetting resin has a benzoxazine ring structure represented by general formula (I) in its main chain.
  • Ar 1 and Ar 2 represent trivalent aromatic groups derived from the phenol compound (A).
  • aromatic group refers to an organic group having at least one aromatic ring.
  • Ar 1 and Ar 2 may be the same or different.
  • the phenol compound (A) may be one type or two or more types.
  • R 1 represents a divalent aromatic group derived from the aromatic diamine compound (B1) and represented by any one or more of general formulas (II) to (V) described below.
  • R 2 represents a divalent aromatic group derived from the aromatic diamine compound (B2).
  • R 1 and R 2 may be the same or different.
  • the aromatic diamine compound (B1) and the aromatic diamine compound (B2) may each be one type or two or more types.
  • n represents the degree of polymerization and is 1 or more. From the viewpoint of improving mechanical properties, n is preferably 1.5 or more, more preferably 2 or more, and even more preferably 3 or more. Further, from the viewpoint of maintaining fluidity during molding, n is preferably 50 or less, more preferably 40 or less, and even more preferably 30 or less.
  • the imino group is a dynamic covalent bond, ie, a degradable (cleavable) covalent bond. Therefore, the imino group of the thermosetting resin can be cleaved under acidic or basic conditions after being cured.
  • a method for cleaving imino groups under acidic conditions is solvolysis. Examples of the method for cleaving an imino group under basic conditions include a method in which a basic substance is added to the imino group and a cleavage reaction or a bond exchange reaction is performed.
  • thermosetting resin can be chemically decomposed to generate a low molecular weight compound after being cured. Therefore, it is also possible to recycle the cured product of the thermosetting resin by chemical recycling or the like.
  • conventional benzoxazine compounds for example, Pd type
  • imino groups do not show decomposition as shown in the comparative example below.
  • the thermosetting resin preferably has a number average molecular weight (Mn) of 1000 or more, more preferably 1500 or more, and even more preferably 2000 or more. Further, from the viewpoint of processability, the thermosetting resin preferably has a weight average molecular weight (Mw) of 100,000 or less, more preferably 50,000 or less, and even more preferably 20,000 or less.
  • Mn number average molecular weight
  • Mw weight average molecular weight
  • the number average molecular weight and weight average molecular weight can be measured by a gel permeation chromatograph (GPC) as shown in Examples below.
  • the phenol compound (A) is preferably a phenol compound having an aldehyde group.
  • the phenol compound having an aldehyde group include 4-hydroxybenzaldehyde, 2-hydroxybenzaldehyde, vanillin, and the like. Among these, 4-hydroxybenzaldehyde and/or vanillin are preferred, and 4-hydroxybenzaldehyde is more preferred, from the viewpoint of ease of synthesizing the thermosetting resin.
  • R 1 is represented by any one or more of the following general formulas (II) to (V) derived from the aromatic diamine compound (B1).
  • an asterisk indicates a bond.
  • the positional relationship of the main chain bonds other than R bonded to the aromatic ring is meta or para.
  • R is a substituent on the aromatic ring, and represents an aliphatic group having 1 to 10 carbon atoms.
  • the number of R is 0 or 1 or more. When the number of R's is two or more, they may be the same or different.
  • m1 and m2 each represent 0 or 1.
  • an asterisk indicates a bond.
  • the positional relationship of the main chain bonds other than R bonded to the two aromatic rings is meta or para, respectively.
  • L1 represents one or more of a single bond, an isopropylidene group, a sulfonyl group, a carbonyl group, and a 9,9-fluorenyl group.
  • R is a substituent on the aromatic ring, and represents an aliphatic group having 1 to 10 carbon atoms.
  • the number of R in each aromatic ring is 0 or 1 or more. When the number of R's is two or more, they may be the same or different.
  • m3 and m4 each represent 0 or 1.
  • an asterisk indicates a bond.
  • the positional relationship of the main chain bonds other than R bonded to the three aromatic rings is meta or para, respectively.
  • L2 and L3 each represent an oxy group.
  • R is a substituent on the aromatic ring, and represents an aliphatic group having 1 to 10 carbon atoms.
  • the number of R in each aromatic ring is 0 or 1 or more. When the number of R's is two or more, they may be the same or different.
  • m5 and m6 each represent 0 or 1.
  • an asterisk indicates a bond.
  • the positional relationship of the main chain bonds other than R bonded to the four aromatic rings is meta or para, respectively.
  • L4 and L6 each represent an oxy group.
  • L5 represents one or more of a single bond, an isopropylidene group, a sulfonyl group, a carbonyl group, and a 9,9-fluorenyl group.
  • R is a substituent on the aromatic ring, and represents an aliphatic group having 1 to 10 carbon atoms.
  • the number of R in each aromatic ring is 0 or 1 or more. When the number of R's is two or more, they may be the same or different.
  • m7 and m8 each represent 0 or 1.
  • the aromatic diamine compound (B1) is represented by one of the following general formulas (IIa) to (Va).
  • general formula (IIa) to general formula (Va) the definitions of L1 to 6, R, and m1 to m8 are the same as in general formula (II) to general formula (V).
  • aromatic diamine compounds (B1) include 1,4-diaminobenzene, 1,3-diaminobenzene, 2,4-diaminotoluene, 2 , 6-diaminotoluene, 3-(aminomethyl)benzylamine, 4-(aminomethyl)benzylamine, 3,3'-sulfonyldianiline, 4,4'-sulfonyldianiline, 3,3'-diaminobenzophenone, 4,4'-diaminobenzophenone, 1,3-bis(4-aminophenoxy)benzene, 1,3-bis(3-aminophenoxy)benzene, 2,2-bis[4-(4-aminophenoxy)phenyl] Propane, bis[4-(4-aminophenoxy)phenyl]sulfone, 4,4'-bis(3-aminophenoxy)biphenyl, 4,4
  • the aromatic diamine compound (B2) may be the same as or different from the aromatic diamine compound (B1).
  • the aromatic diamine compound (B2) may be an aromatic diamine compound represented by any of the general formulas (IIa) to (Va) described above, or may be other aromatic diamine compounds.
  • Other aromatic diamine compounds include 1,4-bis(4-aminophenoxy)benzene, 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane, and 2,2'-dimethylbiphenyl- Examples include 4,4'-diamine.
  • thermosetting resin may or may not contain a structure other than the benzoxazine ring structure represented by formula (I).
  • it may have a structure derived from a monocyclic phenol compound for capping the terminal of the structure represented by formula (I).
  • thermosetting resin may include a structure derived from an aliphatic monoamine or a (poly)oxyalkylene monoamine compound.
  • the curable resin according to an embodiment of the present invention is a thermosetting resin having a benzoxazine ring structure in its main chain, and the uncured molded article formed by molding the thermosetting resin is It has remoldability and toughness, and the remoldability refers to the property that the uncured molded body can be divided into a plurality of parts and then integrated by heating at 200°C or less, and the toughness refers to the property that the uncured molded product does not break or crack before and after the heating, and that even if the division and integration and the heating are repeated one or more times, the remoldability and the Toughness is maintained.
  • the remoldability refers to the property that the uncured molded product has thermoplasticity and therefore can be remoulded. Further, the property of maintaining remoldability and toughness even after division, integration, and heating are repeated one or more times can also be expressed as cyclic thermoplasticity.
  • the upper limit of the heating temperature at which the uncured molded body can be unified after being divided into a plurality of parts is 200°C or less, preferably 180°C or less, and preferably 170°C or less.
  • the temperature is more preferably 160°C or lower, even more preferably 150°C or lower. If the temperature is 220° C. or higher, hardening may progress too much during the remolding process and it may not be possible to integrate the parts. Furthermore, if it is below 100°C, remolding may be insufficient and integration may not be possible. That is, the lower limit of the heating temperature is preferably over 100°C.
  • the time to be maintained at that temperature is, for example, preferably 1 minute or more and 5 hours or less, more preferably 5 minutes or more and 3 hours or less, and 10 minutes or more and 2 hours or less. Most preferred.
  • a method for producing a thermosetting resin according to an embodiment of the present invention is a method for producing a thermosetting resin having a benzoxazine ring structure in its main chain, the method comprising: a phenol compound (A) and an aromatic diamine compound.
  • the step (s1) of reacting (B1) with the aldehyde compound (C), and the step (s2) of reacting the aromatic diamine compound (B2) are included in this order.
  • the phenol compound (A) has an aldehyde group
  • the aromatic diamine compound (B1) is represented by one or more of general formulas (IIa) to general formulas (Va).
  • thermosetting resin can be produced by the production method.
  • a benzoxazine ring can be formed by step (s1).
  • an imino group can be formed by a reaction between an aldehyde group derived from the phenol compound (A) and an amino group derived from the aromatic diamine compound (B2).
  • the above-mentioned compounds can be used as the phenol compound (A), the aromatic diamine compound (B1), and the aromatic diamine compound (B2).
  • the aldehyde compound (C) is not particularly limited, but formaldehyde is preferred.
  • formaldehyde it is possible to use paraformaldehyde, which is a polymer, or formalin, which is in the form of an aqueous solution.
  • the molar ratio between the phenol compound (A) and the aromatic diamine compound (B1) in step (s1) is preferably about 2:1, but may be from 2.5/1 to 1.95/1. good.
  • the molar ratio of the phenol compound (A) to the aldehyde compound (C) in step (s1) is preferably 1/1 to 1/20, more preferably 1/2 to 1/6.
  • a benzoxazine ring can be suitably produced.
  • the molar ratio between the benzoxazine compound obtained in step (s1) and the aromatic diamine compound (B2) is preferably about 1:1, but preferably 1/0.5 to 1/1. It may be 05.
  • the reactions in step (s1) and step (s2) may be performed in a solvent.
  • solvents include halogen solvents such as chloroform, non-halogen aromatic hydrocarbon solvents such as toluene and xylene, ether solvents such as tetrahydrofuran (THF), and cyclic diethers such as 1,4-dioxane and 1,3-dioxolane.
  • halogen solvents such as chloroform
  • non-halogen aromatic hydrocarbon solvents such as toluene and xylene
  • ether solvents such as tetrahydrofuran (THF)
  • cyclic diethers such as 1,4-dioxane and 1,3-dioxolane.
  • High polarity and high boiling point such as system solvents, N,N-dimethylformamide, N,N-dimethylacetamide, N-methyl-2-pyrrolidone, N,N-diethylacetamide, N-methylcaprol
  • Examples include solvents, mixed solvents of non-halogen hydrocarbon solvents and aliphatic alcohol solvents, and the like.
  • Examples of aliphatic alcohol solvents include methanol, ethanol, propanol, butanol (including structural isomers), and the like. From the viewpoint of suppressing side reactions, it is preferable to use a non-halogen aromatic hydrocarbon solvent in step (s1) and a halogen solvent or a cyclic diether solvent in step (s2).
  • the reaction temperature in step (s1) and/or step (s2) is preferably 25 to 150°C, more preferably 40 to 120°C.
  • the reaction time of step (s1) and/or step (s2) is preferably 0.5 to 12 hours, more preferably 1 to 10 hours.
  • the reaction solution may be added to a non-halogenated aliphatic hydrocarbon solvent such as hexane. Furthermore, in step (s1) and/or step (s2), the product may be washed using an aliphatic alcohol solvent.
  • thermosetting resin as a main component, and may contain other thermosetting resins, thermoplastic resins, and compounding agents as subcomponents.
  • thermosetting resins examples include epoxy resins, thermosetting modified polyphenylene ether resins, thermosetting polyimide resins, silicone resins, melamine resins, urea resins, allyl resins, phenolic resins, unsaturated polyester resins, Examples include maleimide resins, alkyd resins, furan resins, polyurethane resins, and aniline resins.
  • thermoplastic resins examples include thermoplastic epoxy resins, thermoplastic polyimide resins, and the like.
  • Compounding agents include flame retardants, nucleating agents, antioxidants, anti-aging agents, heat stabilizers, light stabilizers, ultraviolet absorbers, lubricants, flame retardant aids, antistatic agents, and antifogging agents, as required. agents, fillers, softeners, plasticizers, colorants, etc. Each of these may be used alone, or two or more types may be used in combination. It is also possible to use reactive or non-reactive solvents.
  • One embodiment of the present invention also includes an uncured molded article formed by molding the above-mentioned thermosetting resin or composition. Moreover, one embodiment of the present invention also includes a cured molded article obtained by curing the above-mentioned thermosetting resin, composition, or uncured molded article.
  • an uncured molded product is intended to be a molded product whose degree of hardening is less than 1%
  • a cured molded product is intended to be a molded product whose degree of cure is 1 to 100%. That is, the cured molded product also includes a molded product that is only partially cured.
  • the degree of curing can be calculated from the ratio of the areas of exothermic peaks obtained from the DSC curves of the uncured resin and the uncured molded article or the cured molded article.
  • the dimensions and shapes of the uncured molded product and the cured molded product are not particularly limited, and examples include film, sheet, plate, and block shapes.
  • the uncured molded product and the cured molded product may include another layer (for example, an adhesive layer).
  • the glass transition temperature (Tg) of the uncured molded product is preferably 300°C or lower, more preferably 250°C or lower, and even more preferably 200°C or lower. Further, the glass transition temperature of the uncured molded product is preferably 30°C or higher, more preferably 40°C or higher, and even more preferably 50°C or higher from the viewpoint of heat resistance.
  • the glass transition temperature of the cured molded product is preferably 150°C or higher, more preferably 200°C or higher, and even more preferably 220°C or higher.
  • the upper limit of the glass transition temperature of the cured molded product is not particularly limited, but may be, for example, 400° C. or lower.
  • the thermal stability of the uncured molded product and the cured molded product can be evaluated by the 5% weight loss temperature (Td5).
  • the 5% weight loss temperature of the uncured molded product is preferably 100°C or higher, more preferably 150°C or higher, and even more preferably 200°C or higher.
  • the 5% weight loss temperature of the cured molded product is preferably 250°C or higher, more preferably 300°C or higher, and even more preferably 320°C or higher.
  • the tensile modulus of the uncured molded body and the cured molded body is preferably 10 GPa or less, more preferably 8 GPa or less, and even more preferably 5 GPa or less from the viewpoint of mechanical properties.
  • the tensile modulus of the uncured molded product and the cured molded product is preferably 0.1 GPa or more, more preferably 0.5 GPa or more, and even more preferably 1 GPa or more from the viewpoint of ease of handling. preferable.
  • the tensile strength at break of the uncured molded product and the cured molded product is preferably 5 MPa or more, more preferably 10 MPa or more, and even more preferably 50 MPa or more from the viewpoint of resistance to breakage.
  • the tensile elongation at break of the uncured molded body and the cured molded body is preferably 1% or more, more preferably 3% or more, and even more preferably 5% or more from the viewpoint of mechanical properties.
  • the method of molding the uncured molded product and the cured molded product is not particularly limited, and a method of molding by casting a solution obtained by dissolving the above-mentioned thermosetting resin or composition in a solvent onto a base material (casting) method), a method of pressing and molding the above-mentioned thermosetting resin or composition (press method), and the like.
  • Solvents used in the casting method include N,N-dimethylformamide (DMF), tetrahydrofuran (THF), chloroform, N,N-dimethylacetamide, N-methyl-2-pyrrolidone, N,N-diethylacetamide, and N-methyl.
  • Examples include caprolactam, ⁇ -butyrolactone, cyclohexanone, dimethyl sulfoxide, cyclopentanone, 1,4-dioxane, and 1,3-dioxolane.
  • the pressure in the pressing method is not particularly limited, but may be, for example, 0.1 to 5.0 MPa.
  • the molding temperature of the uncured molded product is not particularly limited, but is preferably at least room temperature and less than 200°C, more preferably from 40 to 180°C.
  • the temperature is preferably 60 to 160°C, more preferably 60 to 160°C.
  • the curing temperature of the cured molded product (the highest temperature if the temperature is gradually increased) is not particularly limited, but is preferably 200 to 300°C, more preferably 210 to 280°C, and 220 to 300°C. More preferably, the temperature is between 260°C and 260°C.
  • the uncured molded product can be used as a precursor of a cured molded product, and can also be used, for example, as a curable adhesive sheet.
  • the cured molded product can be suitably used for electronic parts and devices, and their materials, especially for multilayer substrates, laminates, sealants, adhesives, etc. that require excellent dielectric properties, and for other purposes. It can also be used for applications such as aircraft parts, automobile parts, and construction parts.
  • the cured molded product may contain reinforcing fibers from the viewpoint of improving the mechanical strength of the cured molded product.
  • the reinforcing fibers include inorganic fibers, organic fibers, metal fibers, and reinforcing fibers with a hybrid structure combining these.
  • the reinforcing fibers may be one type or two or more types.
  • inorganic fibers include carbon fibers, graphite fibers, silicon carbide fibers, alumina fibers, tungsten carbide fibers, boron fibers, and glass fibers.
  • organic fibers include aramid fibers, high-density polyethylene fibers, other general nylon fibers, and polyester fibers.
  • the metal fiber include fibers of stainless steel, iron, and the like.
  • examples of the metal fibers include carbon-coated metal fibers obtained by coating metal fibers with carbon. Among these, from the viewpoint of increasing the strength of the cured molded product, the reinforcing fibers are preferably carbon fibers.
  • the carbon fibers are subjected to sizing treatment, but they may be used as they are.If necessary, fibers that use a small amount of sizing agent may be used, or they may be treated with organic solvents, heat treated, etc.
  • the sizing agent can also be removed using existing methods.
  • a fiber bundle of carbon fibers may be opened in advance using air or a roller, and a treatment may be performed to facilitate impregnation of resin between the single yarns of carbon fibers.
  • One embodiment of the present invention also includes prepreg or semi-preg formed by impregnating reinforcing fibers with the above-mentioned thermosetting resin or composition.
  • semi-preg refers to a composite in which reinforcing fibers are partially impregnated with a thermosetting resin or composition (semi-impregnated state) and integrated.
  • prepreg can be obtained from the semi-preg.
  • prepreg can be obtained by further heating and melting semi-preg to impregnate reinforcing fibers with resin. That is, in this specification, prepreg can be said to be something in which the reinforcing fibers are impregnated with resin to a more advanced degree than semi-preg.
  • Semi-preg or prepreg may be obtained, for example, by stacking the cured molded product on the front and back sides of a sheet (reinforced fiber plain weave material) in which reinforcing fibers are pre-impregnated with resin and pressing at a predetermined temperature and predetermined pressure. .
