WO2022120609A1 - 无线通信方法和设备 - Google Patents

无线通信方法和设备 Download PDF

Info

Publication number
WO2022120609A1
WO2022120609A1 PCT/CN2020/134695 CN2020134695W WO2022120609A1 WO 2022120609 A1 WO2022120609 A1 WO 2022120609A1 CN 2020134695 W CN2020134695 W CN 2020134695W WO 2022120609 A1 WO2022120609 A1 WO 2022120609A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
trs
terminal device
duration
measurement
Prior art date
Application number
PCT/CN2020/134695
Other languages
English (en)
French (fr)
Inventor
胡荣贻
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2020/134695 priority Critical patent/WO2022120609A1/zh
Priority to CN202080107722.0A priority patent/CN116569610A/zh
Priority to EP20964554.8A priority patent/EP4258583A4/en
Publication of WO2022120609A1 publication Critical patent/WO2022120609A1/zh
Priority to US18/206,432 priority patent/US20230318784A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0261Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level
    • H04W52/0274Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by switching on or off the equipment or parts thereof
    • H04W52/028Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by switching on or off the equipment or parts thereof switching on or off only a part of the equipment circuit blocks

Definitions

  • the embodiments of the present application relate to the field of communication, and more particularly, to wireless communication methods and devices.
  • a secondary cell (Secondary Cell, SCell) is configured through dedicated radio resource control (Radio Resource Control, RRC) signaling, and the initial configuration state is a deactivated state, in which data transmission and reception cannot be performed. Then, the SCell can be activated through a Media Access Control (Media Access Control, MAC) control cell (Control Element, CE) to perform data transmission and reception.
  • Activation and deactivation of the secondary carrier, addition and deletion may all cause interruption of the transmission of the user equipment (User Equipment, UE), and then the interruption duration is generated.
  • the interruption duration is defined based on the synchronization signal/physical broadcast channel block (Synchronization Signal/PBCH Block, SSB), including SSB-based automatic gain control (Auto gain control, AGC) settings and SSB-based timing tracking (timing tracking).
  • SSB synchronization signal/physical broadcast channel block
  • AGC Automatic gain control
  • timing tracking timing tracking
  • the embodiments of the present application provide a wireless communication method and device, which can flexibly control the delay and interruption duration in the processing process, and improve system performance.
  • a wireless communication method including:
  • first indication information is used to indicate a first reference signal used in a processing procedure for the secondary cell, where the processing procedure includes at least one of activation, deactivation, addition or deletion;
  • the processing is performed based on the first indication information.
  • a wireless communication method including:
  • Send first indication information where the first indication information is used to indicate a first reference signal used in a processing procedure for the secondary cell, where the processing procedure includes at least one of activation, deactivation, addition or deletion.
  • a terminal device for executing the method in the above-mentioned first aspect or each implementation manner thereof.
  • the terminal device includes a functional module for executing the method in the first aspect or each implementation manner thereof.
  • a network device for executing the method in the second aspect or each of its implementations.
  • the network device includes a functional module for executing the method in the second aspect or each implementation manner thereof.
  • a terminal device including a processor and a memory.
  • the memory is used for storing a computer program
  • the processor is used for calling and running the computer program stored in the memory, so as to execute the method in the above-mentioned first aspect or each implementation manner thereof.
  • a network device including a processor and a memory.
  • the memory is used for storing a computer program
  • the processor is used for calling and running the computer program stored in the memory, so as to execute the method in the above-mentioned second aspect or each implementation manner thereof.
  • a chip for implementing any one of the above-mentioned first aspect to the second aspect or the method in each implementation manner thereof.
  • the chip includes: a processor for calling and running a computer program from a memory, so that a device installed with the chip executes any one of the above-mentioned first to second aspects or each of its implementations method in .
  • a computer-readable storage medium for storing a computer program, and the computer program causes a computer to execute the method in any one of the above-mentioned first aspect to the second aspect or each implementation manner thereof.
  • a computer program product comprising computer program instructions, the computer program instructions causing a computer to execute the method in any one of the above-mentioned first to second aspects or the implementations thereof.
  • a computer program which, when run on a computer, causes the computer to perform the method in any one of the above-mentioned first to second aspects or the respective implementations thereof.
  • the first reference signal is indicated by the first indication information, and then the first reference signal is used to perform the processing process, so that the reference signal can be configured flexibly, so that the terminal device can perform faster AGC adjustment to The impact of interruption on other cells is reduced, and the delay and interruption duration in the processing process can be flexibly controlled, terminal complexity is reduced, and system resources are saved.
  • FIG. 1 is an example of a scenario provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a time delay generated in a process of activating or deactivating a secondary cell according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of an interruption duration generated in a process of activating or deactivating a secondary cell according to an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a wireless communication method provided by an embodiment of the present application.
  • FIG. 5 is a schematic block diagram of a terminal device provided by an embodiment of the present application.
  • FIG. 6 is a schematic block diagram of a network device provided by an embodiment of the present application.
  • FIG. 7 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • FIG. 8 is a schematic block diagram of a chip provided by an embodiment of the present application.
  • FIG. 1 is a schematic diagram of an application scenario of an embodiment of the present application.
  • the communication system 100 may include a terminal device 110 and a network device 120 .
  • the network device 120 may communicate with the terminal device 110 through the air interface. Multi-service transmission is supported between the terminal device 110 and the network device 120 .
  • the embodiment of the present application only uses the communication system 100 for exemplary description, but the embodiment of the present application is not limited thereto. That is to say, the technical solutions of the embodiments of the present application can be applied to various communication systems, such as: long term evolution (Long Term Evolution, LTE) system, LTE time division duplex (Time Division Duplex, TDD), universal mobile communication system (Universal mobile communication system) Mobile Telecommunication System, UMTS), 5G communication system (also known as New Radio (New Radio, NR) communication system), or future communication systems, etc.
  • LTE Long Term Evolution
  • TDD Time Division Duplex
  • Universal mobile communication system Universal mobile communication system
  • Mobile Telecommunication System Universal mobile communication system
  • UMTS Universal mobile communication system
  • 5G communication system also known as New Radio (New Radio, NR) communication system
  • future communication systems etc.
  • the network device 120 may be an access network device that communicates with the terminal device 110 .
  • An access network device may provide communication coverage for a particular geographic area, and may communicate with terminal devices 110 (eg, UEs) located within the coverage area.
  • the network device 120 may be an evolved base station (Evolutional Node B, eNB or eNodeB) in a Long Term Evolution (Long Term Evolution, LTE) system, or a next generation radio access network (Next Generation Radio Access Network, NG RAN) device, Or a base station (gNB) in an NR system, or a wireless controller in a cloud radio access network (Cloud Radio Access Network, CRAN), or the network device 120 can be a relay station, an access point, a vehicle-mounted device, a wearable Devices, hubs, switches, bridges, routers, or network devices in the future evolved Public Land Mobile Network (PLMN).
  • PLMN Public Land Mobile Network
  • the terminal device 110 may be any terminal device, which includes, but is not limited to, a terminal device that adopts a wired or wireless connection with the network device 120 or other terminal devices.
  • the terminal equipment 110 may refer to an access terminal, a user equipment (UE), a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, user agent, or user device.
  • the access terminal may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), a wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, end devices in 5G networks or end devices in future evolved networks, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the terminal device 110 may be used for device-to-device (Device to Device, D2D) communication.
  • D2D Device to Device
  • the wireless communication system 100 may further include a core network device 130 that communicates with the base station, and the core network device 130 may be a 5G core network (5G Core, 5GC) device, for example, an Access and Mobility Management Function (Access and Mobility Management Function). , AMF), another example, authentication server function (Authentication Server Function, AUSF), another example, user plane function (User Plane Function, UPF), another example, session management function (Session Management Function, SMF).
  • the core network device 130 may also be an evolved packet core (Evolved Packet Core, EPC) device of an LTE network, for example, a session management function+core network data gateway (Session Management Function+Core Packet Gateway, SMF+PGW- C) Equipment.
  • EPC evolved packet core
  • the SMF+PGW-C can simultaneously implement the functions that the SMF and the PGW-C can implement.
  • the above-mentioned core network equipment may also be called by other names, or a new network entity may be formed by dividing the functions of the core network, which is not limited in this embodiment of the present application.
  • the various functional units in the communication system 100 may also establish a connection through a next generation network (next generation, NG) interface to implement communication.
  • NG next generation network
  • the terminal equipment establishes an air interface connection with the access network equipment through the NR interface to transmit user plane data and control plane signaling; the terminal equipment can establish a control plane signaling connection with the AMF through the NG interface 1 (N1 for short); access Network equipment, such as the next generation wireless access base station (gNB), can establish a user plane data connection with the UPF through the NG interface 3 (N3 for short); the access network equipment can establish a control plane signaling with the AMF through the NG interface 2 (N2 for short).
  • gNB next generation wireless access base station
  • UPF can establish a control plane signaling connection with SMF through NG interface 4 (N4 for short); UPF can exchange user plane data with the data network through NG interface 6 (N6 for short); AMF can communicate with SMF through NG interface 11 (N11 for short)
  • the SMF establishes a control plane signaling connection; the SMF can establish a control plane signaling connection with the PCF through the NG interface 7 (N7 for short).
  • FIG. 1 exemplarily shows one base station, one core network device and two terminal devices.
  • the wireless communication system 100 may include multiple base station devices and the coverage area of each base station may include other numbers of terminals equipment, which is not limited in this embodiment of the present application.
  • a device having a communication function in the network/system can be referred to as a communication device.
  • the communication device may include a network device 120 and a terminal device 110 with a communication function, and the network device 120 and the terminal device 110 may be the devices described above, which will not be repeated here;
  • the communication device may further include other devices in the communication system 100, such as other network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the present application.
  • CA Carrier Aggregation
  • Component Carrier CC
  • the NR system can support a larger bandwidth, thereby achieving a higher system peak rate.
  • the continuity of the aggregated carriers in the spectrum it can be divided into continuous carrier aggregation and non-continuous carrier aggregation; according to whether the aggregated carriers are in the same band, it can be divided into intra-band carrier aggregation and inter-band carrier aggregation. (inter-band) carrier aggregation.
  • PCC Primary Cell Component
  • PCC provides RRC signaling connection, Non-Access Stratum (NAS) function, security, etc.
  • the Physical Uplink Control Channel (PUCCH) exists on the PCC and only exists on the PCC.
  • a secondary carrier (Secondary Cell Component, SCC) only provides additional radio resources.
  • SCC and SCC are both called serving cells.
  • the standard stipulates that the aggregated carriers support up to 5, that is, the maximum bandwidth after aggregation is 100MHZ, and the aggregated carriers belong to the same base station. All aggregated carriers use the same Cell Radio Network Temporary Identity (C-RNTI), and the base station ensures that the C-RNTI does not collide in the cell where each carrier is located.
  • C-RNTI Cell Radio Network Temporary Identity
  • the aggregated carrier must have downlink and may not have uplink.
  • the primary carrier cell there must be the Physical Downlink Control Channel (PDCCH) and PUCCH of the cell, and only the primary carrier cell has PUCCH, and other secondary carrier cells may have PDCCH.
  • PDCH Physical Downlink Control Channel
  • the SCell is configured through RRC dedicated signaling, and the initial configuration state is a deactivated state, in which data transmission and reception cannot be performed. Then, the SCell can be activated through the MAC CE to send and receive data. From the perspective of SCell configuration and activation delay, this architecture is not an optimal architecture. This delay reduces the efficiency of CA usage and radio resources, especially in small cell deployment scenarios. In a dense small cell deployment scenario, the signaling load of each Scell is also heavy, especially when each scell needs to be configured separately. Therefore, the current CA architecture introduces additional delay, which limits the use of CA and reduces the gain of CA load sharing.
  • Activation, deactivation, addition and deletion of secondary carriers may all cause interruption of the transmission of the terminal equipment. It should be noted that the activation, deactivation, addition and deletion of the secondary carrier can also be understood as the activation, deactivation, addition and deletion of the secondary cell. For the convenience of description, the activation, deactivation, addition and deletion of the secondary cell are collectively referred to below. It is the processing procedure for the secondary cell.
  • the dormant BWP is introduced to solve the problem of terminal power consumption, that is, when the BWP is configured to be dormant, the terminal does not need to detect the PDCCH, which saves the power consumption of the terminal.
  • Dormant BWP adopts three configuration methods: DCI format 2_6, DCI format 0_1/1_1, increase the dormant BWP indication field, and redesign DCI format 1_1. Specifically, it can be instructed in the following ways:
  • a "0" value of a bit of the bitmap indicates:
  • the activated DL BWP is provided by the dormant BWP identifier (dormantBWP-Id) for the corresponding activated secondary cell of the terminal (an active DL BWP, provided by dormantBWP-Id, for the UE for a corresponding activated SCell).
  • bitmap The value of a bit of the bitmap is "1" to indicate:
  • the activated DL BWP provided by firstWithinActiveTimeBWP-Id, for the corresponding activated secondary cell of the terminal, if the currently activated DL BWP is a dormant DL BWP (an active DL BWP, provided by firstWithinActiveTimeBWP-Id, for the UE for a corresponding activated SCell, if a current active DL BWP is the dormant DL BWP).
  • the currently activated DL BWP for the corresponding activated secondary cell of the terminal, if the currently active DL BWP is not a dormant DL BWP (a current active DL BWP, for the UE for a corresponding activated SCell, if the current active DL BWP is not the dormant DL BWP).
  • the terminal device sets the active DL BWP to the indicated active DL BWP (the UE sets the active DL BWP to the indicated active DL BWP).
  • FIG. 2 is a schematic diagram of a time delay generated in a process of activating or deactivating a secondary cell according to an embodiment of the present application.
  • the terminal device receives the PDCCH in the time period k 0 , receives the PDSCH scheduled by the PDCCH in the time period k 1 , and feeds back the ACK for the PDSCH in the time period A, and the time period T HARQ may include the time period A and time period k 1 .
