WO2021092920A1 - 一种跨载波传输方法及装置、终端设备 - Google Patents

一种跨载波传输方法及装置、终端设备 Download PDF

Info

Publication number
WO2021092920A1
WO2021092920A1 PCT/CN2019/118857 CN2019118857W WO2021092920A1 WO 2021092920 A1 WO2021092920 A1 WO 2021092920A1 CN 2019118857 W CN2019118857 W CN 2019118857W WO 2021092920 A1 WO2021092920 A1 WO 2021092920A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
domain position
time domain
carrier
length
Prior art date
Application number
PCT/CN2019/118857
Other languages
English (en)
French (fr)
Inventor
王淑坤
徐伟杰
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2019/118857 priority Critical patent/WO2021092920A1/zh
Priority to CN202110872226.0A priority patent/CN113595708B/zh
Priority to EP19952813.4A priority patent/EP3930397A4/en
Priority to CN201980081531.9A priority patent/CN113170463A/zh
Priority to BR112022000912A priority patent/BR112022000912A2/pt
Priority to JP2021576402A priority patent/JP7410190B2/ja
Priority to KR1020217043418A priority patent/KR20220100522A/ko
Publication of WO2021092920A1 publication Critical patent/WO2021092920A1/zh
Priority to US17/448,400 priority patent/US20220007398A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2662Symbol synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2666Acquisition of further OFDM parameters, e.g. bandwidth, subcarrier spacing, or guard interval length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided

Definitions

  • the embodiments of the present application relate to the field of mobile communication technology, and in particular to a cross-carrier transmission method and device, and terminal equipment.
  • the fifth generation (5 th Generation, 5G) system supports carrier aggregation (Carrier Aggregation, CA) technology.
  • CA means that by jointly scheduling and using resources on multiple component carriers (Component Carrier, CC), the system can support a larger bandwidth and thus can achieve a higher system peak rate.
  • Component Carrier, CC component carriers
  • the embodiments of the present application provide a cross-carrier transmission method and device, and terminal equipment.
  • the terminal device receives the first channel on the first carrier and the first time domain position, and receives or transmits the second channel on the second carrier and the second time domain position;
  • the second time domain position is determined based on at least one of the first time domain position, a first time offset, and a second time offset, and the first time offset is the first carrier and the second time offset.
  • the communication unit is configured to receive the first channel on the first carrier and the first time domain position, and receive or send the second channel on the second carrier and the second time domain position;
  • the second time domain position is determined based on at least one of the first time domain position, a first time offset, and a second time offset, and the first time offset is the first carrier and the second time offset.
  • the terminal device provided in the embodiment of the present application includes a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the above-mentioned cross-carrier transmission method.
  • the chip provided in the embodiment of the present application is used to implement the above-mentioned cross-carrier transmission method.
  • the chip includes: a processor, configured to call and run a computer program from the memory, so that the device installed with the chip executes the above-mentioned cross-carrier transmission method.
  • the computer-readable storage medium provided in the embodiments of the present application is used to store a computer program, and the computer program enables a computer to execute the above-mentioned cross-carrier transmission method.
  • the computer program product provided by the embodiment of the present application includes computer program instructions that cause a computer to execute the above-mentioned cross-carrier transmission method.
  • the computer program provided in the embodiment of the present application runs on a computer
  • the computer executes the above-mentioned cross-carrier transmission method.
  • the timing relationship between the two carriers is clarified, thereby ensuring that the terminal device can obtain the prepared timing and effectively perform signal transmission.
  • FIG. 1 is a schematic diagram of a communication system architecture provided by an embodiment of the present application.
  • FIG 2-1 is a schematic diagram 1 of the BWP provided by an embodiment of the application.
  • Figure 2-2 is the second schematic diagram of the BWP provided by the embodiment of the application.
  • FIG. 2-3 is the third schematic diagram of the BWP provided by the embodiment of the application.
  • Figure 3-1 is a schematic diagram of co-carrier scheduling provided by an embodiment of the application.
  • Figure 3-2 is a schematic diagram of cross-carrier scheduling provided by an embodiment of this application.
  • Figure 3-3 is a diagram of the time sequence relationship between carriers provided by an embodiment of the application.