  • the cured molded product can be used as a carbon fiber composite material.
  • Carbon fiber composite materials are also called carbon fiber reinforced plastics (CFRP).
  • the method for producing the carbon fiber composite material is not particularly limited, but for example, a method using semi-preg or prepreg, which is a sheet of carbon fibers impregnated with a resin, or a method of impregnating carbon fibers (bundled or woven) with a liquid resin. You may also use the method of The above-mentioned cured molded product may be molded into a semi-preg or prepreg, and the semi-preg or prepreg may be used for producing a carbon fiber composite material.
  • a carbon fiber composite material is cited here as an example, as mentioned above, usable reinforcing fibers are not limited to carbon fibers. That is, in one embodiment of the present invention, a fiber composite material (reinforced fiber composite material) is prepared by impregnating reinforcing fibers with the above-mentioned thermosetting resin or composition and curing the thermosetting resin or composition. (also referred to as materials) are also included.
  • a fiber composite material made only of the semi-preg or prepreg according to the present invention is mentioned, but a prepreg or semi-preg made by impregnating reinforcing fibers with the semi-preg or prepreg according to the present invention and another resin or a composition thereof. They may be laminated together to form a fiber composite material.
  • the other resins are not particularly limited, but include, for example, [3. Composition], other thermosetting resins and thermoplastic resins can be mentioned.
  • the above-mentioned composition has the above-mentioned other resin as a main component, and includes, for example, [3.
  • the composition may contain other thermosetting resins (excluding the other resins mentioned above), thermoplastic resins (excluding the other resins mentioned above), and compounding agents listed in [Composition]. That is, one embodiment of the present invention includes a fiber composite material obtained by impregnating reinforcing fibers with the above thermosetting resin or composition and curing the thermosetting resin or composition, and another resin. Alternatively, it also includes a fiber composite material in which the composition is inseparably integrated with a fiber composite material obtained by impregnating reinforcing fibers with the composition.
  • the semi-preg or prepreg has the property of being able to be repeatedly deformed (also referred to as repeated deformability).
  • repeat deformability refers to, for example, the property that semi-preg or prepreg can be deformed into another shape.
  • Repeated deformability also includes the property that semi-preg or prepreg can be deformed into another shape and cured by heating. It also includes the property that once semi-preg or prepreg is laminated to obtain a semi-preg laminate and a prepreg laminate, respectively, the laminate can be deformed into another shape.
  • the property also includes the ability to repeatedly perform a series of treatments such as curing and molding a prepreg, semi-preg, prepreg laminate, or semi-preg laminate, then deforming it into another shape, and re-hardening it by heating. .
  • the semi-preg or prepreg has a property that it can be cured in a free-standing state.
  • the "free standing state” refers to a state in which the free standing shape is maintained.
  • free standing shape refers to any shape that one wishes to impart after molding without the need for physical support, such as a curved shape.
  • the property that can be cured in a free-standing state refers to the property that can be cured in a free-standing state when a laminate containing a prepreg having an arbitrary shape desired to be given after molding, for example a curved shape, is heated using an oven or the like. , refers to the property of maintaining its shape (free-standing shape) even after heating without the need for a physical support.
  • a laminate containing prepreg is also expressed as a prepreg laminate.
  • the property that can be cured in a free-standing state is also expressed as free-standing property or self-supporting property.
  • the method for forming the fiber composite material is not particularly limited, but includes a step of impregnating reinforcing fibers with the thermosetting resin or composition to obtain prepreg or semi-preg, and pre-curing the prepreg or semi-preg to increase the degree of curing.
  • the method may include the steps of obtaining a pre-cured prepreg of more than 0% to 99%, and curing the pre-cured prepreg to obtain a fiber composite material.
  • pre-curing means partially curing prepreg or semi-preg.
  • the molding method may further include a step of deforming the prepreg or semi-preg before pre-curing the prepreg or semi-preg.
  • the molding method may further include, before curing the pre-cured prepreg, deforming the pre-cured prepreg to obtain a free-standing pre-cured prepreg.
  • the degree of curing of the pre-cured prepreg may be 99% or less, preferably 90% or less, and more preferably 80% or less. It is preferable that the pre-cured prepreg has both remoldability and free-standing properties, but the degree of curing of the pre-cured prepreg that is preferable for having each property is different.
  • the degree of curing is preferably over 0% to 50%, more preferably over 0% to 40%, even more preferably over 0% to 30%, and even more preferably over 0% to 20%. is most preferred.
  • the degree of curing is preferably 50% to 99%, more preferably 60% to 99%, and most preferably 70% to 99%.
  • the preferred range of degree of curing differs depending on whether the pre-cured prepreg is in a state before or after remolding. This is because when remolding a pre-cured prepreg, the degree of cure may increase slightly. Therefore, the preferred range of degree of curing is different for pre-cured prepregs that require re-moldability (i.e. the state before re-forming) and pre-cured prepregs that require free-standing properties (i.e. the state after re-molding). .
  • One embodiment of the present invention also includes a solvent-soluble decomposition product obtained by decomposing the above-mentioned cured molded product under acidic or basic conditions.
  • decomposition under acidic conditions is solvolysis.
  • Decomposition under basic conditions includes, for example, adding a basic substance to an imino group and causing a cleavage reaction or a bond exchange reaction.
  • one embodiment of the present invention also includes a method for producing a decomposed product soluble in a solvent, which includes a step of decomposing the above-mentioned cured molded product under acidic or basic conditions.
  • solvolysis means to cleave an imine bond through a reaction between a solvent molecule and an imine bond to obtain a decomposed product.
  • a method for solvolyzing a cured molded product under acidic conditions includes a method of bringing the cured molded product into contact with an acidic solution containing an acid and a solvent.
  • the solvent in the acidic solution include water, tetrahydrofuran (THF), and mixed solvents thereof.
  • acids include acetic acid, hydrochloric acid, nitric acid, and sulfuric acid.
  • a method for decomposing the cured molded product under basic conditions includes a method of bringing the cured molded product into contact with an amine compound.
  • the amine compound is not particularly limited, but includes, for example, aromatic monoamines such as aniline, p-phenylenediamine, 1,3-bis(4-aminophenoxy)benzene (RODA), 4,4'-isopropylidene bis[(4 -aminophenoxy)benzene] (BAPP), aliphatic monoamines such as methylamine, ethylamine, butylamine, ethylenediamine, trimethylenediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, m-xylene- ⁇ , aliphatic diamines such as ⁇ '-diamine (mXDA), and the like.
  • aromatic monoamines such as aniline, p-phenylenediamine, 1,3-bis(4-aminophenoxy)
  • solvent-soluble decomposition product means at least the acidic solution used for the solvolysis under acidic conditions or the basic solution used for the decomposition under basic conditions. means a decomposition product that dissolves in
  • the decomposed product may be extracted as a solid content from an acidic or basic solution and then redissolved in various solvents.
  • Such solvents include N,N-dimethylformamide (DMF), tetrahydrofuran (THF), chloroform, N,N-dimethylacetamide, N-methyl-2-pyrrolidone, N,N-diethylacetamide, N-methylcaprolactam. , ⁇ -butyrolactone, cyclohexanone, dimethyl sulfoxide, cyclopentanone, 1,4-dioxane, 1,3-dioxolane and the like.
  • DMF N,N-dimethylformamide
  • THF tetrahydrofuran
  • chloroform N,N-dimethylacetamide
  • N-methyl-2-pyrrolidone N,N-diethylacetamide
  • N-methylcaprolactam N-methylcaprolactam.
  • ⁇ -butyrolactone cyclohexanone, dimethyl sulfoxide
  • cyclopentanone 1,4-dioxane, 1,
  • heating may be performed.
  • the heating temperature may be, for example, 40 to 120°C. Further, the heating time may be 5 minutes to 10 hours.
  • stirring may be performed as appropriate.
  • the decomposition products may include monomers and/or oligomers.
  • the decomposition product may include an oligomer derived from a phenol compound (A) having an aldehyde group and an aromatic diamine compound (B1), and an aromatic diamine compound (B2).
  • the decomposed product is obtained by once curing the above-mentioned thermosetting resin by ring-opening polymerization and then decomposing it. That is, the decomposition product does not need to contain a benzoxazine ring structure.
  • a thermosetting resin can also be obtained by reacting these decomposed products again.
  • the portions of the cured molded product other than the reinforcing fibers may be decomposed.
  • the cured molded article contains reinforcing fibers, at least parts other than the reinforcing fibers need only be decomposed in the decomposing step.
  • the decomposed products can be collected and reused.
  • the decomposition products can be recovered from the solvent by drying the decomposition solution (acidic or basic solution containing the decomposition products) or by mixing the decomposition solution with a poor solvent to precipitate and obtain solid content. Then, a cured molded product can be obtained again by reacting the recovered decomposed product.
  • both the decomposed product and the reinforcing fibers can be recovered and reused. Specifically, first, the decomposed product and reinforcing fibers are separated and recovered by filtration, centrifugation, or the like. Thereafter, the decomposed products can be recovered from the solvent by drying the decomposed liquid containing the decomposed products or by mixing the decomposed liquid with a poor solvent to precipitate and obtain solid content. Furthermore, a cured molded article containing reinforcing fibers can be obtained again by mixing the recovered decomposed products and reinforcing fibers and reacting the decomposed products.
  • the cured molded body can be disassembled and reused, which can contribute to ensuring a sustainable form of consumption and production. Therefore, it is possible to contribute to the achievement and realization of Goal 12 of the Sustainable Development Goals (SDGs), ⁇ Responsible Production and Consumption.''
  • thermosetting resin having a benzoxazine ring structure in its main chain represented by general formula (I).
  • the aromatic diamine compound (B1) is 1,4-diaminobenzene, 1,3-diaminobenzene, 2,4-diaminotoluene, 2,6-diaminotoluene, 3-(aminomethyl)benzylamine, 4 -(Aminomethyl)benzylamine, 3,3'-sulfonyldianiline, 4,4'-sulfonyldianiline, 3,3'-diaminobenzophenone, 4,4'-diaminobenzophenone, 1,3-bis(4- aminophenoxy)benzene, 1,3-bis(3-aminophenoxy)benzene, 2,2-bis[4-(4-aminophenoxy)phenyl]propane, bis[4-(4-aminophen
  • ⁇ 3> A composition comprising the thermosetting resin according to ⁇ 1> or ⁇ 2>.
  • ⁇ 4> An uncured molded article obtained by molding the thermosetting resin according to ⁇ 1> or ⁇ 2>, or the composition according to ⁇ 3>.
  • ⁇ 5> A cured molded article obtained by curing the thermosetting resin according to ⁇ 1> or ⁇ 2>, the composition according to ⁇ 3>, or the uncured molded article according to ⁇ 4>.
  • ⁇ 6> A decomposed product soluble in a solvent, which is obtained by decomposing the cured molded product according to ⁇ 5> under acidic or basic conditions.
  • thermosetting resin having a benzoxazine ring structure in the main chain The uncured molded article formed by molding the thermosetting resin has remoldability and toughness, The remoldability refers to the property that the uncured molded body can be divided into a plurality of parts and then integrated by heating at 200 ° C.
  • thermosetting resin having a benzoxazine ring structure in the main chain, comprising: a step (s1) of reacting the phenol compound (A), the aromatic diamine compound (B1), and the aldehyde compound (C); Furthermore, a step (s2) of reacting the aromatic diamine compound (B2), in this order, The phenol compound (A) has an aldehyde group, A method for producing a thermosetting resin, wherein the aromatic diamine compound (B1) is represented by any one or more of the general formulas (IIa) to (Va).
  • thermosetting resin according to ⁇ 1> or ⁇ 2> or the composition according to ⁇ 3>.
  • the prepreg or semi-preg according to ⁇ 10> which has a property that can be repeatedly deformed and/or a property that can be cured in a free-standing state.
  • a reinforcing fiber is impregnated with the thermosetting resin according to ⁇ 1> or ⁇ 2>, or the composition according to ⁇ 3>, and the thermosetting resin or the composition is cured. Fiber composite material.
  • ⁇ 13> The following steps: Impregnating reinforcing fibers with the thermosetting resin according to ⁇ 1> or ⁇ 2> or the composition according to ⁇ 3> to obtain a prepreg or semi-preg; Precuring the prepreg or semipreg to obtain a precured prepreg with a degree of curing of more than 0% to 99%; Curing the pre-cured prepreg to obtain a fiber composite material; A method for forming fiber composite materials, including: ⁇ 14> The molding method according to ⁇ 13>, further comprising the step of deforming the prepreg or semi-preg before pre-curing the prepreg or semi-preg.
  • ⁇ 15> The molding method according to ⁇ 13>, including the step of deforming the pre-cured prepreg to obtain a free-standing pre-cured prepreg before curing the pre-cured prepreg.
  • ⁇ 16> A decomposition product soluble in a solvent, which is obtained by solvolyzing the cured molded product according to ⁇ 5> under acidic conditions.
  • ⁇ 17> A method for producing a decomposition product soluble in a solvent, the method comprising the step of solvolyzing the cured molded article according to ⁇ 5> under acidic conditions.
  • the benzoxazine compound corresponds to a thermosetting resin
  • the cured film corresponds to a cured molded product
  • the uncured film corresponds to an uncured molded product.
  • the remaining proportion of the benzoxazine compound which is a reaction intermediate, was determined from the area ratio of the GPC curve of the benzoxazine compound.
  • the degree of curing of the cured film was determined as follows. First, a DSC curve was measured using a differential scanning calorimeter (DSC, manufactured by Hitachi High-Tech Science Co., Ltd., DSC7000X) under conditions of a nitrogen flow rate of 40 mL/min and a flow rate of 5° C./min. Next, the degree of curing was calculated from the curing calorific value derived from the ring opening of benzoxazine using the following formula.
  • DSC differential scanning calorimeter
  • Curing degree [%] 100 - ⁇ (calorific value after curing) / (calorific value before curing) x 100 ⁇
  • the calorific value before curing represents the area of the exothermic peak in the DSC curve of the uncured resin
  • the calorific value after curing represents the area of the exothermic peak in the DSC curve of the cured film.
  • Tg Glass transition temperature of uncured film and cured film>
  • the Tg of the uncured film and the cured film was measured using a dynamic viscoelasticity measurement device (DMA, manufactured by TA Instruments, RSA G2, tensile mode) under the conditions of a frequency (1 Hz) and a temperature increase rate of 5 ° C / min. .
  • DMA dynamic viscoelasticity measurement device
  • the extrapolated glass transition start temperature determined from the obtained DMA curve (the intersection of the straight line obtained by extrapolating the baseline before the inflection point to the high temperature side and the tangent at the inflection point) was defined as Tg in this example. .
  • Td5 5% weight loss temperature
  • STA7200 thermogravimetric analyzer
  • ⁇ Degradability evaluation of cured film 1> The cured film was added to 2M HCl aqueous solution/THF (1/3, v/v) or 3M HCl aqueous solution/THF (1/3, v/v), and then heated and stirred at 50° C. for 6 hours. The state after heating and stirring was observed, and the decomposability was evaluated based on the following criteria. A: Dissolved (evaluated to be degradable). B: Not dissolved (evaluated as having no degradability).
  • ⁇ Degradability evaluation of cured film 2> The cured film and various amines were added to DMF and then heated and stirred at 100°C. The state after heating and stirring was observed, and the decomposability was evaluated based on the following criteria. A: Dissolved (evaluated to be degradable). B: Not dissolved (evaluated as having no degradability).
  • FIG. 1 is a GPC chart of the imino group-containing benzoxazine compound (b) of Production Example 1. Based on the area ratio of the GPC chart, the remaining benzoxazine compound (a) was 6.1%.
  • the obtained precipitate was dried using a vacuum dryer at room temperature under reduced pressure for 1 hour to obtain a benzoxazine compound (c) as a reaction intermediate.
  • the molecular weight of the obtained benzoxazine compound (c) was measured by GPC measurement, the weight average molecular weight (Mw) was 641, and the number average molecular weight (Mn) was 623.
  • Mw weight average molecular weight
  • Mn number average molecular weight
  • 1 H-NMR measurement dasheavy solvent is CDCl 3
  • a decrease in the peak of the aldehyde group of 4-hydroxybenzaldehyde at 9.9 ppm and the formation of peaks of the benzoxazine ring at 4.6 ppm and 5.4 ppm were observed. It was confirmed that the raw materials were consumed from the former and that the benzoxazine compound (c) was synthesized from the latter.
  • FIG. 2 is a GPC chart of the imino group-containing benzoxazine compound (d) of Production Example 2.
  • FIG. 3 is a GPC chart of the imino group-containing benzoxazine compound (f) of Production Example 3. Based on the area ratio of the GPC chart, the remaining benzoxazine compound (e) was 11.2%.
  • FIG. 4 is a GPC chart of the imino group-containing benzoxazine compound (h) of Production Example 4. Based on the area ratio of the GPC chart, the remaining benzoxazine compound (e) was 20.7%.
  • FIG. 5 is a GPC chart of the imino group-containing benzoxazine compound (j) of Production Example 5. Based on the area ratio of the GPC chart, the remaining benzoxazine compound (e) was 13.0%.
  • Example 1 By putting the imino group-containing benzoxazine compound (b) obtained in Production Example 1 into a 75 ⁇ m thick PI film mold (8 cm x 8 cm) and pressing it together with a Teflon (registered trademark) sheet (release paper) and a stainless steel plate. , an uncured film and a cured film were obtained.
  • MINI TEST PRESS-10 manufactured by Toyo Seiki Co., Ltd. was used as a press machine.
  • the processing conditions for obtaining an uncured film and a cured film were as follows. Uncured film: Pressed at 5 MPa for 45 minutes at 150°C. Cured film: Pressing at 5 MPa was performed at 150° C. for 45 minutes, at 190° C. for 2 hours, and at 220° C. for 1 hour while increasing the temperature.
  • Example 2 The imino group-containing benzoxazine compound (b) obtained in Production Example 1 was dissolved in 1,4-dioxane to prepare a benzoxazine solution (27 wt%).
  • a PP plate (substrate) was fixed on smooth glass, and the benzoxazine solution was cast onto the substrate using a glass rod.
  • a Teflon (registered trademark) sheet was used to adjust the thickness. Thereafter, in order to prevent the solvent from evaporating rapidly, the base material on which the benzoxazine solution was cast was covered with a bat and allowed to stand overnight.
  • Uncured film The cast film was heated in an oven at 50°C for 30 minutes, at 75°C for 30 minutes, and at 90°C for 30 minutes.
