WO2023202657A1 - 无线通信系统中的电子设备和方法 - Google Patents

无线通信系统中的电子设备和方法 Download PDF

Info

Publication number
WO2023202657A1
WO2023202657A1 PCT/CN2023/089439 CN2023089439W WO2023202657A1 WO 2023202657 A1 WO2023202657 A1 WO 2023202657A1 CN 2023089439 W CN2023089439 W CN 2023089439W WO 2023202657 A1 WO2023202657 A1 WO 2023202657A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
data transmission
stream
electronic device
scheduling
Prior art date
Application number
PCT/CN2023/089439
Other languages
English (en)
French (fr)
Inventor
樊婷婷
Original Assignee
索尼集团公司
樊婷婷
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼集团公司, 樊婷婷 filed Critical 索尼集团公司
Publication of WO2023202657A1 publication Critical patent/WO2023202657A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/10Flow control between communication endpoints

Definitions

  • the present disclosure relates to wireless communications, and in particular, to data transmission in wireless communications systems.
  • the fifth generation mobile communication technology is a new generation of cellular mobile communication technology whose performance goals are high data rates, reduced latency, energy saving, cost reduction, increased system capacity and large-scale device connections.
  • the present disclosure provides a solution for optimizing data transmission in a wireless communication system, especially multi-stream data transmission.
  • the present disclosure relates to a control-side electronic device of a wireless communication system.
  • the control-side electronic device is capable of performing multi-stream data transmission with a terminal-side electronic device in the wireless communication system.
  • the control-side electronic device includes a processing circuit, The processing circuit is configured to: based on the data transmission characteristics of the data streams included in the multi-stream data transmission, determine the number of scheduling identification information configured for the terminal-side electronic device; after determining to configure multiple scheduling identification information
  • the plurality of scheduling identification information is associated with a plurality of data streams included in the multi-stream data transmission; and for a specific data stream in the multi-stream data transmission, is associated with the specific data stream
  • the scheduling identification information is combined with the control information for the scheduling of the specific data flow to be used for the transmission of the specific data flow.
  • the present disclosure relates to a terminal-side electronic device of a wireless communication system.
  • the terminal-side electronic device is capable of performing multi-stream data transmission with a control-side electronic device in the wireless communication system.
  • the terminal-side electronic device includes a processing circuit.
  • the processing circuit is configured to: obtain a combination of specific scheduling identification information and specific control information, wherein the specific scheduling identification information is selected from the group configured based on the data transmission characteristics of the data streams included in the multi-stream data transmission.
  • a plurality of scheduling identification information associated with the data flow determining a specific data flow associated with the specific scheduling identification information based on the specific scheduling identification information, and performing data transmission of the specific data flow based on the specific control information .
  • the present disclosure relates to a method for a control-side electronic device of a wireless communication system, the control-side electronic device being capable of multi-stream data transmission with a terminal-side electronic device in the wireless communication system, the method comprising: : Based on the data transmission characteristics of the data streams included in the multi-stream data transmission, determine the number of scheduling identification information configured for the terminal-side electronic device; when it is determined that multiple scheduling identification information is configured, the multiple scheduling identification information A piece of scheduling identification information is associated with a plurality of data streams included in the multi-stream data transmission; and for a specific data flow in the multi-stream data transmission, the scheduling identification information associated with the specific data flow and for The scheduled control information of the specific data flow is combined for transmission of the specific data flow.
  • the present disclosure relates to a method for a terminal-side electronic device of a wireless communication system, the terminal-side electronic device being capable of multi-stream data transmission with a control-side electronic device in the wireless communication system, the method comprising: : Obtain the combined information of specific scheduling identification information and specific control information, wherein the specific scheduling identification information is selected from the group of data transmission characteristics configured based on the data transmission characteristics of the data flow included in the multi-stream data transmission and associated with the data flow. A plurality of scheduling identification information; determining a specific data flow associated with the specific scheduling identification information based on the specific scheduling identification information, and performing data transmission of the specific data flow based on the specific control information.
  • the present disclosure relates to a non-transitory computer-readable storage medium storing executable instructions that, when executed by a processor, enable the processor to implement the method as previously described.
  • the present disclosure relates to a wireless communication device
  • the wireless communication device includes: a processor and a storage device
  • the storage device stores executable instructions, the executable instructions when executed by the processor cause the The processor can implement the methods described previously.
  • the present disclosure relates to a wireless communications apparatus comprising means for implementing the method as previously described.
  • the present disclosure relates to a computer program product comprising instructions executable by an electronic device to implement the method as previously described.
  • the present disclosure relates to a computer program comprising instructions operable by an electronic device Execute to implement the method as described previously.
  • Figures 1A and 1B illustrate conceptual signaling interaction diagrams and timing diagrams for data transmission in a wireless communication system.
  • FIGS. 2A and 2B illustrate signaling interaction diagrams and timing diagrams of multi-stream data transmission according to embodiments of the present disclosure.
  • FIG. 3 shows a block diagram of a control-side electronic device in a wireless communication system according to an embodiment of the present disclosure.
  • Figure 4 illustrates a DCI format according to an embodiment of the present disclosure.
  • FIGS 5A and 5B illustrate examples of PhysicalCellGroupConfig information according to embodiments of the present disclosure.
  • 6A and 6B respectively illustrate signaling interaction diagrams of uplink data transmission and downlink data transmission in multi-stream data transmission according to embodiments of the present disclosure.
  • Figures 7A-7C illustrate scheduling/configuration updates of I-streams and/or P-streams according to embodiments of the present disclosure.
  • FIG. 8 shows a flowchart of a control-side method in a wireless communication system according to an embodiment of the present disclosure.
  • FIG. 9 shows a block diagram of a terminal-side electronic device in a wireless communication system according to an embodiment of the present disclosure.
  • FIG. 10 shows a flowchart of a terminal-side method in a wireless communication system according to an embodiment of the present disclosure.
  • FIG. 11 is a block diagram schematically showing an example structure of a personal computer of an information processing apparatus employable in an embodiment of the present disclosure.
  • FIG. 12 is a block diagram illustrating a first example of a schematic configuration of an eNB to which the technology of the present disclosure can be applied.
  • FIG. 13 is a block diagram illustrating a second example of a schematic configuration of an eNB to which the technology of the present disclosure can be applied.
  • FIG. 14 is a block diagram showing an example of a schematic configuration of a communication device to which the technology of the present disclosure can be applied.
  • 15 is a block diagram showing an example of a schematic configuration of a car navigation device to which the technology of the present disclosure can be applied.
  • XR extended reality
  • AR Augmented Reality
  • VR Virtual Reality
  • Mixed Reality MR
  • MR mixed reality
  • XR business has the following characteristics: contains multiple data flows with different Quality of Service (QoS) requirements, large data volume, fixed/non-fixed data packet size, low business delay requirements, etc.
  • QoS Quality of Service
  • 3GPP's TR38.838 stipulates data flows in VR (Virtual Reality), CG (Cloud Gaming), AR (Augmented Reality) and other scenarios and the business model of each data flow.
  • the downlink in the AR scene can contain up to two streams of data.
  • One stream is the I-frame data stream (I-stream)
  • the other stream is the P-frame data stream (P-stream).
  • the I-frame data stream and The service model of P frame data flow is shown in Table 5 and Table 10 of TR38.838.
  • Tables 1 and 2 are shown below respectively.
  • Table 1 is the statistical parameters of the multi-stream downlink service model of option 1
  • Table 2 is the statistical parameters of the multi-stream downlink VR service model.
  • Statistical parameters are shown below.
  • Model 1 single-stream model
  • Model 2 dual-stream model
  • Model 3A three-stream model A
  • Model 3B three-stream model B
  • Model 3B contains three data flows, of which the first flow is a periodic data flow.
  • the business model is shown in Table 7 of TR38.838.
  • the other two streams of data are consistent with the downlink (DL) data stream, that is, the first stream is an I frame data stream and the first stream is a P frame data stream.
  • the business models of the I stream and P stream are as shown in Table 5 and Table 17 of TR38.838 respectively. shown.
  • Table 3 and Table 4 are shown below respectively, where Table 3 shows the statistical parameters of the uplink attitude/control service, and Table 4 shows the statistical parameters of streams 2 and 3 of the AR uplink mode 3B (three-stream data mode).
  • XR services often contain multiple data streams with different QoS requirements, and the data transmission volume is large, requiring high reliability and low latency.
  • some data streams in XR services may be periodic, such as I/P frame data streams, audio/data streams, etc., while some data streams, such as I/P frame data streams, video data streams, also have arrival data
  • the package size is not fixed.
  • the multi-stream can include two streams as follows, one stream is an audio/data stream, which is periodic and has a fixed size, and the other stream is a video stream, which It has the characteristics that the data packet size is not fixed. In this way, when performing data communication and transmission for XR services in the 5G system, the data characteristics of the XR services need to be considered.
  • CG Configure Grant
  • SPS Semi-persistent scheduling
  • CS-RNTI Configured Scheduling-Radio Network Temporary Identifier assigned to the terminal in the network can be used for semi-persistent scheduling (SPS)/configure grant.
  • CG scheduling
  • RRC Radio Resource Control
  • the UE determines the activation/deactivation of SPS/CG based on the result of descrambling the physical downlink control channel (PDCCH) based on CS-RNTI. Activate/adjust so that data transfer takes place accordingly.
  • PDCCH physical downlink control channel
  • CS-RNTI For data transmission scheduling, base stations often configure a single CS-RNTI for data transmission scheduling. However, when data transmission contains multiple transmission blocks (TB) or data packets with non-fixed sizes, a single CS-RNTI is still used to schedule multiple TBs of link control information (DCI). ) will have many problems. On the one hand, the DCI format needs to be modified to support multiple terabytes of SPS/CG configuration indication. On the other hand, when the data transmission is multi-stream data transmission, since the SPS/CG adjustment times of different streams are not necessarily aligned, using one DCI to simultaneously indicate the SPS/CG of different streams will have certain inaccuracies.
  • TB transmission blocks
  • DCI link control information
  • the DCI that schedules multiple TBs only indicates one SPS/CG, that is, when only one TB is valid, the other TB needs to be set to a special value, which will cause a waste of DCI data transmission; if only one TB is transmitted , switching to a DCI that can only schedule one TB, then the DCI needs to include additional bits to indicate which stream among the multiple streams it is. In this way, the technology of configuring a single CS-RNTI to schedule multiple TBs requires significant changes to the standard, resulting in high operational complexity.
  • the present disclosure proposes optimized multi-stream data transmission for wireless communication.
  • the present disclosure proposes an improved multi-stream data transmission scheduling scheme, in which for multi-stream data transmission that is particularly suitable for XR services, multiple (pairs) of uplink and/or downlink data in the XR service can be targeted
  • the flow is accordingly set with scheduling identification information for data transmission scheduling, thereby enabling transmission enhancement of multiple (pairs) of uplink and/or downlink data flows.
  • corresponding scheduling identification information can be set for multiple (pairs) uplink and/or downlink data flows in the XR service, especially for the scheduling configuration of the data flow, such as semi-static scheduling or configuration permission (SPS/CG),
  • Corresponding scheduling identification information is set to achieve transmission enhancement of multiple (pairs) uplink and downlink data streams, especially SPS/CG transmission enhancement of multi-stream data transmission.
  • the implementation of wireless communication between the control side device and the terminal side device in the wireless communication system according to the embodiment of the present disclosure will be described in detail below.
  • the following description uses CS-RNTI as an example of scheduling identification information, but it should be noted that the scheduling identification information can be indicated by other appropriate information as long as it can distinguish/indicate data transmission Just configure the relevant scheduling settings.
  • Embodiments of the present disclosure particularly relate to data communication between a control side device and a terminal side device including multi-stream data transmission.
  • the control side device may be the sender of the downstream multi-stream data transmission
  • the terminal side device may be the receiver of the downstream multi-stream data transmission.
  • the control side device performs downlink communication to the terminal side device
  • the terminal side device performs uplink communication to the control side device.
  • the control side device may be a gNB, and/or the terminal side device may be a user equipment (UE).
  • downstream and upstream communications can be determined depending on the direction of signal flow.
  • the control side device may be the user equipment (UE), and the terminal side device may be the gNB.
  • Data communication between the control side device and the terminal side device can be performed in various appropriate modes.
  • DRX Continuous Reception, discontinuous reception
  • packet-based data flows are usually bursty.
  • power consumption can be reduced by turning off terminal-side devices, such as the receiving circuit of the UE, thereby improving battery usage.
  • the basic mechanism of DRX communication is a DRX cycle configured by the UE in the RRC_CONNECTED state.
  • the DRX cycle consists of "activation period (ON duration)" and "sleep period (opportunity for DRX)".
  • the UE monitors and receives downlink control.
  • Information transmission such as PDCCH, and thus data transmission; during the sleep period, the UE may not receive data on the downlink channel to save power consumption. In this way, in the time domain, time is divided into consecutive DRX cycles for communication.
  • Figures 1A and 1B show a conceptual signaling interaction diagram for data transmission in a wireless system and a timing diagram in a DRX implementation.
  • the control side device sends trigger information/wakeup information (WakeUp signal, WUS) to the terminal side device in order to start data communication between the control side device and the terminal side device.
  • the trigger information/wake-up information may be in various appropriate forms and sent in various appropriate ways, for example, via PDCCH, which will not be described in detail here.
  • the terminal-side device monitors the information and starts communication between the terminal-side device and the control-side device, including at least one of uplink communication and downlink communication.
  • At least one of the uplink and downlink communications may utilize pre-allocated resources for data transmission.
  • the pre-allocated resources may correspond to specific data transmission patterns, such as periodic data transmission and so on.
  • the terminal side device uses CG-PUSCH for uplink data transmission
  • the control side device uses SPS-PDSCH for downlink data transmission, where the data carried on CG-PUSCH and SPS-PUSCH can be set appropriately.
  • communication at this time is performed during the DRX offset, but is optional rather than required. For example, data transmission may not be performed when there are no pre-allocated resources.
  • the control side device will obtain information about the data to be dynamically scheduled and generate control information based on this information, For example, DCI, which can indicate the resources allocated for this data transmission, etc., and send the control information to the terminal side device for decoding.
  • the control information may include uplink control information UL DCI and/or downlink control information DL DCI.
  • the terminal-side device can receive and decode DCI, and then transmit data on designated resources according to DCI.
  • UL DCI can be decoded, and then data can be transmitted on designated time-frequency resources according to UL DCI.
  • the DL DCI can be decoded, and data can be received on designated time-frequency resources according to the DL DCI.
  • the above operations are performed during the activation period of DRX.
  • uplink communication and/or downlink communication can still be performed according to pre-allocated resources during the DRX sleep period.
  • uplink communication and/or downlink communication can still be performed according to pre-allocated resources during the DRX sleep period.
  • FIG. 2A shows a conceptual signaling diagram of a multi-stream data transmission process in wireless communication according to an embodiment of the present disclosure.
  • Data communication between the control side device and the terminal side device can be carried out in various appropriate modes, such as the above-mentioned DRX mode.
  • Multi-stream data communication may refer to the data communication between the control side device and the terminal side device including at least two different types of data streams, such as I stream, P stream, B stream in the AR service, and video in the VR service. stream, audio/data stream, etc., or other types of data streams.
  • multi-stream data communication may correspond to at least one of uplink data communication and downlink data communication.
  • the control side device can generate configuration information related to data communication between the control side device and the terminal side device.
  • the configuration information can be radio resource configuration (RRC) information, and can be configured by RRC in the communication signaling.
  • RRC radio resource configuration
  • field indicates that the radio resource configuration information may include one or more CS-RNTIs, which are respectively configured for each data flow in data communication, or even the scheduling configuration (for example, SPS/CG) in each data flow.
  • the control side device can also set an activation timer. For example, a corresponding activation timer can be set for each data stream, especially the SPS/CG in each data stream.
  • trigger information/wake-up information can be sent between the terminal-side device and the control-side device to activate/start data communication between the control-side device and the terminal-side device.
  • the trigger information/wakeup information can be used to activate Discontinuous Reception (DRX) between the control side device and the receiving side device, so that when the connection state is established, the control side device configures RRC and can The selected timer configuration is sent to the terminal side device.
  • DRX Discontinuous Reception
  • the control side device configures RRC and can The selected timer configuration is sent to the terminal side device.
  • the RRC configuration and timer configuration can be set by other devices and notified to the control side device and the terminal side device.
  • DCI transmission including sending and receiving, is performed during the ON period (ON) of discontinuous reception (DRX) between the control side device and the receiving side device.
  • CS- The RNTI may be transmitted to the terminal-side device in communication by scrambling the DCI, and the activation timer indication information set by the control-side device may also be included in the DCI and transmitted to the terminal-side device.
  • the terminal side device can receive DCI, including CS-RNTI scrambled DCI.
  • the SPS/CG of the data flow is operated respectively, such as uplink and/or downlink data transmission, and optionally, feedback is provided, such as hybrid automatic Retransmission request (Hybrid Automatic Repeat request, HARQ)-confirmation information (ACK). It should be noted that this feedback is not required.
  • HARQ Hybrid Automatic Repeat request
  • control side device can also perform dynamic scheduling (Dynamic Scheduling, DG) according to the communication status during the communication process.
  • DG Dynamic Scheduling
  • the CS-RNTI can be similarly generated and set to adjust the multi-stream data transmission, where CS - The RNTI may also be scrambled with the DCI and transmitted to the terminal side device as described above.
  • the terminal side device can perform an operation and feed back the HARQ-ACK to the control side device. It should be noted that this feedback is not necessary, as indicated by the dotted line in the figure.
  • the above-mentioned operations in dynamic scheduling are also performed during DRX ON.
  • Figure 2B shows a timing diagram of multi-stream data transmission according to an embodiment of the present disclosure.
  • DCI is combined with CS-RNTI, for example, CS-RNTI scrambles DCI, and different CS-RNTI numbers (for example, CS-RNTI1, CS-RNTI2, ...) correspond to
  • CS-RNTI for example, CS-RNTI1, CS-RNTI2, .
  • FIG. 3 shows a control-side electronic device 300 of a wireless communication system according to an embodiment of the present disclosure.
  • the control-side electronic device 200 can perform multi-stream data transmission with a terminal-side electronic device in the wireless communication system.
  • the control-side electronic device 300 includes a processing circuit 302 configured to: determine the amount of scheduling identification information configured for the terminal-side electronic device based on data transmission characteristics of the data streams included in the multi-stream data transmission.
  • multiple scheduling identification information When it is determined to configure multiple scheduling identification information, associate the multiple scheduling identification information, such as at least two scheduling identification information, with the multiple data streams included in the multi-stream data transmission; and for the For a specific data stream in multi-stream data transmission, scheduling identification information associated with the specific data stream and control information for scheduling of the specific data stream are combined for transmission of the specific data stream.
  • the scheduling identification information may be CS-RNTI and the control information may be DCI as an example.
  • the scheduling identification information and control information are not limited to this and may also be other appropriate information.
  • multi-stream data transmission may include uplink data transmission and downlink data transmission, and the uplink data transmission and downlink data transmission are usually in pairs, and the uplink data transmission and the downlink data transmission are usually in pairs.
  • the least one may include at least two different types of data flows, for example, whether the data flow is periodic, whether the packet size of the data flow is fixed, etc., such as I flow, P flow, B flow, or other types of data flow.
  • the number of data streams each included in the uplink data transmission and the downlink data transmission may be the same or different, and the types of data streams each include may be the same or different.
  • each of the upstream and downstream data streams may include an I stream and a P stream, and both the I stream and the P stream may be periodic and/or data streams of variable data size.
  • the downstream data stream may be the aforementioned multi-stream in VR downstream communication, which includes periodic audio/data streams with fixed data size, and video streams with non-fixed data size. The following description is mainly based on I flow and P flow. It should be noted that the concept of the present disclosure is also applicable to various data streams in other types of multi-stream transmission, and will not be described in detail here.
  • the data transmission characteristics of the multi-stream data transmission used to configure the scheduling identification information may be related to/corresponding to the type of data flow, specifically including at least data periodicity and data size characteristics.
  • the transmission characteristics may be whether the transmission of the data stream is periodic, the period of the data stream transmission, whether the transmitted data stream contains non-fixed size data packets, the size of the data packets, and so on.
  • the periodicity of data may include data transmission with completely equal periods, or may include quasi periodic that is close to completely equal periods, such as the case where the periods are 33.33, 33.33, 33.34, 33.33, 33.33, 33.34...
  • data transmission characteristics of multi-stream data transmission may be obtained by the control-side electronic device in various appropriate ways.
  • the data transmission characteristics may be reported by the terminal-side electronic device to the control-side electronic device.
  • data transmission characteristics may be included in various appropriate information representations, and are particularly preferably included in assistance information (UE assistance information, UAI).
  • the terminal-side device reports auxiliary information to the control-side device so that the control-side device can understand the status of each terminal-side device and configure/schedule the terminal-side device.
  • the UE may send UAI (UE assistance information, UE assistance information) to the base station.
  • the UAI may include various appropriate information, such as, but not limited to, data transmission characteristics of uplink and downlink data, such as the number of uplink and downlink flows or flows.
  • information on data transmission characteristics may also be To include XR cognitive information in the radio access network of other layers (e.g., derived from R18 SID RP-213587, XR service characteristics (including both uplink and downlink), quality of service (Qos), application layer attributes), etc.
  • the corresponding CS-RNTI can be set for each stream of data transmission, so that multi-stream data transmission between the control-side device and the terminal-side device can be appropriately performed to meet the requirements of multi-stream data transmission. need.
  • the data flow included in the multi-stream data transmission includes a data flow in at least one of uplink data transmission and downlink data transmission, so that the scheduling identifier can be configured based on the data transmission characteristics of the data flow. information.
  • corresponding scheduling identification information can be configured for at least one of uplink data transmission and downlink data transmission respectively.
  • it may be configured for at least one of different data streams included in at least one of uplink data transmission and downlink data transmission in multi-stream data transmission.
  • the data flow includes an I flow and/or a P flow, so that corresponding scheduling identification information can be configured for at least one of the I flow and the P flow respectively.
  • corresponding scheduling identification information may be set for one of the uplink data transmission and the downlink data transmission, especially the data flow therein, such as the I flow, or the P flow, or both the I flow and the P flow. In this way, corresponding scheduling identification information can be set for the data flow in uplink data transmission or the data flow in downlink data transmission according to the data transmission characteristics of the data flow. In other examples, corresponding scheduling identification information may be set for both paired upstream data flows and downstream data flows, such as a pair of I flows, or P flows, or both I flows and P flows. In this way, the scheduling identification information can be set for both the data flow in uplink data transmission and the data flow in downlink data transmission according to the data transmission characteristics of the two data flows.
  • the scheduling identification information is common to paired upstream data flows and downstream data flows, such as paired I flows, paired P flows, etc. It should be noted that depending on the service type, the data flow may also include other types of flows, such as the video stream and audio/data flow in the aforementioned VR downlink service, and the scheduling identifier can be configured in a similar manner for other types of flows. information.
  • the amount of scheduling identification information may be appropriately set.
  • the amount of scheduling identification information when configuring scheduling identification information for one of uplink data transmission and downlink data transmission in multi-stream data transmission, the amount of scheduling identification information may be based on The number of data streams of a specific type, such as I-stream, P-stream, B-stream or other types of data streams, is set, especially based on the number of data stream types contained therein that have the data transmission characteristics.
  • the amount of scheduling identification information may be the periodic data flow in one of the uplink data transmission and the downlink data transmission.
  • Quantity when considering the non-fixed size of data, the quantity of scheduling identification information can be one of uplink data transmission and downlink data transmission. The number of non-fixed size data streams.
  • the number of various types of data flows in uplink data transmission and each type of downlink data transmission may be based on The combination of the number of class data flows, especially the number of corresponding data flows with this data transmission characteristic, is determined, such as I flow, P flow, B flow, or B flow included in both uplink data transmission and downlink data transmission. Other types of data, etc., and the obtained scheduling identification information can be commonly used for uplink transmission data and downlink transmission data.
  • the amount of scheduling identification information may be appropriately set based on the number of periodic/quasi-periodic data streams included in the multi-stream data transmission.
  • the amount of scheduling identification information may be determined based on a combination of the number of periodic/quasi-periodic data flows included in the uplink data flow and the number of periodic/quasi-periodic data flows included in the downlink data flow, preferably corresponds to the maximum value therein.
  • the number of CS-RNTI configured by the base station for the UE may be determined by the maximum number of periodic/quasi-periodic data streams of the UE's uplink and downlink communications.
  • an AR scenario such as the above AR scenario of Model 1 or 2
  • the base station can configure two CS-RNTIs (CS-RNTI1 and CS-RNTI2) for the UE to serve a pair of uplink and downlink data streams (uplink and downlink I streams or uplink and downlink P streams) and another downlink data stream ( P stream or I stream), or two pairs of upstream and downstream data streams (upstream and downstream I stream and upstream and downstream P stream).
  • CS-RNTI1 and CS-RNTI2 two CS-RNTIs for the UE to serve a pair of uplink and downlink data streams (uplink and downlink I streams or uplink and downlink P streams) and another downlink data stream ( P stream or I stream), or two pairs of upstream and downstream data streams (upstream and downstream I stream and upstream and downstream P stream).
  • CS-RNTI1 and CS-RNTI2 two CS-RNTIs
  • the base station can configure three CS-RNTIs (CS-RNTI1, CS-RNTI2 and CS-RNTI3) for the UE, two of which CS-RNTIs (such as CS-RNTI1 and CS-RNTI2) serve two pairs of uplink and downlink respectively.
  • Data flow uplink and downlink I flow and uplink and downlink P flow
  • another CS-RNTI serves UL periodic services.
  • the setting of the amount of scheduling identification information may further consider the number of data streams with non-fixed data sizes included in uplink communication and downlink communication.
  • the amount of scheduling identification information may be determined based on a combination of the number of data streams of non-fixed data size contained in the uplink communication and the downlink communication, preferably corresponding to the maximum value between them.
  • the setting of the amount of scheduling identification information may depend on whether the uplink communication or the downlink communication contains non-fixed data sizes and is weekly. The number of periodic/quasi-periodic data flows, and the amount of scheduling identification information may correspond to the maximum value between the number of such data flows.
  • the number of CS-RNTIs configured by the base station for the UE may be determined by the maximum number of periodic/quasi-periodic data flows in the uplink and downlink of the UE with non-fixed data packet size.
  • the two downlink data streams I stream and P stream are both quasi-periodic and the packet size obeys the truncated Gaussian distribution, that is, the size is not fixed.
  • Data packets, two of the three upstream data streams (I stream and P stream) are quasi-periodic non-fixed size data packets, and the other stream is a periodic fixed data packet size data stream.
  • the base station can configure two CS-RNTIs (CS-RNTI1 and CS-RNTI2) for the UE to serve two pairs of uplink and downlink data streams (uplink and downlink I streams and uplink and downlink P streams) respectively.
  • no CS-RNTI is allocated for the upstream fixed-size periodic data flow, and then the data flow can be processed and transmitted in other appropriate ways.
  • the transmission configuration of this data flow can be directly configured by RRC and take effect immediately, without using DCI for activation and deactivation. This will be described in detail below.
  • the determined plurality of scheduling identification information may be associated with a plurality of data streams included in the multi-stream data transmission for use in Data streaming.
  • the control-side electronic device configures multiple, for example, at least two scheduling identification information, especially CS-RNTI, for the terminal-side electronic device, it is used for multi-stream data between the control-side electronic device and the terminal-side electronic device.
  • multiple configured CS-RNTIs should be associated with data flows in multi-stream data transmission and possible scheduling of data flows.
  • the processing circuit is configured to associate the multi-stream data in the multi-stream data transmission with a specific number of scheduling identification information (CS-RNTI) according to the configuration sequence of the parameters, or when configuring the scheduling identification information To associate multi-stream data in multi-stream data transmission with a specific number of scheduling identification information (CS-RNTI). Additionally, according to some embodiments of the present disclosure, the processing circuit may be configured to further associate the scheduling identification information with the scheduling configuration of the data flow.
  • the scheduling configuration of the data flow may include a semi-static schedule (SPS) and a configuration grant (CG), and the scheduling identification information for each data flow may be associated with the SPS and/or CG of the data flow. .
  • each CS-RNTI needs to be associated with each data stream or SPS/CG.
  • each CS-RNTI can be associated with an identification, such as an ID, of each data stream or SPS/CG.
  • the association may take the form of a default Execute in a recognized way, for example, associate by default according to the configuration sequence of parameters, especially CS-RNTI.
  • CS-RNTI may be associated by default with same-sequence or reverse-sequence data streams or SPS/CG.
  • the first CS-RNTI is associated with the first data flow or SPS/CG, or the reverse order, for example, the first CS-RNTI is associated with the last data flow or SPS /CG related.
  • the association criterion may be default association according to the configuration order of the two parameters.
  • the CS-RNTI listed first is associated with the flow ID1 or the ID1 of the SPS/CG
  • the subsequent CS-RNTI is associated with the flow ID2 or the ID2 of the SPS/CG
  • the association between each CS-RNTI and each data stream or SPS/CG is set appropriately.
  • the relationship between (CS RNTI, stream ID or SPS/CG ID) can be configured.
  • RRC can configure (CS-RNTI, flow ID or SPS/CG ID) pairs when configuring CS-RNTI.
  • association of CS-RNTI with flow ID or SPS/CG ID may be performed at an appropriate stage during the wireless communication process. In one embodiment, this is implemented when DCI performs activation/deactivation/parameter adjustment and other related operations. For example, when DCI performs activation/deactivation, the default association can be performed, and when DCI parameters are adjusted, default association or setting can be performed. association. As another example, the association can be achieved during activation between the terminal device and the control device. For example, the association relationship between the CS-RNTI and the flow ID or SPS/CG ID can be informed to the UE in advance, or can be determined by the control side during the communication process. The device informs the terminal side device.
  • the processing circuit may be further configured to, for a specific data flow in the multi-stream data transmission, combine the scheduling identification information associated with the specific data flow and the scheduling configuration for the specific data flow.
  • Control information is combined for the transmission of that specific data stream.
  • the specific data flow may include a periodic/quasi-periodic data flow in multi-stream data transmission and/or a data flow with a non-fixed size, which may be included in the uplink data transmission and/or the downlink data.
  • the specific data flow can also be a data flow with other characteristics in multi-stream data transmission, as long as the data flow needs/can be dynamically scheduled resources for transmission.
  • the scheduling configuration of the data flow may include at least one of a semi-static scheduling (SPS) and a configuration grant (CG), and the control-side electronic device may apply the scheduling identification information of the scheduling flow to
  • the scheduling of the data flow configures the corresponding control information (DCI), for example, combines, especially scrambles the DCI with CS-RNTI.
  • DCI control information
  • the control information about the SPS or CG of the data flow can be indicated by DCI.
  • DCI0 can correspond to the CG
  • DCI1 can correspond to the SPS.
  • the DCI's indication relationship with the SPS or CG of the data flow can also be other appropriate ones. relationship, as long as different DCI information or indexes can be used to distinguish SPS and CG.
  • a CS-RNTI can serve the adjustment of SPS/CG configuration, activation and deactivation of an upstream data flow, or a downstream data flow, or a pair of upstream and downstream data flows.
  • DCI 0_x is scrambled by CS-RNTI
  • the DCI indicates the adjustment of CG configuration, activation and deactivation
  • DCI 1_x is scrambled by CS-RNTI
  • the DCI indicates SPS configuration, activation and deactivation. Deactivated adjustments. No special instructions are required in DCI.
  • multiple CS-RNTIs can configure, activate, and deactivate up to multiple pairs of SPS/CGs.
  • FIG. 4 illustrates the format of DCI, particularly DCI formula 1-1, according to an embodiment of the present disclosure.
