WO2023030037A1 - 信息监听的方法和装置 - Google Patents

信息监听的方法和装置 Download PDF

Info

Publication number
WO2023030037A1
WO2023030037A1 PCT/CN2022/113491 CN2022113491W WO2023030037A1 WO 2023030037 A1 WO2023030037 A1 WO 2023030037A1 CN 2022113491 W CN2022113491 W CN 2022113491W WO 2023030037 A1 WO2023030037 A1 WO 2023030037A1
Authority
WO
WIPO (PCT)
Prior art keywords
drx cycle
pdcch
start time
parameter
drx
Prior art date
Application number
PCT/CN2022/113491
Other languages
English (en)
French (fr)
Inventor
黄雯雯
铁晓磊
周涵
张战战
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22863176.8A priority Critical patent/EP4387340A1/en
Publication of WO2023030037A1 publication Critical patent/WO2023030037A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the communication field, and more specifically, to a method and device for information monitoring.
  • Extended reality (extended reality, XR) and cloud gaming (cloud gaming, CG) are important application scenarios of the fifth generation (5th generation, 5G) system.
  • XR is a general term for different types of reality, which refers to the combination of reality and virtual environment and human-computer interaction generated by computers or wearable devices.
  • the types of XR include augmented reality (AR), mixed reality (mixed reality, MR), virtual reality (virtual reality, VR) and so on.
  • the transmission process of XR and CG service data is roughly as follows: the XR or CG server performs logical calculation, content rendering, encoding and other processing on the video frame, and then sends it to the core network device, and the core network device transmits the video frame To the network device, the network device transmits to the user equipment (user equipment, UE) through the air interface.
  • the user equipment user equipment, UE
  • the time when video frames of XR/CG services arrive at the network equipment is quasi-periodic and jittery, and there is not always data transmission. If the UE receiving XR/CG services is listening to the physical downlink control channel (physical downlink control channel) for a long time , PDCCH) will cause the power consumption of the terminal equipment to be too high.
  • PDCCH physical downlink control channel
  • the UE can monitor the PDCCH during the active time of each DRX cycle according to the DRX configuration information, and can monitor the PDCCH during the inactive time of each DRX cycle. It is in a dormant state and does not monitor the PDCCH; wherein, the activation time includes the running time of the onDuration timer (onDurationTimer), and the running time of the onDuration timer occurs periodically.
  • the onDurationTimer the running time of the onDuration timer
  • the present application provides a method and device for monitoring information, which can reduce power consumption of terminal equipment.
  • a method for monitoring information is provided, and the method may be executed by a terminal device or a chip or a chip system on the terminal side.
  • the method includes: the terminal device determines at least one first physical downlink control channel PDCCH candidate position according to the search space set of the first search space set group SSSG.
  • the terminal device monitors the first PDCCH at the first PDCCH candidate position.
  • the terminal device determines at least one second PDCCH candidate position according to the search space set of the second SSSG.
  • the first control information for scheduling newly transmitted data is monitored on the first PDCCH, and the terminal device monitors the second PDCCH, the period of the first PDCCH is greater than the period of the second PDCCH and/or the duration of the search space set in the first SSSG is shorter than the duration of the search space set in the second SSSG.
  • the terminal device before receiving the first control information for scheduling newly transmitted data, the terminal device monitors the first PDCCH candidate position according to the first PDCCH candidate position with a larger monitoring period or a smaller CORESET bandwidth, which can reduce the Power consumption of the device; when receiving the first control information for scheduling newly transmitted data, the terminal device monitors the second PDCCH candidate position according to the second PDCCH candidate position with a smaller monitoring period or a smaller CORESET bandwidth, which can reduce data transmission delay.
  • the terminal device may use the search space set in the second SSSG to monitor the PDCCH, that is, use a smaller PDCCH period to monitor the PDCCH, but the time when the data arrives at the network device is shorter than when the persistent timer is started. The time is late, causing the terminal device to monitor the PDCCH according to the search space set in the second SSSG, resulting in waste of power consumption.
  • the above technical solution can prevent the terminal equipment from monitoring the PDCCH with a smaller PDCCH monitoring period during the operation of the DRX cycle persistence timer, and can reduce the power consumption of the terminal equipment.
  • the method further includes: the terminal device determining at least one third PDCCH candidate position according to the search space set of the second SSSG. During the running of the persistence timer in the DRX cycle, the terminal device monitors the third PDCCH at the third PDCCH candidate position, and the time for monitoring the first PDCCH is different from the time for monitoring the third PDCCH.
  • the terminal device When the terminal device is monitoring the first PDCCH, it monitors the first PDCCH according to the first PDCCH candidate position with a larger monitoring period, which can reduce the power consumption of the terminal device; when the terminal device is monitoring the third PDCCH, the terminal device monitors the first PDCCH according to the monitoring period
  • the smaller candidate position of the third PDCCH is used to monitor the third PDCCH, which can reduce the time delay of data transmission.
  • the method further includes: the terminal device receiving first configuration information from the network device, the first configuration information including at least one of the following: the start time of monitoring the first PDCCH .
  • the start time of monitoring the first PDCCH is the same as the start time of the persistence timer in the DRX cycle.
  • the terminal device monitors the first PDCCH at the first PDCCH candidate position, the first scheduling offset value is greater than or equal to a first threshold, and the first scheduling offset value is the A time offset value between the first PDCCH and the physical downlink shared channel PDSCH or the physical uplink shared channel PUSCH scheduled by the first PDCCH.
  • the terminal device monitors the second PDCCH at the second PDCCH candidate position, the second scheduling offset value is greater than or equal to a second threshold, and the second scheduling offset value is the difference between the second PDCCH and the first PDCCH A time offset value between PDSCHs or PUSCHs scheduled by two PDCCHs, wherein the first threshold is greater than the second threshold.
  • the terminal device monitors the third PDCCH at the third PDCCH candidate position, the third scheduling offset value is greater than or equal to the second threshold, and the third scheduling offset value is the difference between the third PDCCH and the third PDCCH The time offset value between the PDSCH or PUSCH scheduled by the third PDCCH.
  • the method further includes: the terminal device determines the start time of the i-th DRX cycle and/or the continuous timing in the i-th DRX cycle according to the acquired DRX configuration information
  • the start time of the switch on, i is a positive integer.
  • the terminal device determines a first parameter m and a second parameter T, and the first parameter m is the number of DRX cycles intervals for periodically adjusting the start time of the DRX cycle and/or the first parameter m is a cycle
  • the number of DRX cycles that are separated by the start time of the persistence timer in the DRX cycle, and the second parameter T is the offset value for adjusting the start time of the DRX cycle and/or adjusting the DRX cycle.
  • the offset value of the start time of the continuous timer, m is a positive integer.
  • the terminal device determines the start time of the i+m DRX cycle and/or the i+m DRX cycle according to the DRX configuration information, the first parameter m, and the second parameter T The start time for the duration timer to start.
  • the start time of the DRX cycle and/or the start time of the duration timer in the DRX cycle are automatically adjusted every m DRX cycles, which can prevent the arrival time of the data to be transmitted from falling within the DRX inactive time, It can reduce the delay of data transmission.
  • the terminal device determining the first parameter m and the second parameter T includes: the terminal device receiving second configuration information from the network device, the second configuration information including the The first parameter m and the second parameter T.
  • the first parameter m is related to the size of the DRX cycle and the size of the data transmission cycle.
  • the second parameter T is related to the size of the DRX cycle and the size of the data transmission cycle, and/or, the second parameter T is related to the number of DRX cycle adjustments.
  • the method further includes: the terminal device acquiring first indication information, where the first indication information is used to indicate the start time and/or start time of the persistence timer in the next DRX cycle The start time offset value of starting the persistence timer in the next DRX cycle.
  • the terminal device determines, according to the first indication information, the start time of the persistence timer in the next DRX cycle.
  • the terminal device may use the obtained first indication information for indicating the starting time of starting the persistence timer in the next DRX cycle and/or the starting time offset value of starting the persistence timer in the next DRX cycle , to adjust the start time of the persistence timer in the next DRX cycle. It can avoid that the arrival time of the data to be transmitted falls within the DRX inactivation time, and can reduce the delay of data transmission.
  • the terminal device determines the start time of the persistence timer in the next DRX cycle according to the first indication information, including: the terminal device according to the DRX configuration information and The starting time offset value of starting the persistence timer determines the starting time of starting the persistence timer in the next DRX cycle.
  • a method for monitoring information is provided, and the method may be executed by a network device or a chip or a chip system on the network side.
  • the method includes: the network device determines at least one first physical downlink control channel PDCCH candidate position according to the search space set of the first search space set group SSSG.
  • the network device sends at least one piece of first control information to the terminal device at the first PDCCH candidate position.
  • the network device determines at least one second PDCCH candidate position according to the search space set of the second SSSG.
  • the first control information is used to schedule newly transmitted data, and during the running of the inactive timer in the DRX cycle, the network device sends at least one second control information to the terminal device at the second PDCCH candidate position,
  • the period of the first PDCCH is greater than the period of the second PDCCH and/or the duration of the search space set in the first SSSG is shorter than the duration of the search space set in the second SSSG.
  • the network device determines at least one third PDCCH candidate position according to the search space set of the second SSSG.
  • the network device sends at least one third control information to the terminal device at the third PDCCH candidate position, and the time for sending the first control information is different from the time for sending the The time of the third control information is different.
  • the method further includes: the network device sending first configuration information to the terminal device, the first configuration information including at least one of the following: monitoring the start of the first PDCCH time, the time length for monitoring the first PDCCH, the start time for monitoring the third PDCCH, or the time length for monitoring the third PDCCH.
  • the method further includes: the network device determines the start time of the i-th DRX cycle and/or starts the persistence timer in the i-th DRX cycle according to the DRX configuration information
  • the starting time of , i is a positive integer.
  • the network device determines a first parameter m and a second parameter T, and the first parameter m is the number of DRX cycles intervals for periodically adjusting the start time of the DRX cycle and/or the first parameter m is a cycle
  • the number of DRX cycles that are separated by the start time of the persistence timer in the DRX cycle, and the second parameter T is the offset value for adjusting the start time of the DRX cycle and/or adjusting the DRX cycle.
  • the offset value of the start time of the continuous timer, m is a positive integer.
  • the network device determines the start time of the i+m th DRX cycle and/or the i+m th DRX cycle according to the DRX configuration information, the first parameter m, and the second parameter T The start time for the duration timer to start.
  • the method further includes: the network device determining the first parameter m and the second parameter T.
  • the network device sends second configuration information to the terminal device, where the second configuration information includes the first parameter m and the second parameter T.
  • the first parameter m is related to the size of the DRX cycle and the size of the data transmission cycle.
  • the second parameter T is related to the size of the DRX cycle and the size of the data transmission cycle, and/or, the second parameter T is related to the number of DRX cycle adjustments.
  • the method further includes: the network device determining first indication information, where the first indication information is used to indicate the start time and/or start time of the persistence timer in the next DRX cycle The start time offset value of starting the persistence timer in the next DRX cycle.
  • the network device sends the first indication information to the terminal device within the activation time of the DRX cycle.
  • the start time of the DRX cycle is the same as the start time of the persistence timer in the DRX cycle.
  • a method for monitoring information is provided, and the method may be executed by a terminal device or a chip or a chip system on the terminal side.
  • the method includes: the terminal device determines the start time of the i-th discontinuous reception DRX cycle and/or the start time of the duration timer in the i-th DRX cycle according to the acquired DRX configuration information, where i is positive integer.
  • the terminal device determines a first parameter m and a second parameter T, and the first parameter m is the number of DRX cycles intervals for periodically adjusting the start time of the DRX cycle and/or the first parameter m is a cycle
  • the second parameter T is the offset value for adjusting the start time of the DRX cycle and/or adjusting the DRX cycle.
  • the offset value of the start time of the continuous timer, m is a positive integer.
  • the terminal device determines the start time of the i+m DRX cycle and/or the i+m DRX cycle according to the DRX configuration information, the first parameter m, and the second parameter T The start time for the duration timer to start.
  • the terminal equipment automatically adjusts the start time of the DRX cycle and/or the start time of the duration timer in the DRX cycle every m DRX cycles, which can avoid the arrival time of the data to be transmitted falling within the DRX inactive Within a short period of time, the delay of data transmission can be reduced.
  • the terminal device determining the first parameter m and the second parameter T includes: the terminal device receiving second configuration information from a network device, the second configuration information including the first parameter m and the second parameter T.
  • the first parameter m is related to the size of the DRX cycle and the size of the data transmission cycle.
  • the second parameter T is related to the size of the DRX cycle and the size of the data transmission cycle, and/or, the second parameter T is related to the number of DRX cycle adjustments.
  • the start time of the DRX cycle is the same as the start time of the persistence timer in the DRX cycle.
  • a method for monitoring information is provided, and the method may be executed by a network device or a chip or a chip system on the network side.
  • the method includes: the network device determines the start time of the i-th DRX cycle and/or the start time of the persistence timer in the i-th DRX cycle according to the DRX configuration information, where i is a positive integer.
  • the network device determines a first parameter m and a second parameter T, and the first parameter m is the number of DRX cycles intervals for periodically adjusting the start time of the DRX cycle and/or the first parameter m is a cycle
  • the second parameter T is the offset value for adjusting the start time of the DRX cycle and/or adjusting the DRX cycle.
  • the offset value of the start time of the continuous timer, m is a positive integer.
  • the network device determines the start time of the i+m th DRX cycle and/or the i+m th DRX cycle according to the DRX configuration information, the first parameter m, and the second parameter T The start time for the duration timer to start.
  • the method further includes: the network device determining the first parameter m and the second parameter T.
  • the network device sends second configuration information to the terminal device, where the second configuration information includes the first parameter m and the second parameter T.
  • the first parameter m is related to the size of the DRX cycle and the size of the data transmission cycle.
  • the second parameter T is related to the size of the DRX cycle and the size of the data transmission cycle, and/or, the second parameter T is related to the number of DRX cycle adjustments.
  • the start time of the DRX cycle is the same as the start time of the persistence timer in the DRX cycle.
  • a method for monitoring information is provided, and the method may be executed by a terminal device or a chip or a chip system on the terminal side.
  • the method includes: the terminal device monitors at least one physical downlink control channel PDCCH and/or receives data on at least one physical downlink shared channel PDSCH during the activation time of the discontinuous reception DRX cycle, the control information carried by the at least one PDCCH and /or the data includes first indication information, the first indication information is used to indicate the start time of the persistence timer in the next DRX cycle and/or the start time of the persistence timer in the next DRX cycle Start time offset value.
  • the terminal device determines, according to the first indication information, the start time of the persistence timer in the next DRX cycle.
  • the terminal device may, according to the obtained first indication indicating the starting time of starting the persistence timer in the next DRX cycle and/or the start time offset value of starting the persistence timer in the next DRX cycle information to adjust the start time of the persistence timer in the next DRX cycle. It can avoid that the arrival time of the data to be transmitted falls within the DRX inactivation time, and can reduce the delay of data transmission.
  • the terminal device determines the start time of the persistence timer in the next DRX cycle according to the first indication information, including: the terminal device according to the DRX configuration information and The starting time offset value of starting the persistence timer determines the starting time of starting the persistence timer in the next DRX cycle.
  • the start time of the DRX cycle is the same as the start time of the persistence timer in the DRX cycle.
  • a method for monitoring information is provided, and the method may be executed by a network device or a chip or a chip system on the network side.
  • the method includes: the network device determines first indication information, and the first indication information is used to indicate the start time of starting the persistence timer in the next DRX cycle and/or the start time of the persistence timer in the next DRX cycle Start time offset value.
  • the network device sends at least one control information and/or at least one data to the terminal device within the activation time of the discontinuous reception DRX cycle, where the control information and/or the data include the first indication information.
  • the start time of the DRX cycle is the same as the start time of the persistence timer in the DRX cycle.
  • a communication device in a seventh aspect, is provided, and the beneficial effects may refer to the description of the first aspect, which will not be repeated here.
  • the communication device has the function of implementing the actions in the method example of the first aspect above.
  • the functions described above may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the communication device includes: a determining module, configured to determine at least one first physical downlink control channel PDCCH candidate position according to a search space set of a first search space set group SSSG.
  • the transceiver module is configured to monitor the first PDCCH at the first PDCCH candidate position during the running of the timer in the discontinuous reception DRX cycle.
  • the determining module is further configured to determine at least one second PDCCH candidate position according to the search space set of the second SSSG.
  • the transceiver module is further configured to monitor the first control information for scheduling newly transmitted data on the first PDCCH, and monitor the second PDCCH candidate position during the running of the inactive timer in the DRX cycle.
  • the period of the first PDCCH is greater than the period of the second PDCCH and/or the duration of the search space set in the first SSSG is shorter than the duration of the search space set in the second SSSG time.
  • the determining module is further configured to determine at least one third PDCCH candidate position according to the search space set of the second SSSG.
  • the transceiver module is further configured to monitor the third PDCCH at the third PDCCH candidate position during the running of the persistence timer in the DRX cycle, and monitor the first PDCCH time and monitor the third PDCCH The time is different.
  • the transceiver module is further configured to receive first configuration information from a network device, where the first configuration information includes at least one of the following: monitoring the start time of the first PDCCH, monitoring The time length of the first PDCCH, the start time of monitoring the third PDCCH, or the time length of monitoring the third PDCCH.
  • the start time of monitoring the first PDCCH is the same as the start time of the persistence timer in the DRX cycle.
  • the first scheduling offset value is greater than or equal to a first threshold
  • the first scheduling offset value is the The time offset value between the first PDCCH and the physical downlink shared channel PDSCH or the physical uplink shared channel PUSCH scheduled by the first PDCCH.
  • the second scheduling offset value is greater than or equal to a second threshold
  • the second scheduling offset value is the difference between the second PDCCH and the A time offset value between PDSCHs or PUSCHs scheduled by the second PDCCH, wherein the first threshold is greater than the second threshold.
  • the third scheduling offset value is greater than or equal to the second threshold, and the third scheduling offset value is the third PDCCH and A time offset value between PDSCHs or PUSCHs scheduled by the third PDCCH.
  • the determining module is further configured to: determine the start time of the i-th DRX cycle and/or start the persistence timer in the i-th DRX cycle according to the acquired DRX configuration information
  • the starting time of , i is a positive integer.
  • the first parameter m is the number of DRX cycles intervals between the start time of the periodic adjustment DRX cycle and/or the first parameter m is the periodic adjustment DRX cycle
  • the second parameter T is an offset value for adjusting the start time of the DRX cycle and/or adjusting the start of the persistence timer in the DRX cycle
  • the offset value of the start time of , m is a positive integer.
  • the first parameter m and the second parameter T determine the start time of the i+m DRX cycle and/or the duration in the i+m DRX cycle The start time for the timer to start.
  • the first parameter m is related to the size of the DRX cycle and the size of the data transmission cycle.
  • the second parameter T is related to the size of the DRX cycle and the size of the data transmission cycle, and/or, the second parameter T is related to the number of DRX cycle adjustments.
  • the transceiver module is further configured to acquire first indication information, where the first indication information is used to indicate the start time and/or the next start time of the persistence timer in the next DRX cycle.
  • the determining module is further configured to, according to the first indication information, determine the start time of the persistence timer in the next DRX cycle.
  • the determining module is specifically configured to, according to the configuration information of DRX and the start time offset value of starting the persistence timer, determine the start time of the persistence timer in the next DRX cycle. start time.
  • a communication device configured to perform the beneficial effect in the description of the second aspect, which will not be repeated here.
  • the communication device has the function of implementing the actions in the method example of the second aspect above.
  • the functions described above may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the communication device includes: a determining module, configured to determine at least one first physical downlink control channel PDCCH candidate position according to a search space set of a first search space set group SSSG.
  • the transceiver module is configured to send at least one piece of first control information to the terminal equipment at the first PDCCH candidate position during the running of the timer in the discontinuous reception DRX cycle.
  • the determining module is further configured to determine at least one second PDCCH candidate position according to the search space set of the second SSSG.
  • the transceiver module is further configured to use the first control information to schedule newly transmitted data, and to send at least one first PDCCH to the terminal device at the second PDCCH candidate position during the running of the inactive timer in the DRX cycle.
  • the period of the first PDCCH is greater than the period of the second PDCCH and/or the duration of the search space set in the first SSSG is shorter than the duration of the search space set in the second SSSG.
  • the determining module is further configured to determine at least one third PDCCH candidate position according to the search space set of the second SSSG.
  • the transceiver module is further configured to, during the operation of the persistence timer in the DRX cycle, send at least one third control information to the terminal device at the third PDCCH candidate position, and the time for sending the first control information It is different from the time when the third control information is sent.
  • the transceiver module is further configured to send first configuration information to the terminal device, where the first configuration information includes at least one of the following: start time for monitoring the first PDCCH, The time length for monitoring the first PDCCH, the start time for monitoring the third PDCCH, or the time length for monitoring the third PDCCH.
  • the determining module is further configured to: determine the starting time of the i-th DRX cycle and/or the starting time of the persistence timer in the i-th DRX cycle according to the DRX configuration information.
  • start time, i is a positive integer.
  • the first parameter m is the number of DRX cycles intervals between the start time of the periodic adjustment DRX cycle and/or the first parameter m is the periodic adjustment DRX cycle
  • the second parameter T is an offset value for adjusting the start time of the DRX cycle and/or adjusting the start of the persistence timer in the DRX cycle
  • the offset value of the start time of , m is a positive integer.
  • the first parameter m and the second parameter T determine the start time of the i+m DRX cycle and/or the duration in the i+m DRX cycle The start time for the timer to start.
  • the first parameter m is related to the size of the DRX cycle and the size of the data transmission cycle.
  • the second parameter T is related to the size of the DRX cycle and the size of the data transmission cycle, and/or, the second parameter T is related to the number of DRX cycle adjustments.
  • the determining module is further configured to determine first indication information, where the first indication information is used to indicate the start time of the persistence timer in the next DRX cycle and/or the next The starting time offset value of starting the persistence timer in the DRX cycle.
  • the transceiver module is further configured to send the first indication information to the terminal device within the activation time of the DRX cycle.
  • a communication device is provided, and the beneficial effects may refer to the description of the third aspect, which will not be repeated here.
  • the communication device has the function of implementing the actions in the method example of the third aspect above.
  • the functions described above may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the communication device includes: a determining module, configured to: determine the start time of the i-th discontinuous reception DRX cycle and/or the i-th DRX cycle according to the obtained DRX configuration information
  • the start time of the internal duration timer, i is a positive integer.
  • the first parameter m is the number of DRX cycles intervals between the start time of the periodic adjustment DRX cycle and/or the first parameter m is the periodic adjustment DRX cycle
  • the second parameter T is an offset value for adjusting the start time of the DRX cycle and/or adjusting the start of the persistence timer in the DRX cycle
  • the offset value of the start time of , m is a positive integer.
  • the first parameter m and the second parameter T determine the start time of the i+m DRX cycle and/or the duration in the i+m DRX cycle The start time for the timer to start.
  • the first parameter m is related to the size of the DRX cycle and the size of the data transmission cycle.
  • the second parameter T is related to the size of the DRX cycle and the size of the data transmission cycle, and/or, the second parameter T is related to the number of DRX cycle adjustments.
  • a communication device is provided, and the beneficial effects may refer to the description of the fourth aspect, which will not be repeated here.
  • the communication device has the function of implementing the actions in the method example of the fourth aspect above.
  • the functions described above may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the communication device includes: a determining module, configured to: determine the start time of the i-th DRX cycle and/or the continuous timing in the i-th DRX cycle according to DRX configuration information The start time of the switch on, i is a positive integer.
  • the first parameter m is the number of DRX cycles intervals between the start time of the periodic adjustment DRX cycle and/or the first parameter m is the periodic adjustment DRX cycle
  • the second parameter T is an offset value for adjusting the start time of the DRX cycle and/or adjusting the start of the persistence timer in the DRX cycle
  • the offset value of the start time of , m is a positive integer.
  • the first parameter m and the second parameter T determine the start time of the i+m DRX cycle and/or the duration in the i+m DRX cycle The start time for the timer to start.
  • the first parameter m is related to the size of the DRX cycle and the size of the data transmission cycle.
  • the second parameter T is related to the size of the DRX cycle and the size of the data transmission cycle, and/or, the second parameter T is related to the number of DRX cycle adjustments.
  • a communication device is provided, and the beneficial effects may refer to the description of the fifth aspect, which will not be repeated here.
  • the communication device has the function of implementing the actions in the method example of the fifth aspect above.
  • the functions described above may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the communication device includes: a transceiver module, configured to monitor at least one physical downlink control channel PDCCH and/or receive at least one physical downlink shared channel PDSCH during the active time of the discontinuous reception DRX cycle Data, the control information carried by the at least one PDCCH and/or the data includes first indication information, and the first indication information is used to indicate the start time and/or the start time of the persistence timer in the next DRX cycle The starting time offset value of the persistence timer started in one DRX cycle.
  • a determining module configured to determine, according to the first indication information, the starting time for starting the persistence timer in the next DRX cycle.
  • the determining module is specifically configured to, according to the configuration information of DRX and the start time offset value of starting the persistence timer, determine the start time of the persistence timer in the next DRX cycle. start time.
  • a communication device is provided, and the beneficial effect may refer to the description of the sixth aspect, which will not be repeated here.
  • the communication device has the function of implementing the actions in the method example of the sixth aspect above.
  • the functions described above may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the communication device includes: a determining module, configured to determine first indication information, where the first indication information is used to indicate the start time and start time of the persistence timer in the next discontinuous reception DRX cycle. /or the starting time offset value of starting the persistence timer in the next DRX cycle.
  • the transceiver module is configured to send at least one piece of control information and/or at least one piece of data to the terminal device within the activation time of the DRX cycle, where the control information and/or the data include the first indication information.
  • a communication device is provided, and the communication device may be the terminal device in the above method embodiment, or a chip provided in the terminal device.
  • the communication interface and the processor of the communication device may optionally further include a memory.
  • the memory is used to store computer programs or instructions, and the processor is coupled to the memory and the communication interface.
  • the communication device executes the method performed by the terminal device in the above method embodiments.
  • a communication device is provided, and the communication device may be the network device in the above method embodiment, or a chip set in the network device.
  • the communication device includes a communication interface and a processor, and optionally, a memory.
  • the memory is used to store computer programs or instructions
  • the processor is coupled to the memory and the communication interface.
  • the communication device executes the method performed by the network device in the above method embodiments.
  • a fifteenth aspect provides a computer program product containing instructions, the computer program product including: computer program code, when the computer program code runs, the method performed by the terminal device in the above aspects is executed.
  • a sixteenth aspect provides a computer program product, the computer program product including: computer program code, when the computer program code is executed, the method performed by the network device in the above aspects is executed.
  • the present application provides a system-on-a-chip, where the system-on-a-chip includes a processor, configured to implement functions of the terminal device in the methods in the above aspects.
  • the chip system further includes a memory, configured to store program instructions and/or data.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • the present application provides a system-on-a-chip, where the system-on-a-chip includes a processor, configured to implement the functions of the network device in the methods of the foregoing aspects.
  • the chip system further includes a memory, configured to store program instructions and/or data.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • a computer-readable storage medium where a computer program is stored in the computer-readable storage medium, and when the computer program is run, the method executed by the terminal device in the above aspects is realized.
  • the present application provides a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when the computer program is executed, the method performed by the network device in the above aspects is realized.
  • FIG. 1 is a schematic diagram of a video frame arriving at a network device early or arriving late.
  • Fig. 2 is a schematic diagram of a group of candidate PDCCHs.
  • FIG. 3 is a schematic diagram of a C-DRX cycle.
  • Fig. 4 is a schematic diagram showing the relationship between onDurationTimer and drx-SlotOffset and drx-StartOffset.
  • Figure 5 is a schematic diagram of two different sets of SSSGs.
  • FIG. 6 is a schematic diagram of delayed arrival of video frames.
  • Fig. 7 is a schematic diagram of a network device sending video frames according to a DRX cycle.
  • Figure 8 is a schematic diagram of dividing the DRX cycle into four non-overlapping patterns.
  • FIG. 9 is a schematic flowchart interaction diagram of an information monitoring method proposed in an embodiment of the present application.
  • Fig. 10 is a schematic diagram of monitoring different PDCCHs respectively in the first time period and the third time period during the running of the persistence timer.
  • FIG. 11 is another schematic diagram of monitoring different PDCCHs according to different SSSGs in the first time period and the third time period respectively during the running of the persistence timer.
  • FIG. 12 is a schematic diagram of adjusting the start time of the persistence timer in the i+m th DRX cycle.
  • FIG. 13 is a schematic diagram of adjusting the start time of the persistence timer in the next DRX cycle.
  • FIG. 14 is a schematic flowchart interaction diagram of another information monitoring method proposed in the embodiment of the present application.
  • FIG. 15 is a schematic flowchart interaction diagram of another information monitoring method proposed by the embodiment of the present application.
  • FIG. 16 to FIG. 21 are schematic block diagrams of communication devices according to embodiments of the present application.
  • Fig. 22 is a schematic block diagram of a communication device according to an embodiment of the present application.
  • Fig. 23 is a schematic structural diagram of a simplified communication device according to an embodiment of the present application.
  • FIG. 24 is a schematic structural diagram of a simplified terminal device according to an embodiment of the present application.
  • the embodiments of the present application can be applied to various communication systems, such as a wireless local area network system (wireless local area network, WLAN), a narrowband Internet of Things system (narrow band-internet of things, NB-IoT), a global system for mobile communications (global system for mobile communications, GSM), enhanced data rate for GSM evolution system (enhanced data rate for gsm evolution, EDGE), wideband code division multiple access system (wideband code division multiple access, WCDMA), code division multiple access 2000 system (code division multiple access, CDMA2000), time division-synchronization code division multiple access system (time division-synchronization code division multiple access, TD-SCDMA), long term evolution system (long term evolution, LTE), satellite communication, fifth generation (5th generation, 5G) systems or new communication systems that will appear in the future.
  • WLAN wireless local area network
  • NB-IoT narrowband Internet of Things system
  • GSM global system for mobile communications
  • GSM global system for mobile communications
  • enhanced data rate for GSM evolution system enhanced data rate for
  • a communication system applicable to this application includes one or more sending ends and one or more receiving ends.
  • the signal transmission between the sending end and the receiving end may be transmitted through radio waves, or may be transmitted through transmission media such as visible light, laser, infrared, and optical fiber.
  • one of the sending end and the receiving end may be a terminal device, and the other may be a network device.
  • both the sending end and the receiving end may be terminal devices.
  • the terminal devices involved in the embodiments of the present application may include various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices or other processing devices connected to wireless modems.
  • the terminal can be a mobile station (mobile station, MS), a subscriber unit (subscriber unit), a user equipment (user equipment, UE), a cellular phone (cellular phone), a smart phone (smart phone), a wireless data card, a personal digital assistant ( personal digital assistant (PDA) computer, tablet computer, wireless modem (modem), handheld device (handset), laptop computer (laptop computer), machine type communication (machine type communication, MTC) terminal, etc.
  • MS mobile station
  • subscriber unit subscriber unit
  • UE user equipment
  • cellular phone cellular phone
  • smart phone smart phone
  • PDA personal digital assistant
  • modem modem
  • handheld device handset
  • laptop computer laptop computer
  • machine type communication machine type communication
  • the network device may be an evolved Node B (evolved Node B, eNB), a radio network controller (radio network controller, RNC), a Node B (Node B, NB), a base station controller (base station controller, BSC) ), base transceiver station (base transceiver station, BTS), home base station (home evolved NodeB, or home Node B, HNB), baseband unit (baseband unit, BBU), wireless fidelity (wireless fidelity, WIFI) system in the connection Access point (access point, AP), wireless relay node, wireless backhaul node, transmission point (transmission point, TP) or transmission and reception point (transmission and reception point, TRP), etc., can also be a new air interface (new radio, A gNB or transmission point (for example, TRP or TP) in NR), one or a group (including multiple) antenna panels of a base station in NR, or a network node constituting a gNB or a transmission point, such as
  • the BBU can be integrated with a radio frequency unit (Radio Frequency Unit, RFU) in the same device, and the device is connected to the antenna array through a cable (such as but not limited to a feeder).
  • RFU Radio Frequency Unit
  • the BBU can also be set separately from the RFU, and the two are connected through an optical fiber, and communicate through, for example but not limited to, a common public radio interface (CPRI) protocol.
  • CPRI common public radio interface
  • RFU is usually called RRU (remote radio unit, radio frequency remote unit), which is connected to the antenna array through cables.
  • the RRU can also be integrated with the antenna array, for example, active antenna unit (active antenna unit, AAU) products currently on the market adopt this structure.
  • the BBU can be further decomposed into multiple parts.
  • the BBU can be further subdivided into a centralized unit (centralized unit, CU) and a distributed unit (distributed unit, DU) according to the real-time nature of the service being processed.
  • CU is responsible for processing non-real-time protocols and services
  • DU is responsible for processing physical layer protocols and real-time services.
  • some physical layer functions can be separated from the BBU or DU and integrated in the AAU.
  • Extended reality (extended reality, XR) and cloud gaming (cloud gaming, CG) are important application scenarios of 5G.
  • XR is a general term for different types of reality, which refers to the combination of reality and virtual environment and human-computer interaction generated by computers or wearable devices.
  • the types of XR include augmented reality (AR), mixed reality (mixed reality, MR) and virtual reality (virtual reality, VR).
  • XR and CG services are transmitted in the form of video frames.
  • a video frame can also be called a scene frame or a slice.
  • the information contained in a video frame constitutes a picture , frame rate (frame per second, FPS) indicates the number of video frames generated per second, usually, the frame rate of XR and CG services can be 30FPS, 60FPS, 90FPS or 120FPS, etc., for example, 60FPS means that 60 video frames are generated per second .
  • the transmission process of XR and CG service data is roughly as follows: the XR or CG server performs logical calculation, content rendering, encoding and other processing on the video frame, and then sends it to the core network device, and the core network device transmits the video frame to the radio access network (radio access network, RAN) device, and then the radio access network device transmits to the UE through the air interface.
  • the size of the video frame is not fixed, and the size of different video frames can be changed.
  • a video frame can be divided into one or more Internet protocol (internet protocol, IP) packets (packets) for transmission.
  • IP Internet protocol
  • an IP packet may be divided into multiple transport blocks (transport block, TB) and transmitted to the UE through the air interface.
  • transport block transport block
  • one TB occupies one time slot (slot) or several symbols (symbols) in one time slot, and one TB can also be sent repeatedly in multiple time slots or different symbols.
  • XR service and the CG service Another characteristic of the XR service and the CG service is that the time when video frames arrive at the network device is quasi-periodic. Its period is the reciprocal of the frame rate, that is, 1/FPS. Taking 60FPS as an example, the period is 1/60 second, which is approximately equal to 16.67 milliseconds (ms). Quasi-periodic means that the video frames between the network device and the UE are not transmitted strictly according to the period, but fluctuate within a certain time range, which is caused by factors such as rendering, encoding, and core network.
  • FIG. 1 it shows a schematic diagram of a video frame arriving at a network device early or arriving at a network device late.
  • different video frames may arrive at the network device in advance, or arrive at the network device in a delayed manner.
  • the time jitter statistically obeys a certain probability distribution. For example, it obeys a Gaussian distribution with a mean value of 0 and a variance of 2.
  • the jitter range is [-4,4] ms. A negative value indicates that the video frame arrives early, and a positive value indicates that the video frame Frames arrive late.
  • XR and CG application scenarios saving power consumption of terminal equipment is an important aspect to improve user experience. Since the XR/CG service is quasi-periodic, there is not always data transmission. If the terminal device receiving the XR/CG service is in the state of monitoring the physical downlink control channel (PDCCH) for a long time, it will cause the terminal device The power consumption is too high.
  • PDCCH physical downlink control channel