  • Cured film The cast film was heated in an oven at 50°C for 30 minutes, 75°C for 30 minutes, and 90°C for 30 minutes.
  • the obtained self-supporting film was pressed at 2 MPa at 95°C for 1 hour, at 120°C for 1 hour, at 150°C for 1 hour, at 190°C for 2 hours, and at 220°C for 1 hour while increasing the temperature.
  • Ta. AYSR-10 Shinto Metal Industry Co., Ltd.
  • Example 3 By putting the imino group-containing benzoxazine compound (d) obtained in Production Example 2 into a 75 ⁇ m thick PI film mold (8 cm x 8 cm) and pressing it together with a Teflon (registered trademark) sheet (release paper) and a stainless steel plate. , an uncured film and a cured film were obtained.
  • MINI TEST PRESS-10 manufactured by Toyo Seiki Co., Ltd. was used as a press machine.
  • the processing conditions for obtaining an uncured film and a cured film were as follows. Uncured film: Pressed at 4 MPa for 45 minutes at 150°C. Cured film: Pressing at 4 MPa was performed at 150° C. for 45 minutes, at 190° C. for 2 hours, and at 220° C. for 1 hour while increasing the temperature.
  • Example 4 The imino group-containing benzoxazine compound (d) obtained in Production Example 2 was dissolved in chloroform to prepare a benzoxazine solution (12 wt%). A PP plate (substrate) was fixed on smooth glass, and the benzoxazine solution was cast onto the substrate using a glass rod. A Teflon (registered trademark) sheet was used to adjust the thickness. Thereafter, in order to prevent the solvent from evaporating rapidly, the base material on which the benzoxazine solution was cast was covered with a bat and allowed to stand overnight.
  • Uncured film The cast film was heated in an oven at 100°C for 15 minutes.
  • Cured film The cast film was heated in an oven at 100° C. for 15 minutes.
  • the obtained self-supporting film was further heated in an oven at 150°C for 45 minutes, 190°C for 2 hours, and 220°C for 1 hour.
  • Example 5 By putting the imino group-containing benzoxazine compound (f) obtained in Production Example 3 into a 125 ⁇ m thick PI film mold (6 cm x 4 cm) and pressing it together with a Teflon (registered trademark) sheet (release paper) and a stainless steel plate. , a cured film was obtained.
  • MINI TEST PRESS-10 manufactured by Toyo Seiki Co., Ltd. was used as a press machine.
  • the processing conditions for obtaining a cured film were as follows. Cured film: Pressing at 5 MPa was performed at 150° C. for 45 minutes, at 190° C. for 2 hours, and at 220° C. for 1 hour while increasing the temperature.
  • Example 6 The imino group-containing benzoxazine compound (j) obtained in Production Example 5 was dissolved in 1,3-dioxolane to prepare a benzoxazine solution (50 wt%). Nitoflon film No. 1 on smooth glass. 900UL (base material) was fixed, and the benzoxazine solution was cast onto the base material using a glass rod. A Teflon (registered trademark) sheet was used to adjust the thickness. Thereafter, in order to prevent the solvent from evaporating rapidly, the base material on which the benzoxazine solution was cast was covered with a bat and allowed to stand overnight.
  • a cured film was obtained from the obtained cast film under the following processing conditions.
  • Cured film The cast film was heated at 50°C for 30 minutes, at 70°C for 30 minutes, at 80°C for 2 hours, and at 120°C for 1 hour using a vacuum laminator. Next, the obtained self-supporting film was pressed at 2 MPa at 150° C. for 1 hour, at 190° C. for 2 hours, and at 220° C. for 1 hour while increasing the temperature.
  • AYSR-10 Shinto Metal Industry Co., Ltd.
  • Comparative Example 1 did not exhibit hydrolyzability. Not limited to this comparative example, cured products of general thermosetting resins do not have dynamic covalent bonds, so it is considered that they did not exhibit hydrolyzability under the evaluation conditions of this example.
  • Example 5 and 6 had higher Tg and superior heat resistance than the cured film of Comparative Example 1.
  • Td5 was improved in addition to Tg, and it can be said that the chemical heat resistance was also excellent.
  • Example 7 In a reaction vessel equipped with a stirrer, a cured film (0.008 g) of the imino group-containing benzoxazine compound (b) obtained in Production Example 1 and 1,3-bis(4-aminophenoxy)benzene (0.00 g) were placed. 08g) and 1 mL of DMF were added, and the mixture was reacted at 100°C for 8 hours.
  • Example 8 In a reaction vessel equipped with a stirrer, a cured film (0.008 g) of the imino group-containing benzoxazine compound (f) obtained in Production Example 3 and m-xylene- ⁇ , ⁇ '-diamine (0.8 g) were placed. , DMF (1 mL) was added, and the mixture was reacted at 100° C. for 2 hours.
  • Example 9 In a reaction vessel equipped with a stirrer, a cured film (0.008 g) of the imino group-containing benzoxazine compound (j) obtained in Production Example 5 and m-xylene- ⁇ , ⁇ '-diamine (0.8 g) were placed. , 1 mL of DMF was added, and the mixture was reacted at 100° C. for 1 hour.
  • Example 10 In a reaction vessel equipped with a stirrer, the cured film (0.008 g) of the imino group-containing benzoxazine compound (j) obtained in Production Example 5, hexamethylene diamine (0.4 g), and 1 mL of DMF were added. The reaction was carried out at °C for 1 hour.
  • Example 11 In a reaction vessel equipped with a stirrer, the cured film (0.008 g) of the imino group-containing benzoxazine compound (j) obtained in Production Example 5, hexamethylene diamine (0.008 g), and 1 mL of DMF were added. The reaction was carried out at °C for 5 hours.
  • Comparative example 2 The cured film obtained in Comparative Example 1 (0.008 g), 1,3-bis(4-aminophenoxy)benzene (0.08 g), and 1 mL of DMF were added to a reaction vessel equipped with a stirrer, and the mixture was heated at 100°C. The mixture was allowed to react for 8 hours.
  • Comparative example 4 The cured film obtained in Comparative Example 1 (0.008 g), hexamethylene diamine (0.4 g), and 1 mL of DMF were added to a reaction vessel equipped with a stirrer, and reacted at 100° C. for 1 hour.
  • Comparative example 5 The cured film obtained in Comparative Example 1 (0.008 g), hexamethylene diamine (0.008 g), and 1 mL of DMF were added to a reaction vessel equipped with a stirrer, and reacted at 100° C. for 5 hours.
  • Example 11 the GPC chart of the decomposed solution after the amine decomposability evaluation test is shown in FIG.
  • Mw weight average molecular weight
  • Mn number average molecular weight
  • Comparative Example 2 (decomposition conditions corresponding to Example 7), Comparative Example 3 (decomposition conditions corresponding to Examples 8 and 9), Comparative Example 4 (decomposition conditions corresponding to Example 10), and Comparative Example 5 It was found that the cured film obtained under (decomposition conditions corresponding to Example 11) did not exhibit amine decomposability. Not limited to this comparative example, cured products of general thermosetting resins do not have dynamic covalent bonds, so it is considered that they did not exhibit decomposition under the evaluation conditions of this example.
  • the cured product of the benzoxazine compound containing a dynamic covalent bond according to one embodiment of the present invention exhibits amine decomposability. Accordingly, it is considered that a cured product using the benzoxazine compound according to an embodiment of the present invention as a thermosetting resin can be recycled by decomposing the cured resin. Furthermore, the carbon fiber composite material using the benzoxazine compound according to an embodiment of the present invention as a thermosetting resin allows not only recycling of the resin but also recycling of the carbon fiber by decomposing the cured resin component. It is believed that there is.
  • Curing degree [%] 100 - ⁇ (calorific value after curing) / (calorific value before curing) x 100 ⁇
  • the calorific value before curing represents the area of the exothermic peak in the DSC curve of the uncured resin
  • the calorific value after curing represents the area of the exothermic peak in the DSC curve of the cured film.
  • FIG. 9 shows the results of the remoldability of the uncured films in Examples.
  • Remoldability evaluation result: A (Conclusion) From FIG. 8, it was found that the uncured film of Example 12 exhibited remoldability, that is, the property that the uncured molded product could be divided into a plurality of parts and then integrated. Further, it was found that the uncured film of Example 12 exhibited toughness, that is, the property that no tearing or cracking occurred in the uncured molded product before and after heating for remolding.
  • Example 14 The prepregs produced in Example 13 were laminated into 12 layers. The obtained laminated prepreg was sandwiched between two Nitoflon sheets (release paper) (white rectangles written above and below the laminated prepreg in Figure 10), and a PI (polyimide) film (in Figure 10, the laminated prepreg and The Nitoflon sheet was wrapped in a dotted rectangle) and arranged as shown in Figure 10. These were heated in a press molding machine (1) under vacuum conditions for 30 minutes at 30°C, 30 minutes at 50°C, 30 minutes at 70°C, 2 hours at 80°C, and 1 hour at 120°C, and (2) under vacuum conditions.
  • a cross section containing CFRP was exposed using a diamond cutter, and the cross section was polished using a polishing device (MINITECH223 manufactured by Presi). Thereafter, the presence or absence of voids existing inside the CFRP was evaluated by observing the cross section with a metallurgical microscope (AX70-53-MBS, manufactured by Olympus Corporation) and a digital camera for microscopes (DP21, manufactured by Olympus Corporation). The results are shown in FIG. 11 and Table 3.
  • Example 16 The central part of the plate-shaped CFRP obtained in Example 14 was cut out using a diamond cutter, and using a dynamic viscoelasticity measuring device (DMA, manufactured by TA Instruments, Q800, bending mode, cantilever beam), the glass of the CFRP was measured. The transition temperature Tg was determined. Measurement was performed under the conditions of a frequency (1 Hz) and a temperature increase rate of 5° C./min. The extrapolated glass transition start temperature determined from the obtained DMA curve (the intersection of the straight line obtained by extrapolating the baseline before the inflection point to the high temperature side and the tangent at the inflection point) was defined as Tg in this example. . The results are shown in Table 3.
  • DMA dynamic viscoelasticity measuring device
  • Example 17 The same DMA test as in Example 16 was conducted on the plate-shaped CFRP obtained in Example 14, which was post-cured at 250° C. for 30 minutes in an oven. The results are shown in Table 3.
  • Example 18 The central part of the plate-shaped CFRP obtained in Example 14 was cut out using a diamond cutter, and a short beam shear (SBS) test was conducted using a universal testing machine (AG-10TB, manufactured by SHIMADSU). The test piece size and test conditions were based on ASTM D2344, and the interlaminar shear strength of CFRP was determined from the following formula. The results are shown in Table 3.
  • Evaluation criteria for disassembly A: The cured resin component is completely dissolved and the carbon fibers are unraveled.B: The cured resin component is partially dissolved, and the solution is colored, but the carbon fibers maintain their shape.C: The cured resin component is completely dissolved. No coloration of the solution was observed [Example 20] A 4 cm square test piece (resin amount: 2.0628 g) cut from the plate-shaped CFRP obtained in Example 14 with a diamond cutter, hexamethylene diamine (34.4076 g), and 250 mL of DMF were added, and the mixture was heated at 100°C for 30 hours. Made it react. The results are shown in Table 4 and FIG. 12.
  • Example 21 A 3 cm x 0.3 cm test piece (resin amount: 0.2479 g) cut from the plate-shaped CFRP obtained in Example 14 with a diamond cutter, hexamethylene diamine (2.4790 g), and 15 mL of DMF were added, and the mixture was heated at 100°C. The mixture was allowed to react for 13 hours. The results are shown in Table 4 and FIG. 12.
  • Example 22 ⁇ Recovery of recycled carbon fiber (r-CF)> [Example 22]
  • the decomposed resin solution obtained in Example 21 was filtered to recover carbon fibers. It was then washed in acetone for 3 hours and filtered. This process was repeated three times, and the carbon fiber was dried in a vacuum oven at 100° C. for 6 hours to obtain r-CF. The results are shown in FIG.
  • Example 15 As shown in FIG. 11, it was confirmed that there were no voids inside the CFRP obtained in Example 14. After that, we proceeded with the evaluation based on the assumption that there were no voids. Subsequently, in Examples 16 and 17, in order to evaluate heat resistance, DMA measurement was performed and the glass transition temperature was calculated. As a result, the system prepared in Example 13 with a final curing temperature of 220°C showed a Tg of 221°C, and the system post-cured at 250°C showed a Tg of 238°C (Table 3). In Example 18, in order to evaluate the mechanical properties, an SBS test was conducted to calculate the interlaminar shear strength between resin/carbon fiber. As a result, it was found that the interlaminar shear strength was 45 MPa (Table 3).
  • Example 19 a decomposition test was conducted by reproducing Example 11 (amine decomposition conditions for cured film), and a small amount of CFRP was decomposed after 24 hours. Furthermore, in Examples 20 and 21 in which the amount of amine added was increased, it was confirmed that the cured resin in the CFRP was decomposed and separated from the carbon fibers. In addition, a 4 cm square test piece was used in Example 20, and a 3 x 0.3 cm test piece was used in Example 21, and the time required for decomposition was 30 hours and 13 hours, respectively.
  • Example 23 As shown in FIG. 14, the appearance of the r-CF surface in Example 23 and the appearance of the v-CF surface in Comparative Example 6 were observed using SEM.
  • Example 23 left in FIG. 14
  • Comparative Example 6 right in FIG. 14
  • resin remaining on the carbon fiber surface was observed in a part of the r-CF.
  • TGA measurement was performed to quantify the amount of this residual resin. As a result, a weight reduction of 1 to 1.5% was observed.
  • Examples 15 to 18 show that the CFRP according to one embodiment of the present invention, which uses a cured product of a benzoxazine compound containing dynamic covalent bonds as a matrix resin, has excellent heat resistance (high glass transition), as well as the cured resin film. temperature) and was found to have an interlaminar shear strength of 45 MPa.
  • Example 19 the amine decomposability of CFRP was evaluated.
  • the solution was colored and the edges of the CFRP were confirmed to be deformed, indicating that a part of the cured resin had decomposed. It was judged.
  • Examples 20 and 21 it was confirmed that the cured resin component of CFRP was completely decomposed and the carbon fibers were loosened. It was also found that although decomposition is possible even with large test pieces, smaller test pieces require less time for decomposition.
  • the CFRP according to one embodiment of the present invention which uses a cured product of a benzoxazine compound containing dynamic covalent bonds as a matrix resin, allows recycling of carbon fibers by decomposing the cured resin component with an amine. It is.
  • the degree of curing of the cured film was determined as follows. First, a DSC curve was measured using a differential scanning calorimeter (DSC, manufactured by Hitachi High-Tech Science Co., Ltd., DSC7000X) under conditions of a nitrogen flow rate of 40 mL/min and a flow rate of 5° C./min. Next, the degree of curing was calculated from the curing calorific value derived from the ring opening of benzoxazine using the following formula.
  • DSC differential scanning calorimeter
  • Curing degree [%] 100 - ⁇ (calorific value after curing) / (calorific value before curing) x 100 ⁇
  • the calorific value before curing represents the area of the exothermic peak in the DSC curve of the uncured resin
  • the calorific value after curing represents the area of the exothermic peak in the DSC curve of the cured film.
  • Example 25 Three sheets of prepreg obtained in Example 13 were laminated and heated at 150° C. for 1 hour in a convection oven. Regarding this prepreg laminate, repeated deformability (thermal formability) was evaluated by the method shown in FIG. The number of cycles capable of repeating state A (a state in which the prepreg laminate was bent along the side surface of a glass round bottle) and state B (a state in which the bent prepreg laminate was fixed to the bottom of a metal vat and stretched) was evaluated. When processing from state A to state B, the laminate was stretched by hand at room temperature and cured by heating at 150° C. for 10 minutes while fixed to the bottom of the vat.
  • state A a state in which the prepreg laminate was bent along the side surface of a glass round bottle
  • state B a state in which the bent prepreg laminate was fixed to the bottom of a metal vat and stretched
  • the laminate When processing from state B to state A, the laminate was bent by hand at room temperature, and cured by heating at 150° C. for 10 minutes in the bent state along the side of the round bottle. As described above, the prepreg laminate was processed from state A to state B, and then from state B to state A. A series of treatments was defined as one cycle (one cycle required a thermal history of 150° C. for 20 minutes). It was determined that the prepreg laminate had lost its repeated deformability when it broke. The degree of curing of the resin in each cycle was calculated from a cured film that reproduced the thermal history applied to the prepreg laminate. The results are shown in Table 5.
  • Example 25 the deformation could be repeated up to the fourth cycle as shown in FIG. 15. Thereafter, during bending in the fifth cycle, breakage of the prepreg laminate was observed, and it was determined that the laminate had lost its repeated deformability. From Table 5, the total thermal history required up to the fourth cycle was 150° C. for 2 hours and 20 minutes, and the degree of curing of the resin at this time was 35.6%. On the other hand, in Comparative Example 7 using epoxy prepreg, breakage of the prepreg laminate was observed in the first cycle, and it was determined that the laminate had lost its repeated deformability. Thermal history was 150°C for 1 hour.
  • Example 26 Two prepregs obtained in Example 13 were laminated, bent along the side of a round glass bottle, and heated in a convection oven at 150°C for 1 hour at 180°C while still attached to the side of the glass bottle. It was heated for 1 hour to partially cure. This prepreg laminate was removed from the side of the glass bottle, one end of the curved laminate was fixed to the bottom of a metal vat, and the other end was left floating in the air, heated in an oven at 220°C for 1 hour, and free-standing. We looked at gender (self-supportiveness). The results are shown in FIG. The degree of curing of the resin before and after the evaluation was calculated from a cured film that reproduced the thermal history applied to the prepreg laminate. The results are shown in Table 6.
  • Example 26 the test piece partially cured to 78.5% had a curved shape even after heating at 220°C in an oven, that is, one end of the curved laminate was placed on the bottom of the metal bat. It was confirmed that the other end remained suspended in the air.
  • Example 25 The results of Example 25 suggested that repeated deformation by heating is possible if the degree of curing of the resin is 35.6% or less. Being capable of repeated deformation means, for example, that prepregs can be deformed into another shape after being laminated once. On the other hand, in Comparative Example 7, hardening progressed during the heat history of molding at 150° C. for 1 hour, so that it could not be repeatedly deformed by heating.
  • Example 26 suggested that at least if the degree of curing of the resin was 78.5% or more, it had free standing properties. These properties are useful when laminating prepreg laminates and molding them as CFRP.
  • the prepreg/CFRP according to one embodiment of the present invention which uses a cured product of a benzoxazine compound containing dynamic covalent bonds as a matrix resin, has excellent moldability in addition to degradability. It will be done.
  • One embodiment of the present invention can be used in fields that use thermosetting resins.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