  • DCI will carry the time-frequency resource location where the PDSCH is located, MCS, RV and other information, which indicates the location of the PDSCH.
  • MCS time-frequency resource location
  • RV time-frequency resource location
  • the time-frequency resource location, MCS, RV and other information are the periodic resource locations used for new SPS scheduling.
  • the processing circuit may be configured to transmit control information (DCI) and the combined scheduling identification information through radio resource control signaling when data transmission is initiated.
  • the processing circuit may be further configured to adjust the scheduling configuration of the data flow according to data transmission conditions, wherein the data transmission conditions may include packet size, jitter, At least one of the data scheduling conditions, and the scheduling configuration of the data flow may include SPS and/or CG.
  • the base station can flexibly adjust the SPS/CG of different data streams by scrambling different CS-RNTIs according to the data packet size, jitter, data scheduling and other factors of the data stream during the data transmission process. and instructions.
  • the base station can detect/evaluate the data transmission status during the data transmission process, and perform scheduling by configuring CS-RNTI according to the data transmission status, such as SPS/CG.
  • the data transmission status may be detected by the control-side electronic device, such as a base station, or may be detected by the terminal-side electronic device and provided to the control-side electronic device, or may even be detected by other appropriate devices in the wireless communication network and provided to the control-side electronic device. equipment. Therefore, by configuring multiple CS-RNTIs, the base station can issue DCI to adjust the SPS/CG of one or more data streams at any time, making the base station more flexible.
  • the solution of configuring multiple CS-RNTIs is more flexible than the solution of designing DCI to support multiple TBs and indicate multiple SPS/CG configurations at the same time, with fewer changes to the standard and lower added complexity.
  • resources may be configured for transmission through resource configuration signaling (RRC).
  • RRC resource configuration signaling
  • the data flows that are not allocated scheduling identification information included in the multi-stream data transmission may include data flows with a fixed size, especially periodic data flows with a fixed size, which may be included in the uplink data transmission and/or or during downstream data transmission, as described above.
  • configuring resources for transmission through resource configuration signaling (RRC) may be applied in various scheduling configurations of the data flow, such as for semi-static scheduling (SPS) and/or configuration. Setup License (CG).
  • SPS semi-static scheduling
  • CG Setup License
  • the data stream can also be a data stream with other characteristics in multi-stream data transmission, as long as the data stream needs/can be statically allocated resources for transmission.
  • the data flow set in type 1 of the CG can be directly configured by RRC and take effect.
  • IE information element
  • ConfiguredGrantConfig in RRC signaling dedicated to configuring CG, which can be used to limit the configuration of uplink data transmission configuration according to two possible solutions, including the possibility of using RRC (scheme/ Type 1) or use PDCCH (can be associated with CS-RNTI) (scheme/type 2) to configure the uplink transmission configuration.
  • resources can be specifically configured for transmission based on scheme/type 1 through, for example, the information element "RRC-ConfiguredUplinkGrant", while for other data flows, resources can be activated and activated through PDCCH based on scheme/type 2. Send resource information.
  • the present disclosure further proposes to optimize the SPS configuration.
  • the SPS configuration can be optimized.
  • Type 1 configuration similar to CG type 1 is extended to SPS by modifying or in addition to the SPS configuration IE (SPS-config) in the existing standard.
  • Add SPS-related information elements (IE) so that the SPS configuration can support two types at the same time, including the scheme/type 1 using RRC and the scheme/type 2 using PDCCH (can be associated with CS-RNTI), such as CG indicates both type 1 and type 2.
  • SPS type 1 The reason for introducing SPS type 1 is that because some data flows are periodic fixed-size data flows that do not require dynamic control, you can use the RRC configuration to take effect immediately (type 1) to avoid deactivation through DCI activation after configuration. Activation indicates validity and invalidation (type 2), thereby reducing DCI decoding overhead.
  • the SPS-config in the existing standard can be modified, including adding an SPS type indication and configuration parameters corresponding to type 1 in the SPS-config, as well as the optional addition of additional parameters, while the existing The SPS configuration specified in the standard becomes Type 2, which can be used for association with CS-RNTI.
  • the modified SPS-config can support the aforementioned two types 1 and 2 at the same time, just like CG, so SPS-config can be considered equal to ConfiguredSPSConfig.
  • SPS-Config_type_I in addition to the SPS-Config in the existing standard, a further SPS-related information element (IE) SPS-Config_type_I can be added, which can be specifically used to configure SPS type 1, through SPS-Config_type_I and the existing There are combinations in the standard SPS-Config that can support the aforementioned SPS Type 1 and/or Type 2. In particular, by configuring these two information elements (SPS-Config_type_I, SPS-Config) individually or simultaneously, a separate Type 1 transmission or a Type 2 transmission, or both a Type 1 and a Type 2 transmission is indicated.
  • SPS-Config_type_I, SPS-Config individually or simultaneously, a separate Type 1 transmission or a Type 2 transmission, or both a Type 1 and a Type 2 transmission is indicated.
  • downstream data flow can be based on scheme/type 1 pass Through RRC, for example, the added information element "RRC-ConfiguredDownlinkSPS" is used to specifically configure resources for transmission without requiring operations such as DCI activation/deactivation.
  • RRC-ConfiguredDownlinkSPS is used to specifically configure resources for transmission without requiring operations such as DCI activation/deactivation.
  • whether signaling indication is required depends on the control side device, such as a base station, to implement. That is to say, the control side device can indicate through signaling instructions whether to use DCI for deactivation to save energy.
  • the multi-stream can be two streams as follows, one stream is an audio/data stream, which is periodic and has a fixed size, and the other stream is a video stream, which has The characteristics of data packet size are not fixed.
  • the optimized scheduling configuration according to the embodiment of the present disclosure especially the semi-static (SPS) configuration, can be effectively applied.
  • the transmission resources and valid duration (and offset) of the downlink audio/data stream are directly configured in the RRC signaling, and the corresponding audio/data stream transmission starts after the offset time corresponding to the RRC signaling is sent.
  • Activate the semi-static resource configuration of the video stream by associating the PDCCH to the CS-RNTI, and then start the corresponding video stream transmission.
  • scheduling identification information such as CS-RNTI
  • the identification information may be in any form and may be transmitted using any appropriate fields/bits.
  • additional CS-RNTIs can be indicated by adding new fields in the current transmission signaling.
  • the corresponding fields in the current transmission signaling can also be added. Additional CS-RNTIs are indicated by using different values.
  • the framed portion of the TS38.331 PhysicalCellGroupConfig information element may be modified, as shown in Figure 5A.
  • multiple CS-RNTI values can be added and correspond to different data streams according to the configuration order of CS-RNTI. For example, the CS-RNTI ranked first corresponds to the first flow ID1, and the CS-RNTI ranked second corresponds to the first flow ID1. Corresponds to the second stream ID2, and so on.
  • the CS-RNTI is modified to multi/all CS-RNTI or CS-RNTIs to cover all CS-RNTIs configured by RRC.
  • CS-RNTI should also be changed to multi/all CS-RNTI or CS-RNTIs so that RNTI descrambling can cover all CS-RNTIs configured by RRC.
  • other parts containing CS-RNTI should also undergo similar Revise.
  • the terminal side device receives the control information, obtains the control information through specific detection processing, and decodes the control information to perform uplink and/or downlink on the dynamic resources specified in the control information. data transmission. Particularly, in the case of DCI as control information, the localized DCI will be detected. As an example, the terminal side device can determine which data stream the SPS/CG adjustment carried by the current DCI is for by descrambling the CS-RNTI when decoding the PDCCH.
  • blind detection is a blind detection of all candidate PDCCHs in all search space sets (SSS).
  • the candidate PDCCH configured in each SSS is implemented by associating the PDCCH with the DCI format, aggregation level (AL), etc.
  • UL DCI and DL DCI it is often necessary to perform blind detection on UL DCI and DL DCI respectively to locate UL DCI and DL DCI.
  • the blind detection operation can be performed at any appropriate stage in the communication process, such as during SPS/CG activation, deactivation, adjustment, etc. stages.
  • the UE when it performs blind PDCCH detection, it will try RNTI descrambling for each PDCCH candidate, so that it can determine which data stream the SPS/CG adjustment carried by the current DCI is for based on different CS-RNTIs.
  • the processing circuit is configured to configure a search space in which the terminal side device can perform detection to include all configured scheduling identification information.
  • the base station configures the SS
  • the base station only configures one CS-RNTI
  • there is no need to modify the SS configuration consistentt with existing standards.
  • the number of CS-RNTIs configured by the base station is greater than 1, then when the SS configures PDCCH candidates, it needs to include decoding attempts for all configured CS-RNTIs.
  • the blind detection operation on the terminal side can be improved/optimized, in particular, the number of blind detection operations on the terminal side can be reduced.
  • the transmission of control information (DCI) and/or the switching of scheduling configuration (SPS/CG) can be optimized to reduce the number of detection operations performed for the dynamic control information or reduce the scheduling configuration. (SPS/CG) switching, thereby reducing the number of detection/blind detections for control information, thereby improving the power consumption overhead on the terminal side.
  • activation information related to scheduling configuration may be preset, where the activation information refers to shows the activation settings of the scheduling configuration, including activation time, number of activation cycles, number of activations, etc.
  • the activation information indicates the activation time
  • the status of the scheduling configuration can be automatically switched when the activation time indicated by the activation information expires.
  • the activation information indicates the number of activation cycles/number of times N
  • the state of the scheduling configuration can be automatically switched.
  • the data transmission of the specific data flow is performed according to the specific transmission configuration switched to, and the control information is no longer executed. of descrambling.
  • the scheduling configuration automatically switches to the deactivation state, thereby stopping data transmission and no longer transmitting data.
  • the activation of SPS/CG can be optimized, especially by presetting the activation time/period of SPS/CG so that the state of SPS/CG is automatically switched after reaching a specific time/period, so that the state of SPS/CG can be automatically switched.
  • the blind detection when switching this state is avoided/omitted, and the blind detection on the terminal side is optimized.
  • the processing circuit may be further configured to utilize specific information in the activation DCI as the activation information to indicate the activation setting of the SPS/CG.
  • the specific information is an activation time value, an activation cycle number, or an index value indicating the activation time value or activation cycle number.
  • the specific information is a bit added in the activated DCI, or an existing bit in the activated DCI.
  • the added bits/reserved bits may be an absolute value, and the unit may be a time slot/symbol or others.
  • the added bits/reserved bits may also be an index indicating a certain activation time value or the number of activation cycles in the activation time set configured by RRC.
  • new bits can be added to the activation DCI or reserved bits can be used to indicate the activation time/period of the SPS/CG.
  • the indicated activation time is used to indicate the activation time window of the SPS/CG transmission of the current DCI configuration.
  • the SPS/CG automatically switches to the deactivation state, saving the need to use another DCI in the existing protocol. Go through the process of deactivating instructions. The same goes for the number of activation cycles.
  • the activation time/period can be automatically deactivated after the indicated time/period expires, thereby eliminating the need to use DCI for deactivation. This can save a round of blind inspection and achieve energy saving for XR equipment.
  • activation time setting/optimization can be equivalent to reducing DCI transmission to reduce corresponding blind detection.
  • the SPS/CG The parameter adjustment frequency is relatively high, the adjustment duration/activation time is relatively short, and the base station obtains a lot of business prior information, so the prediction of the activation time is relatively accurate.
  • the activation/parameter is indicated by The method of adjusting the DCI indication activation time and switching to the deactivation state when the timer expires can save one DCI delivery in a period of intensive DCI delivery, that is, a round of blind detection, which can help save UE energy.
  • the control side device may be configured to configure an activation time/period set of SPS/CG in the RRC, including activation time/periods of multiple SPS/CGs. Then the base station delivers the RRC configuration to the UE.
  • activation times/periods, and in particular sets of activation times/periods may be in any suitable form.
  • the activation time/period set can be configured in TS 38.331, and the activation DCI is configured to contain activation time/period indication information.
  • a bit field indicating activation time/period is included.
  • an activation time timer can also be added on the UE side.
  • the setting of the activation time timer can correspond to the activation time/period indication information, so that when the timer expires, the UE can automatically switch to the DCI state. Perform data processing.
  • the multi-stream data transmission solution according to the embodiment of the present disclosure can be applied to uplink multi-stream data transmission, or downlink multi-stream data transmission, or uplink multi-stream data transmission and downlink multi-stream data Transport both.
  • Figure 6A shows multi-stream data transmission according to an embodiment of the present disclosure, which particularly describes the use of SPS in downlink multi-stream data transmission, which may involve I streams and P streams.
  • the terminal-side device reports auxiliary information, such as UAI (UE assistance information, UE auxiliary information), to the control-side device so that the control-side device can understand the status of each terminal-side device and configure/schedule the terminal-side device.
  • UAI may include various appropriate information, such as, but not limited to, quality of service (QoS), size, etc. of multiple services, various XR scene indications, and the like.
  • the terminal side device can also send trigger information/wakeup information (WakeUp signal, WUS) to the control side device, for example, via PDCCH, which is not shown in the figure.
  • WUS trigger information/wakeup information
  • the control side device can generate configuration information and send the configuration information to the terminal side device.
  • the configuration information can include Radio Resource Configuration (RRC) information, and can be indicated by RRC configuration information in the communication signaling.
  • Radio resource configuration information may include multiple CS-RNTIs, divided into Do not configure individual data flows in data communication.
  • CS-RNTI can be generated appropriately. In one embodiment, it can be generated based on UAI, upper-layer XR awareness, etc.
  • the terminal side device can read multiple CS-RNTIs.
  • control side device can generate two DCI1-x containing SPS1 and 2 respectively, and use CS-RNTI 1 and 2 to scramble respectively. This can be for two streams in a multi-stream data ship, such as I stream and P stream. Then, the control side device can send DCI 1-x (MCS, time-frequency resources, etc.) scrambled with CS-RNTI 1 to indicate SPS1, and send DCI 1-x (MCS, time-frequency resources, etc.) scrambled with CS-RNTI 2 etc.) indicates SPS2. Moreover, the control side device also transmits the first downlink data stream according to SPS1 and the second downlink data stream according to SPS2.
  • the terminal side device When the terminal side device receives the transmission content from the control side device, it uses multiple CS-RNTIs to try to descramble the DCI. After the descrambling is successful, it decodes the DCI content and confirms DCI 1-x and SPS1, based on each bit of the DCI. 2 configuration information, and receives the first downlink data stream according to SPS1, and SPS2 receives the second downlink data stream.
  • control-side device can also detect the communication quality between the control-side device and the terminal-side device, such as monitoring changes in characteristics such as QoS of the first downlink data stream, and detect changes in characteristics, such as communication quality being affected by If affected, dynamic adjustments can be made to optimize transmission.
  • the control side device sends DCI 1-x (MCS, time-frequency resources, etc.) scrambled with CS-RNTI 1 to indicate SPS3, and transmits the first downlink data stream according to SPS3.
  • the terminal side device uses multiple CS -RNTI attempts to descramble DCI, decodes the DCI content after successful descrambling, confirms the configuration information of DCI 1-x and SPS3 based on each bit of DCI, and receives the first downstream data stream based on SPS3.
  • dynamic adjustment can be equally applied to the adjustment of the second downstream data flow.
  • the signaling interaction for downlink data transmission described in FIG. 6A can also be applied to other types of data flows in multi-stream data transmission, such as the third or more downlink data flows, such as B flow, other types of data flows, etc. of flow.
  • Figure 6B illustrates multi-stream data transmission according to an embodiment of the present disclosure. It particularly describes the CG in uplink data transmission, which may involve the I stream and P stream in data transmission.
  • the terminal-side device reports auxiliary information
  • the control-side device can generate configuration information and send the configuration information to the terminal-side device.
  • the configuration information can be wireless resource configuration information including multiple CS-RNTIs. The operation can be as described above. As described in Figure 2A.
  • control side device can generate two DCI 0-x containing CG 1 and 2 respectively, and scramble them using CS-RNTI 1 and 2 respectively. This can be for two streams in a multi-stream data ship, such as I stream and P stream. Then, the control side device can send DCI 0-x (MCS, time-frequency resources, etc.) scrambled with CS-RNTI 1 to indicate CG1, and send DCI 0-x (MCS, time-frequency resources, etc.) scrambled with CS-RNTI 2 etc.) indicates CG2.
  • the terminal side device When the terminal side device receives the transmission content from the control side device, it uses multiple CS-RNTIs to try to descramble the DCI. After the descrambling is successful, it decodes the DCI content and confirms DCI 0-x and CG1, based on each bit of the DCI. 2 configuration information, and upload the first upstream data stream according to CG1, and CG2 uploads the second upstream data stream.
  • control-side device can also perform dynamic adjustment when the communication quality between the control-side device and the terminal-side device changes, for example, the communication quality of the first upstream data stream changes, for example, the control-side device sends CS-RNTI 1 scrambled DCI 0-x (MCS, time-frequency resources, etc.) indicates CG3, and accordingly, the terminal side device uses multiple CS-RNTIs to try to descramble the DCI, and decodes the DCI content after successful descrambling. Confirm the configuration information of DCI 0-x and CG3 according to each bit of DCI, and upload the first upstream data stream according to CG3.
  • MCS time-frequency resources, etc.
  • dynamic adjustment can be equally applied to the adjustment of the second upstream data flow.
  • the signaling interaction for uplink data transmission described in FIG. 6B can also be applied to other types of data flows in multi-stream data transmission, such as the third or more downlink data flows, such as B flow, other types of data flows, etc. of flow.
  • the multi-stream data transmission scheme according to embodiments of the present disclosure may be applied to different streams in multi-stream data transmission.
  • the multi-stream data includes an I stream and a P stream
  • it may be applied to at least one of the I stream and the P stream respectively.
  • FIGS 7A-7C illustrate schedule updates/adjustments in multi-stream data transmission according to embodiments of the present disclosure.
  • FIG. 7A shows a timing diagram for realizing SPS configuration update of a single flow by utilizing DCI and CS-RNTI
  • FIG. 7B shows a timing diagram for realizing CG configuration update of a single flow by utilizing DCI and CS-RNTI
  • the configuration update of the I flow is indicated by DCI scrambled by CS-RNTI 1, where DCI0-x indicates the CG update of the I flow, and DCI1-x indicates the SPS update of the I flow.
  • the CS-RNTI 1 scrambled DCI is transmitted in order to update the SPS/CG configuration, so that the updated SPS configuration (SPS_new)/CG configuration (CG_new) is used in the subsequent DRX process.
  • SPS_new updated SPS configuration
  • CG_new CG configuration
  • the SPS/CG configuration update of a single flow shown in Figures 7A and 7B is also applicable to the SPS and CG configuration update indication of only the P flow, where the configuration update of the P flow is indicated by the DCI scrambled by CS-RNTI2, where DCI0-x indicates the CG update of the P stream, and DCI1-x indicates the SPS update of the P stream.
  • the SPS/CG configuration update shown here can also be applied to other streams in multi-stream data transmission, such as B stream, etc.
  • Figure 7C exemplarily shows the SPS/CG configuration update of two streams, especially showing the implementation of I frame SPS and P frame through two DCIs, including DCI 0_x+CS-RNTI2 and DCI 1_x+CS-RNTI1.
  • CG configuration update In particular, during DRX activation, the DCI1_x scrambled by CS-RNTI 1 and the DCI0_x scrambled by CS-RNTI 21 are transmitted in order to update the SPS/CG configuration, so that updated data can be used in the subsequent DRX process. Both the new SPS configuration (SPS_new) and CG configuration (CG_new) are used to implement data transmission. The SPS and CG configurations of other streams are not shown in the figure.
  • the SPS/CG configuration update shown here can also be applied to other streams in multi-stream data transmission, such as CS for I stream and SPS for P stream, such as B stream, etc. It should be noted that the configuration update scheme for two flows shown in Figure 7C can also be extended to more SPS/CG configuration updates for more flows. For example, during DRX ON, 3 or 4 DCIs can be issued to indicate the SPS/CG configuration update of 3 or 4 flows.
  • the corresponding scheduling identification information is configured for the data flow in the XR service, especially the scheduling of the data flow (such as SPS/CG), so that the size of multiple XR data packets is not fixed in a flexible manner.
  • QoS requires different data stream transmission needs, realizing data stream transmission enhancement.
  • the solution according to the embodiment of the present disclosure can optimize the blind detection operation of the terminal side device, for example, by setting the activation time in advance to reduce the number of blind detections on the terminal side, thereby reducing the blind detection complexity of the terminal side device, thereby achieving A simple and feasible multi-stream SPS/CG transmission enhancement scheme is proposed.
  • control side can be the party that initiates downlink communication and/or receives uplink communication in the wireless communication system, and it can be appropriately selected according to the signal transmission direction in the wireless communication scenario, for example, when performing downlink from the base station to the user terminal When communicating, the control side may refer to the base station side.
  • the control side When downlink communication is performed from other devices to the base station in the wireless communication system, the control side may refer to the other device side.
  • the electronic device may correspond to a device in a wireless communication system that communicates in a communication scenario (such as an access point, a base station, etc. in the communication system) itself, or an electronic device used in combination with the device.
  • the processing circuit may be in the form of a general-purpose processor or a dedicated processing circuit, such as an ASIC.
  • the processing circuitry can be constructed from circuitry (hardware) or a central processing device such as a central processing unit (CPU).
  • the processing circuit may carry on it a program (software) for operating the circuit (hardware) or the central processing device.
  • the program can be stored in a memory (such as being arranged in a memory) or an external storage medium connected from the outside, and downloaded via a network (such as the Internet).
  • the processing circuit 302 may include various units for correspondingly implementing the above operations.
  • the determining unit 304 is configured to determine, based on the data transmission characteristics of the data streams included in the multi-stream data transmission, the The number of scheduling identification information configured by the terminal-side electronic device;
  • the association unit 306 is configured to, when it is determined that multiple scheduling identification information is configured, combine the multiple scheduling identification information with the multi-stream data Associating the data streams included in the transmission;
  • the combining unit 308 is configured to, for a specific data stream in the multi-stream data transmission, combine the scheduling identification information associated with the specific data stream and the schedule identification information used for the specific data stream.
  • Scheduled control information (DCI) is combined for transmission of that particular data stream.
  • the association unit 306 may be configured to associate the plurality of scheduling identification information with the data streams included in the multi-stream data transmission in the order in which the scheduling identification information is arranged, and/or perform the scheduling identification during When configuring information, set the association pair between data flow and scheduling identification information.
  • the associating unit 306 may be configured to further associate the scheduling identification information with the scheduling configuration of the data flow
  • the combining unit 308 may be configured to provide specific data in the multi-stream data transmission. flow, combining the scheduling identification information associated with the scheduling configuration of the particular data flow and the control information (DCI) for the scheduling configuration of the particular data flow.
  • DCI control information
  • the combining unit 306 may be further configured to adjust the scheduling configuration for the data flow based on data transmission conditions during data transmission, wherein the data transmission conditions include packet size, jitter, At least one of the data scheduling conditions, and the processing circuit 302 may further include a transmission unit 310 configured to use radio resource control signaling when multi-stream data transmission is initiated or during data transmission after the scheduling identification information is adjusted. to transmit control information and combined scheduling identification information.
  • the processing circuit 302 may include an activation setting unit 312 configured to preset activation information of a specific scheduling configuration of the data stream, so that the scheduling is automatically switched when the activation condition indicated by the activation information expires. The status of the configuration.
  • the processing circuit 302 may include a search space configuration unit configured to configure a search space in which the terminal-side device can perform detection to include all configured scheduling identification information.
  • the processing circuit 302 may include an acquisition unit configured to acquire information related to data transmission characteristics, and/or acquire information related to data transmission conditions.
  • the acquisition unit may obtain information from the control side electronic device or Other appropriate devices in the wireless communication network obtain the above information.
  • the transmission unit, the search space configuration unit, and the acquisition unit do not have to be included in the processing circuit, and they can also be located outside the processing circuit, even outside the electronic device 300 .
  • each of the above units can operate as described above, and will not be described in detail here. It should be noted that the above-mentioned units are only logical modules divided according to the specific functions they implement, and are not used to limit specific implementation methods. For example, they can be implemented in software, hardware, or a combination of software and hardware. In actual implementation, each of the above units may be implemented as an independent physical entity, or may also be implemented by a single entity (for example, a processor (CPU or DSP, etc.), an integrated circuit, etc.). It should be noted that although each unit is shown as a discrete unit in Figure 3, But one or more of these units can also be combined into one unit, or split into multiple units. In addition, the various units mentioned above are shown with dotted lines in the drawings to indicate that these units may not actually exist, and the operations/functions they implement may be implemented by the processing circuit itself.
  • FIG. 3 is only a schematic structural configuration of the control-side electronic device in the wireless communication system.
  • the control-side electronic device 300 may also include other components not shown, such as memory, radio frequency links, and baseband processing units. , network interface, controller, etc.
  • Processing circuitry may be associated with memory and/or antennas.
  • the processing circuit may be connected to the memory directly or indirectly (for example, other components may be connected in between) to access data.
  • the memory may store various information acquired and generated by the processing circuit 302 (for example, vehicle internal condition information and its analysis results, etc.), programs and data used for the operation of the purchasing end electronic device, data to be sent by the purchasing end electronic device, etc. .
  • the memory may also be located within the buyer's electronic device but outside of the processing circuitry, or even outside of the buyer's electronic device.
  • the memory may be volatile memory and/or non-volatile memory.
  • memory may include, but is not limited to, random access memory (RAM), dynamic random access memory (DRAM), static random access memory (SRAM), read only memory (ROM), and flash memory.
  • the processing circuit may be connected directly or indirectly to the antenna to send information and receive requests/instructions via the antenna.
  • the antenna may be an omnidirectional antenna and/or a directional antenna, which may be implemented in various ways, such as an antenna array such as both an omnidirectional antenna and a directional antenna, or capable of implementing both an omnidirectional antenna and a directional antenna. Communication components such as a single antenna array (or function) and/or radio frequency link will not be described in detail here.
  • the antenna may also be included in the processing circuit, or external to the processing circuit. It is even possible to be coupled/attached to electronic device 300 without being included in electronic device 300 .
  • FIG. 8 shows a flowchart of the method 800 for the control side of the wireless communication system according to the embodiment of the present disclosure.
  • the method may be executed by a control-side electronic device of a wireless communication system, and the control-side electronic device is capable of multi-stream data transmission with a terminal-side electronic device in the wireless communication system.
  • the control-side electronic device is capable of multi-stream data transmission with a terminal-side electronic device in the wireless communication system.
  • step S801 determination step, based on the data transmission characteristics of the data streams included in the multi-stream data transmission, the amount of scheduling identification information configured for the terminal-side electronic device is determined;
  • step S802 association step
  • step S803 for a specific data stream in the multi-stream data transmission, the scheduling identification information associated with the specific data stream is compared with the control information (DCI) for scheduling of the specific data stream. combination for transmission of that specific data stream.
  • DCI control information
  • the method may also include corresponding steps for implementing the operations performed by the control-side electronic device described above, particularly including a transmission step for adjusting the scheduling identification information when the multi-stream data transmission is started or during the data transmission.
  • the control information and the combined scheduling identification information are then transmitted through radio resource control signaling; the activation time setting step is used to preset the activation information of the specific scheduling configuration of the data flow, so that the activation condition indicated by the activation information expires.
  • a search space configuration step for configuring a search space in which the terminal side device can perform detection to include all configured scheduling identification information
  • an acquisition step for acquiring relevant data transmission characteristics Information, and/or information related to data transmission status, can be obtained from the control side electronic device or other appropriate devices in the wireless communication network.
  • the terminal side may be the party that receives downlink communication and/or initiates uplink communication in the wireless communication system. It may be appropriately selected according to the signal transmission direction in the wireless communication scenario, for example, when performing downlink communication from the base station to the user terminal, The terminal side may refer to the user terminal side. When downlink communication is performed from other devices to the base station in the wireless communication system, the terminal side may refer to the base station side.
  • the terminal-side electronic device may correspond to a device that communicates in a communication scenario in the wireless communication system (such as an access point, a user terminal, etc. in the communication system) itself, or may be used in combination with the device Electronic equipment.
  • FIG. 9 shows a block diagram of a terminal-side electronic device according to an embodiment of the present disclosure.
  • the terminal-side electronic device 900 is capable of performing multi-stream data transmission with the control-side electronic device in the wireless communication system.
  • the terminal-side electronic device 900 includes a processing circuit 902 configured to obtain combined information of specific scheduling identification information and specific control information, wherein, The specific scheduling identification information is selected from at least two scheduling identification information associated with the data flow that are configured based on the data transmission characteristics of the data flow included in the multi-stream data transmission; and the specific scheduling identification information is determined based on the specific scheduling identification information.
  • the specific schedule identifies a specific data flow associated with the information, and performs data transmission of the specific data flow based on the specific control information.
  • the meanings and settings of multi-stream data transmission, data transmission characteristics, scheduling identification information and control information can be as described above, and will not be described in detail here.
  • the combined information is represented as specific control information scrambled by the specific scheduling identification information
  • the processing circuit may be further configured to: attempt to descramble the specific control information using a plurality of scheduling identification information, To obtain the specific scheduling identification information, and decode based on the specific scheduling identification information to obtain the specific control information.
  • the processing circuit may be further configured to determine, based on the specific control information, the Scheduling configuration of a specific data flow associated with the scheduling identification information, and data transmission of the specific data flow is performed based on the scheduling configuration.
  • the processing circuit may be further configured to: derive activation information of the scheduling configuration from the specific control information, and perform automatic switching of the scheduling configuration when the activation condition indicated by the activation information expires. Data transmission of a specific data stream without performing descrambling of control information.
  • the processing circuit may be further configured to provide information including at least the data transmission characteristics to the control-side electronic device.
  • the processing circuit may be further configured to: obtain data transmission conditions between the terminal-side electronic device and the control-side electronic device, wherein the data transmission conditions include packet size, jitter, At least one of the data scheduling conditions, and providing the obtained data transmission status to the control-side electronic device, so that the control-side electronic device can adjust the scheduling configuration based on the data transmission status.
  • operations of the processing circuit of the terminal-side electronic device may be performed in a similar manner to corresponding operations of the terminal-side electronic device and will not be described in detail here.
  • the terminal-side electronic device 900 can be implemented in various appropriate ways, and in particular can be implemented in a manner similar to the control-side electronic device 300 .
  • various units may be included to implement the aforementioned operations/functions, such as the obtaining unit 904, which is configured to obtain combination information of specific scheduling identification information (such as CS-RNTI) and specific control information (such as DCI), wherein the specific scheduling The identification information is selected from at least two scheduling identification information associated with the data flow configured based on the data transmission characteristics of the data flow included in the multi-stream data transmission; the determining unit 906 is configured to based on the specific scheduling identification The information determines a specific data flow associated with the specific scheduling identification information, and the data transmission unit 908 is configured to perform data transmission of the specific data flow based on the specific control information.
  • specific scheduling identification information such as CS-RNTI
  • specific control information such as DCI
  • the processing circuit 902 may further include a parsing unit 910 configured to use multiple scheduling identification information to attempt to descramble the specific control information to obtain the specific scheduling identification information, and based on the The specific scheduling identification information is decoded to obtain the specific control information.