  • the terminal equipment needs to blindly detect the PDCCH to obtain the scheduling information of uplink data/downlink data, and perform physical downlink shared channel (physical downlink shared channel, PDSCH) reception or physical uplink shared channel (physical uplink shared channel) according to the scheduling information carried by the PDCCH channel, PUSCH), if the network device does not need to perform data scheduling and the network device does not send the PDCCH to the UE, then for the terminal device, blind detection of the PDCCH will cause waste of power consumption.
  • physical downlink shared channel physical downlink shared channel, PDSCH
  • physical uplink shared channel physical uplink shared channel
  • the monitoring mechanism of the PDCCH and the existing methods for reducing the power consumption of the terminal equipment are briefly introduced.
  • One of the functions of the PDCCH is to carry uplink scheduling information or downlink scheduling information.
  • the UE needs to monitor the PDCCH periodically to obtain the scheduling information, and the period may be one time slot. If it is detected that the PDCCH has scheduling information, for the downlink scheduling information, the UE can receive data through the PDSCH according to the scheduling information; for the uplink scheduling information, the UE can send data through the PUSCH according to the scheduling information.
  • the PDCCH can also be used to carry information such as an uplink power control command word and a time slot format.
  • the PDCCH carrying different control information may use different radio network temporary identifiers (radio network temporary identifier, RNTI) for scrambling.
  • a search space set (search space set, SS set) can be used to define a group of candidate PDCCHs (PDCCH candidates), as shown in FIG. 2 , which shows a schematic diagram of a group of candidate PDCCHs.
  • the network device can configure at least one search space set (search space set, SS set) for the UE.
  • UE monitors PDCCH based on SS set. For example, the UE monitors the PDCCH according to the configuration information of the SS set.
  • the configuration information of each SS set may include at least one of the following parameters:
  • the control resource set (CORESET) identifier associated with the SS set wherein, CORESET represents a time-frequency resource set for carrying PDCCH, and a CORESET consists of several continuous or discontinuous
  • the resource block (resource block, RB) consists of one or more consecutive symbols in the time domain.
  • the UE can monitor the PDCCH on the CORESET associated with the SS set according to the parameters of the SS set, such as the monitoring period, offset or monitoring pattern.
  • In-slot PDCCH monitoring pattern (pattern), or called in-slot PDCCH monitoring symbol, is used to instruct the CORESET associated with the SS set to monitor the start symbol of PDCCH in a time slot.
  • pattern Identified by a 14-bit bitmap, the highest bit indicates the first OFDM symbol in the time slot, for example, "10000000000000" indicates that the first OFDM symbol in the time slot is the start symbol of monitoring PDCCH in the time slot, and the symbol of monitoring PDCCH
  • the length is determined by the symbol length of the CORESET associated with this SS set.
  • Ts is used to indicate the number of consecutive time slots in which the SS set appears.
  • Ts is less than or equal to Ks, and the value of Ts may be 1 time slot.
  • it can be understood as the number of time slots that continuously monitor the PDCCH within the PDCCH monitoring period Ks.
  • SS set type indication used to indicate that the SS set is a common search space set (common search space set, CSS set), which can be referred to as CSS, or a user-specific search space set (UE-specific search space set, USS set), which can be referred to as USS for short.
  • the network device will also configure the downlink control information (downlink control information, DCI) format (format) monitored at the PDCCH candidate position, for example, it can be DCI format 0_0, DCI format 1_0, DCI Format 2_0, DCI format 2_1, DCI format 2_2, DCI format 2_3, DCI format 2_4, DCI format 2_5 or DCI format 2_6, etc.
  • DCI downlink control information
  • the network device will also configure the DCI format monitored at the PDCCH candidate position, for example, it can be DCI format 0_0, DCI format 1_0, DCI format 0_1, DCI format 1_1, DCI format 0_2, DCI format 1_2, DCI format 3_0, or DCI format 3_1, etc.
  • the UE can determine the PDCCH monitoring occasion (monitoring occasion, MO)/PDCCH candidate position according to the PDCCH monitoring cycle, offset, and PDCCH monitoring pattern in the time slot in the above parameters, as shown in FIG. 2 .
  • the UE monitors the PDCCH means that the UE monitors the PDCCH at a PDCCH candidate position.
  • C-DRX Connected mode discontinuous reception
  • C-DRX represents the DRX mechanism in the connected state, so it can also be abbreviated as DRX in the connected state.
  • the terminal device can periodically turn on the receiver to monitor the PDCCH according to the DRX cycle configured by the network device, as shown in FIG. 3 , which shows a schematic diagram of a C-DRX cycle.
  • a DRX cycle usually includes two time periods: active time and non-active time. The terminal device monitors the PDCCH at the timing of PDCCH monitoring during the active time, and can be in a dormant state during the non-active time without monitoring the PDCCH, thereby saving terminal power consumption.
  • the C-DRX mechanism is mainly used to control the PDCCH scrambled by the following RNTIs: cell radio network temporary identifier (cell-RNTI, C-RNTI), cancellation indication RNTI (cancellation indication-RNTI, CI-RNTI), configuration Scheduling RNTI (configured scheduling-RNTI, CS-RNTI), interrupt RNTI (interruption-RNTI, INT-RNTI), slot format indication RNTI (slot format indication-RNTI, SFI-RNTI), semi-persistent channel state information RNTI (semi -persistent-channel state information-RNTI, SP-CSI-RNTI), physical uplink control channel transmit power control RNTI (transmit power control-physical uplink control channel-RNTI, TPC-PUCCH-RNTI), physical uplink shared channel transmit power control RNTI (transmit power control-PUSCH-RNTI, TPC-PUSCH-RNTI), sounding reference channel transmission power control control RNTI (transmit power control-sounding reference signal
  • system information RNTI system information-RNTI, SI-RNTI
  • random access RNTI random access-RNTI
  • RA-RNTI random access-RNTI
  • message B RNTI messages B-RNTI
  • MsgB-RNTI temporary cell RNTI
  • temporary cell RNTI temporary cell -RNTI, TC-RNTI
  • the activation time includes at least the running time of the on-duration timer (drx-onDurationTimer).
  • the network device can configure the length of drx-onDurationTimer to the terminal device through radio resource control (radio resource control, RRC) signaling.
  • radio resource control radio resource control
  • the DRX cycle may include a long discontinuous reception cycle (Long DRX cycle) and a short discontinuous reception cycle (short DRX cycle), where the short DRX cycle is an optional configuration.
  • DRX cycle can be Long DRX cycle or short DRX cycle.
  • the network device will also configure the parameter drx-LongCycle of the length of the Long DRX cycle and the parameter drx-StartOffset used to determine the subframe at which the DRX cycle starts, and the subframe at which the DRX cycle starts.
  • the parameter drx-SlotOffset of the time offset before opening drx-onDurationTimer in the frame. If the Long DRX cycle is used, when the subframe number (subframe number) satisfies the following formula (1), the terminal starts drx-onDurationTimer (hereafter abbreviated as onDurationTimer):
  • SFN is the system frame number
  • modulo means the modulo operation.
  • a system frame may also be called a radio frame, and a radio frame is 10 ms, and a radio frame may be composed of multiple subframes (subframes), and each subframe is composed of one or more time slots. That is, the onDurationTimer is turned on after the start subframe of the Long DRX cycle is delayed by drx-SlotOffset, as shown in FIG. 4 , which shows a schematic diagram of the relationship between onDurationTimer and drx-SlotOffset and drx-StartOffset.
  • the terminal device starts drx-onDurationTimer:
  • the time position at which the terminal device periodically turns on the onDurationTimer is fixed, and the time position of the onDurationTimer cannot be dynamically adjusted in real time.
  • the activation time may also include: discontinuous reception-inactivity timer (drx-InactivityTimer), discontinuous reception-downlink (downlink, DL) retransmission timer (drx- RetransmissionTimerDL), and the running time of discontinuous reception-uplink (uplink, UL) retransmission timer (drx-RetransmisionTimerUL).
  • drx-InactivityTimer is referred to as InactivityTimer
  • drx-RetransmissionTimerDL is referred to as RetransmissionTimerDL
  • drx-RetransmissionTimerUL is referred to as RetransmissionTimerUL.
  • the C-DRX parameters configured by the network device to the terminal device through RRC signaling may be specifically shown in Table 1.
  • the trigger conditions for enabling drx-InactivityTimer, drx-RetransmissionTimerDL, and drx-RetransmissionTimerUL are described in Table 1, that is, these three timers will only start when there is data transmission.
  • the activation time may also include: during the operation of the random access-conflict resolution timer (ra-ContentionResolutionTimer) or the message B-response window (msgB-response window); after the UE sends a scheduling request (scheduling request, SR) on the PUCCH Waiting (pending) period: UE has not received the PDCCH indicating new transmission after successfully receiving the random access response (random access response, RAR) based on non-contention random access.
  • ra-ContentionResolutionTimer the message B-response window
  • SR scheduling request
  • PUCCH Waiting (pending) period UE has not received the PDCCH indicating new transmission after successfully receiving the random access response (random access response, RAR) based on non-contention random access.
  • a network device can configure multiple SS sets for a bandwidth part (BWP), and these SS sets can be grouped, and specifically can be divided into two groups (group) or more groups.
  • group For example, if the SS set is divided into two groups, SSSG, for example, in the configuration information of the SS set, it can be configured whether the SS set belongs to the first group, such as SSSG0, or the second group, such as SSSG1. It is also possible to allow one SS set to belong to multiple SSSGs, that is, both SSSG0 and SSSG1.
  • the UE only needs to monitor the PDCCH according to one of the SSSG SS sets.
  • each SSSG can realize the PDCCH monitoring timing with different sparseness.
  • FIG. 5 schematic diagrams of two sets of different SSSGs are shown.
  • the SS sets associated with different SSSGs can have different PDCCH monitoring opportunities (candidate positions).
  • the PDCCH monitoring opportunities in the SSSG to which the UE switches are relatively sparse, for example, SSSG 0 in Figure 5, the UE monitors according to the SS set belonging to SSSG 0
  • the PDCCH does not need to monitor the PDCCH according to the SS set belonging to SSSG 1. Since the PDCCH monitoring timing of the SS set belonging to SSSG 0 is relatively sparse, the purpose of saving power consumption can be achieved.
  • the network device and the UE can dynamically switch the SSSG, and can explicitly indicate the SSSG switching through the bit field in the DCI or the DCI implicitly indicate the SSSG switching.
  • the two groups of SSSG are SSSG 0 and SSSG 1 respectively.
  • the explicit indication of the bit field in the DCI may include: when the bit field indication in the DCI is "0", the UE switches to SSSG 0, that is, monitors the PDCCH according to the SS set of SSSG 0, and stops monitoring the PDCCH according to the SS set of SSSG 1; When the field indicates "1", the UE switches to SSSG 1, that is, monitors the PDCCH according to the SS set of SSSG1. vice versa.
  • the DCI implicit indication may include: if the UE is monitoring the PDCCH according to the SS set in the SSSG with sparse PDCCH listening opportunities, when the UE detects any DCI format (format), or detects a specific DCI format, the UE is sparse from the PDCCH listening opportunities.
  • the SSSG switches to the dense SSSG at the time of PDCCH monitoring.
  • the UE can also switch SSSG automatically after a period of time. For example, the UE monitors the PDCCH according to the SS set belonging to SSSG 0. After a period of time, the UE switches to SSSG 1, and vice versa. A period of time can be realized by a timer.
  • the UE monitors the PDCCH according to the SS set belonging to SSSG 0 and starts a timer at the same time. When the timer expires, the UE monitors the PDCCH according to the SS set belonging to SSSG 1.
  • XR/CG services have low latency and high reliability requirements.
  • the C-DRX mechanism needs to be configured with a longer onDurationTimer running time to cover XR/CG
  • FIG. 6 a schematic diagram of delayed arrival of video frames is shown. Since the video frame arrives late, and the UE needs to perform PDCCH blind detection when the onDuration Timer (onDurationTimer) is started, power consumption will be wasted.
  • the period of the XR/CG service is the reciprocal of the frame rate.
  • the period of the XR/CG service is usually a non-integer number. For example, if the frame rate is 60FPS, the corresponding period is about 16.67ms; if the frame rate is 120FPS, the corresponding period is about 8.33ms. Since the DRX cycle is usually an integer, it is difficult to match the cycle of the XR/CG service with the DRX cycle without considering the time jitter. As shown in FIG. 7 , it shows a schematic diagram of a network device sending video frames according to a DRX cycle.
  • the DRX cycle is divided into several non-overlapping patterns (patterns), that is, there are N kinds of patterns, where N satisfies the following formula (3), if not divisible, you can Round up or down. .
  • patterns there are 4 patterns, that is, there are 4 kinds of drx-StartOffset; the network device can indicate which pattern the subsequent DRX cycle adopts through DCI.
  • FIG. 8 it shows a schematic diagram of dividing the DRX cycle into four non-overlapping patterns.
  • the embodiment of the present application proposes an information monitoring method, which can save power consumption of the terminal device.
  • FIG. 9 a schematic flowchart interaction diagram of a method 900 for information monitoring proposed by the embodiment of the present application is shown.
  • the network device can be configured with C-DRX parameters, configuration information of the search space set SS set, and grouping information of the SS set.
  • the C-DRX parameter can be understood as DRX configuration information.
  • the network device in this embodiment of the present application may be a base station.
  • C-DRX parameters include parameters in Table 1.
  • the network device determines at least one first PDCCH candidate position according to the search space set of the first SSSG.
  • the network device determines the running time of the persistence timer in the DRX cycle according to the C-DRX parameter. During the running of the determined duration timer in the DRX cycle, the network device may send at least one piece of first control information to the terminal device at the first PDCCH candidate position.
  • control information may be DCI, which is used to schedule data carried by PDSCH or PUSCH. It should be understood that the step of the network device determining the running time of the persistence timer in the DRX cycle (ie 920) and the step of determining at least one first PDCCH candidate position (ie 910) may not be sequenced.
  • the terminal device determines at least one first PDCCH candidate position according to the search space set of the first SSSG. Wherein, there may be one or more search space sets belonging to the first SSSG.
  • the terminal device determines the running time of the persistence timer in the DRX cycle according to the C-DRX parameter. During the duration of the running timer in the DRX cycle, the terminal device monitors the first PDCCH at the first PDCCH candidate position.
  • the first PDCCH may be used to carry first control information. It should be understood that the step of the terminal device determining the running time of the persistence timer in the DRX cycle and the step of determining at least one first PDCCH candidate position may not be sequenced.
  • 910 and 920 may be in no particular order, and 930 and 940 may also be in no particular order. Besides, 930 and 940 may be performed before 910, or 910, 920 and 930, 940 may be performed simultaneously. This embodiment of the present application does not limit it.
  • step 920 and step 940 the method for determining the running time of the persistence timer in the DRX cycle can be determined by formula (1) or formula (2) introduced above.
  • the network device determines at least one second PDCCH candidate position according to the search space set of the second SSSG.
  • the network device starts an inactive timer, and during the running of the inactive timer, the network device sends at least one second PDCCH candidate position to the terminal device control information.
  • the first control information may be control information for scheduling newly transmitted data, or control information for scheduling retransmitted data, or control information for indicating non-scheduled data, such as group common DCI . It should be understood that the steps of starting the inactivity timer and determining at least one second PDCCH candidate position by the network device may not be sequenced.
  • the network device Before 910, the network device also configures the configuration information of the search space set SS set and the grouping information of the SS set, that is, SSSG, to the terminal device.
  • the configuration information of SS set please refer to the above.
  • the index of SSSG can also be configured to indicate the SSSG to which the SS set belongs.
  • the PDCCH period of the search space set of the first SSSG is greater than the PDCCH period of the search space set of the second SSSG.
  • the duration of the search space set (SS set duration) in the first SSSG is less than the duration of the search space set in the second SSSG, wherein the duration of the search space set can be understood as within each PDCCH monitoring period of the search space set The number of time slots for continuously monitoring the PDCCH; or,
  • the bandwidth of the CORESET associated with the search space set of the first SSSG is smaller than the bandwidth of the CORESET associated with the search space set of the second SSSG; or,
  • the number of PDCCH candidates in the search space set of the first SSSG is smaller than the number of PDCCH candidates in the search space set of the second SSSG.
  • the type of aggregation level in the search space set of the first SSSG is smaller than the type of aggregation level in the search space set of the first SSSG, or, under the same aggregation level, the number of PDCCH candidates corresponding to the aggregation level in the search space set of the first SSSG
  • the number is less than the number of PDCCH candidates corresponding to the aggregation level in the search space set belonging to the second SSSG, or the number of PDCCH candidates at the PDCCH candidate position determined by the search space set of the first SSSG is less than the number of PDCCH candidates determined by the search space of the second SSSG
  • the intra-slot PDCCH monitoring patterns of the search space set of the first SSSG are less than the intra-slot PDCCH monitoring patterns of the search space set of the second SSSG.
  • the PDCCH monitoring pattern in the slot of the search space set of the first SSSG is only located at the start symbol of the slot, and the PDCCH monitoring pattern in the slot of the search space set of the second SSSG can be located in any symbol in the slot, that is, the first
  • the PDCCH candidate start positions of the SSSG search space set are located at the start symbol of the slot, while the PDCCH candidate start positions of the second SSSG search space set are multiple and located in different symbols within the slot.
  • the search space set of the first SSSG may be a subset of the search space set of the second SSSG.
  • the starting time for starting the inactive timer is determined according to the sending time of the first control information for scheduling newly transmitted data. Therefore, the running time of the inactive timer and the running time of the persistent timer can be partially overlapped, that is, two timers can be run at the same time; the running time of the inactive timer and the running time of the persistent timer can also be non-overlapping of.
  • the terminal device determines at least one second PDCCH candidate position according to the search space set of the second SSSG. Among them, there may be one or more SS sets belonging to the second SSSG.
  • the terminal device monitors the first control information for scheduling newly transmitted data on the first PDCCH
  • the terminal device monitors the second PDCCH at the second PDCCH candidate position while the inactivity timer is running, that is, the The terminal device detects at least one piece of second control information at a second PDCCH candidate position.
  • the terminal device when the terminal device monitors the first control information for scheduling newly transmitted data on the first PDCCH, the terminal device starts the inactive timer, and during the running of the inactive timer, at the second PDCCH candidate position Monitor the second PDCCH. It should be understood that the steps of starting the inactivity timer and determining at least one second PDCCH candidate position by the terminal device may not be sequenced.
  • 950 and 960 in the network device and 970 and 980 in the terminal device may not be sequenced.
  • the terminal device when the duration timer starts to run in the DRX cycle, the terminal device monitors the first PDCCH according to at least one first PDCCH candidate position belonging to the search space set of the first SSSG.
  • the terminal device monitors the second PDCCH according to at least one second PDCCH candidate position belonging to the search space set of the second SSSG .
  • the terminal device Before receiving the first control information for scheduling newly transmitted data, the terminal device monitors the first PDCCH according to the first PDCCH candidate position with a larger monitoring period or a smaller CORESET bandwidth, which can reduce the power consumption of the terminal device; when When receiving the first control information for scheduling newly transmitted data, the terminal device monitors the second PDCCH according to the second PDCCH candidate position with a shorter monitoring period or a smaller CORESET bandwidth, which can reduce data transmission delay.
  • the terminal device may use the search space set in the second SSSG to monitor the PDCCH, that is, use a smaller PDCCH period to monitor the PDCCH, but the time when the data arrives at the network device is shorter than when the persistent timer is started.
  • the technical solution provided by the present application can prevent the terminal equipment from monitoring the PDCCH with a smaller PDCCH monitoring period during the operation of the continuous timer in the DRX cycle, and can reduce the power consumption of the terminal equipment.
  • the terminal device monitors the control information of the scheduling data, it can be considered that the network device has data to be transmitted, and the UE monitors the PDCCH with a smaller PDCCH monitoring period, so that the data transmission can be completed as soon as possible.
  • the network device may determine at least one third PDCCH candidate position according to the search space set of the second SSSG.
  • the network device may send the third control information to the terminal device at the third PDCCH candidate position.
  • the time for sending the third control information is different from the time for sending the first control information. It should be understood that, during the running of the timer in the DRX cycle, the time range for monitoring the PDCCH by using the search space set of the second SSSG is different from the time range for monitoring the PDCCH by using the search space set of the first SSSG.
  • the terminal device may determine at least one third PDCCH candidate position according to the search space set of the second SSSG; during the continuous timer running in the DRX cycle, the terminal device monitors the third PDCCH at the third PDCCH candidate position, that is, the terminal The device detects at least one piece of third control information at a third PDCCH candidate position.
  • the time for the terminal device to monitor the first PDCCH is different from the time for the terminal device to monitor the third PDCCH.
  • the time range for the terminal device to monitor the first PDCCH according to the first PDCCH candidate position is different from the time range for the terminal device to monitor the third PDCCH according to the third PDCCH candidate position.
  • the time frame of the second SSSG is different from the time frame of the first SSSG.
  • the time for monitoring the first PDCCH can be called the first time period, that is, the time period for monitoring the first PDCCH according to the SS set of the first SSSG, and the time for monitoring the third PDCCH can be called the third time period, that is, according to the second
  • the SS set of the SSSG monitors the time period of the third PDCCH.
  • the running period of the duration timer in the DRX cycle includes a first time period and a third time period, and the first time period and the third time period are different time periods.
  • the terminal device monitors the first PDCCH according to the SS set of the first SSSG in the first time period, and monitors the third PDCCH according to the SS set of the second SSSG in the third time period.
  • the time jitter of XR/CG data transmission obeys a certain probability distribution, where the first time period can be the time period when there is no data transmission or less data transmission, and the third time period can be the time period when there is data transmission or less data transmission.
  • Multiple time periods for example, the first time period may be a time period when XR/CG service data does not arrive, and the third time period may be a time period when XR/CG service data arrives.
  • the first time period and the third time period may be predefined, or may be configured by the network device to the terminal device.
  • the start time and/or time length of the first time period and the start time and/or time length of the third time period may be predefined or configured by the network device.
  • the network device sends the first configuration information to the terminal device, and the first configuration information includes at least one of the following: the start time of monitoring the first PDCCH, the time length of monitoring the first PDCCH, the start time of monitoring the third PDCCH start time, or the length of time for monitoring the third PDCCH.
  • the start time of monitoring the first PDCCH, the time length of monitoring the first PDCCH, the start time of monitoring the third PDCCH, and the time length of monitoring the third PDCCH are respectively the start time and the first time period of the first time period.
  • the terminal device may receive first configuration information from the network device.
  • the first configuration information may be included in the C-DRX parameters, or configured separately.
  • the first configuration information may be sent by the network device through RRC signaling, or may be indicated by the DCI sent by the network device in the previous DRX cycle or the MAC CE carried by the PDSCH.
  • the first offset value (offset ), the first offset value may be equal to 0, may be configured by the network device, or may be predefined by the protocol. It is also possible to directly predefine that the start time of monitoring the first PDCCH is the same as the start time of the persistence timer in the DRX cycle.
  • the duration of monitoring the first PDCCH or the duration of monitoring the third PDCCH may be related to the duration timer length or the size of the DRX cycle.
  • the duration of monitoring the first PDCCH may be expressed as delta1*onDurationTimer, where 0 ⁇ delta1 ⁇ 1; or, the time length for monitoring the first PDCCH can also be expressed as delta2*DRX cycle, where delta2 ⁇ 0.
  • the time length for monitoring the third PDCCH can be expressed as delta3*onDurationTimer, where 0 ⁇ delta3 ⁇ 1; or, the time length for monitoring the third PDCCH can also be expressed as delta4*DRX cycle, where delta4 ⁇ 0.
  • the time length for monitoring the first PDCCH does not exceed the running time of the persistence timer.
  • the time length for monitoring the first PDCCH may be equal to the running time of the persistence timer.
  • the time length for monitoring the first PDCCH and the time length for monitoring the third PDCCH may be predefined.
  • the first configuration information received by the terminal device may only include the start time of monitoring the first PDCCH. Since the length of time for monitoring the first PDCCH is predefined, the time for monitoring the first PDCCH can be determined. The time other than the time for monitoring the first PDCCH may be determined as the time for monitoring the third PDCCH.
  • the first configuration information received by the terminal device may only include the start time of monitoring the third PDCCH, and the time during the running of the duration timer other than the time for monitoring the third PDCCH may be determined as the time for monitoring the first PDCCH.
  • the first configuration information received by the terminal device may also include the start time of monitoring the first PDCCH and the start time of monitoring the third PDCCH.
  • the start time of monitoring the first PDCCH may be predefined to be the same as the start time of the duration timer in the DRX cycle, and the first configuration information received by the terminal device may only include the time length of monitoring the first PDCCH, which lasts During the running of the timer, the time other than the time for monitoring the first PDCCH may be determined as the time for monitoring the third PDCCH.
  • the first configuration information received by the terminal device may include the time length for monitoring the first PDCCH and the time length for monitoring the third PDCCH, and the start time for monitoring the third PDCCH may be the end time for monitoring the first PDCCH.
  • FIG. 10 shows a schematic diagram of monitoring different PDCCHs according to different SSSGs in the first time period and the third time period respectively during the running of the persistence timer.
  • the terminal device In the T1 time period (the first time period), the terminal device is in the low power consumption state at the first PDCCH candidate position belonging to the search space set of the first SSSG; in the T2 time period (the third time period), the terminal device In the third PDCCH candidate position belonging to the search space set of the second SSSG, it is in a high power consumption state.
  • the first time period may also be discontinuous, and the third time period may also be discontinuous.
  • FIG. 11 shows another schematic diagram of monitoring different PDCCHs according to different SSSGs in the first time period and the third time period during the running of the persistence timer.
  • the first time period includes non-continuous time periods T1 and T3.
  • T1 and T3 time periods the terminal device is in a low power consumption state at the first PDCCH candidate position belonging to the search space set of the first SSSG; during the T2 time period During the (third time period), the terminal device is in a high power consumption state at the third PDCCH candidate position belonging to the search space set of the second SSSG.
  • the network device may also configure multiple first time periods for the terminal device, and the network device may indicate which first time period to use through a Medium Access Control control element (Medium Access Control control element, MAC CE) or DCI. As shown in Table 2, multiple first time periods configured by the network device to the terminal device are shown.
  • Medium Access Control control element Medium Access Control control element, MAC CE
  • the network device may also configure or indicate a bitmap to the terminal device, each bit in the bitmap corresponds to a time unit, and is used to indicate that the first PDCCH is monitored according to the search space set of the first SSSG within the time unit Or monitor the third PDCCH according to the search space set of the second SSSG.
  • the first time period may be a time period with no data transmission or less data transmission.
  • the terminal device is in the search space belonging to the first SSSG
  • the first PDCCH candidate position of the set monitors the first PDCCH;
  • the third time period may be a time period with data transmission or more data transmission, and in the third time period, the terminal device is in the search space set belonging to the second SSSG
  • the third PDCCH candidate position monitors the third PDCCH. It can prevent the terminal device from monitoring the PDCCH all the time according to the PDCCH candidate position with a shorter monitoring period or a smaller CORESET bandwidth when there is no service transmission or less service transmission, thereby reducing the power consumption of the terminal device.
  • the network device may also configure or indicate a minimum scheduling offset value (minimum scheduling offset) for the terminal device, and the minimum scheduling offset value may include K0min and/or K2min.
  • K0min is used to constrain the DCI carried by PDCCH to schedule PDSCH
  • the time offset value between PDCCH and PDSCH that is, the time offset value between PDCCH and PDSCH is not less than K0min
  • K2min is used to constrain the DCI carried by PDCCH to schedule PUSCH
  • the time offset value between PDCCH and PUSCH that is, the time offset value between PDCCH and PUSCH is not less than K2min.
  • the time offset value may be a time slot offset value
  • the minimum scheduling offset value may be a minimum scheduling time slot offset value.
  • the first SSSG and the second SSSG are respectively associated with a minimum scheduling offset value
  • the network device configures or indicates to the terminal device the first minimum scheduling offset value associated with the first SSSG, and the second minimum scheduling offset value associated with the second SSSG Minimum scheduling offset value.
  • the first scheduling offset value is greater than or equal to the first threshold
  • the first scheduling offset value is the physical downlink shared channel PDSCH or physical downlink shared channel scheduled by the first PDCCH and the first PDCCH.
  • the time offset value between the uplink shared channels PUSCH, wherein the first threshold may be understood as the first minimum scheduling offset value.
  • the second scheduling offset value is greater than or equal to the second threshold, and the second scheduling offset value is the time between the second PDCCH and the PDSCH or PUSCH scheduled by the second PDCCH
  • An offset value, where the first threshold is greater than the second threshold, and the second threshold may be understood as a second minimum scheduling offset value.
  • the third scheduling offset value is greater than or equal to the second threshold, and the third scheduling offset value is the time between the third PDCCH and the PDSCH or PUSCH scheduled by the third PDCCH offset value.
  • the first threshold is greater than 0, and the second threshold is equal to 0.
  • the terminal device When the first threshold is greater than 0, the terminal device does not need to buffer the PDSCH that may exist in the time slot where the PDCCH is located when monitoring the PDCCH, and the terminal device can also relax the PDCCH processing time, that is, the terminal device can reduce the clock frequency and voltage, thereby reducing the power of the terminal device. consumption effect.
  • the network device configures or indicates to the terminal device that the SS set according to the first SSSG is used during the running of the inactive timer.
  • the time period for monitoring the PDCCH in which the terminal device monitors the PDCCH according to the search space set with a larger monitoring period or a smaller CORESET bandwidth, which can reduce power consumption of the terminal device.
  • the terminal device detects the downlink DCI, it starts the HARQ-RTT-TimerDL corresponding to the HARQ process after sending the HARQ feedback. If the HARQ-RTT-TimerDL expires, and the PDSCH of the HARQ process is not decoded correctly, the UE starts the RetransmissionTimerDL corresponding to the HARQ process after the HARQ-RTT-TimerDL expires, and continues to use the first SSSG or the second SSSG in the RetransmissionTimerDL.
  • the search space set of the SSSG monitors the PDCCH.
  • the network device configures or indicates to the terminal device the time period for monitoring the PDCCH according to the SS set of the first SSSG in the HARQ-RTT-TimerDL, and the terminal device is within this time period according to the monitoring cycle.
  • the search space set with a smaller bandwidth of the CORESET monitors the PDCCH, which can reduce the power consumption of the terminal device.
  • the HARQ-RTT of the HARQ process is enabled after sending the transport block on the PUSCH scheduled by the DCI (or sending the transport block for the first time when the transport block is repeatedly sent on the PUSCH) -TimerUL. If the HARQ-RTT-TimerUL expires, start the RetransmissionTimerUL of the corresponding process after the HARQ-RTT-TimerUL expires, and continue to monitor the PDCCH according to the search space set of the first SSSG or the search space set of the second SSSG within the RetransmissionTimerUL.
  • the network device configures or indicates to the terminal device the time period for monitoring the PDCCH according to the SS set of the first SSSG in the HARQ-RTT-TimerUL, and the terminal device is within this time period according to the monitoring cycle.
  • the search space set with a smaller bandwidth of the CORESET monitors the PDCCH, which can reduce the power consumption of the terminal device.
  • the primary cell (PCell) and each secondary cell (SCell) can be configured with a first SSSG and a second SSSG respectively, and can be determined according to the above-mentioned method.
  • the SSSG used to monitor the PDCCH.
  • the UE monitors the PDCCH in the Pcell according to the SS set of the first SSSG
  • the UE monitors the PDCCH in the activated Scell according to the SS set of the first SSSG.
  • the first SSSG on the secondary cell is configured as an SSSG that does not monitor PDCCH.
  • the first SSSG of the secondary cell does not contain any SS set, and there is no opportunity to monitor PDCCH.
  • the Pcell monitors the PDCCH according to the SS set belonging to the first SSSG
  • the UE stops monitoring the PDCCH on the activated Scell, or the UE switches to the first SSSG on the activated Scell.
  • the embodiment of the present application also proposes to dynamically adjust the start time of the DRX cycle and/or the start time of the duration timer in the DRX cycle to avoid the arrival time of the data to be transmitted falling within the DRX inactive time, so as to Reduce the delay of data transmission.
  • the network device may also determine the start time of the i-th DRX cycle and/or the start time of the duration timer in the i-th DRX cycle according to the C-DRX parameter, where i is a positive integer.
  • the network device determines the first parameter m and the second parameter T, where m is a positive integer.
  • the first parameter m may be the number of DRX cycles at which the start time of the DRX cycle is periodically adjusted, and the first parameter m may also be the number of DRX cycles at which the start time of the persistence timer in the DRX cycle is periodically adjusted.
  • the first parameter may also be the number of DRX cycles between the periodic adjustment of the start time of the DRX cycle and the start time of the persistence timer in the DRX cycle.
  • the second parameter T may be an offset value for adjusting the start time of the DRX cycle and/or an offset value for adjusting the start time of the duration timer in the DRX cycle.
  • the network device determines the start time of the i+m DRX cycle and/or the starting time of the persistence timer in the i+m DRX cycle start time.
  • the network device For the i+1th to i+m-1th DRX cycles, the network device also determines the start time of the DRX cycle and the start time of the duration timer in the DRX cycle according to the C-DRX parameters.
  • the network device determines the start time of the DRX cycle and/or the DRX cycle according to the C-DRX parameter, the first parameter m and the second parameter T The start time for the internal duration timer to start.
  • the network device determines the start time and/or Or the start time for the duration timer to start.
  • start time of the DRX cycle may be the same as or different from the start time of the persistence timer in the DRX cycle.
  • the terminal device determines the start time of the i-th DRX cycle and/or the start time of the duration timer in the i-th DRX cycle according to the acquired C-DRX parameters, where i is a positive integer.
  • the terminal device determines a first parameter m and a second parameter T.
  • the first parameter m and the second parameter T may be determined by the network device and sent to the terminal device.
  • the network device may send second configuration information to the terminal device, where the second configuration information includes the first parameter m and the second parameter T; the terminal device may receive the second configuration information from the network device.
  • the first parameter m and the second parameter T may be carried in the same configuration information, or may be carried in different configuration information.
  • the second configuration information and the above-mentioned first configuration information may be carried in the same configuration information, or may be carried in different configuration information.
  • the first parameter m and the second parameter T may also be predefined. According to the C-DRX parameter, the first parameter m and the second parameter T, the terminal device determines the start time of the i+m DRX cycle and/or the start time of the persistence timer in the i+m DRX cycle.
  • the terminal device For the i+1th to i+m-1th DRX cycles, the terminal device also determines the start time of the DRX cycle and the start time of the duration timer in the DRX cycle according to the C-DRX parameters. It can be understood that the terminal device does not adjust the start time of the DRX cycle and the start time of the persistence timer in the DRX cycle.
  • the terminal device determines the start time of the DRX cycle and/or the DRX cycle according to the C-DRX parameter, the first parameter m and the second parameter T The start time for the internal duration timer to start. Wherein, the i+m-th to i+2*m-1 DRX cycles are considered as one adjustment.
  • the terminal device determines the start time and/or Or the start time for the duration timer to start. The i+n*m-th to i+(n+1)*m-1 DRX cycles are considered as one adjustment.
  • the first parameter m is related to the size of the DRX cycle and the size of the data transmission cycle.
  • the first parameter m may be determined according to the size of the DRX cycle and the size of the transmission cycle of XR/CG service data, for example, assuming the difference between the transmission cycle of XR/CG service data minus the size of the DRX cycle is delta, the first parameter m can be determined according to delta, for example, the first parameter m satisfies that m*delta is closest to onDurationTimer and is less than or equal to onDurationTimer, or (m+1)*delta is closest to onDurationTimer and is less than or equal to onDurationTimer, or , (m-1)*delta is closest to onDurationTimer and is less than or equal to onDurationTimer.
  • the second parameter T may be related to the number of DRX cycle adjustments.
  • T may be equal to n*offset1, wherein, n is the number of DRX cycle adjustments since the i-th DRX cycle, offset1 may be an offset value configured or predefined by the network device, for example, offset1 is XR/CG The difference between the transmission period of service data and the size of the DRX period.
  • the second parameter T may be related to the size of the DRX cycle and the size of the data transmission cycle.
  • the second parameter T may be determined according to the size of the DRX cycle and the size of the XR/CG service data transmission cycle, for example , T is the difference between the transmission period of the XR/CG service data minus the size of the DRX period.
  • the second parameter T may also be related to the number of DRX cycle adjustments, the size of the DRX cycle, and the size of the data transmission cycle.
  • FIG. 12 shows a schematic diagram of adjusting the start time of the persistence timer in the i+m th DRX cycle.
  • the start time of the persistence timer in the i+m DRX cycle there are two ways to start the i+m DRX cycle, one is the method 1 in Figure 12, the i+m
  • the start time of the first DRX cycle is the same as the original start time of the i+mth DRX cycle, that is, the start time of the i+mth DRX cycle is not adjusted, and is still determined according to the existing C-DRX parameters.
  • the start time of the i+m DRX cycle and the start of the persistence timer in the i+m DRX cycle The time is the same, which can be understood as adjusting the start time of the persistence timer in the i+m th DRX cycle and the start time of the i+m DRX cycle at the same time. It should be understood that the start time of the persistence timer may be the start subframe or the start time slot.
  • the adjusted start time of the persistence timer in the i+m th DRX cycle is within the time period during which the persistence timer runs in the original i+m th DRX cycle.
  • the original DRX cycle start time and the running time of the persistence timer are determined according to the existing C-DRX parameters. As shown in Figure 12, the start time of the persistence timer in the adjusted i+m DRX cycle does not exceed the time range corresponding to the dotted line, and the time range corresponding to the dotted line is determined according to the existing C-DRX parameters The running time of the continuous timer in the i+m DRX cycle.
  • the network device determines the first indication information, and the first indication information may be used to indicate the start time of the start of the persistence timer of the next DRX cycle and/or the start of the persistence timer of the next DRX cycle The starting time offset value for .
  • the network device sends at least one piece of control information and/or at least one piece of data to the terminal device during the activation time of the DRX cycle, where the control information and/or data include the first indication information.
  • the start time offset value may be an offset value other than drx-StartOffset and drx-SlotOffset, or an offset of the parameter drx-StartOffset or drx-SlotOffset.
  • the first indication information may also be used to indicate the start time of the next DRX cycle and/or the start time offset value of the next DRX cycle.
  • the first indication information may be included in at least one of the following information: the first control information, the second control information, the third control information, the MAC CE carried by the PDSCH scheduled by the first control information, and the MAC CE carried by the PDSCH scheduled by the second control information.
  • the MAC CE carried by the PDSCH and the MAC CE carried by the PDSCH scheduled by the third control information may be included in at least one of the following information: the first control information, the second control information, the third control information, the MAC CE carried by the PDSCH scheduled by the first control information, and the MAC CE carried by the PDSCH scheduled by the second control information.
  • the terminal device acquires the first indication information. Specifically, the terminal device monitors at least one PDCCH and/or receives data on at least one PDSCH during the activation time of the DRX cycle, and the control information carried by the at least one PDCCH and/or the data includes the first indication information; the terminal device According to the received first indication information, determine the start time of the persistence timer in the next DRX cycle or the start time of the next DRX cycle.
  • At least one PDCCH includes the above-mentioned first PDCCH, second PDCCH or third PDCCH
  • at least one PDSCH includes the above-mentioned PDSCH scheduled by the first control information, the PDSCH scheduled by the above-mentioned second control information, or the PDSCH scheduled by the above-mentioned third control information.