硬化した後に分解可能な熱硬化性樹脂を実現する。本発明の一実施形態に係る熱硬化性樹脂は、フェノール化合物(A)由来の3価の芳香族基と、芳香族ジアミン化合物(B1)由来の2価の芳香族基と、芳香族ジアミン化合物(B2)由来の2価の芳香族基とを含む特定の式で示されるベンゾオキサジン環構造を主鎖中に有する。

Description

熱硬化性樹脂、その製造方法および利用
 本発明は熱硬化性樹脂、その製造方法および利用に関する。
 ベンゾオキサジン化合物は、熱などによってベンゾオキサジン環が開環重合および反応することにより硬化することが知られている。例えば特許文献1には、ベンゾオキサジン化合物を含む硬化性樹脂組成物、それを用いたフィルムおよびプリプレグ等が開示されている。
日本国特開2014-148562号公報
 しかしながら、一般的には、ベンゾオキサジン化合物は不可逆的に硬化するため、その硬化物は容易には分解できない。従って、上述のような従来のベンゾオキサジン化合物は、硬化した後の分解性について改善の余地があった。本発明の一態様は、硬化した後に分解可能な熱硬化性樹脂を実現することを目的とする。
 上記の課題を解決するために、本発明の一態様に係る熱硬化性樹脂は、一般式(I)で示される、ベンゾオキサジン環構造を主鎖中に有する。
 〔一般式(I)において、
 ArおよびArは、フェノール化合物(A)由来の、3価の芳香族基を示し、
 ArとArとは、同一であっても異なっていてもよく、
 Rは、芳香族ジアミン化合物(B1)由来の、一般式(II)から一般式(V)のいずれか1つ以上で示される2価の芳香族基を示し、
 Rは、芳香族ジアミン化合物(B2)由来の、2価の芳香族基を示し、
 RとRとは、同一であっても異なっていてもよく、
 nは、1以上を示す。〕
 〔一般式(II)において、
 アスタリスクは結合手を示し、
 芳香環に結合している、Rを除く主鎖結合の位置関係は、メタまたはパラであり、
 Rは芳香環上の置換基であり、炭素数1~10の脂肪族基を示し、Rの個数は0個または1個以上であり、Rの個数が2個以上である場合には互いに同一であっても異なっていてもよく、
 m1およびm2は、それぞれ0または1を示す。〕
 〔一般式(III)において、
 アスタリスクは結合手を示し、
 2つの芳香環に結合している、Rを除く主鎖結合の位置関係は、それぞれメタまたはパラであり、
 L1は、単結合、イソプロピリデン基、スルホニル基、カルボニル基、9,9-フルオレニル基のいずれか1つ以上を示し、
 Rは芳香環上の置換基であり、炭素数1~10の脂肪族基を示し、それぞれの芳香環においてRの個数は0個または1個以上であり、Rの個数が2個以上である場合には互いに同一であっても異なっていてもよく、
 m3およびm4は、それぞれ0または1を示す。〕
 〔一般式(IV)において、
 アスタリスクは結合手を示し、
 3つの芳香環に結合している、Rを除く主鎖結合の位置関係は、それぞれメタまたはパラであり、
 L2およびL3は、それぞれオキシ基を示し、
 Rは芳香環上の置換基であり、炭素数1~10の脂肪族基を示し、それぞれの芳香環においてRの個数は0個または1個以上であり、Rの個数が2個以上である場合には互いに同一であっても異なっていてもよく、
 m5およびm6は、それぞれ0または1を示す。〕
 〔一般式(V)において、
 アスタリスクは結合手を示し、
 4つの芳香環に結合している、Rを除く主鎖結合の位置関係は、それぞれメタまたはパラであり、
 L4およびL6は、それぞれオキシ基を示し、
 L5は、単結合、イソプロピリデン基、スルホニル基、カルボニル基、9,9-フルオレニル基のいずれか1つ以上を示し、
 Rは芳香環上の置換基であり、炭素数1~10の脂肪族基を示し、それぞれの芳香環においてRの個数は0個または1個以上であり、Rの個数が2個以上である場合には互いに同一であっても異なっていてもよく、
 m7およびm8は、それぞれ0または1を示す。〕
 また、本発明の一態様に係る熱硬化性樹脂の製造方法は、ベンゾオキサジン環構造を主鎖中に有する、熱硬化性樹脂の製造方法であって、
 フェノール化合物(A)と、芳香族ジアミン化合物(B1)と、アルデヒド化合物(C)とを反応させるステップ(s1)と、
 さらに、芳香族ジアミン化合物(B2)を反応させるステップ(s2)と、をこの順序で含み、
 フェノール化合物(A)が、アルデヒド基を有し、
 芳香族ジアミン化合物(B1)が、一般式(IIa)から一般式(Va)のいずれか1つ以上で示される。
 〔一般式(IIa)において、
 芳香環に結合している、Rを除く主鎖結合の位置関係は、メタまたはパラであり、
 Rは芳香環上の置換基であり、炭素数1~10の脂肪族基を示し、Rの個数は0個または1個以上であり、Rの個数が2個以上である場合には互いに同一であっても異なっていてもよく、
 m1およびm2は、それぞれ0または1を示す。〕
 〔一般式(IIIa)において、
 2つの芳香環に結合している、Rを除く主鎖結合の位置関係は、それぞれメタまたはパラであり、
 L1は、単結合、イソプロピリデン基、スルホニル基、カルボニル基、9,9-フルオレニル基のいずれか1つ以上を示し、
 Rは芳香環上の置換基であり、炭素数1~10の脂肪族基を示し、それぞれの芳香環においてRの個数は0個または1個以上であり、Rの個数が2個以上である場合には互いに同一であっても異なっていてもよく、
 m3およびm4は、それぞれ0または1を示す。〕
 〔一般式(IVa)において、
 3つの芳香環に結合している、Rを除く主鎖結合の位置関係は、それぞれメタまたはパラであり、
 L2およびL3は、それぞれオキシ基を示し、
 Rは芳香環上の置換基であり、炭素数1~10の脂肪族基を示し、それぞれの芳香環においてRの個数は0個または1個以上であり、Rの個数が2個以上である場合には互いに同一であっても異なっていてもよく、
 m5およびm6は、それぞれ0または1を示す。〕
 〔一般式(Va)において、
 4つの芳香環に結合している、Rを除く主鎖結合の位置関係は、それぞれメタまたはパラであり、
 L4およびL6は、それぞれオキシ基を示し、
 L5は、単結合、イソプロピリデン基、スルホニル基、カルボニル基、9,9-フルオレニル基のいずれか1つ以上を示し、
 Rは芳香環上の置換基であり、炭素数1~10の脂肪族基を示し、それぞれの芳香環においてRの個数は0個または1個以上であり、Rの個数が2個以上である場合には互いに同一であっても異なっていてもよく、
 m7およびm8は、それぞれ0または1を示す。〕
 また、上記の課題を解決するために、本発明の一態様に係る熱硬化性樹脂は、ベンゾオキサジン環構造を主鎖中に有する、熱硬化性樹脂であって、
 前記熱硬化性樹脂を成形してなる未硬化成形体が、再成形性と、靱性とを備え、
 前記再成形性とは、前記未硬化成形体を複数に分割した後、200℃以下の加熱によって、一体化させることができる性質のことであり、
 前記靱性とは、前記加熱の前後において前記未硬化成形体に破れまたはひびが生じない性質のことであり、
 前記分割および一体化と、前記加熱とを1回以上繰り返しても前記再成形性と、前記靱性とが維持される。
 本発明の一態様によれば、硬化した後に分解可能な熱硬化性樹脂を提供することができる。
製造例1のイミノ基含有ベンゾオキサジン化合物(b)のGPCチャートである。 製造例2のイミノ基含有ベンゾオキサジン化合物(d)のGPCチャートである。 製造例3のイミノ基含有ベンゾオキサジン化合物(f)のGPCチャートである。 製造例4のイミノ基含有ベンゾオキサジン化合物(h)のGPCチャートである。 製造例5のイミノ基含有ベンゾオキサジン化合物(j)のGPCチャートである。 各実施例および比較例における分解性評価試験の結果を示す図である。 各実施例および比較例におけるアミン分解性評価試験(分解性評価2)の結果を示す図である。 アミン分解性評価試験後の分解溶液のGPCチャートである。 実施例12の未硬化フィルムの再成形性の評価結果を示す図である。 炭素繊維強化プラスチック(CFRP)の作製方法について説明する図である。 実施例14で得られた板状のCFRP内部に存在するボイドの有無を、顕微鏡用デジタルカメラを用いて観察した結果を示す図である。 各実施例および比較例におけるCFRPのアミン分解性評価の結果を示す図である。 実施例22のリサイクル炭素繊維(r-CF)の回収結果を示す図である。 実施例23のリサイクル炭素繊維(r-CF)のSEM観察結果を示す図である。 実施例および比較例における、プリプレグ積層体の繰り返し変形性試験の手順を示す図である。 実施例および比較例における、プリプレグ積層体のフリースタンディング性試験の手順を示す図である。
 本発明の一実施形態について以下に説明する。本明細書において特記しない限り、数値範囲を表す「A~B」は、「A以上(Aを含みかつAより大きい)B以下(Bを含みかつBより小さい)」を意味する。
 〔1.熱硬化性樹脂〕
 本発明の一実施形態に係る熱硬化性樹脂は、一般式(I)で示される、ベンゾオキサジン環構造を主鎖中に有する。
 式(I)において、ArおよびArは、フェノール化合物(A)由来の、3価の芳香族基を示す。本明細書において、芳香族基とは、少なくとも1つの芳香環を有する有機基を意図する。ArとArとは、同一であっても異なっていてもよい。フェノール化合物(A)は1種類もしくは2種類以上であってもよい。
 Rは、芳香族ジアミン化合物(B1)由来の、後述の一般式(II)から一般式(V)のいずれか1つ以上で示される2価の芳香族基を示す。また、Rは、芳香族ジアミン化合物(B2)由来の、2価の芳香族基を示す。RとRとは、同一であっても異なっていてもよい。芳香族ジアミン化合物(B1)および芳香族ジアミン化合物(B2)は、それぞれ、1種類もしくは2種類以上であってもよい。
 nは重合度を表し、1以上を示す。nは、機械物性を向上する観点からは1.5以上であることが好ましく、2以上であることがより好ましく、3以上であることがさらに好ましい。また、nは、成形時の流動性を維持する観点からは50以下であることが好ましく、40以下であることがより好ましく、30以下であることがさらに好ましい。
 前記熱硬化性樹脂は、一般式(I)に示されるようにイミノ基(C=N、イミン結合とも称する)を有する。イミノ基は動的共有結合、すなわち分解可能(開裂可能)な共有結合である。従って、前記熱硬化性樹脂は、硬化させた後に酸性または塩基性条件下でイミノ基を開裂させることが可能である。酸性条件下でのイミノ基を開裂させる方法は、加溶媒分解である。塩基性条件下でのイミノ基を開裂させる方法としては、例えば、塩基性物質をイミノ基へ付加させて、開裂反応または結合交換反応させる方法が挙げられる。すなわち、前記熱硬化性樹脂は、硬化させた後で化学的に分解して低分子化合物を生成できる。そのため、前記熱硬化性樹脂の硬化物を、ケミカルリサイクルなどによりリサイクルすることも可能である。これに対し、イミノ基を有さない従来のベンゾオキサジン化合物(例えばP-d型)は、後述の比較例に示す通り分解性を示さない。
 前記熱硬化性樹脂は、機械物性を向上する観点から、数平均分子量(Mn)が、1000以上であることが好ましく、1500以上であることがより好ましく、2000以上であることがさらに好ましい。また、前記熱硬化性樹脂は、加工性の観点から、重量平均分子量(Mw)が、100000以下であることが好ましく、50000以下であることがより好ましく、20000以下であることがさらに好ましい。数平均分子量および重量平均分子量は、後述の実施例に示す通りゲル浸透クロマトグラフ測定装置(GPC)によって測定することができる。
 フェノール化合物(A)は、アルデヒド基を有するフェノール化合物であることが好ましい。アルデヒド基を有するフェノール化合物としては、4-ヒドロキシベンズアルデヒド、2-ヒドロキシベンズアルデヒド、バニリン等が挙げられる。中でも、熱硬化性樹脂の合成が容易である観点からは、4-ヒドロキシベンズアルデヒドおよび/またはバニリンが好ましく、4-ヒドロキシベンズアルデヒドがより好ましい。
 Rは、芳香族ジアミン化合物(B1)由来の下記一般式(II)から一般式(V)のいずれか1つ以上で示される。
 一般式(II)において、アスタリスクは結合手を示す。芳香環に結合している、Rを除く主鎖結合の位置関係は、メタまたはパラである。Rは芳香環上の置換基であり、炭素数1~10の脂肪族基を示す。Rの個数は0個または1個以上である。Rの個数が2個以上である場合には互いに同一であっても異なっていてもよい。m1およびm2は、それぞれ0または1を示す。
 一般式(III)において、アスタリスクは結合手を示す。2つの芳香環に結合している、Rを除く主鎖結合の位置関係は、それぞれメタまたはパラである。L1は、単結合、イソプロピリデン基、スルホニル基、カルボニル基、9,9-フルオレニル基のいずれか1つ以上を示す。Rは芳香環上の置換基であり、炭素数1~10の脂肪族基を示す。それぞれの芳香環においてRの個数は0個または1個以上である。Rの個数が2個以上である場合には互いに同一であっても異なっていてもよい。m3およびm4は、それぞれ0または1を示す。
 一般式(IV)において、アスタリスクは結合手を示す。3つの芳香環に結合している、Rを除く主鎖結合の位置関係は、それぞれメタまたはパラである。L2およびL3は、それぞれオキシ基を示す。Rは芳香環上の置換基であり、炭素数1~10の脂肪族基を示す。それぞれの芳香環においてRの個数は0個または1個以上である。Rの個数が2個以上である場合には互いに同一であっても異なっていてもよい。m5およびm6は、それぞれ0または1を示す。
 一般式(V)において、アスタリスクは結合手を示す。4つの芳香環に結合している、Rを除く主鎖結合の位置関係は、それぞれメタまたはパラである。L4およびL6は、それぞれオキシ基を示す。L5は、単結合、イソプロピリデン基、スルホニル基、カルボニル基、9,9-フルオレニル基のいずれか1つ以上を示す。Rは芳香環上の置換基であり、炭素数1~10の脂肪族基を示す。それぞれの芳香環においてRの個数は0個または1個以上である。Rの個数が2個以上である場合には互いに同一であっても異なっていてもよい。m7およびm8は、それぞれ0または1を示す。
 換言すれば、芳香族ジアミン化合物(B1)は、下記一般式(IIa)から一般式(Va)のいずれかで表される。一般式(IIa)から一般式(Va)において、L1~6、R、m1~8の定義は一般式(II)から一般式(V)と同じである。
 入手性の観点および熱硬化性樹脂の合成が容易である観点からは、芳香族ジアミン化合物(B1)は、1,4-ジアミノベンゼン、1,3-ジアミノベンゼン、2,4-ジアミノトルエン、2,6-ジアミノトルエン、3-(アミノメチル)ベンジルアミン、4-(アミノメチル)ベンジルアミン、3,3’-スルホニルジアニリン、4,4’-スルホニルジアニリン、3,3’-ジアミノベンゾフェノン、4,4’-ジアミノベンゾフェノン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、2,2-ビス〔4-(4-アミノフェノキシ)フェニル〕プロパン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、4,4’-ビス(3-アミノフェノキシ)ビフェニル、4,4’-ビス(4-アミノフェノキシ)ビフェニル、9,9-ビス(4-アミノフェニル)フルオレンからなる群より選ばれる少なくとも1つであることが好ましい。3-(アミノメチル)ベンジルアミンはm-キシレン-α,α’-ジアミンとも称される。
 芳香族ジアミン化合物(B2)は、芳香族ジアミン化合物(B1)と同一であっても異なってもよい。芳香族ジアミン化合物(B2)は、上述の一般式(IIa)から一般式(Va)のいずれかで表される芳香族ジアミン化合物であってもよく、その他の芳香族ジアミン化合物であってもよい。その他の芳香族ジアミン化合物としては、1,4-ビス(4-アミノフェノキシ)ベンゼン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2’-ジメチルビフェニル-4,4’-ジアミン等が挙げられる。
 前記熱硬化性樹脂は、式(I)で示されるベンゾオキサジン環構造以外の構造を含んでいてもよく、含んでいなくてもよい。例えば、式(I)で示される構造の末端を封止するための単環フェノール化合物由来の構造を有していてもよい。また、前記熱硬化性樹脂は、脂肪族モノアミン、(ポリ)オキシアルキレンモノアミン化合物由来の構造を含んでいてもよい。
 また、本発明の一実施形態に係る硬化性樹脂は、ベンゾオキサジン環構造を主鎖中に有する、熱硬化性樹脂であって、前記熱硬化性樹脂を成形してなる未硬化成形体が、再成形性と、靱性とを備え、前記再成形性とは、前記未硬化成形体を複数に分割した後、200℃以下の加熱によって、一体化させることができる性質のことであり、前記靱性とは、前記加熱の前後において前記未硬化成形体に破れまたはひびが生じない性質のことであり、前記分割および一体化と、前記加熱とを1回以上繰り返しても前記再成形性と、前記靱性とが維持される。ここで、前記再成形性は、未硬化成形体が熱可塑性を有するがゆえに再成形可能である性質を意味する。また、分割および一体化と、加熱とを1回以上繰り返しても再成形性と、靱性とが維持される性質のことを、繰り返し熱可塑性とも表現できる。
 前記の、未硬化成形体を複数に分割した後、一体化させることができる加熱の温度の上限値は、200℃以下であり、180℃以下であることが好ましく、170℃以下であることがより好ましく、160℃以下であることがさらに好ましく、150℃以下であることが最も好ましい。220℃以上だと、再成形の過程で硬化が進みすぎてしまい一体化できない場合がある。また、100℃以下だと再成形が不十分となり一体化できない場合がある。すなわち、加熱の温度の下限値は、100℃超であることが好ましい。
 また、その温度に保持する時間は、例えば、1分以上、5時間以下であることが好ましく、5分以上、3時間以下であることがさらに好ましく、10分以上、2時間以下であることが最も好ましい。
 〔2.熱硬化性樹脂の製造方法〕
 本発明の一実施形態に係る熱硬化性樹脂の製造方法は、ベンゾオキサジン環構造を主鎖中に有する、熱硬化性樹脂の製造方法であって、フェノール化合物(A)と、芳香族ジアミン化合物(B1)と、アルデヒド化合物(C)とを反応させるステップ(s1)と、さらに、芳香族ジアミン化合物(B2)を反応させるステップ(s2)と、をこの順序で含む。また、フェノール化合物(A)が、アルデヒド基を有し、芳香族ジアミン化合物(B1)が、一般式(IIa)から一般式(Va)のいずれか1つ以上で示される。
 当該製造方法により、上述の熱硬化性樹脂を製造することができる。ステップ(s1)によりベンゾオキサジン環を形成することができる。また、ステップ(s2)において、フェノール化合物(A)由来のアルデヒド基と芳香族ジアミン化合物(B2)由来のアミノ基との反応により、イミノ基を形成することができる。
 フェノール化合物(A)、芳香族ジアミン化合物(B1)、芳香族ジアミン化合物(B2)としては上述の化合物を使用できる。アルデヒド化合物(C)としては、特に限定されるものではないが、ホルムアルデヒドが好ましい。ホルムアルデヒドとしては、重合体であるパラホルムアルデヒド、または水溶液の形態であるホルマリンなどを使用することが可能である。
 ステップ(s1)におけるフェノール化合物(A)と芳香族ジアミン化合物(B1)とのモル比は、約2:1であることが好ましいが、2.5/1~1.95/1であってもよい。ステップ(s1)におけるフェノール化合物(A)とアルデヒド化合物(C)とのモル比は、1/1~1/20であることが好ましく、1/2~1/6であることがより好ましい。二官能フェノール化合物(A)と、アルデヒド化合物(C)とのモル比が前記範囲であれば、ベンゾオキサジン環を好適に生成することができる。ステップ(s2)では、ステップ(s1)で得られるベンゾオキサジン化合物と芳香族ジアミン化合物(B2)とのモル比が約1:1であることが好ましいが、1/0.5~1/1.05であってもよい。
 ステップ(s1)およびステップ(s2)での反応は、溶媒中で行われてもよい。溶媒としては、クロロホルム等のハロゲン系溶媒、トルエン、キシレン等の非ハロゲン系芳香族炭化水素溶媒、テトラヒドロフラン(THF)等のエーテル系溶媒、1,4-ジオキサン、1,3-ジオキソラン等の環状ジエーテル系溶媒、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N,N-ジエチルアセトアミド、N-メチルカプロラクタム、γ-ブチロラクトン、ジメチルスルホキシド等の高極性・高沸点溶媒、非ハロゲン系炭化水素溶媒と脂肪族アルコール系溶媒との混合溶媒等が挙げられる。脂肪族アルコール系溶媒としては、メタノール、エタノール、プロパノール、ブタノール(構造異性体を含む)等が挙げられる。副反応抑制の観点から、ステップ(s1)では非ハロゲン系芳香族炭化水素溶媒、ステップ(s2)ではハロゲン系溶媒もしくは環状ジエーテル系溶媒を用いることが好ましい。
 ステップ(s1)および/またはステップ(s2)の反応温度は25~150℃であることが好ましく、40~120℃であることがより好ましい。ステップ(s1)および/またはステップ(s2)の反応時間は0.5~12時間であることが好ましく、1~10時間であることがより好ましい。
 ステップ(s1)において反応中間体を沈殿物として得るために、反応液をヘキサン等の非ハロゲン系脂肪族炭化水素溶媒に添加してもよい。また、ステップ(s1)および/またはステップ(s2)において、脂肪族アルコール系溶媒を用いて生成物を洗浄してもよい。
 〔3.組成物〕
 本発明の一実施形態には、上述の熱硬化性樹脂を含む組成物も包含される。当該組成物は、前記熱硬化性樹脂を主成分として含み、他の熱硬化性樹脂、熱可塑性樹脂、配合剤を副成分として含んでいてもよい。
 他の熱硬化性樹脂としては、例えば、エポキシ系樹脂、熱硬化型変性ポリフェニレンエーテル樹脂、熱硬化性ポリイミド樹脂、ケイ素樹脂、メラミン樹脂、ユリア樹脂、アリル樹脂、フェノール樹脂、不飽和ポリエステル樹脂、ビスマレイミド系樹脂、アルキド樹脂、フラン樹脂、ポリウレタン樹脂、アニリン樹脂等が挙げられる。