  • a parsing unit 910 configured to use multiple scheduling identification information to attempt to descramble the specific control information to obtain the specific scheduling identification information, and based on the The specific scheduling identification information is decoded to obtain the specific control information.
  • the parsing unit 910 may be further configured to determine the scheduling configuration of a specific data flow associated with the scheduling identification information based on the specific control information, and the data transmission unit 908 is configured to determine based on the specific control information.
  • the scheduling configuration performs data transmission of a specific data stream.
  • the parsing unit 910 may be further configured to derive the activation information of the scheduling configuration from the specific control information, and the data transmission unit 908 is configured to perform the activation condition indicated by the activation information to Periodically, the data transmission of a specific data stream is carried out in the state of automatic switching of the scheduling configuration, and the control is no longer executed. Descrambling of controlled information.
  • the processing circuit 902 may further include a sending unit 912 configured to provide information including at least the data transmission characteristics to the control-side electronic device.
  • the processing circuit 902 may further include a unit for obtaining data transmission conditions between the terminal-side electronic device and the control-side electronic device, where the data transmission conditions include packet size, jitter of the data stream , at least one of the data scheduling conditions, and the sending unit 912 may be configured to provide the acquired data transmission status to the control-side electronic device, so that the control-side electronic device can adjust based on the data transmission status. Scheduling configuration.
  • the above-mentioned units can operate as described above, and will not be described in detail here. It should be noted that the above-mentioned units are only logical modules divided according to the specific functions they implement, and are not used to limit specific implementation methods. For example, they can be implemented in a similar form to the units of the device 300 described above.
  • the electronic device 900 may also include other appropriate components, such as a memory, where the memory may be implemented like the storage in the above-mentioned device 300, which will not be described in detail here.
  • FIG. 10 shows a flowchart of the method 1000 for the control side of the wireless communication system according to the embodiment of the present disclosure.
  • step S1001 a combination of specific scheduling identification information (CS-RNTI) and specific control information (DCI) is obtained, wherein the specific scheduling identification information is selected from the group based on the multi-stream data transmission.
  • CS-RNTI specific scheduling identification information
  • DCI specific control information
  • step S1002 (referred to as the determining step), determining a specific data flow associated with the specific scheduling identification information based on the specific scheduling identification information;
  • step S1003 (referred to as the data transmission step), data transmission of a specific data stream is performed based on the specific control information.
  • the method may also include corresponding steps for implementing the operations performed by the terminal-side electronic device described above, specifically including. It should be noted that these steps may be performed by the control-side electronic device according to the present disclosure described above, particularly by corresponding units of the control-side electronic device according to the present disclosure described above.
  • machine-executable instructions in the machine-readable storage medium or program product may be configured to perform operations corresponding to the above device and method embodiments.
  • the embodiments of the machine-readable storage medium or program product will be clear to those skilled in the art, and therefore will not be described again.
  • Machine-readable storage media and program products for carrying or including the above-described machine-executable instructions are also within the scope of the present disclosure.
  • Such storage media may include, but are not limited to, floppy disks, optical disks, magneto-optical disks, memory cards, memory sticks, and the like.
  • the above series of processes and devices can also be implemented through software and/or firmware.
  • the program constituting the software is installed from a storage medium or a network to a computer having a dedicated hardware structure, such as the general-purpose personal computer 1100 shown in FIG. , can perform various functions and so on.
  • 11 is a block diagram showing an example structure of a personal computer of an information processing apparatus employable in an embodiment of the present disclosure.
  • the personal computer may correspond to the above-described exemplary buying-side electronic device or selling-side electronic device according to the present disclosure.
  • a central processing unit (CPU) 1101 performs various processes according to a program stored in a read-only memory (ROM) 1102 or a program loaded from a storage section 1108 into a random access memory (RAM) 1103 .
  • ROM read-only memory
  • RAM random access memory
  • data required when the CPU 1101 performs various processes and the like is also stored as necessary.
  • the CPU 1101, ROM 1102 and RAM 1103 are connected to each other via a bus 1104.
  • Input/output interface 1105 is also connected to bus 1104.
  • the following components are connected to the input/output interface 1105: an input part 1106, including a keyboard, a mouse, etc.; an output part 1107, including a display, such as a cathode ray tube (CRT), a liquid crystal display (LCD), etc., and a speaker, etc.; a storage part 1108 , including hard disk, etc.; and the communication part 1109, including network interface cards such as LAN cards, modems, etc.
  • the communication section 1109 performs communication processing via a network such as the Internet.
  • Driver 1110 is also connected to input/output interface 1105 as needed.
  • Removable media 1111 such as magnetic disks, optical disks, magneto-optical disks, semiconductor memories, etc. are installed on the drive 1110 as necessary, so that computer programs read therefrom are installed into the storage section 1108 as needed.
  • the program constituting the software is installed from a network such as the Internet or a storage medium such as the removable medium 1111.
  • this storage medium is not limited to the removable medium 1111 shown in FIG. 11 in which the program is stored and distributed separately from the device to provide the program to the user.
  • the removable media 1111 include magnetic disks (including floppy disks (registered trademark)), optical disks (including compact disk read-only memory (CD-ROM) and digital versatile disks (DVD)), magneto-optical disks (including minidiscs (MD) (registered trademark) )) and semiconductor memory.
  • the storage medium may be ROM 1102, a hard disk contained in storage portion 1108, etc., in which the program is stored. programs and are distributed to users along with the devices that contain them.
  • the technology of the present disclosure can be applied to various products.
  • control-side electronic device may be implemented as or included in various control devices/base stations.
  • transmitting device and the terminal device according to the embodiments of the present disclosure may be implemented as or included in various terminal devices.
  • the control device/base station mentioned in this disclosure may be implemented as any type of base station, such as an eNB, such as a macro eNB and a small eNB.
  • a small eNB may be an eNB covering a smaller cell than a macro cell, such as a pico eNB, a micro eNB, and a home (femto) eNB.
  • it may be implemented as a gNB, such as a macro gNB and a small gNB.
  • a small gNB may be a gNB covering a smaller cell than a macro cell, such as pico gNB, micro gNB, and home (femto) gNB.
  • the base station may be implemented as any other type of base station, such as a NodeB and a Base Transceiver Station (BTS).
  • the base station may include: a main body (also called a base station device) configured to control wireless communication; and one or more remote radio heads (RRH) disposed in a different place from the main body.
  • a main body also called a base station device
  • RRH remote radio heads
  • various types of terminals to be described below may operate as base stations by temporarily or semi-persistently performing base station functions.
  • the terminal device mentioned in this disclosure may, in some embodiments, be implemented as a mobile terminal (such as a smartphone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a head-mounted display (HMD), portable/dongle-type mobile routers and digital camera devices) or vehicle-mounted terminals (such as car navigation equipment).
  • the terminal device may also be implemented as a terminal that performs machine-to-machine (M2M) communication (also called a machine type communication (MTC) terminal).
  • M2M machine-to-machine
  • MTC machine type communication
  • the terminal device may be a wireless communication module (such as an integrated circuit module including a single chip) installed on each of the above-mentioned terminals.
  • base station in this disclosure has the full breadth of its ordinary meaning and includes at least a wireless communication station used to facilitate communications as a wireless communication system or part of a radio system.
  • a base station may be, for example but not limited to, the following: the base station may be one or both of a base transceiver station (BTS) and a base station controller (BSC) in the GSM system, and may be a radio network controller in the WCDMA system.
  • BTS base transceiver station
  • BSC base station controller
  • RNC radio network controller
  • Node B can be the eNB in LTE and LTE-Advanced systems, or can be the corresponding network node in the future communication system (such as gNB, eLTE that may appear in the 5G communication system eNB etc.).
  • Some functions in the base station of the present disclosure can also be implemented as entities with control functions for communication in communication scenarios such as XR, AR, VR, D2D, M2M, and V2V, or as entities with cognitive radio communications.
  • the entity that plays the role of spectrum coordination in the communication scenario can also be implemented as entities with control functions for communication in communication scenarios such as XR, AR, VR, D2D, M2M, and V2V, or as entities with cognitive radio communications.
  • the entity that plays the role of spectrum coordination in the communication scenario can also be implemented as entities with control functions for communication in communication scenarios such as XR, AR, VR, D2D, M2M, and V2V, or as entities with cognitive radio communications.
  • gNB 1200 is a block diagram illustrating a first example of a schematic configuration of a gNB to which the technology of the present disclosure may be applied.
  • gNB 1200 includes multiple antennas 1210 and base station equipment 1220.
  • the base station device 1220 and each antenna 1210 may be connected to each other via an RF cable.
  • the gNB 1200 (or base station device 1220) here may correspond to the above-mentioned control side electronic device.
  • Each of the antennas 1210 includes a single or multiple antenna elements, such as multiple antenna elements included in a multiple-input multiple-output (MIMO) antenna, and is used by the base station device 1220 to transmit and receive wireless signals.
  • gNB 1200 may include multiple antennas 1210.
  • multiple antennas 1210 may be compatible with multiple frequency bands used by gNB 1200.
  • the base station device 1220 includes a controller 1221, a memory 1222, a network interface 1217, and a wireless communication interface 1225.
  • the controller 1221 may be, for example, a CPU or a DSP, and operates various functions of higher layers of the base station device 1220 . For example, the controller 1221 determines the target terminal device in the at least one terminal device according to the positioning information of at least one terminal device on the terminal side in the wireless communication system and the specific location configuration information of the at least one terminal device acquired by the wireless communication interface 1225. location information.
  • the controller 1221 may have logical functions to perform controls such as radio resource control, radio bearer control, mobility management, access control, and scheduling. This control can be performed in conjunction with nearby gNB or core network nodes.
  • the memory 1222 includes RAM and ROM, and stores programs executed by the controller 1221 and various types of control data such as terminal lists, transmission power data, and scheduling data.
  • the network interface 1223 is a communication interface used to connect the base station device 1220 to the core network 1224. Controller 1221 may communicate with core network nodes or additional gNBs via network interface 1217. In this case, the gNB 1200 and the core network node or other gNBs may be connected to each other through logical interfaces such as the S1 interface and the X2 interface.
  • the network interface 1223 may also be a wired communication interface or a wireless communication interface for a wireless backhaul line. If the network interface 1223 is a wireless communication interface, the network interface 1223 may use a higher frequency band for wireless communication than the frequency band used by the wireless communication interface 1225.
  • the wireless communication interface 1225 supports any cellular communication scheme such as Long Term Evolution (LTE) and LTE-Advanced, and provides wireless connectivity to terminals located in the cell of the gNB 1200 via the antenna 1210 .
  • Wireless communication interface 1225 may generally include, for example, a baseband (BB) processor 1226 and RF circuitry 1227.
  • the BB processor 1226 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform layers such as Various types of signal processing such as L1, Medium Access Control (MAC), Radio Link Control (RLC), and Packet Data Convergence Protocol (PDCP).
  • L1 Medium Access Control
  • RLC Radio Link Control
  • PDCP Packet Data Convergence Protocol
  • the BB processor 1226 may have part or all of the above-mentioned logical functions.
  • the BB processor 1226 may be a memory that stores a communication control program, or a module including a processor and related circuits configured to execute the program.
  • the update program can cause the functionality of the BB processor 1226 to change.
  • the module may be a card or blade that plugs into a slot of the base station device 1220. Alternatively, the module may be a chip mounted on a card or blade.
  • the RF circuit 1227 may include, for example, a mixer, filter, and amplifier, and transmit and receive wireless signals via the antenna 1210.
  • FIG. 12 shows an example in which one RF circuit 1227 is connected to one antenna 1210, the present disclosure is not limited to this illustration, but one RF circuit 1227 can be connected to multiple antennas 1210 at the same time.
  • the wireless communication interface 1225 may include multiple BB processors 1226.
  • multiple BB processors 1226 may be compatible with multiple frequency bands used by gNB 1200.
  • wireless communication interface 1225 may include a plurality of RF circuits 1227.
  • multiple RF circuits 1227 may be compatible with multiple antenna elements.
  • FIG. 12 shows an example in which the wireless communication interface 1225 includes multiple BB processors 1226 and multiple RF circuits 1227, the wireless communication interface 1225 may also include a single BB processor 1226 or a single RF circuit 1227.
  • gNB 1300 is a block diagram illustrating a second example of a schematic configuration of a gNB to which the technology of the present disclosure may be applied.
  • gNB 1300 includes multiple antennas 1310, RRH 1320 and base station equipment 1330.
  • the RRH 1320 and each antenna 1310 may be connected to each other via RF cables.
  • the base station equipment 1330 and the RRH 1320 may be connected to each other via high-speed lines such as fiber optic cables.
  • the gNB 1300 (or base station device 1330) here may correspond to the above-mentioned control side electronic device.
  • Antennas 1310 each include single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and are used by RRH 1320 to transmit and receive wireless signals.
  • gNB 1300 may include multiple antennas 1310.
  • multiple antennas 1310 may be compatible with multiple frequency bands used by gNB 1300.
  • the base station device 1330 includes a controller 1331, a memory 1332, a network interface 1333, a wireless communication interface 1334, and a connection interface 1336.
  • the controller 1331, the memory 1332, and the network interface 1333 are the same as the controller 1221, the memory 1222, and the network interface 1223 described with reference to FIG. 12 .
  • the wireless communication interface 1334 supports any cellular communication scheme, such as LTE and LTE-Advanced, and provides wireless communication to terminals located in a sector corresponding to the RRH 1320 via the RRH 1320 and the antenna 1310 line communication.
  • the wireless communication interface 1334 may generally include a BB processor 1335, for example.
  • the BB processor 1335 is the same as the BB processor 1226 described with reference to FIG. 10 , except that the BB processor 1335 is connected to the RF circuit 1322 of the RRH 1320 via the connection interface 1336 .
  • the wireless communication interface 1334 may include multiple BB processors 1335.
  • multiple BB processors 1335 may be compatible with multiple frequency bands used by gNB 1300.
  • FIG. 13 shows an example in which the wireless communication interface 1334 includes multiple BB processors 1335, the wireless communication interface 1334 may also include a single BB processor 1335.
  • connection interface 1336 is an interface used to connect the base station device 1330 (wireless communication interface 1334) to the RRH 1320.
  • the connection interface 1336 may also be a communication module used to connect the base station device 1330 (wireless communication interface 1334) to the communication in the above-mentioned high-speed line of the RRH 1320.
  • RRH 1320 includes a connection interface 1323 and a wireless communication interface 1321.
  • connection interface 1323 is an interface for connecting the RRH 1320 (wireless communication interface 1321) to the base station device 1330.
  • the connection interface 1323 may also be a communication module used for communication in the above-mentioned high-speed line.
  • Wireless communication interface 1321 transmits and receives wireless signals via antenna 1310.
  • Wireless communication interface 1321 may generally include RF circuitry 1322, for example.
  • RF circuitry 1322 may include, for example, mixers, filters, and amplifiers, and transmit and receive wireless signals via antenna 1310 .
  • FIG. 13 shows an example in which one RF circuit 1322 is connected to one antenna 1310, the present disclosure is not limited to this illustration, but one RF circuit 1322 can be connected to multiple antennas 1310 at the same time.
  • wireless communication interface 1321 may include a plurality of RF circuits 1322.
  • multiple RF circuits 1322 may support multiple antenna elements.
  • FIG. 13 shows an example in which the wireless communication interface 1321 includes a plurality of RF circuits 1322, the wireless communication interface 1321 may also include a single RF circuit 1322.
  • the communication device 1400 includes a processor 1401, a memory 1402, a storage device 1403, an external connection interface 1404, a camera 1406, a sensor 1407, a microphone 1408, an input device 1409, a display device 1410, a speaker 1411, a wireless communication interface 1412, one or more Antenna switch 1415, one or more antennas 1416, bus 1417, battery 1418, and auxiliary controller 1419.
  • the communication device 1400 (or processor 1401) here may correspond to the above-mentioned transmitting device or terminal-side electronic device.
  • the processor 1401 may be, for example, a CPU or a system on a chip (SoC), and controls applications of the communication device 1400 Use layers and functions of other layers.
  • the memory 1402 includes RAM and ROM, and stores data and programs executed by the processor 1401.
  • the storage device 1403 may include storage media such as semiconductor memory and hard disk.
  • the external connection interface 1404 is an interface for connecting external devices, such as memory cards and Universal Serial Bus (USB) devices, to the communication device 1400 .
  • the camera 1406 includes an image sensor such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS) and generates a captured image.
  • Sensors 1407 may include a group of sensors such as measurement sensors, gyroscope sensors, geomagnetic sensors, and acceleration sensors.
  • Microphone 1408 converts sound input to communication device 1400 into audio signals.
  • the input device 1409 includes, for example, a touch sensor, a keypad, a keyboard, a button or a switch configured to detect a touch on the screen of the display device 1410, and receives an operation or information input from a user.
  • the display device 1410 includes a screen such as a liquid crystal display (LCD) and an organic light emitting diode (OLED) display, and displays an output image of the communication device 1400 .
  • the speaker 1411 converts the audio signal output from the communication device 1400 into sound.
  • the wireless communication interface 1412 supports any cellular communication scheme such as LTE and LTE-Advanced, and performs wireless communication.
  • Wireless communication interface 1412 may generally include, for example, BB processor 1413 and RF circuitry 1414.
  • the BB processor 1413 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 1414 may include, for example, mixers, filters, and amplifiers, and transmit and receive wireless signals via the antenna 1416.
  • the wireless communication interface 1412 may be a chip module on which the BB processor 1413 and the RF circuit 1414 are integrated. As shown in FIG.
  • the wireless communication interface 1412 may include multiple BB processors 1413 and multiple RF circuits 1414. Although FIG. 14 shows an example in which the wireless communication interface 1412 includes multiple BB processors 1413 and multiple RF circuits 1414, the wireless communication interface 1412 may also include a single BB processor 1413 or a single RF circuit 1414.
  • the wireless communication interface 1412 may support other types of wireless communication schemes, such as short-range wireless communication schemes, near field communication schemes, and wireless local area network (LAN) schemes.
  • the wireless communication interface 1412 may include a BB processor 1413 and an RF circuit 1414 for each wireless communication scheme.
  • Each of the antenna switches 1415 switches the connection destination of the antenna 1416 between a plurality of circuits included in the wireless communication interface 1412 (for example, circuits for different wireless communication schemes).
  • Antennas 1416 each include single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and are used by wireless communication interface 1412 to transmit and receive wireless signals.
  • communication device 1400 may include multiple antennas 1416.
  • FIG. 14 illustrates a communication device 1400 including multiple example of antenna 1416, but communications device 1400 may also include a single antenna 1416.
  • communication device 1400 may include antennas 1416 for each wireless communication scheme.
  • the antenna switch 1415 may be omitted from the configuration of the communication device 1400.
  • the bus 1417 connects the processor 1401, the memory 1402, the storage device 1403, the external connection interface 1404, the camera 1406, the sensor 1407, the microphone 1408, the input device 1409, the display device 1410, the speaker 1411, the wireless communication interface 1412, and the auxiliary controller 1419 to each other. connect.
  • the battery 1418 provides power to the various blocks of the communication device 1400 shown in Figure 14 via feeders, which are partially shown as dashed lines in the figure.
  • the auxiliary controller 1419 operates the minimum necessary functions of the communication device 1400, such as in sleep mode.
  • FIG. 15 is a block diagram showing an example of a schematic configuration of a car navigation device 1500 to which the technology of the present disclosure can be applied.
  • the car navigation device 1500 includes a processor 1501, a memory 1502, a global positioning system (GPS) module 1504, a sensor 1505, a data interface 1506, a content player 1507, a storage media interface 1508, an input device 1509, a display device 1510, a speaker 1511, a wireless Communication interface 1513, one or more antenna switches 1516, one or more antennas 1517, and battery 1518.
  • the car navigation device 1500 (or processor 1501) here may correspond to a transmitting device or a terminal-side electronic device.
  • the processor 1501 may be, for example, a CPU or an SoC, and controls navigation functions and other functions of the car navigation device 1500 .
  • the memory 1502 includes RAM and ROM, and stores data and programs executed by the processor 1501 .
  • the GPS module 1504 measures the location (such as latitude, longitude, and altitude) of the car navigation device 1500 using GPS signals received from GPS satellites.
  • Sensors 1505 may include a set of sensors such as gyroscope sensors, geomagnetic sensors, and air pressure sensors.
  • the data interface 1506 is connected to, for example, the vehicle-mounted network 1521 via a terminal not shown, and acquires data generated by the vehicle (such as vehicle speed data).
  • the content player 1507 reproduces content stored in storage media, such as CDs and DVDs, which are inserted into the storage media interface 1508 .
  • the input device 1509 includes, for example, a touch sensor, a button, or a switch configured to detect a touch on the screen of the display device 1510, and receives an operation or information input from a user.
  • the display device 1510 includes a screen such as an LCD or an OLED display, and displays an image of a navigation function or reproduced content.
  • the speaker 1511 outputs the sound of the navigation function or the reproduced content.
  • the wireless communication interface 1513 supports any cellular communication scheme such as LTE and LTE-Advanced, and performs wireless communication.
  • Wireless communication interface 1513 may generally include, for example, BB processor 1514 and RF circuitry 1515.
  • the BB processor 1514 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform Various types of signal processing used in wireless communications.
  • the RF circuit 1515 may include, for example, a mixer, filter, and amplifier, and transmit and receive wireless signals via the antenna 1517.
  • the wireless communication interface 1513 can also be a chip module on which the BB processor 1514 and the RF circuit 1515 are integrated. As shown in FIG.
  • the wireless communication interface 1513 may include multiple BB processors 1514 and multiple RF circuits 1515 .
  • FIG. 15 shows an example in which the wireless communication interface 1513 includes a plurality of BB processors 1514 and a plurality of RF circuits 1515, the wireless communication interface 1513 may also include a single BB processor 1514 or a single RF circuit 1515.
  • the wireless communication interface 1513 may support other types of wireless communication schemes, such as short-range wireless communication schemes, near field communication schemes, and wireless LAN schemes.
  • the wireless communication interface 1513 may include the BB processor 1514 and the RF circuit 1515 for each wireless communication scheme.
  • Each of the antenna switches 1516 switches the connection destination of the antenna 1517 between a plurality of circuits included in the wireless communication interface 1513, such as circuits for different wireless communication schemes.
  • Antennas 1517 each include a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and are used by wireless communication interface 1513 to transmit and receive wireless signals.
  • the car navigation device 1500 may include a plurality of antennas 1517 .
  • FIG. 15 shows an example in which the car navigation device 1500 includes a plurality of antennas 1517, the car navigation device 1500 may also include a single antenna 1517.
  • the car navigation device 1500 may include an antenna 1517 for each wireless communication scheme.
  • the antenna switch 1516 may be omitted from the configuration of the car navigation device 1500.
  • the battery 1518 provides power to the various blocks of the car navigation device 1500 shown in FIG. 15 via feeders, which are partially shown as dotted lines in the figure. Battery 1518 accumulates power provided from the vehicle.
  • the technology of the present disclosure may also be implemented as an in-vehicle system (or vehicle) 1520 including a car navigation device 1500 , an in-vehicle network 1521 , and one or more blocks of a vehicle module 1522 .
  • the vehicle module 1522 generates vehicle data such as vehicle speed, engine speed, and fault information, and outputs the generated data to the in-vehicle network 1521 .
  • machine-executable instructions in the machine-readable storage medium or program product may be configured to perform operations corresponding to the above-described apparatus and method embodiments.
  • the embodiments of the machine-readable storage medium or program product will be clear to those skilled in the art, and therefore will not be described again.
  • Machine-readable storage media and programs for carrying or including the machine-executable instructions described above Products also fall within the scope of this disclosure.
  • Such storage media may include, but are not limited to, floppy disks, optical disks, magneto-optical disks, memory cards, memory sticks, and the like.
  • a plurality of functions included in one unit in the above embodiments may be implemented by separate devices.
  • multiple functions implemented by multiple units in the above embodiments may be implemented by separate devices respectively.
  • one of the above functions may be implemented by multiple units. Needless to say, such a configuration is included in the technical scope of the present disclosure.
  • steps described in the flowchart include not only processing performed in time series in the stated order but also processing performed in parallel or individually and not necessarily in time series. Furthermore, even in steps processed in time series, it goes without saying that the order can be appropriately changed.
  • the methods and systems of the present disclosure may be implemented in a variety of ways.
  • the methods and systems of the present disclosure may be implemented by software, hardware, firmware, or any combination thereof.
  • the order of the steps of the method described above is illustrative only, and unless otherwise specifically stated, the steps of the method of the present disclosure are not limited to the order specifically described above.
  • the present disclosure may also be embodied as a program recorded in a recording medium, including machine-readable instructions for implementing methods according to the present disclosure. Therefore, the present disclosure also covers recording media storing programs for implementing methods according to the present disclosure.
  • Such storage media may include, but are not limited to, floppy disks, optical disks, magneto-optical disks, memory cards, memory sticks, and the like.
  • embodiments of the present disclosure may also include the following illustrative examples (EE).
  • a control-side electronic device of a wireless communication system can perform multi-stream data transmission with a terminal-side electronic device in the wireless communication system.
  • the control-side electronic device includes a processing circuit.
  • the processing circuit is configured as:
  • scheduling identification information associated with the specific data flow and control information for scheduling of the specific data flow are combined for transmission of the specific data flow.
  • EE2 The control side electronic device according to EE 1, wherein the data flow included in the multi-stream data transmission includes a data flow in at least one of uplink data transmission and downlink data transmission, and wherein the data Transmission characteristics include data periodicity and/or data size characteristics of the data stream.
  • EE3 The control-side electronic device according to EE 1 or 2, wherein the data stream includes I stream and/or P stream, and the data transmission characteristics include the I stream and/or P stream contained in the data stream. Data periodicity and/or data size characteristics.
  • EE4 The control-side electronic device according to any one of EE 1-3, wherein the data stream contained in the multi-stream data transmission includes a data stream of one of uplink transmission data and downlink transmission data, and
  • the amount of scheduling identification information is determined based on the number of data flows with specific data transmission characteristics in one of the uplink transmission data and downlink transmission data.
  • the specific data transmission characteristics may include non-fixed data size and/or period/ Quasi-periodic.
  • EE5 The control-side electronic device according to any one of EE 1-3, wherein the data stream contained in the multi-stream data transmission includes a data stream of both uplink transmission data and downlink transmission data, and
  • the amount of scheduling identification information is determined based on a combination of the number of data flows with specific data transmission characteristics in uplink data transmission and the number of data flows with specific data transmission characteristics in downlink data transmission.
  • the specific data transmission characteristics may include non- Fixed data size and/or periodic/quasi-periodic.
  • EE6 The control side electronic device according to EE 5, wherein the amount of the scheduling identification information corresponds to the number of data streams of non-fixed data size in uplink data transmission and the number of non-fixed data sizes contained in the downlink data stream.
  • the amount of scheduling identification information corresponds to the maximum value among the number of periodic/quasi-periodic data flows included in the uplink data flow and the number of periodic/quasi-periodic data flows included in the downlink data flow.
  • EE7 The control-side electronic device according to any one of EE 1-6, wherein the processing circuit is configured to:
  • EE8 The control-side electronic device according to any one of EE 1-7, wherein the processing circuit is configured to:
  • the scheduling identification information associated with the scheduling configuration of the specific data flow is combined with the control information (DCI) for the scheduling configuration of the specific data flow.
  • DCI control information
  • the control side electronic device wherein the scheduling configuration of the data flow may include semi-static scheduling (SPS) and/or configuration permission (CG), and
  • the control-side electronic device sets corresponding control information (DCI) respectively for the semi-static scheduling (SPS) and/or configuration permission (CG) of the data flow.
  • DCI control information
  • SPS semi-static scheduling
  • CG configuration permission
  • EE10 The control-side electronic device according to any one of EE 1-9, wherein the processing circuit is further configured to:
  • RRC resource configuration signaling
  • EE11 The control-side electronic device according to EE 10, wherein the data flow not associated with the scheduling identification information includes a fixed-size periodic downlink data flow, and the scheduling configuration for the fixed-size periodic downlink data flow (SPS), which configures resources for transmission through Resource Configuration Signaling (RRC).
  • SPS fixed-size periodic downlink data flow
  • RRC Resource Configuration Signaling
  • EE12 The control-side electronic device according to any one of EE 1-9, wherein the processing circuit is configured to:
  • Control information and combined scheduling identification information are transmitted through radio resource control signaling when multi-stream data transmission is initiated;
  • the scheduling configuration of the data flow is adjusted based on the data transmission condition, wherein the data transmission condition includes at least one of a packet size, jitter, and data scheduling condition of the data flow.
  • EE13 The control-side electronic device according to any one of EE 1-12, wherein the processing circuit is further configured to:
  • the activation information of the specific scheduling configuration of the data flow is preset, so that the status of the scheduling configuration is automatically switched when the activation condition indicated by the activation information expires.
  • the activation information includes an activation time value of a specific scheduling configuration, or an activation cycle number, or an index value indicating an activation time value or an activation cycle book, and/or, wherein, The activation information is indicated by a newly added bit in the control information or by an existing bit in the control information.
  • EE15 Control-side electronic device according to any one of EE 1-14, wherein the processing circuit is configured Set to:
  • the search space in which the terminal-side device can perform detection is configured to include all configured scheduling identification information.
  • a terminal-side electronic device of a wireless communication system can perform multi-stream data transmission with the control-side electronic device in the wireless communication system.
  • the terminal-side electronic device includes a processing circuit.
  • the processing circuit is configured as:
  • Data transmission of a specific data flow is performed based on the specific control information.
  • the specific control information is obtained by decoding based on the specific scheduling identification information.
  • EE18 The terminal-side electronic device according to EE 16 or 17, wherein the processing circuit is further configured to:
  • Data transmission of a specific data flow is performed based on the scheduling configuration.
  • EE19 The terminal-side electronic device according to any one of EE 16-18, wherein the processing circuit is further configured to:
  • Activation information for the scheduling configuration is derived from the specific control information
  • EE20 The terminal-side electronic device according to EE 19, wherein when the activation condition indicated by the activation information expires, data transmission is stopped when the scheduling configuration is automatically switched to the deactivation state.
  • EE21 The terminal-side electronic device according to any one of EE 16-20, wherein the processing circuit further The step configuration is:
  • Information containing at least the data transmission characteristics is provided to the control-side electronic device.
  • EE22 The terminal-side electronic device according to any one of EE 16-21, wherein the processing circuit is further configured to:
  • the data transmission status includes at least one of packet size, jitter, and data scheduling status of the data stream, and
  • the obtained data transmission status is provided to the control-side electronic device, so that the control-side electronic device can adjust the scheduling configuration based on the data transmission status.
  • a method for a control-side electronic device in a wireless communication system The control-side electronic device is capable of multi-stream data transmission with a terminal-side electronic device in the wireless communication system.
  • the method includes:
  • scheduling identification information associated with the specific data flow and control information for scheduling of the specific data flow are combined for transmission of the specific data flow.
  • a method for a terminal-side electronic device of a wireless communication system the terminal-side electronic device is capable of multi-stream data transmission with a control-side electronic device in the wireless communication system, the method includes:
  • CS-RNTI specific scheduling identification information
  • DCI specific control information
  • Data transmission of a specific data flow is performed based on the specific control information.
  • a wireless communication device including
  • At least one storage device storing instructions thereon that, when executed by the at least one processor, cause the at least one processor to perform the method according to EE 23 or 24.
  • EE 26 A storage medium storing instructions which, when executed by a processor, enable execution of a method according to EE 23 or 24.
  • EE 27 A computer program product containing instructions which, when executed by a processor, cause the execution of Methods described in EE 23 or 24.
  • a wireless communication device comprising means for implementing a method according to EE 23 or 24.
  • EE 29 A computer program comprising instructions executable by an electronic device to implement a method according to EE 23 or 24.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开涉及无线通信系统中的电子设备和方法。提出了无线通信系统的控制侧电子设备,所述控制侧电子设备能够与无线通信系统中的终端侧电子设备进行多流数据传输,所述控制侧电子设备包括处理电路,所述处理电路被配置为:基于所述多流数据传输中包含的数据流的数据传输特性,配置至少两个调度标识信息;将所述至少两个调度标识信息与所述多流数据传输中包含的数据流相关联;以及对于所述多流数据传输中的特定数据流,将与该特定数据流相关联的调度标识信息和用于该特定数据流的调度的控制信息相组合,以用于该特定数据流的传输。