  • the first indication information is included in the data of the PDSCH, which may mean that the MAC CE including the first first indication information is carried in the PDSCH.
  • the terminal device determines the start time of starting the persistence timer in the next DRX cycle according to the C-DRX parameter and the start time offset value indicated by the first indication information.
  • the terminal device may also determine the adjusted start time of the next DRX cycle according to the C-DRX parameter and the start time offset value indicated by the first indication information. Assuming that the start time offset value indicated by the first indication information is offset2, the next DRX persistence timer can be started after the subframe offset drx-SlotOffset determined according to formula (4):
  • FIG. 13 it shows a schematic diagram of adjusting the starting time of starting the persistence timer in the next DRX cycle.
  • the running time of the persistent timer corresponding to the dotted double arrow is the running time of the persistent timer in the next DRX cycle when the start time offset value indicated by the first indication information is not introduced, and the persistent timer corresponding to the solid double arrow
  • the running time is the running time of the persistence timer in the next DRX cycle adjusted according to the start time offset value indicated by the first indication information.
  • the starting time offset value for starting the persistence timer may be indicated by the first indication information sent by the network device through the PDSCH within the activation time of the last DRX cycle.
  • FIG. 14 a schematic flowchart interaction diagram of another information monitoring method 1400 proposed by the embodiment of the present application is shown.
  • the terminal device and the network device can automatically adjust the start time of the DRX cycle and/or the start time of the duration timer in the DRX cycle every m DRX cycles, which can prevent the arrival time of the data to be transmitted from falling within During the inactive time of DRX, the delay of data transmission can be reduced.
  • the network device may determine the start time of the i-th DRX cycle and/or the start time of the duration timer in the i-th DRX cycle according to the C-DRX parameter, where i is a positive integer.
  • the C-DRX parameter is configured by the network device.
  • multiple drx-StartOffsets may be included in the C-DRX parameter, or multiple patterns may be determined according to formula (4), and the network device determines the start of the i-th DRX cycle according to one drx-StartOffset or one pattern time and/or the starting time when the duration timer is started in the i-th DRX cycle.
  • start time of the DRX cycle may be the same as or different from the start time of the persistence timer in the DRX cycle.
  • the network device determines a first parameter m and a second parameter T.
  • the first parameter m is the number of DRX cycles at which the start time of the DRX cycle is periodically adjusted and/or the first parameter m is the interval at which the start time of the persistence timer in the DRX cycle is periodically adjusted.
  • the number of DRX cycles, m is a positive integer.
  • the second parameter T is an offset value for adjusting the start time of the DRX cycle and/or an offset value for adjusting the start time of the persistence timer in the DRX cycle.
  • the first parameter m is related to the size of the DRX cycle and the size of the data transmission cycle.
  • the first parameter m may be determined according to the size of the DRX cycle and the size of the transmission cycle of XR/CG service data, for example, assuming the difference between the transmission cycle of XR/CG service data minus the size of the DRX cycle is delta, the first parameter m is determined according to delta, for example, the first parameter m satisfies that m*delta is closest to onDurationTimer and is less than or equal to onDurationTimer, or (m+1)*delta is closest to onDurationTimer and is less than or equal to onDurationTimer, or, (m-1)*delta is closest to onDurationTimer and less than or equal to onDurationTimer.
  • the second parameter T may be related to the number of DRX cycle adjustments.
  • T may be equal to n*offset1, where n is the number of DRX cycle adjustments, and offset1 may be an offset value configured or predefined by the network device, for example, offset1 is the transmission cycle of XR/CG service data minus The difference in the size of the DRX cycle.
  • the second parameter T may be related to the size of the DRX cycle and the size of the data transmission cycle.
  • the second parameter T may be determined according to the size of the DRX cycle and the size of the transmission cycle of the XR/CG service data, for example, T is the difference between the transmission cycle of the XR/CG service data minus the size of the DRX cycle value.
  • the second parameter T may also be related to the number of DRX cycle adjustments, the size of the DRX cycle, and the size of the data transmission cycle.
  • the first parameter m and the second parameter T may be determined by the network device, or may be predefined.
  • the network device may send second configuration information to the terminal device, where the second configuration information includes the first parameter m and the second parameter T.
  • the second configuration information and the above-mentioned first configuration information may be carried in the same configuration information, or may be carried in different configuration information; in other words, the first configuration information and the above-mentioned second configuration information may be the same configuration information .
  • the network device determines the start time of the i+mth DRX cycle and/or the start of the duration timer in the i+mth DRX cycle according to the C-DRX parameter, the first parameter m, and the second parameter T time.
  • the network device For the i+1th to i+m-1th DRX cycles, the network device also determines the start time of the DRX cycle and the start time of the duration timer in the DRX cycle according to the C-DRX parameters.
  • the network device determines the start time of the DRX cycle and/or the DRX cycle according to the C-DRX parameter, the first parameter m and the second parameter T The start time for the internal duration timer to start.
  • the network device determines the start time and/or Or the start time for the duration timer to start.
  • the terminal device determines the start time of the i-th DRX cycle and/or the start time of the duration timer in the i-th DRX cycle according to the acquired C-DRX parameters.
  • the terminal device determines a first parameter m and a second parameter T.
  • the terminal device may receive second configuration information from the network device, where the second configuration information includes the first parameter m and the second parameter T.
  • the first parameter m and the second parameter T may also be predefined.
  • the terminal device determines the start time of the i+m DRX cycle and/or the start of the persistence timer in the i+m DRX cycle according to the C-DRX parameter, the first parameter m, and the second parameter T time.
  • the terminal device For the i+1th to i+m-1th DRX cycles, the terminal device also determines the start time of the DRX cycle and the start time of the duration timer in the DRX cycle according to the C-DRX parameters. It can be understood that the terminal device does not adjust the start time of the DRX cycle and the start time of the persistence timer in the DRX cycle.
  • the terminal device determines the start time of the DRX cycle and/or the DRX cycle according to the C-DRX parameter, the first parameter m and the second parameter T The start time for the internal duration timer to start. Wherein, the i+m-th to i+2*m-1 DRX cycles are considered as one adjustment. By analogy, the terminal device determines the start time and/or Or the start time for the duration timer to start.
  • 1410 and 1440 can be performed simultaneously, 1420 and 1450 can be performed simultaneously, and 1430 and 1460 can also be performed simultaneously.
  • drx-StartOffsets are included in the C-DRX parameter, or multiple patterns are determined according to formula (4), that is, the start time of the same DRX cycle and/or the continuous timing within the same DRX cycle
  • the network device can indicate to update drx-StartOffset in the C-DRX parameters in 1410 and 1440 or indicate an update pattern through the PDCCH, then the network device and the terminal device perform the above steps again.
  • the network device may determine the first indication information, and use the first indication information to instruct the terminal equipment to adjust the start time of the persistence timer in the next DRX cycle and/or the start time of the persistence timer in the next DRX cycle. Start time offset value.
  • the network device predicts the arrival time of the next video frame, thereby dynamically adjusting the DRX activation time, which can reduce the power consumption of the terminal device.
  • the network device determines first indication information, where the first indication information is used to indicate the starting time of starting the persistence timer of the next DRX cycle and/or the starting time offset value of starting the persistence timer of the next DRX cycle .
  • the first indication information may also be used to indicate the start time of the next DRX cycle and/or the start time offset value of the next DRX cycle.
  • the network device sends at least one control information and/or at least one data to the terminal device within the activation time of the DRX cycle, and the control information and/or data sent by the network device includes first indication information.
  • the control information may refer to DCI carried by the PDCCH.
  • Data can include MAC CE, carried in PDSCH.
  • the first indication information may be included in at least one of the following information: the first control information, the second control information, the third control information, the MAC CE carried by the PDSCH scheduled by the first control information, and the MAC CE carried by the PDSCH scheduled by the second control information.
  • the MAC CE carried by the PDSCH and the MAC CE carried by the PDSCH scheduled by the third control information may be included in at least one of the following information: the first control information, the second control information, the third control information, the MAC CE carried by the PDSCH scheduled by the first control information, and the MAC CE carried by the PDSCH scheduled by the second control information.
  • the terminal device monitors at least one PDCCH and/or receives data on at least one PDSCH within the activation time of the DRX cycle, and the control information carried by the at least one PDCCH and/or the data includes first indication information.
  • at least one PDCCH includes the above-mentioned first PDCCH, second PDCCH or third PDCCH
  • at least one PDSCH includes the above-mentioned PDSCH scheduled by the first control information, the PDSCH scheduled by the above-mentioned second control information, or the PDSCH scheduled by the above-mentioned third control information.
  • the first indication information is included in the data of the PDSCH, which may refer to that the MAC CE is carried in the PDSCH.
  • the terminal device determines, according to the first indication information, the starting time of the persistence timer in the next DRX cycle.
  • the terminal device may also determine the start time of the next DRX cycle according to the first indication information.
  • the terminal device determines the start time of starting the persistence timer in the next DRX cycle according to the C-DRX parameter and the start time offset value indicated by the first indication information.
  • the terminal device may also determine the adjusted start time of the next DRX cycle according to the C-DRX parameter and the start time offset value indicated by the first indication information. Assuming that the start time offset value indicated by the first indication information is offset2, the next DRX persistence timer can be started after the subframe offset drx-SlotOffset determined according to the above formula (4); or, according to the formula (1) Start the next DRX duration timer after the determined subframe offset drx-SlotOffset+offset2.
  • FIG. 16 is a schematic block diagram of a communication device 1600 provided by an embodiment of the present application.
  • the communication device 1600 may include a determination module 1610 and a transceiver module 1620 .
  • a storage unit may also be included, and the storage unit may be used to store instructions (code or program) and/or data.
  • the determination module 1610 and the transceiver module 1620 may be coupled to the storage unit, for example, the determination module 1610 may read instructions (code or program) and/or data in the storage unit to implement a corresponding method.
  • Each of the above units can be set independently, or can be partially or fully integrated.
  • the communication apparatus 1600 can correspondingly implement the behavior and functions of the terminal device in the foregoing method embodiments, for example, implement the method performed by the terminal device in the embodiment in FIG. 9 .
  • the communication apparatus 1600 may be a terminal device, or a component (such as a chip or a circuit) applied in the terminal device, or may be a chip or a chipset in the terminal device, or a part of the chip for performing related method functions.
  • the determining module 1610 may be configured to determine at least one first physical downlink control channel PDCCH candidate position according to the search space set of the first search space set group SSSG;
  • the transceiver module 1620 is configured to monitor the first PDCCH at the first PDCCH candidate position during the running of the timer in the discontinuous reception DRX cycle;
  • the determining module 1610 is further configured to determine at least one second PDCCH candidate position according to the search space set of the second SSSG;
  • the transceiving module 1620 is also configured to listen to the first control information for scheduling newly transmitted data on the first PDCCH, and during the running of the inactive timer in the DRX cycle, at the second PDCCH candidate position monitoring the second PDCCH, the period of the first PDCCH is greater than the period of the second PDCCH and/or the duration of the search space set in the first SSSG is shorter than that of the search space set in the second SSSG duration.
  • the determining module 1610 is further configured to determine at least one third PDCCH candidate position according to the search space set of the second SSSG;
  • the transceiving module 1620 is further configured to monitor the third PDCCH at the third PDCCH candidate position during the operation of the persistence timer in the DRX cycle, and monitor the first PDCCH at the same time as the third PDCCH.
  • the timing of PDCCH is different.
  • the transceiving module 1620 is further configured to receive first configuration information from a network device, where the first configuration information includes at least one of the following: monitoring the start time of the first PDCCH, monitoring the The time length of the first PDCCH, the start time of monitoring the third PDCCH, or the time length of monitoring the third PDCCH.
  • the start time of monitoring the first PDCCH is the same as the start time of the persistence timer in the DRX cycle.
  • the first scheduling offset value is greater than or equal to a first threshold, and the first scheduling offset value is the first A time offset value between the PDCCH and the physical downlink shared channel PDSCH or the physical uplink shared channel PUSCH scheduled by the first PDCCH;
  • the second scheduling offset value is greater than or equal to a second threshold, and the second scheduling offset value is the difference between the second PDCCH and the A time offset value between PDSCH or PUSCH scheduled by the second PDCCH, wherein the first threshold is greater than the second threshold;
  • the third scheduling offset value is greater than or equal to the second threshold, and the third scheduling offset value is the third PDCCH and A time offset value between PDSCHs or PUSCHs scheduled by the third PDCCH.
  • the determining module 1610 is also used for:
  • the first parameter m is the number of DRX cycles intervals between the start time of the periodic adjustment DRX cycle and/or the first parameter m is the periodic adjustment DRX cycle
  • the second parameter T is an offset value for adjusting the start time of the DRX cycle and/or adjusting the start of the persistence timer in the DRX cycle
  • the offset value of the start time of , m is a positive integer
  • the first parameter m and the second parameter T determine the start time of the i+m DRX cycle and/or the duration in the i+m DRX cycle The start time for the timer to start.
  • the first parameter m is related to the size of the DRX cycle and the size of the data transmission cycle
  • the second parameter T is related to the size of the DRX cycle and the size of the data transmission cycle
  • the second The parameter T is related to the number of DRX cycle adjustments.
  • the transceiver module 1620 is further configured to acquire first indication information, the first indication information is used to indicate the start time of the persistence timer in the next DRX cycle and/or the next DRX cycle The start time offset value of the continuous timer in the start;
  • the determining module 1610 is further configured to, according to the first indication information, determine the start time of the persistence timer in the next DRX cycle.
  • the determining module 1610 is specifically configured to, according to the configuration information of DRX and the start time offset value of starting the persistence timer, determine the starting time of the persistence timer in the next DRX cycle. time.
  • FIG. 17 is a schematic block diagram of a communication device 1700 provided by an embodiment of the present application.
  • the communication device 1700 may include a determination module 1710 and a transceiver module 1720 .
  • a storage unit may also be included, and the storage unit may be used to store instructions (code or program) and/or data.
  • the determination module 1710 and the transceiver module 1720 may be coupled to the storage unit, for example, the determination module 1710 may read instructions (code or program) and/or data in the storage unit to implement a corresponding method.
  • Each of the above units can be set independently, or can be partially or fully integrated.
  • the communication apparatus 1700 can correspondingly implement the behavior and functions of the network equipment in the foregoing method embodiments, for example, implement the method performed by the network equipment in the embodiment of FIG. 9 .
  • the communication device 1700 may be a network device, or a component (such as a chip or a circuit) applied in the network device, or a chip or a chipset in the network device, or a part of the chip for performing related method functions.
  • the determining module 1710 may be configured to determine at least one first physical downlink control channel PDCCH candidate position according to the search space set of the first search space set group SSSG;
  • the transceiver module 1720 is configured to send at least one piece of first control information to the terminal device at the first PDCCH candidate position during the running of the timer in the discontinuous reception DRX cycle;
  • the determining module 1710 is further configured to determine at least one second PDCCH candidate position according to the search space set of the second SSSG;
  • the transceiver module 1720 is further configured to use the first control information to schedule newly transmitted data, and to send at least one Second control information, the period of the first PDCCH is greater than the period of the second PDCCH and/or the duration of the search space set in the first SSSG is shorter than the duration of the search space set in the second SSSG .
  • the determining module 1710 is further configured to determine at least one third PDCCH candidate position according to the search space set of the second SSSG;
  • the transceiver module 1720 is further configured to, during the operation of the persistence timer in the DRX cycle, send at least one third control information to the terminal device at the third PDCCH candidate position, and send the first control information The time is different from the time when the third control information is sent.
  • the transceiving module 1720 is further configured to send first configuration information to the terminal device, where the first configuration information includes at least one of the following: the start time of monitoring the first PDCCH, the The time length of the first PDCCH, the start time of monitoring the third PDCCH, or the time length of monitoring the third PDCCH.
  • the determining module 1710 is also used for:
  • DRX determine the start time of the i-th DRX cycle and/or the start time of the persistence timer in the i-th DRX cycle, where i is a positive integer;
  • the first parameter m is the number of DRX cycles intervals between the start time of the periodic adjustment DRX cycle and/or the first parameter m is the periodic adjustment DRX cycle
  • the second parameter T is an offset value for adjusting the start time of the DRX cycle and/or adjusting the start of the persistence timer in the DRX cycle
  • the offset value of the start time of , m is a positive integer
  • the first parameter m and the second parameter T determine the start time of the i+m DRX cycle and/or the duration in the i+m DRX cycle The start time for the timer to start.
  • the first parameter m is related to the size of the DRX cycle and the size of the data transmission cycle
  • the second parameter T is related to the size of the DRX cycle and the size of the data transmission cycle
  • the second The parameter T is related to the number of DRX cycle adjustments.
  • the determining module 1710 is further configured to determine first indication information, where the first indication information is used to indicate the start time of the persistence timer in the next DRX cycle and/or the next DRX cycle The start time offset value of the continuous timer in the start;
  • the transceiving module 1720 is further configured to send the first indication information to the terminal device within the activation time of the DRX cycle.
  • FIG. 18 is a schematic block diagram of a communication device 1800 provided by an embodiment of the present application.
  • the communication device 1800 may include: a determining module 1810.
  • a storage unit may also be included, and the storage unit may be used to store instructions (code or program) and/or data.
  • the determination module 1810 may be coupled with the storage unit, for example, the determination module 1810 may read instructions (code or program) and/or data in the storage unit, so as to implement a corresponding method.
  • Each of the above units can be set independently, or can be partially or fully integrated.
  • the communication apparatus 1800 can correspondingly implement the behavior and functions of the terminal device in the foregoing method embodiments, for example, implement the method performed by the terminal device in the embodiment in FIG. 14 .
  • the communication apparatus 1800 may be a terminal device, or a component (such as a chip or a circuit) applied in the terminal device, or a chip or a chipset in the terminal device, or a part of the chip for performing related method functions.
  • determination module 1810 may be used to:
  • the obtained DRX configuration information determine the start time of the i-th discontinuous reception DRX cycle and/or the start time of the duration timer in the i-th DRX cycle, where i is a positive integer;
  • the first parameter m is the number of DRX cycles intervals between the start time of the periodic adjustment DRX cycle and/or the first parameter m is the periodic adjustment DRX cycle
  • the second parameter T is an offset value for adjusting the start time of the DRX cycle and/or adjusting the start of the persistence timer in the DRX cycle
  • the offset value of the start time of , m is a positive integer
  • the first parameter m and the second parameter T determine the start time of the i+m DRX cycle and/or the duration in the i+m DRX cycle The start time for the timer to start.
  • the first parameter m is related to the size of the DRX cycle and the size of the data transmission cycle
  • the second parameter T is related to the size of the DRX cycle and the size of the data transmission cycle
  • the second The parameter T is related to the number of DRX cycle adjustments.
  • FIG. 19 is a schematic block diagram of a communication device 1900 proposed by an embodiment of the present application.
  • the communication device 1900 includes: a determining module 1910 .
  • a storage unit may also be included, and the storage unit may be used to store instructions (code or program) and/or data.
  • the determination module 1910 may be coupled with the storage unit, for example, the determination module 1910 may read instructions (code or program) and/or data in the storage unit, so as to implement a corresponding method.
  • Each of the above units can be set independently, or can be partially or fully integrated.
  • the communication apparatus 1900 can correspondingly implement the behavior and functions of the network equipment in the foregoing method embodiments, for example, implement the method performed by the network equipment in the embodiment in FIG. 14 .
  • the communication apparatus 1900 may be a network device, or a component (such as a chip or a circuit) applied in the network device, or may be a chip or a chipset in the network device, or a part of the chip for performing related method functions.
  • the determination module 1910 may be configured to determine the start time of the i-th DRX cycle and/or the start time of the persistence timer in the i-th DRX cycle according to the DRX configuration information, where i is a positive integer ;
  • the first parameter m is the number of DRX cycles intervals between the start time of the periodic adjustment DRX cycle and/or the first parameter m is the periodic adjustment DRX cycle
  • the second parameter T is an offset value for adjusting the start time of the DRX cycle and/or adjusting the start of the persistence timer in the DRX cycle
  • the offset value of the start time of , m is a positive integer
  • the first parameter m and the second parameter T determine the start time of the i+m DRX cycle and/or the duration in the i+m DRX cycle The start time for the timer to start.
  • the first parameter m is related to the size of the DRX cycle and the size of the data transmission cycle
  • the second parameter T is related to the size of the DRX cycle and the size of the data transmission cycle
  • the second The parameter T is related to the number of DRX cycle adjustments.
  • FIG. 20 is a schematic block diagram of a communication device 2000 provided by an embodiment of the present application.
  • the communication device 2000 includes: a transceiver module 2010 and a determination module 2020 .
  • a storage unit may also be included, and the storage unit may be used to store instructions (code or program) and/or data.
  • the transceiver module 2010 and the determination module 2020 may be coupled to the storage unit, for example, the determination module 2020 may read instructions (code or program) and/or data in the storage unit to implement a corresponding method.
  • Each of the above units can be set independently, or can be partially or fully integrated.
  • the communication apparatus 2000 can correspondingly implement the behavior and functions of the terminal device in the above method embodiments, for example, implement the method performed by the terminal device in the embodiment in FIG. 15 .
  • the communication apparatus 2000 may be a terminal device, or a component (such as a chip or a circuit) applied in the terminal device, or a chip or a chipset in the terminal device, or a part of the chip for performing related method functions.
  • the transceiver module 2010 can be configured to monitor at least one physical downlink control channel PDCCH and/or receive data on at least one physical downlink shared channel PDSCH during the activation time of the discontinuous reception DRX cycle, the control carried by the at least one PDCCH
  • the information and/or the data include first indication information, and the first indication information is used to indicate the start time of the start of the persistence timer in the next DRX cycle and/or the start of the persistence timer in the next DRX cycle
  • the determining module 2020 is configured to determine, according to the first indication information, the start time of the persistence timer in the next DRX cycle.
  • the determining module 2020 is specifically configured to, according to DRX configuration information and the start time offset value of starting the persistence timer, determine the starting time of the persistence timer in the next DRX cycle. time.
  • FIG. 21 is a schematic block diagram of a communication device 2100 provided by an embodiment of the present application.
  • the communication device 2100 includes: a determination module 2110 and a transceiver module 2120 .
  • a storage unit may also be included, and the storage unit may be used to store instructions (code or program) and/or data.
  • the determination module 2110 and the transceiver module 2120 may be coupled to the storage unit, for example, the determination module 2110 may read instructions (code or program) and/or data in the storage unit to implement a corresponding method.
  • Each of the above units can be set independently, or can be partially or fully integrated.
  • the communication apparatus 2100 can correspondingly implement the behavior and functions of the network equipment in the foregoing method embodiments, for example, implement the method performed by the network equipment in the embodiment in FIG. 15 .
  • the communication apparatus 2100 may be a network device, or a component (such as a chip or a circuit) applied in the network device, or may be a chip or a chipset in the network device, or a part of the chip for performing related method functions.
  • the determining module 2110 may be configured to determine first indication information, where the first indication information is used to indicate the starting time of starting the duration timer in the next discontinuous reception DRX cycle and/or the duration timer in the next DRX cycle.
  • the transceiver module 2120 is configured to send at least one piece of control information and/or at least one piece of data to the terminal device within the activation time of the DRX cycle, where the control information and/or the data include the first indication information.
  • FIG. 22 is a schematic block diagram of a communication device 2200 provided by an embodiment of the present application.
  • the communication apparatus 2200 may be a terminal device, which can realize the function of the terminal device in the method provided in the embodiment of the present application.
  • the communication device 2200 may be a network device, capable of implementing the functions of the network device in the method provided by the embodiment of the present application.
  • the communication device 2200 may also be a device capable of supporting terminal devices to implement corresponding functions in the method provided in the embodiments of the present application, or a device capable of supporting network devices to implement corresponding functions in the methods provided in the embodiments of the present application.
  • the communication device 2200 may be a system on a chip. In the embodiment of the present application, the system-on-a-chip may consist of chips, or may include chips and other discrete devices. For specific functions, refer to the descriptions in the foregoing method embodiments.
  • the communication device 2200 includes one or more processors 2201, configured to implement or support the communication device 2200 to implement the functions of the network device (base station) or terminal device in the method provided by the embodiment of the present application.
  • the processor 2201 may also be called a processing unit or a determination module, and may implement certain control functions.
  • the processor 2201 may be a general purpose processor or a special purpose processor or the like. For example, including: baseband processor, central processing unit, application processor, modem processor, graphics processor, image signal processor, digital signal processor, video codec processor, controller, memory, and/or Neural Network Processor, etc.
  • the baseband processor can be used to process communication protocols and communication data.
  • the central processing unit can be used to control the communication device 2200, execute software programs and/or process data. Different processors may be independent devices, or may be integrated in one or more processors, for example, integrated in one or more application-specific integrated circuits.
  • the communication device 2200 includes one or more memories 2202 for storing instructions 2204, and the instructions can be executed on the processor 2201, so that the communication device 2200 executes the methods described in the foregoing method embodiments.
  • the memory 2202 is coupled to the processor 2201.
  • the coupling in the embodiments of the present application is an indirect coupling or a communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • the processor 2201 may cooperate with the memory 2202 . At least one of the at least one memory may be included in the processor. It should be noted that the memory 2202 is not necessary, so it is shown with a dotted line in FIG. 22 .
  • data may also be stored in the memory 2202 .
  • the processor and memory can be set separately or integrated together.
  • the memory 2202 may be a non-volatile memory, such as a hard disk (hard disk drive, HDD) or a solid-state drive (solid-state drive, SSD), etc., and may also be a volatile memory (volatile memory), For example random-access memory (random-access memory, RAM).
  • a memory is, but is not limited to, any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • the memory in the embodiment of the present application may also be a circuit or any other device capable of implementing a storage function, and is used for storing program instructions and/or data.
  • the communication device 2200 may include instructions 2203 (sometimes also referred to as codes or programs), and the instructions 2203 may be executed on the processor, so that the communication device 2200 executes the methods described in the above embodiments .
  • Data may be stored in the processor 2201.
  • the communication device 2200 may further include a transceiver 2205 and an antenna 2206 .
  • the transceiver 2205 may be called a transceiver unit, a transceiver module, a transceiver, a transceiver circuit, a transceiver, an input and output interface, etc., and is used to realize the transceiver function of the communication device 2200 through the antenna 2206 .
  • the processor 2201 and transceiver 2205 described in this application can be implemented in integrated circuit (integrated circuit, IC), analog IC, radio frequency integrated circuit (radio frequency identification, RFID), mixed signal IC, ASIC, printed circuit board (printed circuit) board, PCB), or electronic equipment, etc.
  • the communication device described herein can be an independent device (for example, an independent integrated circuit, a mobile phone, etc.), or it can be a part of a larger device (for example, a module that can be embedded in other devices).
  • a module for example, a module that can be embedded in other devices.
  • the communication device 2200 may also include one or more of the following components: a wireless communication module, an audio module, an external memory interface, an internal memory, a universal serial bus (universal serial bus, USB) interface, a power management module, an antenna, Speakers, microphones, I/O modules, sensor modules, motors, cameras, or displays, etc. It can be understood that, in some embodiments, the communication device 2200 may include more or fewer components, or some components may be integrated, or some components may be separated. These components may be realized by hardware, software, or a combination of software and hardware.
  • the communication device in the above-mentioned embodiments may be a terminal device (or network device) or a circuit, or a chip applied in a terminal device (or network device) or other devices with the above-mentioned terminal function (or network device).
  • Equipment combination devices, components, etc.
  • the transceiver module may be a transceiver, which may include an antenna and a radio frequency circuit, etc.
  • the processing module may be a processor, such as a central processing unit (CPU).
  • the transceiver module may be a radio frequency unit, and the processing module may be a processor.
  • the communication device When the communication device is a chip system, the communication device may be a field programmable gate array (field programmable gate array, FPGA), an application specific integrated circuit (ASIC), or a system on chip (system on chip).
  • SoC field programmable gate array
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • SoC SoC
  • CPU central processing unit
  • NP network processor
  • DSP digital signal processing circuit
  • MCU microcontroller
  • PLD programmable logic device
  • the processing module may be a processor of the chip system.
  • the transceiver module or the communication interface may be an input/output interface or an interface circuit of the chip system.
  • the interface circuit may be a code/data read/write interface circuit.
  • the interface circuit can be used to receive code instructions (the code instructions are stored in the memory, can be read directly from the memory, or can also be read from the memory through other devices) and transmitted to the processor; the processor can be used to run all The above-mentioned code instructions are used to execute the methods in the above-mentioned method embodiments.
  • the interface circuit may also be a signal transmission interface circuit between the communication processor and the transceiver.
  • Fig. 23 shows a schematic structural diagram of a simplified communication device.
  • the communication device is a base station as an example.
  • the base station may perform the function of the network device in the foregoing method embodiments.
  • the communications device 2300 may include a processor 2322 .
  • a transceiver 2310 and a memory 2321 may also be included.
  • the processor 2322 is configured to support the communication device 2300 to perform corresponding functions in the above methods, and the transceiver 2310 may be used by the communication device to perform communication.
  • the memory 2321 is coupled with the processor 2322 and can be used to save the programs and data necessary for the communication device 2300 to realize various functions.
  • the transceiver 2310 may be a wireless transceiver, and may be used to support the communication device 2300 to receive and send signaling and/or data through a wireless air interface.
  • the transceiver 2310 may also be referred to as a transceiver unit or a communication unit, and the transceiver 2310 may include one or more radio frequency units 2312 and one or more antennas 2311, wherein the radio frequency unit is such as a remote radio unit (remote radio unit, RRU) Or an active antenna unit (active antenna unit, AAU), which can be specifically used for the transmission of radio frequency signals and the conversion of radio frequency signals and baseband signals, and the one or more antennas can be specifically used for radiating and receiving radio frequency signals.
  • the transceiver 2310 may only include the above radio frequency unit, then the communication device 2300 may include a transceiver 2310 , a memory 2321 , a processor 2322 and an antenna 2311 .
  • the memory 2321 and the processor 2322 can be integrated or independent of each other. As shown in FIG. 23 , the memory 2321 and the processor 2322 can be integrated into the control unit 2320 of the communication device 2300 .
  • the control unit 2320 may include a baseband unit (baseband unit, BBU) of an LTE base station, and the baseband unit may also be called a digital unit (digital unit, DU), or the control unit 2320 may include 5G and future wireless access DU and/or CU in the base station under technology.
  • BBU baseband unit
  • DU digital unit
  • 5G and future wireless access DU and/or CU in the base station under technology.
  • the above-mentioned control unit 2320 can be composed of one or more antenna panels, where multiple antenna panels can jointly support a wireless access network of a single access standard (such as an LTE network), and multiple antenna panels can also respectively support wireless access networks of different access standards. Radio access network (such as LTE network, 5G network or other networks).
  • the memory 2321 and processor 2322 may serve one or more antenna panels. That is to say, the memory 2321 and the processor 2322 can be separately provided on each antenna panel. It is also possible that multiple antenna panels share the same memory 2321 and processor 2322 .
  • necessary circuits may be provided on each antenna panel, for example, the circuits may be used to realize the coupling of the memory 2321 and the processor 2322 .
  • the above transceiver 2310, processor 2322 and memory 2321 may be connected through a bus structure and/or other connection media.
  • the processor 2322 can perform baseband processing on the data to be sent, and then output the baseband signal to the radio frequency unit, and the radio frequency unit performs radio frequency processing on the baseband signal and passes the radio frequency signal through the antenna. Sent in the form of electromagnetic waves.
  • the radio frequency unit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor 2322, and the processor 2322 converts the baseband signal into data and converts the data to process.
  • the transceiver 2310 can be used to perform the above steps performed by the transceiver 2205 .
  • the processor 2322 can be used to invoke instructions in the memory 2321 to perform the above steps performed by the processor 2201 .
  • Fig. 24 shows a schematic structural diagram of a simplified terminal device.
  • the terminal device is taken as an example of a mobile phone.
  • the terminal device includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used for processing the communication protocol and communication data, controlling the on-board unit, executing software programs, and processing data of the software programs.
  • Memory is primarily used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of the baseband signal and the radio frequency signal and the processing of the radio frequency signal.
  • Antennas are mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users. It should be noted that some types of equipment may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • FIG. 24 only one memory and processor are shown in FIG. 24 . In an actual device product, there may be one or more processors and one or more memories.
  • a memory may also be called a storage medium or a storage device. The memory may be set independently of the processor, or may be integrated with the processor, which is not limited in this embodiment of the present application.
  • the antenna and the radio frequency circuit having the function of transmitting and receiving can be regarded as the transmitting and receiving unit of the device
  • the processor having the function of processing can be regarded as the processing unit of the device.
  • the device includes a transceiver unit 2410 and a processing unit 2420 .
  • the transceiver unit 2410 may also be called a transceiver, a transceiver, a transceiver device, and the like.
  • the processing unit 2420 may also be called a processor, a processing board, a processing module, a processing device, and the like.
  • the device in the transceiver unit 2410 for realizing the receiving function can be regarded as a receiving unit
  • the device in the transceiver unit 2410 for realizing the sending function can be regarded as a sending unit, that is, the transceiver unit 2410 includes a receiving unit and a sending unit.
  • the transceiver unit 2410 may also be called a transceiver, a transceiver, or a transceiver circuit, etc. sometimes.
  • the receiving unit may sometimes be called a receiver, a receiver, or a receiving circuit, etc.
  • the sending unit may sometimes be called a transmitter, a transmitter, or a transmitting circuit, etc.
  • the transceiving unit 2410 is used to perform the sending and receiving operations of the terminal device in the above method embodiments, and the processing unit 2420 is used to perform other operations on the terminal device in the above method embodiments except the transceiving operation.
  • the transceiver unit 2410 can be used to perform the sending step and the receiving step in the embodiments shown in FIG. 9, FIG. 14 or FIG. process.
  • the processing unit 2420 may be used to perform steps other than the receiving step or the sending step in the embodiment shown in FIG. 9 , FIG. 14 or FIG. 15 , and/or other processes for supporting the techniques described herein.
  • the device may include a transceiver unit and a processing unit.
  • the transceiver unit may be an input-output circuit and/or a communication interface;
  • the processing unit is an integrated processor or a microprocessor or an integrated circuit.
  • the embodiment of the present application also provides a communication system.
  • the communication system includes a network device and multiple terminal devices, or may further include more network devices and multiple terminal devices.
  • the communication system includes a network device and a terminal device, such as a terminal device, configured to implement the above-mentioned related functions in FIG. 9 , FIG. 14 or FIG. 15 .
  • the network devices are respectively used to implement the functions of the relevant network parts in FIG. 9 , FIG. 14 or FIG. 15 .
  • the terminal device is used to implement the terminal device related to the above 9, FIG. 14 or FIG. 15 , for example, a function of the terminal device.
  • a function of the terminal device for details, please refer to relevant descriptions in the foregoing method embodiments, and details are not repeated here.
  • An embodiment of the present application also provides a computer-readable storage medium, including instructions, which, when run on a computer, cause the computer to perform the method performed by the network device in Figure 9, Figure 14 or Figure 15; or when it is run on the computer During operation, the computer is made to execute the method executed by the terminal device in FIG. 9 , FIG. 14 or FIG. 15 .
  • the embodiment of the present application also provides a computer program product, including instructions, when it runs on a computer, it causes the computer to execute the method performed by the network device in Figure 9, Figure 14 or Figure 15; or when it runs on the computer , so that the computer executes the method executed by the terminal device in FIG. 9 , FIG. 14 or FIG. 15 .
  • An embodiment of the present application provides a system-on-a-chip, where the system-on-a-chip includes a processor and may further include a memory, configured to implement the functions of the network device or the terminal device in the foregoing method.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • sequence numbers of the above-mentioned processes do not mean the order of execution, and the execution order of the processes should be determined by their functions and internal logic, and should not be used in the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • the computer software product is stored in a storage medium and includes several instructions to make a A computer device (which may be a personal computer, a server, or a network device, etc.) executes all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: various media that can store program codes such as U disk, mobile hard disk, read-only memory (read-only memory, ROM), RAM, magnetic disk or optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种信息监听的方法和装置,能够降低终端设备的功耗。该方法包括:终端设备根据第一SSSG的搜索空间集确定至少一个第一PDCCH候选位置;在DRX周期内持续定时器运行期间,该终端设备在第一PDCCH候选位置监听第一PDCCH;该终端设备根据第二SSSG的搜索空间集确定至少一个第二PDCCH候选位置;在第一PDCCH上监听到用于调度新传的数据的第一控制信息时,该终端设备在DRX周期内非激活定时器运行期间,在第二PDCCH候选位置监听所述第二PDCCH,第一PDCCH的周期大于第二PDCCH的周期和/或第一SSSG中的搜索空间集的持续时间小于第二SSSG中的搜索空间集的持续时间。