  • FIG. 4 is a schematic flowchart of a cross-carrier transmission method provided by an embodiment of the application.
  • FIG. 5 is a time sequence diagram of Example 1 provided by an embodiment of this application.
  • FIG. 6 is a time sequence diagram of Example 2 provided by an embodiment of this application.
  • FIG. 7 is a time sequence diagram of Example 3 provided by an embodiment of the application.
  • FIG. 8 is a schematic structural composition diagram of a cross-carrier transmission device provided by an embodiment of the application.
  • FIG. 9 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a chip of an embodiment of the present application.
  • FIG. 11 is a schematic block diagram of a communication system provided by an embodiment of the present application.
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • 5G communication system 5G communication system or future communication system.
  • the communication system 100 applied in the embodiment of the present application is shown in FIG. 1.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a terminal 120 (or called a communication terminal or terminal).
  • the network device 110 may provide communication coverage for a specific geographic area, and may communicate with terminals located in the coverage area.
  • the network device 110 may be an evolved base station (Evolutional Node B, eNB, or eNodeB) in an LTE system, or a wireless controller in a cloud radio access network (Cloud Radio Access Network, CRAN), or
  • the network equipment can be a mobile switching center, a relay station, an access point, an in-vehicle device, a wearable device, a hub, a switch, a bridge, a router, a network side device in a 5G network, or a network device in a future communication system, etc.
  • the communication system 100 also includes at least one terminal 120 located within the coverage area of the network device 110.
  • the "terminal” used here includes, but is not limited to, connection via a wired line, such as via a public switched telephone network (PSTN), digital subscriber line (Digital Subscriber Line, DSL), digital cable, and direct cable connection; And/or another data connection/network; and/or via a wireless interface, such as for cellular networks, wireless local area networks (WLAN), digital TV networks such as DVB-H networks, satellite networks, AM-FM Broadcast transmitter; and/or another terminal's device configured to receive/send communication signals; and/or Internet of Things (IoT) equipment.
  • PSTN public switched telephone network
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • a terminal set to communicate through a wireless interface may be referred to as a "wireless communication terminal", a “wireless terminal” or a “mobile terminal”.
  • mobile terminals include, but are not limited to, satellite or cellular phones; Personal Communications System (PCS) terminals that can combine cellular radio phones with data processing, fax, and data communication capabilities; can include radio phones, pagers, Internet/intranet PDA with internet access, web browser, memo pad, calendar, and/or Global Positioning System (GPS) receiver; and conventional laptop and/or palmtop receivers or others including radio telephone transceivers Electronic device.
  • PCS Personal Communications System
  • GPS Global Positioning System
  • Terminal can refer to access terminal, user equipment (UE), user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication equipment, user agent or user Device.
  • the access terminal can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital processing (Personal Digital Assistant, PDA), with wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminals in 5G networks, or terminals in the future evolution of PLMN, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • direct terminal connection (Device to Device, D2D) communication may be performed between the terminals 120.
  • the 5G communication system or 5G network may also be referred to as a New Radio (NR) system or NR network.
  • NR New Radio
  • FIG. 1 exemplarily shows one network device and two terminals.
  • the communication system 100 may include multiple network devices and the coverage of each network device may include other numbers of terminals. This embodiment of the present application There is no restriction on this.
  • the communication system 100 may also include other network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • the devices with communication functions in the network/system in the embodiments of the present application may be referred to as communication devices.
  • the communication device may include a network device 110 and a terminal 120 with communication functions, and the network device 110 and the terminal 120 may be the specific devices described above, which will not be repeated here; communication
  • the device may also include other devices in the communication system 100, such as other network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • 5G Enhanced Mobile Broadband
  • URLLC Ultra-Reliable Low-Latency Communications
  • mMTC Massive Machine-Type Communications
  • eMBB is still targeting users to obtain multimedia content, services and data, and its demand is growing very rapidly.
  • eMBB may be deployed in different scenarios, such as indoors, urban areas, rural areas, etc., its capabilities and requirements are also quite different, so it cannot be generalized and must be analyzed in detail in conjunction with specific deployment scenarios.
  • Typical applications of URLLC include: industrial automation, power automation, telemedicine operations (surgery), traffic safety protection, etc.