Description

无线通信系统中的电子设备和方法
相关申请的交叉引用
本申请要求于2022年4月21日递交的中国专利申请No.202210423618.3的优先权,其全文通过引用并入于此。
技术领域
本公开涉及无线通信,并且具体而言,涉及无线通信系统中的数据传输。
背景技术
随着移动互联网技术的发展和广泛应用,越来越多的设备接入到移动网络中,新的服务和应用层出不穷。为了满足了人们的通信需求,第五代移动通信技术(简称5G或5G技术)已经成为通信业和学术界探讨和研究的热点。第五代移动通信技术是新一代蜂窝移动通信技术,其性能目标是高数据速率、减少延迟、节省能源、降低成本、提高系统容量和大规模设备连接。
随着联网用户数量以及通信需求飞速发展,各种类型的移动数据传输将给网络带来严峻的挑战,特别地,往往伴随着数据传输操作复杂以及功耗开销的增加,这对于当前无线通信提出了更高的要求。
发明内容
本公开提供了无线通信系统中针对数据传输、尤其是多流数据传输进行优化的方案。
一方面,本公开涉及一种无线通信系统的控制侧电子设备,所述控制侧电子设备能够与无线通信系统中的终端侧电子设备进行多流数据传输,所述控制侧电子设备包括处理电路,所述处理电路被配置为:基于所述多流数据传输中包含的数据流的数据传输特性,确定为所述终端侧电子设备配置的调度标识信息的数量;在确定配置多个调度标识信息的情况下,将所述多个调度标识信息与所述多流数据传输中包含的多个数据流相关联;以及对于所述多流数据传输中的特定数据流,将与该特定数据流相关联的调度标识信息和用于该特定数据流的调度的控制信息相组合,以用于该特定数据流的传输。
另一方面,本公开涉及一种无线通信系统的终端侧电子设备,所述终端侧电子设备能够与无线通信系统中的控制侧电子设备进行多流数据传输,所述终端侧电子设备包括处理电路,所述处理电路被配置为:获取特定调度标识信息和特定控制信息的组合信息,其中,所述特定调度标识信息选自基于所述多流数据传输中包含的数据流的数据传输特性被配置的、与数据流相关联的多个调度标识信息;基于所述特定调度标识信息确定与所述特定调度标识信息相关联的特定数据流,并且基于所述特定控制信息进行特定数据流的数据传输。
又另一方面,本公开涉及一种用于无线通信系统的控制侧电子设备的方法,所述控制侧电子设备能够与无线通信系统中的终端侧电子设备进行多流数据传输,所述方法包括:基于所述多流数据传输中包含的数据流的数据传输特性,确定为所述终端侧电子设备配置的调度标识信息的数量;在确定配置多个调度标识信息的情况下,将所述多个调度标识信息与所述多流数据传输中包含的多个数据流相关联;以及对于所述多流数据传输中的特定数据流,将与该特定数据流相关联的调度标识信息和用于该特定数据流的调度的控制信息相组合,以用于该特定数据流的传输。
还另一方面,本公开涉及一种用于无线通信系统的终端侧电子设备的方法,所述终端侧电子设备能够与无线通信系统中的控制侧电子设备进行多流数据传输,所述方法包括:获取特定调度标识信息和特定控制信息的组合信息,其中,所述特定调度标识信息选自基于所述多流数据传输中包含的数据流的数据传输特性被配置的、与数据流相关联的多个调度标识信息;基于所述特定调度标识信息确定与所述特定调度标识信息相关联的特定数据流,并且基于所述特定控制信息进行特定数据流的数据传输。
还另一方面,本公开涉及一种存储有可执行指令的非暂时性计算机可读存储介质,所述可执行指令当被处理器执行时使得该处理器能够实现如前所述的方法。
还另一方面,本公开涉及一种无线通信设备,所述无线通信装置包括:处理器和存储装置,所述存储装置存储有可执行指令,所述可执行指令当被处理器执行时使得该处理器能够实现如前所述的方法。
还另一个方面,本公开涉及一种无线通信装置,包括用于实现如前所述的方法的部件。
还另一方面,本公开涉及一种计算机程序产品,包含指令,所述指令能够由电子设备执行以实现如前所述的方法。
还另一方面,本公开涉及一种计算机程序,包含指令,所述指令能够由电子设备 执行以实现如前所述的方法。
提供上述概述是为了总结一些示例性的实施例,以提供对本文所描述的主题的各方面的基本理解。因此,上述特征仅仅是例子并且不应该被解释为以任何方式缩小本文所描述的主题的范围或精神。本文所描述的主题的其他特征、方面和优点将从以下结合附图描述的具体实施方式而变得明晰。
附图说明
下面结合具体的实施例,并参照附图,对本公开的上述和其它目的和优点做进一步的描述。在附图中,相同的或对应的技术特征或部件将采用相同或对应的附图标记来表示。
图1A和1B示出了无线通信系统中数据传输的概念性信令交互图和时序图。
图2A和2B示出了根据本公开的实施例的多流数据传输的信令交互图和时序图。
图3示出了根据本公开的实施例的无线通信系统中的控制侧电子设备的框图。
图4示出了根据本公开的实施例的DCI格式。
图5A和5B示出了根据本公开的实施例的PhysicalCellGroupConfig信息的示例。
图6A和6B分别示出了根据本公开的实施例的多流数据传输中的上行数据传输和下行数据传输的信令交互图。
图7A到7C示出了根据本公开的实施例的I流和/或P流的调度/配置更新。
图8示出了根据本公开的实施例的无线通信系统中的控制侧方法的流程图。
图9示出了根据本公开的实施例的无线通信系统中的终端侧电子设备的框图。
图10示出了根据本公开的实施例的无线通信系统中的终端侧方法的流程图。
图11是示意性地示出了根据本公开的实施例的中可采用的信息处理设备的个人计算机的示例结构的框图。
图12是示出可以应用本公开的技术的eNB的示意性配置的第一示例的框图。
图13是示出可以应用本公开的技术的eNB的示意性配置的第二示例的框图。
图14是示出可以应用本公开的技术的通讯设备的示意性配置的示例的框图。
图15是示出可以应用本公开的技术的汽车导航设备的示意性配置的示例的框图。
虽然在本公开内容中所描述的实施例可能易于有各种修改和另选形式,但是其具体实施例在附图中作为例子示出并且在本文中被详细描述。但是,应当理解,附图以及对其的详细描述不是要将实施例限定到所公开的特定形式,而是相反,目的是要涵 盖属于权利要求的精神和范围内的所有修改、等同和另选方案。
具体实施方式
在下文中将结合附图对本公开的示范性实施例进行描述。为了清楚和简明起见,在说明书中并未描述实施例的所有特征。然而,应该了解,在对实施例进行实施的过程中必须做出很多特定于实施方式的设置,以便实现开发人员的具体目标,例如,符合与设备及业务相关的那些限制条件,并且这些限制条件可能会随着实施方式的不同而有所改变。此外,还应该了解,虽然开发工作有可能是非常复杂和费时的,但对得益于本公开内容的本领域技术人员来说,这种开发工作仅仅是例行的任务。
此外,为了避免因不必要的细节而模糊了本公开,在附图中仅仅示出了与至少根据本公开的方案密切相关的处理步骤和/或设备结构,而省略了与本公开关系不大的其他细节。还应注意,在附图中相似的附图标记和字母指示相似的项目,并且因此一旦一个项目在一个附图中被定义,则对于随后的附图无需再对其进行论述。
在本公开中,术语“第一”、“第二”等仅仅用于区分元件或者步骤,而不是要指示时间顺序、优先选择或者重要性。
当前,5G通信已经广泛地应用于各种应用,尤其例如扩展现实(Extended Reality,XR)应用。XR是指通过计算机技术和可穿戴设备产生的一个真实与虚拟组合的、可人机交互的环境,包括增强现实(Augmented Reality,AR)、虚拟现实(Virtual Reality,VR)、混合现实(Mixed Reality,MR)等多种形式。XR的发展必须要借助大带宽和低时延,因此5G天然助力XR。
随着XR服务需求的增加,为了在5G通信中使新空口(New Radio,NR)能高效支持XR/CG(计算机图形)业务,3GPP在Rel-17和Rel-18的研究立项(study item,SI)开始研究无线接入网络(Radio Access Network,RAN)如何更好的支持XR业务。经过研究可明了XR业务具有如下特征:包含多个不同服务质量(Quality of Service,QoS)需求的数据流,数据量大,数据包大小固定/非固定,业务时延要求低等。
3GPP的TR38.838中规定了VR(Virtual Reality),CG(Cloud Gaming),AR(Augmented Reality)等场景下的数据流和各数据流的业务模型。以AR场景为例,AR场景中的下行最多可包含两流数据,一个流为I帧数据流(I-stream),另一个流为P帧数据流(P-stream),I帧数据流和P帧数据流的业务模型如TR38.838的表5和表10所示。以下分别示出表1和2,其中表1是选项1多流下行业务模型的统计参数,表2是多流下行VR业务模型的 统计参数。
表1
表2
AR场景中的上行有四种模型,分别为:模型1:单流模型;模型2:双流模型;模型3A:三流模型A;模型3B:三流模型B。作为示例,模型3B中包含三个数据流,其中第一流是周期性数据流,业务模型如TR38.838的表7所示。另外两流数据同下行(Downlink,DL)数据流一致,即一流是I帧数据流,一流是P帧数据流,且I流和P流的业务模型分别如TR38.838的表5和表17所示。以下分别示出表3和表4,其中表3示出上行姿态/控制业务的统计参数,表4示出了AR上行模式3B(三流数据模式)的流2和3的统计参数。
表3
表4
可见,XR业务往往包含多个具有不同QoS要求的数据流,且数据传输量大,要求可靠性高和时延低。此外,XR业务中的一些数据流可能是周期性的,例如I/P帧数据流、音频/数据流等,而一些数据流,例如I/P帧数据流,视频数据流,还具有到达数据包大小不固定的特点。作为示例,在VR下行多流数据通信中,多流可以包括如下这样的两流,其中一个流是音频/数据流,其是周期性的、大小固定的,而另一个流是视频流,其具有数据包大小不固定的特点。这样,在5G系统中对于XR业务进行数据通信传输时,需要对于XR业务的数据特点加以考虑。
在5G(NR)网络中往往引入了特定的调度方式来处理数据传输,特别地,对周期性到达业务采用的通常是配置许可(Configure Grant,CG)/半静态调度(semi-persistent scheduling,SPS)来进行调度。作为示例,现有标准针对上下行周期性业务到达分别采用了CG-PUSCH和SPS-PDSCH技术。在操作中,网络中针对终端分配的配置调度无线网络临时标识符(Configured Scheduling-Radio Network Temporary Identifier,CS-RNTI)可用于半静态调度(Semi-persistent scheduling,SPS)/配置许可(configure grant,CG)调度,并且可通过无线资源控制(Radio Resource Control,RRC)信令传递给终端UE,而UE通过基于CS-RNTI解扰物理下行控制信道(PDCCH)的结果确定SPS/CG的激活/去激活/调整,以便相应地进行数据传输。
当前通信时,基站往往是配置单个CS-RNTI来进行数据传输调度。然而,当在数据传输中包含多个传输块(Transmission Block,TB)或者具有非固定大小的数据包时,仍然使用单个CS-RNTI来调度多个TB的链路控制信息(Downlink Control Information,DCI)会存在诸多问题。一方面,需要修改DCI格式以支持多个TB的SPS/CG配置指示。另一方面,在数据传输为多流数据传输的情况下,由于不同流的SPS/CG调整时间不一定对齐,使用一个DCI同时指示不同流的SPS/CG会有一定的不准确性。此外,当调度多个TB的DCI只指示一个SPS/CG时,即只有一个TB是有效的时,另外一个TB需要置为特殊值,会造成DCI数据传输的浪费;如果在只传输一个TB时,切换为只能调度一个TB的DCI,那么该DCI又需要额外包含比特指示是多流中的哪个流。这样,配置单个CS-RNTI调度多个TB的技术需要对标准进行很大的改动,导致操作复杂度高。
鉴于此,本公开提出了优化的用于无线通信中的多流数据传输。特别地,本公开提出了一种改进的多流数据传输调度方案,其中对于尤其适合于XR业务的多流数据传输,可通过分别针对XR业务中的多个(对)上行和/或下行数据流相应地设置用于数据传输调度的调度标识信息,由此能够实现对多个(对)上行和/或下行数据流的传输增强。特别地,可以分别针对XR业务中的多个(对)上行和/或下行数据流设置相应的调度标识信息,尤其针对数据流的调度配置,例如半静态调度或配置许可(SPS/CG),设置相应的调度标识信息,从而可以实现多个(对)上下行数据流的传输增强,尤其实现多流数据传输的SPS/CG传输增强。
以下将详细描述根据本公开的实施例的无线通信系统中的控制侧设备与终端侧设备之间的无线通信的实现。以下使用CS-RNTI作为调度标识信息的示例来进行描述,但是应指出,调度标识信息可由其它适当的信息来指示,只要其能够区分/指示数据传输 调度的相关配置即可。
本公开的实施例尤其涉及控制侧设备与终端侧设备之间的数据通信包含多流数据传输。依赖于信号流的方向,控制侧设备可以是下行多流数据传输的发送方,而终端侧装置可以是下行多流数据传输的接收方。控制侧设备向终端侧设备进行下行通信,终端侧设备向控制侧设备进行上行通信。这里,作为示例,控制侧设备可以是gNB,和/或终端侧装置可以是用户设备(UE)。应指出,下行和上行通信可依赖于信号流的方向被确定。例如,在另一示例中,当用户设备(UE)对于gNB进行的通信为下行通信的情况下,控制侧设备可以是用户设备(UE),而终端侧设备可以是gNB。
控制侧设备与终端侧设备之间的数据通信可以采用各种适当的模式进行。特别地,采用DRX(Discontinuous Reception,不连续接收)模式。具体而言,在DRX通信中,基于数据包的数据流通常是突发性的,在没有数据传输的时候,可以通过关闭终端侧设备,例如UE的接收电路来降低功耗,从而提升电池使用时间。DRX通信的基本机制是处于RRC_CONNECTED态的UE配置的一个DRX周期,DRX周期由“激活期(ON duration)”和“休眠期(opportunity for DRX)”组成,在激活期中,UE监听并接收下行控制信息传输,例如PDCCH,并由此进行数据传输;而在休眠期,UE可以不接收下行信道的数据以节省功耗。这样,在时域中,时间被划分成一个个连续的DRX周期来进行通信。
图1A和1B示出了无线系统中数据传输的概念性信令交互图以及在DRX实现中的时序图。
在开始通信之初,控制侧设备向终端侧设备发送触发信息/唤醒信息(WakeUp signal,WUS),以便启动控制侧设备与终端侧设备之间的数据通信。触发信息/唤醒信息可以为各种适当的形式,通过各种适当的方式来发送,例如经由PDCCH发送,这里将不再详细描述。
终端侧设备监听到该信息而开始终端侧设备与控制侧设备之间的通信,包括上行通信和下行通信中的至少一者。上行和下行通信中的至少一者可以利用预先分配的资源进行数据传输。该预先分配的资源可以对应于特定的数据传输模式,例如周期性数据传送等等。作为示例,终端侧设备利用CG-PUSCH进行上行数据传输,和/或控制侧设备利用SPS-PDSCH进行下行数据传输,其中CG-PUSCH和SPS-PUSCH上承载的数据可被适当地设置,这里将不再详细描述。应指出,此时的通信是在DRX偏移期间进行的,但是为可选的,而不是必需的,例如当没有预先分配的资源的情况下可以不进行数据传输。
控制侧设备将获取要动态调度的数据的信息,并且基于该信息来生成控制信息, 例如DCI,其中可以指示为该数据传输所分配的资源等,并且将控制信息发送给终端侧设备以进行解码。其中控制信息可以包括上行控制信息UL DCI和/或下行控制信息DL DCI。由此,终端侧设备能够接收并解码DCI,然后根据DCI在指定的资源上进行数据传输。特别的,可以解码UL DCI,然后根据UL DCI在指定的时频资源上传送数据。另外,可以解码DL DCI,并且根据DL DCI在指定的时频资源上接收数据。上述操作是在DRX的激活期内执行的。
之后进入DRX的休眠期。但是,在DRX休眠期中仍可根据预先分配的资源来进行上行通信和/或下行通信。例如,根据CG-PUSCH/SPS-PDSCH的参数配置,在DRX休眠期中可能仍存在至少一个CG-PUSCH/SPS-PDSCH来进行数据传输。应指出,DRX休眠期内的数据传输仅是可选的,并不是必需的。
图2A示出了根据本公开的实施例的无线通信中的多流数据传输过程的概念性信令图。控制侧设备与终端侧设备之间的数据通信、尤其是多流数据通信,可以采用各种适当的模式进行,例如上述的DRX模式。多流数据通信可指的是控制侧设备与终端侧设备之间的数据通信包含至少两个的不同类型的数据流,例如AR业务中的I流、P流、B流、VR业务中的视频流、音频/数据流等,或者其它类型的数据流,特别地,多流数据通信可对应于上行数据通信和下行数据通信中的至少一者。
首先,控制侧设备可以生成控制侧设备与终端侧设备之间的数据通信相关的配置信息,该配置信息可以为无线资源配置(Radio Resource Configuration,RRC)信息,并且在通信信令中可以由RRCconfiguration字段指示,该无线资源配置信息可包括一个或多个CS-RNTI,这些CS-RNTI分别针对数据通信中的各数据流、甚至是各数据流中的调度配置(例如,SPS/CG)进行配置。此外,附加地,控制侧设备还可以设置激活定时器,例如可以分别针对各数据流、尤其是各数据流中的SPS/CG来设置对应的激活定时器。在开始通信之初,终端侧设备与控制侧设备之间可发送触发信息/唤醒信息(Wake Up Signal,WUS)以激活/启动控制侧设备与终端侧设备之间的数据通信。特别地,该触发信息/唤醒信息可以用于激活控制侧设备与接收侧设备之间的不连续接收(Discontinuous Reception,DRX),从而在连接状态建立的情况下控制侧设备将RRC配置、以及可选的定时器配置来发送给终端侧设备。应指出,RRC配置以及定时器配置可由其它设备设置并通知给控制侧设备和终端侧设备。
然后,在控制侧设备与接收侧设备之间的不连续接收(Discontinuous Reception,DRX)的接通时段(ON)期间进行DCI的传输,包括发送和接收。具体而言,CS- RNTI可以通过对DCI加扰而在通信中被传输给终端侧设备,并且控制侧设备所设置的激活定时器指示信息也可被包含在DCI中并且被传输给终端侧设备。而终端侧设备可以接收DCI,包括CS-RNTI加扰的DCI。然后在根据可选的DCI所包括的激活定时器指示信息激活DCI时,分别针对数据流的SPS/CG进行操作,例如上行和/或下行数据传输,并且可选地,提供反馈,如混合自动重传请求(Hybrid Automatic Repeat request,HARQ)-确认信息(ACK)。应指出这种反馈并不是必需的。
附加地或者作为替代,控制侧设备还可以在通信过程期间根据通信状况进行动态调度(Dynamic Scheduling,DG),此时可以类似地生成和设置CS-RNTI以用于调整多流数据传输,其中CS-RNTI可以同样加扰DCI并且传输给终端侧设备,如上文所述那样。并且,可选地,终端侧设备可以执行操作并且将HARQ-ACK反馈给控制侧设备,应指出,这种反馈也不是必须的,如附图中虚线指示。上述的动态调度中的操作也是在DRX ON期间执行。
图2B示出根据本公开的实施例的多流数据传输的时序图。其中,在DRX激活(ON)时段中,DCI与CS-RNTI相组合,例如CS-RNTI对DCI进行加扰,不同的CS-RNTI编号(例如,CS-RNTI1,CS-RNTI2,…)对应于与不同的数据流,以下将进行详细描述。
以下将描述根据本公开的实施例的无线通信系统的示例性电子设备。图3示出了根据本公开的实施例的无线通信系统的控制侧电子设备300,该控制侧电子设备200可与无线通信系统中的终端侧电子设备进行多流数据传输。控制侧电子设备300包括处理电路302,该处理电路302被配置为:基于所述多流数据传输中包含的数据流的数据传输特性,确定为所述终端侧电子设备配置的调度标识信息的数量;在确定配置多个调度标识信息的情况下,将所述多个调度标识信息,例如至少两个调度标识信息,与所述多流数据传输中包含的多个数据流相关联;以及对于所述多流数据传输中的特定数据流,将与该特定数据流相关联的调度标识信息和用于该特定数据流的调度的控制信息相组合,以用于该特定数据流的传输。
以下将详细描述处理电路所执行的各操作的实现。在以下的描述中,以调度标识信息可以是CS-RNTI并且控制信息可以是DCI为例进行描述,但是调度标识信息和控制信息并不局限于此,而还可以是其它适当的信息。
根据本公开的实施例,多流数据传输可包括上行数据传输和下行数据传输,并且上行数据传输和下行数据传输通常是成对的,而上行数据传输和下行数据传输中的至 少一个可包含至少两个的不同类型的数据流,例如涉及数据流是否为周期的、数据流的数据包大小是否固定等等,诸如I流、P流、B流、或者其它类型的数据流。特别地,上行数据传输和下行数据传输各自包含的数据流的数目可相同或者不同,各自包含的数据流的类型可相同或者不同。作为一个示例,上行数据流和下行数据流中的每一个均可包含I流和P流,并且I流和P流均为周期性的和/或数据大小不固定的数据流。作为另一个示例,下行数据流可以是前述的VR下行通信中的多流,其包括周期性的、数据大小固定的音频/数据流,以及数据大小不固定的视频流。以下主要基于I流和P流进行描述。应指出,本公开的构思同样适用于其它类型的多流传输中的各种数据流,这里将不再详细描述。
根据本公开的实施例,用于配置调度标识信息的多流数据传输的数据传输特性可与数据流的类型有关/相对应,特别地至少包括数据周期性、数据大小特性。作为示例,该传输特性可以为数据流的传输是否为周期性的、数据流传输的周期、所传输的数据流是否包含非固定大小的数据包、数据包的大小等等。特别地,数据的周期性可包括数据传输具有完全相等的周期,也可包括接近完全相等周期的准周期(quasi periodic),例如周期为33.33,33.33,33.34,33.33,33.33,33.34…的情况。还可以包括对应于XR 30fps的周期为33ms,33ms,34ms,33ms,33ms,34ms…的情况,对应于XR 60fps的周期为16ms,16ms,17ms,16ms,16ms,17ms…情况等等。应指出,这种包括准周期的特性也可被称为准周期性,因此在本公开的上下文中,数据的周期性/准周期性可以被认为等同于数据的周期性。
根据本公开的实施例,多流数据传输的数据传输特性可以由控制侧电子设备以各种适当的方式获取。在一些实施例中,数据传输特性可由终端侧电子设备上报给控制侧电子设备。
在一些实施例中,数据传输特性可以被包含于各种适当的信息表示,尤其优选地被包含在辅助信息(UE assistance information,UAI)中。作为示例,终端侧设备上报辅助信息至控制侧设备,以便控制侧设备了解各终端侧设备的情况并对终端侧设备进行配置/调度。例如,UE可以将UAI(UE assistance information,UE辅助信息)发送给基站,该UAI可包括各种适当信息,例如但不限于,诸如上下行流数据的数据传输特性,如上下行流数或流ID,每个数据流的特性如周期(帧率fps),数据包分布特征或场景信息(AR,VR,XR,CG etc),业务数据包大小的预测或先验信息,业务到达抖动的预测或先验信息,包丢弃信息,UE preference等。作为另一示例,数据传输特性的信息也可 以包括其他层的无线接入网中的XR认知信息(例如,得自R18 SID RP-213587,XR业务特性(包括上行和下行两者),服务质量(Qos),应用层属性)等。由此,基于终端侧设备上报的辅助信息,可以针对各流数据传输设置对应的CS-RNTI,从而可以适当地进行控制侧设备与终端侧设备之间的多流数据传输,满足多流数据传输需求。
根据本公开的实施例,所述多流数据传输中包含的数据流包括上行数据传输和下行数据传输中的至少一者中的数据流,从而可以基于该数据流的数据传输特性来配置调度标识信息。这样,可以分别针对上行数据传输和下行数据传输中的至少一者来配置相应的调度标识信息。特别地,可以针对多流数据传输中上行数据传输和下行数据传输中的至少一者中所包含的不同数据流中的至少一者进行配置。在一些实施例中,数据流包含I流和/或P流,这样可以分别针对I流和P流中的至少一者来配置相应的调度标识信息。
在一些示例中,可以针对上行数据传输和下行数据传输之一、尤其是其中的数据流,例如I流、或P流、或I流和P流两者、来设置相应的调度标识信息。这样,可以分别针对上行数据传输中的数据流或下行数据传输中的数据流,根据该数据流的数据传输特性设置相应的调度标识信息。在另一些示例中,可以针对成对的上行数据流和下行数据流两者、例如其中成对I流、或P流、或I流和P流两者、来设置相应的调度标识信息。这样,可以针对上行数据传输中的数据流和下行数据传输中的数据流两者,根据这两者数据流的数据传输特性来设置调度标识信息。通常,在此情况下,调度标识信息对于成对的上行数据流和下行数据流,例如成对I流、成对P流等,是共用的。应指出,依赖于业务类型,数据流还可以包括其它类型的流,例如前述的VR下行业务中的视频流和音频/数据流等,并且可以针对其它类型的流以类似的方式来配置调度标识信息。