Description

信息监听的方法和装置
本申请要求于2021年09月03日提交中国专利局、申请号为202111029909.6、发明名称为“信息监听的方法和装置”的专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种信息监听的方法和装置。
背景技术
扩展现实(extended reality,XR)和云游戏(cloud gaming,CG)是第五代(5th generation,5G)系统的重要应用场景。XR是不同类型的现实(reality)的总称,指通过计算机或者穿戴设备产生的现实和虚拟结合的环境以及人机交互,XR的类型包括增强现实(augmented reality,AR)、混合现实(mixed reality,MR),虚拟现实(virtual reality,VR)等。以下行业务传输为例,XR和CG业务数据的传输过程大致为,XR或CG服务器对视频帧进行逻辑计算、内容渲染、编码等处理,再发送给核心网设备,核心网设备将视频帧传输到网络设备,网络设备通过空口传输到用户设备(user equipment,UE)。
XR/CG业务的视频帧到达网络设备的时间是准周期的、具有抖动性,并不是总是有数据传输的,如果接收XR/CG业务的UE长期处于监听物理下行控制信道(physical downlink control channel,PDCCH)的状态,会造成终端设备的功耗过高。
在连接态不连续接收(connected mode discontinuous reception,C-DRX)机制中,UE可以根据DRX的配置信息,在每个DRX周期的激活时间内监听PDCCH,在每个DRX周期的非激活时间内可以处于休眠状态、不监听PDCCH;其中,激活时间包括持续定时器(onDurationTimer)的运行时间,持续定时器的运行时间是周期性出现的。考虑到XR/CG业务在时间上的抖动性,采用C-DRX机制时需配置较长的持续定时器的时长,才能覆盖XR/CG视频帧的抖动;若视频帧延后到达,而UE在onDurationTimer开启时就进行PDCCH盲检,会导致功耗浪费。除此之外,XR/CG业务的周期和DRX周期往往很难匹配,XR/CG的视频帧到达时间可能会落在C-DRX非激活时间内,该情况下网络设备只能等到下一个DRX周期的激活时间进行该视频帧的调度,会导致传输时延增大。
发明内容
本申请提供了一种的信息监听的方法和装置,能够降低终端设备的功耗。
第一方面,提供一种信息监听的方法,该方法可以由终端设备或终端侧的芯片或芯片系统执行。该方法包括:终端设备根据第一搜索空间集组SSSG的搜索空间集确定至少一个第一物理下行控制信道PDCCH候选位置。在不连续接收DRX周期内持续定时器运行期间,所述终端设备在所述第一PDCCH候选位置监听所述第一PDCCH。所述终端设备根据第二SSSG的搜索空间集确定至少一个第二PDCCH候选位置。在所述第一PDCCH上监听到用于调度新传的数据的第一控制信息,所述终端设备在DRX周期内非激活定时 器运行期间,在所述第二PDCCH候选位置监听所述第二PDCCH,所述第一PDCCH的周期大于所述第二PDCCH的周期和/或所述第一SSSG中的搜索空间集的持续时间小于所述第二SSSG中的搜索空间集的持续时间。
基于上述技术方案,在接收到用于调度新传的数据的第一控制信息之前,终端设备根据监听周期较大或者CORESET的带宽较小的第一PDCCH候选位置,监听第一PDCCH,可以降低终端设备的功耗;当接收到用于调度新传的数据的第一控制信息时,终端设备根据监听周期较小或者CORESET的带宽较小的第二PDCCH候选位置,监听第二PDCCH,可以减少数据传输的时延。现有技术中,在持续定时器开始运行时,终端设备可能采用第二SSSG中的搜索空间集监听PDCCH,即采用较小的PDCCH周期监听PDCCH,但是数据到达网络设备的时刻比持续定时器开启时刻晚,导致终端设备根据第二SSSG中的搜索空间集监听PDCCH,带来功耗浪费。相比现有技术,上述技术方案可以避免终端设备在DRX周期内持续定时器运行期间一直采用较小的PDCCH监听周期监听PDCCH,能够降低终端设备的功耗。
在一种实现方式中,所述方法还包括:所述终端设备根据所述第二SSSG的搜索空间集确定至少一个第三PDCCH候选位置。在DRX周期内所述持续定时器运行期间,所述终端设备在所述第三PDCCH候选位置监听所述第三PDCCH,监听所述第一PDCCH的时间与监听所述第三PDCCH的时间不同。终端设备在监听第一PDCCH的时间,根据监听周期较大的第一PDCCH候选位置,监听第一PDCCH,可以降低终端设备的功耗;终端设备在监听第三PDCCH的时间,终端设备根据监听周期较小的第三PDCCH候选位置,监听第三PDCCH,可以减少数据传输的时延。
在一种实现方式中,所述方法还包括:所述终端设备接收来自网络设备的第一配置信息,所述第一配置信息中包括以下至少一种:监听所述第一PDCCH的起始时间、监听所述第一PDCCH的时间长度、监听所述第三PDCCH的起始时间、或监听所述第三PDCCH的时间长度。
在一种实现方式中,监听所述第一PDCCH的起始时间与DRX周期内所述持续定时器开启的起始时间相同。
在一种实现方式中,所述终端设备在所述第一PDCCH候选位置监听所述第一PDCCH,第一调度偏移值大于或等于第一阈值,所述第一调度偏移值是所述第一PDCCH与所述第一PDCCH调度的物理下行共享信道PDSCH或物理上行共享信道PUSCH之间的时间偏移值。所述终端设备在所述第二PDCCH候选位置监听所述第二PDCCH,第二调度偏移值大于或等于第二阈值,所述第二调度偏移值是所述第二PDCCH与所述第二PDCCH调度的PDSCH或PUSCH之间的时间偏移值,其中,所述第一阈值大于所述第二阈值。所述终端设备在所述第三PDCCH候选位置监听所述第三PDCCH,第三调度偏移值大于或等于所述第二阈值,所述第三调度偏移值是所述第三PDCCH与所述第三PDCCH调度的PDSCH或PUSCH之间的时间偏移值。
在一种实现方式中,所述方法还包括:所述终端设备根据获取的DRX的配置信息,确定第i个DRX周期的起始时间和/或所述第i个DRX周期内所述持续定时器开启的起始时间,i为正整数。所述终端设备确定第一参数m和第二参数T,所述第一参数m为周期性调整DRX周期的起始时间所间隔的DRX周期的个数和/或所述第一参数m为周期性调 整DRX周期内所述持续定时器的起始时间所间隔的DRX周期的个数,所述第二参数T为调整DRX周期的起始时间的偏移值和/或调整DRX周期内所述持续定时器开启的起始时间的偏移值,m为正整数。所述终端设备根据所述DRX的配置信息、所述第一参数m和所述第二参数T,确定第i+m个DRX周期的起始时间和/或所述第i+m个DRX周期内所述持续定时器开启的起始时间。
基于上述方案,每隔m个DRX周期自动调整DRX周期的起始时间和/或DRX周期内持续定时器开启的起始时间,可以避免需要传输的数据的到达时间落在DRX非激活时间内,能够降低数据传输的时延。
在一种实现方式中,所述终端设备确定第一参数m和第二参数T,包括:所述终端设备接收来自所述网络设备的第二配置信息,所述第二配置信息中包括所述第一参数m和所述第二参数T。
在一种实现方式中,所述第一参数m与DRX周期的大小和数据传输周期的大小相关。所述第二参数T与DRX周期的大小和数据传输周期的大小相关,和/或,所述第二参数T与DRX周期调整的次数相关。
在一种实现方式中,所述方法还包括:所述终端设备获取第一指示信息,所述第一指示信息用于指示下一个DRX周期内所述持续定时器开启的起始时间和/或下一个DRX周期内所述持续定时器开启的起始时间偏移值。所述终端设备根据所述第一指示信息,确定所述下一个DRX周期内所述持续定时器开启的起始时间。
基于上述方案,终端设备可以根据获取的用于指示下一个DRX周期内持续定时器开启的起始时间和/或下一个DRX周期内持续定时器开启的起始时间偏移值的第一指示信息,调整下一个DRX周期内持续定时器开启的起始时间。可以避免需要传输的数据的到达时间落在DRX非激活时间内,能够降低数据传输的时延。
在一种实现方式中,所述终端设备根据所述第一指示信息,确定所述下一个DRX周期内所述持续定时器开启的起始时间,包括:所述终端设备根据DRX的配置信息和所述持续定时器开启的起始时间偏移值,确定所述下一个DRX周期内所述持续定时器开启的起始时间。
第二方面,提供一种信息监听的方法,该方法可以由网络设备或网络侧的芯片或芯片系统执行。该方法包括:网络设备根据第一搜索空间集组SSSG的搜索空间集确定至少一个第一物理下行控制信道PDCCH候选位置。在不连续接收DRX周期内持续定时器运行期间,所述网络设备在所述第一PDCCH候选位置向终端设备发送至少一个第一控制信息。所述网络设备根据第二SSSG的搜索空间集确定至少一个第二PDCCH候选位置。所述第一控制信息用于调度新传的数据,在DRX周期内非激活定时器运行期间,所述网络设备在所述第二PDCCH候选位置向所述终端设备发送至少一个第二控制信息,所述第一PDCCH的周期大于所述第二PDCCH的周期和/或所述第一SSSG中的搜索空间集的持续时间小于所述第二SSSG中的搜索空间集的持续时间。
在一种实现方式中,所述网络设备根据所述第二SSSG的搜索空间集确定至少一个第三PDCCH候选位置。在DRX周期内所述持续定时器运行期间,所述网络设备在所述第三PDCCH候选位置向所述终端设备发送至少一个第三控制信息,发送所述第一控制信息的时间与发送所述第三控制信息的时间不同。
在一种实现方式中,所述方法还包括:所述网络设备向所述终端设备发送第一配置信息,所述第一配置信息中包括以下至少一种:监听所述第一PDCCH的起始时间、监听所述第一PDCCH的时间长度、监听所述第三PDCCH的起始时间、或监听所述第三PDCCH的时间长度。
在一种实现方式中,所述方法还包括:所述网络设备根据DRX的配置信息,确定第i个DRX周期的起始时间和/或所述第i个DRX周期内所述持续定时器开启的起始时间,i为正整数。所述网络设备确定第一参数m和第二参数T,所述第一参数m为周期性调整DRX周期的起始时间所间隔的DRX周期的个数和/或所述第一参数m为周期性调整DRX周期内所述持续定时器的起始时间所间隔的DRX周期的个数,所述第二参数T为调整DRX周期的起始时间的偏移值和/或调整DRX周期内所述持续定时器开启的起始时间的偏移值,m为正整数。所述网络设备根据所述DRX的配置信息、所述第一参数m和所述第二参数T,确定第i+m个DRX周期的起始时间和/或所述第i+m个DRX周期内所述持续定时器开启的起始时间。
在一种实现方式中,所述方法还包括:所述网络设备确定第一参数m和第二参数T。所述网络设备向终端设备发送第二配置信息,所述第二配置信息中包括所述第一参数m和所述第二参数T。
在一种实现方式中,所述第一参数m与DRX周期的大小和数据传输周期的大小相关。所述第二参数T与DRX周期的大小和数据传输周期的大小相关,和/或,所述第二参数T与DRX周期调整的次数相关。
在一种实现方式中,所述方法还包括:所述网络设备确定第一指示信息,所述第一指示信息用于指示下一个DRX周期内所述持续定时器开启的起始时间和/或下一个DRX周期内所述持续定时器开启的起始时间偏移值。所述网络设备在DRX周期的激活时间内,向所述终端设备发送所述第一指示信息。
在一种实现方式中,DRX周期的起始时间与DRX周期内所述持续定时器开启的起始时间相同。
第三方面,提供一种信息监听的方法,该方法可以由终端设备或终端侧的芯片或芯片系统执行。该方法包括:终端设备根据获取的DRX的配置信息,确定第i个不连续接收DRX周期的起始时间和/或所述第i个DRX周期内持续定时器开启的起始时间,i为正整数。所述终端设备确定第一参数m和第二参数T,所述第一参数m为周期性调整DRX周期的起始时间所间隔的DRX周期的个数和/或所述第一参数m为周期性调整DRX周期内所述持续定时器的起始时间所间隔的DRX周期的个数,所述第二参数T为调整DRX周期的起始时间的偏移值和/或调整DRX周期内所述持续定时器开启的起始时间的偏移值,m为正整数。所述终端设备根据所述DRX的配置信息、所述第一参数m和所述第二参数T,确定第i+m个DRX周期的起始时间和/或所述第i+m个DRX周期内所述持续定时器开启的起始时间。
基于上述技术方案,终端设备每隔m个DRX周期自动调整DRX周期的起始时间和/或DRX周期内持续定时器开启的起始时间,可以避免需要传输的数据的到达时间落在DRX非激活时间内,能够降低数据传输的时延。
在一种实现方式中,所述终端设备确定第一参数m和第二参数T,包括:所述终端设 备接收来自网络设备的第二配置信息,所述第二配置信息中包括所述第一参数m和所述第二参数T。
在一种实现方式中,所述第一参数m与DRX周期的大小和数据传输周期的大小相关。所述第二参数T与DRX周期的大小和数据传输周期的大小相关,和/或,所述第二参数T与DRX周期调整的次数相关。
在一种实现方式中,DRX周期的起始时间与DRX周期内所述持续定时器开启的起始时间相同。
第四方面,提供一种信息监听的方法,该方法可以由网络设备或网络侧的芯片或芯片系统执行。该方法包括:网络设备根据DRX的配置信息,确定第i个DRX周期的起始时间和/或所述第i个DRX周期内所述持续定时器开启的起始时间,i为正整数。所述网络设备确定第一参数m和第二参数T,所述第一参数m为周期性调整DRX周期的起始时间所间隔的DRX周期的个数和/或所述第一参数m为周期性调整DRX周期内所述持续定时器的起始时间所间隔的DRX周期的个数,所述第二参数T为调整DRX周期的起始时间的偏移值和/或调整DRX周期内所述持续定时器开启的起始时间的偏移值,m为正整数。所述网络设备根据所述DRX的配置信息、所述第一参数m和所述第二参数T,确定第i+m个DRX周期的起始时间和/或所述第i+m个DRX周期内所述持续定时器开启的起始时间。
在一种实现方式中,所述方法还包括:所述网络设备确定第一参数m和第二参数T。所述网络设备向终端设备发送第二配置信息,所述第二配置信息中包括所述第一参数m和所述第二参数T。
在一种实现方式中,所述第一参数m与DRX周期的大小和数据传输周期的大小相关。所述第二参数T与DRX周期的大小和数据传输周期的大小相关,和/或,所述第二参数T与DRX周期调整的次数相关。
在一种实现方式中,DRX周期的起始时间与DRX周期内所述持续定时器开启的起始时间相同。
第五方面,提供一种信息监听的方法,该方法可以由终端设备或终端侧的芯片或芯片系统执行。该方法包括:终端设备在不连续接收DRX周期的激活时间内,监听至少一个物理下行控制信道PDCCH和/或在至少一个物理下行共享信道PDSCH上接收数据,所述至少一个PDCCH承载的控制信息和/或所述数据中包括第一指示信息,所述第一指示信息用于指示下一个DRX周期内持续定时器开启的起始时间和/或下一个DRX周期内所述持续定时器开启的起始时间偏移值。所述终端设备根据所述第一指示信息,确定所述下一个DRX周期内所述持续定时器开启的起始时间。
基于上述技术方案,终端设备可以根据获取的用于指示下一个DRX周期内持续定时器开启的起始时间和/或下一个DRX周期内持续定时器开启的起始时间偏移值的第一指示信息,调整下一个DRX周期内持续定时器开启的起始时间。可以避免需要传输的数据的到达时间落在DRX非激活时间内,能够降低数据传输的时延。
在一种实现方式中,所述终端设备根据所述第一指示信息,确定所述下一个DRX周期内所述持续定时器开启的起始时间,包括:所述终端设备根据DRX的配置信息和所述持续定时器开启的起始时间偏移值,确定所述下一个DRX周期内所述持续定时器开启的起始时间。
在一种实现方式中,DRX周期的起始时间与DRX周期内所述持续定时器开启的起始时间相同。
第六方面,提供一种信息监听的方法,该方法可以由网络设备或网络侧的芯片或芯片系统执行。该方法包括:网络设备确定第一指示信息,所述第一指示信息用于指示下一个DRX周期内持续定时器开启的起始时间和/或下一个DRX周期内所述持续定时器开启的起始时间偏移值。所述网络设备在不连续接收DRX周期的激活时间内,向终端设备发送至少一个控制信息和/或至少一个数据,所述控制信息和/或所述数据中包括所述第一指示信息。
在一种实现方式中,DRX周期的起始时间与DRX周期内所述持续定时器开启的起始时间相同。
第七方面,提供一种通信装置,有益效果可以参见第一方面的描述此处不再赘述。所述通信装置具有实现上述第一方面的方法实例中行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。在一个可能的设计中,所述通信装置包括:确定模块,用于根据第一搜索空间集组SSSG的搜索空间集确定至少一个第一物理下行控制信道PDCCH候选位置。收发模块,用于在不连续接收DRX周期内持续定时器运行期间,在所述第一PDCCH候选位置监听所述第一PDCCH。所述确定模块还用于,根据第二SSSG的搜索空间集确定至少一个第二PDCCH候选位置。所述收发模块还用于,在所述第一PDCCH上监听到用于调度新传的数据的第一控制信息,在DRX周期内非激活定时器运行期间,在所述第二PDCCH候选位置监听所述第二PDCCH,所述第一PDCCH的周期大于所述第二PDCCH的周期和/或所述第一SSSG中的搜索空间集的持续时间小于所述第二SSSG中的搜索空间集的持续时间。这些模块可以执行上述第一方面方法示例中的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
在一种实现方式中,所述确定模块还用于,根据所述第二SSSG的搜索空间集确定至少一个第三PDCCH候选位置。所述收发模块还用于,在DRX周期内所述持续定时器运行期间,在所述第三PDCCH候选位置监听所述第三PDCCH,监听所述第一PDCCH的时间与监听所述第三PDCCH的时间不同。
在一种实现方式中,所述收发模块还用于,接收来自网络设备的第一配置信息,所述第一配置信息中包括以下至少一种:监听所述第一PDCCH的起始时间、监听所述第一PDCCH的时间长度、监听所述第三PDCCH的起始时间、或监听所述第三PDCCH的时间长度。
在一种实现方式中,监听所述第一PDCCH的起始时间与DRX周期内所述持续定时器开启的起始时间相同。
在一种实现方式中,所述收发模块在所述第一PDCCH候选位置监听所述第一PDCCH时,第一调度偏移值大于或等于第一阈值,所述第一调度偏移值是所述第一PDCCH与所述第一PDCCH调度的物理下行共享信道PDSCH或物理上行共享信道PUSCH之间的时间偏移值。所述收发模块在所述第二PDCCH候选位置监听所述第二PDCCH时,第二调度偏移值大于或等于第二阈值,所述第二调度偏移值是所述第二PDCCH与所述第二PDCCH调度的PDSCH或PUSCH之间的时间偏移值,其中,所述第一阈值大于所述第二 阈值。所述收发模块在所述第三PDCCH候选位置监听所述第三PDCCH时,第三调度偏移值大于或等于所述第二阈值,所述第三调度偏移值是所述第三PDCCH与所述第三PDCCH调度的PDSCH或PUSCH之间的时间偏移值。
在一种实现方式中,所述确定模块还用于:根据获取的DRX的配置信息,确定第i个DRX周期的起始时间和/或所述第i个DRX周期内所述持续定时器开启的起始时间,i为正整数。确定第一参数m和第二参数T,所述第一参数m为周期性调整DRX周期的起始时间所间隔的DRX周期的个数和/或所述第一参数m为周期性调整DRX周期内所述持续定时器的起始时间所间隔的DRX周期的个数,所述第二参数T为调整DRX周期的起始时间的偏移值和/或调整DRX周期内所述持续定时器开启的起始时间的偏移值,m为正整数。根据所述DRX的配置信息、所述第一参数m和所述第二参数T,确定第i+m个DRX周期的起始时间和/或所述第i+m个DRX周期内所述持续定时器开启的起始时间。
在一种实现方式中,所述第一参数m与DRX周期的大小和数据传输周期的大小相关。所述第二参数T与DRX周期的大小和数据传输周期的大小相关,和/或,所述第二参数T与DRX周期调整的次数相关。
在一种实现方式中,所述收发模块还用于,获取第一指示信息,所述第一指示信息用于指示下一个DRX周期内所述持续定时器开启的起始时间和/或下一个DRX周期内所述持续定时器开启的起始时间偏移值。所述确定模块还用于,根据所述第一指示信息,确定所述下一个DRX周期内所述持续定时器开启的起始时间。
在一种实现方式中,所述确定模块具体用于,根据DRX的配置信息和所述持续定时器开启的起始时间偏移值,确定所述下一个DRX周期内所述持续定时器开启的起始时间。
第八方面,提供一种通信装置,有益效果可以参见第二方面的描述此处不再赘述。所述通信装置具有实现上述第二方面的方法实例中行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。在一个可能的设计中,所述通信装置包括:确定模块,用于根据第一搜索空间集组SSSG的搜索空间集确定至少一个第一物理下行控制信道PDCCH候选位置。收发模块,用于在不连续接收DRX周期内持续定时器运行期间,在所述第一PDCCH候选位置向终端设备发送至少一个第一控制信息。所述确定模块还用于,根据第二SSSG的搜索空间集确定至少一个第二PDCCH候选位置。所述收发模块还用于,所述第一控制信息用于调度新传的数据,在DRX周期内非激活定时器运行期间,在所述第二PDCCH候选位置向所述终端设备发送至少一个第二控制信息,所述第一PDCCH的周期大于所述第二PDCCH的周期和/或所述第一SSSG中的搜索空间集的持续时间小于所述第二SSSG中的搜索空间集的持续时间。这些模块可以执行上述第二方面方法示例中的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
在一种实现方式中,所述确定模块还用于,根据所述第二SSSG的搜索空间集确定至少一个第三PDCCH候选位置。所述收发模块还用于,在DRX周期内所述持续定时器运行期间,在所述第三PDCCH候选位置向所述终端设备发送至少一个第三控制信息,发送所述第一控制信息的时间与发送所述第三控制信息的时间不同。
在一种实现方式中,所述收发模块还用于,向所述终端设备发送第一配置信息,所述第一配置信息中包括以下至少一种:监听所述第一PDCCH的起始时间、监听所述第一 PDCCH的时间长度、监听所述第三PDCCH的起始时间、或监听所述第三PDCCH的时间长度。
在一种实现方式中,所述确定模块还用于:根据DRX的配置信息,确定第i个DRX周期的起始时间和/或所述第i个DRX周期内所述持续定时器开启的起始时间,i为正整数。确定第一参数m和第二参数T,所述第一参数m为周期性调整DRX周期的起始时间所间隔的DRX周期的个数和/或所述第一参数m为周期性调整DRX周期内所述持续定时器的起始时间所间隔的DRX周期的个数,所述第二参数T为调整DRX周期的起始时间的偏移值和/或调整DRX周期内所述持续定时器开启的起始时间的偏移值,m为正整数。根据所述DRX的配置信息、所述第一参数m和所述第二参数T,确定第i+m个DRX周期的起始时间和/或所述第i+m个DRX周期内所述持续定时器开启的起始时间。
在一种实现方式中,所述第一参数m与DRX周期的大小和数据传输周期的大小相关。所述第二参数T与DRX周期的大小和数据传输周期的大小相关,和/或,所述第二参数T与DRX周期调整的次数相关。
在一种实现方式中,所述确定模块还用于,确定第一指示信息,所述第一指示信息用于指示下一个DRX周期内所述持续定时器开启的起始时间和/或下一个DRX周期内所述持续定时器开启的起始时间偏移值。所述收发模块还用于,在DRX周期的激活时间内,向所述终端设备发送所述第一指示信息。
第九方面,提供一种通信装置,有益效果可以参见第三方面的描述此处不再赘述。所述通信装置具有实现上述第三方面的方法实例中行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。在一个可能的设计中,所述通信装置包括:确定模块,用于:根据获取的DRX的配置信息,确定第i个不连续接收DRX周期的起始时间和/或所述第i个DRX周期内持续定时器开启的起始时间,i为正整数。确定第一参数m和第二参数T,所述第一参数m为周期性调整DRX周期的起始时间所间隔的DRX周期的个数和/或所述第一参数m为周期性调整DRX周期内所述持续定时器的起始时间所间隔的DRX周期的个数,所述第二参数T为调整DRX周期的起始时间的偏移值和/或调整DRX周期内所述持续定时器开启的起始时间的偏移值,m为正整数。根据所述DRX的配置信息、所述第一参数m和所述第二参数T,确定第i+m个DRX周期的起始时间和/或所述第i+m个DRX周期内所述持续定时器开启的起始时间。这些模块可以执行上述第三方面方法示例中的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
在一种实现方式中,所述第一参数m与DRX周期的大小和数据传输周期的大小相关。所述第二参数T与DRX周期的大小和数据传输周期的大小相关,和/或,所述第二参数T与DRX周期调整的次数相关。
第十方面,提供一种通信装置,有益效果可以参见第四方面的描述此处不再赘述。所述通信装置具有实现上述第四方面的方法实例中行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。在一个可能的设计中,所述通信装置包括:确定模块,用于:根据DRX的配置信息,确定第i个DRX周期的起始时间和/或所述第i个DRX周期内所述持续定时器开启的起始时间,i为正整数。确定第一参数m和第二参数T,所述第一参数m为周期性 调整DRX周期的起始时间所间隔的DRX周期的个数和/或所述第一参数m为周期性调整DRX周期内所述持续定时器的起始时间所间隔的DRX周期的个数,所述第二参数T为调整DRX周期的起始时间的偏移值和/或调整DRX周期内所述持续定时器开启的起始时间的偏移值,m为正整数。根据所述DRX的配置信息、所述第一参数m和所述第二参数T,确定第i+m个DRX周期的起始时间和/或所述第i+m个DRX周期内所述持续定时器开启的起始时间。这些模块可以执行上述第四方面方法示例中的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
在一种实现方式中,所述第一参数m与DRX周期的大小和数据传输周期的大小相关。所述第二参数T与DRX周期的大小和数据传输周期的大小相关,和/或,所述第二参数T与DRX周期调整的次数相关。
第十一方面,提供一种通信装置,有益效果可以参见第五方面的描述此处不再赘述。所述通信装置具有实现上述第五方面的方法实例中行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。在一个可能的设计中,所述通信装置包括:收发模块,用于在不连续接收DRX周期的激活时间内,监听至少一个物理下行控制信道PDCCH和/或在至少一个物理下行共享信道PDSCH上接收数据,所述至少一个PDCCH承载的控制信息和/或所述数据中包括第一指示信息,所述第一指示信息用于指示下一个DRX周期内持续定时器开启的起始时间和/或下一个DRX周期内所述持续定时器开启的起始时间偏移值。确定模块,用于根据所述第一指示信息,确定所述下一个DRX周期内所述持续定时器开启的起始时间。这些模块可以执行上述第五方面方法示例中的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
在一种实现方式中,所述确定模块具体用于,根据DRX的配置信息和所述持续定时器开启的起始时间偏移值,确定所述下一个DRX周期内所述持续定时器开启的起始时间。
第十二方面,提供一种通信装置,有益效果可以参见第六方面的描述此处不再赘述。所述通信装置具有实现上述第六方面的方法实例中行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。在一个可能的设计中,所述通信装置包括:确定模块,用于确定第一指示信息,所述第一指示信息用于指示下一个不连续接收DRX周期内持续定时器开启的起始时间和/或下一个DRX周期内所述持续定时器开启的起始时间偏移值。收发模块,用于在DRX周期的激活时间内,向终端设备发送至少一个控制信息和/或至少一个数据,所述控制信息和/或所述数据中包括所述第一指示信息。这些模块可以执行上述第六方面方法示例中的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
第十三方面,提供一种通信装置,该通信装置可以为上述方法实施例中的终端设备,或者为设置在终端设备中的芯片。该通信装置通信接口以及处理器,可选的,还包括存储器。其中,该存储器用于存储计算机程序或指令,处理器与存储器、通信接口耦合,当处理器执行所述计算机程序或指令时,使通信装置执行上述方法实施例中由终端设备所执行的方法。
第十四方面,提供一种通信装置,该通信装置可以为上述方法实施例中的网络设备,或者为设置在网络设备中的芯片。该通信装置包括通信接口以及处理器,可选的,还包括 存储器。其中,该存储器用于存储计算机程序或指令,处理器与存储器、通信接口耦合,当处理器执行所述计算机程序或指令时,使通信装置执行上述方法实施例中由网络设备所执行的方法。
第十五方面,提供一种包含指令的计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码并运行时,使得上述各方面中由终端设备执行的方法被执行。
第十六方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码被运行时,使得上述各方面中由网络设备执行的方法被执行。
第十七方面,本申请提供了一种芯片系统,该芯片系统包括处理器,用于实现上述各方面的方法中终端设备的功能。在一种可能的设计中,所述芯片系统还包括存储器,用于保存程序指令和/或数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十八方面,本申请提供了一种芯片系统,该芯片系统包括处理器,用于实现上述各方面的方法中网络设备的功能。在一种可能的设计中,所述芯片系统还包括存储器,用于保存程序指令和/或数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十九方面,提供一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,当该计算机程序被运行时,实现上述各方面中由终端设备执行的方法。
第二十方面,本申请提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,当该计算机程序被运行时,实现上述各方面中由网络设备执行的方法。
附图说明
图1是视频帧提前到达网络设备或推迟到达网络设备的示意图。
图2是一组候选PDCCH的示意图。
图3是一个C-DRX周期的示意图。
图4是开启onDurationTimer与drx-SlotOffset和drx-StartOffset的关系的示意图。
图5是两组不同SSSG的示意图。
图6是视频帧延后到达的示意图。
图7是网络设备根据DRX周期发送视频帧的示意图。
图8是将DRX cycle划分为4个不重叠的pattern的示意图。
图9是本申请实施例提出的一种信息监听的方法的示意性流程交互图。
图10是一种在持续定时器运行期间在第一时间段和第三时间段分别监听不同PDCCH的示意图。
图11是另一种在持续定时器运行期间在第一时间段和第三时间段分别根据不同的SSSG监听不同PDCCH的示意图。
图12是调整第i+m个DRX周期内持续定时器开启的起始时间的示意图。
图13是调整下一个DRX周期内持续定时器开启的起始时间的示意图。
图14是本申请实施例提出的另一种信息监听的方法的示意性流程交互图。
图15是本申请实施例提出的另一种信息监听的方法的示意性流程交互图。
图16至图21是本申请实施例的通信装置的示意性框图。
图22是本申请实施例的一种通信设备的示意性框图。
图23是本申请实施例的一种简化的通信装置的结构示意图。
图24是本申请实施例的一种简化的终端设备的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例可以应用于各种通信系统,例如无线局域网系统(wireless local area network,WLAN)、窄带物联网系统(narrow band-internet of things,NB-IoT)、全球移动通信系统(global system for mobile communications,GSM)、增强型数据速率GSM演进系统(enhanced data rate for gsm evolution,EDGE)、宽带码分多址系统(wideband code division multiple access,WCDMA)、码分多址2000系统(code division multiple access,CDMA2000)、时分同步码分多址系统(time division-synchronization code division multiple access,TD-SCDMA),长期演进系统(long term evolution,LTE)、卫星通信、第五代(5th generation,5G)系统或者将来出现的新的通信系统等。
适用于本申请的通信系统,包括一个或多个发送端,以及一个或多个接收端。其中,发送端和接收端之间的信号传输,可以是通过无线电波来传输,也可以通过可见光、激光、红外以及光纤等传输媒介来传输。
示例性地,发送端和接收端中的一个可以为终端设备,另一个可以为网络设备。示例性地,发送端和接收端都可以为终端设备。
本申请实施例中所涉及到的终端设备可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备。终端可以是移动台(mobile station,MS)、用户单元(subscriber unit)、用户设备(user equipment,UE)、蜂窝电话(cellular phone)、智能电话(smart phone)、无线数据卡、个人数字助理(personal digital assistant,PDA)电脑、平板型电脑、无线调制解调器(modem)、手持设备(handset)、膝上型电脑(laptop computer)、机器类型通信(machine type communication,MTC)终端等。
示例性地,网络设备可以是演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(home evolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为新空口(new radio,NR)中的gNB或传输点(例如,TRP或TP),NR中的基站的一个或一组(包括多个)天线面板,或者,还可以为构成gNB或传输点的网络节点,例如基带单元(building baseband unit,BBU)或分布式单元(distributed unit,DU)等,或者,网络设备还可以为车载设备、可穿戴设备以及5G网络中的网络设备,或者未来演进的PLMN网络中的网络设备等,不作限定。
网络设备的产品形态十分丰富。例如,在产品实现过程中,BBU可以与射频单元(Radio  Frequency Unit,RFU)集成在同一设备内,该设备通过线缆(例如但不限于馈线)连接至天线阵列。BBU还可以与RFU分离设置,二者之间通过光纤连接,通过例如但不限于,通用公共射频接口(common public radio interface,CPRI)协议进行通信。在这种情况下,RFU通常称为RRU(remote radio unit,射频拉远单元),其通过线缆连接至天线阵列。此外,RRU还可以与天线阵列集成在一起,例如,目前市场上的有源天线单元(active antenna unit,AAU)产品就采用了这种结构。
此外,BBU可以进一步分解为多个部分。例如,可以按照所处理业务的实时性将BBU进一步细分为集中单元(centralized unit,CU)和分布单元(distribute unit,DU)。CU负责处理非实时协议和服务,DU负责处理物理层协议和实时服务。更进一步的,部分物理层功能还可以从BBU或者DU中分离出来,集成在AAU中。
扩展现实(extended reality,XR)和云游戏(cloud gaming,CG)是5G的重要应用场景。XR是不同类型的现实(reality)的总称,指通过计算机或者穿戴设备产生的现实和虚拟结合的环境以及人机交互,XR的类型包括增强现实(augmented reality,AR)、混合现实(mixed reality,MR)以及虚拟现实(virtual reality,VR)等。
XR和CG业务以视频帧(video frame)的方式进行传输,其中,视频帧还可以称为画面帧(scene frame),也可以称为切片(slice),一个视频帧包含的信息组成一幅画面,帧率(frame per second,FPS)表示每秒生成的视频帧数目,通常,XR和CG业务的帧率可以为30FPS、60FPS、90FPS或120FPS等,例如,60FPS表示每秒生成60个视频帧。
以下行业务传输为例,XR和CG业务数据的传输过程大致为,XR或CG服务器对视频帧进行逻辑计算、内容渲染、编码等处理,再发送给核心网设备,核心网设备将视频帧传输到无线接入网(radio access network,RAN)设备,无线接入网设备再通过空口传输到UE。视频帧的大小不是固定的,不同视频帧的大小是可以变化的。在网络传输过程中,一个视频帧可以被分为一个或多个互联网协议(internet protocol,IP)包(packet)进行传输。根据不同IP包的大小,一个IP包可能会分割为多个传输块(transport block,TB)通过空口传输给UE。通常,一个TB占用一个时隙(slot)或者一个时隙内的几个符号(symbol),一个TB还可以在多个时隙或者不同符号上重复发送。
XR业务和CG业务的另一个特点为视频帧到达网络设备的时间是准周期的。它的周期为帧率的倒数,即1/FPS,以60FPS为例,则周期为1/60秒,约等于16.67毫秒(ms)。准周期是指在网络设备与UE之间视频帧不是严格按照周期进行传输的,而是有一定时间范围内的波动,这是由于渲染、编码、核心网等因素导致的。
如图1所示,示出了视频帧提前到达网络设备或推迟到达网络设备的示意图。在预期到达(expected arrival)的基础上,不同的视频帧有可能会提前到达网络设备,也可能会推迟到达网络设备。时间上的抖动在统计上服从一定的概率分布,例如,服从均值为0、方差为2的高斯分布,抖动范围为[-4,4]ms,负值表示视频帧提前到达,正值表示视频帧延后到达。
针对XR和CG的应用场景,节省终端设备的功耗是提升用户体验的一个重要方面。由于XR/CG业务是准周期的,并不是总是有数据传输的,如果接收XR/CG业务的终端设备长期处于监听物理下行控制信道(physical downlink control channel,PDCCH)的状态,会造成终端设备的功耗过高。这是因为终端设备需要盲检PDCCH来获取上行数据/下行数 据的调度信息,并根据PDCCH携带的调度信息进行物理下行共享信道(physical downlink shared channel,PDSCH)接收或物理上行共享信道(physical uplink shared channel,PUSCH)发送,如果网络设备不需要进行数据调度,网络设备没有向UE发送PDCCH,那么对于终端设备而言,盲检PDCCH就带来功耗浪费。
为了便于对本申请实施例的理解,简单介绍一下PDCCH的监听机制和已有的降低终端设备功耗的方法。