  • the typical characteristics of mMTC include: high connection density, small data volume, delay-insensitive services, low cost and long service life of the module.
  • the maximum channel bandwidth can be 400MHZ (called a wideband carrier).
  • the bandwidth of a wideband carrier is very large. If the terminal device keeps working on a broadband carrier, the power consumption of the terminal device is very large. Therefore, it is recommended that the radio frequency (RF) bandwidth of the terminal device can be adjusted according to the actual throughput of the terminal device. For this reason, the concept of Bandwidth Part (BWP) is introduced, and the motivation of BWP is to optimize the power consumption of terminal devices. For example, if the rate of the terminal device is very low, you can configure the terminal device with a smaller BWP (as shown in Figure 2-1).
  • BWP Bandwidth Part
  • BWP1 corresponds to basic parameter set 1 (numerology1)
  • BWP2 corresponds to basic parameter set 2 (numerology2).
  • a terminal device can be configured with a maximum of 4 uplink BWPs and a maximum of 4 downlink BWPs, but only one uplink BWP and downlink BWP can be activated at the same time.
  • RRC dedicated signaling it can indicate the first activated BWP in the configured BWP (that is, the initial activated BWP).
  • DCI Downlink Control Information
  • the first activated BWP is the first activated BWP configured in the RRC dedicated signaling.
  • CA Carrier Aggregation
  • CC component carriers
  • 5G also supports Carrier Aggregation (CA) technology.
  • CA is to jointly schedule and use resources on multiple component carriers (Component Carrier, CC), so that the NR system can support a larger bandwidth, and thus can achieve a higher system peak rate.
  • Component Carrier CC
  • PCC Primary Cell Component
  • SCC Secondary Cell Component
  • C-RNTI Cell-Radio Network Temporary Identifier
  • the base station ensures that the C-RNTI does not conflict in the cell where each carrier is located. Since both asymmetric carrier aggregation and symmetric carrier aggregation are supported, the carriers required to be aggregated must have downlink carriers, but may not have uplink carriers. Moreover, for the primary carrier cell, there must be a physical downlink control channel (PDCCH) and PUCCH of the cell, and only the primary carrier cell has a PUCCH, and other secondary carrier cells may have a PDCCH.
  • PDCH physical downlink control channel
  • the scheduling of each carrier is divided into co-carrier scheduling and cross-carrier scheduling according to the carrier where the PDCCH resource used for scheduling is located.
  • same-carrier scheduling that is, the scheduling information of the carrier is placed in the PDCCH of the own carrier for scheduling.
  • cross-carrier scheduling that is, the scheduling information of a carrier is placed on another carrier for scheduling. The introduction of cross-carrier scheduling is based on the interference avoidance of heterogeneous networks.
  • CIF Carrier Indicator Field
  • the carriers of carrier aggregation are synchronized and synchronized with the System Frame Number (SFN).
  • SFN System Frame Number
  • operators may aggregate two carriers that are not synchronized.
  • carrier synchronization between the two operators is required.
  • carrier synchronization between the two operators is required.
  • a terminal device receives a PDCCH on time slot 1 on carrier 1, and receives a physical downlink shared channel (PDSCH) on time slot n+K0 on carrier 2.
  • PDSCH physical downlink shared channel
  • carrier 1 and carrier 2 are not synchronized, there is a problem of inaccurate timing.
  • This problem also exists in the scenarios of downlink scheduling, uplink scheduling, and downlink feedback.
  • the technical solutions of the embodiments of the present application enable the terminal equipment to find the correct timing relationship for data transmission and reception when performing cross-carrier scheduling between asynchronous step carriers. Feedback.
  • FIG. 4 is a schematic flowchart of a cross-carrier transmission method provided by an embodiment of the application. As shown in FIG. 4, the cross-carrier transmission method includes the following steps:
  • Step 401 The terminal device receives the first channel on the first carrier and the first time domain position, and receives or transmits the second channel on the second carrier and the second time domain position; wherein, the second time domain position is based on the At least one of the first time domain position, the first time offset, and the second time offset is determined, the first time offset is the time offset between the first carrier and the second carrier, the first The second time offset is the time offset between the start time domain position of the first channel and the start time domain position of the second channel.