根据本公开的实施例,调度标识信息的数量可被适当的设定。在一些实施例中,在针对多流数据传输中的上行数据传输和下行数据传输之一来配置调度标识信息时,调度标识信息的数量可基于上行数据传输和下行数据传输之一中所包含的特定类型数据流的数目,例如I流、P流、B流或者其它类型的数据流,被设定,尤其是基于其中所包含的具有该数据传输特性的数据流类型数目被设定。例如,在对于上行数据传输和下行数据传输之一进行配置时,在考虑数据传输周期性的情况下,调度标识信息的数量可以为上行数据传输和下行数据传输之一中的周期性数据流的数量;在考虑数据非固定大小时,调度标识信息的数量可以为上行数据传输和下行数据传输之一中 的非固定大小数据流的数量。
在一些实施例中,在针对多流数据传输中的上行数据传输和下行数据传输两者来配置调度标识信息时,可以基于上行数据传输中的各类数据流的数量和下行数据传输中的各类数据流的数量两者的组合,尤其是具有该数据传输特性的对应的数据流的数量,被确定,例如上行数据传输和下行数据传输中都包含的I流、P流、B流、或者其它类型的数据等,并且所获取的调度标识信息可公共地用于上行传输数据和下行传输数据。
在一些实施例中,调度标识信息的数量可基于所述多流数据传输中包含的周期/准周期性数据流的数目被适当地设定。特别地,所述调度标识信息的数量可基于上行数据流中所包含的周期/准周期性数据流的数目与下行数据流中所包含的周期/准周期性数据流的数目的组合被确定,优选地对应于其中的最大值。
根据本公开的实施例,基站为UE配置的CS-RNTI的数目可由UE的上下行通信所具有的最大周期/准周期数据流数决定。在一个示例中,在AR场景,例如模型1或2的上述AR场景中,下行有两个(I流和P流)周期数据流,上行有一个(I或P流)或两个周期性数据流(I和P流两者)。在此情况下,所配置的CS-RNTI的数目=MAX{下行周期/准周期数据流数(2),上行周期/准周期数据流数(1或2)}=2。那么基站就可以为该UE配置2个CS-RNTI(CS-RNTI1和CS-RNTI2),分别服务于一对上下行数据流(上下行I流或上下行P流)以及另外的下行数据流(P流或I流),或者两对上下行数据流(上下行I流和上下行P流)。在另一个示例中,在AR场景,例如模型3A或3B的上述AR场景中,下行有两个(I流和P流)周期数据流,上行有三个周期性数据流。在此情况下,所配置的CS-RNTI的数目=MAX{下行周期/准周期数据流数(2),上行周期/准周期数据流数(3)}=3。那么基站就可以为该UE配置3个CS-RNTI(CS-RNTI1,CS-RNTI2和CS-RNTI3),其中两个CS-RNTI(如CS-RNTI1和CS-RNTI2)分别服务于两对上下行数据流(上下行I流和上下行P流),另外一个CS-RNTI服务于UL周期性业务。
可替代地或者附加地,在一些实施例中,调度标识信息的数量的设定还可进一步考虑上行通信和下行通信所包含的非固定数据大小的数据流的数目。特别地,调度标识信息的数量可基于上行通信和下行通信所包含的非固定数据大小的数据流的数目的组合被确定,优选地对应于它们之间的最大值。在还另一些实施例中,调度标识信息的数量的设定可依赖于上行通信和下行通信所包含的具有非固定数据大小且为周 期性/准周期性的数据流的数目,并且调度标识信息的数量可对应于这样的数据流的数目之间的最大值。
作为示例,基站为UE配置的CS-RNTI的数目可由UE非固定数据包大小的上下行具有的最大周期/准周期数据流数决定。例如,在上述AR场景中的两个下行数据流和三个上行数据流情况下,两个下行数据流I流和P流都是准周期且数据包大小都服从截断高斯分布,即非固定大小数据包,三个上行数据流中有两个流(I流和P流)是准周期非固定大小的数据包,另外一个流为周期性的固定数据包大小的数据流。在此情况下,所配置的CS-RNTI个数=MAX{下行非固定大小周期/准周期数据流数(2),上行非固定大小周期/准周期数据流数(2)}=2。那么基站就可以为该UE配置2个CS-RNTI(CS-RNTI1和CS-RNTI2),分别服务于两对上下行数据流(上下行I流和上下行P流)。应指出,在此情况下,对于上行固定大小的周期性数据流不分配CS-RNTI,那么对于该数据流就可以通过其它适当方式来处理并传输。特别地,该数据流的传输配置可以直接由RRC配置后即生效,而无需使用DCI进行激活和去激活。以下将对此进行详细描述。
根据本公开的实施例,在确定了多个调度标识信息的情况下,可以将所述确定的多个调度标识信息与所述多流数据传输中包含的多个数据流相关联,以用于数据流传输。特别地,当控制侧电子设备为终端侧电子设备配置了多个,例如至少两个调度标识信息,尤其是CS-RNTI,以用于控制侧电子设备与终端侧电子设备之间的多流数据传输时,所配置的多个CS-RNTI应该与多流数据传输中的数据流、以及数据流的可能调度进行关联。
在一些实施例中,处理电路被配置为按照参数的配置顺序来将多流数据传输中的多流数据与特定数量的调度标识信息(CS-RNTI)相关联,或者在进行调度标识信息配置时来将多流数据传输中的多流数据与特定数量的调度标识信息(CS-RNTI)相关联。附加地,根据本公开的一些实施例,处理电路还可以被配置为进一步将调度标识信息与数据流的调度配置相关联。在一些实施例中,所述数据流的调度配置可包括半静态调度(SPS)和配置许可(CG),并且用于各数据流的调度标识信息可以与数据流的SPS和/或CG相关联。
具体而言,当基站配置了多个CS-RNTI,和/或对于多个数据流有多个SPS/CG时,需要将各CS-RNTI与各数据流或SPS/CG进行关联。特别地,可以将各CS-RNTI与各数据流或SPS/CG的标识,例如ID,进行关联。在一个实施例中,关联可以采用默 认的方式来执行,例如按照参数、尤其是CS-RNTI的配置顺序默认关联。特别地,CS-RNTI可以默认地与同顺序或者相反顺序的数据流或SPS/CG相关联。例如具有相同的顺序,排列在前的CS-RNTI与排列在前的数据流或SPS/CG相关联,或者相反的顺序,例如,排列在前的CS-RNTI与排列在后的数据流或SPS/CG相关联。作为示例,当存在两个CS-RNTI时,关联准则可以是按照两个参数的配置顺序默认关联。例如,排列在前的CS-RNTI关联流ID1或SPS/CG的ID1,其后的CS-RNTI关联流ID2或SPS/CG的ID2,以此类推。在另一实施例中,各CS-RNTI与各数据流或SPS/CG的关联关系被适当地设定,特别地可以在CS-RNTI配置时,配置(CS RNTI,流ID或SPS/CG ID)对。作为示例,RRC配置CS-RNTI时可配置(CS-RNTI,流ID或SPS/CG ID)对。
根据本公开的实施例,CS-RNTI与流ID或SPS/CG ID的关联可以在无线通信过程中的适当阶段被执行。在一个实施例中,在由DCI进行激活/去激活/参数调整等相关操作时来实现,例如在DCI进行激活/去激活时可以按照默认关联,在DCI参数调整时可以进行默认关联或设定关联。作为另一个示例,可以在终端设备与控制设备之间激活期间实现关联,例如该CS-RNTI与流ID或SPS/CG ID的关联关系可以预先被告知UE,或者可以在通信过程中由控制侧设备告知终端侧设备。
根据本公开的实施例,处理电路可被进一步配置为对于所述多流数据传输中的特定数据流,将与该特定数据流相关联的调度标识信息和用于该特定数据流的调度配置的控制信息(DCI)相组合,以用于该特定数据流的传输。具体而言,该特定数据流可以包括多流数据传输中的具有周期性/准周期性的数据流和/或具有非固定大小的数据流,其可以被包含在上行数据传输和/或下行数据传输中,如前文所述,当然该特定数据流还可以是多流数据传输中具有其它特性的数据流,只要该数据流需要/可以被动态地调度资源以用于传输即可。
在一些实施例中,所述数据流的调度配置可包括半静态调度(SPS)和配置许可(CG)中的至少一者,并且所述控制侧电子设备可以将调度流的调度标识信息应用于所述数据流的调度配置相应的控制信息(DCI),例如相组合,尤其是用CS-RNTI对DCI进行加扰。作为示例,关于数据流的SPS或CG的控制信息可以由DCI来指示,例如DCI0可对应于CG,DCI1可对应于SPS,当然DCI对于数据流的SPS或CG的指示关系还可以为其它适当的关系,只要能够利用不同的DCI信息或者索引来区分开SPS和CG即可。
特别地,在一些实施例中,一个CS-RNTI可服务于上行数据流、或下行数据流、或一对上下行数据流的SPS/CG配置、激活及去激活等的调整,具体来说,如果是DCI 0_x被CS-RNTI加扰,则该DCI指示的是CG配置、激活及去激活的调整;如果是DCI 1_x被该CS-RNTI加扰,则该DCI指示的是SPS配置、激活及去激活的调整。而无需在DCI中特别指示。另一方面,当配置了多个CS-RNTI时,多个CS-RNTI最多可以对多对SPS/CG进行配置、激活及去激活等。
图4示出了根据本公开的实施例的DCI的格式,尤其是DCI公式1-1。从图中可见,DCI会携带PDSCH所在的时频资源位置,MCS,RV等信息,即指示PDSCH所在的位置。当该DCI被CS-RNTI加扰时,时频资源位置,MCS,RV等信息即为用于新的SPS调度的周期性资源位置。
根据本公开的实施例,处理电路可被配置为在数据传输启动时通过无线资源控制信令来传输控制信息(DCI)以及相组合的调度标识信息。替代地或者附加地,根据本公开的实施例,处理电路可被进一步配置为根据数据传输状况来调整数据流的调度配置,其中,所述数据传输状况可包括数据流的数据包大小、抖动、数据调度状况中的至少一者,并且所述数据流的调度配置可以包括SPS和/或CG。在一些实施例中,基站可以在数据传输过程中,根据数据流的数据包大小,抖动,数据调度情况等因素,通过加扰不同的CS-RNTI,对不同数据流的SPS/CG进行灵活调整和指示。这样,基站可以在数据传输过程中检测/评估数据传输状况,并且根据数据传输状况通过配置CS-RNTI来进行调度,例如SPS/CG。所述数据传输状况可以由控制侧电子设备,例如基站,检测得到,或者可由终端侧电子设备检测并提供给控制侧电子设备,甚至可由无线通信网络中的其它适当设备检测并提供给控制侧电子设备。从而,通过配置多个CS-RNTI,基站可以在任意时刻下发DCI调整某一个或多个数据流的SPS/CG,基站灵活性更大。总的来看,配置多个CS-RNTI的方案比设计DCI支持多个TB同时指示多个SPS/CG配置的方案更灵活,对标准的改动更少,增加的复杂度也更低。
另一方面,根据本公开的实施例,对于在多流数据传输中包含的未被分配调度标识信息的数据流,则可以通过资源配置信令(RRC)为其配置资源以用于传输。具体而言,多流数据传输中包含的未被分配调度标识信息的数据流可以包括具有固定大小的数据流,尤其是具有固定大小的周期性数据流,其可以被包含在上行数据传输和/或下行数据传输中,如上文所述的。特别地,通过资源配置信令(RRC)配置资源以用于传输可以应用于该数据流的各种调度配置中,例如用于半静态调度(SPS)和/或配 置许可(CG)中。当然该数据流还可以是多流数据传输中具有其它特性的数据流,只要该数据流需要/可以被静态地分配资源以用于传输即可。
在一个示例中,对于上行数据流,对于CG,在CG的类型1中设置了数据流可直接由RRC配置并生效。特别地,在TS 38.331里面有一个RRC信令中专用于配置CG的信息元素(IE)ConfiguredGrantConfig,其可用于限定根据两种可能的方案来进行配置上行数据传输配置,包括可以采用RRC(方案/类型1)或采用PDCCH(可与CS-RNTI相关联)(方案/类型2)来配置上行传输配置。由此,对于固定大小的数据流可以基于方案/类型1通过例如信息元素“RRC-ConfiguredUplinkGrant”具体来配置资源以用于传输,而对于其他数据流则可以基于方案/类型2通过PDCCH来激活并发送资源信息。
在一些实施例中,对于下行数据流,对于SPS,考虑到现有标准中的SPS的相关规则中并没有明确限定数据流类型,本公开进一步提出了对于SPS配置进行优化,特别地,可以将类似于CG类型1的类型1配置扩展到SPS中,这一点可以通过修改现有标准中的SPS配置IE(SPS-config)或者在现有标准中的SPS配置IE(SPS-config)之外进一步增添SPS相关的信息元素(IE),从而使得SPS的配置能够同时支持两种类型,包括采用RRC的方案/类型1以及采用PDCCH(可与CS-RNTI相关联)的方案/类型2,如CG中同时指示类型1和类型2那样。引入SPS类型1的原因是,由于有些数据流是周期性的固定大小的数据流,不太需要动态控制,因此可以使用RRC配置即生效(类型1)的方法,避免在配置后通过DCI激活去激活指示生效和失效(类型2),从而减少DCI解码开销。
在一个示例中,可以对现有标准中的SPS-config进行修改,包括在SPS-config中添加SPS类型指示以及对应类型1的配置参数,以及可选的额外的参数的增修,而现有标准中已规定的SPS配置就变成了类型2,可用于与CS-RNTI的关联。这样,修改后的SPS-config能够同时支持前述两种类型1和类型2,如同CG那样,这样可认为SPS-config等同于ConfiguredSPSConfig。在另一个示例中,可以在现有标准中的SPS-Config之外,进一步新增SPS相关的信息元素(IE)SPS-Config_type_I,其可专门用于配置SPS类型1,通过SPS-Config_type_I与现有标准SPS-Config中的结合,可以支持前述的SPS类型1和/或类型2。特别地,通过单独或同时配置这两个信息元素(SPS-Config_type_I,SPS-Config),指示单独的类型1传输或类型2传输,或同时具有类型1和类型2传输。例如,对于固定大小的下行数据流可以基于方案/类型1通 过RRC,例如所添加的信息元素“RRC-ConfiguredDownlinkSPS”具体来配置资源以用于传输,而不需要DCI激活/去激活等操作。在一些实施例中,如果不使用DCI进行去激活以节能,则是否需要信令指示,还是取决于控制侧设备,例如基站,来实现。也就是说可由控制侧设备通过信令指示来指示是否不使用DCI进行去激活以节能。
例如,在VR下行多流数据通信中,多流可以是如下这样的两流,其中一个流是音频/数据流,其是周期性的、大小固定的,而另一个流是视频流,其具有数据包大小不固定的特点。在此情况下,根据本公开的实施例的优化调度配置、尤其是半静态(SPS)配置可被得到有效地应用。其中,在RRC信令中直接配置下行音频/数据流的传输资源和有效时长(以及偏移量)并在发出该RRC信令对应的偏移时间后就开始对应的音频/数据流传输,另外通过PDCCH关联到CS-RNTI来激活对视频流的半静态资源配置,然后开始对应的视频流传输。
根据本公开的实施例,调度标识信息,例如CS-RNTI,可以采用各种适当的形式被表示,或者以各种适当的方式添加到传输信令中被传输。该标识信息可以为任何的形式,并且可以用任何适当的字段/比特来传输。例如,当存在多个CS-RNTI时,可以通过在当前的传输信令中增加新的字段来指示附加的CS-RNTI,作为另一示例,也可在当前的传输信令中的对应字段,通过采用不同的数值来指示附加的CS-RNTI。
在一些实施例中,可以修改TS38.331PhysicalCellGroupConfig information element中所框住的部分,如图5A所示。在一个示例中,可增加多个CS-RNTI值,并且按照CS-RNTI的配置顺序对应不同的数据流流,如排在前面的CS-RNTI对应第一流ID1,排在第二的CS-RNTI对应第二流ID2,以此类推。在另一示例中,也可以增加(CS-RNTI值,流/SPS/CG ID)这样的参数对,将CS-RNTI与流ID或SPS/CG ID的关联起来,即配置CS-RNTI时,同时指定该CS-RNTI对应的流,如图5B所示。
在另一实施例中,在TS38.331SearchSpace information element后,将CS-RNTI修改为multi/all CS-RNTI或CS-RNTIs,以覆盖RRC配置的所有CS-RNTI。
在还另一实施例中,对于TS38.213中的如下描述进行修改。
特别地,CS-RNTI也要改成multi/all CS-RNTI或CS-RNTIs,使得RNTI解扰可覆盖RRC配置的所有CS-RNTI。特别地,其他含有CS-RNTI的部分也要进行类似 修改。
根据本公开的实施例,终端侧设备接收到控制信息,将通过特定的检测处理来获取控制信息,并且通过解码该控制信息以在该控制信息中所指定的动态资源上来进行上行和/或下行数据传输。特别地,在DCI作为控制信息的情况下,将检测定位DCI。作为一个示例,终端侧设备通过解码PDCCH时解扰CS-RNTI,可以确定当前DCI所携带的SPS/CG调整是针对哪个数据流的。
特别地,在终端侧设备对控制信息进行检测时,通常是在系统预先规定的宽范围内进行检测,可被称为盲检。以DL DCI包含DCI格式信息为例。盲检是对所有搜索空间集合(search space set,SSS)中的所有候选PDCCH进行盲检,每个SSS中配置的候选PDCCH是通过将PDCCH关联DCI格式、聚合等级水平(AL)等实现的。此外,在上行和下行传输都进行的情况下,往往需要将对于UL DCI和DL DCI分别进行盲检,以来定位UL DCI和DL DCI。应指出,盲检操作可以在通信过程中的任何适当阶段来执行,例如在SPS/CG激活、去激活、调整等阶段来执行。这样,UE在PDCCH盲检时,会对每个PDCCH候选尝试RNTI解扰,从而根据不同的CS-RNTI可确定出当前DCI携带的SPS/CG调整是针对哪个数据流的。
根据本公开的实施例,处理电路被配置为配置所述终端侧设备能在其中进行检测的搜索空间以包含所有被配置的调度标识信息。特别地,基站在配置SS时,如果基站只配置了一个CS-RNTI,则不需要修改SS配置(同现有标准一致)。如果基站配置的CS-RNTI个数大于1,那么在SS配置PDCCH候选时,需要包含对所有配置的CS-RNTI的解码尝试,但由于CS-RNTI的尝试不影响PDCCH盲检的译码次数,而一次解扰的复杂度仅仅是一个16比特的模2运算和一次CRC运算,带来的额外复杂度很低(该部分有可能不体现在RRC SS配置中,而在TS 38.213UE盲检过程中)。通过本方案,设计了配置多个CS-RNTI并在SS配置中增加多个CS-RNTI的解扰以支持多流SPS/CG的灵活配置指示。
根据本公开的实施例,可以改进/优化终端侧的盲检操作,尤其是减少终端侧的盲检操作次数。在一些实施例中,可以对于控制信息(DCI)的传输和/或对于调度配置(SPS/CG)的切换进行优化,来减少对于所述动态控制信息所执行的检测操作的次数或者减少调度配置(SPS/CG)的切换,从而减少针对控制信息的检测/盲检次数,从而改进终端侧的功耗开销。
根据本公开的实施例,可以预先设定与调度配置有关的激活信息,该激活信息指 示了调度配置的激活设定,包括激活时间、激活周期数、激活次数等,这也等同于设定了调度配置的激活条件,例如要激活的时间、周期数、次数等。从而,在满足激活信息所指示的激活设定时,也即是说激活条件到期时,可以自动切换调度配置的状态。例如,当激活信息指示了激活时间时,在激活信息所指示的激活时间到期时可以自动切换调度配置的状态。还例如,当激活信息指示了激活周期数/次数N时,在循环了N个周期以后到达预配的次数N时,可以自动切换调度配置的状态。
在一个实施例中,在激活时间/周期数/次数到期时自动切换到特定传输配置的情况下,根据所切换到的特定传输配置来进行特定数据流的数据传输,而不再执行控制信息的解扰。作为示例,可以在激活时间/周期数/次数到期时自动切换到默认传输配置,从而可以按照默认传输配置来进行传输,而不再按照原有的配置进行数据传输。在另一实施例中,在所述激活时间/周期数/次数到期时,调度配置自动切换到去激活状态,从而停止数据传输,而不再传输数据。
特别地,在一些实施例中,可以优化SPS/CG的激活,尤其是通过预先设定SPS/CG的激活时间/周期,以便在达到特定时间/周期之后自动切换SPS/CG的状态,从而可以避免/省略了在该状态切换时的盲检,优化了终端侧的盲检。
根据本公开的实施例,处理电路可被进一步配置为在激活DCI中利用特定信息作为该激活信息来指示SPS/CG的激活设定。特别地,所述特定信息为激活时间值,激活周期数、或者指示激活时间值或激活周期数所对应的索引值。在一些实施例中,所述特定信息是在激活DCI中增加的比特,或者是激活DCI中的已有比特。在一个示例中,增加的比特/预留比特可为一个绝对值,单位可以是时隙/符号或其他。在另一个示例中,增加的比特/预留比特也可为一个索引,该索引指示RRC配置的激活时间集合中某一个激活时间值或激活周期数。
具体而言,为了节省SPS/CG激活和去激活时使用两个DCI去指示的盲检复杂度,可在激活DCI中增加新的比特或者使用预留比特指示该SPS/CG的激活时间/周期。指示出的激活时间用于指示当前DCI配置的SPS/CG传输的激活时间窗,当定时器到期后,该SPS/CG自动切换为去激活状态,节省了现有协议中需使用另一个DCI进行去激活指示的流程。激活周期数同样如此。由此,通过利用DCI新增/预留比特所指示激活时间/周期,可以在指示时间/周期到期后自动去激活,从而可以免去使用DCI进行去激活。这样可节省一轮盲检,实现XR设备的节能。
而且,激活时间设定/优化可以等同于减少DCI的发送来减少对应的盲检。特别 地,由于XR业务某些流具有非固定大小数据包、抖动、及可能的数据包丢弃,此外还有一些可能的UE辅助信息上报(UAI)和RAN-awareness信息等,因此对SPS/CG的参数调整频率相对较高,调整持续/激活的时间相对较短,基站获得的业务先验信息多,因此对激活时间的预测也相对准确,为了节省盲检DCI的复杂度,由指示激活/参数调整DCI指示激活时间结合定时器超时切换到去激活状态的方法可以在一段时间的密集DCI下发中节省一次DCI下发,即一轮盲检,可对UE节能有帮助。
根据本公开的实施例,可选地或者附加地,控制侧设备可以被配置为在RRC中配置SPS/CG的激活时间/周期集合,包含多个SPS/CG的激活时间/周期。然后基站下发RRC配置给UE。在一些实施例中,激活时间/周期、尤其是激活时间/周期的集合可以为任何适当的形式。作为一个示例,可以在TS 38.331中配置激活时间/周期集合,配置激活DCI包含激活时间/周期指示信息。作为另一示例,在TS38.212的DCI格式配置时,包含指示激活时间/周期的比特域。然而,该比特域为特殊值(如全0)时等价于不指示激活时间/周期,保持与现有标准一致。此外,还可以在UE侧增加激活时间定时器(timer),该激活时间定时器的设定可对应于激活时间/周期指示信息,从而在该定时器到期时UE可以在DCI状态自动切换时执行数据处理。
以下将参照附图描述根据本公开的实施例的多流数据传输方案的一些示例性实现。在本公开的方案的一些实施例中,根据本公开的实施例的多流数据传输方案可以应用于上行多流数据传输、或下行多流数据传输、或上行多流数据传输和下行多流数据传输两者。
以下将以下行场景为例来描述根据本公开的实施例的多流数据传输。图6A示出了根据本公开的实施例的多流数据传输,其中尤其描述了下行多流数据传输中使用SPS,可能涉及I流和P流。
首先,终端侧设备上报辅助信息,例如UAI(UE assistance information,UE辅助信息),至控制侧设备,以便控制侧设备了解各终端侧设备的情况并对终端侧设备进行配置/调度。例如,该UAI可包括各种适当信息,例如但不限于,多种业务的服务质量(QoS)、大小等等,各种XR场景指示等等。此外,终端侧设备还可以向控制侧设备发送触发信息/唤醒信息(WakeUp signal,WUS),例如经由PDCCH发送,在图中并未示出。
然后,控制侧设备可以生成配置信息,并且将配置信息发送给终端侧设备,该配置信息可以包含无线资源配置(Radio Resource Configuration,RRC)信息,并且在通信信令中可以由RRCconfiguration信息指示,该无线资源配置信息可包括多个CS-RNTI,分 别针对数据通信中的各数据流进行配置。CS-RNTI可以被适当的生成。在一个实施例中,可以基于UAI、上层XR认知等被生成。而相应地,终端侧设备可以读取多个CS-RNTI。
进一步地,控制侧设备可以分别生成包含SPS1和2的两条DCI1-x,并分别利用CS-RNTI 1和2加扰。这样可以是针对多流数据船速中的两个流,例如I流和P流。然后,控制侧设备可以发送用CS-RNTI 1加扰的DCI 1-x(MCS,时频资源等)指示SPS1,并且发送用CS-RNTI 2加扰的DCI 1-x(MCS,时频资源等)指示SPS2。而且,控制侧设备还根据SPS1传输第一下行数据流,根据SPS2传输第二下行数据流。
终端侧设备在接收到来自控制侧设备的传输内容时,用多个CS-RNTI对DCI进行尝试解扰,解扰成功后解码DCI内容,根据DCI的各比特位确认DCI 1-x和SPS1、2的配置信息,并根据SPS1接收第一下行数据流,SPS2接收第二下行数据流。