  • the time period B is used to obtain the parameters of the processing process of the secondary cell based on the MAC CE process (MAC CE process), such as parameters for the activation of the secondary cell, the parameters may include the frequency, time, etc. of the secondary cell for executing the processing process Information.
  • the time period C can be used to adjust the relevant information of RF, such as the RF boundary of the network (RF-warmup Margin for NW).
  • the time period D can be used to adjust the power, eg for the AGC gain setting.
  • Time period E may be used for cell search.
  • the time period F can be used for time-frequency synchronization, such as time-frq a tracking.
  • the time period G can be used to adjust the margin for the SSB in the last part (Margin for SSB in last part).
  • the time period L can be used for measurement, for example, the time T CSI_reporting when measuring and generating the CSI report, T CSI_reporting may include the time length of obtaining the first available downlink CSI-RS, the time length of generating the CSI report and obtaining the first available CSI-RS The duration of the reported resource.
  • the time periods B, C, D, E, F and G can process the delay in the process, namely T, where D, E, and F can be used as the execution window of the processing process, and the terminal
  • the device may generate an interrupt, that is, the interrupt duration is generated. For example, an interrupt occurs between C and D shown in FIG. 2 .
  • a known cell can be understood as a cell searched by the terminal equipment, and an unknown cell can be understood as a cell that has not been searched by the terminal equipment.
  • the duration of E can be 0, and for a known cell, the secondary cell measurement period is less than or equal to 160ms, and the duration of D can also be 0, but for a known cell with a secondary cell measurement period greater than 160ms, its D
  • the duration is 1*T FirstSSB_MAX , that is, the operations in the time period D need to be re-executed.
  • T rs may represent the time occupied in the cell search process.
  • FIG. 3 is a schematic diagram of an interruption duration generated in a process of activating or deactivating a secondary cell according to an embodiment of the present application.
  • the network device sends an activation command (NW sends SCell activation command in PCell) on the primary cell on time slot n, and the terminal device sends an ACK of the activation command (UE sends ACK for the command from PCell);
  • the time period on the RF chain opened for the secondary cell (The time period that UE turns on RF chain for SCell)
  • the primary cell is interrupted, that is, the interruption period on the primary cell (Interrruption period on PCell) is generated, and the terminal equipment
  • the DCI trigger signaling is used to trigger the assisted aperiodic TRS in the primary cell (NW DCI triggers in PCell for the assisted aperiodic);
  • the terminal device obtains the assisted aperiodic TRS set in the secondary cell (assisted TRS burst in SCell), the assisted aperiodic TRS is triggered by the DCI in the secondary cell (assisted aperiodic TRS in SCell is triggered by DCI in Pcell).
  • the terminal equipment when activating or deactivating the secondary cell, the terminal equipment is allowed to perform the following actions:
  • the interruption duration of the activation/deactivation of the secondary cell can reach the duration shown in Table 8.2.4.2.2-1 (of up to the duration shown in table 8.2.4.2.2-1), if the activated serving cell and the If the activated or deactivated secondary cells are not in the same frequency band, the synchronization requirements apply to: synchronous NR-DC, and asynchronous NR-DC (if the active serving cell is in the same CG as the secondary cell being activated) serving cell is not in the same band as any of the SCells being activated or deactivated, where the requriements for Sync apply for synchronous NR-DC,and for asynchronous NR-DC if the active serving cell is in the same CG as all the SCells being activated ); asynchronous requirements apply to: asynchronous NR-DC (and the requriements for Async apply for asynchronous NR-DC if the active serving cell is not in the same CG as any of the SCells being activated); or
  • the interruption duration of the activation/deactivation of the secondary cell can reach the duration shown in Table 8.2.4.2.2 (of up to the duration shown in table 8.2.4.2.2-2), if the activated serving cell is the same as the one that is being activated or The cell-specific reference signals from the active serving cell and the secondary cell being activated or deactivated are available in the same time slot if the active serving cells are in the same band as any of the SCells being activated or deactivated provided the cell specific reference signals from the active serving cells and the SCells being activated or deactivated are available in the same slot).
  • Table 8.2.4.2.2-1 shows the Interruption duration for SCell activation/deactivation for inter-band DC/CA, and ⁇ represents the subcarrier spacing . Based on Table 8.2.4.2.2-1, it can be seen that the outage duration is related to the subcarrier spacing, the NR slot length of the victim cell, and the synchronization and asynchrony.
  • Table 8.2.4.2.2-2 shows the Interruption duration for SCell activation/deactivation for intra-band DC/CA, and ⁇ denotes the subcarrier interval . Based on Table 8.2.4.2.2-2 it can be seen that outage duration and subcarrier spacing, NR slot length, T SMTC_duration and related.
  • the different interruptions caused by the activation or deactivation of the intra-band and inter-band DC or CA secondary carriers namely the interruption duration.
  • the interruption duration is defined based on SSB, it includes SSB-based AGC settings and SSB-based timing tracking. Considering that the period of the SSB is long, it will affect the actual activation time of the SCell, which will lead to excessive interruption time and affect the system performance.
  • the embodiments of the present application provide a wireless communication method and device, which can flexibly control the delay and interruption duration in the processing process, and improve system performance.
  • FIG. 2 shows a schematic flowchart of a wireless communication method 200 according to an embodiment of the present application, and the method 200 may be executed interactively by a terminal device and a network device.
  • the terminal device shown in FIG. 2 may be the terminal device shown in FIG. 1
  • the network device shown in FIG. 2 may be the access network device shown in FIG. 1 .
  • the method 200 may include:
  • S210 Acquire first indication information, where the first indication information is used to indicate a first reference signal used in a processing procedure for the secondary cell, where the processing procedure includes at least one of activation, deactivation, addition, or deletion ;
  • the first reference signal is indicated by the first indication information, and then the first reference signal is used to perform the processing process, so that the reference signal can be configured flexibly, so that the terminal device can perform faster AGC adjustment to The impact of interruption on other cells is reduced, and the delay and interruption duration in the processing process can be flexibly controlled, terminal complexity is reduced, and system resources are saved.
  • the first indication information is used to instruct the terminal device to trigger the processing procedure for the secondary cell and to indicate the first reference signal used in the processing procedure.
  • the first indication information is carried at least one of the following:
  • a media access control (Media Access Control, MAC) control information element (Control Element, CE), downlink control information DCI or second indication information used to instruct the terminal device to switch a bandwidth part (Bandwidth Part, BWP).
  • Media Access Control Media Access Control
  • CE Control Element
  • DCI downlink control information
  • BWP bandwidth part
  • fast processing for the secondary cell can be implemented through a flexible and fast triggering manner, so as to reduce the delay and improve the system performance.
  • the second indication information is carried at least one of the following:
  • Downlink Control Information Downlink Control Information
  • timer configuration information timer configuration information
  • Radio Resource Control Radio Resource Control
  • the first indication information may be carried in any one of the following manners: manner 1: MAC-CE configuration triggers activation of the secondary cell, and indicates configuration information 1 of the physical layer-related reference signal.
  • Mode 2 The DCI configuration triggers the activation of the secondary cell, and the DCI indicates configuration information 2 of the reference signal TRS.
  • Manner 3 Along with triggering secondary cell activation based on BWP handover, BWP handover may include three modes of DCI/timer/RRC triggering, and reference signal configuration information 3 required for secondary cell activation is indicated in the BWP configuration.
  • the above configuration information 1/2/3 includes at least: period, length and other information of the reference signal.
  • the first reference signal is used for at least one of the following processes:
  • AGC automatic gain control
  • the first reference signal includes a pilot signal.
  • pilot signals At least one of the following pilot signals:
  • pilot signal may also include other pilot signals, which are not specifically limited in this embodiment of the present application.
  • the processing process may be performed based on different reference signals, and as a result, different time delays and interruption durations will be generated when the terminal device performs the processing process. Then, it is necessary to redefine the introduced delay and interruption duration based on the type of the reference signal, and even redefine the capability information of the terminal device, and then support different radio resource management (Radio Resource Management, RRM) through the terminal device with different capabilities. demand.
  • RRM Radio Resource Management
  • the S220 may include:
  • the first reference signal includes at least one reference signal
  • the execution window includes a reference signal period of the at least one reference signal
  • the execution window includes a measurement period of the at least one reference signal
  • the execution window is based on The implementation of the terminal device is determined.
  • execution window involved in this embodiment of the present application may be at least one of D, E, and F as shown in 2, that is, it may be any one or more of D, E, and F, or it may be D
  • the total length formed by , E, and F is not specifically limited in this embodiment of the present application.
  • the reference signal period of the at least one reference signal may be understood as the period of the at least one reference signal itself.
  • the reference signal period may be understood as the SSB Period
  • the measurement period of the at least one reference signal may be understood as the measurement period for measuring the at least one reference signal
  • the measurement period may be understood as the period of the SMTC measurement window.
  • the SMTC measurement window may also be referred to as the duration of the SMTC.
  • the SSB may be measured based on the period of the SMTC measurement window.
  • the terminal device detects and measures the SSB according to the SMTC measurement window, and then reports the measurement result to the network device or prepares to make a decision on cell selection and reselection according to the measurement result.
  • the execution window includes the reference signal period of the at least one reference signal, or the execution window includes the measurement period of the at least one reference signal, which means that the execution window may include a certain number of reference signal resources Or resources for measuring a certain number of reference signals.
  • the execution window includes the SSB transmission resource of the SSB or the resource for measuring the SMTC measurement window of the SSB.
  • the embodiment of the present application does not limit the specific number of cycles included in the execution window.
  • the at least one reference signal is a synchronization signal/physical broadcast channel block SSB, the execution window includes X SSB periods or X SSB measurement periods, and X is a positive integer; or the At least one reference signal is a tracking reference signal TRS, the execution window includes Y TRS periods or Y TRS measurement periods, and Y is a positive integer; or the first reference signal is TRS and SSB, and the execution window includes Z1 SSB cycles and Z2 TRS cycles, or the execution window includes Z1 SSB measurement cycles and Z2 TRS measurement cycles, Z1 and Z2 are both positive integers; or the first reference signal is TRS or SSB, so The execution window includes the longest time period in Z1 SSB cycles and Z2 TRS cycles, or the execution window includes the longest time period in Z1 SSB measurement cycles and Z2 TRS measurement cycles; or the first A reference signal is a default reference signal, and the execution window is determined based on the implementation of the terminal device.
  • the S220 may execute the processing in any of the following manners.
  • Mode 1 According to the reference signal in the configuration information indicated after the trigger, the terminal device executes the processing; if the reference signal is configured as SSB, the processing needs to be completed within X SSB cycles.
  • Manner 2 According to the reference signal in the configuration information indicated after the trigger, the terminal device performs the processing; if the reference signal is configured as TRS, the processing needs to be completed after Y TRS cycles.
  • Mode 3 The terminal device executes the processing according to the reference signal in the configuration information indicated after the trigger; if the reference signal is configured as TRS and SSB, the processing needs to be completed after Z1 SSB cycles and Z2 TRS cycles.
  • Mode 4 According to the reference signal in the configuration information indicated after the trigger, the terminal device performs the processing process; if the reference signal is configured as TRS or SSB, the processing process needs to be no longer than Z1 SSB cycles or Z2 TRS cycles. completed in the .
  • Mode 5 According to the reference signal in the configuration information indicated after the trigger, the terminal device performs the processing; if the reference signal is configured as default, the UE completes the processing based on the implementation, and the required time window is in accordance with the existing protocol. Finish.
  • the configuration information indicated after the trigger ie, the first indication information
  • the first indication information is further used to indicate the period or the number of measurement periods of each reference signal in the at least one reference signal.
  • the execution window includes at least one longest period, and the longest period is the longest period among all reference signals that are configured for the serving cell of the terminal device and that are the same as the first reference signal A long period, or the longest period is the longest period among all reference signals that are configured for a group of cells to be activated for the terminal device and are the same as the first reference signal.
  • the length of the execution window includes at least one of the following: X, Y, Z1, or Z2 reference signal periods or measurement periods, and the reference signal periods or measurement periods are taken from all serving cells where the th The longest period of a reference signal.
  • the length of the execution window includes at least one of the following: X, Y, Z1 or Z2 reference signal periods or measurement periods, where the reference signal periods or measurement periods are the longest periods in the current group of cells to be activated .
  • the secondary cell is a cell within the spectrum range FR2, and the length of the execution window is N times the number of reference signal periods or measurement periods of the at least one reference signal, where N represents a beam Scan scaling factor.
  • the embodiments of the present application do not specifically limit the number of reference signal periods of the at least one reference signal, the number of measurement periods of the at least one reference signal, and the value of N.
  • the number of reference signal periods of the at least one reference signal may be 2, 4, or 8, etc., and the value of N may be 8 or the like.
  • the processing procedure is performed by at least one reference signal, and the way of determining the interruption duration also needs to be updated.
  • the method for determining the interruption duration will be described below.
  • the method 200 may further include:
  • the interruption duration of the processing is determined based on the measurement window of the reference signal required by the processing.
  • the duration of the processing is related to the measurement window of the reference signal required by the processing (ie, the measurement window of the first reference signal).
  • the method 200 may further include:
  • the interruption duration of the processing procedure is determined based on the measurement window of the reference signal required by the processing procedure.
  • the duration of the processing is related to the measurement window of the reference signal required by the processing (ie, the measurement window of the first reference signal).
  • the duration T SMTC_duration of the SMTC is configured based on the synchronization signal/physical broadcast channel block measurement timing to determine the interruption duration; and/or, in the first reference When the signal is TRS, the interruption duration is determined based on the duration TRS measurement windows_duration of the measurement window of the TRS.
  • the measurement window of the SSB may be the duration of the SMTC T SMTC_duration
  • the measurement window of the TRS may be the duration of the measurement window of the TRS T TRS measurement windows_duration .
  • the TRS may have a TRS measurement timing configuration for measuring the TRS.