1、PDCCH的监听机制
PDCCH的作用之一就是用于承载上行的调度信息或下行的调度信息,UE需要周期性的监听PDCCH来获取调度信息,周期可以为1个时隙。如果检测到PDCCH有调度信息,针对下行调度信息,UE可以根据调度信息通过PDSCH接收数据;针对上行调度信息,UE根据调度信息通过PUSCH发送数据。PDCCH还可以用于承载上行功率控制命令字、时隙格式等信息。承载不同控制信息的PDCCH可以采用不同的无线网络临时标识(radio network temporary identifier,RNTI)进行加扰。
一个搜索空间集(search space set,SS set)可以用于定义一组候选PDCCH(PDCCH candidates),如图2所示,示出了一组候选PDCCH的示意图。网络设备可以为UE配置至少一个搜索空间集(search space set,SS set)。UE基于SS set进行PDCCH监听。例如,UE根据SS set的配置信息,进行PDCCH监听。
示例性的,每个SS set的配置信息可以包括以下至少一项参数:
(1)SS set标识,用于标识SS set;
(2)与该SS set关联的控制资源集(control resource set,CORESET)标识;其中,CORESET表示一个用于承载PDCCH的时频资源集,一个CORESET在频域上由若干个连续的或非连续的资源块(resource block,RB)组成,在时域上由连续的一个或多个符号组成。例如,UE可以根据SS set的参数,例如监听周期、偏移或监听图案等,在该SS set关联的CORESET上进行PDCCH监听。
(3)PDCCH监听周期Ks和偏移Os,取值单位可以为时隙(slot),Ks>=1,Os的取值范围为0~Ks-1。
(4)时隙内PDCCH监听图案(pattern),或者称为时隙内PDCCH监听符号,用于指示该SS set关联的CORESET在时隙内监听PDCCH的起始符号。以14比特位图标识,最高位表示时隙内的第一个OFDM符号,例如,“10000000000000”表示时隙内的第一个OFDM符号为时隙内监听PDCCH的起始符号,监听PDCCH的符号长度由该SS set关联的CORESET的符号长度确定。
(5)持续时间Ts,用于指示该SS set出现的连续的时隙的个数。其中,Ts小于或等于Ks,Ts的取值可以为1个时隙。例如,可理解为在PDCCH监听周期Ks内连续监听PDCCH的时隙的个数,例如,Ts=2表示在PDCCH监听周期内连续两个slot监听PDCCH。
(6)聚合等级以及各聚合等级对应的候选PDCCH(PDCCH candidate)的个数。
(7)SS set类型指示,用于指示该SS set是公共搜索空间集(common search space set,CSS set),可以简称为CSS,或者是用户专用搜索空间集(UE-specific search space set,USS set),可以简称为USS。其中,若该SS set的类型为CSS,网络设备还会配置在PDCCH候选位置监听的下行控制信息(downlink control information,DCI)格式(format),例如, 可以为DCI格式0_0、DCI格式1_0、DCI格式2_0、DCI格式2_1、DCI格式2_2、DCI格式2_3、DCI格式2_4、DCI格式2_5或DCI格式2_6等。若该SS set的类型为USS,则网络设备也会配置在PDCCH候选位置监听的DCI格式,例如,可以为DCI格式0_0、DCI格式1_0、DCI格式0_1、DCI格式1_1、DCI格式0_2、DCI格式1_2、DCI格式3_0、或DCI格式3_1等。
UE可以根据上述参数中的PDCCH监听周期、偏移,以及时隙内PDCCH监听图案等,确定PDCCH监听时机(monitoring occasion,MO)/PDCCH候选位置,如图2所示。在本申请中,UE监听PDCCH是指UE在PDCCH候选位置监听PDCCH。
2、连接态不连续接收(connected mode discontinuous reception,C-DRX)机制
C-DRX表示连接态下的DRX机制,因此在连接态下也可以简写为DRX。在C-DRX机制中,终端设备可以根据网络设备配置的DRX周期(DRX cycle),周期性打开接收机监听PDCCH,如图3所示,示出了一个C-DRX周期的示意图。在一个DRX周期中通常包含两个时间段:激活时间(active time)和非激活时间(non-active time)。终端设备在active time内在PDCCH监听时机进行PDCCH监听,而在non-active time内可以处于休眠状态,不监听PDCCH,从而节省终端功耗。
需要说明的是,C-DRX机制主要用于控制以下RNTI加扰的PDCCH:小区无线网络临时标识(cell-RNTI,C-RNTI),取消指示RNTI(cancellation indication-RNTI,CI-RNTI),配置调度RNTI(configured scheduling-RNTI,CS-RNTI),中断RNTI(interruption-RNTI,INT-RNTI),时隙格式指示RNTI(slot format indication-RNTI,SFI-RNTI),半持续信道状态信息RNTI(semi-persistent-channel state information-RNTI,SP-CSI-RNTI),物理上行控制信道发送功率控制RNTI(transmit power control-physical uplink control channel-RNTI,TPC-PUCCH-RNTI),物理上行共享信道发送功率控制RNTI(transmit power control-PUSCH-RNTI,TPC-PUSCH-RNTI),探测参考信道发送功控控制RNTI(transmit power control-sounding reference signal-RNTI,TPC-SRS-RNTI)和可用性指示RNTI(availability indication-RNTI,AI-RNTI),即在非激活时间,UE不监听上述RNTI加扰的PDCCH。对于系统消息RNTI(system information-RNTI,SI-RNTI),随机接入RNTI(random access-RNTI,RA-RNTI),消息B RNTI(message B-RNTI,MsgB-RNTI),临时小区RNTI(temporary cell-RNTI,TC-RNTI)加扰的PDCCH不受C-DRX机制约束。
激活时间至少包括持续定时器(drx-onDurationTimer)运行的时间。网络设备可以通过无线资源控制(radio resource control,RRC)信令向终端设备配置drx-onDurationTimer的长度。
DRX周期可以包括长不连续接收周期(Long DRX cycle)和短不连续接收周期(short DRX cycle),其中short DRX cycle为可选的配置。后文中如果没有特别说明,DRX cycle可以是Long DRX cycle或者short DRX cycle。以长不连续接收周期(Long DRX cycle)为例,网络设备还会配置Long DRX cycle长度的参数drx-LongCycle和用于确定DRX周期开始的子帧的参数drx-StartOffset,以及DRX周期开始的子帧内开启drx-onDurationTimer之前的时间偏移量的参数drx-SlotOffset。如果使用Long DRX cycle,当子帧号(subframe number)满足如下公式(1),终端开启drx-onDurationTimer(后文简写为onDurationTimer):
[(SFN×10)+subframe number]modulo(drx-LongCycle)=drx-StartOffset   (1)
其中,SFN为系统帧号,modulo表示取模运算。系统帧也可以称作无线帧,一个无线帧为10ms,一个无线帧可由多个子帧(subframe)组成,每个子帧由一个或多个时隙组成。即在Long DRX cycle的起始子帧延迟drx-SlotOffset之后开启onDurationTimer,如图4所示,示出了开启onDurationTimer与drx-SlotOffset和drx-StartOffset的关系的示意图。
如果使用短不连续接收周期(short DRX cycle),当子帧号(subframe number)满足如下公式(2),终端设备开启drx-onDurationTimer:
[(SFN×10)+子帧号]modulo(drx-ShortCycle)=(drx-StartOffset)modulo(drx-ShortCycle)(2)即在short DRX cycle的起始子帧延迟drx-SlotOffset之后开启onDurationTimer。
根据上述描述可知,当网络设备配置了C-DRX参数以后,终端设备周期性打开onDurationTimer的时间位置也就固定了,不能实时动态的调整onDurationTimer的时间位置。
可选的,在C-DRX机制中,激活时间还可以包括:不连续接收-非激活定时器(drx-InactivityTimer)、不连续接收-下行链路(downlink,DL)重传定时器(drx-RetransmissionTimerDL)、以及不连续接收-上行链路(uplink,UL)重传定时器(drx-RetransmisionTimerUL)运行的时间。后面drx-InactivityTimer简称InactivityTimer,drx-RetransmissionTimerDL简称RetransmissionTimerDL,drx-RetransmisionTimerUL简称RetransmisionTimerUL。网络设备通过RRC信令向终端设备配置的C-DRX参数具体可以如表1所示。开启drx-InactivityTimer、drx-RetransmissionTimerDL以及drx-RetransmisionTimerUL的触发条件见表1中所描述,即有数据传输时,这三个定时器才会启动。
表1
Figure PCTCN2022113491-appb-000001
Figure PCTCN2022113491-appb-000002
激活时间还可以包括:随机接入-冲突解决定时器(ra-ContentionResolutionTimer)或者消息B-响应窗(msgB-response window)运行期间;UE在PUCCH上发送了调度请求(scheduling request,SR)之后的等待(pending)期间;UE在成功接收到基于非竞争的随机接入的随机接入响应(random access response,RAR)之后还未收到指示新传的PDCCH期间。
3、搜索空间集组(search space set group,SSSG)切换机制
网络设备可以为一个带宽部分(bandwidth part,BWP)配置多个SS set,可以将这些SS set进行分组,具体的可以分为两组(group)或者更多组。例如,以SS set分为两组SSSG为例,在SS set的配置信息中可以配置该SS set属于第一个组,例如SSSG0,还是属于第二个组,例如SSSG1。也可以允许一个SS set属于多个SSSG,即既属于SSSG0,又属于SSSG1。对于配置有SSSG索引的SS set,UE只需要根据其中一个SSSG的SS set监听PDCCH。如上文所述,可以通过SS set的配置信息,每个SSSG实现不同稀疏程度的PDCCH监听时机。
如图5所示,示出了两组不同SSSG的示意图。不同SSSG关联的SS set可以有不同的PDCCH监听时机(候选位置),当UE切换到的SSSG中PDCCH监听时机较稀疏时,例如,图5中的SSSG 0,UE根据属于SSSG 0的SS set监听PDCCH,而不需要根据属于SSSG 1的SS set监听PDCCH,由于属于SSSG 0的SS set的PDCCH监听时机比较稀疏,则可以达到节省功耗的目的。
网络设备和UE可以动态切换SSSG,可以通过DCI中比特域显式指示或者DCI隐式指示SSSG切换。以两组SSSG为例,两组SSSG分别为SSSG 0和SSSG 1为例。DCI中的比特域显式指示可以包括:当DCI中的比特域指示为“0”时,UE切换到SSSG 0,即根据SSSG 0的SS set监听PDCCH,停止根据SSSG 1的SS set监听PDCCH;当该域指示为“1”,UE切换到SSSG 1,即根据SSSG1的SS set监听PDCCH。反之亦然。DCI隐式指示可以包括:如果UE正在根据PDCCH监听时机稀疏的SSSG中的SS set监听PDCCH,当UE检测到任意DCI格式(format),或者检测到特定的DCI format,则UE从PDCCH监听时机稀疏的SSSG切换到PDCCH监听时机的密集的SSSG。UE还可以经过一段时长自动切换SSSG,例如,UE根据属于SSSG 0的SS set监听PDCCH,经过一段时长以后,UE切换到SSSG 1,反之亦然。一段时长可以通过定时器实现,例如,UE根据属于SSSG 0的SS set监听PDCCH的同时启动一个定时器,当定时器超时时,UE根据属于SSSG 1的SS set监听PDCCH。
XR/CG业务有低时延、高可靠的需求,同时,考虑到XR/CG业务在时间上的抖动性,采用C-DRX机制,需要配置较长的onDurationTimer运行的时间,才能覆盖XR/CG视频帧的抖动。以60FPS为例,需要配置DRX cycle=16ms,考虑到抖动范围为[-4,4]ms,onDurationTimer运行的时间长度需要设置为8ms。如图6所示,示出了视频帧延后到达的示意图。由于视频帧延后到达,而UE在持续定时器(onDurationTimer)开启时就需要进行PDCCH盲检,因此,会带来功耗浪费。
XR/CG业务的周期为帧率的倒数,XR/CG业务的周期通常为非整数,例如,帧率为60FPS,对应的周期约为16.67ms;帧率为120FPS对应的周期约为8.33ms。由于DRX周期通常为整数,不考虑时间上的抖动,XR/CG业务的周期也很难和DRX周期匹配。如图7所示,示出了网络设备根据DRX周期发送视频帧的示意图。以60FPS为例,假设onDurationTimer=4ms,则6个DRX cycle以后,XR/CG的视频帧到达时间则会落在DRX非激活时间内,网络设备只能等到下一个DRX cycle的激活时间进行调度,增加了时延,如果时延太大,还可能导致丢包,从而影响用户体验。此外,不同的XR/CG设备可能支持不同的帧率,针对每一种的帧率引入一种新的DRX周期长度,这种方法不够灵活。
作为一种可实施的方式,根据onDurationTimer的时间长度,将DRX cycle划分为几个不重叠的图案(pattern),即有N种pattern,其中,N满足如下公式(3),如果不能整除,可以向上或者向下取整。。假设DRX cycle为16ms,onDurationTimer=4ms,则有4个pattern,即有4种drx-StartOffset;网络设备可以通过DCI指示后续的DRX cycle采用哪个pattern。如图8所示,示出了将DRX cycle划分为4个不重叠的pattern的示意图。
Figure PCTCN2022113491-appb-000003
采用其中一种pattern时,例如pattern1,会出现在onDurationTimer即将结束时才有IP包的情况,例如图7中虚线框的部分,此时由于网络设备调度器等原因,网络设备可能来不及在当前的onDurationTimer内发送DCI进行调度,那么只能到下一个DRX cycle的onDurationTimer才能进行调度。由于不同pattern的onDurationTimer运行起始时间不重叠,即使切换到另一个pattern,IP包仍可能落在onDurationTimer之外。
本申请实施例提出了信息监听的方法,能够节省终端设备的功耗。
如图9所示,出示了本申请实施例提出的一种信息监听的方法900的示意性流程交互图。
网络设备可以配置C-DRX参数、搜索空间集SS set的配置信息以及SS set的分组信息。其中,C-DRX参数可以理解为DRX的配置信息。本申请实施例中的网络设备可以为基站。C-DRX参数包括表1中的参数。
910,网络设备根据第一SSSG的搜索空间集确定至少一个第一PDCCH候选位置。
920,网络设备根据C-DRX参数,确定DRX周期内持续定时器的运行时间。在确定的所述DRX周期内持续定时器运行期间,所述网络设备在所述第一PDCCH候选位置可以向终端设备发送至少一个第一控制信息。
示例性的,所述控制信息可以为DCI,用于调度PDSCH或PUSCH承载的数据。应理解,网络设备确定DRX周期内持续定时器的运行时间的步骤(即920)与确定至少一个第一PDCCH候选位置的步骤(即910)是可以不分先后顺序的。
930,终端设备根据第一SSSG的搜索空间集确定至少一个第一PDCCH候选位置。其中,属于第一SSSG的搜索空间集可能有一个或多个。
940,终端设备根据C-DRX参数,确定DRX周期内持续定时器的运行时间。在所述DRX周期内持续定时器运行期间,所述终端设备在所述第一PDCCH候选位置监听第一PDCCH。
其中,所述第一PDCCH可用于承载第一控制信息。应理解,终端设备确定DRX周 期内持续定时器的运行时间的步骤与确定至少一个第一PDCCH候选位置的步骤是可以不分先后顺序的。
应理解,910和920是可以不分先后顺序的,930和940也是可以不分先后顺序的。除此之外,930和940可以在910之前,或者,910、920与930、940可以是同时进行的。本申请实施例对此不做限定。
需要特别说明的是,步骤920与步骤940中,确定DRX周期内持续定时器的运行时间的方法可以通过前述介绍的公式(1)或公式(2)确定。
950,网络设备根据第二SSSG的搜索空间集确定至少一个第二PDCCH候选位置。
960,当第一控制信息用于调度新传的数据时,该网络设备开启非激活定时器,在非激活定时器运行期间,该网络设备在第二PDCCH候选位置向终端设备发送至少一个第二控制信息。
应理解,第一控制信息可以是用于调度新传的数据的控制信息,也可以是用于调度重传的数据的控制信息,还可以用于指示非调度数据的控制信息,例如组公共DCI。应理解,网络设备开启非激活定时器与确定至少一个第二PDCCH候选位置的步骤是可以不分先后顺序的。
在910之前,网络设备还向终端设备配置搜索空间集SS set的配置信息以及SS set的分组信息,即SSSG。SS set的配置信息可以参考前文,在SS set的配置信息中还可以配置SSSG的索引用于指示该SS set所属的SSSG,在本实施例中配置SS set的配置信息时,第一SSSG的SS set和第二SSSG的SS set至少满足以下一项:
第一SSSG的搜索空间集的PDCCH周期大于第二SSSG的搜索空间集的PDCCH周期。PDCCH周期越大,在一段时间内,需要监听的PDCCH候选位置越少;或者,
第一SSSG中的搜索空间集的持续时间(SS set duration)小于第二SSSG中的搜索空间集的持续时间,其中,搜索空间集的持续时间可以理解为搜索空间集的每个PDCCH监听周期内连续监听PDCCH的时隙的个数;或者,
第一SSSG的搜索空间集关联的CORESET的带宽小于第二SSSG的搜索空间集关联的CORESET的带宽;或者,
第一SSSG的搜索空间集的PDCCH候选的个数小于第二SSSG的搜索空间集的PDCCH候选的个数。具体地,可表示为第一SSSG的搜索空间集中聚合等级种类小于第一SSSG的搜索空间集中聚合等级种类,或者,同一聚合等级下,属于第一SSSG的搜索空间集中聚合等级对应的PDCCH候选的个数小于属于第二SSSG的搜索空间集中聚合等级对应的PDCCH候选的个数,或者,由第一SSSG的搜索空间集确定的PDCCH候选位置上PDCCH候选的个数小于由第二SSSG的搜索空间集确定的PDCCH候选位置上PDCCH候选的个数;或者
第一SSSG的搜索空间集的时隙内PDCCH监听图案少于第二SSSG的搜索空间集的时隙内PDCCH监听图案。例如,第一SSSG的搜索空间集的时隙内PDCCH监听图案只位于时隙起始符号,第二SSSG的搜索空间集的时隙内PDCCH监听图案可以位于时隙中的任意符号,即第一SSSG的搜索空间集的PDCCH候选起始位置位于时隙起始符号,而第二SSSG的搜索空间集的PDCCH候选起始位置在时隙内有多个且位于不同的符号。
可选的,第一SSSG的搜索空间集可以是第二SSSG的搜索空间集的子集。
非激活定时器开启的起始时间是根据用于调度新传的数据的第一控制信息的发送时间确定的。因此,非激活定时器的运行时间与持续定时器的运行时间可以是部分重叠的,即可以同时运行两个定时器;非激活定时器的运行时间与持续定时器的运行时间也可以是不重叠的。
970,终端设备根据第二SSSG的搜索空间集确定至少一个第二PDCCH候选位置。其中,属于第二SSSG的SS set可以有一个或多个。
980,当终端设备在第一PDCCH上监听到用于调度新传的数据的第一控制信息时,该终端设备在非激活定时器运行期间,在第二PDCCH候选位置监听第二PDCCH,即该终端设备在第二PDCCH候选位置检测至少一个第二控制信息。
具体地,当终端设备在第一PDCCH上监听到用于调度新传的数据的第一控制信息时,则终端设备开启非激活定时器,在非激活定时器运行期间,在第二PDCCH候选位置监听第二PDCCH。应理解,终端设备开启非激活定时器与确定至少一个第二PDCCH候选位置的步骤是可以不分先后顺序的。
应理解,网络设备中950和960与终端设备中970和980是可以不分先后顺序的。
在本申请实施例提供的技术方案中,在DRX周期内持续定时器开始运行时,终端设备根据属于第一SSSG的搜索空间集的至少一个第一PDCCH候选位置监听第一PDCCH,当接收到用于调度新传的第一控制信息时,开启非激活定时器,并在非激活定时器运行期间,该终端设备根据属于第二SSSG的搜索空间集的至少一个第二PDCCH候选位置监听第二PDCCH。在接收到用于调度新传的数据的第一控制信息之前,终端设备根据监听周期较大或者CORESET的带宽较小的第一PDCCH候选位置监听第一PDCCH,可以降低终端设备的功耗;当接收到用于调度新传的数据的第一控制信息时,终端设备根据监听周期较小或者CORESET的带宽较小的第二PDCCH候选位置监听第二PDCCH,可以减少数据传输的时延。现有技术中,在持续定时器开始运行时,终端设备可能采用第二SSSG中的搜索空间集监听PDCCH,即采用较小的PDCCH周期监听PDCCH,但是数据到达网络设备的时刻比持续定时器开启时刻晚,导致终端设备根据第二SSSG中的搜索空间集监听PDCCH,带来功耗浪费。因此,相比现有技术,本申请提供的技术方案可以避免终端设备在DRX周期内持续定时器运行期间一直采用较小的PDCCH监听周期监听PDCCH,能够降低终端设备的功耗。当终端设备监听到调度数据的控制信息,可以认为网络设备有数据需要传输,则UE采用较小的PDCCH监听周期监听PDCCH,可以尽快完成数据传输。
可选的,网络设备可以根据第二SSSG的搜索空间集确定至少一个第三PDCCH候选位置。在DRX周期内持续定时器运行期间,该网络设备可以在第三PDCCH候选位置向终端设备发送第三控制信息。其中,发送第三控制信息的时间与发送第一控制信息的时间不同。应理解,在DRX周期内持续定时器运行期间,采用第二SSSG的搜索空间集监听PDCCH的时间范围和采用第一SSSG的搜索空间集监听PDCCH的时间范围不同。
对应地,终端设备可以根据第二SSSG的搜索空间集确定至少一个第三PDCCH候选位置;在DRX周期内持续定时器运行期间,该终端设备在第三PDCCH候选位置监听第三PDCCH,即该终端设备在第三PDCCH候选位置检测至少一个第三控制信息。其中,终端设备监听第一PDCCH的时间与监听第三PDCCH的时间不同。应理解,终端设备根 据第一PDCCH候选位置监听第一PDCCH的时间范围与根据第三PDCCH候选位置监听第三PDCCH的时间范围不同,即,在DRX周期内持续定时器运行期间,终端设备采用第二SSSG的时间范围与采用第一SSSG的时间范围不同。
监听第一PDCCH的时间可以称之为第一时间段,即根据第一SSSG的SS set监听第一PDCCH的时间段,监听第三PDCCH的时间可以称之为第三时间段,即根据第二SSSG的SS set监听第三PDCCH的时间段。DRX周期内持续定时器运行期间包括第一时间段和第三时间段,第一时间段和第三时间段为不同的时间段。终端设备在第一时间段内根据第一SSSG的SS set监听第一PDCCH,在第三时间段内根据第二SSSG的SS set监听第三PDCCH。XR/CG的数据传输在时间上的抖动服从一定的概率分布,其中,第一时间段可以为没有数据传输或数据传输较少的时间段,第三时间段可以为有数据传输或数据传输较多的时间段;例如,第一时间段可以为XR/CG业务数据没有到达的时间段,第三时间段可以为XR/CG业务数据到达的时间段。
第一时间段与第三时间段可以是预定义的,也可以是网络设备向终端设备配置的。换言之,第一时间段的起始时间和/或时间长度、第三时间段的起始时间和/或时间长度可以是预定义的,也可以是网络设备配置的。
示例性的,网络设备向终端设备发送第一配置信息,该第一配置信息中包括以下至少一种:监听第一PDCCH的起始时间、监听第一PDCCH的时间长度、监听第三PDCCH的起始时间、或监听第三PDCCH的时间长度。应理解,监听第一PDCCH的起始时间、监听第一PDCCH的时间长度、监听第三PDCCH的起始时间、监听第三PDCCH的时间长度分别为第一时间段的起始时间、第一时间段的时间长度、第三时间段的起始时间、第三时间段的时间长度。终端设备可以接收来自网络设备的第一配置信息。该第一配置信息可以包括在C-DRX参数中,也可以单独配置。该第一配置信息可以是网络设备通过RRC信令发送的,也可以是网络设备在前一个DRX周期内发送的DCI或者PDSCH承载的MAC CE指示的。
其中,监听第一PDCCH的起始时间与DRX周期内持续定时器开启的起始时间、DRX cycle的起始时间或DRX cycle开始的子帧之间的偏移记为第一偏移值(offset),该第一偏移值可以等于0,可以是网络设备配置的,也可以是协议预定义的。还可以直接预定义监听第一PDCCH的起始时间与DRX周期内持续定时器开启的起始时间相同。
监听第一PDCCH的时间长度或监听第三PDCCH的时间长度可以和持续定时器长度或者DRX周期的大小有关,具体地,监听第一PDCCH的时间长度可以表示为delta1*onDurationTimer,其中0≤delta1≤1;或者,监听第一PDCCH的时间长度也可以表示为delta2*DRX cycle,其中delta2≥0。同理,监听第三PDCCH的时间长度可以表示为delta3*onDurationTimer,其中0≤delta3≤1;或者,监听第三PDCCH的时间长度也可以表示为delta4*DRX cycle,其中delta4≥0。监听第一PDCCH的时间长度不超过持续定时器运行的时间,例如,监听第一PDCCH的时间长度可以等于持续定时器运行的时间。
示例性地,监听第一PDCCH的时间长度和监听第三PDCCH的时间长度可以是预定义的。终端设备接收的第一配置信息中可以只包括监听第一PDCCH的起始时间,由于监听第一PDCCH的时间长度是预定义的,则可以确定监听第一PDCCH的时间,持续定时器运行期间除监听第一PDCCH的时间之外的时间可以确定为监听第三PDCCH的时间。 终端设备接收的第一配置信息中可以只包括监听第三PDCCH的起始时间,持续定时器运行期间除监听第三PDCCH的时间之外的时间可以确定为监听第一PDCCH的时间。终端设备接收的第一配置信息中也可以包括监听第一PDCCH的起始时间和监听第三PDCCH的起始时间。
示例性地,可以预定义监听第一PDCCH的起始时间与DRX周期内持续定时器开启的起始时间相同,终端设备接收的第一配置信息中可以只包括监听第一PDCCH的时间长度,持续定时器运行期间除监听第一PDCCH的时间之外的时间可以确定为监听第三PDCCH的时间。终端设备接收的第一配置信息中可以包括监听第一PDCCH的时间长度和监听第三PDCCH的时间长度,监听第三PDCCH的起始时间可以是监听第一PDCCH的结束时间。
如图10所示,出示了在持续定时器运行期间在第一时间段和第三时间段分别根据不同的SSSG监听不同PDCCH的示意图。在T1时间段(第一时间段)内,终端设备在属于第一SSSG的搜索空间集的第一PDCCH候选位置,处于低功耗状态;在T2时间段(第三时间段)内,终端设备在属于第二SSSG的搜索空间集的第三PDCCH候选位置,处于高功耗状态。
可选的,第一时间段也可以为非连续的,第三时间段也可以为非连续的。如图11所示,出示了另一种在持续定时器运行期间在第一时间段和第三时间段分别根据不同的SSSG监听不同PDCCH的示意图。第一时间段包括非连续的时间段T1和T3,在T1和T3时间段内,终端设备在属于第一SSSG的搜索空间集的第一PDCCH候选位置,处于低功耗状态;在T2时间段(第三时间段)内,终端设备在属于第二SSSG的搜索空间集的第三PDCCH候选位置,处于高功耗状态。
可选的,网络设备也可以给终端设备配置多个第一时间段,网络设备可以通过媒体接入控制控制元素(Medium Access Control control element,MAC CE)或者DCI指示采用哪个第一时间段。如表2所示,出示了网络设备向终端设备配置的多个第一时间段。
表2
根据第一SSSG的搜索空间集监听第一PDCCH的时间段
T1_1
T1_2
T1_3,T3_1
T1_4,T3_2
可选的,网络设备还可以向终端设备配置或者指示比特位图,比特位图中的每一个比特对应一个时间单元,用于表示该时间单元内根据第一SSSG的搜索空间集监听第一PDCCH或者根据第二SSSG的搜索空间集监听第三PDCCH。
基于上述方案,在DRX周期内持续定时器运行期间,第一时间段可能为没有数据传输或数据传输较少的时间段,在该第一时间段内,终端设备在属于第一SSSG的搜索空间集的第一PDCCH候选位置监听第一PDCCH;第三时间段可以为有数据传输或数据传输较多的时间段,在该第三时间段内,终端设备在属于第二SSSG的搜索空间集的第三PDCCH候选位置监听第三PDCCH。可以避免在没有业务传输或业务传输较少时终端设备一直根据监听周期较小或者CORESET的带宽较小的PDCCH候选位置监听PDCCH,从 而可以降低终端设备的功耗。
为了进一步降低终端设备的功耗,网络设备还可以给终端设备配置或者指示最小调度偏移值(minimum scheduling offset),最小调度偏移值可以包括K0min和/或K2min。K0min用于约束PDCCH承载的DCI调度PDSCH时,PDCCH与PDSCH之间的时间偏移值,即PDCCH与PDSCH之间的时间偏移值不小于K0min,K2min用于约束PDCCH承载的DCI调度PUSCH时,PDCCH与PUSCH之间的时间偏移值,即PDCCH与PUSCH之间的时间偏移值不小于K2min。其中,时间偏移值可以为时隙偏移值,最小调度偏移值可以为最小调度时隙偏移值。
可选的,第一SSSG和第二SSSG分别关联一个最小调度偏移值,例如,网络设备向终端设备配置或指示第一SSSG关联的第一最小调度偏移值,第二SSSG关联的第二最小调度偏移值。终端设备在第一PDCCH候选位置监听第一PDCCH时,第一调度偏移值大于或等于第一阈值,第一调度偏移值是第一PDCCH与第一PDCCH调度的物理下行共享信道PDSCH或物理上行共享信道PUSCH之间的时间偏移值,其中第一阈值可以理解为第一最小调度偏移值。终端设备在第二PDCCH候选位置监听第二PDCCH时,第二调度偏移值大于或等于第二阈值,第二调度偏移值是第二PDCCH与第二PDCCH调度的PDSCH或PUSCH之间的时间偏移值,其中,第一阈值大于第二阈值,第二阈值可以理解为第二最小调度偏移值。终端设备在第三PDCCH候选位置监听第三PDCCH时,第三调度偏移值大于或等于第二阈值,第三调度偏移值是第三PDCCH与第三PDCCH调度的PDSCH或PUSCH之间的时间偏移值。示例性地,第一阈值大于0,第二阈值等于0。当第一阈值大于0,终端设备在监听PDCCH时无需缓存PDCCH所在时隙中可能存在的PDSCH,终端设备还可以放松PDCCH处理时间,即终端设备可以降低时钟频率和电压,从而达到降低终端设备功耗的效果。
可选的,非激活定时器运行期间也不一定总是有数据传输,因此,也可以参照前面的方法,网络设备向终端设备配置或指示在非激活定时器运行期间根据第一SSSG的SS set监听PDCCH的时间段,终端设备在该时间段内根据监听周期较大或者CORESET带宽较小的搜索空间集监听PDCCH,可以降低终端设备的功耗。
可选的,如果终端设备检测到下行DCI,则在发送HARQ反馈之后开启对应HARQ进程的HARQ-RTT-TimerDL。如果HARQ-RTT-TimerDL到期,并且该HARQ进程的PDSCH没有译码正确,则UE在HARQ-RTT-TimerDL到期之后开启对应HARQ进程的RetransmissionTimerDL,并在RetransmissionTimerDL内继续根据第一SSSG或者第二SSSG的搜索空间集监听PDCCH。可选的,可以参照前面的方法,网络设备向终端设备配置或指示在HARQ-RTT-TimerDL内根据第一SSSG的SS set监听PDCCH的时间段,终端设备在该时间段内根据监听周期较大或者CORESET带宽较小的搜索空间集监听PDCCH,可以降低终端设备的功耗。
可选的,如果UE检测到上行DCI,则在该DCI调度的PUSCH上发送传输块(或者,在PUSCH上重复发送传输块时第一次发送该传输块)之后打开该HARQ进程的HARQ-RTT-TimerUL。如果HARQ-RTT-TimerUL到期,则在HARQ-RTT-TimerUL到期之后开启对应进程的RetransmissionTimerUL,并在RetransmissionTimerUL内继续根据第一SSSG的搜索空间集或者第二SSSG的搜索空间集监听PDCCH。可选的,可以参照前 面的方法,网络设备向终端设备配置或指示在HARQ-RTT-TimerUL内根据第一SSSG的SS set监听PDCCH的时间段,终端设备在该时间段内根据监听周期较大或者CORESET带宽较小的搜索空间集监听PDCCH,可以降低终端设备的功耗。
在多载波场景下,主小区(primary cell,PCell)和各个辅小区(secondary cell,SCell)可以分别配置有第一SSSG和第二SSSG,可以按照上述方法分别确定在onDurationTimer运行期间在各个小区中用于监听PDCCH的SSSG,可选的,当UE在Pcell根据第一SSSG的SS set监听PDCCH时,UE在激活的Scell根据第一SSSG的SS set监听PDCCH。为了进一步降低终端功耗,还可以规定,在辅小区上配置第一SSSG为不监听PDCCH的SSSG,例如,辅小区的第一SSSG中不包含任一SS set,没有PDCCH监听时机,当UE在Pcell根据属于第一SSSG的SS set监听PDCCH时,UE在激活的Scell停止监听PDCCH,或者UE在激活的Scell上切换到所述第一SSSG。
由于XR/CG业务的周期与DRX周期不匹配,导致XR/CG的视频帧到达时间可能会落在DRX非激活时间内,网络设备只能等到下一个DRX cycle的激活时间进行调度,增加了数据传输的时延,影响用户体验。为此,本申请实施例还提出了动态调整DRX周期的起始时间和/或DRX周期内持续定时器开启的起始时间,避免需要传输的数据的到达时间落在DRX非激活时间内,以降低数据传输的时延。
在一种实现方式中,网络设备还可以根据C-DRX参数,确定第i个DRX周期的起始时间和/或第i个DRX周期内持续定时器开启的起始时间,i为正整数。网络设备确定第一参数m和第二参数T,m为正整数。该第一参数m可以是周期性调整DRX周期的起始时间所间隔的DRX周期的个数,该第一参数m也可以是周期性调整DRX周期内持续定时器的起始时间所间隔的DRX周期的个数,第一参数还可以是周期性调整DRX周期的起始时间和DRX周期内持续定时器的起始时间所间隔的DRX周期的个数。该第二参数T可以是调整DRX周期的起始时间的偏移值和/或调整DRX周期内持续定时器开启的起始时间的偏移值。该网络设备根据C-DRX参数、第一参数m和第二参数T,确定第i+m个DRX周期的起始时间和/或所述第i+m个DRX周期内持续定时器开启的起始时间。
对于第i+1个~第i+m-1个DRX周期,网络设备同样根据C-DRX参数确定DRX周期的起始时间和DRX周期内持续定时器开启的起始时间。
对于第i+m+1个~第i+2*m-1个DRX周期,网络设备根据C-DRX参数、第一参数m和第二参数T确定DRX周期的起始时间和/或DRX周期内持续定时器开启的起始时间。以此类推,网络设备根据C-DRX参数、第一参数m和第二参数T确定第i+n*m个~第i+(n+1)*m-1个DRX周期的起始时间和/或持续定时器开启的起始时间。
应理解,DRX周期的起始时间与DRX周期内持续定时器开启的起始时间可以是相同的,也可以是不同的。
对应地,终端设备根据获取的C-DRX参数,确定第i个DRX周期的起始时间和/或第i个DRX周期内持续定时器开启的起始时间,i为正整数。该终端设备确定第一参数m和第二参数T。示例性地,第一参数m和第二参数T可以是网络设备确定并发送给终端设备的。具体地,网络设备可以向终端设备发送第二配置信息,该第二配置信息中包括第一参数m和第二参数T;终端设备可以接收来自网络设备的第二配置信息。第一参数m和第二参数T可以承载在同一配置信息中,也可以承载在不同配置信息中。应理解,该第 二配置信息与上述第一配置信息可以承载在同一配置信息中,也可以承载在不同配置信息中。第一参数m和第二参数T也可以是预定义的。终端设备根据C-DRX参数、第一参数m和第二参数T,确定第i+m个DRX周期的起始时间和/或第i+m个DRX周期内持续定时器开启的起始时间。
对于第i+1个~第i+m-1个DRX周期,终端设备同样根据C-DRX参数确定DRX周期的起始时间和DRX周期内持续定时器开启的起始时间。可理解,终端设备未调整DRX周期的起始时间和DRX周期内持续定时器开启的起始时间。
对于第i+m+1个~第i+2*m-1个DRX周期,终端设备根据C-DRX参数、第一参数m和第二参数T确定DRX周期的起始时间和/或DRX周期内持续定时器开启的起始时间。其中,第i+m个~第i+2*m-1个DRX周期认为是一次调整。以此类推,终端设备根据C-DRX参数、第一参数m和第二参数T确定第i+n*m个~第i+(n+1)*m-1个DRX周期的起始时间和/或持续定时器开启的起始时间。第i+n*m个~第i+(n+1)*m-1个DRX周期认为是一次调整。
可选的,第一参数m与DRX周期的大小和数据传输周期的大小相关。示例性地,该第一参数m可以是根据DRX周期的大小和XR/CG业务数据的传输周期的大小确定的,例如,假设XR/CG业务数据的传输周期减去DRX周期的大小的差值为delta,第一参数m可以根据delta确定,例如,第一参数m满足m*delta最接近onDurationTimer并且小于或等于onDurationTimer,或者,(m+1)*delta最接近onDurationTimer并且小于或等于onDurationTimer,或者,(m-1)*delta最接近onDurationTimer并且小于或等于onDurationTimer。