 熱可塑性樹脂としては、例えば、熱可塑性エポキシ樹脂、熱可塑性ポリイミド樹脂等が挙げられる。
 配合剤としては、必要に応じて、難燃剤、造核剤、酸化防止剤、老化防止剤、熱安定剤、光安定剤、紫外線吸収剤、滑剤、難燃助剤、帯電防止剤、防曇剤、充填剤、軟化剤、可塑剤、着色剤等が挙げられる。これらはそれぞれ単独で用いられてもよく、2種以上を併用しても構わない。また、反応性あるいは非反応性の溶剤を使用することもできる。
 〔4.未硬化成形体および硬化成形体〕
 本発明の一実施形態には、上述の熱硬化性樹脂または組成物を成形してなる、未硬化成形体も包含される。また、本発明の一実施形態には、上述の熱硬化性樹脂、組成物、または未硬化成形体を硬化してなる、硬化成形体も包含される。
 本明細書において、未硬化成形体は、硬化度が1%未満である成形体を意図し、硬化成形体は、硬化度が1~100%である成形体を意図する。すなわち、硬化成形体は、一部のみが硬化した成形体も包含する。硬化度は、後述の実施例に示す通り、未硬化樹脂と、未硬化成形体または硬化成形体とのそれぞれのDSC曲線から得られる発熱ピークの面積の比より算出することができる。
 未硬化成形体および硬化成形体の寸法および形状は特に制限されず、例えば、フィルム状、シート状、板状、ブロック状等が挙げられる。未硬化成形体および硬化成形体は、上述の熱硬化性樹脂または組成物からなる層に加えて、他の層(例えば粘着層)を備えていてもよい。
 未硬化成形体のガラス転移温度(Tg)は、機械物性の観点から300℃以下であることが好ましく、250℃以下であることがより好ましく、200℃以下であることがさらに好ましい。また、未硬化成形体のガラス転移温度は、耐熱性の観点から30℃以上であることが好ましく、40℃以上であることがより好ましく、50℃以上であることがさらに好ましい。
 硬化成形体のガラス転移温度は、耐熱性の観点から150℃以上であることが好ましく、200℃以上であることがより好ましく、220℃以上であることがさらに好ましい。硬化成形体のガラス転移温度の上限値には特に制限がないが、例えば400℃以下であり得る。
 未硬化成形体および硬化成形体の熱安定性は、5%重量減少温度(Td5)によって評価できる。未硬化成形体の5%重量減少温度は、100℃以上であることが好ましく、150℃以上であることがより好ましく、200℃以上であることがさらに好ましい。硬化成形体の5%重量減少温度は、250℃以上であることが好ましく、300℃以上であることがより好ましく、320℃以上であることがさらに好ましい。
 未硬化成形体および硬化成形体の引張弾性率は、機械物性の観点から10GPa以下であることが好ましく、8GPa以下であることがより好ましく、5GPa以下であることがさらに好ましい。また、未硬化成形体および硬化成形体の引張弾性率は、取り扱い易さの観点から0.1GPa以上であることが好ましく、0.5GPa以上であることがより好ましく、1GPa以上であることがさらに好ましい。
 未硬化成形体および硬化成形体の引張破断強度は、破断しにくさの観点から5MPa以上であることが好ましく、10MPa以上であることがより好ましく、50MPa以上であることがさらに好ましい。
 未硬化成形体および硬化成形体の引張破断伸び率は、機械物性の観点から1%以上であることが好ましく、3%以上であることがより好ましく、5%以上であることがさらに好ましい。
 未硬化成形体および硬化成形体の成形方法は、特に限定されず、上述の熱硬化性樹脂または組成物を溶媒に溶解して得られた溶液を基材上にキャストして成形する方法(キャスト法)、上述の熱硬化性樹脂または組成物をプレスして成形する方法(プレス法)等が挙げられる。キャスト法に用いる溶媒としては、N,N-ジメチルホルムアミド(DMF)、テトラヒドロフラン(THF)、クロロホルム、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N,N-ジエチルアセトアミド、N-メチルカプロラクタム、γ-ブチロラクトン、シクロヘキサノン、ジメチルスルホキシド、シクロペンタノン、1,4-ジオキサン、1,3-ジオキソラン等が挙げられる。プレス法における圧力は、特に限定されないが、例えば0.1~5.0MPaであってもよい。
 未硬化成形体の成形温度(徐々に昇温していく場合はそのうちの最高温度)は、特に限定されないが、室温以上、200℃未満であることが好ましく、40~180℃であることがより好ましく、60~160℃であることがさらに好ましい。硬化成形体の硬化温度(徐々に昇温していく場合はそのうちの最高温度)は、特に限定されないが、200~300℃であることが好ましく、210~280℃であることがより好ましく、220~260℃であることがさらに好ましい。
 未硬化成形体は、硬化成形体の前駆体として使用することができるとともに、例えば硬化性を有する接着性シートとして用いることができる。硬化成形体は、電子部品および電子機器、並びにそれらの材料、特に優れた誘電特性が要求される多層基板、積層板、封止剤、接着剤等の用途に好適に用いることができ、その他、航空機部材、自動車部材、建築部材等の用途にも使用することができる。
 前記硬化成形体は、硬化成形体の機械強度を向上させる観点から、強化繊維を含んでいてもよい。強化繊維としては例えば、無機繊維、有機繊維、金属繊維、またはこれらを組み合わせたハイブリッド構成の強化繊維等が挙げられる。強化繊維は、1種類でも2種類以上でもよい。
 無機繊維としては、炭素繊維、黒鉛繊維、炭化珪素繊維、アルミナ繊維、タングステンカーバイド繊維、ボロン繊維、ガラス繊維等が挙げられる。有機繊維としては、アラミド繊維、高密度ポリエチレン繊維、その他一般のナイロン繊維、ポリエステル繊維等が挙げられる。金属繊維としては、ステンレス、鉄等の繊維が挙げられる。また、金属繊維としては、金属繊維を炭素で被覆した炭素被覆金属繊維が挙げられる。この中でも、硬化成形体の強度を高める観点から、強化繊維は炭素繊維であることが好ましい。
 一般的に、前記炭素繊維には、サイジング処理が施されているが、そのまま用いてもよく、必要に応じて、サイジング剤使用量の少ない繊維を用いること、または有機溶剤処理もしくは加熱処理などの既存の方法にてサイジング剤を除去することもできる。また、予め炭素繊維の繊維束をエアーまたはローラーなどを用いて開繊し、炭素繊維の単糸間に樹脂を含浸させやすくするような処理を施してもよい。
 本発明の一実施形態には、上述の熱硬化性樹脂または組成物を強化繊維に含浸させてなるプリプレグまたはセミプレグも包含される。本明細書においてセミプレグとは、熱硬化性樹脂または組成物を強化繊維に部分的に含侵して(半含浸状態)、一体化した複合体を意味する。また、前記セミプレグから、プリプレグを得ることができる。例えば、セミプレグをさらに加熱溶融することによって、樹脂を強化繊維に含浸させることによりプリプレグを得ることができる。すなわち、本明細書においてプリプレグとは、強化繊維への樹脂の含浸の程度がセミプレグよりも進んだものであるとも言える。
 セミプレグまたはプリプレグは、例えば、強化繊維に予め樹脂が含浸しているシート(強化繊維平織材)の表裏に前記硬化成形体を重ね、所定の温度および所定の圧力によってプレスすることによって得てもよい。
 また、前記硬化成形体は、炭素繊維複合材料として使用することができる。炭素繊維複合材料は炭素繊維強化プラスチック(CFRP)とも称される。炭素繊維複合材料の作製の方法は特に限定されないが、例えば、炭素繊維に樹脂が含浸したシートであるセミプレグもしくはプリプレグを使用する方法、または炭素繊維(束状または織物状)に液状の樹脂を含浸させる方法を用いてもよい。上述の硬化成形体をセミプレグまたはプリプレグとして成形し、該セミプレグまたはプリプレグを炭素繊維複合材料の作製に用いてもよい。
 なお、ここでは一例として炭素繊維複合材料を挙げているが、上述の通り、使用可能な強化繊維は炭素繊維に限定されない。すなわち、本発明の一実施形態には、上述の熱硬化性樹脂または組成物を強化繊維に含浸させて、前記熱硬化性樹脂または前記組成物を硬化させてなる、繊維複合材料(強化繊維複合材料とも言う)も包含される。
 ここでは一例として、本発明にかかるセミプレグまたはプリプレグのみによる繊維複合材料を挙げているが、本発明にかかるセミプレグまたはプリプレグと、他の樹脂またはその組成物を強化繊維に含浸させてなるプリプレグまたはセミプレグとを、共に積層して、繊維複合材料としてもよい。前記他の樹脂とは、特に制限されないが、たとえば、〔3.組成物〕に挙げた、他の熱硬化性樹脂、熱可塑性樹脂が挙げられる。前記その組成物とは、前記他の樹脂を主成分とし、それ以外に、たとえば、〔3.組成物〕に挙げた、他の熱硬化性樹脂(前記他の樹脂を除く)、熱可塑性樹脂(前記他の樹脂を除く)、配合剤を含んでいてもよい。すなわち、本発明の一実施形態には、上述の熱硬化性樹脂または組成物を強化繊維に含浸させて、前記熱硬化性樹脂または前記組成物を硬化させてなる繊維複合材料と、他の樹脂またはその組成物を強化繊維に含浸させてなる繊維複合材料とを、分離不可能な程度に一体とした繊維複合材料も包含される。
 また、セミプレグまたはプリプレグは、繰り返し変形させることが可能な性質(繰り返し変形性とも言う)を有することが好ましい。本願明細書において、繰り返し変形性とは、例えば、セミプレグまたはプリプレグを別の形に変形させることが可能である性質を示す。繰り返し変形性には、セミプレグまたはプリプレグを別の形に変形させて加熱により硬化させることが可能である性質も含まれる。また、一度セミプレグまたはプリプレグを積層して、それぞれセミプレグ積層体およびプリプレグ積層体を得た後に、当該積層体を別の形に変形させることが可能である性質も含まれる。さらにまた、プリプレグ、セミプレグ、プリプレグ積層体、またはセミプレグ積層体を硬化させて成形させた後に、別の形に変形させ、加熱により再硬化させる、一連の処理を繰り返し行うことができる性質も含まれる。
 さらに、セミプレグまたはプリプレグは、フリースタンディング状態で硬化させることが可能な性質を有することが好ましい。ここで、本願明細書において、「フリースタンディング状態」とは、フリースタンディング形状を維持している状態のことを指す。さらに、「フリースタンディング形状」とは、物理的な支持体を必要とすることなく、成形後に付与したい任意の形状、例えば湾曲した形状を指す。
 本願明細書において、フリースタンディング状態で硬化させることが可能な性質とは、成形後に付与したい任意の形状、例えば湾曲した形状を有するプリプレグを含む積層体をオーブン等を用いた加熱に供した場合に、物理的な支持体を必要とすることなく加熱後も、その形状(フリースタンディング形状)を維持する性質を指す。ここで、プリプレグを含む積層体は、プリプレグ積層体とも表現する。前記性質を具体的に説明すると、プリプレグ積層体の一端を平面を有する物体の主面に固定し、もう一端を宙に浮かせた状態のまま、オーブン等で加熱した場合に、加熱後も加熱前の形状(例えば湾曲した形状)を維持する性質を指す。本願明細書において、フリースタンディング状態で硬化させることが可能な性質は、フリースタンディング性または自己支持性とも表現する。
 フリースタンディング性を有することにより、複合材料を成形する途中でオートクレーブを用いた成形からオーブンを用いた成形に切り替えることができる。オートクレーブを用いた成形と違って、オーブンを用いた成形では、汎用的な副資材(エポキシに合わせて耐熱性は180℃程度)を使用することができる。したがって、フリースタンディング性を有することにより、高価な副資材を必要とすることなく複合材料を成形することができるため好ましい。
 繊維複合材料の成形方法としては特に限定されないが、前記熱硬化性樹脂または組成物を強化繊維に含浸させて、プリプレグまたはセミプレグを得るステップと、前記プリプレグまたはセミプレグを予備硬化させて、硬化度が0%超~99%の予備硬化プリプレグを得るステップと、前記予備硬化プリプレグを硬化させ、繊維複合材料を得るステップと、を含んでいてもよい。ここで、本明細書において予備硬化とは、プリプレグまたはセミプレグを部分的に硬化させることを意味する。また、前記成形方法は、プリプレグまたはセミプレグを予備硬化させる前に、プリプレグまたはセミプレグを変形させるステップをさらに含んでいてもよい。さらにまた、前記成形方法は、予備硬化プリプレグを硬化させる前に、予備硬化プリプレグを変形させ、フリースタンディング形状の予備硬化プリプレグを得るステップをさらに含んでいてもよい。
 ここで、予備硬化プリプレグの硬化度は、99%以下であってもよく、90%以下であることが好ましく、80%以下であることがより好ましい。予備硬化プリプレグは再成形性およびフリースタンディング性の両方の性質を有することが好ましいが、それぞれの性質を有するために好ましいとされる予備硬化プリプレグの硬化度は異なる。予備硬化プリプレグの再成形性を優先する場合、硬化度は0%超~50%が好ましく、0%超~40%がより好ましく、0%超~30%がさらに好ましく、0%超~20%が最も好ましい。一方で、予備硬化プリプレグのフリースタンディング性を優先する場合、硬化度は50%~99%が好ましく、60%~99%がより好ましく、70%~99%が最も好ましい。
 好ましい硬化度の範囲は、予備硬化プリプレグが再成形前の状態にあるか、再成形後の状態にあるかによって異なる。これは、予備硬化プリプレグを再成形する場合、硬化度がわずかに上昇し得るためである。そのため、再成形性が求められる予備硬化プリプレグ(すなわち、再形成前の状態)と、フリースタンディング性が求められる予備硬化プリプレグ(すなわち、再成形後の状態)とでは、好ましい硬化度の範囲が異なる。
 〔5.分解物およびその製造方法〕
 本発明の一実施形態には、上述の硬化成形体を酸性または塩基性条件下で分解してなる、溶媒に可溶な分解物も包含される。ここで、酸性条件下での分解とは、加溶媒分解である。塩基性条件下での分解としては、例えば、塩基性物質をイミノ基へ付加させて、開裂反応または結合交換反応させることが挙げられる。また、本発明の一実施形態には、上述の硬化成形体を酸性または塩基性条件下で分解するステップを含む、溶媒に可溶な分解物の製造方法も包含される。酸性または塩基性条件下で分解することにより、硬化成形体におけるイミン結合を開裂させ、分解物を得ることができる。本明細書において、加溶媒分解とは、溶媒分子とイミン結合との反応により、イミン結合を開裂させ、分解物を得ることを意味する。
 硬化成形体を酸性条件下で加溶媒分解する方法としては、酸および溶媒を含む酸性溶液に硬化成形体を接触させる方法が挙げられる。当該酸性溶液における溶媒としては、水、テトラヒドロフラン(THF)、およびそれらの混合溶媒等が挙げられる。酸としては、酢酸、塩酸、硝酸、硫酸等が挙げられる。
 硬化成形体を塩基性条件下で分解する方法としては、アミン化合物に硬化成形体を接触させる方法が挙げられる。アミン化合物としては特に限定されないが、例えば、アニリン等の芳香族モノアミン、p-フェニレンジアミン、1,3-ビス(4-アミノフェノキシ)ベンゼン(RODA)、4,4’-イソプロピリデンビス[(4-アミノフェノキシ)ベンゼン](BAPP)等の芳香族ジアミン、メチルアミン、エチルアミン、ブチルアミン等の脂肪族モノアミン、エチレンジアミン、トリメチレンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、m-キシレン-α,α’-ジアミン(mXDA)等の脂肪族ジアミン等が挙げられる。
 本明細書において、「溶媒に可溶な分解物」とは、少なくとも、前記酸性条件での加溶媒分解のために用いた酸性溶液または前記塩基性条件での分解のために用いた塩基性溶液に溶解する分解物を意味する。ここで、固形分が目視で確認できなければ分解物が溶媒に溶解したと判断できる。さらに分解物は、酸性溶液または塩基性溶液から固形分として抽出した後、種々の溶媒に再溶解可能であってもよい。そのような溶媒としては、N,N-ジメチルホルムアミド(DMF)、テトラヒドロフラン(THF)、クロロホルム、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N,N-ジエチルアセトアミド、N-メチルカプロラクタム、γ-ブチロラクトン、シクロヘキサノン、ジメチルスルホキシド、シクロペンタノン、1,4-ジオキサン、1,3-ジオキソラン等が挙げられる。
 分解するステップでは、加熱を行ってもよい。加熱温度は、例えば40~120℃であってもよい。また、加熱時間は5分~10時間であってもよい。分解するステップでは、適宜攪拌を行ってもよい。
 分解物には、モノマーおよび/またはオリゴマーが含まれ得る。一例として、分解物には、アルデヒド基を有するフェノール化合物(A)および芳香族ジアミン化合物(B1)に由来するオリゴマーと、芳香族ジアミン化合物(B2)とが含まれ得る。なお、当該分解物は、上述の熱硬化性樹脂を一旦開環重合により硬化させた後に分解して得られる。すなわち、分解物は、ベンゾオキサジン環構造を含まなくてもよい。これらの分解物を再度反応させて熱硬化性樹脂を得ることもできる。
 なお、前記分解物は、イミン結合の開裂により溶媒に可溶となると推測される。しかしながら、その開裂の程度を正確に把握することは困難である。分解物は、種々の低分子量化合物の集合であると推測され、これらの化合物の全てを化学的に同定することは現実的に困難である。従って、分解物をその構造又は特性により直接特定することが不可能であるか、またはおよそ実際的でないという事情が存在する。
 前記硬化成形体が強化繊維を含む場合、硬化成形体における強化繊維以外の部分を分解してもよい。換言すれば、前記硬化成形体が強化繊維を含む場合、前記分解するステップにおいて、少なくとも強化繊維以外の部分が分解されていればよい。
 分解物は、回収して再利用することができる。例えば、分解液(分解物を含む酸性または塩基性溶液)を乾燥させるか、あるいは分解液を貧溶媒と混合し固形分を析出、取得することにより分解物を溶媒中から回収することができる。次いで前記回収した分解物を反応させることにより再度硬化成形体を得ることもできる。
 前記硬化成形体が強化繊維を含む場合、前記分解物と、強化繊維との両方を回収して、再利用することができる。具体的には、まず濾過または遠心分離等により前記分解物と、強化繊維とを分離回収する。その後、分解物を含む分解液を乾燥させるか、あるいは分解液を貧溶媒と混合し固形分を析出、取得することにより前記分解物を溶媒中から回収することができる。また、前記回収した分解物と強化繊維とを混合し、分解物を反応させることにより再度強化繊維を含む硬化成形体を得ることもできる。
 また、上述したような構成によれば、硬化成形体を分解して再利用できるため、持続可能な消費生産形態を確保することに貢献し得る。よって、持続可能な開発目標(SDGs)の目標12「つくる責任つかう責任」等の達成・実現に貢献することができる。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 本発明の一実施形態は、以下の構成であってもよい。
<1>一般式(I)で示される、ベンゾオキサジン環構造を主鎖中に有する、熱硬化性樹脂。
<2>芳香族ジアミン化合物(B1)が、1,4-ジアミノベンゼン、1,3-ジアミノベンゼン、2,4-ジアミノトルエン、2,6-ジアミノトルエン、3-(アミノメチル)ベンジルアミン、4-(アミノメチル)ベンジルアミン、3,3’-スルホニルジアニリン、4,4’-スルホニルジアニリン、3,3’-ジアミノベンゾフェノン、4,4’-ジアミノベンゾフェノン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、2,2-ビス〔4-(4-アミノフェノキシ)フェニル〕プロパン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、4,4’-ビス(3-アミノフェノキシ)ビフェニル、4,4’-ビス(4-アミノフェノキシ)ビフェニル、9,9-ビス(4-アミノフェニル)フルオレンからなる群より選ばれる少なくとも1つである、<1>に記載の熱硬化性樹脂。
<3><1>または<2>に記載の熱硬化性樹脂を含む組成物。
<4><1>もしくは<2>に記載の熱硬化性樹脂、または<3>に記載の組成物を成形してなる、未硬化成形体。
<5><1>もしくは<2>に記載の熱硬化性樹脂、<3>に記載の組成物、または<4>に記載の未硬化成形体を硬化してなる、硬化成形体。
<6><5>に記載の硬化成形体を酸性または塩基性条件下で分解してなる、溶媒に可溶な分解物。
<7><5>に記載の硬化成形体を酸性または塩基性条件下で分解するステップを含む、溶媒に可溶な分解物の製造方法。
<8>ベンゾオキサジン環構造を主鎖中に有する、熱硬化性樹脂であって、
 前記熱硬化性樹脂を成形してなる未硬化成形体が、再成形性と、靱性とを備え、
 前記再成形性とは、前記未硬化成形体を複数に分割した後、200℃以下の加熱によって、一体化させることができる性質のことであり、
 前記靱性とは、前記加熱の前後において前記未硬化成形体に破れまたはひびが生じない性質のことであり、
 前記分割および一体化と、前記加熱とを1回以上繰り返しても前記再成形性と、前記靱性とが維持される、熱硬化性樹脂。
<9>ベンゾオキサジン環構造を主鎖中に有する、熱硬化性樹脂の製造方法であって、
 フェノール化合物(A)と、芳香族ジアミン化合物(B1)と、アルデヒド化合物(C)とを反応させるステップ(s1)と、
 さらに、芳香族ジアミン化合物(B2)を反応させるステップ(s2)と、をこの順序で含み、
 フェノール化合物(A)が、アルデヒド基を有し、
 芳香族ジアミン化合物(B1)が、一般式(IIa)から一般式(Va)のいずれか1つ以上で示される、熱硬化性樹脂の製造方法。
<10><1>もしくは<2>に記載の熱硬化性樹脂、または<3>に記載の組成物を強化繊維に含浸させてなる、プリプレグまたはセミプレグ。
<11>繰り返し変形させることが可能な性質、および/または、フリースタンディング状態で硬化させることが可能な性質を有する、<10>に記載のプリプレグまたはセミプレグ。
<12><1>もしくは<2>に記載の熱硬化性樹脂、または<3>に記載の組成物を強化繊維に含浸させて、前記熱硬化性樹脂または前記組成物を硬化させてなる、繊維複合材料。