  • the duration of the measurement window of the TRS T TRS measurement windows_duration may also be referred to as TRS measurement The duration of the timing configuration.
  • the interruption duration can be determined based on the following Table 2:
  • Table 2 shows the Interruption duration for SCell activation/deactivation for intra-band DC/CA (Interruption duration for SCell activation/deactivation for intra-band DC/CA), and ⁇ represents the subcarrier interval. As shown in Table 2, the interruption duration is determined based on T SMTC_duration .
  • the interruption duration is determined based on the largest measurement window in the measurement window of the SSB and the measurement window of the TRS.
  • the interruption duration is determined based on a measurement window of a preset length.
  • the method 200 may further include:
  • the duration T SMTC_duration of the SMTC is configured based on the synchronization signal/physical broadcast channel block measurement timing to determine the interruption duration of the process.
  • the duration of the processing is independent of the type of reference signal required for the processing. That is, regardless of the reference signal, the interruption duration of the processing procedure can be determined based on the duration T SMTC_duration of the SMTC.
  • the duration of the processing is independent of the type of reference signal required for the processing. That is, regardless of the reference signal, the interruption duration can be determined based on Table 2 above.
  • the duration T SMTC_duration of the SMTC is:
  • the longest SMTC duration among all activated serving cells in the same frequency band When deactivating a secondary cell, the longest SMTC duration among all activated serving cells in the same frequency band.
  • the method 200 may further include:
  • the interruption duration of the processing process is determined based on the synchronization or asynchronous condition of the inter-band DC/CA.
  • the duration of the processing is independent of the type of reference signal required by the processing. That is, regardless of the reference signal, the interruption duration of the processing process can be determined based on the synchronous or asynchronous condition of the inter-band DC/CA.
  • the interruption duration can be determined based on Table 3 below:
  • Table 3 shows the interruption duration for SCell activation/deactivation for inter-band DC/CA (Interruption duration for SCell activation/deactivation for inter-band DC/CA), and ⁇ represents the subcarrier spacing.
  • the interruption duration is related to the subcarrier spacing, the NR slot length of the victim cell, and the synchronization and asynchrony.
  • the way of determining the interruption duration may be the same or different.
  • the interruption duration of the processing procedure may be determined based on the measurement window of the reference signal required by the processing procedure.
  • other methods may be used to determine the interruption duration in the processing.
  • the interruption duration can be determined in any of the following ways:
  • Mode 1 The method for determining the interruption duration of the inter-band DC/CA remains unchanged, that is, the interruption duration is determined according to the method in Table 8.2.4.2.2-1.
  • the interruption duration of the intra-band DC/CA is determined based on the measurement window of the first reference signal, for example, in the case where the first reference signal is an SSB, the interruption duration is determined based on the SMTC duration T SMTC_duration ; and/ Or, in the case that the first reference signal is a TRS, the interruption duration is determined based on the duration TRS measurement windows_duration of the measurement window of the TRS.
  • Both SSB and TRS have measurement timing configurations (ie, measurement windows), and the largest measurement window corresponding to the two is taken as the unit. If in the above case, TRS does not define the measurement window, take the measurement window of 5ms.
  • Mode 2 The interruption duration of the inter-band DC/CA remains unchanged, that is, the interruption duration is determined according to the method in Table 8.2.4.2.2-1.
  • the interruption requirement of intra-band DC/CA is still determined according to T SMTC_duration , that is, the interruption duration is determined according to Table 8.2.4.2.2-2.
  • the method 200 may further include:
  • the capability information is used to indicate that the terminal device only supports the capability of fast processing based on the tracking reference signal TRS, or the capability information is used to indicate that the terminal device supports fast processing based on TRS and synchronization signal/physical broadcast channel block SSB.
  • the processing capability, or the capability information is used to indicate that the terminal device supports the capability of fast processing and the interruption duration is determined based on the period of the TRS, or the capability information is used to indicate that the terminal device supports the capability of fast processing and the interruption duration is based on the Implementation OK.
  • RRM Radio Resource Management
  • the capability information of the terminal device can be defined in any of the following ways:
  • Mode 1 Introduce terminal device capability 1 that only supports fast secondary cell activation of TRS. If the terminal device reports that it supports this capability, the network allows the terminal device to be configured with fast activation and executes according to the requirements of fast activation. The processing duration and the interruption duration are determined according to the TRS period.
  • Mode 2 Introduce terminal device capability 2 that supports fast secondary cell activation in both TRS and SSB hybrid modes. If the terminal device reports that it supports this capability, the network allows the terminal device to be configured with fast activation and executes according to the requirements of fast activation.
  • the processing duration and the interruption duration are determined jointly by the SSB and the TRS.
  • Mode 3 Introduce the terminal device capability 3 that supports fast secondary cell activation, but does not specify what reference signal to use. If the terminal device reports support for this capability, the network allows the terminal device to be configured with fast activation and executes according to the requirements of fast activation. The processing duration and the interruption duration are determined according to the TRS period.
  • Mode 4 Introduce the terminal equipment capability 4 that supports fast secondary cell activation, but does not specify what reference signal to use. If the terminal equipment reports support for this capability, the network allows the terminal equipment to be configured with fast activation and executes according to the requirements of fast activation. Among them, the processing duration and the interruption duration only need to meet the existing requirements, but are implemented based on the terminal device.
  • the first indication information is also used to indicate capability information, and the capability information is used to indicate that the terminal device needs the terminal device when the first reference signal is used in the processing process. ability to support.
  • the first indication information may also indicate a capability that the terminal device needs to support when the processing procedure is performed by using the first reference signal.
  • the first indication information indicates the capability information through the first reference signal.
  • the capability information is used to indicate that the terminal device needs to support the capability of the terminal device when the tracking reference signal TRS is used in the processing process, or the capability information is used to indicate that the terminal device needs to support the terminal device in the processing process.
  • the capability that the terminal device needs to support when TRS and synchronization signal/physical broadcast channel block SSB is used in the TRS, or the capability information is used to indicate that the terminal device needs to support the capability of fast processing and the interruption duration is determined based on the period of the TRS, or all
  • the capability information is used to indicate that the terminal device needs to support the capability of fast processing, and the interruption duration is determined based on the implementation of the terminal device.
  • the size of the sequence numbers of the above-mentioned processes does not mean the sequence of execution, and the execution sequence of each process should be determined by its functions and internal logic, and should not be dealt with in the present application.
  • the implementation of the embodiments constitutes no limitation.
  • the term "and/or" is only an association relationship for describing associated objects, indicating that there may be three kinds of relationships. Specifically, A and/or B can represent three situations: A exists alone, A and B exist at the same time, and B exists alone.
  • the character "/" in this document generally indicates that the related objects are an "or" relationship.
  • FIG. 5 is a schematic block diagram of a terminal device 300 according to an embodiment of the present application.
  • the terminal device 300 may include:
  • the acquiring unit 310 acquires first indication information, where the first indication information is used to indicate a first reference signal used in a processing process for the secondary cell, where the processing process includes at least one of activation, deactivation, addition or deletion an item;
  • a processing unit 320 configured to execute the processing process based on the first indication information.
  • the first indication information is used to instruct the terminal device to trigger the processing procedure for the secondary cell and to indicate the first reference signal used in the processing procedure.
  • the first indication information is carried at least one of the following:
  • Medium access control control information element MAC CE Medium access control control information element MAC CE, downlink control information DCI or second indication information used to instruct the terminal device to switch the bandwidth part BWP.
  • the second indication information is carried at least one of the following:
  • Downlink control information DCI Downlink control information DCI, timer configuration information, or radio resource control RRC signaling.
  • the first reference signal is used for at least one of the following processes:
  • the first reference signal includes a pilot signal.
  • the pilot signal includes at least one of the following:
  • the processing unit 320 is specifically configured to:
  • the first reference signal includes at least one reference signal
  • the execution window includes a reference signal period of the at least one reference signal
  • the execution window includes a measurement period of the at least one reference signal
  • the execution window is based on The implementation of the terminal device is determined.
  • the at least one reference signal is a synchronization signal/physical broadcast channel block SSB, the execution window includes X SSB periods or X SSB measurement periods, and X is a positive integer; or the At least one reference signal is a tracking reference signal TRS, the execution window includes Y TRS periods or Y TRS measurement periods, and Y is a positive integer; or the first reference signal is TRS and SSB, and the execution window includes Z1 SSB cycles and Z2 TRS cycles, or the execution window includes Z1 SSB measurement cycles and Z2 TRS measurement cycles, Z1 and Z2 are both positive integers; or the first reference signal is TRS or SSB, so The execution window includes the longest time period in Z1 SSB cycles and Z2 TRS cycles, or the execution window includes the longest time period in Z1 SSB measurement cycles and Z2 TRS measurement cycles; or the first A reference signal is a default reference signal, and the execution window is determined based on the implementation of the terminal device.
  • the first indication information is further used to indicate the period or the number of measurement periods of each reference signal in the at least one reference signal.
  • the execution window includes at least one longest period, and the longest period is the longest period among all reference signals that are configured for the serving cell of the terminal device and that are the same as the first reference signal
  • the long period, or the longest period is the longest period among all reference signals that are configured for a group of cells to be activated for the terminal device and are the same as the first reference signal.
  • the secondary cell is a cell within the spectrum range FR2, and the length of the execution window is N times the number of reference signal periods or measurement periods of the at least one reference signal, where N represents a beam Scan scaling factor.
  • the processing unit 320 is further configured to:
  • the interruption duration of the processing is determined based on the measurement window of the reference signal required by the processing.
  • the processing unit 320 is further configured to:
  • the interruption duration of the processing procedure is determined based on the measurement window of the reference signal required by the processing procedure.
  • the processing unit 320 is specifically configured to:
  • the duration of the SMTC configuration T SMTC_duration is determined based on the synchronization signal/physical broadcast channel block measurement timing; and/or, when the first reference signal is a TRS In this case, the interruption duration is determined based on the duration of the TRS measurement window T TRS measurement windows_duration .
  • the processing unit 320 is further configured to:
  • the interruption duration is determined based on the largest measurement window among the measurement windows of the SSB and the measurement windows of the TRS.
  • the processing unit 320 is further configured to:
  • the interruption duration is determined based on a measurement window of a preset length.
  • the processing unit 320 is further configured to:
  • the duration T SMTC_duration of the SMTC is configured based on the synchronization signal/physical broadcast channel block measurement timing to determine the interruption duration of the process.
  • the duration T SMTC_duration of the SMTC is:
  • the longest SMTC duration among all activated serving cells in the same frequency band When deactivating a secondary cell, the longest SMTC duration among all activated serving cells in the same frequency band.
  • the processing unit 320 is further configured to:
  • the interruption duration of the processing process is determined based on the synchronization or asynchronous condition of the inter-band DC/CA.
  • the obtaining unit 310 is further configured to:
  • the capability information is used to indicate that the terminal device only supports the capability of fast processing based on the tracking reference signal TRS, or the capability information is used to indicate that the terminal device supports the TRS-based and synchronization signal/physical broadcast
  • the capability of the channel block SSB to perform fast processing, or the capability information is used to indicate that the terminal device supports the capability of fast processing and the interruption duration is determined based on the period of the TRS, or the capability information is used to indicate that the terminal device supports the capability of fast processing and interrupts
  • the duration is determined based on the implementation of the terminal device.
  • the first indication information is also used to indicate capability information, and the capability information is used to indicate that the terminal device needs the terminal device when the first reference signal is used in the processing process. ability to support.
  • the first indication information indicates the capability information through the first reference signal.
  • the capability information is used to indicate the capability that the terminal device needs to support when the tracking reference signal TRS is used in the processing process, or the capability information is used to indicate the terminal device
  • the capability that the terminal device needs to support when TRS and synchronization signal/physical broadcast channel block SSB is used in the processing process, or the capability information is used to indicate that the terminal device needs to support the capability of fast processing and the interruption duration is based on the TRS The period is determined, or the capability information is used to indicate that the terminal device needs to support the capability of fast processing and the interruption duration is determined based on the implementation of the terminal device.
  • FIG. 6 is a schematic block diagram of a network device 400 according to an embodiment of the present application.
  • the network device 400 may include:
  • the sending unit 410 is configured to send first indication information, where the first indication information is used to indicate a first reference signal used in a processing process for the secondary cell, and the processing process includes activation, deactivation, addition or deletion at least one of.
  • the first indication information is used to instruct the terminal device to trigger the processing procedure for the secondary cell and to indicate the first reference signal used in the processing procedure.
  • the first indication information is carried at least one of the following:
  • Medium access control control information element MAC CE Medium access control control information element MAC CE, downlink control information DCI or second indication information used to instruct the terminal device to switch the bandwidth part BWP.
  • the second indication information is carried at least one of the following:
  • Downlink control information DCI Downlink control information DCI, timer configuration information, or radio resource control RRC signaling.
  • the first reference signal is used for at least one of the following processes:
  • the first reference signal includes a pilot signal.