此外,在通信过程中,控制侧设备还可以检测控制侧设备与终端侧设备之间的通信质量,例如监测第一下行数据流QoS等特性变化,并且在监测到特性变化,例如通信质量受影响的情况下,则可以进行动态调整以优化传输。例如,控制侧设备发送用CS-RNTI 1加扰的DCI 1-x(MCS,时频资源等)指示SPS3,并且根据SPS3传输第一下行数据流,相应地,终端侧设备用多个CS-RNTI对DCI进行尝试解扰,解扰成功后解码DCI内容,根据DCI的各比特位确认DCI 1-x和SPS3的配置信息,并根据SPS3接收第一下行数据流。
应指出,动态调整可以同样地应用于第二下行数据流的调整。此外,应指出,图6A所描述的下行数据传输的信令交互同样可以应用于多流数据传输中的其它类型的数据流,例如第三或者更多的下行数据流,诸如B流、其它类型的流。
图6B示出了根据本公开的实施例的多流数据传输。其中尤其描述了上行数据传输中的CG,可能涉及数据传输中的I流和P流。
首先,终端侧设备上报辅助信息,并且,控制侧设备可以生成配置信息并且将配置信息发送给终端侧设备,该配置信息可以为包括多个CS-RNTI的无线资源配置信息,其操作可如前文所述的图2A中那样。
进一步地,控制侧设备可以分别生成包含CG 1和2的两条DCI 0-x,并分别利用CS-RNTI 1和2加扰。这样可以是针对多流数据船速中的两个流,例如I流和P流。然后,控制侧设备可以发送用CS-RNTI 1加扰的DCI 0-x(MCS,时频资源等)指示CG1,并且发送用CS-RNTI 2加扰的DCI 0-x(MCS,时频资源等)指示CG2。
终端侧设备在接收到来自控制侧设备的传输内容时,用多个CS-RNTI对DCI进行尝试解扰,解扰成功后解码DCI内容,根据DCI的各比特位确认DCI 0-x和CG1、2的配置信息,并根据CG1上传第一上行数据流,CG2上传第二上行数据流。
此外,在通信过程中,控制侧设备还可以在控制侧设备与终端侧设备之间的通信质量变化,例如第一上行数据流的通信质量变化的情况下执行动态调整,例如控制侧设备发送用CS-RNTI 1加扰的DCI 0-x(MCS,时频资源等)指示CG3,而相应地,终端侧设备用多个CS-RNTI对DCI进行尝试解扰,解扰成功后解码DCI内容,根据DCI的各比特位确认DCI 0-x和CG3的配置信息,并根据CG3上传第一上行数据流。
应指出,动态调整可以同样地应用于第二上行数据流的调整。此外,应指出,图6B所描述的上行数据传输的信令交互同样可以应用于多流数据传输中的其它类型的数据流,例如第三或者更多的下行数据流,诸如B流、其它类型的流。
在本公开的方案的一些实现中,根据本公开的实施例的多流数据传输方案可以应用于多流数据传输中的不同流。例如,在多流数据包含I流和P流的情况下,可分别应用于I流和P流中的至少一者。
图7A-7C示出了根据本公开的实施例的多流数据传输中的调度更新/调整。
图7A示出了通过利用DCI和CS-RNTI来实现单个流的SPS配置更新的时序图,而图7B示出了通过利用DCI和CS-RNTI来实现单个流的CG配置更新的时序图。其中,I流的配置更新由被CS-RNTI 1加扰的DCI指示,其中DCI0-x指示I流的CG更新,DCI1-x指示I流的SPS更新。特别地,在DRX激活期间,CS-RNTI 1加扰的DCI被传输,以便实现SPS/CG配置的更新,从而在后续DRX过程中采用更新后的SPS配置(SPS_new)/CG配置(CG_new)来实现数据传输。而其他流的SPS和CG配置未在图中画出。
此外,图7A和7B所示出的单个流的SPS/CG配置更新同样适用于仅P流的SPS和CG配置更新指示,其中P流的配置更新由被CS-RNTI2加扰的DCI指示,其中DCI0-x指示P流的CG更新,DCI1-x指示P流的SPS更新。应指出,这里所示的SPS/CG配置更新同样可以应用于多流数据传输中的其它流,诸如B流等。
图7C示例性地示出了两个流的SPS/CG配置更新,尤其示出了通过两个DCI,包括DCI 0_x+CS-RNTI2和DCI 1_x+CS-RNTI1,来实现I帧SPS和P帧CG的配置更新。特别地,在DRX激活期间,CS-RNTI 1加扰的DCI1_x以及CS-RNTI 21加扰的DCI0_x被传输,以便实现SPS/CG配置的更新,从而在后续DRX过程中采用更 新后的SPS配置(SPS_new)和CG配置(CG_new)两者来实现数据传输。而其他流的SPS和CG配置未在图中画出。应指出,这里所示的SPS/CG配置更新同样可以应用于多流数据传输中的其它流,例如I流的CS和P流的SPS,诸如B流等。应指出,图7C所示的两个流的配置更新方案同样可以扩展到更多个流的更多个SPS/CG配置更新。例如,在DRX ON期间也可通过下发3或4个DCI指示其中3或4个流的SPS/CG配置更新。
应指出,上述的图7A到7C所示的示例性的SPS/CG配置更新可以同样地应用上行流数据传输和下行流数据传输。
由此,根据本公开的实施例对于XR业务中的数据流、尤其是数据流的调度(诸如SPS/CG)来配置相应的调度标识信息,从而可以灵活应对了XR多个数据包大小不固定且QoS要求不同的数据流传输需求,实现了数据流传输增强。此外,根据本公开的实施例的方案能够优化终端侧设备的盲检操作,例如通过提前设定激活时间来减少终端侧的盲检次数,从而能够降低终端侧设备的盲检复杂度,从而实现了一种简单可行的多流SPS/CG传输增强方案。
以上描述了无线通信系统中控制侧电子设备的结构和操作。应指出,该控制侧可以是无线通信系统中的发起下行通信和/或接收上行通信的一方,其可以根据无线通信场景中信号传输方向被适当地选定,例如当从基站到用户终端进行下行通信时,控制侧可以指的是基站侧,当在无线通信系统中从其他设备向基站进行下行通信时,该控制侧可以指的是该其它设备侧。应指出,该电子设备可以对应于无线通信系统中的在通信场景中进行通信的设备(诸如,通信系统中的接入点、基站等等)本身,或者是与该设备结合使用的电子设备。
在上述设备的结构示例中,处理电路可以是通用处理器的形式,也可以是专用处理电路,例如ASIC。例如,处理电路能够由电路(硬件)或中央处理设备(诸如,中央处理单元(CPU))构造。此外,处理电路上可以承载用于使电路(硬件)或中央处理设备工作的程序(软件)。该程序能够存储在存储器(诸如,布置在存储器中)或从外面连接的外部存储介质中,以及经由网络(诸如,互联网)下载。
根据一个实施例,处理电路302可以包括用于相应地实现上述操作的各个单元,例如,确定单元304,被配置为基于所述多流数据传输中包含的数据流的数据传输特性,确定为所述终端侧电子设备配置的调度标识信息的数量;关联单元306,被配置为在确定配置多个调度标识信息的情况下,将所述多个调度标识信息与所述多流数据 传输中包含的数据流相关联;以及组合单元308,被配置为对于所述多流数据传输中的特定数据流,将与该特定数据流相关联的调度标识信息和用于该特定数据流的调度的控制信息(DCI)相组合,以用于该特定数据流的传输。
在一些实施例中,所述关联单元306可被配置为使所述多个调度标识信息与多流数据传输中所包含的数据流按照调度标识信息的排列顺序关联,和/或在进行调度标识信息配置时来设定数据流与调度标识信息的关联对。
在一些实施例中,所述关联单元306可被配置为进一步将调度标识信息与数据流的调度配置相关联,并且所述组合单元308可被配置为对于所述多流数据传输中的特定数据流,将与该特定数据流的调度配置相关联的调度标识信息和用于该特定数据流的调度配置的控制信息(DCI)相组合。
在一些实施例中,所述组合单元306还可被配置为在数据传输期间基于数据传输状况来调整用于数据流的调度配置,其中所述数据传输状况包括数据流的数据包大小、抖动、数据调度状况中的至少一者,并且所述处理电路302还可包括传输单元310,其被配置为在多流数据传输启动时或者在数据传输期间在调度标识信息调整之后通过无线资源控制信令来传输控制信息以及相组合的调度标识信息。
在一些实施例中,所述处理电路302可包括激活设定单元312,被配置为预先设定数据流的特定调度配置的激活信息,使得在激活信息所指示的激活条件到期时自动切换调度配置的状态。
在一些实施例中,所述处理电路302可包括搜索空间配置单元,其被配置为配置所述终端侧设备能在其中进行检测的搜索空间以包含所有被配置的调度标识信息。
在一些实施例中,所述处理电路302可包括获取单元,其被配置为获取数据传输特性相关的信息,和/或获取数据传输状况相关的信息,所述获取单元可从控制侧电子设备或者无线通信网络中的其它适当设备获取上述信息。
应指出,该传输单元、所述搜索空间配置单元、获取单元并不必须包含在处理电路中,其也可以位于处理电路之外,甚至在电子设备300之外。
上述各个单元可以进行如上文所述地操作,这里将不再详细描述。应注意,上述各个单元仅是根据其所实现的具体功能划分的逻辑模块,而不是用于限制具体的实现方式,例如可以以软件、硬件或者软硬件结合的方式来实现。在实际实现时,上述各个单元可被实现为独立的物理实体,或者也可由单个实体(例如,处理器(CPU或DSP等)、集成电路等)来实现。需要注意的是,尽管图3中将各个单元示为分立的单元, 但是这些单元中的一个或多个也可以合并为一个单元,或者拆分为多个单元。此外,上述各个单元在附图中用虚线示出指示这些单元可以并不实际存在,而它们所实现的操作/功能可由处理电路本身来实现。
应理解,图3仅仅是无线通信系统中控制侧电子设备的概略性结构配置,可选地,控制侧电子设备300还可以包括未示出的其它部件,诸如存储器、射频链路、基带处理单元、网络接口、控制器等。处理电路可以与存储器和/或天线相关联。例如,处理电路可以直接或间接(例如,中间可能连接有其它部件)连接到存储器,以进行数据的存取。存储器可以存储由处理电路302获取的和产生的各种信息(例如,车辆内部状况信息及其分析结果等)、用于求购端电子设备操作的程序和数据、将由求购端电子设备发送的数据等。存储器还可以位于求购端电子设备内但在处理电路之外,或者甚至位于求购端电子设备之外。存储器可以是易失性存储器和/或非易失性存储器。例如,存储器可以包括但不限于随机存储存储器(RAM)、动态随机存储存储器(DRAM)、静态随机存取存储器(SRAM)、只读存储器(ROM)、闪存存储器。
还例如,处理电路可以直接或间接连接到天线,以经由天线发送信息以及接收请求/指令。例如,作为示例,天线可以是全向天线和/或定向天线,其可以通过各种方式来实现,例如天线阵列(诸如全向天线和定向天线两者,或者能够实现全向天线和定向天线两者的功能的单一天线阵列)和/或射频链路等通信部件,这里将不再详细描述。作为示例,天线也可被包含在处理电路中,或者在处理电路之外。甚至可以耦合/附接到电子设备300、而不被包含在电子设备300中。
以下将参照附图来描述根据本公开的实施例的用于无线通信系统控制侧的方法,图8示出了根据本公开的实施例的用于无线通信系统控制侧的方法800的流程图。该方法可由无线通信系统的控制侧电子设备执行,所述控制侧电子设备能够与无线通信系统中的终端侧电子设备进行多流数据传输。在该方法中,
在步骤S801(确定步骤)中,基于所述多流数据传输中包含的数据流的数据传输特性,确定为所述终端侧电子设备配置的调度标识信息的数量;
在步骤S802(关联步骤)中,在确定配置多个调度标识信息的情况下,将所述多个调度标识信息与所述多流数据传输中包含的多个数据流相关联;以及
在步骤S803(组合步骤)中,对于所述多流数据传输中的特定数据流,将与该特定数据流相关联的调度标识信息和用于该特定数据流的调度的控制信息(DCI)相组合,以用于该特定数据流的传输。
此外,该方法还可以包括实现上文所述的控制侧电子设备所执行的操作的相应步骤,特别地包括传输步骤,用于在多流数据传输启动时或者在数据传输期间在调度标识信息调整之后通过无线资源控制信令来传输控制信息以及相组合的调度标识信息;激活时间设定步骤,用于预先设定数据流的特定调度配置的激活信息,使得在激活信息指示的激活条件到期时自动切换调度配置的状态;搜索空间配置步骤,用于配置所述终端侧设备能在其中进行检测的搜索空间以包含所有被配置的调度标识信息;以及获取步骤,用于获取数据传输特性相关的信息,和/或获取数据传输状况相关的信息,可从控制侧电子设备或者无线通信网络中的其它适当设备获取上述信息。
应指出,这些步骤可以由前文所述的根据本公开的控制侧电子设备来执行,特别地由前文所述的根据本公开的控制侧电子设备的相应单元来执行。
以下将描述根据本公开的实施例的无线通信系统的终端侧电子设备。该终端侧可以是无线通信系统中的接收下行通信和/或发起上行通信的一方,其可以根据无线通信场景中信号传输方向被适当地选定,例如当从基站到用户终端进行下行通信时,终端侧可以指的是用户终端侧,当在无线通信系统中从其他设备向基站进行下行通信时,该终端侧可以指的是该基站侧。应指出,该终端侧电子设备可以对应于无线通信系统中的在通信场景中进行通信的设备(诸如,通信系统中的接入点、用户终端等等)本身,或者是与该设备结合使用的电子设备。
图9示出了根据本公开的实施例的终端侧电子设备的框图。终端侧电子设备900能够与无线通信系统中的控制侧电子设备进行多流数据传输,终端侧电子设备900包括处理电路902,被配置为获取特定调度标识信息和特定控制信息的组合信息,其中,所述特定调度标识信息选自基于所述多流数据传输中包含的数据流的数据传输特性被配置的、与数据流相关联的至少两个调度标识信息;基于所述特定调度标识信息确定与所述特定调度标识信息相关联的特定数据流,并且基于所述特定控制信息进行特定数据流的数据传输。这里,多流数据传输、数据传输特性、调度标识信息和控制信息的含义和设置可如上文所述,这里将不再详细描述。
在一些实施例中,组合信息表示为由所述特定调度标识信息加扰的特定控制信息,并且处理电路可进一步被配置为:利用多个调度标识信息对所述特定控制信息进行尝试解扰,以得到所述特定调度标识信息,并且基于所述特定调度标识信息解码得到所述特定控制信息。
在一些实施例中,处理电路可进一步配置为:基于所述特定控制信息确定与所述 调度标识信息相关联的特定数据流的调度配置,并且基于所述调度配置进行特定数据流的数据传输。
在一些实施例中,处理电路可进一步配置为:从所述特定控制信息得出调度配置的激活信息,并且在所述激活信息指示的激活条件到期时,在调度配置自动切换的状态下进行特定数据流的数据传输,而不再执行控制信息的解扰。
在一些实施例中,处理电路可进一步配置为:将至少包含所述数据传输特性的信息提供给所述控制侧电子设备。
在一些实施例中,处理电路可进一步配置为:获取所述终端侧电子设备与所述控制侧电子设备之间的数据传输状况,其中所述数据传输状况包括数据流的数据包大小、抖动、数据调度状况中的至少一者,并且将所获取的数据传输状况提供给所述控制侧电子设备,使得所述控制侧电子设备能够基于所述数据传输状况调整调度配置。
特别地,终端侧电子设备的处理电路的操作可以与终端侧电子设备的对应操作以相似的方式执行,这里将不再详细描述。
应指出,终端侧电子设备900可以采用各种适当的方式来实现,尤其可以以与控制侧电子设备300相似的方式来实现。例如可以包括各种单元来实现前述操作/功能,诸如获取单元904,被配置为获取特定调度标识信息(例如CS-RNTI)和特定控制信息(例如DCI)的组合信息,其中,所述特定调度标识信息选自基于所述多流数据传输中包含的数据流的数据传输特性被配置的、与数据流相关联的至少两个调度标识信息;确定单元906,被配置为基于所述特定调度标识信息确定与所述特定调度标识信息相关联的特定数据流,以及数据传输单元908,被配置为基于所述特定控制信息进行特定数据流的数据传输。
在一些实施例中,处理电路902还可包括解析单元910,其被配置为利用多个调度标识信息对所述特定控制信息进行尝试解扰,以得到所述特定调度标识信息,并且基于所述特定调度标识信息解码得到所述特定控制信息。
在一些实施例中,所述解析单元910还可被配置为基于所述特定控制信息确定与所述调度标识信息相关联的特定数据流的调度配置,并且所述数据传输单元908被配置为基于所述调度配置进行特定数据流的数据传输。
在一些实施例中,所述解析单元910还可被配置为从所述特定控制信息得出调度配置的激活信息,并且所述数据传输单元908被配置为在所述激活信息指示的激活条件到期时,在调度配置自动切换的状态下进行特定数据流的数据传输,而不再执行控 制信息的解扰。
在一些实施例中,处理电路902还可包括发送单元912,被配置为将至少包含所述数据传输特性的信息提供给所述控制侧电子设备。
在一些实施例中,处理电路902还可包括获取所述终端侧电子设备与所述控制侧电子设备之间的数据传输状况的单元,其中所述数据传输状况包括数据流的数据包大小、抖动、数据调度状况中的至少一者,并且所述发送单元912可配置为将所获取的数据传输状况提供给所述控制侧电子设备,使得所述控制侧电子设备能够基于所述数据传输状况调整调度配置。
上述各个单元可以进行如上文所述地操作,这里将不再详细描述。应注意,上述各个单元仅是根据其所实现的具体功能划分的逻辑模块,而不是用于限制具体的实现方式,例如可以如上述的设备300的单元相似的形式来实现。此外,如上述的设备300那样,电子设备900还可包括其它适当的组件,例如存储器,这里存储器可以如上文所述的设备300中的存储那样实现,这里将不再详细描述。
以下将参照附图来描述根据本公开的实施例的用于无线通信系统控制侧的方法,图10示出了根据本公开的实施例的用于无线通信系统控制侧的方法1000的流程图。
在步骤S1001(被称为获取步骤),获取特定调度标识信息(CS-RNTI)和特定控制信息(DCI)的组合信息,其中,所述特定调度标识信息选自基于所述多流数据传输中包含的数据流的数据传输特性被配置的、与数据流相关联的至少两个调度标识信息;
在步骤S1002(被称为确定步骤),基于所述特定调度标识信息确定与所述特定调度标识信息相关联的特定数据流;以及
在步骤S1003(被称为数据传输步骤),基于所述特定控制信息进行特定数据流的数据传输。
此外,该方法还可以包括实现上文所述的终端侧电子设备所执行的操作的相应步骤,特别地包括。应指出,这些步骤可以由前文所述的根据本公开的控制侧电子设备来执行,特别地由前文所述的根据本公开的控制侧电子设备的相应单元来执行。
应指出,上述描述仅仅是示例性的。本公开的实施例还可以任何其它适当的方式执行,仍可实现本公开的实施例所获得的有利效果。而且,本公开的实施例同样可应用于其它类似的应用实例,仍可实现本公开的实施例所获得的有利效果。
应当理解,根据本公开实施例的机器可读存储介质或程序产品中的机器可执行指 令可以被配置为执行与上述设备和方法实施例相应的操作。当参考上述设备和方法实施例时,机器可读存储介质或程序产品的实施例对于本领域技术人员而言是明晰的,因此不再重复描述。用于承载或包括上述机器可执行指令的机器可读存储介质和程序产品也落在本公开的范围内。这样的存储介质可以包括但不限于软盘、光盘、磁光盘、存储卡、存储棒等等。
另外,应当理解,上述系列处理和设备也可以通过软件和/或固件实现。在通过软件和/或固件实现的情况下,从存储介质或网络向具有专用硬件结构的计算机,例如图11所示的通用个人计算机1100安装构成该软件的程序,该计算机在安装有各种程序时,能够执行各种功能等等。图11是示出根据本公开的实施例的中可采用的信息处理设备的个人计算机的示例结构的框图。在一个例子中,该个人计算机可以对应于根据本公开的上述示例性求购端电子设备或出售端电子设备。
在图11中,中央处理单元(CPU)1101根据只读存储器(ROM)1102中存储的程序或从存储部分1108加载到随机存取存储器(RAM)1103的程序执行各种处理。在RAM 1103中,也根据需要存储当CPU 1101执行各种处理等时所需的数据。
CPU 1101、ROM 1102和RAM 1103经由总线1104彼此连接。输入/输出接口1105也连接到总线1104。
下述部件连接到输入/输出接口1105:输入部分1106,包括键盘、鼠标等;输出部分1107,包括显示器,比如阴极射线管(CRT)、液晶显示器(LCD)等,和扬声器等;存储部分1108,包括硬盘等;和通信部分1109,包括网络接口卡比如LAN卡、调制解调器等。通信部分1109经由网络比如因特网执行通信处理。
根据需要,驱动器1110也连接到输入/输出接口1105。可拆卸介质1111比如磁盘、光盘、磁光盘、半导体存储器等等根据需要被安装在驱动器1110上,使得从中读出的计算机程序根据需要被安装到存储部分1108中。
在通过软件实现上述系列处理的情况下,从网络比如因特网或存储介质比如可拆卸介质1111安装构成软件的程序。
本领域技术人员应当理解,这种存储介质不局限于图11所示的其中存储有程序、与设备相分离地分发以向用户提供程序的可拆卸介质1111。可拆卸介质1111的例子包含磁盘(包含软盘(注册商标))、光盘(包含光盘只读存储器(CD-ROM)和数字通用盘(DVD))、磁光盘(包含迷你盘(MD)(注册商标))和半导体存储器。或者,存储介质可以是ROM 1102、存储部分1108中包含的硬盘等等,其中存有程 序,并且与包含它们的设备一起被分发给用户。
本公开的技术能够应用于各种产品。
例如,根据本公开的实施例的控制侧电子设备可以被实现为各种控制设备/基站或者被包含在各种控制设备/基站中。例如,根据本公开的实施例的发射设备和终端设备可以被实现为各种终端设备或者被包含在各种终端设备中。
例如,本公开中提到的控制设备/基站可以被实现为任何类型的基站,例如eNB,诸如宏eNB和小eNB。小eNB可以为覆盖比宏小区小的小区的eNB,诸如微微eNB、微eNB和家庭(毫微微)eNB。还例如,可以实现为gNB,诸如宏gNB和小gNB。小gNB可以为覆盖比宏小区小的小区的gNB,诸如微微gNB、微gNB和家庭(毫微微)gNB。代替地,基站可以被实现为任何其他类型的基站,诸如NodeB和基站收发台(Base Transceiver Station,BTS)。基站可以包括:被配置为控制无线通信的主体(也称为基站设备);以及设置在与主体不同的地方的一个或多个远程无线头端(Remote Radio Head,RRH)。另外,下面将描述的各种类型的终端均可以通过暂时地或半持久性地执行基站功能而作为基站工作。
例如,本公开中提到的终端设备,在一些实施例中可以被实现为移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、头戴式显示器(HMD)、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。终端设备还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,终端设备可以为安装在上述终端中的每个终端上的无线通信模块(诸如包括单个晶片的集成电路模块)。
以下将参照附图描述根据本公开的应用示例。
[关于基站的示例]
应当理解,本公开中的基站一词具有其通常含义的全部广度,并且至少包括被用于作为无线通信系统或无线电系统的一部分以便于通信的无线通信站。基站的例子可以例如是但不限于以下:基站可以是GSM系统中的基站收发信机(BTS)和基站控制器(BSC)中的一者或两者,可以是WCDMA系统中的无线电网络控制器(RNC)和Node B中的一者或两者,可以是LTE和LTE-Advanced系统中的eNB,或者可以是未来通信系统中对应的网络节点(例如可能在5G通信系统中出现的gNB,eLTE eNB等等)。本公开的基站中的部分功能也可以实现为在诸如XR、AR、VR、D2D、M2M以及V2V等的通信场景下对通信具有控制功能的实体,或者实现为在认知无线电通 信场景下起频谱协调作用的实体。
第一示例
图12是示出可以应用本公开内容的技术的gNB的示意性配置的第一示例的框图。gNB 1200包括多个天线1210以及基站设备1220。基站设备1220和每个天线1210可以经由RF线缆彼此连接。在一种实现方式中,此处的gNB 1200(或基站设备1220)可以对应于上述控制侧电子设备。
天线1210中的每一个均包括单个或多个天线元件(诸如包括在多输入多输出(MIMO)天线中的多个天线元件),并且用于基站设备1220发送和接收无线信号。如图12所示,gNB 1200可以包括多个天线1210。例如,多个天线1210可以与gNB 1200使用的多个频段兼容。
基站设备1220包括控制器1221、存储器1222、网络接口1217以及无线通信接口1225。
控制器1221可以为例如CPU或DSP,并且操作基站设备1220的较高层的各种功能。例如,控制器1221根据由无线通信接口1225获取的无线通信系统中的终端侧的至少一个终端设备的定位信息和至少一个终端设备的特定位置配置信息来确定至少一个终端设备中的目标终端设备的位置信息。控制器1221可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接入控制和调度。该控制可以结合附近的gNB或核心网节点来执行。存储器1222包括RAM和ROM,并且存储由控制器1221执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口1223为用于将基站设备1220连接至核心网1224的通信接口。控制器1221可以经由网络接口1217而与核心网节点或另外的gNB进行通信。在此情况下,gNB 1200与核心网节点或其他gNB可以通过逻辑接口(诸如S1接口和X2接口)而彼此连接。网络接口1223还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口1223为无线通信接口,则与由无线通信接口1225使用的频段相比,网络接口1223可以使用较高频段用于无线通信。