<13>以下のステップ:
 <1>もしくは<2>に記載の熱硬化性樹脂、または<3>に記載の組成物を、強化繊維に含浸させて、プリプレグまたはセミプレグを得るステップと、
 前記プリプレグまたはセミプレグを予備硬化させて、硬化度が0%超~99%の予備硬化プリプレグを得るステップと、
 前記予備硬化プリプレグを硬化させ、繊維複合材料を得るステップと、
を含む、繊維複合材料の成形方法。
<14>前記プリプレグまたはセミプレグを予備硬化させる前に、前記プリプレグまたはセミプレグを変形させるステップをさらに含む、<13>に記載の成形方法。
<15>前記予備硬化プリプレグを硬化させる前に、前記予備硬化プリプレグを変形させ、フリースタンディング形状の予備硬化プリプレグを得るステップ
を含む、<13>に記載の成形方法。
<16><5>に記載の硬化成形体を酸性条件下で加溶媒分解してなる、溶媒に可溶な分解物。
<17><5>に記載の硬化成形体を酸性条件下で加溶媒分解するステップを含む、溶媒に可溶な分解物の製造方法。
 本発明の一実施例について以下に説明する。なお、以下においてベンゾオキサジン化合物は熱硬化性樹脂、硬化フィルムは硬化成形体、未硬化フィルムは未硬化成形体に相当する。
 〔I.未硬化/硬化樹脂フィルムの物性〕
 〔試験方法〕
 <ベンゾオキサジン化合物の構造解析>
 ベンゾオキサジン化合物の分子構造を解析した。具体的には、核磁気共鳴装置(NMR、Bruker社製、AVANCEIII 400MHz)を用いて、積算回数16回、測定温度は室温の条件下、H-NMR測定を行った。
 <ベンゾオキサジン化合物の分子量測定>
 ベンゾオキサジン化合物およびその分解物の分子量を、ゲル浸透クロマトグラフ測定装置(GPC)(島津製作所社製、Prominence UFLC)を用いて測定した。測定において、溶離液として0.01mol/Lの塩化リチウム含有DMFを用い、カラムとしてTSKgel GMHHR-Mを3本直列に連結して用い、流量1mL/min、注入量20μL、カラム温度40℃として、検出にはUV検出器を用い、較正曲線の試料としてポリスチレンを用いた。
 また、ベンゾオキサジン化合物のGPC曲線の面積比より、反応中間体であるベンゾオキサジン化合物の残存する割合を求めた。
 <硬化フィルムの硬化度測定1>
 硬化フィルムの硬化度を以下のように求めた。まず、示差走査熱量測定装置(DSC、日立ハイテクサイエンス社製、DSC7000X)を用いて窒素流量40mL/minの下、5℃/minの条件でDSC曲線を測定した。次に、ベンゾオキサジンの開環に由来する硬化発熱量から、下記の式より、硬化度を算出した。
 硬化度[%]=100-{(硬化後の発熱量)/(硬化前の発熱量)×100}
 ここで、硬化前の発熱量は未硬化樹脂のDSC曲線における発熱ピークの面積を表し、硬化後の発熱量は硬化フィルムのDSC曲線における発熱ピークの面積を表す。
 <未硬化フィルム、硬化フィルムのガラス転移温度(Tg)>
 未硬化フィルム、硬化フィルムのTgを、動的粘弾性測定装置(DMA、TA Instruments社製、RSA G2、引張モード)を用い、周波数(1Hz)、昇温速度5℃/minの条件で測定した。得られたDMA曲線から求められる補外ガラス転移開始温度(変曲点より前のベースラインを高温側に外挿した直線と、変曲点における接線との交点)を本実施例におけるTgとした。
 <未硬化フィルム、硬化フィルムの熱安定性と溶媒残存量>
 未硬化フィルム、硬化フィルムの熱安定性について、5%重量減少温度(Td5)を評価した。Td5は、熱重量分析装置(日立ハイテクサイエンス社製、STA7200)を用いて、5℃/minの昇温速度、200mL/minの窒素気流下の条件で測定した。未硬化フィルム、硬化フィルム中の残存溶媒量についても、同分析から算出した。
 <未硬化フィルム、硬化フィルムの力学特性>
 未硬化フィルム、硬化フィルムについて、引張試験装置(島津製作所社製、EZ-SX)を用いて引張試験を実施した。試験温度は室温とし、引張速度5mm/min、試験片形状は長さ40mm、幅3mmとした。これにより、引張弾性率(tensile modulus)、引張破断強度(tensile strength)、引張破断伸び率(elongation)を測定した。
 <硬化フィルムの分解性評価1>
 硬化フィルムを、2M HCl水溶液/THF(1/3、v/v)もしくは3M HCl水溶液/THF(1/3、v/v)中に添加後、50℃で6時間加熱攪拌した。加熱攪拌後の様子を観察し、以下の基準で分解性を評価した。
A:溶解した(分解性があると評価した)。
B:溶解しなかった(分解性がないと評価した)。
 <硬化フィルムの分解性評価2>
 硬化フィルムおよび各種アミンを、DMF中に添加後、100℃で加熱攪拌した。加熱攪拌後の様子を観察し、以下の基準で分解性を評価した。
A:溶解した(分解性があると評価した)。
B:溶解しなかった(分解性がないと評価した)。
 〔材料〕
 ベンゾオキサジン化合物の製造に使用した材料を以下に示す。
 (アルデヒド基を有するフェノール化合物)
・4-ヒドロキシベンズアルデヒド(富士フイルム和光純薬社製)
 (芳香族ジアミン化合物)
・1,3-ビス(4-アミノフェノキシ)ベンゼン(セイカ社製)
・m-キシレン-α,α’-ジアミン(富士フイルム和光純薬社製)
 (その他化合物)
・パラホルムアルデヒド(富士フイルム和光純薬社製)
 ベンゾオキサジン化合物の分解性評価2に使用した材料を以下に示す。
 (アミン化合物)
・1,3-ビス(4-アミノフェノキシ)ベンゼン(RODA:セイカ社製)
・m-キシレン-α,α’-ジアミン(mxDA:富士フイルム和光純薬社製)
・ヘキサメチレンジアミン(東レ社製)
 〔製造例1〕
 攪拌子を備えた反応容器中に1,3-ビス(4-アミノフェノキシ)ベンゼン(6.0000g,0.0205mol)、パラホルムアルデヒド(2.5886g,0.0862mol)、4-ヒドロキシベンズアルデヒド(5.0128g,0.0410mol)およびトルエン(31.7366g)を添加し、還流しながら6時間反応させた。得られた反応液(A)を室温まで冷却した後、攪拌したヘキサン(500mL)中に、反応液(A)を滴下すると、粘性のある沈殿物が得られた。上澄み液を除去した後、沈殿物をメタノール(500mL)で洗浄および攪拌し、ろ過した。得られた沈殿物を、真空乾燥機を用いて、室温、減圧下で、2時間乾燥させることで、反応中間体であるベンゾオキサジン化合物(a)を得た。GPC測定により、得られたベンゾオキサジン化合物(a)の分子量を測定したところ、重量平均分子量(Mw)は1039、数平均分子量(Mn)は940であった。H-NMR測定(重溶媒はCDCl)によって測定することにより、9.9ppmの4-ヒドロキシベンズアルデヒドのアルデヒド基のピークの減少と、4.6ppmおよび5.4ppmのベンゾオキサジン環のピーク生成とを観測し、前者からは原料が消費されていること、後者からはベンゾオキサジン化合物(a)が合成できていることを確認した。
 続いて、攪拌子を備えた反応容器中に、得られたベンゾオキサジン化合物(a)(5.0000g,0.0086mol)、1,3-ビス(4-アミノフェノキシ)ベンゼン(2.3809g,0.0081mol)、クロロホルム(17.2220g)を添加し、還流しながら2時間反応させた。得られた反応液(B)を室温まで冷却した後、クロロホルムを20mL加え、攪拌したメタノール(300mL)中に滴下し、ろ過した。この作業をもう一度繰り返し、真空乾燥機を用いて、85℃、減圧下で、1.5時間乾燥させることで、目的物であるイミノ基含有ベンゾオキサジン化合物(b)を得た。GPC測定により、得られた目的物の分子量を測定したところ、重量平均分子量(Mw)は10668、数平均分子量(Mn)は3167であった。H-NMR測定(重溶媒はCDCl)によって測定することにより、9.8ppmのアルデヒド末端(反応中間体)のピーク減少と、8.3ppmのイミノ基(生成物)のピーク生成とを観測し、目的物が合成できていることを確認した。3.62ppmにアミノ基(原料)の残存がわずかに確認された。以上のように製造例1では、芳香族ジアミン化合物(B1)および芳香族ジアミン化合物(B2)として1,3-ビス(4-アミノフェノキシ)ベンゼンを用いた。図1は、製造例1のイミノ基含有ベンゾオキサジン化合物(b)のGPCチャートである。GPCチャートの面積比より、残存するベンゾオキサジン化合物(a)は6.1%であった。
 〔製造例2〕
 攪拌子を備えた反応容器中にm-キシレン-α,α’-ジアミン(5.0000g,0.0367mol)およびパラホルムアルデヒド(4.6305g,0.1542mol)、4-ヒドロキシベンズアルデヒド(8.9669g,0.0734mol)、トルエン(43.3905g)を添加し、還流しながら4時間反応させた。得られた反応液(C)を室温まで冷却した後、攪拌したヘキサン(300mL)中に、反応液(C)を滴下すると、粘性のある沈殿物が得られた。上澄み液を除去した後、沈殿物をメタノール(300mL)で洗浄および攪拌し、ろ過した。得られた沈殿物を、真空乾燥機を用いて、室温、減圧下で、1時間乾燥させることで、反応中間体であるベンゾオキサジン化合物(c)を得た。GPC測定により、得られたベンゾオキサジン化合物(c)の分子量を測定したところ、重量平均分子量(Mw)は641、数平均分子量(Mn)は623であった。H-NMR測定(重溶媒はCDCl)によって測定することにより、9.9ppmの4-ヒドロキシベンズアルデヒドのアルデヒド基のピークの減少と、4.6ppmおよび5.4ppmのベンゾオキサジン環のピーク生成とを観測し、前者からは原料が消費されていること、後者からはベンゾオキサジン化合物(c)が合成できていることを確認した。
 続いて、攪拌子を備えた反応容器中に、得られたベンゾオキサジン化合物(c)(5.0000g,0.0117mol)、1,3-ビス(4-アミノフェノキシ)ベンゼン(3.2484g,0.0111mol)、クロロホルム(19.2462g)を添加し、還流しながら2時間反応させた。得られた反応液(d)を室温まで冷却した後、クロロホルムを10mL加え、攪拌したメタノール(200mL)中に滴下し、ろ過した。この作業をもう一度繰り返し、真空乾燥機を用いて、85℃、減圧下で、1.5時間乾燥させることで、目的物であるイミノ基含有ベンゾオキサジン化合物(d)を得た。GPC測定により、得られた目的物の分子量を測定したところ、重量平均分子量(Mw)は6357、数平均分子量(Mn)は2251であった。H-NMR測定(重溶媒はCDCl)によって測定することにより、9.8ppmのアルデヒド末端(反応中間体)のピーク減少と、8.3ppmのイミノ基(生成物)のピーク生成とを観測し、目的物が合成できていることを確認した。以上のように製造例2では、芳香族ジアミン化合物(B1)としてm-キシレン-α,α’-ジアミンを用い、芳香族ジアミン化合物(B2)として1,3-ビス(4-アミノフェノキシ)ベンゼンを用いた。図2は、製造例2のイミノ基含有ベンゾオキサジン化合物(d)のGPCチャートである。
 〔製造例3〕
 製造例1において、1,3-ビス(4-アミノフェノキシ)ベンゼンを20.0000g(0.0684mol)、パラホルムアルデヒドを8.6287g(0.2873mol)、4-ヒドロキシベンズアルデヒドを16.7093g(0.1368mol)、トルエンを105.7887gに変更し、ベンゾオキサジン化合物(e)を得た。製造例1と同様に分子量を測定したところ、重量平均分子量(Mw)は1090、数平均分子量(Mn)は898であった。H-NMR測定(重溶媒はCDCl)によって測定することにより、製造例1と同様に、ベンゾオキサジン化合物(e)が合成できていることを確認した。
 続いて、同様に、ベンゾオキサジン化合物(e)を2.8560g(0.0049mol)、1,3-ビス(4-アミノフェノキシ)ベンゼンを0.9520g(0.0032mol)、クロロホルムを8.8853g、還流しながら反応させる時間を7時間に変更し、目的物であるイミノ基含有ベンゾオキサジン化合物(f)を得た。製造例1と同様に、得られた目的物の分子量を測定したところ、重量平均分子量(Mw)は9693、数平均分子量(Mn)は3047であった。H-NMR測定(重溶媒はCDCl、d-DMSO)によって測定することにより、製造例1と同様に、目的物が合成できていることを確認した。原料のアミノ基に対応した3.62ppm(CDCl)、5.0ppm(d-DMSO)のピークは確認されなかった。図3は、製造例3のイミノ基含有ベンゾオキサジン化合物(f)のGPCチャートである。GPCチャートの面積比より、残存するベンゾオキサジン化合物(e)は11.2%であった。
 〔製造例4〕
 製造例1において、1,3-ビス(4-アミノフェノキシ)ベンゼンを20.0000g(0.0684mol)、パラホルムアルデヒドを8.6287g(0.2873mol)、4-ヒドロキシベンズアルデヒドを16.7093g(0.1368mol)、トルエンを105.7887gに変更し、ベンゾオキサジン化合物(g)を得た。製造例1と同様に分子量を測定したところ、重量平均分子量(Mw)は1090、数平均分子量(Mn)は898であった。H-NMR測定(重溶媒はCDCl)によって測定することにより、製造例1と同様に、ベンゾオキサジン化合物(g)が合成できていることを確認した。
 続いて、同様に、ベンゾオキサジン化合物(g)を2.8560g(0.0049mol)、1,3-ビス(4-アミノフェノキシ)ベンゼンを0.7140g(0.0024mol)、クロロホルムを8.3299g、還流しながら反応させる時間を7時間に変更し、目的物であるイミノ基含有ベンゾオキサジン化合物(h)を得た。製造例1と同様に、得られた目的物の分子量を測定したところ、重量平均分子量(Mw)は4427、数平均分子量(Mn)は1894であった。H-NMR測定(重溶媒はCDCl、d-DMSO)によって測定することにより、製造例1と同様に、目的物が合成できていることを確認した。原料のアミノ基に対応した3.62ppm(CDCl)、5.0ppm(d-DMSO)のピークは確認されなかった。図4は、製造例4のイミノ基含有ベンゾオキサジン化合物(h)のGPCチャートである。GPCチャートの面積比より、残存するベンゾオキサジン化合物(e)は20.7%であった。
 〔製造例5〕
 製造例1において、1,3-ビス(4-アミノフェノキシ)ベンゼンを160.0000g(0.5473mol)、パラホルムアルデヒドを69.0298g(2.2987mol)、4-ヒドロキシベンズアルデヒドを133.6745g(1.0946mol)、トルエンを846.3099gに変更し、ベンゾオキサジン化合物(i)を得た。製造例1と同様に分子量を測定したところ、重量平均分子量(Mw)は1110、数平均分子量(Mn)は977であった。H-NMR測定(重溶媒はCDCl)によって測定することにより、製造例1と同様に、ベンゾオキサジン化合物(i)が合成できていることを確認した。
 続いて、同様に、ベンゾオキサジン化合物(i)を321.0320g(0.5491mol)、1,3-ビス(4-アミノフェノキシ)ベンゼンを107.0070g(0.3660mol)、クロロホルムを998.7577g、還流しながら反応させる時間を7時間に変更し、目的物であるイミノ基含有ベンゾオキサジン化合物(j)を得た。製造例1と同様に、得られた目的物の分子量を測定したところ、重量平均分子量(Mw)は9596、数平均分子量(Mn)は2442であった。H-NMR測定(重溶媒はCDCl、d-DMSO)によって測定することにより、製造例1と同様に、目的物が合成できていることを確認した。原料のアミノ基に対応した3.62ppm(CDCl)、5.0ppm(d-DMSO)のピークは確認されなかった。図5は、製造例5のイミノ基含有ベンゾオキサジン化合物(j)のGPCチャートである。GPCチャートの面積比より、残存するベンゾオキサジン化合物(e)は13.0%であった。
 〔実施例1〕
 製造例1によって得られたイミノ基含有ベンゾオキサジン化合物(b)を厚み75μmのPIフィルム型枠(8cm×8cm)に入れ、テフロン(登録商標)シート(離型紙)、ステンレス板とともにプレスすることにより、未硬化フィルムおよび硬化フィルムを得た。プレス機としてMINI TEST PRESS-10(東洋精機社製)を使用した。未硬化フィルムおよび硬化フィルムを得るための加工条件は下記の通りとした。
未硬化フィルム:5MPaのプレスを、150℃で45分間行った。
硬化フィルム:5MPaのプレスを、150℃で45分間、190℃で2時間、220℃で1時間、昇温しながら行った。
 〔実施例2〕
 製造例1によって得られたイミノ基含有ベンゾオキサジン化合物(b)を1,4-ジオキサンに溶解し、ベンゾオキサジン溶液(27wt%)を調製した。平滑ガラス上にPP板(基材)を固定し、当該基材上に前記ベンゾオキサジン溶液をガラス棒でキャストした。厚み調節にはテフロン(登録商標)シートを使用した。その後、溶媒が急激に揮発することを防ぐため、前記ベンゾオキサジン溶液をキャストした基材をバットで覆い、一晩静置した。
 得られたキャストフィルムから、下記の加工条件により、未硬化フィルムおよび硬化フィルムを得た。
未硬化フィルム:キャストフィルムを50℃で30分間、75℃で30分間、90℃で30分間、オーブンを用いて加熱した。
硬化フィルム:キャストフィルムを50℃で30分間、75℃で30分間、90℃で30分間、オーブンを用いて加熱した。次いで、得られた自立膜に対して2MPaのプレスを、95℃で1時間、120℃で1時間、150℃で1時間、190℃で2時間、220℃で1時間、昇温しながら行った。プレス機としてAYSR-10(神藤金属工業所)を使用した。
 〔実施例3〕
 製造例2によって得られたイミノ基含有ベンゾオキサジン化合物(d)を厚み75μmのPIフィルム型枠(8cm×8cm)に入れ、テフロン(登録商標)シート(離型紙)、ステンレス板とともにプレスすることにより、未硬化フィルムおよび硬化フィルムを得た。プレス機としてMINI TEST PRESS-10(東洋精機社製)を使用した。未硬化フィルムおよび硬化フィルムを得るための加工条件は下記の通りとした。
未硬化フィルム:4MPaのプレスを、150℃で45分間行った。
硬化フィルム:4MPaのプレスを、150℃で45分間、190℃で2時間、220℃で1時間、昇温しながら行った。
 〔実施例4〕
 製造例2によって得られたイミノ基含有ベンゾオキサジン化合物(d)をクロロホルムに溶解し、ベンゾオキサジン溶液(12wt%)を調製した。平滑ガラス上にPP板(基材)を固定し、当該基材上に前記ベンゾオキサジン溶液をガラス棒でキャストした。厚み調節にはテフロン(登録商標)シートを使用した。その後、溶媒が急激に揮発することを防ぐため、前記ベンゾオキサジン溶液をキャストした基材をバットで覆い、一晩静置した。
 得られたキャストフィルムから、下記の加工条件により、未硬化フィルムおよび硬化フィルムを得た。
未硬化フィルム:キャストフィルムを100℃で15分間、オーブンを用いて加熱した。硬化フィルム:キャストフィルムを100℃で15分間、オーブンを用いて加熱した。次いで、得られた自立膜を150℃で45分間、190℃で2時間、220℃で1時間、オーブンを用いてさらに加熱した。
 〔実施例5〕
 製造例3によって得られたイミノ基含有ベンゾオキサジン化合物(f)を厚み125μmのPIフィルム型枠(6cm×4cm)に入れ、テフロン(登録商標)シート(離型紙)、ステンレス板とともにプレスすることにより、硬化フィルムを得た。プレス機としてMINI TEST PRESS-10(東洋精機社製)を使用した。硬化フィルムを得るための加工条件は下記の通りとした。
硬化フィルム:5MPaのプレスを、150℃で45分間、190℃で2時間、220℃で1時間、昇温しながら行った。
 〔実施例6〕
 製造例5によって得られたイミノ基含有ベンゾオキサジン化合物(j)を1,3-ジオキソランに溶解し、ベンゾオキサジン溶液(50wt%)を調製した。平滑ガラス上にニトフロンフィルム No.900UL(基材)を固定し、当該基材上に前記ベンゾオキサジン溶液をガラス棒でキャストした。厚み調節にはテフロン(登録商標)シートを使用した。その後、溶媒が急激に揮発することを防ぐため、前記ベンゾオキサジン溶液をキャストした基材をバットで覆い、一晩静置した。
 得られたキャストフィルムから、下記の加工条件により、硬化フィルムを得た。
硬化フィルム:キャストフィルムを50℃で30分間、70℃で30分間、80℃で2時間、120℃で1時間、真空ラミネーターを用いて加熱した。次いで、得られた自立膜に対して2MPaのプレスを、150℃で1時間、190℃で2時間、220℃で1時間、昇温しながら行った。プレス機としてAYSR-10(神藤金属工業所)を使用した。
 〔比較例1〕
 公知のベンゾオキサジン化合物である3,3’-(メチレン-1,4-ジフェニレン)ビス(3,4-ジヒドロ-2H-1,3-ベンゾオキサジン)(P-d)(四国化成社製)を厚み125μmのPIフィルム型枠(6cm×4cm)に入れ、テフロン(登録商標)シート(離型紙)、ステンレス板とともにプレスすることにより、硬化フィルムを得た。プレス機としてMINI TEST PRESS-10(東洋精機社製)を使用した。硬化フィルムを得るための加工条件は下記の通りとした。
硬化フィルム:5MPaのプレスを、180℃で30分間、200℃で30分間、220℃で2時間、昇温しながら行った。
 〔評価結果1:フィルムの各種物性と加水分解性〕
 各実施例および比較例の物性を下記表1に示す。また、各実施例および比較例における加水分解性評価試験(分解性評価1)の結果を図6に示す。なお、図6においていずれの実施例および比較例の容器内にも共通して確認できる円筒状の物体は攪拌子である。比較例1のみ、容器内にさらにフィルム状の物体が残存していることが確認できる。
 (結論)