  • the pilot signal includes at least one of the following:
  • the first reference signal includes at least one reference signal
  • an execution window for executing the processing procedure includes a reference signal period of the at least one reference signal
  • the execution window includes all The measurement period of the at least one reference signal, or the execution window is determined based on the implementation of the terminal device.
  • the at least one reference signal is a synchronization signal/physical broadcast channel block SSB, the execution window includes X SSB periods or X SSB measurement periods, and X is a positive integer; or the At least one reference signal is a tracking reference signal TRS, the execution window includes Y TRS periods or Y TRS measurement periods, and Y is a positive integer; or the first reference signal is TRS and SSB, and the execution window includes Z1 SSB cycles and Z2 TRS cycles, or the execution window includes Z1 SSB measurement cycles and Z2 TRS measurement cycles, Z1 and Z2 are both positive integers; or the first reference signal is TRS or SSB, so The execution window includes the longest time period in Z1 SSB cycles and Z2 TRS cycles, or the execution window includes the longest time period in Z1 SSB measurement cycles and Z2 TRS measurement cycles; or the first A reference signal is a default reference signal, and the execution window is determined based on the implementation of the terminal device.
  • the first indication information is further used to indicate the period or the number of measurement periods of each reference signal in the at least one reference signal.
  • the execution window includes at least one longest period, and the longest period is the longest period among all reference signals that are configured for the serving cell of the terminal device and that are the same as the first reference signal
  • the long period, or the longest period is the longest period among all reference signals that are configured for a group of cells to be activated for the terminal device and are the same as the first reference signal.
  • the secondary cell is a cell within the spectrum range FR2, and the length of the execution window is N times the number of reference signal periods or measurement periods of the at least one reference signal, where N represents a beam Scan scaling factor.
  • the sending unit 410 is further configured to:
  • the interruption duration of the processing is determined based on the measurement window of the reference signal required by the processing.
  • the sending unit 410 is further configured to:
  • the interruption duration of the processing procedure is determined based on the measurement window of the reference signal required by the processing procedure.
  • the sending unit 410 is specifically configured to:
  • the duration of the SMTC configuration T SMTC_duration is determined based on the synchronization signal/physical broadcast channel block measurement timing; and/or, when the first reference signal is a TRS In this case, the interruption duration is determined based on the duration of the TRS measurement window T TRS measurement windows_duration .
  • the sending unit 410 is specifically configured to:
  • the interruption duration is determined based on the largest measurement window among the measurement windows of the SSB and the measurement windows of the TRS.
  • the sending unit 410 is specifically configured to:
  • the interruption duration is determined based on a measurement window of a preset length.
  • the sending unit 410 is further configured to:
  • the duration T SMTC_duration of the SMTC is configured based on the synchronization signal/physical broadcast channel block measurement timing to determine the interruption duration of the process.
  • the duration T SMTC_duration of the SMTC is:
  • the longest SMTC duration among all activated serving cells in the same frequency band When deactivating a secondary cell, the longest SMTC duration among all activated serving cells in the same frequency band.
  • the sending unit 410 is further configured to:
  • the interruption duration of the processing process is determined based on the synchronization or asynchronous condition of the inter-band DC/CA.
  • the sending unit 410 is further configured to:
  • Capability information is received, where the capability information is used to indicate the capability of the terminal device to support the processing procedure.
  • the capability information is used to indicate that the terminal device only supports the capability of fast processing based on the tracking reference signal TRS, or the capability information is used to indicate that the terminal device supports the TRS-based and synchronization signal/physical broadcast
  • the capability of the channel block SSB to perform fast processing, or the capability information is used to indicate that the terminal device supports the capability of fast processing and the interruption duration is determined based on the period of the TRS, or the capability information is used to indicate that the terminal device supports the capability of fast processing and interrupts
  • the duration is determined based on the implementation of the terminal device.
  • the first indication information is also used to indicate capability information, and the capability information is used to indicate that the terminal device needs the terminal device when the first reference signal is used in the processing process. ability to support.
  • the first indication information indicates the capability information through the first reference signal.
  • the capability information is used to indicate the capability that the terminal device needs to support when the tracking reference signal TRS is used in the processing process, or the capability information is used to indicate the terminal device
  • the capability that the terminal device needs to support when TRS and synchronization signal/physical broadcast channel block SSB is used in the processing process, or the capability information is used to indicate that the terminal device needs to support the capability of fast processing and the interruption duration is based on the TRS The period is determined, or the capability information is used to indicate that the terminal device needs to support the capability of fast processing and the interruption duration is determined based on the implementation of the terminal device.
  • the apparatus embodiments and the method embodiments may correspond to each other, and similar descriptions may refer to the method embodiments.
  • the terminal device 300 shown in FIG. 5 may correspond to the corresponding subject in executing the method 200 of the embodiment of the present application, and the aforementioned and other operations and/or functions of the various units in the terminal device 300 are respectively for the purpose of realizing the method shown in FIG. 4 .
  • the network device 400 shown in FIG. 6 may correspond to the corresponding subject in the method 200 for executing the embodiment of the present application, and the aforementioned and other operations and/or the various units in the network device 400
  • the or functions are respectively in order to implement the corresponding processes in each method in FIG. 4 , and are not repeated here for brevity.
  • the communication device of the embodiments of the present application is described above from the perspective of functional modules with reference to the accompanying drawings.
  • the functional modules can be implemented in the form of hardware, can also be implemented by instructions in the form of software, and can also be implemented by a combination of hardware and software modules.
  • the steps of the method embodiments in the embodiments of the present application may be completed by hardware integrated logic circuits in the processor and/or instructions in the form of software, and the steps of the methods disclosed in conjunction with the embodiments of the present application may be directly embodied as hardware
  • the execution of the decoding processor is completed, or the execution is completed by a combination of hardware and software modules in the decoding processor.
  • the software modules may be located in random access memory, flash memory, read-only memory, programmable read-only memory, electrically erasable programmable memory, registers, and other storage media mature in the art.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps in the above method embodiments in combination with its hardware.
  • processing unit and the communication unit referred to above may be implemented by a processor and a transceiver, respectively.
  • FIG. 7 is a schematic structural diagram of a communication device 500 according to an embodiment of the present application.
  • the communication device 500 may include a processor 510 .
  • the processor 510 may call and run a computer program from the memory to implement the methods in the embodiments of the present application.
  • the communication device 500 may further include a memory 520 .
  • the memory 520 may be used to store instruction information, and may also be used to store codes, instructions, etc. executed by the processor 510 .
  • the processor 510 may call and run a computer program from the memory 520 to implement the methods in the embodiments of the present application.
  • the memory 520 may be a separate device independent of the processor 510 , or may be integrated in the processor 510 .
  • the communication device 500 may further include a transceiver 530 .
  • the processor 510 may control the transceiver 530 to communicate with other devices, specifically, may send information or data to other devices, or receive information or data sent by other devices.
  • Transceiver 530 may include a transmitter and a receiver.
  • the transceiver 530 may further include antennas, and the number of the antennas may be one or more.
  • each component in the communication device 500 is connected through a bus system, wherein the bus system includes a power bus, a control bus and a status signal bus in addition to a data bus.
  • the communication device 500 may be a terminal device of an embodiment of the present application, and the communication device 500 may implement the corresponding processes implemented by the terminal device in each method of the embodiment of the present application.
  • the communication device 500 may correspond to the terminal device 300 in the embodiment of the present application, and may correspond to the corresponding subject in executing the method 200 according to the embodiment of the present application, which is not repeated here for brevity.
  • the communication device 500 may be the network device of the embodiments of the present application, and the communication device 500 may implement corresponding processes implemented by the network device in each method of the embodiments of the present application.
  • the communication device 500 in the embodiment of the present application may correspond to the network device 400 in the embodiment of the present application, and may correspond to the corresponding subject in executing the method 200 according to the embodiment of the present application, which is omitted here for brevity. Repeat.
  • the embodiment of the present application also provides a chip.
  • the chip may be an integrated circuit chip, which has a signal processing capability, and can implement or execute the methods, steps, and logic block diagrams disclosed in the embodiments of the present application.
  • the chip may also be referred to as a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip, or the like.
  • the chip can be applied to various communication devices, so that the communication device installed with the chip can execute the methods, steps and logic block diagrams disclosed in the embodiments of the present application.
  • FIG. 8 is a schematic structural diagram of a chip 600 according to an embodiment of the present application.
  • the chip 600 includes a processor 610 .
  • the processor 610 may call and run a computer program from the memory to implement the methods in the embodiments of the present application.
  • the chip 600 may further include a memory 620 .
  • the processor 610 may call and run a computer program from the memory 620 to implement the methods in the embodiments of the present application.
  • the memory 620 may be used to store instruction information, and may also be used to store codes, instructions and the like executed by the processor 610 .
  • the memory 620 may be a separate device independent of the processor 610 , or may be integrated in the processor 610 .
  • the chip 600 may further include an input interface 630 .
  • the processor 610 may control the input interface 630 to communicate with other devices or chips, and specifically, may acquire information or data sent by other devices or chips.
  • the chip 600 may further include an output interface 640 .
  • the processor 610 can control the output interface 640 to communicate with other devices or chips, and specifically, can output information or data to other devices or chips.
  • the chip 600 can be applied to the network device in the embodiments of the present application, and the chip can implement the corresponding processes implemented by the network device in the various methods in the embodiments of the present application, and can also implement the various methods in the embodiments of the present application.
  • the corresponding process implemented by the terminal device in FIG. 1 is not repeated here.
  • bus system includes a power bus, a control bus and a status signal bus in addition to a data bus.
  • the processors referred to above may include, but are not limited to:
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • the processor may be used to implement or execute the methods, steps, and logical block diagrams disclosed in the embodiments of this application.
  • the steps of the method disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software module may be located in random access memory, flash memory, read-only memory, programmable read-only memory or erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory mentioned above includes but is not limited to:
  • Non-volatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM, PROM), an erasable programmable read-only memory (Erasable PROM, EPROM), an electrically programmable read-only memory (Erasable PROM, EPROM). Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory. Volatile memory may be Random Access Memory (RAM), which acts as an external cache.
  • RAM Random Access Memory
  • RAM Static RAM
  • DRAM Dynamic RAM
  • SDRAM Synchronous DRAM
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • enhanced SDRAM ESDRAM
  • synchronous link dynamic random access memory SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • Embodiments of the present application also provide a computer-readable storage medium for storing a computer program.
  • the computer-readable storage medium stores one or more programs, the one or more programs including instructions that, when executed by a portable electronic device including a plurality of application programs, enable the portable electronic device to perform the implementation shown in method 200 example method.
  • the computer-readable storage medium can be applied to the network device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the network device in the various methods of the embodiments of the present application. For brevity, here No longer.
  • the computer-readable storage medium can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application. , and are not repeated here for brevity.
  • the embodiments of the present application also provide a computer program product, including a computer program.
  • the computer program product can be applied to the network device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the network device in each method of the embodiments of the present application.
  • the computer program product can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application, in order to It is concise and will not be repeated here.
  • a computer program is also provided in the embodiments of the present application.
  • the computer program When the computer program is executed by a computer, the computer can execute the method of the embodiment shown in method 200 .
  • the computer program can be applied to the network device in the embodiments of the present application, and when the computer program runs on the computer, the computer executes the corresponding processes implemented by the network device in the various methods of the embodiments of the present application, for the sake of brevity. , and will not be repeated here.
  • the computer program can be applied to the mobile terminal/terminal device in the embodiments of the present application, and when the computer program runs on the computer, the computer program is implemented by the mobile terminal/terminal device in each method of the embodiments of the present application. The corresponding process, for the sake of brevity, will not be repeated here.
  • an embodiment of the present application further provides a communication system, which may include the above-mentioned terminal equipment and network equipment to form a communication system 100 as shown in FIG. 1 , which is not repeated here for brevity.
  • a communication system which may include the above-mentioned terminal equipment and network equipment to form a communication system 100 as shown in FIG. 1 , which is not repeated here for brevity.
  • system and the like in this document may also be referred to as “network management architecture” or “network system” and the like.
  • the technical solutions of the embodiments of the present application can be embodied in the form of software products in essence, or the parts that make contributions to the prior art or the parts of the technical solutions, and the computer software products are stored in a storage medium , including several instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the embodiments of the present application.
  • the aforementioned storage medium includes: a U disk, a removable hard disk, a read-only memory, a random access memory, a magnetic disk or an optical disk and other media that can store program codes.