无线通信接口1225支持任何蜂窝通信方案(诸如长期演进(LTE)和LTE-Advanced),并且经由天线1210来提供到位于gNB 1200的小区中的终端的无线连接。无线通信接口1225通常可以包括例如基带(BB)处理器1226和RF电路1227。BB处理器1226可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行层(例 如L1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处理。代替控制器1221,BB处理器1226可以具有上述逻辑功能的一部分或全部。BB处理器1226可以为存储通信控制程序的存储器,或者为包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器1226的功能改变。该模块可以为插入到基站设备1220的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路1227可以包括例如混频器、滤波器和放大器,并且经由天线1210来传送和接收无线信号。虽然图12示出一个RF电路1227与一根天线1210连接的示例,但是本公开并不限于该图示,而是一个RF电路1227可以同时连接多根天线1210。
如图12所示,无线通信接口1225可以包括多个BB处理器1226。例如,多个BB处理器1226可以与gNB 1200使用的多个频段兼容。如图12所示,无线通信接口1225可以包括多个RF电路1227。例如,多个RF电路1227可以与多个天线元件兼容。虽然图12示出其中无线通信接口1225包括多个BB处理器1226和多个RF电路1227的示例,但是无线通信接口1225也可以包括单个BB处理器1226或单个RF电路1227。
第二示例
图13是示出可以应用本公开内容的技术的gNB的示意性配置的第二示例的框图。gNB 1300包括多个天线1310、RRH 1320和基站设备1330。RRH 1320和每个天线1310可以经由RF线缆而彼此连接。基站设备1330和RRH 1320可以经由诸如光纤线缆的高速线路而彼此连接。在一种实现方式中,此处的gNB 1300(或基站设备1330)可以对应于上述控制侧电子设备。
天线1310中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于RRH 1320发送和接收无线信号。如图13所示,gNB 1300可以包括多个天线1310。例如,多个天线1310可以与gNB 1300使用的多个频段兼容。
基站设备1330包括控制器1331、存储器1332、网络接口1333、无线通信接口1334以及连接接口1336。控制器1331、存储器1332和网络接口1333与参照图12描述的控制器1221、存储器1222和网络接口1223相同。
无线通信接口1334支持任何蜂窝通信方案(诸如LTE和LTE-Advanced),并且经由RRH 1320和天线1310来提供到位于与RRH 1320对应的扇区中的终端的无 线通信。无线通信接口1334通常可以包括例如BB处理器1335。除了BB处理器1335经由连接接口1336连接到RRH 1320的RF电路1322之外,BB处理器1335与参照图10描述的BB处理器1226相同。如图13所示,无线通信接口1334可以包括多个BB处理器1335。例如,多个BB处理器1335可以与gNB 1300使用的多个频段兼容。虽然图13示出其中无线通信接口1334包括多个BB处理器1335的示例,但是无线通信接口1334也可以包括单个BB处理器1335。
连接接口1336为用于将基站设备1330(无线通信接口1334)连接至RRH 1320的接口。连接接口1336还可以为用于将基站设备1330(无线通信接口1334)连接至RRH 1320的上述高速线路中的通信的通信模块。
RRH 1320包括连接接口1323和无线通信接口1321。
连接接口1323为用于将RRH 1320(无线通信接口1321)连接至基站设备1330的接口。连接接口1323还可以为用于上述高速线路中的通信的通信模块。
无线通信接口1321经由天线1310来传送和接收无线信号。无线通信接口1321通常可以包括例如RF电路1322。RF电路1322可以包括例如混频器、滤波器和放大器,并且经由天线1310来传送和接收无线信号。虽然图13示出一个RF电路1322与一根天线1310连接的示例,但是本公开并不限于该图示,而是一个RF电路1322可以同时连接多根天线1310。
如图13所示,无线通信接口1321可以包括多个RF电路1322。例如,多个RF电路1322可以支持多个天线元件。虽然图13示出其中无线通信接口1321包括多个RF电路1322的示例,但是无线通信接口1321也可以包括单个RF电路1322。
[关于用户设备/终端设备的示例]
第一示例
图14是示出可以应用本公开内容的技术的通讯设备1400(例如,智能电话,联络器等等)的示意性配置的示例的框图。通讯设备1400包括处理器1401、存储器1402、存储装置1403、外部连接接口1404、摄像装置1406、传感器1407、麦克风1408、输入装置1409、显示装置1410、扬声器1411、无线通信接口1412、一个或多个天线开关1415、一个或多个天线1416、总线1417、电池1418以及辅助控制器1419。在一种实现方式中,此处的通讯设备1400(或处理器1401)可以对应于上述发射设备或终端侧电子设备。
处理器1401可以为例如CPU或片上系统(SoC),并且控制通讯设备1400的应 用层和另外层的功能。存储器1402包括RAM和ROM,并且存储数据和由处理器1401执行的程序。存储装置1403可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口1404为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至通讯设备1400的接口。
摄像装置1406包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器1407可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度传感器。麦克风1408将输入到通讯设备1400的声音转换为音频信号。输入装置1409包括例如被配置为检测显示装置1410的屏幕上的触摸的触摸传感器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示装置1410包括屏幕(诸如液晶显示器(LCD)和有机发光二极管(OLED)显示器),并且显示通讯设备1400的输出图像。扬声器1411将从通讯设备1400输出的音频信号转换为声音。
无线通信接口1412支持任何蜂窝通信方案(诸如LTE和LTE-Advanced),并且执行无线通信。无线通信接口1412通常可以包括例如BB处理器1413和RF电路1414。BB处理器1413可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路1414可以包括例如混频器、滤波器和放大器,并且经由天线1416来传送和接收无线信号。无线通信接口1412可以为其上集成有BB处理器1413和RF电路1414的一个芯片模块。如图14所示,无线通信接口1412可以包括多个BB处理器1413和多个RF电路1414。虽然图14示出其中无线通信接口1412包括多个BB处理器1413和多个RF电路1414的示例,但是无线通信接口1412也可以包括单个BB处理器1413或单个RF电路1414。
此外,除了蜂窝通信方案之外,无线通信接口1412可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口1412可以包括针对每种无线通信方案的BB处理器1413和RF电路1414。
天线开关1415中的每一个在包括在无线通信接口1412中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线1416的连接目的地。
天线1416中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口1412传送和接收无线信号。如图14所示,通讯设备1400可以包括多个天线1416。虽然图14示出其中通讯设备1400包括多个 天线1416的示例,但是通讯设备1400也可以包括单个天线1416。
此外,通讯设备1400可以包括针对每种无线通信方案的天线1416。在此情况下,天线开关1415可以从通讯设备1400的配置中省略。
总线1417将处理器1401、存储器1402、存储装置1403、外部连接接口1404、摄像装置1406、传感器1407、麦克风1408、输入装置1409、显示装置1410、扬声器1411、无线通信接口1412以及辅助控制器1419彼此连接。电池1418经由馈线向图14所示的通讯设备1400的各个块提供电力,馈线在图中被部分地示为虚线。辅助控制器1419例如在睡眠模式下操作通讯设备1400的最小必需功能。
第二示例
图15是示出可以应用本公开内容的技术的汽车导航设备1500的示意性配置的示例的框图。汽车导航设备1500包括处理器1501、存储器1502、全球定位系统(GPS)模块1504、传感器1505、数据接口1506、内容播放器1507、存储介质接口1508、输入装置1509、显示装置1510、扬声器1511、无线通信接口1513、一个或多个天线开关1516、一个或多个天线1517以及电池1518。在一种实现方式中,此处的汽车导航设备1500(或处理器1501)可以对应于发射设备或终端侧电子设备。
处理器1501可以为例如CPU或SoC,并且控制汽车导航设备1500的导航功能和另外的功能。存储器1502包括RAM和ROM,并且存储数据和由处理器1501执行的程序。
GPS模块1504使用从GPS卫星接收的GPS信号来测量汽车导航设备1500的位置(诸如纬度、经度和高度)。传感器1505可以包括一组传感器,诸如陀螺仪传感器、地磁传感器和空气压力传感器。数据接口1506经由未示出的终端而连接到例如车载网络1521,并且获取由车辆生成的数据(诸如车速数据)。
内容播放器1507再现存储在存储介质(诸如CD和DVD)中的内容,该存储介质被插入到存储介质接口1508中。输入装置1509包括例如被配置为检测显示装置1510的屏幕上的触摸的触摸传感器、按钮或开关,并且接收从用户输入的操作或信息。显示装置1510包括诸如LCD或OLED显示器的屏幕,并且显示导航功能的图像或再现的内容。扬声器1511输出导航功能的声音或再现的内容。
无线通信接口1513支持任何蜂窝通信方案(诸如LTE和LTE-Advanced),并且执行无线通信。无线通信接口1513通常可以包括例如BB处理器1514和RF电路1515。BB处理器1514可以执行例如编码/解码、调制/解调以及复用/解复用,并且执 行用于无线通信的各种类型的信号处理。同时,RF电路1515可以包括例如混频器、滤波器和放大器,并且经由天线1517来传送和接收无线信号。无线通信接口1513还可以为其上集成有BB处理器1514和RF电路1515的一个芯片模块。如图15所示,无线通信接口1513可以包括多个BB处理器1514和多个RF电路1515。虽然图15示出其中无线通信接口1513包括多个BB处理器1514和多个RF电路1515的示例,但是无线通信接口1513也可以包括单个BB处理器1514或单个RF电路1515。
此外,除了蜂窝通信方案之外,无线通信接口1513可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线LAN方案。在此情况下,针对每种无线通信方案,无线通信接口1513可以包括BB处理器1514和RF电路1515。
天线开关1516中的每一个在包括在无线通信接口1513中的多个电路(诸如用于不同的无线通信方案的电路)之间切换天线1517的连接目的地。
天线1517中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口1513传送和接收无线信号。如图15所示,汽车导航设备1500可以包括多个天线1517。虽然图15示出其中汽车导航设备1500包括多个天线1517的示例,但是汽车导航设备1500也可以包括单个天线1517。
此外,汽车导航设备1500可以包括针对每种无线通信方案的天线1517。在此情况下,天线开关1516可以从汽车导航设备1500的配置中省略。
电池1518经由馈线向图15所示的汽车导航设备1500的各个块提供电力,馈线在图中被部分地示为虚线。电池1518累积从车辆提供的电力。
本公开内容的技术也可以被实现为包括汽车导航设备1500、车载网络1521以及车辆模块1522中的一个或多个块的车载系统(或车辆)1520。车辆模块1522生成车辆数据(诸如车速、发动机速度和故障信息),并且将所生成的数据输出至车载网络1521。
以上参照附图描述了本公开的示例性实施例,但是本公开当然不限于以上示例。本领域技术人员可在所附权利要求的范围内得到各种变更和修改,并且应理解这些变更和修改自然将落入本公开的技术范围内。
应当理解,根据本公开实施例的机器可读存储介质或程序产品中的机器可执行指令可以被配置为执行与上述设备和方法实施例相应的操作。当参考上述设备和方法实施例时,机器可读存储介质或程序产品的实施例对于本领域技术人员而言是明晰的,因此不再重复描述。用于承载或包括上述机器可执行指令的机器可读存储介质和程序 产品也落在本公开的范围内。这样的存储介质可以包括但不限于软盘、光盘、磁光盘、存储卡、存储棒等等。
另外,应当理解,上述系列处理和设备也可以通过软件和/或固件实现。在通过软件和/或固件实现的情况下,在相关设备的存储介质存储构成相应软件的相应程序,当所述程序被执行时,能够执行各种功能。
例如,在以上实施例中包括在一个单元中的多个功能可以由分开的装置来实现。替选地,在以上实施例中由多个单元实现的多个功能可分别由分开的装置来实现。另外,以上功能之一可由多个单元来实现。无需说,这样的配置包括在本公开的技术范围内。
在该说明书中,流程图中所描述的步骤不仅包括以所述顺序按时间序列执行的处理,而且包括并行地或单独地而不是必须按时间序列执行的处理。此外,甚至在按时间序列处理的步骤中,无需说,也可以适当地改变该顺序。
另外,可采用多种方式来实行本公开的方法和系统。例如,可通过软件、硬件、固件或它们的任何组合来实行本公开的方法和系统。上文所述的该方法的步骤的顺序仅是说明性的,并且除非另外具体说明,否则本公开的方法的步骤不限于上文具体描述的顺序。此外,在一些实施例中,本公开还可具体化为记录介质中记录的程序,包括用于实施根据本公开的方法的机器可读指令。因此,本公开还涵盖了存储用于实施根据本公开的方法的程序的记录介质。这样的存储介质可以包括但不限于软盘、光盘、磁光盘、存储卡、存储棒等等。
本领域技术人员应当意识到,在上述操作之间的边界仅仅是说明性的。多个操作可以结合成单个操作,单个操作可以分布于附加的操作中,并且操作可以在时间上至少部分重叠地执行。而且,另选的实施例可以包括特定操作的多个实例,并且在其他各种实施例中可以改变操作顺序。但是,其它的修改、变化和替换同样是可能的。因此,本说明书和附图应当被看作是说明性的,而非限制性的。
另外,本公开的实施方式还可以包括以下示意性示例(EE)。
EE1.一种无线通信系统的控制侧电子设备,所述控制侧电子设备能够与无线通信系统中的终端侧电子设备进行多流数据传输,所述控制侧电子设备包括处理电路,所述处理电路被配置为:
基于所述多流数据传输中包含的数据流的数据传输特性,确定为所述终端侧电子设备配置的调度标识信息的数量;
在确定配置多个调度标识信息的情况下,将所述多个调度标识信息与所述多流数据传输中包含的多个数据流相关联;以及
对于所述多流数据传输中的特定数据流,将与该特定数据流相关联的调度标识信息和用于该特定数据流的调度的控制信息相组合,以用于该特定数据流的传输。
EE2.根据EE 1所述的控制侧电子设备,其中,所述多流数据传输中包含的数据流包括上行数据传输和下行数据传输中的至少一者中的数据流,并且其中,所述数据传输特性包括数据流的数据周期性和/或数据大小特性。
EE3.根据EE 1或2所述的控制侧电子设备,其中,所述数据流包含I流和/或P流,并且所述数据传输特性包含数据流中包含的I流和/或P流的数据周期性和/或数据大小特性。
EE4.根据EE 1-3中任一项所述的控制侧电子设备,其中,所述多流数据传输中包含的数据流包括上行传输数据和下行传输数据之一的数据流,并且
所述调度标识信息的数量基于所述上行传输数据和下行传输数据之一中的具有特定数据传输特性的数据流的数目被确定,该特定数据传输特性可以包括非固定数据大小和/或周期/准周期性。
EE5.根据EE 1-3中任一项所述的控制侧电子设备,其中,所述多流数据传输中包含的数据流包括上行传输数据和下行传输数据两者的数据流,并且
所述调度标识信息的数量基于上行数据传输中具有特定数据传输特性的数据流的数目和下行数据传输中具有特定数据传输特性的数据流的数目的组合被确定,该特定数据传输特性可以包括非固定数据大小和/或周期/准周期性。
EE6.根据EE 5所述的控制侧电子设备,其中,所述调度标识信息的数量对应于上行数据传输的非固定数据大小的数据流的数目与下行数据流中所包含的非固定数据大小的数据流的数目之中的最大值,或者
所述调度标识信息的数量对应于上行数据流中所包含的周期/准周期性数据流的数目与下行数据流中所包含的周期/准周期性数据流的数目之中的最大值。
EE7.根据EE 1-6中任一项所述的控制侧电子设备,其中,所述处理电路被配置为:
使至少两个调度标识信息与多流数据传输中所包含的数据流按照调度标识信息的排列顺序关联,和/或
在进行调度标识信息配置时来设定数据流与调度标识信息的关联对。
EE8.根据EE 1-7中任一项所述的控制侧电子设备,其中,所述处理电路被配置为:
进一步将调度标识信息与数据流的调度配置相关联,并且
对于所述多流数据传输中的特定数据流,将与该特定数据流的调度配置相关联的调度标识信息和用于该特定数据流的调度配置的控制信息(DCI)相组合。
EE9.根据EE 8所述的控制侧电子设备,其中,所述数据流的调度配置可包括半静态调度(SPS)和/或配置许可(CG),并且
所述控制侧电子设备对于所述数据流的半静态调度(SPS)和/或配置许可(CG)分别设置相应的控制信息(DCI)。
EE10.根据EE 1-9中任一项所述的控制侧电子设备,其中所述处理电路进一步配置为:
对于所述多流数据传输中的未与调度标识信息相关联的数据流,通过资源配置信令(RRC)为该数据流配置资源,以用于传输。
EE11.根据EE 10所述的控制侧电子设备,其中,所述未与调度标识信息相关联的数据流包括固定大小的周期性下行数据流,并且对于固定大小的周期性下行数据流的调度配置(SPS),通过资源配置信令(RRC)配置资源,以用于传输。
EE12.根据EE 1-9中任一项所述的控制侧电子设备,其中,所述处理电路被配置为:
在多流数据传输启动时通过无线资源控制信令来传输控制信息以及相组合的调度标识信息;或者
在数据传输期间基于数据传输状况来调整数据流的调度配置,其中所述数据传输状况包括数据流的数据包大小、抖动、数据调度状况中的至少一者。
EE13.根据EE 1-12中任一项所述的控制侧电子设备,其中,所述处理电路进一步配置为:
预先设定数据流的特定调度配置的激活信息,使得在激活信息所指示的激活条件到期时自动切换调度配置的状态。
EE14.根据EE 13所述的控制侧电子设备,其中,激活信息包括特定调度配置的激活时间值、或者激活周期数、或者指示激活时间值或者激活周期书的索引值,和/或,其中,所述激活信息由控制信息中新增加的比特或者由控制信息中的已有比特来指示。
EE15.根据EE 1-14中任一项所述的控制侧电子设备,其中,所述处理电路被配 置为:
配置所述终端侧设备能在其中进行检测的搜索空间以包含所有被配置的调度标识信息。
EE16.一种无线通信系统的终端侧电子设备,所述终端侧电子设备能够与无线通信系统中的控制侧电子设备进行多流数据传输,所述终端侧电子设备包括处理电路,所述处理电路被配置为:
获取特定调度标识信息和特定控制信息的组合信息,其中,所述特定调度标识信息选自基于所述多流数据传输中包含的数据流的数据传输特性被配置的、与数据流相关联的多个调度标识信息;
基于所述特定调度标识信息确定与所述调度标识信息相关联的特定数据流,并且
基于所述特定控制信息进行特定数据流的数据传输。
EE17.根据EE 16所述的终端侧电子设备,其中,所述组合信息表示为由所述特定调度标识信息加扰的特定控制信息,并且所述处理电路进一步被配置为:
利用多个调度标识信息对所述特定控制信息进行尝试解扰,以得到所述特定调度标识信息,并且
基于所述特定调度标识信息解码得到所述特定控制信息。
EE18.根据EE 16或17所述的终端侧电子设备,其中,所述处理电路进一步配置为:
基于所述特定控制信息确定与所述调度标识信息相关联的特定数据流的调度配置,并且
基于所述调度配置进行特定数据流的数据传输。
EE19.根据EE 16-18中任一项所述的终端侧电子设备,其中,所述处理电路进一步配置为:
从所述特定控制信息得出调度配置的激活信息,
在所述激活信息指示的激活条件到期时,自动切换调度配置状态,并且
在自动切换到特定传输配置的情况下,根据所切换到的特定传输配置来进行特定数据流的数据传输,而不再执行控制信息的解扰。
EE20.根据EE 19所述的终端侧电子设备,其中,在所述激活信息指示的激活条件到期时,在调度配置自动切换到去激活状态的情况下停止数据传输。
EE21.根据EE 16-20中任一项所述的终端侧电子设备,其中,所述处理电路进一 步配置为:
将至少包含所述数据传输特性的信息提供给所述控制侧电子设备。
EE22.根据EE 16-21中任一项所述的终端侧电子设备,其中,所述处理电路进一步配置为:
获取所述终端侧电子设备与所述控制侧电子设备之间的数据传输状况,其中所述数据传输状况包括数据流的数据包大小、抖动、数据调度状况中的至少一者,并且
将所获取的数据传输状况提供给所述控制侧电子设备,使得所述控制侧电子设备能够基于所述数据传输状况调整调度配置。
EE23.一种用于无线通信系统的控制侧电子设备的方法,所述控制侧电子设备能够与无线通信系统中的终端侧电子设备进行多流数据传输,所述方法包括:
基于所述多流数据传输中包含的数据流的数据传输特性,确定为所述终端侧电子设备配置的调度标识信息的数量;
在确定配置多个调度标识信息的情况下,将所述多个调度标识信息与所述多流数据传输中包含的多个数据流相关联;以及
对于所述多流数据传输中的特定数据流,将与该特定数据流相关联的调度标识信息和用于该特定数据流的调度的控制信息相组合,以用于该特定数据流的传输。
EE24.一种用于无线通信系统的终端侧电子设备的方法,所述终端侧电子设备能够与无线通信系统中的控制侧电子设备进行多流数据传输,所述方法包括:
获取特定调度标识信息(CS-RNTI)和特定控制信息(DCI)的组合信息,其中,所述特定调度标识信息选自基于所述多流数据传输中包含的数据流的数据传输特性被配置的、与数据流相关联的多个调度标识信息;
基于所述特定调度标识信息确定与所述调度标识信息相关联的特定数据流,并且
基于所述特定控制信息进行特定数据流的数据传输。
EE 25.一种无线通信设备,包括
至少一个处理器;和
至少一个存储设备,所述至少一个存储设备在其上存储指令,该指令在由所述至少一个处理器执行时,使所述至少一个处理器执行根据EE 23或24所述的方法。
EE 26.一种存储指令的存储介质,该指令在由处理器执行时能使得执行根据EE 23或24所述的方法。
EE 27.一种计算机程序产品,包含指令,该指令在由处理器执行时能使得执行根 据EE 23或24所述的方法。
EE 28.一种无线通信装置,包括用于实现根据EE 23或24所述的方法的部件。
EE 29.一种计算机程序,包含指令,所述指令能够由电子设备执行以实现根据EE 23或24所述的方法。
虽然已经详细说明了本公开及其优点,但是应当理解在不脱离由所附的权利要求所限定的本公开的精神和范围的情况下可以进行各种改变、替代和变换。而且,本公开实施例的术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
虽然已详细描述了本公开的一些具体实施例,但是本领域技术人员应当理解,上述实施例仅是说明性的而不限制本公开的范围。本领域技术人员应该理解,上述实施例可以被组合、修改或替换而不脱离本公开的范围和实质。