 表1および図6より、実施例1~実施例4の硬化フィルムは、加水分解性を示すことがわかった。これらの硬化フィルムは、熱硬化性樹脂の硬化物であるにも関わらず、主鎖中に導入された動的共有結合(イミン結合)によって、加水分解性を示したと考えられる。本実施例の評価条件で加水分解性があることは、ベンゾオキサジン化合物の硬化物、言い換えるならば熱硬化性樹脂の硬化物、を化学的に分解して低分子化合物を生成できることを意味する。そのため、本発明の一実施形態に係る熱硬化性樹脂の硬化物は、例えばケミカルリサイクルなどのリサイクルを行うことも可能であると考えられる。
 一方、比較例1の硬化フィルムは、加水分解性を示さないことがわかった。この比較例に限らず、一般的な熱硬化性樹脂の硬化物は、動的共有結合を有していないため、本実施例の評価条件では加水分解性を示さなかったと考えられる。
 また、表1より、実施例1~3、実施例5、6の硬化フィルムは、比較例1の硬化フィルムよりも、Tgが高く、耐熱性に優れることがわかった。実施例5、6では、Tgに加えてTd5も向上しており、化学的な耐熱性も優れているといえる。
 〔評価結果2:硬化フィルムのアミン分解性〕
 続いて、アミン分解性評価試験(分解性評価2)を行った。
 〔実施例7〕
 攪拌子を備えた反応容器中に、製造例1によって得られたイミノ基含有ベンゾオキサジン化合物(b)の硬化フィルム(0.008g)、1,3-ビス(4-アミノフェノキシ)ベンゼン(0.08g)、DMF1mLを添加し、100℃で8時間反応させた。
 〔実施例8〕
 攪拌子を備えた反応容器中に、製造例3によって得られたイミノ基含有ベンゾオキサジン化合物(f)の硬化フィルム(0.008g)、m-キシレン-α,α’-ジアミン(0.8g)、DMF1mLを添加し、100℃で2時間反応させた。
 〔実施例9〕
 攪拌子を備えた反応容器中に、製造例5によって得られたイミノ基含有ベンゾオキサジン化合物(j)の硬化フィルム(0.008g)、m-キシレン-α,α’-ジアミン(0.8g)、DMF1mLを添加し、100℃で1時間反応させた。
 〔実施例10〕
 攪拌子を備えた反応容器中に、製造例5によって得られたイミノ基含有ベンゾオキサジン化合物(j)の硬化フィルム(0.008g)、ヘキサメチレンジアミン(0.4g)、DMF1mLを添加し、100℃で1時間反応させた。
 〔実施例11〕
 攪拌子を備えた反応容器中に、製造例5によって得られたイミノ基含有ベンゾオキサジン化合物(j)の硬化フィルム(0.008g)、ヘキサメチレンジアミン(0.008g)、DMF1mLを添加し、100℃で5時間反応させた。
 〔比較例2〕
 攪拌子を備えた反応容器中に、比較例1で得られた硬化フィルム(0.008g)、1,3-ビス(4-アミノフェノキシ)ベンゼン(0.08g)、DMF1mLを添加し、100℃で8時間反応させた。
 〔比較例3〕
 攪拌子を備えた反応容器中に、比較例1で得られた硬化フィルム(0.008g)、m-キシレン-α,α’-ジアミン(0.08g)、DMF1mLを添加し、100℃で1時間反応させた。
 〔比較例4〕
 攪拌子を備えた反応容器中に、比較例1で得られた硬化フィルム(0.008g)、ヘキサメチレンジアミン(0.4g)、DMF1mLを添加し、100℃で1時間反応させた。
 〔比較例5〕
 攪拌子を備えた反応容器中に、比較例1で得られた硬化フィルム(0.008g)、ヘキサメチレンジアミン(0.008g)、DMF1mLを添加し、100℃で5時間反応させた。
 各実施例および比較例の物性を下記表2に示す。また、各実施例および比較例におけるアミン分解性評価試験(分解性評価2)の結果を図7に示す。なお、図7においていずれの実施例および比較例の容器内にも共通して確認できる円筒状の物体は攪拌子である。比較例2~5では、容器内にさらにフィルム状の物体が残存していることが確認できる。
 実施例11については、アミン分解性評価試験後の分解溶液のGPCチャートを図8に示す。得られた分解物の分子量を測定したところ、重量平均分子量(Mw)は2242、数平均分子量(Mn)は1035であった。硬化フィルムが分解され、低分子量化していることが確認できる。
 (結論)
 表2および図7より、実施例7~11の硬化フィルムは、アミン分解性を示すことがわかった。これらの硬化フィルムは、熱硬化性樹脂の硬化物であるにも関わらず、主鎖中に導入された動的共有結合(イミン結合)が、添加したアミンとイミン交換反応することによって、分解性を示したと考えられる。本実施例の評価条件で分解性があることは、ベンゾオキサジン化合物の硬化物、言い換えるならば熱硬化性樹脂の硬化物、を化学的に分解して低分子化合物を生成できることを意味する。そのため、本発明の一実施形態に係る熱硬化性樹脂の硬化物は、例えばケミカルリサイクルなどのリサイクルを行うことも可能であると考えられる。
 一方、比較例2(実施例7に対応する分解条件)、比較例3(実施例8および9に対応する分解条件)、比較例4(実施例10に対応する分解条件)、および比較例5(実施例11に対応する分解条件)の硬化フィルムは、アミン分解性を示さないことがわかった。この比較例に限らず、一般的な熱硬化性樹脂の硬化物は、動的共有結合を有していないため、本実施例の評価条件では分解性を示さなかったと考えられる。
 以上より、本発明の一実施形態に係る、動的共有結合を含有するベンゾキサジン化合物の硬化物は、アミン分解性を示す。これによって、本発明の一実施形態に係るベンゾキサジン化合物を熱硬化性樹脂として使用した硬化物は、硬化した樹脂を分解させることにより、リサイクルが可能であると考えられる。さらに、本発明の一実施形態に係るベンゾキサジン化合物を熱硬化性樹脂として使用した炭素繊維複合材料は、硬化した樹脂成分を分解させることにより、樹脂のリサイクルのみならず、炭素繊維のリサイクルが可能であると考えられる。
 〔評価結果3:未硬化フィルムの再成形性〕
 〔試験方法〕
 <未硬化フィルムの硬化度測定>
 未硬化フィルムの硬化度を以下のように求めた。まず、示差走査熱量測定装置(DSC、日立ハイテクサイエンス社製、DSC7000X)を用いて窒素流量40mL/minの下、5℃/minの条件でDSC曲線を測定した。次に、ベンゾオキサジンの開環に由来する硬化発熱量から、下記の式より、硬化度を算出した。
 硬化度[%]=100-{(硬化後の発熱量)/(硬化前の発熱量)×100}
 ここで、硬化前の発熱量は未硬化樹脂のDSC曲線における発熱ピークの面積を表し、硬化後の発熱量は硬化フィルムのDSC曲線における発熱ピークの面積を表す。
 (靱性評価基準)
A…フィルムに破れ、またはひびが見られない
B…フィルムに破れ、またはひびが見られる
 (再成形性評価基準)
A…分離不可能な程度に一体化した
B…一体化せず、再分離可能であった
 〔実施例12〕
 製造例5によって得られたイミノ基含有ベンゾオキサジン化合物(j)を厚み125μmのPIフィルム型枠(6cm×4cm)に入れ、テフロン(登録商標)シート(離型紙)、ステンレス板とともにプレスすることにより、未硬化フィルムを得た。得られた未硬化フィルムの硬化度は0%であった。プレス機としてAYSR-10(神藤金属工業所)を使用した。未硬化フィルムを得るための加工条件は下記の通りとした。
未硬化フィルム:2MPaのプレスを、150℃で1時間行った。
 得られた未硬化フィルムを4つに切断後、重ねて、2MPaのプレスを、150℃で1時間行い成形したところ(未硬化フィルム成形時と同条件)、分離不可能な程度に一体化した。再成形後のフィルムの取り出し時に破れ・ひびは見られなかった。結果を下に示す。実施例における未硬化フィルムの再成形性の結果を図9に示す。
・靱性評価結果:A
・再成形性評価結果:A
 (結論)
 図8より、実施例12の未硬化フィルムは、再成形性、すなわち未硬化成形体を複数に分割した後、一体化させることができる性質を示すことがわかった。また、実施例12の未硬化フィルムは、靱性、すなわち再成形の加熱前後において未硬化成形体に破れまたはひびが生じない性質を示すことがわかった。
 〔II.プリプレグ/炭素繊維複合材料(CFRP)の物性〕
 本発明を使用したプリプレグおよびCFRPの一実施例について以下に説明する。
 〔材料〕
 ベンゾオキサジン化合物の評価3に使用した材料を以下に示す。
 (炭素繊維平織材)
・東レ社製PAN系炭素繊維(商品名:CO6343B、繊維目付:198g/m、密度:1.76g/cm
 なお、東レ社製PAN系炭素繊維については、コンベクションオーブンで300℃、1.5h加熱することにより、サイジング剤を除去したものを用いた。
 (CFRPのアミン分解性)
・ヘキサメチレンジアミン(東レ社製)
 〔評価結果4:プリプレグ/CFRPの作製とその評価〕
 <プリプレグの作製>
 〔実施例13〕
 製造例5で作製したイミノ基含有ベンゾオキサジン化合物(j)を1,3-ジオキソランに溶解させ、50wt%溶液を作製した。得られた50wt%溶液に炭素繊維平織材を含侵後、室温で3時間乾燥させ、プリプレグを得た。
 <CFRPの作製>
 〔実施例14〕
 実施例13で作製したプリプレグを12層となるように積層した。得られた積層プリプレグを、ニトフロンシート(離型紙)2枚(図10中、積層プリプレグの上下に記載された白色長方形)を用いて挟み、PI(ポリイミド)フィルム(図10中、積層プリプレグとニトフロンシートを囲んだ点線状の長方形)で包んだものを図10のように配置した。これらをプレス成型機で(1)真空条件下、30℃で30分、50℃で30分、70℃で30分、80℃で2時間、120℃で1時間加熱し、(2)真空条件下、かつ、2MPaでプレスして150℃まで昇温し、1時間加熱、(3)その後100℃まで降温したのちに副資材を除去して2MPaでプレスして190℃で2時間、220℃で1時間、加熱することにより、硬化させた。これにより、厚さが約3mmの板状のCFRPを得た。使用した資材を以下に示す。
ステンレスプレート 2mm厚み
ガラス繊維 Airtech社製、製品名:BleederLeaseE
バギングフィルム Airtech社製、製品名:Strechlon800(SL800)
ブリーザークロス 高安社製、製品名:アラフノンOSE-135
シーラントテープ Airtech社製、AT-200Y
ベースプレート 3mm厚み
ニトフロンシート 日東電工社製、製品名:9700UL
PIフィルム 厚み50ミクロン
 <CFRPの断面観察>
 〔実施例15〕
 実施例14で得られた板状のCFRPの中心部分をダイヤモンドカッターで切り出し、エポキシ樹脂中に包埋させた。次いで、ダイヤモンドカッターを用いてCFRPを含む断面を露出させ、研磨装置(MINITECH223 Presi社製)で当該断面を研磨した。その後、断面を金属顕微鏡(AX70-53-MBS オリンパス社製)および顕微鏡用デジタルカメラ(DP21 オリンパス社製)で観察することにより、CFRP内部に存在するボイドの有無を評価した。その結果を図11および表3に示す。
 <CFRPのガラス転移温度>
 〔実施例16〕
 実施例14で得られた板状のCFRPの中心部分をダイヤモンドカッターで切り出し、動的粘弾性測定装置(DMA、TA Instruments社製、Q800、曲げモード、片持ち梁)を用いて、CFRPのガラス転移温度Tgを求めた。周波数(1Hz)、昇温速度5℃/minの条件で測定した。得られたDMA曲線から求められる補外ガラス転移開始温度(変曲点より前のベースラインを高温側に外挿した直線と、変曲点における接線との交点)を本実施例におけるTgとした。その結果を表3に示す。
 〔実施例17〕
 実施例14で得られた板状のCFRPをオーブン中、250℃で30分ポストキュアしたものについて、実施例16と同様のDMA試験を実施した。その結果を表3に示す。
 <CFRPの層間せん断強度>
 〔実施例18〕
 実施例14で得られた板状のCFRPの中心部分をダイヤモンドカッターで切り出し、万能試験機(AG-10TB、SHIMADSU社製)を用いて、ショートビームシェア(SBS)試験を行った。試験片サイズおよび試験条件はASTMD2344に準拠し、下記式より、CFRPの層間せん断強度を求めた。その結果を表3に示す。
層間せん断強度[MPa]=3×層間せん断荷重[N]/(4×試験片幅[mm]×試験片厚み[mm])
 <CFRPのアミン分解性>
 〔実施例19〕
 実施例14で得られた板状のCFRPをダイヤモンドカッターで切り出した3cm角の試験片(樹脂量:2.0628g)、ヘキサメチレンジアミン(2.0628g)、DMF30mLを添加し、100℃で24時間反応させた。その結果を表4および図12に示す。
分解可否の評価基準:
A 硬化した樹脂成分が完全に溶解され、炭素繊維がほどけている
B 硬化した樹脂成分が一部溶解、溶液が着色したが、炭素繊維は形状を維持している
C 硬化した樹脂成分が全く溶解されず、溶液の着色も見られない
 〔実施例20〕
 実施例14で得られた板状のCFRPをダイヤモンドカッターで切り出した4cm角の試験片(樹脂量:2.0628g)、ヘキサメチレンジアミン(34.4076g)、DMF250mLを添加し、100℃で30時間反応させた。その結果を表4および図12に示す。
 〔実施例21〕
 実施例14で得られた板状のCFRPをダイヤモンドカッターで切り出した3cm×0.3cmの試験片(樹脂量:0.2479g)、ヘキサメチレンジアミン(2.4790g)、DMF15mLを添加し、100℃で13時間反応させた。その結果を表4および図12に示す。
 <リサイクル炭素繊維(r-CF)の回収>
 〔実施例22〕
 実施例21で得られた分解樹脂溶液を濾過して、炭素繊維を回収した。その後、アセトン中で3時間洗浄し、濾過した。これを3回繰り返し、炭素繊維を真空オーブン中100℃で6時間、乾燥したものをr-CFとした。その結果を図13に示す。
 <リサイクル炭素繊維(r-CF)のSEM観察>
 〔実施例23〕
 実施例22で得られたr-CFについて、SEM観察を行った。その結果を図14に示す。
 〔比較例6〕
 実施例14および実施例15に示すプリプレグおよびCFRPを構成する炭素繊維は、サイジング剤を除去した東レ社製PAN系炭素繊維である。これについて、実施例22のr-CFと対比して、ヴァージンCF(v-CF)とする。このv-CFについて、SEM観察を行った。その結果を図14に示す。
 <リサイクル炭素繊維(r-CF)のTGA測定>
 〔実施例24〕
 実施例22で得られたr-CFについて、TGA測定を行い、残存樹脂量の割合を算出した。
 実施例15では、図11に示したとおり、実施例14で得られたCFRPの内部にはボイドがないことが確認された。以後、ボイドがないことを前提に評価をすすめた。つづいて、実施例16、17では、耐熱性を評価するため、DMA測定を行い、ガラス転移温度を算出した。その結果、実施例13で作製した最終硬化温度220℃の系ではTgが221℃、250℃でポストキュアした系では238℃を示した(表3)。実施例18では、力学特性を評価するため、SBS試験を行い、樹脂/炭素繊維間の層間せん断強度を算出した。その結果、45MPaの層間せん断強度を示すことがわかった(表3)。
 表4および図12より、実施例19では、実施例11(硬化フィルムのアミン分解条件)を再現して分解試験を行い、24時間経過後に少量のCFRPが分解された。また、アミンの添加量を増やした実施例20および実施例21では、CFRP中の硬化樹脂が分解し、炭素繊維と分離している様子が確認できた。また、実施例20では4cm角、実施例21では3×0.3cmの試験片を使用しており、分解に要した時間はそれぞれ30時間、13時間であった。
 図14に示すように、実施例23ではr-CF表面の様子、比較例6ではv-CF表面の様子をSEMで観察した。実施例23(図14の左)と比較例6(図14の右)を比較したところ、炭素繊維表面の様子は同等であることがわかった。しかし、図14の中央(実施例23の拡大図)に示すように、r-CFの一部では炭素繊維表面に残存する樹脂が観察された。実施例24では、この残存樹脂の量を定量するため、TGA測定を行った。その結果、1~1.5%の重量減少がみられた。
 (結論)
 実施例15~18より、本発明の一実施形態に係る、動的共有結合を含有するベンゾキサジン化合物の硬化物をマトリクス樹脂とするCFRPは、硬化樹脂フィルム同様に、優れた耐熱性(高いガラス転移温度)を示し、45MPaの層間せん断強度を有していることがわかった。
 実施例19~21より、CFRPのアミン分解性を評価したところ、実施例19では、溶液が着色し、CFRPの端部の変形が確認されたことから、樹脂硬化物の一部が分解したと判断した。実施例20および実施例21では、CFRPの樹脂硬化物成分が完全に分解し、炭素繊維がほぐれていることが確認できた。また、試験片サイズが大きくても分解は可能であるが、より小さい試験片のほうが、分解に要する時間が短くて済むことがわかった。
 実施例23、実施例24より、アミン分解試験によって回収したr-CFの評価を行ったところ、樹脂の大部分は除去できており、v-CF同等の表面状態であることがわかった。一部樹脂が残存している様子が確認されたものの、1.5%以下であることがわかった。
 以上より、本発明の一実施形態に係る、動的共有結合を含有するベンゾキサジン化合物の硬化物をマトリクス樹脂とするCFRPは、硬化した樹脂成分をアミンによって分解させることにより、炭素繊維のリサイクルが可能である。
 〔評価結果5:プリプレグ積層体の評価〕
本発明を使用したプリプレグの一実施例について以下に説明する。
 <硬化フィルムの硬化度測定>
 硬化フィルムの硬化度は以下のように求めた。まず、示差走査熱量測定装置(DSC、日立ハイテクサイエンス社製、DSC7000X)を用いて窒素流量40mL/minの下、5℃/minの条件でDSC曲線を測定した。次に、ベンゾオキサジンの開環に由来する硬化発熱量から、下記の式より、硬化度を算出した。
 硬化度[%]=100-{(硬化後の発熱量)/(硬化前の発熱量)×100}
 ここで、硬化前の発熱量は未硬化樹脂のDSC曲線における発熱ピークの面積を表し、硬化後の発熱量は硬化フィルムのDSC曲線における発熱ピークの面積を表す。
 <プリプレグ積層体の繰り返し変形性試験>
 〔実施例25〕
 実施例13で得られたプリプレグを3枚積層し、コンベクションオーブンで150℃1時間加熱した。このプリプレグ積層体について、図15に示すような方法で、繰り返し変形性(熱賦形性)の評価を行った。状態A(ガラス製の丸瓶側面に沿わせて曲げた状態)と状態B(曲げたプリプレグ積層体を金属製バット底面に固定し伸ばした状態)を繰り返すことが可能なサイクル数を評価した。状態Aから状態Bに加工する際は、室温で手で積層体を伸ばし、バット底面に固定した状態で150℃10分加熱して硬化させた。状態Bから状態Aに加工する際は室温で手で積層体を曲げ、丸瓶側面に沿わせて曲げた状態で150℃10分加熱して硬化させた。プリプレグ積層体を前述したように状態Aから状態Bに加工し、その後、状態Bから状態Aに加工する一連の処理を1サイクルとした(1サイクルで150℃20分の熱履歴がかかる)。プリプレグ積層体の破断をもって繰り返し変形性を失ったと判断した。各サイクルにおける樹脂の硬化度は、プリプレグ積層体にかかった熱履歴を再現した硬化フィルムから算出した。その結果を表5に示す。
 〔比較例7〕
 汎用的に用いられるCFRPとして、市販の180℃硬化のエポキシプリプレグを3枚積層し、コンベクションオーブンで150℃1時間加熱した。このプリプレグ積層体について、実施例24同様に、繰り返し変形性の評価を行った。その結果を表5に示す。
 実施例25では、4サイクル目までは、図15に示したとおり、繰り返し変形することができた。その後5サイクル目に曲げる際にプリプレグ積層体の破断が観察され、繰り返し変形性を失ったと判断した。表5より、4サイクルまでにかかる熱履歴の合計は150℃、2時間20分であり、このときの樹脂の硬化度は35.6%であった。一方、エポキシプリプレグを使用した比較例7では、1サイクル目でプリプレグ積層体の破断が観察され、繰り返し変形性を失ったと判断した。熱履歴は150℃、1時間であった。
 <プリプレグ積層体のフリースタンディング性試験>
 〔実施例26〕
 実施例13で得られたプリプレグを2枚積層し、ガラス製の丸瓶側面に沿わせて曲げた状態で、ガラス瓶の側面に付着させた状態のまま、コンベクションオーブンで150℃1時間、180℃1時間加熱し、部分硬化させた。このプリプレグ積層体を、ガラス瓶の側面から取り外し、湾曲した積層体の一端を金属製バットの底面に固定、もう一端を宙に浮かせた状態のまま、オーブン中220℃で1時間加熱し、フリースタンディング性(自己支持性)をみた。その結果を図16に示す。評価前後における樹脂の硬化度は、プリプレグ積層体にかかった熱履歴を再現した硬化フィルムから算出した。その結果を表6に示す。
 図16より、実施例26では、硬化度78.5%まで部分硬化した試験片が、オーブン中、220℃での加熱した後も湾曲形状、つまり湾曲した積層体の一端を金属製バットの底面に固定、もう一端が宙に浮いた状態が維持されていることを確認できた。
 (結論)
 実施例25の結果から、樹脂の硬化度が35.6%以下であれば、加熱による繰り返し変形が可能であることが示唆された。繰り返し変形が可能とは、例えば、一度プリプレグを積層したのちに別の形に変形させることが可能であることを意味する。一方、比較例7では、成形にかかる熱履歴150℃1時間によって、硬化がすすんでいるため、加熱によって繰り返し変形することはできない。
 実施例26の結果から、少なくとも樹脂の硬化度が78.5%以上であれば、フリースタンディング性を有していることが示唆された。これらの特性は、プリプレグ積層体を積層し、CFRPとして成形する際に有用である。
 また、フリースタンディング性を有していない場合、最終硬化温度までオートクレーブ中で硬化することになるため、汎用的な副資(エポキシに合わせて耐熱性は180℃程度)は使用できず、高耐熱用の副資材を使用することとなるが、本実施例のように、180℃以下の硬化条件でフリースタンディング性を有していれば、複合材料成形の途中でオートクレーブ成形からオーブンでの成形に切り替えることができ、高価な副資材を使用せずにすむ。
 以上より、本発明の一実施形態に係る、動的共有結合を含有するベンゾキサジン化合物の硬化物をマトリクス樹脂とするプリプレグ/CFRPが分解性に加えて、優れた成形性を有していると考えられる。
 本発明の一態様は、熱硬化性樹脂を用いる分野に利用することができる。