可选的,第二参数T可以与DRX周期调整的次数相关。示例性地,T可以等于n*offset1,其中,n为自第i个DRX周期开始DRX周期调整的次数,offset1可以为网络设备配置的或预定义的偏移值,例如,offset1为XR/CG业务数据的传输周期减去DRX周期的大小的差值。该第二参数T可以与DRX周期的大小和数据传输周期的大小相关,示例性地,该第二参数T可以是根据DRX周期的大小和XR/CG业务数据的传输周期的大小确定的,例如,T为XR/CG业务数据的传输周期减去DRX周期的大小的差值。该第二参数T还可以与DRX周期调整的次数以及DRX周期的大小和数据传输周期的大小相关。
如图12所示,示出了一种调整第i+m个DRX周期内持续定时器开启的起始时间的示意图。在调整第i+m个DRX周期内持续定时器开启的起始时间时,第i+m个DRX周期的起始时间有两种方式,一种是如图12中方式1,第i+m个DRX周期的起始时间与原始的第i+m个DRX周期的起始时间相同,即第i+m个DRX周期的起始时间不做调整,仍按照现有的C-DRX参数确定,与第一参数m和第二参数T无关;另一种是如图12中方式2,第i+m个DRX周期的起始时间与第i+m个DRX周期内持续定时器开启的起始时间相同,可以理解为,同时调整第i+m个DRX周期内持续定时器开启的起始时间和第i+m个DRX周期的起始时间。应理解,持续定时器开启的起始时间可以是起始子帧或起始时隙。
可选的,调整后的第i+m个DRX周期内持续定时器开启的起始时间在原始的的第i+m个DRX周期内持续定时器运行的时间段内。原始的DRX周期起始时间和持续定时器的运行时间根据按照现有的C-DRX参数确定。如图12中所示,调整后的第i+m个DRX周期 内持续定时器开启的起始时间不超过虚线对应的时间范围,虚线对应的时间范围为根据现有的C-DRX参数确定的第i+m个DRX周期内持续定时器运行时间。
在另一种实现方式中,网络设备确定第一指示信息,该第一指示信息可以用于指示下一个DRX周期的持续定时器开启的起始时间和/或下一个DRX周期的持续定时器开启的起始时间偏移值。该网络设备在DRX周期的激活时间中,向终端设备发送至少一个控制信息和/或至少一个数据,该控制信息和/或数据中包括该第一指示信息。该起始时间偏移值可以是drx-StartOffset和drx-SlotOffset以外的偏移值,或者是参数drx-StartOffset的偏移量或drx-SlotOffset的的偏移量。
可选的,该第一指示信息也可以用于指示下一个DRX周期的起始时间和/或下一个DRX周期的起始时间偏移值。
具体地,以下至少一种信息中可以包括该第一指示信息:第一控制信息、第二控制信息、第三控制信息、第一控制信息调度的PDSCH承载的MAC CE、第二控制信息调度的PDSCH承载的MAC CE、第三控制信息调度的PDSCH承载的MAC CE。
相应地,终端设备获取第一指示信息。具体地,终端设备在DRX周期的激活时间内,监听至少一个PDCCH和/或在至少一个PDSCH上接收数据,该至少一个PDCCH承载的控制信息和/或该数据中包括第一指示信息;终端设备根据接收到的第一指示信息,确定下一个DRX周期内持续定时器开启的起始时间或下一个DRX周期的起始时间。其中,至少一个PDCCH包括上述第一PDCCH、第二PDCCH或第三PDCCH,至少一个PDSCH包括上述第一控制信息调度的PDSCH、上述第二控制信息调度的PDSCH或上述第三控制信息调度的PDSCH。其中,第一指示信息包括在PDSCH的数据中,可以是指包含第一第一指示信息的MAC CE承载在PDSCH中。
具体地,终端设备根据C-DRX参数和第一指示信息指示的起始时间偏移值,确定下一个DRX周期内持续定时器开启的起始时间。终端设备也可以根据C-DRX参数和第一指示信息指示的起始时间偏移值,确定调整后的下一个DRX周期的起始时间。假设第一指示信息指示的起始时间偏移值为offset2,则可以根据公式(4)确定的子帧偏移drx-SlotOffset之后开启下一个DRX的持续定时器:
[(SFN×10)+subframe number]modulo(drx-LongCycle)=drx-StartOffset+offset2(4)
或者,根据公式(1)确定的子帧偏移drx-SlotOffset+offset2之后开启下一个DRX的持续定时器。
如图13所示,示出了一种调整下一个DRX周期内持续定时器开启的起始时间的示意图。图13中,虚线双箭头对应的持续定时器运行时间为不引入第一指示信息指示的起始时间偏移值时下一DRX周期内持续定时器运行的时间,实线双箭头对应的持续定时器运行时间为根据第一指示信息指示的起始时间偏移值调整后的下一DRX周期内持续定时器运行的时间。持续定时器开启的起始时间偏移值可以是在上一个DRX周期的激活时间内网络设备通过PDSCH发送的第一指示信息指示的。
如图14所示,出示了本申请实施例提出的另一种信息监听的方法1400的示意性流程交互图。该实施例中终端设备和网络设备可以每隔m个DRX周期自动调整DRX周期的起始时间和/或DRX周期内持续定时器开启的起始时间,可以避免需要传输的数据的到达时间落在DRX非激活时间内,能够降低数据传输的时延。
1410,网络设备可以根据C-DRX参数,确定第i个DRX周期的起始时间和/或第i个DRX周期内持续定时器开启的起始时间,i为正整数。
其中,C-DRX参数是由网络设备配置的。示例性的,C-DRX参数中可以包括多个drx-StartOffset,或者,可以根据公式(4)确定多个图案,网络设备根据一个drx-StartOffset或者一种图案确定第i个DRX周期的起始时间和/或第i个DRX周期内持续定时器开启的起始时间。
应理解,DRX周期的起始时间与DRX周期内持续定时器开启的起始时间可能是相同的,也可能是不同的。
1420,网络设备确定第一参数m和第二参数T。
其中,该第一参数m为周期性调整DRX周期的起始时间所间隔的DRX周期的个数和/或该第一参数m为周期性调整DRX周期内持续定时器的起始时间所间隔的DRX周期的个数,m为正整数。该第二参数T为调整DRX周期的起始时间的偏移值和/或调整DRX周期内持续定时器开启的起始时间的偏移值。
可选的,第一参数m与DRX周期的大小和数据传输周期的大小相关。示例性地,该第一参数m可以是根据DRX周期的大小和XR/CG业务数据的传输周期的大小确定的,例如,假设XR/CG业务数据的传输周期减去DRX周期的大小的差值为delta,第一参数m根据delta确定,例如,第一参数m满足m*delta最接近onDurationTimer并且小于或等于onDurationTimer,或者,(m+1)*delta最接近onDurationTimer并且小于或等于onDurationTimer,或者,(m-1)*delta最接近onDurationTimer并且小于或等于onDurationTimer。
示例性的,第二参数T可以与DRX周期调整的次数相关。示例性地,T可以等于n*offset1,其中,n为DRX周期调整的次数,offset1可以为网络设备配置的或预定义的偏移值,例如,offset1为XR/CG业务数据的传输周期减去DRX周期的大小的差值。该第二参数T可以与DRX周期的大小和数据传输周期的大小相关。示例性地,该第二参数T可以是根据DRX周期的大小和XR/CG业务数据的传输周期的大小确定的,例如,T为XR/CG业务数据的传输周期减去DRX周期的大小的差值。该第二参数T还可以与DRX周期调整的次数以及DRX周期的大小和数据传输周期的大小相关。
示例性地,该第一参数m第二参数T可以是网络设备确定的,也可以是预定义的。当该第一参数m第二参数T是网络设备确定的时,该网络设备可以向终端设备发送第二配置信息,该第二配置信息中包括第一参数m和第二参数T。应理解,该第二配置信息与上述第一配置信息可以承载在同一配置信息中,也可以承载在不同配置信息中;换言之,该第一配置信息与上述第二配置信息可以为相同的配置信息。
1430,网络设备根据C-DRX参数、第一参数m和第二参数T,确定第i+m个DRX周期的起始时间和/或第i+m个DRX周期内持续定时器开启的起始时间。
对于第i+1个~第i+m-1个DRX周期,网络设备同样根据C-DRX参数确定DRX周期的起始时间和DRX周期内持续定时器开启的起始时间。
对于第i+m+1个~第i+2*m-1个DRX周期,网络设备根据C-DRX参数、第一参数m和第二参数T确定DRX周期的起始时间和/或DRX周期内持续定时器开启的起始时间。以此类推,网络设备根据C-DRX参数、第一参数m和第二参数T确定第i+n*m个~第 i+(n+1)*m-1个DRX周期的起始时间和/或持续定时器开启的起始时间。
1440,终端设备根据获取的C-DRX参数,确定第i个DRX周期的起始时间和/或第i个DRX周期内持续定时器开启的起始时间。
1450,终端设备确定第一参数m和第二参数T。示例性的,终端设备可以接收来自网络设备的第二配置信息,该第二配置信息中包括第一参数m和第二参数T。示例性的,该第一参数m和第二参数T也可以是预定义的。
1460,终端设备根据C-DRX参数、第一参数m和第二参数T,确定第i+m个DRX周期的起始时间和/或第i+m个DRX周期内持续定时器开启的起始时间。
对于第i+1个~第i+m-1个DRX周期,终端设备同样根据C-DRX参数确定DRX周期的起始时间和DRX周期内持续定时器开启的起始时间。可理解,终端设备未调整DRX周期的起始时间和DRX周期内持续定时器开启的起始时间。
对于第i+m+1个~第i+2*m-1个DRX周期,终端设备根据C-DRX参数、第一参数m和第二参数T确定DRX周期的起始时间和/或DRX周期内持续定时器开启的起始时间。其中,第i+m个~第i+2*m-1个DRX周期认为是一次调整。以此类推,终端设备根据C-DRX参数、第一参数m和第二参数T确定第i+n*m个~第i+(n+1)*m-1个DRX周期的起始时间和/或持续定时器开启的起始时间。
应理解,1410和1440可以是同时进行的,1420和1450可以是同时进行的,1430和1460也可以是同时进行的。
示例性的,如果C-DRX参数中包括多个drx-StartOffset,或者,根据公式(4)确定了多个图案,即同一个DRX周期的起始时间和/或同一个DRX周期内的持续定时器的起始时间可以有多个,网络设备可以通过PDCCH指示更新1410和1440中的C-DRX参数中的drx-StartOffset或者指示更新图案,则网络设备和终端设备重新执行上述步骤。
如图15所示,出示了本申请实施例提出的另一种信息监听的方法1500的示意性流程交互图。该实施例中网络设备可以确定第一指示信息,通过该第一指示信息指示终端设备调整下一个DRX周期内持续定时器开启的起始时间和/或下一个DRX周期内持续定时器开启的起始时间偏移值。网络设备预测下一个视频帧的到达时间,从而动态调整DRX激活时间,能够降低终端设备的功耗。
1510,网络设备确定第一指示信息,该第一指示信息用于指示下一个DRX周期的持续定时器开启的起始时间和/或下一个DRX周期的持续定时器开启的起始时间偏移值。
示例性的,该第一指示信息也可以用于指示下一个DRX周期的起始时间和/或下一个DRX周期的起始时间偏移值。
1520,该网络设备在DRX周期的激活时间内,向终端设备发送至少一个控制信息和/或至少一个数据,网络设备发送的控制信息和/或数据中包括第一指示信息。控制信息可以是指PDCCH承载的DCI。数据可以包括MAC CE,承载在PDSCH中。
具体地,以下至少一种信息中可以包括该第一指示信息:第一控制信息、第二控制信息、第三控制信息、第一控制信息调度的PDSCH承载的MAC CE、第二控制信息调度的PDSCH承载的MAC CE、第三控制信息调度的PDSCH承载的MAC CE。
1530,终端设备在DRX周期的激活时间内,监听至少一个PDCCH和/或在至少一个PDSCH上接收数据,该至少一个PDCCH承载的控制信息和/或该数据中包括第一指示信 息。其中,至少一个PDCCH包括上述第一PDCCH、第二PDCCH或第三PDCCH,至少一个PDSCH包括上述第一控制信息调度的PDSCH、上述第二控制信息调度的PDSCH或上述第三控制信息调度的PDSCH。其中,第一指示信息包括在PDSCH的数据中,可以是指MAC CE承载在PDSCH中。
1540,终端设备根据第一指示信息,确定下一个DRX周期内所述持续定时器开启的起始时间。终端设备也可以根据第一指示信息,确定下一个DRX周期的起始时间。
具体地,终端设备根据C-DRX参数和第一指示信息指示的起始时间偏移值,确定下一个DRX周期内持续定时器开启的起始时间。终端设备也可以根据C-DRX参数和第一指示信息指示的起始时间偏移值,确定调整后的下一个DRX周期的起始时间。假设第一指示信息指示的起始时间偏移值为offset2,则可以根据上述公式(4)确定的子帧偏移drx-SlotOffset之后开启下一个DRX的持续定时器;或者,根据公式(1)确定的子帧偏移drx-SlotOffset+offset2之后开启下一个DRX的持续定时器。
图16为本申请实施例提供的通信装置1600的示意性框图。该通信装置1600可以包括确定模块1610和收发模块1620。可选的,还可以包括存储单元,该存储单元可以用于存储指令(代码或者程序)和/或数据。确定模块1610和收发模块1620可以与该存储单元耦合,例如,确定模块1610可以读取存储单元中的指令(代码或者程序)和/或数据,以实现相应的方法。上述各个单元可以独立设置,也可以部分或者全部集成。
一些可能的实施方式中,通信装置1600能够对应实现上述方法实施例中终端设备的行为和功能,例如实现图9的实施例中终端设备执行的方法。通信装置1600可以为终端设备,也可以为应用于终端设备中的部件(例如芯片或者电路),也可以是终端设备中的芯片或芯片组或芯片中用于执行相关方法功能的一部分。
例如,确定模块1610,可用于根据第一搜索空间集组SSSG的搜索空间集确定至少一个第一物理下行控制信道PDCCH候选位置;
收发模块1620,用于在不连续接收DRX周期内持续定时器运行期间,在所述第一PDCCH候选位置监听所述第一PDCCH;
所述确定模块1610还用于,根据第二SSSG的搜索空间集确定至少一个第二PDCCH候选位置;
所述收发模块1620还用于,在所述第一PDCCH上监听到用于调度新传的数据的第一控制信息,在DRX周期内非激活定时器运行期间,在所述第二PDCCH候选位置监听所述第二PDCCH,所述第一PDCCH的周期大于所述第二PDCCH的周期和/或所述第一SSSG中的搜索空间集的持续时间小于所述第二SSSG中的搜索空间集的持续时间。
示例性的,所述确定模块1610还用于,根据所述第二SSSG的搜索空间集确定至少一个第三PDCCH候选位置;
所述收发模块1620还用于,在DRX周期内所述持续定时器运行期间,在所述第三PDCCH候选位置监听所述第三PDCCH,监听所述第一PDCCH的时间与监听所述第三PDCCH的时间不同。
示例性的,所述收发模块1620还用于,接收来自网络设备的第一配置信息,所述第一配置信息中包括以下至少一种:监听所述第一PDCCH的起始时间、监听所述第一PDCCH的时间长度、监听所述第三PDCCH的起始时间、或监听所述第三PDCCH的时 间长度。
示例性的,监听所述第一PDCCH的起始时间与DRX周期内所述持续定时器开启的起始时间相同。
示例性的,所述收发模块1620在所述第一PDCCH候选位置监听所述第一PDCCH时,第一调度偏移值大于或等于第一阈值,所述第一调度偏移值是所述第一PDCCH与所述第一PDCCH调度的物理下行共享信道PDSCH或物理上行共享信道PUSCH之间的时间偏移值;
所述收发模块在所述第二PDCCH候选位置监听所述第二PDCCH时,第二调度偏移值大于或等于第二阈值,所述第二调度偏移值是所述第二PDCCH与所述第二PDCCH调度的PDSCH或PUSCH之间的时间偏移值,其中,所述第一阈值大于所述第二阈值;
所述收发模块在所述第三PDCCH候选位置监听所述第三PDCCH时,第三调度偏移值大于或等于所述第二阈值,所述第三调度偏移值是所述第三PDCCH与所述第三PDCCH调度的PDSCH或PUSCH之间的时间偏移值。
示例性的,所述确定模块1610还用于:
根据获取的DRX的配置信息,确定第i个DRX周期的起始时间和/或所述第i个DRX周期内所述持续定时器开启的起始时间,i为正整数;
确定第一参数m和第二参数T,所述第一参数m为周期性调整DRX周期的起始时间所间隔的DRX周期的个数和/或所述第一参数m为周期性调整DRX周期内所述持续定时器的起始时间所间隔的DRX周期的个数,所述第二参数T为调整DRX周期的起始时间的偏移值和/或调整DRX周期内所述持续定时器开启的起始时间的偏移值,m为正整数;
根据所述DRX的配置信息、所述第一参数m和所述第二参数T,确定第i+m个DRX周期的起始时间和/或所述第i+m个DRX周期内所述持续定时器开启的起始时间。
示例性的,所述第一参数m与DRX周期的大小和数据传输周期的大小相关;所述第二参数T与DRX周期的大小和数据传输周期的大小相关,和/或,所述第二参数T与DRX周期调整的次数相关。
示例性的,所述收发模块1620还用于,获取第一指示信息,所述第一指示信息用于指示下一个DRX周期内所述持续定时器开启的起始时间和/或下一个DRX周期内所述持续定时器开启的起始时间偏移值;
所述确定模块1610还用于,根据所述第一指示信息,确定所述下一个DRX周期内所述持续定时器开启的起始时间。
示例性的,所述确定模块1610具体用于,根据DRX的配置信息和所述持续定时器开启的起始时间偏移值,确定所述下一个DRX周期内所述持续定时器开启的起始时间。
图17为本申请实施例提供的通信装置1700的示意性框图。该通信装置1700可以包括确定模块1710和收发模块1720。可选的,还可以包括存储单元,该存储单元可以用于存储指令(代码或者程序)和/或数据。确定模块1710和收发模块1720可以与该存储单元耦合,例如,确定模块1710可以读取存储单元中的指令(代码或者程序)和/或数据,以实现相应的方法。上述各个单元可以独立设置,也可以部分或者全部集成。
一些可能的实施方式中,通信装置1700能够对应实现上述方法实施例中网络设备的行为和功能,例如实现图9的实施例中网络设备执行的方法。通信装置1700可以为网络 设备,也可以为应用于网络设备中的部件(例如芯片或者电路),也可以是网络设备中的芯片或芯片组或芯片中用于执行相关方法功能的一部分。
例如,确定模块1710,可用于根据第一搜索空间集组SSSG的搜索空间集确定至少一个第一物理下行控制信道PDCCH候选位置;
收发模块1720,用于在不连续接收DRX周期内持续定时器运行期间,在所述第一PDCCH候选位置向终端设备发送至少一个第一控制信息;
所述确定模块1710还用于,根据第二SSSG的搜索空间集确定至少一个第二PDCCH候选位置;
所述收发模块1720还用于,所述第一控制信息用于调度新传的数据,在DRX周期内非激活定时器运行期间,在所述第二PDCCH候选位置向所述终端设备发送至少一个第二控制信息,所述第一PDCCH的周期大于所述第二PDCCH的周期和/或所述第一SSSG中的搜索空间集的持续时间小于所述第二SSSG中的搜索空间集的持续时间。
示例性的,所述确定模块1710还用于,根据所述第二SSSG的搜索空间集确定至少一个第三PDCCH候选位置;
所述收发模块1720还用于,在DRX周期内所述持续定时器运行期间,在所述第三PDCCH候选位置向所述终端设备发送至少一个第三控制信息,发送所述第一控制信息的时间与发送所述第三控制信息的时间不同。
示例性的,所述收发模块1720还用于,向所述终端设备发送第一配置信息,所述第一配置信息中包括以下至少一种:监听所述第一PDCCH的起始时间、监听所述第一PDCCH的时间长度、监听所述第三PDCCH的起始时间、或监听所述第三PDCCH的时间长度。
示例性的,所述确定模块1710还用于:
根据DRX的配置信息,确定第i个DRX周期的起始时间和/或所述第i个DRX周期内所述持续定时器开启的起始时间,i为正整数;
确定第一参数m和第二参数T,所述第一参数m为周期性调整DRX周期的起始时间所间隔的DRX周期的个数和/或所述第一参数m为周期性调整DRX周期内所述持续定时器的起始时间所间隔的DRX周期的个数,所述第二参数T为调整DRX周期的起始时间的偏移值和/或调整DRX周期内所述持续定时器开启的起始时间的偏移值,m为正整数;
根据所述DRX的配置信息、所述第一参数m和所述第二参数T,确定第i+m个DRX周期的起始时间和/或所述第i+m个DRX周期内所述持续定时器开启的起始时间。
示例性的,所述第一参数m与DRX周期的大小和数据传输周期的大小相关;所述第二参数T与DRX周期的大小和数据传输周期的大小相关,和/或,所述第二参数T与DRX周期调整的次数相关。
示例性的,所述确定模块1710还用于,确定第一指示信息,所述第一指示信息用于指示下一个DRX周期内所述持续定时器开启的起始时间和/或下一个DRX周期内所述持续定时器开启的起始时间偏移值;
所述收发模块1720还用于,在DRX周期的激活时间内,向所述终端设备发送所述第一指示信息。
图18为本申请实施例提供的通信装置1800的示意性框图。该通信装置1800可以包 括:确定模块1810。可选的,还可以包括存储单元,该存储单元可以用于存储指令(代码或者程序)和/或数据。确定模块1810可以与该存储单元耦合,例如,确定模块1810可以读取存储单元中的指令(代码或者程序)和/或数据,以实现相应的方法。上述各个单元可以独立设置,也可以部分或者全部集成。
一些可能的实施方式中,通信装置1800能够对应实现上述方法实施例中终端设备的行为和功能,例如实现图14的实施例中终端设备执行的方法。通信装置1800可以为终端设备,也可以为应用于终端设备中的部件(例如芯片或者电路),也可以是终端设备中的芯片或芯片组或芯片中用于执行相关方法功能的一部分。
例如,确定模块1810,可用于:
根据获取的DRX的配置信息,确定第i个不连续接收DRX周期的起始时间和/或所述第i个DRX周期内持续定时器开启的起始时间,i为正整数;
确定第一参数m和第二参数T,所述第一参数m为周期性调整DRX周期的起始时间所间隔的DRX周期的个数和/或所述第一参数m为周期性调整DRX周期内所述持续定时器的起始时间所间隔的DRX周期的个数,所述第二参数T为调整DRX周期的起始时间的偏移值和/或调整DRX周期内所述持续定时器开启的起始时间的偏移值,m为正整数;
根据所述DRX的配置信息、所述第一参数m和所述第二参数T,确定第i+m个DRX周期的起始时间和/或所述第i+m个DRX周期内所述持续定时器开启的起始时间。
示例性的,所述第一参数m与DRX周期的大小和数据传输周期的大小相关;所述第二参数T与DRX周期的大小和数据传输周期的大小相关,和/或,所述第二参数T与DRX周期调整的次数相关。
图19为本申请实施例提出了一种通信装置1900的示意性框图。该通信装置1900包括:确定模块1910。可选的,还可以包括存储单元,该存储单元可以用于存储指令(代码或者程序)和/或数据。确定模块1910可以与该存储单元耦合,例如,确定模块1910可以读取存储单元中的指令(代码或者程序)和/或数据,以实现相应的方法。上述各个单元可以独立设置,也可以部分或者全部集成。
一些可能的实施方式中,通信装置1900能够对应实现上述方法实施例中网络设备的行为和功能,例如实现图14的实施例中网络设备执行的方法。通信装置1900可以为网络设备,也可以为应用于网络设备中的部件(例如芯片或者电路),也可以是网络设备中的芯片或芯片组或芯片中用于执行相关方法功能的一部分。
例如,确定模块1910,可用于根据DRX的配置信息,确定第i个DRX周期的起始时间和/或所述第i个DRX周期内所述持续定时器开启的起始时间,i为正整数;
确定第一参数m和第二参数T,所述第一参数m为周期性调整DRX周期的起始时间所间隔的DRX周期的个数和/或所述第一参数m为周期性调整DRX周期内所述持续定时器的起始时间所间隔的DRX周期的个数,所述第二参数T为调整DRX周期的起始时间的偏移值和/或调整DRX周期内所述持续定时器开启的起始时间的偏移值,m为正整数;
根据所述DRX的配置信息、所述第一参数m和所述第二参数T,确定第i+m个DRX周期的起始时间和/或所述第i+m个DRX周期内所述持续定时器开启的起始时间。
示例性的,所述第一参数m与DRX周期的大小和数据传输周期的大小相关;所述第二参数T与DRX周期的大小和数据传输周期的大小相关,和/或,所述第二参数T与DRX 周期调整的次数相关。
图20为本申请实施例提供的通信装置2000的示意性框图。该通信装置2000包括:收发模块2010和确定模块2020。可选的,还可以包括存储单元,该存储单元可以用于存储指令(代码或者程序)和/或数据。收发模块2010和确定模块2020可以与该存储单元耦合,例如,确定模块2020可以读取存储单元中的指令(代码或者程序)和/或数据,以实现相应的方法。上述各个单元可以独立设置,也可以部分或者全部集成。
一些可能的实施方式中,通信装置2000能够对应实现上述方法实施例中终端设备的行为和功能,例如实现图15的实施例中终端设备执行的方法。通信装置2000可以为终端设备,也可以为应用于终端设备中的部件(例如芯片或者电路),也可以是终端设备中的芯片或芯片组或芯片中用于执行相关方法功能的一部分。
例如,收发模块2010,可用于在不连续接收DRX周期的激活时间内,监听至少一个物理下行控制信道PDCCH和/或在至少一个物理下行共享信道PDSCH上接收数据,所述至少一个PDCCH承载的控制信息和/或所述数据中包括第一指示信息,所述第一指示信息用于指示下一个DRX周期内持续定时器开启的起始时间和/或下一个DRX周期内所述持续定时器开启的起始时间偏移值;
确定模块2020,用于根据所述第一指示信息,确定所述下一个DRX周期内所述持续定时器开启的起始时间。
示例性的,所述确定模块2020具体用于,根据DRX的配置信息和所述持续定时器开启的起始时间偏移值,确定所述下一个DRX周期内所述持续定时器开启的起始时间。
图21为本申请实施例提供的通信装置2100的示意性框图。该通信装置2100包括:确定模块2110和收发模块2120。可选的,还可以包括存储单元,该存储单元可以用于存储指令(代码或者程序)和/或数据。确定模块2110和收发模块2120可以与该存储单元耦合,例如,确定模块2110可以读取存储单元中的指令(代码或者程序)和/或数据,以实现相应的方法。上述各个单元可以独立设置,也可以部分或者全部集成。
一些可能的实施方式中,通信装置2100能够对应实现上述方法实施例中网络设备的行为和功能,例如实现图15的实施例中网络设备执行的方法。通信装置2100可以为网络设备,也可以为应用于网络设备中的部件(例如芯片或者电路),也可以是网络设备中的芯片或芯片组或芯片中用于执行相关方法功能的一部分。
例如,确定模块2110,可用于确定第一指示信息,所述第一指示信息用于指示下一个不连续接收DRX周期内持续定时器开启的起始时间和/或下一个DRX周期内所述持续定时器开启的起始时间偏移值;
收发模块2120,用于在DRX周期的激活时间内,向终端设备发送至少一个控制信息和/或至少一个数据,所述控制信息和/或所述数据中包括所述第一指示信息。
图22为本申请实施例提供的通信装置2200的示意性框图。其中,通信装置2200可以是终端设备,能够实现本申请实施例提供的方法中终端设备的功能。或者,通信装置2200可以是网络设备,能够实现本申请实施例提供的方法中网络设备的功能。通信装置2200也可以是能够支持终端设备实现本申请实施例提供的方法中对应的功能的装置,或者能够支持网络设备实现本申请实施例提供的方法中对应的功能的装置。其中,该通信装置2200可以为芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片 和其他分立器件。具体的功能可以参见上述方法实施例中的说明。
通信装置2200包括一个或多个处理器2201,用于实现或用于支持通信装置2200实现本申请实施例提供的方法中网络设备(基站)或终端设备的功能。具体参见方法示例中的详细描述,此处不做赘述。处理器2201也可以称为处理单元或确定模块,可以实现一定的控制功能。处理器2201可以是通用处理器或者专用处理器等。例如,包括:基带处理器,中央处理器,应用处理器,调制解调处理器,图形处理器,图像信号处理器,数字信号处理器,视频编解码处理器,控制器,存储器,和/或神经网络处理器等。所述基带处理器可以用于对通信协议以及通信数据进行处理。所述中央处理器可以用于对通信装置2200进行控制,执行软件程序和/或处理数据。不同的处理器可以是独立的器件,也可以是集成在一个或多个处理器中,例如,集成在一个或多个专用集成电路上。
可选的,通信装置2200中包括一个或多个存储器2202,用以存储指令2204,所述指令可在所述处理器2201上被运行,使得通信装置2200执行上述方法实施例中描述的方法。存储器2202和处理器2201耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器2201可能和存储器2202协同操作。所述至少一个存储器中的至少一个可以包括于处理器中。需要说明的是,存储器2202不是必须的,所以在图22中以虚线进行示意。
可选的,所述存储器2202中还可以存储有数据。所述处理器和存储器可以单独设置,也可以集成在一起。在本申请实施例中,存储器2202可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
可选的,通信装置2200可以包括指令2203(有时也可以称为代码或程序),所述指令2203可以在所述处理器上被运行,使得所述通信装置2200执行上述实施例中描述的方法。处理器2201中可以存储数据。
可选的,通信装置2200还可以包括收发器2205以及天线2206。所述收发器2205可以称为收发单元,收发模块、收发机、收发电路、收发器,输入输出接口等,用于通过天线2206实现通信装置2200的收发功能。
本申请中描述的处理器2201和收发器2205可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路(radio frequency identification,RFID)、混合信号IC、ASIC、印刷电路板(printed circuit board,PCB)、或电子设备等上。实现本文描述的通信装置,可以是独立设备(例如,独立的集成电路,手机等),或者可以是较大设备中的一部分(例如,可嵌入在其他设备内的模块),具体可以参照前述关于终端设备,以及网络设备的说明,在此不再赘述。
可选的,通信装置2200还可以包括以下一个或多个部件:无线通信模块,音频模块,外部存储器接口,内部存储器,通用串行总线(universal serial bus,USB)接口,电源管理模块,天线,扬声器,麦克风,输入输出模块,传感器模块,马达,摄像头,或显示屏等等。可以理解,在一些实施例中,通信装置2200可以包括更多或更少部件,或者某些 部件集成,或者某些部件拆分。这些部件可以是硬件,软件,或者软件和硬件的组合实现。
需要说明的是,上述实施例中的通信装置可以是终端设备(或网络设备)也可以是电路,也可以是应用于终端设备(或网络设备)中的芯片或者其他具有上述终端功能(或网络设备)的组合器件、部件等。当通信装置是终端设备(或网络设备)时,收发模块可以是收发器,可以包括天线和射频电路等,处理模块可以是处理器,例如:中央处理模块(central processing unit,CPU)。当通信装置是具有上述终端设备(或网络设备)功能的部件时,收发模块可以是射频单元,处理模块可以是处理器。当通信装置是芯片系统时,该通信装置可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是CPU,还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。处理模块可以是芯片系统的处理器。收发模块或通信接口可以是芯片系统的输入输出接口或接口电路。例如,接口电路可以为代码/数据读写接口电路。所述接口电路,可以用于接收代码指令(代码指令存储在存储器中,可以直接从存储器读取,或也可以经过其他器件从存储器读取)并传输至处理器;处理器可以用于运行所述代码指令以执行上述方法实施例中的方法。又例如,接口电路也可以为通信处理器与收发机之间的信号传输接口电路。
图23示出了一种简化的通信装置的结构示意图。便于理解和图示方便,图23中,以通信装置是基站作为例子。该基站可以为执行上述方法实施例中网络设备的功能。
该通信装置2300可包括处理器2322。还可以包括收发器2310和存储器2321。处理器2322被配置为支持通信装置2300执行上述方法中相应的功能,收发器2310可以用于通信装置进行通信。存储器2321与处理器2322耦合,可用于保存通信装置2300实现各功能所必要的程序和数据。
具体的,该收发器2310可以是无线收发器,可用于支持通信装置2300通过无线空口进行接收和发送信令和/或数据。收发器2310也可被称为收发单元或通信单元,收发器2310可包括一个或多个射频单元2312以及一个或多个天线2311,其中,射频单元如远端射频单元(remote radio unit,RRU)或者有源天线单元(active antenna unit,AAU),具体可用于射频信号的传输以及射频信号与基带信号的转换,该一个或多个天线具体可用于进行射频信号的辐射和接收。可选的,收发器2310可以仅包括以上射频单元,则此时通信装置2300可包括收发器2310、存储器2321、处理器2322以及天线2311。
存储器2321以及处理器2322可集成于一体也可相互独立。如图23所示,可将存储器2321以及处理器2322集成于通信装置2300的控制单元2320。示例性的,控制单元2320可包括LTE基站的基带单元(baseband unit,BBU),基带单元也可称为数字单元(digital unit,DU),或者,该控制单元2320可包括5G和未来无线接入技术下基站中的DU和/或CU。上述控制单元2320可由一个或多个天线面板构成,其中,多个天线面板可以共同支持单一接入制式的无线接入网(如LTE网络),多个天线面板也可以分别支持不同接入制式的无线接入网(如LTE网络,5G网络或其他网络)。所述存储器2321和处理器2322可以服务于一个或多个天线面板。也就是说,可以每个天线面板上单独设置存储器 2321和处理器2322。也可以是多个天线面板共用相同的存储器2321和处理器2322。此外每个天线面板上可以设置有必要的电路,如,该电路可用于实现存储器2321以及处理器2322的耦合。以上收发器2310、处理器2322以及存储器2321之间可通过总线(bus)结构和/或其他连接介质实现连接。
基于图23所示结构,当通信装置2300需要发送数据时,处理器2322可对待发送的数据进行基带处理后,输出基带信号至射频单元,射频单元将基带信号进行射频处理后将射频信号通过天线以电磁波的形式进行发送。当有数据发送到通信装置2300时,射频单元通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器2322,处理器2322将基带信号转换为数据并对该数据进行处理。
基于如图23所示结构,收发器2310可用于执行以上由收发器2205所执行的步骤。和/或,处理器2322可用于调用存储器2321中的指令以执行以上由处理器2201所执行的步骤。
图24示出了一种简化的终端设备的结构示意图。为了便于理解和图示方便,图24中,该终端设备以手机作为例子。如图24所示,终端设备包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对该车载单元进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到该设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图24中仅示出了一个存储器和处理器。在实际的设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为该装置的收发单元,将具有处理功能的处理器视为该装置的处理单元。如图24所示,该装置包括收发单元2410和处理单元2420。收发单元2410也可以称为收发器、收发机、收发装置等。处理单元2420也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将收发单元2410中用于实现接收功能的器件视为接收单元,将收发单元2410中用于实现发送功能的器件视为发送单元,即收发单元2410包括接收单元和发送单元。收发单元2410有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
应理解,收发单元2410用于执行上述方法实施例中终端设备的发送操作和接收操作,处理单元2420用于执行上述方法实施例中终端设备上除了收发操作之外的其他操作。例如,在一种实现方式中,收发单元2410可以用于执行图9、图14或图15所示的实施例中的发送步骤,接收步骤,和/或用于支持本文所描述的技术的其它过程。处理单元2420 可以用于执行如图9、图14或图15所示的实施例中除接收步骤或发送步骤之外的步骤,和/或用于支持本文所描述的技术的其它过程。
当该通信装置为芯片类的装置或者电路时,该装置可以包括收发单元和处理单元。其中,所述收发单元可以是输入输出电路和/或通信接口;处理单元为集成的处理器或者微处理器或者集成电路。
本申请实施例还提供一种通信系统,具体的,通信系统包括网络设备和多个终端设备,或者还可以包括更多个网络设备和多个终端设备。示例性的,通信系统包括用于实现上述图9、图14或图15的相关功能的网络设备和终端设备,例如终端设备。所述网络设备分别用于实现上述图9、图14或图15相关网络部分的功能。所述终端设备用于实现上述9、图14或图15相关终端设备,例如终端设备的功能。具体请参考上述方法实施例中的相关描述,这里不再赘述。
本申请实施例中还提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行图9、图14或图15中网络设备执行的方法;或者当其在计算机上运行时,使得计算机执行图9、图14或图15中终端设备执行的方法。
本申请实施例中还提供一种计算机程序产品,包括指令,当其在计算机上运行时,使得计算机执行图9、图14或图15中网络设备执行的方法;或者当其在计算机上运行时,使得计算机执行图9、图14或图15中终端设备执行的方法。
本申请实施例提供了一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现前述方法中网络设备或终端设备的功能。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各种说明性逻辑块(illustrative logical block)和步骤(step),能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
显然,本领域的技术人员可以对本申请进行各种改动和变型。倘若对本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (28)