Abstract

本申请实施例提供了一种无线通信方法和设备。所述方法包括:获取第一指示信息,所述第一指示信息用于指示针对辅小区的处理过程中所采用的第一参考信号,所述处理过程包括激活、去激活、添加或删除中的至少一项;基于所述第一指示信息执行所述处理过程。本申请实施例中,通过所述第一指示信息指示所述第一参考信号,进而采用所述第一参考信号执行处理过程,可实现灵活配置参考信号,使得终端设备能够进行更快AGC调整,以减少对其他小区的中断影响,进而能够灵活控制处理过程中的时延以及中断时长,并降低终端复杂度,节省系统资源等。

Description

无线通信方法和设备 技术领域
本申请实施例涉及通信领域,并且更具体地,涉及无线通信方法和设备。
背景技术
辅小区(Secondary Cell,SCell)通过无线资源控制(Radio Resource Control,RRC)专用信令进行配置,初始配置的状态为去激活状态,该状态下不能进行数据收发。然后通过媒体接入控制(Media Access Control,MAC)控制信元(Control Element,CE)进行SCell的激活才能进行数据收发。辅载波激活去激活,添加删除,均可能导致用户设备(User Equipment,UE)的传输发生中断,继而产生中断时长。
截止目前,中断时长均是基于同步信号/物理广播信道块(Synchronization Signal/PBCH Block,SSB)的方式定义的,包括基于SSB的自动增益控制(Auto gain control,AGC)设置和基于SSB的定时追踪(timing tracking)。考虑到SSB的周期长,会影响SCell真正激活的时间,进而导致中断时长过大,影响系统性能。
发明内容
本申请实施例提供一种无线通信方法和设备,能够灵活控制处理过程中的时延以及中断时长,并提升系统性能。
第一方面,提供了一种无线通信方法,包括:
获取第一指示信息,所述第一指示信息用于指示针对辅小区的处理过程中所采用的第一参考信号,所述处理过程包括激活、去激活、添加或删除中的至少一项;
基于所述第一指示信息执行所述处理过程。
第二方面,提供了一种无线通信方法,包括:
发送第一指示信息,所述第一指示信息用于指示针对辅小区的处理过程中所采用的第一参考信号,所述处理过程包括激活、去激活、添加或删除中的至少一项。
第三方面,提供了一种终端设备,用于执行上述第一方面或其各实现方式中的方法。具体地,所述终端设备包括用于执行上述第一方面或其各实现方式中的方法的功能模块。
第四方面,提供了一种网络设备,用于执行上述第二方面或其各实现方式中的方法。具体地,所述网络设备包括用于执行上述第二方面或其各实现方式中的方法的功能模块。
第五方面,提供了一种终端设备,包括处理器和存储器。所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行上述第一方面或其各实现方式中的方法。
第六方面,提供了一种网络设备,包括处理器和存储器。所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行上述第二方面或其各实现方式中的方法。
第七方面,提供了一种芯片,用于实现上述第一方面至第二方面中的任一方面或其各实现方式中的方法。具体地,所述芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第八方面,提供了一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第九方面,提供了一种计算机程序产品,包括计算机程序指令,所述计算机程序指令使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第十方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
基于以上技术方案,通过所述第一指示信息指示所述第一参考信号,进而采用所述第一参考信号执行处理过程,可实现灵活配置参考信号,使得终端设备能够进行更快AGC调整,以减少对其他小区的中断影响,进而能够灵活控制处理过程中的时延以及中断时长,并降低终端复杂度,节省系统资源等。
附图说明
图1是本申请实施例提供的场景的示例。
图2是本申请实施例提供的激活或去激活辅小区过程中产生的时延的示意图。
图3是本申请实施例提供的激活或去激活辅小区的过程中产生的中断时长的示意图。
图4是本申请实施例提供的无线通信方法的示意性流程图。
图5是本申请实施例提供的终端设备的示意性框图。
图6是本申请实施例提供的网络设备的示意性框图。
图7是本申请实施例提供的通信设备的示意性框图。
图8是本申请实施例提供的芯片的示意性框图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
图1是本申请实施例的一个应用场景的示意图。
如图1所示,通信系统100可以包括终端设备110和网络设备120。网络设备120可以通过空口与终端设备110通信。终端设备110和网络设备120之间支持多业务传输。
应理解,本申请实施例仅以通信系统100进行示例性说明,但本申请实施例不限定于此。也就是说,本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(Long Term Evolution,LTE)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、5G通信系统(也称为新无线(New Radio,NR)通信系统),或未来的通信系统等。
在图1所示的通信系统100中,网络设备120可以是与终端设备110通信的接入网设备。接入网设备可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备110(例如UE)进行通信。
网络设备120可以是长期演进(Long Term Evolution,LTE)系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是下一代无线接入网(Next Generation Radio Access Network,NG RAN)设备,或者是NR系统中的基站(gNB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备120可以为中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
终端设备110可以是任意终端设备,其包括但不限于与网络设备120或其它终端设备采用有线或者无线连接的终端设备。
例如,所述终端设备110可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端设备或者未来演进网络中的终端设备等。
终端设备110可以用于设备到设备(Device to Device,D2D)的通信。
无线通信系统100还可以包括与基站进行通信的核心网设备130,该核心网设备130可以是5G核心网(5G Core,5GC)设备,例如,接入与移动性管理功能(Access and Mobility Management Function,AMF),又例如,认证服务器功能(Authentication Server Function,AUSF),又例如,用户面功能(User Plane Function,UPF),又例如,会话管理功能(Session Management Function,SMF)。可选地,核心网络设备130也可以是LTE网络的分组核心演进(Evolved Packet Core,EPC)设备,例如,会话管理功能+核心网络的数据网关(Session Management Function+Core Packet Gateway,SMF+PGW-C)设备。应理解,SMF+PGW-C可以同时实现SMF和PGW-C所能实现的功能。在网络演进过程中,上述核心网设备也有可能叫其它名字,或者通过对核心网的功能进行划分形成新的网络实体,对此本申请实施例不做限制。
通信系统100中的各个功能单元之间还可以通过下一代网络(next generation,NG)接口建立连接实现通信。
例如,终端设备通过NR接口与接入网设备建立空口连接,用于传输用户面数据和控制面信令;终端设备可以通过NG接口1(简称N1)与AMF建立控制面信令连接;接入网设备例如下一代无线接入基站(gNB),可以通过NG接口3(简称N3)与UPF建立用户面数据连接;接入网设备可以通过NG接口2(简称N2)与AMF建立控制面信令连接;UPF可以通过NG接口4(简称N4)与SMF建立控制面信令连接;UPF可以通过NG接口6(简称N6)与数据网络交互用户面数据;AMF可以通过NG接口11(简称N11)与SMF建立控制面信令连接;SMF可以通过NG接口7(简称N7)与PCF建立控制面信令连接。
图1示例性地示出了一个基站、一个核心网设备和两个终端设备,可选地,该无线通信系统100可以包括多个基站设备并且每个基站的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备均可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备120和终端设备110,网络设备120和终端设备110可以为上文所述的设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
为便于对本申请方案的理解,下面对载波聚合的方案进行说明。
载波聚合(Carrier Aggregation,CA),即通过联合调度和使用多个成员载波(Component Carrier,CC)上的资源,使得NR系统可以支持更大的带宽,从而能够实现更高的系统峰值速率。根据所聚合载波的在频谱上的连续性可以分为,连续性载波聚合和非连续性载波聚合;根据聚合的载波所在的band是否相同,分为带内(Intra-band)载波聚合和带间(inter-band)载波聚合。
在NR CA中,主载波(Primary Cell Component,PCC)有且只有一个,PCC提供RRC信令连接,非接入层(Non-Access Stratum,NAS)功能,安全等。物理上行控制信道(Physical Uplink Control Channel,PUCCH)在PCC上且只在PCC上存在。辅载波(Secondary Cell Component,SCC)只提供额外的无线资源。PCC和SCC同称为服务小区。标准上还规定聚合的载波最多支持5个,即聚合后的最大带宽为100MHZ,并且聚合载波属于同一个基站。所有的聚合载波使用相同的小区无线网络临时标识符(Cell Radio Network Temporary Identity,C-RNTI),基站实现保证C-RNTI在每个载波所在的小区不发生冲突。由于支持不对称载波聚合和对称载波聚合两种,所以要求聚合的载波一定有下行,可以没有上行。而且对于主载波小区来说一定有本小区的物理下行控制信道(Physical Downlink Control Channel,PDCCH)和PUCCH,而且只有主载波小区有PUCCH,其他辅载波小区可能有PDCCH。
SCell通过RRC专用信令进行配置,初始配置的状态为去激活状态,该状态下不能进行数据收发。然后通过MAC CE进行SCell的激活才能进行数据收发。从SCell配置和激活的时延的角度看,这个架构不是一个最优的架构。而这个时延又降低了CA使用和无线资源的效率,特别是小小区部署场景。在密集小小区部署场景,每个Scell的信令负荷也很大,特别是每个scell需要单独配置情况下。因此当前CA架构引入了额外的延迟,限制了CA的使用,降低了CA负荷分担的增益。
辅载波的激活、去激活、添加以及删除,均可能导致终端设备的传输发生中断。需要说明的是,辅载波的激活、去激活、添加以及删除也可以理解为辅小区的激活、去激活、添加以及删除,为便于描述,下文将辅小区的激活、去激活、添加以及删除统称为针对辅小区的处理过程。
下面对BWP的激活方式进行说明。
在R16中,引入休眠BWP解决终端功耗问题,即当BWP配置为休眠时,终端不需要检测PDCCH,节省了终端功耗。休眠BWP采用三种配置方式:DCI format 2_6,DCI format 0_1/1_1增加休眠BWP指示域,重新设计DCI format 1_1。具体地,可以按照以下方式进行指示:
位图的某个比特的“0”值指示:
激活的DL BWP,由休眠BWP标识(dormantBWP-Id)提供,针对终端的相应的激活的辅小区(an active DL BWP,provided by dormantBWP-Id,for the UE for a corresponding activated SCell)。
位图的某个比特的值为“1”表示:
激活的DL BWP,由firstWithinActiveTimeBWP-Id提供,针对终端的相应的激活的辅小区,如果当前激活的DL BWP是休眠的DL BWP(an active DL BWP,provided by firstWithinActiveTimeBWP-Id,for the UE for a corresponding activated SCell,if a current active DL BWP is the dormant DL BWP)。
当前激活的DL BWP,针对终端的相应的激活的辅小区,如果当前活动的DL BWP不是休眠的DL BWP(a current active DL BWP,for the UE for a corresponding activated SCell,if the current active DL BWP is not the dormant DL BWP)。
基于此,终端设备将激活的DL BWP设置为指示的激活的DL BWP(the UE sets the active DL BWP to the indicated active DL BWP)。
图2是本申请实施例提供的激活或去激活辅小区过程中产生的时延的示意图。
如图2所示,终端设备在时间段k 0内接收PDCCH,并在时间段k 1内接收PDCCH调度的PDSCH, 在时间段A内反馈针对PDSCH的ACK,时间段T HARQ可包括时间段A和时间段k 1。时间段B用于获取基于MAC CE进程(MAC CE process)的辅小区的处理过程的参数,比如针对辅小区的激活的参数,该参数可以包括辅小区的频点、时间等用于执行处理过程的信息。时间段C内可以用于调整RF的相关信息,比如网络的RF边界(RF-warmup Margin for NW)。时间段D可用于调整功率,例如用于AGC增益的设置(AGC gain setting)。时间段E可用于小区搜索(cell search)。时间段F可用于时频同步,比如时频跟踪(time-frq a tracking)。时间段G可用于调整最后一部分的SSB的边界(Margin for SSB in last part)。时间段L可用于进行测量,比如,测量并生成CSI报告的时间T CSI_reporting,T CSI_reporting可包括获取第一个可以的下行CSI-RS的时长,生成CSI报告的时长以及获取第一个可用于CSI报告的资源的时长。
在针对辅小区的处理过程中,时间段B、C、D、E、F以及G可以处理过程中的时延,即T,其中D、E、F可作为所述处理过程的执行窗口,终端设备在执行所述处理过程中,有可能会产生中断,即产生中断时长,比如,图2所示的C和D之间发生中断。
下面结合表1对图2中的各个时间段进行说明。
表1
Figure PCTCN2020134695-appb-000001
其中,已知小区可以理解为终端设备搜索过的小区,非已知小区可以理解为在终端设备没有搜索过的小区,基于此,如表1所示,在针对已知小区的处理过程中,E的时长可以为0,并且针对已知小区(know cell),辅小区测量周期小于或等于160ms,其D的时长也可以为0,但针对辅小区测量周期大于160ms的已知小区,其D的时长为1*T FirstSSB_MAX,即需要重新执行时间段D内的操作。类似的,针对非已知小区,每一个时间段内都需要执行相应的操作,例如,只针对非已知小区进行小区搜索,即针对非已知小区,其时间段E的时长不为0。其中,T rs可表示小区搜索过程中的所占用的时长。
图3是本申请实施例提供的激活或去激活辅小区的过程中产生的中断时长的示意图。
如图3所示,网络设备在时隙n上在主小区上发送激活命令(NW sends SCell activation command in PCell),终端设备发送激活命令的ACK(UE sends ACK for the command from PCell);终端设备为辅小区开启的在RF链上的时间段(The time period that UE turns on RF chain for SCell)此时,主小区发生中断,即产生主小区上的中断时长(Interrruption period on PCell),终端设备的DCI触发信令用于触发主小区中的用于辅助的非周期性的TRS(NW DCI triggers in PCell for the assisted aperiodic);终端设备获取辅小区中的辅助非周期性TRS集(assisted TRS burst in SCell),辅助非周期性TRS由辅小区中的DCI触发(assisted aperiodic TRS in SCell is triggered by DCI in Pcell)。
关于中断的相关内容,可参见第三代合作伙伴计划(The 3rd Generation Partnership Project,3GPP)协议TS 38.133的章节。
以处理过程为激活或去激活为例,激活或去激活辅小区时,允许终端设备的以下行为:
任何激活的服务小区上的中断(an interruption on any active serving cell);
辅小区激活/去激活的中断时长可达到表8.2.4.2.2-1所示的持续时间(of up to the duration shown in table 8.2.4.2.2-1),如果激活的服务小区与正在被激活或去激活的辅小区不在相同频带中,则同步要求适用于:同步NR-DC,以及针对激活的服务小区与正在被激活的辅小区在相同的CG中的异步NR-DC(if the active serving cell is not in the same band as any of the SCells being activated or deactivated, where the requriements for Sync apply for synchronous NR-DC,and for asynchronous NR-DC if the active serving cell is in the same CG as all the SCells being activated);异步要求适用于:激活的服务小区与正在被激活的辅小区不在相同的CG中的异步NR-DC(and the requriements for Async apply for asynchronous NR-DC if the active serving cell is not in the same CG as any of the SCells being activated);或者
辅小区激活/去激活的中断时长可达到表8.2.4.2.2所示的持续时间(of up to the duration shown in table 8.2.4.2.2-2),如果激活的服务小区与正在被激活或去激活的辅小区不相同频带中,则来自激活的服务小区和正在被激活或去激活的辅小区的小区特定参考信号在相同时隙中可用(if the active serving cells are in the same band as any of the SCells being activated or deactivated provided the cell specific reference signals from the active serving cells and the SCells being activated or deactivated are available in the same slot)。
表8.2.4.2.2-1
Figure PCTCN2020134695-appb-000002