Claims (29)

  1. 一种无线通信系统的控制侧电子设备,所述控制侧电子设备能够与无线通信系统中的终端侧电子设备进行多流数据传输,所述控制侧电子设备包括处理电路,所述处理电路被配置为:
    基于所述多流数据传输中包含的数据流的数据传输特性,确定为所述终端侧电子设备配置的调度标识信息的数量;
    在确定配置多个调度标识信息的情况下,将所述多个调度标识信息与所述多流数据传输中包含的多个数据流相关联;以及
    对于所述多流数据传输中的特定数据流,将与该特定数据流相关联的调度标识信息和用于该特定数据流的调度的控制信息相组合,以用于该特定数据流的传输。
  2. 根据权利要求1所述的控制侧电子设备,其中,所述多流数据传输中包含的数据流包括上行数据传输和下行数据传输中的至少一者中的数据流,并且
    其中,所述数据传输特性包括数据流的数据周期性和/或数据大小特性。
  3. 根据权利要求1或2所述的控制侧电子设备,其中,所述数据流包含I流和/或P流,并且所述数据传输特性包含数据流中包含的I流和/或P流的数据周期性和/或数据大小特性。
  4. 根据权利要求1-3中任一项所述的控制侧电子设备,其中,所述多流数据传输中包含的数据流包括上行数据传输和下行数据传输之一的数据流,并且
    所述调度标识信息的数量基于所述上行数据传输和下行数据传输之一中的具有特定数据传输特性的数据流的数目被确定,该特定数据传输特性可以包括非固定数据大小和/或周期性或准周期性。
  5. 根据权利要求1-3中任一项所述的控制侧电子设备,其中,所述多流数据传输中包含的数据流包括上行数据传输和下行数据传输两者的数据流,并且
    所述调度标识信息的数量基于上行数据传输中具有特定数据传输特性的数据流的数目和下行数据传输中具有特定数据传输特性的数据流的数目的组合被确定,该特 定数据传输特性可以包括非固定数据大小和/或周期性或准周期性。
  6. 根据权利要求5所述的控制侧电子设备,其中,所述调度标识信息的数量对应于上行数据传输中所包含的非固定数据大小的数据流的数目与下行数据流中所包含的非固定数据大小的数据流的数目之中的最大值,或者
    所述调度标识信息的数量对应于上行数据流中所包含的周期或准周期性数据流的数目与下行数据流中所包含的周期或准周期性数据流的数目之中的最大值。
  7. 根据权利要求1-6中任一项所述的控制侧电子设备,其中,所述处理电路进一步被配置为:
    使至少两个调度标识信息与多流数据传输中所包含的数据流按照调度标识信息的排列顺序关联,和/或
    在进行调度标识信息配置时来设定数据流与调度标识信息的关联对。
  8. 根据权利要求1-7中任一项所述的控制侧电子设备,其中,所述处理电路进一步被配置为:
    将调度标识信息与数据流的调度配置相关联,并且
    对于所述多流数据传输中的特定数据流,将与该特定数据流的调度配置相关联的调度标识信息和用于该特定数据流的调度配置的控制信息相组合。
  9. 根据权利要求8所述的控制侧电子设备,其中,数据流的调度配置可包括半静态调度(SPS)和/或配置许可(CG),并且
    所述控制侧电子设备对于所述数据流的半静态调度(SPS)和/或配置许可(CG)分别设置相应的控制信息。
  10. 根据权利要求1-9中任一项所述的控制侧电子设备,其中所述处理电路进一步配置为:
    对于所述多流数据传输中的未与调度标识信息相关联的数据流,通过资源配置信令(RRC)为该数据流配置资源,以用于传输。
  11. 根据权利要求10所述的控制侧电子设备,其中,所述未与调度标识信息相关联的数据流包括固定大小的周期性下行数据流,并且对于固定大小的周期性下行数据流的调度配置(SPS),通过资源配置信令(RRC)配置资源,以用于传输。
  12. 根据权利要求1-9中任一项所述的控制侧电子设备,其中,所述处理电路进一步被配置为:
    在多流数据传输启动时通过无线资源控制信令来传输控制信息以及相组合的调度标识信息;或者
    在数据传输期间基于数据传输状况来调整数据流的调度配置,其中所述数据传输状况包括数据流的数据包大小、抖动、数据调度状况中的至少一者。
  13. 根据权利要求1-12中任一项所述的控制侧电子设备,其中,所述处理电路进一步配置为:
    预先设定数据流的特定调度配置的激活信息,使得在激活信息所指示的激活条件到期时自动切换调度配置的状态。
  14. 根据权利要求13所述的控制侧电子设备,其中,所述激活信息包括特定调度配置的激活时间值、或者激活周期数、或者指示激活时间值或者激活周期数的索引值,和/或,其中,所述激活信息由控制信息中新增加的比特或者由控制信息中的已有比特来指示。
  15. 根据权利要求1-14中任一项所述的控制侧电子设备,其中,所述处理电路进一步被配置为:
    配置所述终端侧设备能在其中进行检测的搜索空间以包含所有被配置的调度标识信息。
  16. 一种无线通信系统的终端侧电子设备,所述终端侧电子设备能够与无线通信系统中的控制侧电子设备进行多流数据传输,所述终端侧电子设备包括处理电路,所述处理电路被配置为:
    获取特定调度标识信息和特定控制信息的组合信息,其中,所述特定调度标识信 息选自基于所述多流数据传输中包含的数据流的数据传输特性被配置的、与数据流相关联的多个调度标识信息;
    基于所述特定调度标识信息确定与所述特定调度标识信息相关联的特定数据流,并且
    基于所述特定控制信息进行特定数据流的数据传输。
  17. 根据权利要求16所述的终端侧电子设备,其中,所述组合信息表示为由所述特定调度标识信息加扰的特定控制信息,并且所述处理电路进一步被配置为:
    利用多个调度标识信息对所述特定控制信息进行尝试解扰,以得到所述特定调度标识信息,并且
    基于所述特定调度标识信息解码得到所述特定控制信息。
  18. 根据权利要求16或17所述的终端侧电子设备,其中,所述处理电路进一步配置为:
    基于所述特定控制信息确定与所述特定调度标识信息相关联的特定数据流的调度配置,并且
    基于所述调度配置进行特定数据流的数据传输。
  19. 根据权利要求16-18中任一项所述的终端侧电子设备,其中,所述处理电路进一步配置为:
    从所述特定控制信息得出调度配置的激活信息,
    在所述激活信息指示的激活条件到期时,自动切换调度配置状态,并且
    在自动切换到特定传输配置的情况下,根据所切换到的特定传输配置来进行特定数据流的数据传输,而不再执行控制信息的解扰。
  20. 根据权利要求19所述的终端侧电子设备,其中,在所述激活信息指示的激活条件到期时,在调度配置自动切换到去激活状态的情况下停止数据传输。
  21. 根据权利要求16-20中任一项所述的终端侧电子设备,其中,所述处理电路进一步配置为:
    将至少包含所述数据传输特性的信息提供给所述控制侧电子设备。
  22. 根据权利要求16-21中任一项所述的终端侧电子设备,其中,所述处理电路进一步配置为:
    获取所述终端侧电子设备与所述控制侧电子设备之间的数据传输状况,其中所述数据传输状况包括数据流的数据包大小、抖动、数据调度状况中的至少一者,并且
    将所获取的数据传输状况提供给所述控制侧电子设备,使得所述控制侧电子设备能够基于所述数据传输状况调整调度配置。
  23. 一种用于无线通信系统的控制侧电子设备的方法,所述控制侧电子设备能够与无线通信系统中的终端侧电子设备进行多流数据传输,所述方法包括:
    基于所述多流数据传输中包含的数据流的数据传输特性,确定为所述终端侧电子设备配置的调度标识信息的数量;
    在确定配置多个调度标识信息的情况下,将所述多个调度标识信息与所述多流数据传输中包含的多个数据流相关联;以及
    对于所述多流数据传输中的特定数据流,将与该特定数据流相关联的调度标识信息和用于该特定数据流的调度的控制信息相组合,以用于该特定数据流的传输。
  24. 一种用于无线通信系统的终端侧电子设备的方法,所述终端侧电子设备能够与无线通信系统中的控制侧电子设备进行多流数据传输,所述方法包括:
    获取特定调度标识信息和特定控制信息的组合信息,其中,所述特定调度标识信息选自基于所述多流数据传输中包含的数据流的数据传输特性被配置的、与数据流相关联的多个调度标识信息;
    基于所述特定调度标识信息确定与所述特定调度标识信息相关联的特定数据流,并且
    基于所述特定控制信息进行特定数据流的数据传输。
  25. 一种无线通信设备,包括
    至少一个处理器;和
    至少一个存储设备,所述至少一个存储设备在其上存储指令,该指令在由所述至 少一个处理器执行时,使所述至少一个处理器执行根据权利要求23或24所述的方法。
  26. 一种存储指令的存储介质,该指令在由处理器执行时能使得执行根据权利要求23或24所述的方法。
  27. 一种计算机程序产品,包含指令,该指令在由处理器执行时能使得执行根据权利要求23或24所述的方法。
  28. 一种无线通信装置,包括用于实现根据权利要求23或24所述的方法的部件。
  29. 一种计算机程序,包含指令,所述指令能够由电子设备执行以实现根据权利要求23或24所述的方法。
PCT/CN2023/089439 2022-04-21 2023-04-20 无线通信系统中的电子设备和方法 WO2023202657A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210423618.3 2022-04-21
CN202210423618.3A CN116980971A (zh) 2022-04-21 2022-04-21 无线通信系统中的电子设备和方法

Publications (1)

Publication Number Publication Date
WO2023202657A1 true WO2023202657A1 (zh) 2023-10-26

Family

ID=88419271

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/089439 WO2023202657A1 (zh) 2022-04-21 2023-04-20 无线通信系统中的电子设备和方法

Country Status (2)

Country Link
CN (1) CN116980971A (zh)
WO (1) WO2023202657A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016188483A1 (zh) * 2015-10-30 2016-12-01 中兴通讯股份有限公司 一种短传输时间间隔的资源分配方法和装置
US20210068004A1 (en) * 2019-08-30 2021-03-04 Qualcomm Incorporated Mapping multicast broadcast quality of service flows to logical channel identifiers
WO2022056764A1 (en) * 2020-09-17 2022-03-24 Nokia Shanghai Bell Co., Ltd. Multicast service configuration

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016188483A1 (zh) * 2015-10-30 2016-12-01 中兴通讯股份有限公司 一种短传输时间间隔的资源分配方法和装置
US20210068004A1 (en) * 2019-08-30 2021-03-04 Qualcomm Incorporated Mapping multicast broadcast quality of service flows to logical channel identifiers
WO2022056764A1 (en) * 2020-09-17 2022-03-24 Nokia Shanghai Bell Co., Ltd. Multicast service configuration

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Enhancement of Configured Grant for NR URLLC", 3GPP TSG RAN WG1 MEETING #97, R1-1906096, 4 May 2019 (2019-05-04), XP051708138 *

Also Published As

Publication number Publication date
CN116980971A (zh) 2023-10-31

Similar Documents

Publication Publication Date Title
WO2019096206A1 (zh) 无线通信系统中的装置和方法、计算机可读存储介质
US11595159B2 (en) HARQ design for wireless communications
CN106452705B (zh) 无线通信系统中的电子设备和无线通信方法
WO2020029950A1 (zh) 用于无线通信系统的电子设备、方法和存储介质
CN111818659B (zh) sidelink信息发送方法、接收方法、终端和控制节点
US11057918B2 (en) Electronic device and radio communication method
JP2019092200A (ja) 基地局
US20190349976A1 (en) Transmission and reception procedures for asynchronous transmission schemes
WO2017167165A1 (zh) 电子装置、信息处理设备和信息处理方法
WO2019029463A1 (zh) 一种接收控制信息、发送控制信息的方法及设备
US20240056889A1 (en) Communication processing method for data transmission and related device
WO2019007262A1 (zh) 无线通信方法和无线通信设备
WO2021159252A1 (zh) 传输调度方法、装置、通信设备及存储介质
WO2021102858A1 (zh) 传输块配置参数传输方法、装置、通信设备及存储介质
WO2023202657A1 (zh) 无线通信系统中的电子设备和方法
JP6421761B2 (ja) 装置及び方法
CN114467316B (zh) 通信方法和通信装置
CN109906646A (zh) 信息传输方法、基站和终端设备
WO2021007791A1 (zh) 资源配置的方法及装置、通信设备及存储介质
WO2024093970A1 (zh) 电子设备、通信方法和存储介质
WO2024093892A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2023040445A1 (zh) 无线通信系统中的电子设备和方法
WO2022206575A1 (zh) 电子设备、无线通信方法和计算机可读存储介质
US11889447B2 (en) Supporting inter-media synchronization in wireless communications
WO2023030037A1 (zh) 信息监听的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23791310

Country of ref document: EP

Kind code of ref document: A1