  1. 一种信息监听的方法,其特征在于,包括:
    终端设备根据第一搜索空间集组SSSG的搜索空间集确定至少一个第一物理下行控制信道PDCCH候选位置;
    在不连续接收DRX周期内持续定时器运行期间,所述终端设备在所述第一PDCCH候选位置监听所述第一PDCCH;
    所述终端设备根据第二SSSG的搜索空间集确定至少一个第二PDCCH候选位置;
    在所述第一PDCCH上监听到用于调度新传的数据的第一控制信息,所述终端设备在DRX周期内非激活定时器运行期间,在所述第二PDCCH候选位置监听所述第二PDCCH,所述第一PDCCH的周期大于所述第二PDCCH的周期和/或所述第一SSSG中的搜索空间集的持续时间小于所述第二SSSG中的搜索空间集的持续时间。
  2. 根据权利要去1所述的方法,其特征在于,所述方法还包括:
    所述终端设备根据所述第二SSSG的搜索空间集确定至少一个第三PDCCH候选位置;
    在DRX周期内所述持续定时器运行期间,所述终端设备在所述第三PDCCH候选位置监听所述第三PDCCH,监听所述第一PDCCH的时间与监听所述第三PDCCH的时间不同。
  3. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收来自网络设备的第一配置信息,所述第一配置信息中包括以下至少一种:
    监听所述第一PDCCH的起始时间、监听所述第一PDCCH的时间长度、监听所述第三PDCCH的起始时间、或监听所述第三PDCCH的时间长度。
  4. 根据根据权利要求1-3中任一项所述的方法,其特征在于,
    监听所述第一PDCCH的起始时间与DRX周期内所述持续定时器开启的起始时间相同。
  5. 根据权利要求2-4中任一项所述的方法,其特征在于,
    所述终端设备在所述第一PDCCH候选位置监听所述第一PDCCH时,第一调度偏移值大于或等于第一阈值,所述第一调度偏移值是所述第一PDCCH与所述第一PDCCH调度的物理下行共享信道PDSCH或物理上行共享信道PUSCH之间的时间偏移值;
    所述终端设备在所述第二PDCCH候选位置监听所述第二PDCCH时,第二调度偏移值大于或等于第二阈值,所述第二调度偏移值是所述第二PDCCH与所述第二PDCCH调度的PDSCH或PUSCH之间的时间偏移值,其中,所述第一阈值大于所述第二阈值;
    所述终端设备在所述第三PDCCH候选位置监听所述第三PDCCH时,第三调度偏移值大于或等于所述第二阈值,所述第三调度偏移值是所述第三PDCCH与所述第三PDCCH调度的PDSCH或PUSCH之间的时间偏移值。
  6. 根据权利要求1-5中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备根据获取的DRX的配置信息,确定第i个DRX周期的起始时间和/或所述第i个DRX周期内所述持续定时器开启的起始时间,i为正整数;
    所述终端设备确定第一参数m和第二参数T,所述第一参数m为周期性调整DRX周期的起始时间所间隔的DRX周期的个数和/或所述第一参数m为周期性调整DRX周期内 所述持续定时器的起始时间所间隔的DRX周期的个数,所述第二参数T为调整DRX周期的起始时间的偏移值和/或调整DRX周期内所述持续定时器开启的起始时间的偏移值,m为正整数;
    所述终端设备根据所述DRX的配置信息、所述第一参数m和所述第二参数T,确定第i+m个DRX周期的起始时间和/或所述第i+m个DRX周期内所述持续定时器开启的起始时间。
  7. 根据权利要求6所述的方法,其特征在于,
    所述第一参数m与DRX周期的大小和数据传输周期的大小相关;
    所述第二参数T与DRX周期的大小和数据传输周期的大小相关,和/或,所述第二参数T与DRX周期调整的次数相关。
  8. 根据权利要求1-5中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备获取第一指示信息,所述第一指示信息用于指示下一个DRX周期内所述持续定时器开启的起始时间和/或下一个DRX周期内所述持续定时器开启的起始时间偏移值;
    所述终端设备根据所述第一指示信息,确定所述下一个DRX周期内所述持续定时器开启的起始时间。
  9. 根据权利要求8所述的方法,其特征在于,所述终端设备根据所述第一指示信息,确定所述下一个DRX周期内所述持续定时器开启的起始时间,包括:
    所述终端设备根据DRX的配置信息和所述持续定时器开启的起始时间偏移值,确定所述下一个DRX周期内所述持续定时器开启的起始时间。
  10. 一种信息监听的方法,其特征在于,包括:
    网络设备根据第一搜索空间集组SSSG的搜索空间集确定至少一个第一物理下行控制信道PDCCH候选位置;
    在不连续接收DRX周期内持续定时器运行期间,所述网络设备在所述第一PDCCH候选位置向终端设备发送至少一个第一控制信息;
    所述网络设备根据第二SSSG的搜索空间集确定至少一个第二PDCCH候选位置;
    所述第一控制信息用于调度新传的数据,在DRX周期内非激活定时器运行期间,所述网络设备在所述第二PDCCH候选位置向所述终端设备发送至少一个第二控制信息,所述第一PDCCH的周期大于所述第二PDCCH的周期和/或所述第一SSSG中的搜索空间集的持续时间小于所述第二SSSG中的搜索空间集的持续时间。
  11. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    所述网络设备根据所述第二SSSG的搜索空间集确定至少一个第三PDCCH候选位置;
    在DRX周期内所述持续定时器运行期间,所述网络设备在所述第三PDCCH候选位置向所述终端设备发送至少一个第三控制信息,发送所述第一控制信息的时间与发送所述第三控制信息的时间不同。
  12. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送第一配置信息,所述第一配置信息中包括以下至少一种:
    监听所述第一PDCCH的起始时间、监听所述第一PDCCH的时间长度、监听所述第 三PDCCH的起始时间、或监听所述第三PDCCH的时间长度。
  13. 根据根据权利要求10-12中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备根据DRX的配置信息,确定第i个DRX周期的起始时间和/或所述第i个DRX周期内所述持续定时器开启的起始时间,i为正整数;
    所述网络设备确定第一参数m和第二参数T,所述第一参数m为周期性调整DRX周期的起始时间所间隔的DRX周期的个数和/或所述第一参数m为周期性调整DRX周期内所述持续定时器的起始时间所间隔的DRX周期的个数,所述第二参数T为调整DRX周期的起始时间的偏移值和/或调整DRX周期内所述持续定时器开启的起始时间的偏移值,m为正整数;
    所述网络设备根据所述DRX的配置信息、所述第一参数m和所述第二参数T,确定第i+m个DRX周期的起始时间和/或所述第i+m个DRX周期内所述持续定时器开启的起始时间。
  14. 根据权利要求13所述的方法,其特征在于,
    所述第一参数m与DRX周期的大小和数据传输周期的大小相关;
    所述第二参数T与DRX周期的大小和数据传输周期的大小相关,和/或,所述第二参数T与DRX周期调整的次数相关。
  15. 根据根据权利要求10-12中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备确定第一指示信息,所述第一指示信息用于指示下一个DRX周期内所述持续定时器开启的起始时间和/或下一个DRX周期内所述持续定时器开启的起始时间偏移值;
    所述网络设备在DRX周期的激活时间内,向所述终端设备发送所述第一指示信息。
  16. 一种信息监听的方法,其特征在于,包括:
    终端设备根据获取的DRX的配置信息,确定第i个不连续接收DRX周期的起始时间和/或所述第i个DRX周期内持续定时器开启的起始时间,i为正整数;
    所述终端设备确定第一参数m和第二参数T,所述第一参数m为周期性调整DRX周期的起始时间所间隔的DRX周期的个数和/或所述第一参数m为周期性调整DRX周期内所述持续定时器的起始时间所间隔的DRX周期的个数,所述第二参数T为调整DRX周期的起始时间的偏移值和/或调整DRX周期内所述持续定时器开启的起始时间的偏移值,m为正整数;
    所述终端设备根据所述DRX的配置信息、所述第一参数m和所述第二参数T,确定第i+m个DRX周期的起始时间和/或所述第i+m个DRX周期内所述持续定时器开启的起始时间。
  17. 根据权利要求16所述的方法,其特征在于,
    所述第一参数m与DRX周期的大小和数据传输周期的大小相关;
    所述第二参数T与DRX周期的大小和数据传输周期的大小相关,和/或,所述第二参数T与DRX周期调整的次数相关。
  18. 一种信息监听的方法,其特征在于,包括:
    网络设备根据DRX的配置信息,确定第i个DRX周期的起始时间和/或所述第i个DRX周期内所述持续定时器开启的起始时间,i为正整数;
    所述网络设备确定第一参数m和第二参数T,所述第一参数m为周期性调整DRX周期的起始时间所间隔的DRX周期的个数和/或所述第一参数m为周期性调整DRX周期内所述持续定时器的起始时间所间隔的DRX周期的个数,所述第二参数T为调整DRX周期的起始时间的偏移值和/或调整DRX周期内所述持续定时器开启的起始时间的偏移值,m为正整数;
    所述网络设备根据所述DRX的配置信息、所述第一参数m和所述第二参数T,确定第i+m个DRX周期的起始时间和/或所述第i+m个DRX周期内所述持续定时器开启的起始时间。
  19. 根据权利要求18所述的方法,其特征在于,
    所述第一参数m与DRX周期的大小和数据传输周期的大小相关;
    所述第二参数T与DRX周期的大小和数据传输周期的大小相关,和/或,所述第二参数T与DRX周期调整的次数相关。
  20. 一种信息监听的方法,其特征在于,包括:
    终端设备在不连续接收DRX周期的激活时间内,监听至少一个物理下行控制信道PDCCH和/或在至少一个物理下行共享信道PDSCH上接收数据,所述至少一个PDCCH承载的控制信息和/或所述数据中包括第一指示信息,所述第一指示信息用于指示下一个DRX周期内持续定时器开启的起始时间和/或下一个DRX周期内所述持续定时器开启的起始时间偏移值;
    所述终端设备根据所述第一指示信息,确定所述下一个DRX周期内所述持续定时器开启的起始时间。
  21. 根据权利要求20所述的方法,其特征在于,所述终端设备根据所述第一指示信息,确定所述下一个DRX周期内所述持续定时器开启的起始时间,包括:
    所述终端设备根据DRX的配置信息和所述持续定时器开启的起始时间偏移值,确定所述下一个DRX周期内所述持续定时器开启的起始时间。
  22. 一种信息监听的方法,其特征在于,包括:
    网络设备确定第一指示信息,所述第一指示信息用于指示下一个不连续接收DRX周期内持续定时器开启的起始时间和/或下一个DRX周期内所述持续定时器开启的起始时间偏移值;
    所述网络设备在DRX周期的激活时间内,向终端设备发送至少一个控制信息和/或至少一个数据,所述控制信息和/或所述数据中包括所述第一指示信息。
  23. 一种通信装置,其特征在于,包括用于执行如权利要求1-9、16-17或20-21中任一项所述方法的模块。
  24. 一种通信装置,其特征在于,包括用于执行如权利要求10-15、18-19或22中任一项所述方法的模块。
  25. 一种通信装置,其特征在于,包括:处理器和通信接口,所述通信接口用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求1-9、16-17或20-21中任一项所述的方法。
  26. 一种通信装置,其特征在于,包括:处理器和通信接口,所述通信接口用于接收 来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求10-15、18-19或22中任一项所述的方法。
  27. 一种计算机可读存储介质,其特征在于,包括:
    所述计算机可读介质存储有计算机程序;
    所述计算机程序在计算机上运行时,使得计算机执行权利要求1至22中任一项所述的方法。
  28. 一种计算机程序产品,其特征在于,包括计算机程序代码,当所述计算机程序代码被执行时,使得如权利要求1至22任一项所述的方法被实现。
PCT/CN2022/113491 2021-09-03 2022-08-19 信息监听的方法和装置 WO2023030037A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22863176.8A EP4387340A1 (en) 2021-09-03 2022-08-19 Method and apparatus for information monitoring