其中,表8.2.4.2.2-1示出了带间DC/CA的辅小区激活/去激活的中断时长(Interruption duration for SCell activation/deactivation for inter-band DC/CA),μ表示子载波间隔。基于表8.2.4.2.2-1可见,中断时长和子载波间隔、受害小区的NR时隙长度以及同步异步相关。
表8.2.4.2.2-2
Figure PCTCN2020134695-appb-000003
其中,表8.2.4.2.2-2示出了带内DC/CA的辅小区激活/去激活的中断时长(Interruption duration for SCell activation/deactivation for intra-band DC/CA),μ表示子载波间隔。基于表8.2.4.2.2-2可见,中断时长和子载波间隔、NR时隙长度、T SMTC_duration以及
Figure PCTCN2020134695-appb-000004
相关。
基于8.2.4.2.1和8.2.4.2.2可知,intra-band和inter-band DC或CA的辅载波的激活或去激活带来的不同的中断的情况,即产生中断时长。由于中断时长是基于SSB的方式来定义的,包括基于SSB的AGC设置和基于SSB的定时追踪(timing tracking)。考虑到SSB的周期长,会影响SCell真正激 活的时间,进而导致中断时长过大,影响系统性能。
本申请实施例提供一种无线通信方法和设备,能够灵活控制处理过程中的时延以及中断时长,并提升系统性能。
图2示出了根据本申请实施例的无线通信方法200的示意性流程图,所述方法200可以由终端设备和网络设备交互执行。图2中所示的终端设备可以是如图1所示的终端设备,图2中所示的网络设备可以是如图1所示的接入网设备。
如图2所示,所述方法200可包括:
S210,获取第一指示信息,所述第一指示信息用于指示针对辅小区的处理过程中所采用的第一参考信号,所述处理过程包括激活、去激活、添加或删除中的至少一项;
S220,基于所述第一指示信息执行所述处理过程。
基于以上技术方案,通过所述第一指示信息指示所述第一参考信号,进而采用所述第一参考信号执行处理过程,可实现灵活配置参考信号,使得终端设备能够进行更快AGC调整,以减少对其他小区的中断影响,进而能够灵活控制处理过程中的时延以及中断时长,并降低终端复杂度,节省系统资源等。
在本申请的一些实施例中,所述第一指示信息用于指示终端设备触发针对辅小区的处理过程以及用于指示所述处理过程中采用的第一参考信号。
在本申请的一些实施例中,所述第一指示信息承载在以下中的至少一项:
媒体接入控制(Media Access Control,MAC)控制信元(Control Element,CE)、下行控制信息DCI或用于指示终端设备切换带宽部分(Bandwidth Part,BWP)的第二指示信息。
本申请实施例中,通过灵活快速的触发方式可实现针对辅小区的快速处理,以降低时延并提升系统性能。
在本申请的一些实施例中,所述第二指示信息承载在以下中的至少一项:
下行控制信息(Downlink Control Information,DCI)、定时器的配置信息、或无线资源控制(Radio Resource Control,RRC)信令。
换言之,所述第一指示信息可以通过以下方式中的任一种方式承载:方式1:MAC-CE配置触发辅小区激活,并指示物理层相关参考信号的配置信息1。方式2:DCI配置触发辅小区激活,同时DCI指示参考信号TRS的配置信息2。方式3:随着基于BWP切换触发辅小区激活,BWP切换可以包括DCI/timer/RRC触发三种方式,BWP配置中指示出辅小区激活需要的参考信号配置信息3。其中,上述配置信息1/2/3至少包括:参考信号的周期,长度等信息。
在本申请的一些实施例中,所述第一参考信号用于以下处理中的至少一项:
调整自动增益控制(Auto gain control,AGC)、小区搜索或时频同步。
在本申请的一些实施例中,所述第一参考信号包括导频信号。可选的,所述导频信号以下中的至少一项:
同步信号/物理广播信道块(Synchronization Signal/PBCH Block,SSB)、信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)或跟踪参考信号(Tracking reference signal,TRS)。当然,所述导频信号也可以包括其他导频信号,本申请实施例对此不作具体限定。
本申请实施例中,可以基于不同参考信号执行所述处理过程,由此带来的终端设备在执行所述处理过程的阶段,会产生不同的时延以及中断时长。继而,需要对引入的时延和中断时长基于参考信号的类型进行重新定义,甚至需要重新定义终端设备的能力信息,继而通过不同能力的终端设备支持不同的无线资源管理(Radio Resource Management,RRM)的需求。
在本申请的一些实施例中,所述S220可包括:
在执行窗口内,基于所述第一指示信息执行所述处理过程;
所述第一参考信号包括至少一个参考信号,所述执行窗口包括所述至少一个参考信号的参考信号周期,或所述执行窗口包括所述至少一个参考信号的测量周期,或所述执行窗口基于终端设备的实现确定。
应理解,本申请实施例涉及的执行窗口可以是如2所示的D、E、F中的至少一项,即可以是D、E、F中的任一项或多项,也可以是D、E、F形成的总长度,本申请实施例对此不作具体限定。
此外,需要说明的是,本申请实施例中,所述至少一个参考信号的参考信号周期可以理解为所述至少一个参考信号本身的周期,例如,针对SSB,所述参考信号周期可以理解为SSB周期,所述至少一个参考信号的测量周期可以理解为用于对所述至少一个参考信号进行测量的测量周期,例如,针对SSB所述测量周期可以理解为SMTC测量窗口的周期。SMTC测量窗口也可以称为SMTC的持续时间。终端设备需要基于测量周期对参考信号进行测量,以避免不需要的测量,进而减小终端设备的 电量消耗。以SSB为例,可基于SMTC测量窗口的周期对SSB进行测量。终端设备按照SMTC测量窗口来探测并测量SSB,然后将测量结果上报给网络设备或者根据测量结果准备进行小区选择与重选的判决。
另外,所述执行窗口包括所述至少一个参考信号的参考信号周期,或所述执行窗口包括所述至少一个参考信号的测量周期,旨在说明所述执行窗口可以包括一定数量的参考信号的资源或用于测量一定数量的参考信号的资源。以所述执行窗口包括所述SSB的SSB周期为例,可以理解为,所述执行窗口包括SSB的SSB的传输资源或用于测量所述SSB的SMTC测量窗口的资源。并且,本申请实施例对所述执行窗口包括的具体的周期数量不作限定。
在本申请的一些实施例中,所述至少一个参考信号为同步信号/物理广播信道块SSB,所述执行窗口包括X个SSB周期或X个SSB的测量周期,X为正整数;或者所述至少一个参考信号为跟踪参考信号TRS,所述执行窗口包括Y个TRS周期或Y个TRS的测量周期,Y为正整数;或者所述第一参考信号为TRS和SSB,所述执行窗口包括Z1个SSB周期和Z2个TRS周期,或所述执行窗口包括Z1个SSB的测量周期和Z2个TRS的测量周期,Z1和Z2均为正整数;或者所述第一参考信号为TRS或SSB,所述执行窗口包括Z1个SSB周期和Z2个TRS周期中的最长时间段,或所述执行窗口包括Z1个SSB的测量周期和Z2个TRS的测量周期中的最长时间段;或者所述第一参考信号为缺省参考信号,所述执行窗口基于终端设备的实现确定。
以所述执行窗口包括所述至少一个参考信号的参考信号周期为例,所述S220可通过以下方式中的任一方式执行所述处理过程。方式1:根据触发后指示的配置信息中的参考信号,所述终端设备去执行处理过程;若参考信号配置为SSB,处理过程需要在X个SSB周期内完成。方式2:根据触发后指示的配置信息中的参考信号,所述终端设备去执行处理过程;若参考信号配置为TRS,处理过程需要在Y个TRS周期后完成。方式3:根据触发后指示的配置信息中的参考信号,所述终端设备去执行处理过程;若参考信号配置为TRS和SSB,处理过程需要在Z1个SSB周期和Z2个TRS周期后完成。方式4:根据触发后指示的配置信息中的参考信号,所述终端设备去执行处理过程;若参考信号配置为TRS或SSB,处理过程需要在不长于Z1个SSB周期或Z2个TRS周期的最大者中完成。方式5:根据触发后指示的配置信息中的参考信号,所述终端设备去执行处理过程;若参考信号配置为缺省,则UE基于实现去完成处理过程,需要的时间窗口按照现有协议中完成。其中,触发后指示的配置信息(即所述第一指示信息)可以为显示的,或隐式的。
在本申请的一些实施例中,所述第一指示信息还用于指示所述至少一个参考信号中每一个参考信号的周期或测量周期的数量。
在本申请的一些实施例中,所述执行窗口包括至少一个最长周期,所述最长周期为针对终端设备的服务小区所配置的与所述第一参考信号相同的所有参考信号中的最长周期,或者,所述最长周期为针对所述终端设备的一组待激活小区所配置的与所述第一参考信号相同的所有参考信号中的最长周期。
例如,所述执行窗口的长度中包括以下中的至少一项:X、Y、Z1或Z2个参考信号周期或测量周期,该参考信号周期或测量周期均取所有服务小区中的配置了该第一参考信号的最长周期。例如,所述执行窗口的长度中包括以下中的至少一项:X、Y、Z1或Z2个参考信号周期或测量周期,该参考信号周期或测量周期均当前一组待激活小区中最长周期。
在本申请的一些实施例中,所述辅小区为频谱范围FR2内的小区,所述执行窗口的长度为所述至少一个参考信号的参考信号周期或测量周期的数量的N倍,N表示波束扫描缩放因子。
需要说明的是,本申请实施例对所述至少一个参考信号的参考信号周期的数量、所述至少一个参考信号的测量周期的数量,以及N的取值不作具体限定。作为示例,所述至少一个参考信号的参考信号周期的数量可以是2、4或8等,N的取值可以是8等。
通过至少一个参考信号执行处理过程,中断时长的确定方式也需要更新。下面对中断时长的确定方式进行说明。
在本申请的一些实施例中,所述方法200还可包括:
针对带内双链接或载波聚合intra-band DC/CA,基于所述处理过程需要的参考信号的测量窗口确定所述处理过程的中断时长。
换言之,针对带内双链接或载波聚合intra-band DC/CA,所述处理过程中的时长与所述处理过程需要的参考信号的测量窗口(即所述第一参考信号的测量窗口)相关。
在本申请的一些实施例中,所述方法200还可包括:
针对带间双链接或载波聚合inter-band DC/CA,基于所述处理过程需要的参考信号的测量窗口确定所述处理过程的中断时长。
换言之,针对带间双链接或载波聚合inter-band DC/CA,所述处理过程中的时长与所述处理过程需要的参考信号的测量窗口(即所述第一参考信号的测量窗口)相关。
可选的,在所述第一参考信号为SSB的情况下,基于同步信号/物理广播信道块测量定时配置SMTC的持续时间T SMTC_duration确定所述中断时长;和/或,在所述第一参考信号为TRS的情况下,基于TRS的测量窗口的持续时间T TRS measurement windows_duration确定所述中断时长。
换言之,SSB的测量窗口可以是SMTC的持续时间T SMTC_duration,TRS的测量窗口可以是TRS的测量窗口的持续时间T TRS measurement windows_duration。当然,在本申请的其他实施例中,与SMTC类似,TRS可以具有用于对TRS进行测量的TRS测量定时配置,此时,TRS的测量窗口的持续时间T TRS  measurement windows_duration也可以称为TRS测量定时配置的持续时间。
例如,以所述第一参考信号为SSB为例,可基于下述表2确定所述中断时长:
表2
Figure PCTCN2020134695-appb-000005
其中,表2示出了带内DC/CA的辅小区激活/去激活的中断时长(Interruption duration for SCell activation/deactivation for intra-band DC/CA),μ表示子载波间隔。如表2所示,中断时长基于T SMTC_duration确定。
可选的,基于SSB的测量窗口和TRS的测量窗口中的最大测量窗口,确定所述中断时长。
可选的,在所述第一参考信号为TRS且TRS未定义测量窗口的情况下,基于预设长度的测量窗口确定所述中断时长。
在本申请的一些实施例中,所述方法200还可包括:
针对带内双链接或载波聚合intra-band DC/CA,基于同步信号/物理广播信道块测量定时配置SMTC的持续时间T SMTC_duration确定所述处理过程的中断时长。
换言之,所述处理过程中的时长与所述处理过程需要的参考信号的类型无关。即不管哪种参考信号,均可以基于SMTC的持续时间T SMTC_duration确定所述处理过程的中断时长。
例如,所述处理过程中的时长与所述处理过程需要的参考信号的类型无关。即不管哪种参考信号,均可以基于上述表2确定中断时长。
可选的,所述SMTC的持续时间T SMTC_duration为:
激活一个辅小区时,所有激活的服务小区和正在被激活的辅小区中最长的SMTC持续时间;或
去激活一个辅小区时,同一频段内所有激活的服务小区中最长的SMTC持续时间。
在本申请的一些实施例中,所述方法200还可包括:
针对带间双链接或载波聚合inter-band DC/CA,基于所述inter-band DC/CA的同步或异步情况,确定所述处理过程的中断时长。
换言之,换言之,所述处理过程中的时长与所述处理过程需要的参考信号的类型无关。即不管哪种参考信号,均可以基于所述inter-band DC/CA的同步或异步情况,确定所述处理过程的中断时长。
例如,可基于下述表3确定所述中断时长:
表3
Figure PCTCN2020134695-appb-000006
其中,表3示出了带间DC/CA的辅小区激活/去激活的中断时长(Interruption duration for SCell activation/deactivation for inter-band DC/CA),μ表示子载波间隔。如表3所示,中断时长和子载波间隔、受害小区的NR时隙长度以及同步异步相关。
需要说明的是,针对带内双链接或载波聚合intra-band DC/CA,以及针对带间双链接或载波聚合inter-band DC/CA,其中断时长的确定方式可以相同也可以不同,本申请实施例对此不作具体限定。例如,针对带内双链接或载波聚合intra-band DC/CA,可以基于所述处理过程需要的参考信号的测量窗口确定所述处理过程的中断时长。针对带间双链接或载波聚合inter-band DC/CA,可以采用其他方式确定所述处理过程中的中断时长。
例如,作为一种具体的示例,可以按照以下方式中的任一种确定中断时长:
方式1:inter-band DC/CA的中断时长的确定方式不变,即按照表8.2.4.2.2-1的方式确定中断时长。intra-band DC/CA的中断时长中基于第一参考信号的测量窗口确定,例如,在所述第一参考信号为SSB的情况下,基于SMTC的持续时间T SMTC_duration确定所述中断时长;和/或,在所述第一参考信号为TRS的情况下,基于TRS的测量窗口的持续时间T TRS measurement windows_duration确定所述中断时长。SSB和TRS均有测量定时配置(即测量窗口),取二者对应的测量窗口的最大者为单位。如果上述情况中,TRS没有定义测量窗口,取5ms的测量窗口。
方式2:inter-band DC/CA的中断时长不变,即按照表8.2.4.2.2-1的方式确定中断时长。intra-band DC/CA的中断要求仍按照T SMTC_duration确定,即按照表8.2.4.2.2-2的方式确定中断时长。
在本申请的一些实施例中,所述方法200还可包括:
发送能力信息,所述能力信息用于指示终端设备用于支持所述处理过程的能力。
可选的,所述能力信息用于指示终端设备仅支持基于跟踪参考信号TRS进行快速处理的能力,或所述能力信息用于指示终端设备支持基于TRS和同步信号/物理广播信道块SSB进行快速处理的能力,或所述能力信息用于指示终端设备支持快速处理的能力且中断时长基于TRS的周期确定,或所述能力信息用于指示终端设备支持快速处理的能力且中断时长基于终端设备的实现确定。
通过引入不同的终端设备的能力信息,以支持不同的无线资源管理(Radio Resource Management,RRM)要求,能够保证网络调度的灵活性。
换言之,可以通过以下方式中的任一种方式定义终端设备的能力信息:
方式1:引入仅支持TRS的快速(fast)辅小区激活的终端设备能力1,如果终端设备上报支持该能力,网络才允许给该终端设备配置快速激活,并按照快速激活的要求执行。其中,处理时长和中断时长均按TRS周期而定。
方式2:引入同时支持TRS和SSB混合方式的快速辅小区激活的终端设备能力2,如果终端设备上报支持该能力,网络才允许给该终端设备配置快速激活,并按照快速激活的要求执行。
其中,处理时长和中断时长均按SSB和TRS共同而定。
方式3:引入支持快速辅小区激活的终端设备能力3,但不规定用什么参考信号,如果终端设备上报支持该能力,网络才允许给该终端设备配置快速激活,并按照快速激活的要求执行。其中,处理时长和中断时长均按TRS周期而定。
方式4:引入支持快速辅小区激活的终端设备能力4,但不规定用什么参考信号,如果终端设备上报支持该能力,网络才允许给该终端设备配置快速激活,并按照快速激活的要求执行。其中,处理时长和中断时长只需满足现有要求,但基于终端设备实现去完成。
需要注意的是,对于不支持终端设备能力1/2/3/4的终端设备,只需满足现有要求即可,网络也不期望提前调度该终端设备。对于支持能力1/2/3/4的终端设备,网络会期望提前快速激活对应的辅 小区并在该辅小区调度该终端设备。
在本申请的一些实施例中,所述第一指示信息还用于指示能力信息,所述能力信息用于指示终端设备在所述处理过程中采用的第一参考信号时对所述终端设备需要支持的能力。
换言之,所述第一指示信息在指示第一参考信号的同时还可以指示采用所述第一参考信号执行所述处理过程时所述终端设备需要支持的能力。
可选的,所述第一指示信息通过所述第一参考信号指示所述能力信息。
可选的,所述能力信息用于指示终端设备在所述处理过程中采用跟踪参考信号TRS时对所述终端设备需要支持的能力,或所述能力信息用于指示终端设备在所述处理过程中采用TRS和同步信号/物理广播信道块SSB时对所述终端设备需要支持的能力,或所述能力信息用于指示终端设备需要支持快速处理的能力且中断时长基于TRS的周期确定,或所述能力信息用于指示终端设备需要支持快速处理的能力且中断时长基于终端设备的实现确定。
以上结合附图详细描述了本申请的优选实施方式,但是,本申请并不限于上述实施方式中的具体细节,在本申请的技术构思范围内,可以对本申请的技术方案进行多种简单变型,这些简单变型均属于本申请的保护范围。例如,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本申请对各种可能的组合方式不再另行说明。又例如,本申请的各种不同的实施方式之间也可以进行任意组合,只要其不违背本申请的思想,其同样应当视为本申请所公开的内容。
还应理解,在本申请的各种方法实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。另外,本申请实施例中,术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系。具体地,A和/或B可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
上文详细描述了本申请的方法实施例,下文结合图5至图8,详细描述本申请的装置实施例。
图5是本申请实施例的终端设备300的示意性框图。
如图5所示,所述终端设备300可包括:
获取单元310,获取第一指示信息,所述第一指示信息用于指示针对辅小区的处理过程中所采用的第一参考信号,所述处理过程包括激活、去激活、添加或删除中的至少一项;
处理单元320,用于基于所述第一指示信息执行所述处理过程。
在本申请的一些实施例中,所述第一指示信息用于指示终端设备触发针对辅小区的处理过程以及用于指示所述处理过程中采用的第一参考信号。
在本申请的一些实施例中,所述第一指示信息承载在以下中的至少一项:
媒体接入控制控制信元MAC CE、下行控制信息DCI或用于指示终端设备切换带宽部分BWP的第二指示信息。
在本申请的一些实施例中,所述第二指示信息承载在以下中的至少一项:
下行控制信息DCI、定时器的配置信息、或无线资源控制RRC信令。
在本申请的一些实施例中,所述第一参考信号用于以下处理中的至少一项:
调整自动增益控制AGC、小区搜索或时频同步。