Claims (15)

  1.  一般式(I)で示される、ベンゾオキサジン環構造を主鎖中に有する、熱硬化性樹脂。
     〔一般式(I)において、
     ArおよびArは、フェノール化合物(A)由来の、3価の芳香族基を示し、
     ArとArとは、同一であっても異なっていてもよく、
     Rは、芳香族ジアミン化合物(B1)由来の、一般式(II)から一般式(V)のいずれか1つ以上で示される2価の芳香族基を示し、
     Rは、芳香族ジアミン化合物(B2)由来の、2価の芳香族基を示し、
     RとRとは、同一であっても異なっていてもよく、
     nは、1以上を示す。〕
     〔一般式(II)において、
     アスタリスクは結合手を示し、
     芳香環に結合している、Rを除く主鎖結合の位置関係は、メタまたはパラであり、
     Rは芳香環上の置換基であり、炭素数1~10の脂肪族基を示し、Rの個数は0個または1個以上であり、Rの個数が2個以上である場合には互いに同一であっても異なっていてもよく、
     m1およびm2は、それぞれ0または1を示す。〕
     〔一般式(III)において、
     アスタリスクは結合手を示し、
     2つの芳香環に結合している、Rを除く主鎖結合の位置関係は、それぞれメタまたはパラであり、
     L1は、単結合、イソプロピリデン基、スルホニル基、カルボニル基、9,9-フルオレニル基のいずれか1つ以上を示し、
     Rは芳香環上の置換基であり、炭素数1~10の脂肪族基を示し、それぞれの芳香環においてRの個数は0個または1個以上であり、Rの個数が2個以上である場合には互いに同一であっても異なっていてもよく、
     m3およびm4は、それぞれ0または1を示す。〕
     〔一般式(IV)において、
     アスタリスクは結合手を示し、
     3つの芳香環に結合している、Rを除く主鎖結合の位置関係は、それぞれメタまたはパラであり、
     L2およびL3は、それぞれオキシ基を示し、
     Rは芳香環上の置換基であり、炭素数1~10の脂肪族基を示し、それぞれの芳香環においてRの個数は0個または1個以上であり、Rの個数が2個以上である場合には互いに同一であっても異なっていてもよく、
     m5およびm6は、それぞれ0または1を示す。〕
     〔一般式(V)において、
     アスタリスクは結合手を示し、
     4つの芳香環に結合している、Rを除く主鎖結合の位置関係は、それぞれメタまたはパラであり、
     L4およびL6は、それぞれオキシ基を示し、
     L5は、単結合、イソプロピリデン基、スルホニル基、カルボニル基、9,9-フルオレニル基のいずれか1つ以上を示し、
     Rは芳香環上の置換基であり、炭素数1~10の脂肪族基を示し、それぞれの芳香環においてRの個数は0個または1個以上であり、Rの個数が2個以上である場合には互いに同一であっても異なっていてもよく、
     m7およびm8は、それぞれ0または1を示す。〕
  2.  芳香族ジアミン化合物(B1)が、1,4-ジアミノベンゼン、1,3-ジアミノベンゼン、2,4-ジアミノトルエン、2,6-ジアミノトルエン、3-(アミノメチル)ベンジルアミン、4-(アミノメチル)ベンジルアミン、3,3’-スルホニルジアニリン、4,4’-スルホニルジアニリン、3,3’-ジアミノベンゾフェノン、4,4’-ジアミノベンゾフェノン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、2,2-ビス〔4-(4-アミノフェノキシ)フェニル〕プロパン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、4,4’-ビス(3-アミノフェノキシ)ビフェニル、4,4’-ビス(4-アミノフェノキシ)ビフェニル、9,9-ビス(4-アミノフェニル)フルオレンからなる群より選ばれる少なくとも1つである、請求項1に記載の熱硬化性樹脂。
  3.  請求項1に記載の熱硬化性樹脂を含む組成物。
  4.  請求項1に記載の熱硬化性樹脂を成形してなる、未硬化成形体。
  5.  請求項1に記載の熱硬化性樹脂、請求項3に記載の組成物、または請求項4に記載の未硬化成形体を硬化してなる、硬化成形体。
  6.  請求項5に記載の硬化成形体を酸性または塩基性条件下で分解してなる、溶媒に可溶な分解物。
  7.  請求項5に記載の硬化成形体を酸性または塩基性条件下で分解するステップを含む、溶媒に可溶な分解物の製造方法。
  8.  ベンゾオキサジン環構造を主鎖中に有する、熱硬化性樹脂であって、
     前記熱硬化性樹脂を成形してなる未硬化成形体が、再成形性と、靱性とを備え、
     前記再成形性とは、前記未硬化成形体を複数に分割した後、200℃以下の加熱によって、一体化させることができる性質のことであり、
     前記靱性とは、前記加熱の前後において前記未硬化成形体に破れまたはひびが生じない性質のことであり、
     前記分割および一体化と、前記加熱とを1回以上繰り返しても前記再成形性と、前記靱性とが維持される、熱硬化性樹脂。
  9.  ベンゾオキサジン環構造を主鎖中に有する、熱硬化性樹脂の製造方法であって、
     フェノール化合物(A)と、芳香族ジアミン化合物(B1)と、アルデヒド化合物(C)とを反応させるステップ(s1)と、
     さらに、芳香族ジアミン化合物(B2)を反応させるステップ(s2)と、をこの順序で含み、
     フェノール化合物(A)が、アルデヒド基を有し、
     芳香族ジアミン化合物(B1)が、一般式(IIa)から一般式(Va)のいずれか1つ以上で示される、熱硬化性樹脂の製造方法。
     〔一般式(IIa)において、
     芳香環に結合している、Rを除く主鎖結合の位置関係は、メタまたはパラであり、
     Rは芳香環上の置換基であり、炭素数1~10の脂肪族基を示し、Rの個数は0個または1個以上であり、Rの個数が2個以上である場合には互いに同一であっても異なっていてもよく、
     m1およびm2は、それぞれ0または1を示す。〕
     〔一般式(IIIa)において、
     2つの芳香環に結合している、Rを除く主鎖結合の位置関係は、それぞれメタまたはパラであり、
     L1は、単結合、イソプロピリデン基、スルホニル基、カルボニル基、9,9-フルオレニル基のいずれか1つ以上を示し、
     Rは芳香環上の置換基であり、炭素数1~10の脂肪族基を示し、それぞれの芳香環においてRの個数は0個または1個以上であり、Rの個数が2個以上である場合には互いに同一であっても異なっていてもよく、
     m3およびm4は、それぞれ0または1を示す。〕
     〔一般式(IVa)において、
     3つの芳香環に結合している、Rを除く主鎖結合の位置関係は、それぞれメタまたはパラであり、
     L2およびL3は、それぞれオキシ基を示し、
     Rは芳香環上の置換基であり、炭素数1~10の脂肪族基を示し、それぞれの芳香環においてRの個数は0個または1個以上であり、Rの個数が2個以上である場合には互いに同一であっても異なっていてもよく、
     m5およびm6は、それぞれ0または1を示す。〕
     〔一般式(Va)において、
     4つの芳香環に結合している、Rを除く主鎖結合の位置関係は、それぞれメタまたはパラであり、
     L4およびL6は、それぞれオキシ基を示し、
     L5は、単結合、イソプロピリデン基、スルホニル基、カルボニル基、9,9-フルオレニル基のいずれか1つ以上を示し、
     Rは芳香環上の置換基であり、炭素数1~10の脂肪族基を示し、それぞれの芳香環においてRの個数は0個または1個以上であり、Rの個数が2個以上である場合には互いに同一であっても異なっていてもよく、
     m7およびm8は、それぞれ0または1を示す。〕
  10.  請求項1もしくは2に記載の熱硬化性樹脂、または請求項3に記載の組成物を強化繊維に含浸させてなる、プリプレグまたはセミプレグ。
  11.  繰り返し変形させることが可能な性質、および/または、フリースタンディング状態で硬化させることが可能な性質を有する、請求項10に記載のプリプレグまたはセミプレグ。
  12.  請求項1もしくは2に記載の熱硬化性樹脂、または請求項3に記載の組成物を強化繊維に含浸させて、前記熱硬化性樹脂または前記組成物を硬化させてなる、繊維複合材料。
  13.  以下のステップ:
     請求項1もしくは2に記載の熱硬化性樹脂、または請求項3に記載の組成物を、強化繊維に含浸させて、プリプレグまたはセミプレグを得るステップと、
     前記プリプレグまたはセミプレグを予備硬化させて、硬化度が0%超~99%の予備硬化プリプレグを得るステップと、
     前記予備硬化プリプレグを硬化させ、繊維複合材料を得るステップと、
    を含む、繊維複合材料の成形方法。
  14.  前記プリプレグまたはセミプレグを予備硬化させる前に、前記プリプレグまたはセミプレグを変形させるステップをさらに含む、請求項13に記載の成形方法。
  15.  前記予備硬化プリプレグを硬化させる前に、前記予備硬化プリプレグを変形させ、フリースタンディング形状の予備硬化プリプレグを得るステップ
    を含む、請求項13に記載の繊維複合材料の成形方法。
PCT/JP2023/015294 2022-04-20 2023-04-17 熱硬化性樹脂、その製造方法および利用 WO2023204169A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022-069585 2022-04-20
JP2022069585 2022-04-20
JP2023012015 2023-01-30
JP2023-012015 2023-01-30

Publications (1)

Publication Number Publication Date
WO2023204169A1 true WO2023204169A1 (ja) 2023-10-26

Family

ID=88419847

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/015294 WO2023204169A1 (ja) 2022-04-20 2023-04-17 熱硬化性樹脂、その製造方法および利用

Country Status (1)

Country Link
WO (1) WO2023204169A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1865250A (zh) * 2006-05-19 2006-11-22 四川大学 含醛基苯并噁嗪中间体及制备方法
JP2021187980A (ja) * 2020-06-02 2021-12-13 住友ベークライト株式会社 難燃性樹脂組成物、ベンゾオキサジン化合物及び構造体
CN115521427A (zh) * 2022-10-14 2022-12-27 四川金象赛瑞化工股份有限公司 一种基于三聚氰胺的含席夫碱结构苯并噁嗪树脂的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1865250A (zh) * 2006-05-19 2006-11-22 四川大学 含醛基苯并噁嗪中间体及制备方法
JP2021187980A (ja) * 2020-06-02 2021-12-13 住友ベークライト株式会社 難燃性樹脂組成物、ベンゾオキサジン化合物及び構造体
CN115521427A (zh) * 2022-10-14 2022-12-27 四川金象赛瑞化工股份有限公司 一种基于三聚氰胺的含席夫碱结构苯并噁嗪树脂的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
OHARA MINORI; YOSHIMOTO KANAKO; KAWAUCHI TAKEHIRO; TAKEICHI TSUTOMU: "Synthesis of high-molecular-weight benzoxazines having azomethine linkages in the main-chain and the properties of their thermosetting resins", POLYMER, ELSEVIER, AMSTERDAM, NL, vol. 202, 15 June 2020 (2020-06-15), AMSTERDAM, NL, XP086234862, ISSN: 0032-3861, DOI: 10.1016/j.polymer.2020.122668 *
PUTTMANN KATHLEEN, AGAG TAREK, ISHIDA HATSUO: "Azomethine-Containing Main-chain Benzoxazine Polymers: Synthesis and Properties", PMSE PREPRINTS [ONLINE], AMERICAN CHEMICAL SOCIETY, 1 January 2011 (2011-01-01), XP093101039, Retrieved from the Internet <URL:http://pubs.acs.org/cgi-bin/preprints/display?div=pmse&meet=241&page=67543_15446.pdf> [retrieved on 20231114] *
SINI N.K.; BIJWE JAYASHREE; VARMA INDRA K.: "Thermal behaviour of bis-benzoxazines derived from renewable feed stock 'vanillin'", POLYMER DEGRADATION AND STABILITY, BARKING, GB, vol. 109, 29 July 2014 (2014-07-29), GB , pages 270 - 277, XP029093497, ISSN: 0141-3910, DOI: 10.1016/j.polymdegradstab.2014.07.015 *

Similar Documents

Publication Publication Date Title
JP4133561B2 (ja) ポリアミック酸オリゴマー、ポリイミドオリゴマー、溶液組成物、および繊維強化複合材料
JPH03197559A (ja) 繊維強化プリプレグの製造に適した熱硬化性ビスマレイミド樹脂系
CN110494477B (zh) 半浸料、预浸料、树脂复合材料及它们的制造方法
JPH02305860A (ja) プリプレグ
Xu et al. Effect of bisphenol-A on the structures and properties of phthalonitrile-based resin containing benzoxazine.
JP2009096874A (ja) 熱硬化性樹脂組成物及びその硬化物並びに繊維強化複合材料
JP2008530300A (ja) 高温熱安定性を有するビスマレイミド樹脂
CN109563287B (zh) 用于苯并噁嗪树脂作为潜在催化剂的苯并噻唑
WO2023204169A1 (ja) 熱硬化性樹脂、その製造方法および利用
TWI796409B (zh) 熱硬化性樹脂組成物
Raj et al. Glass fiber reinforced composites of phenolic–urea–epoxy resin blends
US7825211B2 (en) Single-step-processable polyimides
US20230159705A1 (en) Synthesis, purification, and properties of ring-opened benzoxazine thermoplastic
WO2023204070A1 (ja) アルデヒド基含有ベンゾオキサジン樹脂
Raj et al. Synthesis, characterization of Mannich base oligomers used with epoxy resin for glass fibre-reinforced laminates
Jubsilp et al. Thermosetting matrix based glass and carbon fiber composites
EP0540250A1 (en) Maleimide resin composition, prepreg and fibre-reinforced plastics material
JP2014201740A (ja) イミドオリゴマー及びこれを加熱硬化させてなるポリイミド樹脂
US20210340344A1 (en) Novel Amide Acid Oligomer Process For Molding Polyimide Composites
Yang et al. Carbon Fiber Reinforced Epoxy Resin Composites with Excellent Recyclable Performance via Dynamic Acylsemicarbazide Moieties
US7964698B2 (en) Wholly aromatic liquid crystalline polyetherimide (LC-PEI) resins
WO2023063334A1 (ja) 熱硬化性樹脂、組成物、未硬化成形体、一部硬化成形体、硬化成形体、および熱硬化性樹脂の製造方法
JP2023146628A (ja) 熱硬化性樹脂の製造方法
WO2023074518A1 (ja) 熱硬化性樹脂、組成物、未硬化成形体、一部硬化成形体、硬化成形体、および熱硬化性樹脂の製造方法
JPH0832765B2 (ja) エポキシ樹脂組成物、プリプレグ、その硬化物および複合材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23791817

Country of ref document: EP

Kind code of ref document: A1