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111029909.6A CN115767690A (zh) 2021-09-03 2021-09-03 信息监听的方法和装置
CN202111029909.6 2021-09-03

Publications (1)

Publication Number Publication Date
WO2023030037A1 true WO2023030037A1 (zh) 2023-03-09

Family

ID=85332551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/113491 WO2023030037A1 (zh) 2021-09-03 2022-08-19 信息监听的方法和装置

Country Status (3)

Country Link
EP (1) EP4387340A1 (zh)
CN (1) CN115767690A (zh)
WO (1) WO2023030037A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020032706A1 (ko) * 2018-08-09 2020-02-13 엘지전자 주식회사 무선 통신 시스템에서 비면허 대역 내에서 lbt 타입에 따른 동작을 수행하는 방법 및 상기 방법을 이용하는 단말
CN111432460A (zh) * 2019-01-10 2020-07-17 北京三星通信技术研究有限公司 一种物理下行控制信道的监听方法、终端设备及存储介质
WO2020199121A1 (en) * 2019-04-02 2020-10-08 Zte Corporation Control information processing
CN112312525A (zh) * 2019-08-01 2021-02-02 大唐移动通信设备有限公司 一种节电信号配置和传输方法及装置
CN112312524A (zh) * 2019-08-01 2021-02-02 大唐移动通信设备有限公司 一种节电信号配置和传输方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020032706A1 (ko) * 2018-08-09 2020-02-13 엘지전자 주식회사 무선 통신 시스템에서 비면허 대역 내에서 lbt 타입에 따른 동작을 수행하는 방법 및 상기 방법을 이용하는 단말
CN111432460A (zh) * 2019-01-10 2020-07-17 北京三星通信技术研究有限公司 一种物理下行控制信道的监听方法、终端设备及存储介质
WO2020199121A1 (en) * 2019-04-02 2020-10-08 Zte Corporation Control information processing
CN112312525A (zh) * 2019-08-01 2021-02-02 大唐移动通信设备有限公司 一种节电信号配置和传输方法及装置
CN112312524A (zh) * 2019-08-01 2021-02-02 大唐移动通信设备有限公司 一种节电信号配置和传输方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAMSUNG: "Discussion on DCI-based power saving techniques", 3GPP DRAFT; R1-2101220, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200125 - 20200205, 19 January 2021 (2021-01-19), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051971433 *

Also Published As

Publication number Publication date
CN115767690A (zh) 2023-03-07
EP4387340A1 (en) 2024-06-19

Similar Documents

Publication Publication Date Title
WO2020200075A1 (zh) 通信方法和装置
WO2021013144A1 (zh) 通信方法及装置
KR20120025622A (ko) 시스템 정보 송신 윈도우의 브로드캐스트를 위한 방법 및 장치
WO2020221093A1 (zh) 搜索空间的监测、配置方法及装置
WO2018228586A1 (zh) 一种通信方法、网络设备及用户设备
WO2021023076A1 (zh) 一种通信方法及装置
WO2022206970A1 (zh) 传输处理方法、终端及网络侧设备
WO2023046196A1 (zh) 辅助信息上报方法、业务配置方法、终端及网络侧设备
US20220030565A1 (en) Method and device for adjusting pdcch monitoring period
US20220346008A1 (en) Connected Discontinuous Reception for Carrier Aggregation
WO2021027551A1 (zh) 一种通信方法及装置
WO2022237527A1 (zh) 一种非连续接收的通信方法及装置
CN109952802B (zh) 用于发送下行链路控制信息的方法和设备
WO2021097648A1 (zh) 检测物理下行控制信道pdcch的方法以及装置
WO2023279865A1 (zh) 一种通信方法及装置
WO2023030037A1 (zh) 信息监听的方法和装置
JP2024516890A (ja) 適応的不連続受信構成のための方法および装置
WO2022120609A1 (zh) 无线通信方法和设备
WO2020088455A1 (zh) 通信方法和通信装置
WO2020143751A1 (zh) 通信方法和通信装置
CN116711392A (zh) 用于用户设备的增强型非连续接收和功率节省
CN113056938B (zh) 用于通信的装置、方法和计算机可读介质
WO2021031026A1 (zh) 一种下行控制信息dci的传输方法及装置
WO2022194177A1 (zh) 监听控制方法及相关设备
WO2024067107A1 (zh) 一种网络配置方法、装置及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22863176

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022863176

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022863176

Country of ref document: EP

Effective date: 20240315

NENP Non-entry into the national phase

Ref country code: DE