在本申请的一些实施例中,所述第一参考信号包括导频信号。
在本申请的一些实施例中,所述导频信号包括以下中的至少一项:
同步信号/物理广播信道块SSB、信道状态信息参考信号CSI-RS或跟踪参考信号TRS。
在本申请的一些实施例中,所述处理单元320具体用于:
在执行窗口内,基于所述第一指示信息执行所述处理过程;
所述第一参考信号包括至少一个参考信号,所述执行窗口包括所述至少一个参考信号的参考信号周期,或所述执行窗口包括所述至少一个参考信号的测量周期,或所述执行窗口基于终端设备的实现确定。
在本申请的一些实施例中,所述至少一个参考信号为同步信号/物理广播信道块SSB,所述执行窗口包括X个SSB周期或X个SSB的测量周期,X为正整数;或者所述至少一个参考信号为跟踪参考信号TRS,所述执行窗口包括Y个TRS周期或Y个TRS的测量周期,Y为正整数;或者所述第一参考信号为TRS和SSB,所述执行窗口包括Z1个SSB周期和Z2个TRS周期,或所述执行窗口包括Z1个SSB的测量周期和Z2个TRS的测量周期,Z1和Z2均为正整数;或者所述第一参考信号为TRS或SSB,所述执行窗口包括Z1个SSB周期和Z2个TRS周期中的最长时间段,或所述执行窗口包括Z1个SSB的测量周期和Z2个TRS的测量周期中的最长时间段;或者所述第一参考信号为缺省参考 信号,所述执行窗口基于终端设备的实现确定。
在本申请的一些实施例中,所述第一指示信息还用于指示所述至少一个参考信号中每一个参考信号的周期或测量周期的数量。
在本申请的一些实施例中,所述执行窗口包括至少一个最长周期,所述最长周期为针对终端设备的服务小区所配置的与所述第一参考信号相同的所有参考信号中的最长周期,或者,所述最长周期为针对所述终端设备的一组待激活小区所配置的与所述第一参考信号相同的所有参考信号中的最长周期。
在本申请的一些实施例中,所述辅小区为频谱范围FR2内的小区,所述执行窗口的长度为所述至少一个参考信号的参考信号周期或测量周期的数量的N倍,N表示波束扫描缩放因子。
在本申请的一些实施例中,所述处理单元320还用于:
针对带内双链接或载波聚合intra-band DC/CA,基于所述处理过程需要的参考信号的测量窗口确定所述处理过程的中断时长。
在本申请的一些实施例中,所述处理单元320还用于:
针对带间双链接或载波聚合inter-band DC/CA,基于所述处理过程需要的参考信号的测量窗口确定所述处理过程的中断时长。
在本申请的一些实施例中,所述处理单元320具体用于:
在所述第一参考信号为SSB的情况下,基于同步信号/物理广播信道块测量定时配置SMTC的持续时间T SMTC_duration确定所述中断时长;和/或,在所述第一参考信号为TRS的情况下,基于TRS的测量窗口的持续时间T TRS measurement windows_duration确定所述中断时长。
在本申请的一些实施例中,所述处理单元320还用于:
基于SSB的测量窗口和TRS的测量窗口中的最大测量窗口,确定所述中断时长。
在本申请的一些实施例中,所述处理单元320还用于:
在所述第一参考信号为TRS且TRS未定义测量窗口的情况下,基于预设长度的测量窗口确定所述中断时长。
在本申请的一些实施例中,所述处理单元320还用于:
针对带内双链接或载波聚合intra-band DC/CA,基于同步信号/物理广播信道块测量定时配置SMTC的持续时间T SMTC_duration确定所述处理过程的中断时长。
在本申请的一些实施例中,所述SMTC的持续时间T SMTC_duration为:
激活一个辅小区时,所有激活的服务小区和正在被激活的辅小区中最长的SMTC持续时间;或
去激活一个辅小区时,同一频段内所有激活的服务小区中最长的SMTC持续时间。
在本申请的一些实施例中,所述处理单元320还用于:
针对带间双链接或载波聚合inter-band DC/CA,基于所述inter-band DC/CA的同步或异步情况,确定所述处理过程的中断时长。
在本申请的一些实施例中,所述获取单元310还用于:
发送能力信息,所述能力信息用于指示终端设备用于支持所述处理过程的能力。
在本申请的一些实施例中,所述能力信息用于指示终端设备仅支持基于跟踪参考信号TRS进行快速处理的能力,或所述能力信息用于指示终端设备支持基于TRS和同步信号/物理广播信道块SSB进行快速处理的能力,或所述能力信息用于指示终端设备支持快速处理的能力且中断时长基于TRS的周期确定,或所述能力信息用于指示终端设备支持快速处理的能力且中断时长基于终端设备的实现确定。
在本申请的一些实施例中,所述第一指示信息还用于指示能力信息,所述能力信息用于指示终端设备在所述处理过程中采用的第一参考信号时对所述终端设备需要支持的能力。
在本申请的一些实施例中,所述第一指示信息通过所述第一参考信号指示所述能力信息。
在本申请的一些实施例中,所述能力信息用于指示终端设备在所述处理过程中采用跟踪参考信号TRS时对所述终端设备需要支持的能力,或所述能力信息用于指示终端设备在所述处理过程中采用TRS和同步信号/物理广播信道块SSB时对所述终端设备需要支持的能力,或所述能力信息用于指示终端设备需要支持快速处理的能力且中断时长基于TRS的周期确定,或所述能力信息用于指示终端设备需要支持快速处理的能力且中断时长基于终端设备的实现确定。
图6是本申请实施例的网络设备400的示意性框图。
如图6所示,所述网络设备400可包括:
发送单元410,用于发送第一指示信息,所述第一指示信息用于指示针对辅小区的处理过程中所采用的第一参考信号,所述处理过程包括激活、去激活、添加或删除中的至少一项。
在本申请的一些实施例中,所述第一指示信息用于指示终端设备触发针对辅小区的处理过程以及用于指示所述处理过程中采用的第一参考信号。
在本申请的一些实施例中,所述第一指示信息承载在以下中的至少一项:
媒体接入控制控制信元MAC CE、下行控制信息DCI或用于指示终端设备切换带宽部分BWP的第二指示信息。
在本申请的一些实施例中,所述第二指示信息承载在以下中的至少一项:
下行控制信息DCI、定时器的配置信息、或无线资源控制RRC信令。
在本申请的一些实施例中,所述第一参考信号用于以下处理中的至少一项:
调整自动增益控制AGC、小区搜索或时频同步。
在本申请的一些实施例中,所述第一参考信号包括导频信号。
在本申请的一些实施例中,所述导频信号包括以下中的至少一项:
同步信号/物理广播信道块SSB、信道状态信息参考信号CSI-RS或跟踪参考信号TRS。
在本申请的一些实施例中,所述第一参考信号包括至少一个参考信号,用于执行所述处理过程的执行窗口包括所述至少一个参考信号的参考信号周期,或所述执行窗口包括所述至少一个参考信号的测量周期,或所述执行窗口基于终端设备的实现确定。
在本申请的一些实施例中,所述至少一个参考信号为同步信号/物理广播信道块SSB,所述执行窗口包括X个SSB周期或X个SSB的测量周期,X为正整数;或者所述至少一个参考信号为跟踪参考信号TRS,所述执行窗口包括Y个TRS周期或Y个TRS的测量周期,Y为正整数;或者所述第一参考信号为TRS和SSB,所述执行窗口包括Z1个SSB周期和Z2个TRS周期,或所述执行窗口包括Z1个SSB的测量周期和Z2个TRS的测量周期,Z1和Z2均为正整数;或者所述第一参考信号为TRS或SSB,所述执行窗口包括Z1个SSB周期和Z2个TRS周期中的最长时间段,或所述执行窗口包括Z1个SSB的测量周期和Z2个TRS的测量周期中的最长时间段;或者所述第一参考信号为缺省参考信号,所述执行窗口基于终端设备的实现确定。
在本申请的一些实施例中,所述第一指示信息还用于指示所述至少一个参考信号中每一个参考信号的周期或测量周期的数量。
在本申请的一些实施例中,所述执行窗口包括至少一个最长周期,所述最长周期为针对终端设备的服务小区所配置的与所述第一参考信号相同的所有参考信号中的最长周期,或者,所述最长周期为针对所述终端设备的一组待激活小区所配置的与所述第一参考信号相同的所有参考信号中的最长周期。
在本申请的一些实施例中,所述辅小区为频谱范围FR2内的小区,所述执行窗口的长度为所述至少一个参考信号的参考信号周期或测量周期的数量的N倍,N表示波束扫描缩放因子。
在本申请的一些实施例中,所述发送单元410还用于:
针对带内双链接或载波聚合intra-band DC/CA,基于所述处理过程需要的参考信号的测量窗口确定所述处理过程的中断时长。
在本申请的一些实施例中,所述发送单元410还用于:
针对带间双链接或载波聚合inter-band DC/CA,基于所述处理过程需要的参考信号的测量窗口确定所述处理过程的中断时长。
在本申请的一些实施例中,所述发送单元410具体用于:
在所述第一参考信号为SSB的情况下,基于同步信号/物理广播信道块测量定时配置SMTC的持续时间T SMTC_duration确定所述中断时长;和/或,在所述第一参考信号为TRS的情况下,基于TRS的测量窗口的持续时间T TRS measurement windows_duration确定所述中断时长。
在本申请的一些实施例中,所述发送单元410具体用于:
基于SSB的测量窗口和TRS的测量窗口中的最大测量窗口,确定所述中断时长。
在本申请的一些实施例中,所述发送单元410具体用于:
在所述第一参考信号为TRS且TRS未定义测量窗口的情况下,基于预设长度的测量窗口确定所述中断时长。
在本申请的一些实施例中,所述发送单元410还用于:
针对带内双链接或载波聚合intra-band DC/CA,基于同步信号/物理广播信道块测量定时配置SMTC的持续时间T SMTC_duration确定所述处理过程的中断时长。
在本申请的一些实施例中,所述SMTC的持续时间T SMTC_duration为:
激活一个辅小区时,所有激活的服务小区和正在被激活的辅小区中最长的SMTC持续时间;或
去激活一个辅小区时,同一频段内所有激活的服务小区中最长的SMTC持续时间。
在本申请的一些实施例中,所述发送单元410还用于:
针对带间双链接或载波聚合inter-band DC/CA,基于所述inter-band DC/CA的同步或异步情况,确定所述处理过程的中断时长。
在本申请的一些实施例中,所述发送单元410还用于:
接收能力信息,所述能力信息用于指示终端设备用于支持所述处理过程的能力。
在本申请的一些实施例中,所述能力信息用于指示终端设备仅支持基于跟踪参考信号TRS进行快速处理的能力,或所述能力信息用于指示终端设备支持基于TRS和同步信号/物理广播信道块SSB进行快速处理的能力,或所述能力信息用于指示终端设备支持快速处理的能力且中断时长基于TRS的周期确定,或所述能力信息用于指示终端设备支持快速处理的能力且中断时长基于终端设备的实现确定。
在本申请的一些实施例中,所述第一指示信息还用于指示能力信息,所述能力信息用于指示终端设备在所述处理过程中采用的第一参考信号时对所述终端设备需要支持的能力。
在本申请的一些实施例中,所述第一指示信息通过所述第一参考信号指示所述能力信息。
在本申请的一些实施例中,所述能力信息用于指示终端设备在所述处理过程中采用跟踪参考信号TRS时对所述终端设备需要支持的能力,或所述能力信息用于指示终端设备在所述处理过程中采用TRS和同步信号/物理广播信道块SSB时对所述终端设备需要支持的能力,或所述能力信息用于指示终端设备需要支持快速处理的能力且中断时长基于TRS的周期确定,或所述能力信息用于指示终端设备需要支持快速处理的能力且中断时长基于终端设备的实现确定。
应理解,装置实施例与方法实施例可以相互对应,类似的描述可以参照方法实施例。具体地,图5所示的终端设备300可以对应于执行本申请实施例的方法200中的相应主体,并且终端设备300中的各个单元的前述和其它操作和/或功能分别为了实现图4中的各个方法中的相应流程,类似的,图6所示的网络设备400可以对应于执行本申请实施例的方法200中的相应主体,并且网络设备400中的各个单元的前述和其它操作和/或功能分别为了实现图4中的各个方法中的相应流程,为了简洁,在此不再赘述。
上文中结合附图从功能模块的角度描述了本申请实施例的通信设备。应理解,该功能模块可以通过硬件形式实现,也可以通过软件形式的指令实现,还可以通过硬件和软件模块组合实现。具体地,本申请实施例中的方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路和/或软件形式的指令完成,结合本申请实施例公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。可选地,软件模块可以位于随机存储器,闪存、只读存储器、可编程只读存储器、电可擦写可编程存储器、寄存器等本领域的成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法实施例中的步骤。
例如,上文涉及的处理单元和通信单元可分别由处理器和收发器实现。
图7是本申请实施例的通信设备500示意性结构图。
如图7所示,所述通信设备500可包括处理器510。
其中,处理器510可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
请继续参见图7,通信设备500还可以包括存储器520。
其中,该存储器520可以用于存储指示信息,还可以用于存储处理器510执行的代码、指令等。其中,处理器510可以从存储器520中调用并运行计算机程序,以实现本申请实施例中的方法。存储器520可以是独立于处理器510的一个单独的器件,也可以集成在处理器510中。
请继续参见图7,通信设备500还可以包括收发器530。
其中,处理器510可以控制该收发器530与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。收发器530可以包括发射机和接收机。收发器530还可以进一步包括天线,天线的数量可以为一个或多个。
应当理解,该通信设备500中的各个组件通过总线系统相连,其中,总线系统除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。
还应理解,该通信设备500可为本申请实施例的终端设备,并且该通信设备500可以实现本申请实施例的各个方法中由终端设备实现的相应流程,也就是说,本申请实施例的通信设备500可对应于本申请实施例中的终端设备300,并可以对应于执行根据本申请实施例的方法200中的相应主体,为了简洁,在此不再赘述。类似地,该通信设备500可为本申请实施例的网络设备,并且该通信设备500可以实现本申请实施例的各个方法中由网络设备实现的相应流程。也就是说,本申请实施例的通信设备500可对应于本申请实施例中的网络设备400,并可以对应于执行根据本申请实施例的方法200中的相应主体,为了简洁,在此不再赘述。
此外,本申请实施例中还提供了一种芯片。
例如,芯片可能是一种集成电路芯片,具有信号的处理能力,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。所述芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。可选地,该芯片可应用到各种通信设备中,使得安装有该芯片的通信设备能够执行本申请实施例中的公开的各方法、步骤及逻辑框图。
图8是根据本申请实施例的芯片600的示意性结构图。
如图8所示,所述芯片600包括处理器610。
其中,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
请继续参见图8,所述芯片600还可以包括存储器620。
其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。该存储器620可以用于存储指示信息,还可以用于存储处理器610执行的代码、指令等。存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
请继续参见图8,所述芯片600还可以包括输入接口630。
其中,处理器610可以控制该输入接口630与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
请继续参见图8,所述芯片600还可以包括输出接口640。
其中,处理器610可以控制该输出接口640与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
应理解,所述芯片600可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,也可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
还应理解,该芯片600中的各个组件通过总线系统相连,其中,总线系统除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。
上文涉及的处理器可以包括但不限于:
通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等等。
所述处理器可以用于实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
上文涉及的存储器包括但不限于:
易失性存储器和/或非易失性存储器。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。
应注意,本文描述的存储器旨在包括这些和其它任意适合类型的存储器。
本申请实施例中还提供了一种计算机可读存储介质,用于存储计算机程序。该计算机可读存储介质存储一个或多个程序,该一个或多个程序包括指令,该指令当被包括多个应用程序的便携式电子设备执行时,能够使该便携式电子设备执行方法200所示实施例的方法。可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例中还提供了一种计算机程序产品,包括计算机程序。可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由 网络设备实现的相应流程,为了简洁,在此不再赘述。可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例中还提供了一种计算机程序。当该计算机程序被计算机执行时,使得计算机可以执行方法200所示实施例的方法。可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。可选的,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
此外,本申请实施例还提供了一种通信系统,所述通信系统可以包括上述涉及的终端设备和网络设备,以形成如图1所示的通信系统100,为了简洁,在此不再赘述。需要说明的是,本文中的术语“系统”等也可以称为“网络管理架构”或者“网络系统”等。
还应当理解,在本申请实施例和所附权利要求书中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请实施例。例如,在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”、“上述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
需要说明的是,所属领域的技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请实施例的范围。如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
在本申请提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例中单元或模块或组件的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如,多个单元或模块或组件可以结合或者可以集成到另一个系统,或一些单元或模块或组件可以忽略,或不执行。又例如,上述作为分离/显示部件说明的单元/模块/组件可以是或者也可以不是物理上分开的,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元/模块/组件来实现本申请实施例的目的。最后,需要说明的是,上文中显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
以上内容,仅为本申请实施例的具体实施方式,但本申请实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请实施例的保护范围之内。因此,本申请实施例的保护范围应以权利要求的保护范围为准。

Claims (58)

  1. 一种无线通信方法,其特征在于,包括:
    获取第一指示信息,所述第一指示信息用于指示针对辅小区的处理过程中所采用的第一参考信号,所述处理过程包括激活、去激活、添加或删除中的至少一项;
    基于所述第一指示信息执行所述处理过程。
  2. 根据权利要求1所述的方法,其特征在于,所述第一指示信息用于指示终端设备触发针对辅小区的处理过程以及用于指示所述处理过程中采用的第一参考信号。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一指示信息承载在以下中的至少一项:
    媒体接入控制控制信元MAC CE、下行控制信息DCI或用于指示终端设备切换带宽部分BWP的第二指示信息。
  4. 根据权利要求3所述的方法,其特征在于,所述第二指示信息承载在以下中的至少一项:
    下行控制信息DCI、定时器的配置信息、或无线资源控制RRC信令。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述第一参考信号用于以下处理中的至少一项:
    调整自动增益控制AGC、小区搜索或时频同步。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述第一参考信号包括导频信号。
  7. 根据权利要求6所述的方法,其特征在于,所述导频信号包括以下中的至少一项:
    同步信号/物理广播信道块SSB、信道状态信息参考信号CSI-RS或跟踪参考信号TRS。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述基于所述第一指示信息执行所述处理过程,包括:
    在执行窗口内,基于所述第一指示信息执行所述处理过程;
    所述第一参考信号包括至少一个参考信号,所述执行窗口包括所述至少一个参考信号的参考信号周期,或所述执行窗口包括所述至少一个参考信号的测量周期,或所述执行窗口基于终端设备的实现确定。
  9. 根据权利要求8所述的方法,其特征在于,所述至少一个参考信号为同步信号/物理广播信道块SSB,所述执行窗口包括X个SSB周期或X个SSB的测量周期,X为正整数;或者所述至少一个参考信号为跟踪参考信号TRS,所述执行窗口包括Y个TRS周期或Y个TRS的测量周期,Y为正整数;或者所述第一参考信号为TRS和SSB,所述执行窗口包括Z1个SSB周期和Z2个TRS周期,或所述执行窗口包括Z1个SSB的测量周期和Z2个TRS的测量周期,Z1和Z2均为正整数;或者所述第一参考信号为TRS或SSB,所述执行窗口包括Z1个SSB周期和Z2个TRS周期中的最长时间段,或所述执行窗口包括Z1个SSB的测量周期和Z2个TRS的测量周期中的最长时间段;或者所述第一参考信号为缺省参考信号,所述执行窗口基于终端设备的实现确定。
  10. 根据权利要求8所述的方法,其特征在于,所述第一指示信息还用于指示所述至少一个参考信号中每一个参考信号的周期或测量周期的数量。
  11. 根据权利要求8所述的方法,其特征在于,所述执行窗口包括至少一个最长周期,所述最长周期为针对终端设备的服务小区所配置的与所述第一参考信号相同的所有参考信号中的最长周期,或者,所述最长周期为针对所述终端设备的一组待激活小区所配置的与所述第一参考信号相同的所有参考信号中的最长周期。
  12. 根据权利要求8所述的方法,其特征在于,所述辅小区为频谱范围FR2内的小区,所述执行窗口的长度为所述至少一个参考信号的参考信号周期或测量周期的数量的N倍,N表示波束扫描缩放因子。
  13. 根据权利要求1至12中任一项所述的方法,其特征在于,所述方法还包括:
    针对带内双链接或载波聚合intra-band DC/CA,基于所述处理过程需要的参考信号的测量窗口确定所述处理过程的中断时长。
  14. 根据权利要求1至13中任一项所述的方法,其特征在于,所述方法还包括:
    针对带间双链接或载波聚合inter-band DC/CA,基于所述处理过程需要的参考信号的测量窗口确定所述处理过程的中断时长。
  15. 根据权利要求13或14所述的方法,其特征在于,所述基于所述处理过程需要的参考信号的测量窗口确定所述处理过程的中断时长,包括:
    在所述第一参考信号为SSB的情况下,基于同步信号/物理广播信道块测量定时配置SMTC的持续时间T SMTC_duration确定所述中断时长;和/或,在所述第一参考信号为TRS的情况下,基于TRS的测量窗口的持续时间T TRS measurement windows_duration确定所述中断时长。
  16. 根据权利要求13或14所述的方法,其特征在于,所述基于所述处理过程需要的参考信号的测量窗口确定所述处理过程的中断时长,包括:
    基于SSB的测量窗口和TRS的测量窗口中的最大测量窗口,确定所述中断时长。
  17. 根据权利要求13或14所述的方法,其特征在于,所述基于所述处理过程需要的参考信号的测量窗口确定所述处理过程的中断时长,包括:
    在所述第一参考信号为TRS且TRS未定义测量窗口的情况下,基于预设长度的测量窗口确定所述中断时长。
  18. 根据权利要求1至12中任一项所述的方法,其特征在于,所述方法还包括:
    针对带内双链接或载波聚合intra-band DC/CA,基于同步信号/物理广播信道块测量定时配置SMTC的持续时间T SMTC_duration确定所述处理过程的中断时长。
  19. 根据权利要求18所述的方法,其特征在于,所述SMTC的持续时间T SMTC_duration为:
    激活一个辅小区时,所有激活的服务小区和正在被激活的辅小区中最长的SMTC持续时间;或去激活一个辅小区时,同一频段内所有激活的服务小区中最长的SMTC持续时间。
  20. 根据权利要求1至13中任一项所述的方法,其特征在于,所述方法还包括:
    针对带间双链接或载波聚合inter-band DC/CA,基于所述inter-band DC/CA的同步或异步情况,确定所述处理过程的中断时长。
  21. 根据权利要求1至20中任一项所述的方法,其特征在于,所述方法还包括:
    发送能力信息,所述能力信息用于指示终端设备用于支持所述处理过程的能力。
  22. 根据权利要求21所述的方法,其特征在于,所述能力信息用于指示终端设备仅支持基于跟踪参考信号TRS进行快速处理的能力,或所述能力信息用于指示终端设备支持基于TRS和同步信号/物理广播信道块SSB进行快速处理的能力,或所述能力信息用于指示终端设备支持快速处理的能力且中断时长基于TRS的周期确定,或所述能力信息用于指示终端设备支持快速处理的能力且中断时长基于终端设备的实现确定。
  23. 根据权利要求1至20中任一项所述的方法,其特征在于,所述第一指示信息还用于指示能力信息,所述能力信息用于指示终端设备在所述处理过程中采用的第一参考信号时对所述终端设备需要支持的能力。
  24. 根据权利要求23所述的方法,其特征在于,所述第一指示信息通过所述第一参考信号指示所述能力信息。
  25. 根据权利要求23所述的方法,其特征在于,所述能力信息用于指示终端设备在所述处理过程中采用跟踪参考信号TRS时对所述终端设备需要支持的能力,或所述能力信息用于指示终端设备在所述处理过程中采用TRS和同步信号/物理广播信道块SSB时对所述终端设备需要支持的能力,或所述能力信息用于指示终端设备需要支持快速处理的能力且中断时长基于TRS的周期确定,或所述能力信息用于指示终端设备需要支持快速处理的能力且中断时长基于终端设备的实现确定。
  26. 一种无线通信方法,其特征在于,包括:
    发送第一指示信息,所述第一指示信息用于指示针对辅小区的处理过程中所采用的第一参考信号,所述处理过程包括激活、去激活、添加或删除中的至少一项。
  27. 根据权利要求26所述的方法,其特征在于,所述第一指示信息用于指示终端设备触发针对辅小区的处理过程以及用于指示所述处理过程中采用的第一参考信号。
  28. 根据权利要求26或27所述的方法,其特征在于,所述第一指示信息承载在以下中的至少一项:
    媒体接入控制控制信元MAC CE、下行控制信息DCI或用于指示终端设备切换带宽部分BWP的第二指示信息。
  29. 根据权利要求28所述的方法,其特征在于,所述第二指示信息承载在以下中的至少一项:
    下行控制信息DCI、定时器的配置信息、或无线资源控制RRC信令。
  30. 根据权利要求26至29中任一项所述的方法,其特征在于,所述第一参考信号用于以下处理中的至少一项:
    调整自动增益控制AGC、小区搜索或时频同步。
  31. 根据权利要求26至30中任一项所述的方法,其特征在于,所述第一参考信号包括导频信号。
  32. 根据权利要求31所述的方法,其特征在于,所述导频信号包括以下中的至少一项:
    同步信号/物理广播信道块SSB、信道状态信息参考信号CSI-RS或跟踪参考信号TRS。
  33. 根据权利要求26至32中任一项所述的方法,其特征在于,所述第一参考信号包括至少一个参考信号,用于执行所述处理过程的执行窗口包括所述至少一个参考信号的参考信号周期,或所述执 行窗口包括所述至少一个参考信号的测量周期,或所述执行窗口基于终端设备的实现确定。
  34. 根据权利要求33所述的方法,其特征在于,所述至少一个参考信号为同步信号/物理广播信道块SSB,所述执行窗口包括X个SSB周期或X个SSB的测量周期,X为正整数;或者所述至少一个参考信号为跟踪参考信号TRS,所述执行窗口包括Y个TRS周期或Y个TRS的测量周期,Y为正整数;或者所述第一参考信号为TRS和SSB,所述执行窗口包括Z1个SSB周期和Z2个TRS周期,或所述执行窗口包括Z1个SSB的测量周期和Z2个TRS的测量周期,Z1和Z2均为正整数;或者所述第一参考信号为TRS或SSB,所述执行窗口包括Z1个SSB周期和Z2个TRS周期中的最长时间段,或所述执行窗口包括Z1个SSB的测量周期和Z2个TRS的测量周期中的最长时间段;或者所述第一参考信号为缺省参考信号,所述执行窗口基于终端设备的实现确定。
  35. 根据权利要求33所述的方法,其特征在于,所述第一指示信息还用于指示所述至少一个参考信号中每一个参考信号的周期或测量周期的数量。
  36. 根据权利要求33所述的方法,其特征在于,所述执行窗口包括至少一个最长周期,所述最长周期为针对终端设备的服务小区所配置的与所述第一参考信号相同的所有参考信号中的最长周期,或者,所述最长周期为针对所述终端设备的一组待激活小区所配置的与所述第一参考信号相同的所有参考信号中的最长周期。
  37. 根据权利要求33所述的方法,其特征在于,所述辅小区为频谱范围FR2内的小区,所述执行窗口的长度为所述至少一个参考信号的参考信号周期或测量周期的数量的N倍,N表示波束扫描缩放因子。
  38. 根据权利要求26至37中任一项所述的方法,其特征在于,所述方法还包括:
    针对带内双链接或载波聚合intra-band DC/CA,基于所述处理过程需要的参考信号的测量窗口确定所述处理过程的中断时长。
  39. 根据权利要求26至38中任一项所述的方法,其特征在于,所述方法还包括:
    针对带间双链接或载波聚合inter-band DC/CA,基于所述处理过程需要的参考信号的测量窗口确定所述处理过程的中断时长。
  40. 根据权利要求38或39所述的方法,其特征在于,所述基于所述处理过程需要的参考信号的测量窗口确定所述处理过程的中断时长,包括:
    在所述第一参考信号为SSB的情况下,基于同步信号/物理广播信道块测量定时配置SMTC的持续时间T SMTC_duration确定所述中断时长;和/或,在所述第一参考信号为TRS的情况下,基于TRS的测量窗口的持续时间T TRS measurement windows_duration确定所述中断时长。
  41. 根据权利要求38或39所述的方法,其特征在于,所述基于所述处理过程需要的参考信号的测量窗口确定所述处理过程的中断时长,包括:
    基于SSB的测量窗口和TRS的测量窗口中的最大测量窗口,确定所述中断时长。
  42. 根据权利要求38或39所述的方法,其特征在于,所述基于所述处理过程需要的参考信号的测量窗口确定所述处理过程的中断时长,包括:
    在所述第一参考信号为TRS且TRS未定义测量窗口的情况下,基于预设长度的测量窗口确定所述中断时长。
  43. 根据权利要求26至37中任一项所述的方法,其特征在于,所述方法还包括:
    针对带内双链接或载波聚合intra-band DC/CA,基于同步信号/物理广播信道块测量定时配置SMTC的持续时间T SMTC_duration确定所述处理过程的中断时长。
  44. 根据权利要求43所述的方法,其特征在于,所述SMTC的持续时间T SMTC_duration为:
    激活一个辅小区时,所有激活的服务小区和正在被激活的辅小区中最长的SMTC持续时间;或去激活一个辅小区时,同一频段内所有激活的服务小区中最长的SMTC持续时间。
  45. 根据权利要求26至37中任一项所述的方法,其特征在于,所述方法还包括:
    针对带间双链接或载波聚合inter-band DC/CA,基于所述inter-band DC/CA的同步或异步情况,确定所述处理过程的中断时长。
  46. 根据权利要求26至45中任一项所述的方法,其特征在于,所述方法还包括:
    接收能力信息,所述能力信息用于指示终端设备用于支持所述处理过程的能力。
  47. 根据权利要求46所述的方法,其特征在于,所述能力信息用于指示终端设备仅支持基于跟踪参考信号TRS进行快速处理的能力,或所述能力信息用于指示终端设备支持基于TRS和同步信号/物理广播信道块SSB进行快速处理的能力,或所述能力信息用于指示终端设备支持快速处理的能力且中断时长基于TRS的周期确定,或所述能力信息用于指示终端设备支持快速处理的能力且中断时长基于终端设备的实现确定。
  48. 根据权利要求26至45中任一项所述的方法,其特征在于,所述第一指示信息还用于指示能力信息,所述能力信息用于指示终端设备在所述处理过程中采用的第一参考信号时对所述终端设备需要支持的能力。
  49. 根据权利要求48所述的方法,其特征在于,所述第一指示信息通过所述第一参考信号指示所述能力信息。
  50. 根据权利要求48所述的方法,其特征在于,所述能力信息用于指示终端设备在所述处理过程中采用跟踪参考信号TRS时对所述终端设备需要支持的能力,或所述能力信息用于指示终端设备在所述处理过程中采用TRS和同步信号/物理广播信道块SSB时对所述终端设备需要支持的能力,或所述能力信息用于指示终端设备需要支持快速处理的能力且中断时长基于TRS的周期确定,或所述能力信息用于指示终端设备需要支持快速处理的能力且中断时长基于终端设备的实现确定。
  51. 一种终端设备,其特征在于,包括:
    获取单元,用于获取第一指示信息,所述第一指示信息用于指示针对辅小区的处理过程中所采用的第一参考信号,所述处理过程包括激活、去激活、添加或删除中的至少一项;
    处理单元,用于基于所述第一指示信息执行所述处理过程。
  52. 一种网络设备,其特征在于,包括:
    发送单元,用于发送第一指示信息,所述第一指示信息用于指示针对辅小区的处理过程中所采用的第一参考信号,所述处理过程包括激活、去激活、添加或删除中的至少一项。
  53. 一种终端设备,其特征在于,包括:
    处理器、存储器和收发器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行权利要求1至25中任一项所述的方法。
  54. 一种网络设备,其特征在于,包括:
    处理器、存储器和收发器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行权利要求26至50中任一项所述的方法。
  55. 一种芯片,其特征在于,包括:
    处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至25中任一项所述的方法或如权利要求26至50中任一项所述的方法。
  56. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至25中任一项所述的方法或如权利要求26至50中任一项所述的方法。
  57. 一种计算机程序产品,其特征在于,包括计算机程序指令,所述计算机程序指令使得计算机执行如权利要求1至25中任一项所述的方法或如权利要求26至50中任一项所述的方法。
  58. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至25中任一项所述的方法或如权利要求26至50中任一项所述的方法。
PCT/CN2020/134695 2020-12-08 2020-12-08 无线通信方法和设备 WO2022120609A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2020/134695 WO2022120609A1 (zh) 2020-12-08 2020-12-08 无线通信方法和设备
CN202080107722.0A CN116569610A (zh) 2020-12-08 2020-12-08 无线通信方法和设备
EP20964554.8A EP4258583A4 (en) 2020-12-08 2020-12-08 METHOD AND DEVICE FOR WIRELESS COMMUNICATION
US18/206,432 US20230318784A1 (en) 2020-12-08 2023-06-06 Wireless communication method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/134695 WO2022120609A1 (zh) 2020-12-08 2020-12-08 无线通信方法和设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/206,432 Continuation US20230318784A1 (en) 2020-12-08 2023-06-06 Wireless communication method and device

Publications (1)

Publication Number Publication Date
WO2022120609A1 true WO2022120609A1 (zh) 2022-06-16

Family

ID=81974089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/134695 WO2022120609A1 (zh) 2020-12-08 2020-12-08 无线通信方法和设备

Country Status (4)

Country Link
US (1) US20230318784A1 (zh)
EP (1) EP4258583A4 (zh)
CN (1) CN116569610A (zh)
WO (1) WO2022120609A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230232349A1 (en) * 2021-03-31 2023-07-20 Apple Inc. Special scenario handling in secondary serving cell (scell) activation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102244927A (zh) * 2011-07-22 2011-11-16 新邮通信设备有限公司 多小区长期演进系统中建立上行同步的方法、设备和终端
CN102378325A (zh) * 2010-08-13 2012-03-14 索尼公司 对终端的副小区的上行链路进行激活和去激活的方法及装置
US20120282942A1 (en) * 2011-05-02 2012-11-08 Nokia Siemens Networks Oy Methods, apparatuses and computer program products for configuring frequency aggregation
CN110831055A (zh) * 2018-08-10 2020-02-21 华为技术有限公司 一种辅小区的控制方法及装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110166192B (zh) * 2018-02-12 2020-08-04 维沃移动通信有限公司 小区处理方法、终端设备及网络设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102378325A (zh) * 2010-08-13 2012-03-14 索尼公司 对终端的副小区的上行链路进行激活和去激活的方法及装置
US20120282942A1 (en) * 2011-05-02 2012-11-08 Nokia Siemens Networks Oy Methods, apparatuses and computer program products for configuring frequency aggregation
CN102244927A (zh) * 2011-07-22 2011-11-16 新邮通信设备有限公司 多小区长期演进系统中建立上行同步的方法、设备和终端
CN110831055A (zh) * 2018-08-10 2020-02-21 华为技术有限公司 一种辅小区的控制方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4258583A4 *

Also Published As

Publication number Publication date
US20230318784A1 (en) 2023-10-05
EP4258583A4 (en) 2024-01-24
CN116569610A (zh) 2023-08-08
EP4258583A1 (en) 2023-10-11

Similar Documents

Publication Publication Date Title
US11122523B2 (en) Information transmission method and apparatus
US11877246B2 (en) Uplink power control for SRS carrier-based switching
US20190260518A1 (en) Information transmission method, network device, and terminal device
TWI821368B (zh) 非連續傳輸的方法和設備
WO2018028271A1 (zh) 一种控制信息传输方法、设备以及通信系统
CN113329449B (zh) 一种bwp的管理方法及装置、终端
EP3614609A1 (en) Signal transmission method and apparatus
WO2020164576A1 (zh) 随机接入的方法和装置
US20220030565A1 (en) Method and device for adjusting pdcch monitoring period
US20230413087A1 (en) Flexible Downlink Control Signal Monitoring in Wireless Communications
CN109952802B (zh) 用于发送下行链路控制信息的方法和设备
US20230318784A1 (en) Wireless communication method and device
WO2021027551A9 (zh) 一种通信方法及装置
JP2024503648A (ja) リソース選択方法、装置及びシステム
WO2020248143A1 (zh) 监听控制信道的方法、终端设备和网络设备
WO2021092920A1 (zh) 一种跨载波传输方法及装置、终端设备
WO2021196227A1 (zh) 一种监听控制方法、终端设备、网络设备
WO2022021136A1 (zh) 无线通信方法、终端设备和网络设备
WO2022067697A1 (zh) 一种触发trs激活的方法及装置、终端设备、网络设备
WO2022252047A1 (zh) 一种小区切换方法及装置、终端设备
WO2022183462A1 (zh) 一种scg的管理方法及装置、终端设备
WO2022241677A1 (en) Activation of measurement gap configuration
WO2021159378A1 (zh) 一种反馈方法及装置、终端设备、网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20964554

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202080107722.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020964554

Country of ref document: EP

Effective date: 20230706