  • the technical solutions of the embodiments of the present application can be applied to a CA scenario where the first carrier and the second carrier in CA are not synchronized, that is, there is a time offset between the first carrier and the second carrier, This time deviation is called the first time deviation.
  • the first channel is used to schedule the second channel.
  • the first carrier may be referred to as a scheduled carrier
  • the second carrier may be referred to as a scheduled carrier.
  • the second channel may be a feedback channel of the first channel, that is, the second channel is used to carry feedback information of the first channel.
  • the first carrier may be referred to as a scheduled carrier, and the second carrier may be referred to as a feedback carrier.
  • the terminal device receives the first channel on the first carrier and the first time domain location, and receives or transmits the second channel on the second carrier and the second time domain location, which may have the following application scenarios:
  • the terminal device receives the PDCCH on the first carrier and the first time domain location, and receives the PDSCH on the second carrier and the second time domain location; wherein, the PDCCH is used to schedule the PDSCH.
  • the terminal device receives the PDCCH on the first carrier and the first time domain position, and transmits the physical uplink shared channel (PUSCH) on the second carrier and the second time domain position; wherein, the PDCCH is used for Scheduling the PUSCH.
  • PUSCH physical uplink shared channel
  • the terminal device receives the PDSCH on the first carrier and the first time domain position, and sends the PUCCH on the second carrier and the second time domain position; wherein, the PUCCH is used to carry feedback information of the PDSCH.
  • the second time offset is the time offset between the start time domain position of the first channel and the start time domain position of the second channel.
  • the terminal device receives a PDCCH sent by a network device, the PDCCH carries first indication information, and the first indication information is used to indicate that the second time offset includes K second time units , K is a positive integer; the length of the second time unit is the length of the time unit corresponding to the Sub-Carrier Space (SCS) of the second carrier.
  • SCS Sub-Carrier Space
  • the length of the time unit corresponding to the SCS of the second carrier is the same as the length of the time unit corresponding to the SCS of the first carrier; or, the length of the time unit corresponding to the SCS of the second carrier is the same as The length of the time unit corresponding to the SCS of the first carrier is different.
  • the first time deviation is the time deviation between the first carrier and the second carrier.
  • the first time deviation needs a measurement unit (that is, time unit) consistent with the second time deviation before the addition and subtraction operations can be performed.
  • the length of the first time offset is the length of Y second time units, and Y is a positive integer; the length of the second time unit is the length of the time unit corresponding to the SCS of the second carrier.
  • the first time offset configured by the network side for the terminal device may not be configured according to the above-mentioned second time unit as the measurement unit. For this reason, the value of Y needs to be transformed according to the configuration on the network side.
  • the terminal device receives second indication information sent by the network device, where the second indication information is used to indicate that the first time deviation includes X1 first time units, and X1 is a positive integer
  • the length of the first time unit is the length of the time unit corresponding to the SCS of the first carrier; wherein the value of Y is based on the value of X1, the length of the first time unit, and the The length of the second time unit is determined.
  • Y X1 ⁇ length of the first time unit/length of the second time unit.
  • the terminal device receives second indication information sent by a network device, where the second indication information is used to indicate that the first time deviation includes Y second time units.
  • the terminal device receives second indication information sent by the network device, where the second indication information is used to indicate that the first time offset includes X2 third time units, and X2 is positive Integer; the length of the third time unit is the length of the time unit corresponding to the reference SCS; wherein the value of Y is based on the value of X2, the length of the third time unit, and the second time The length of the unit is determined.
  • Y X2 ⁇ length of the third time unit/length of the second time unit.
  • the reference SCS is configured by the network or agreed upon by the protocol.
  • time unit (such as the first time unit, the second time unit) in the above-mentioned solution in the embodiment of the present application is a time slot or a symbol.
  • the terminal device determines a third time domain position according to the first time domain position and the first time deviation; wherein, the first time domain position and the third time domain position The time domain position is aligned; the terminal device determines the second time domain position according to the third time domain position and the second time deviation.
  • the third time domain position is obtained based on the first time domain position plus the first time offset; or, the third time domain position is based on the first time domain position minus the first time offset A time deviation is obtained.
  • the second time domain position is obtained based on the third time domain position plus the second time offset.
  • the first time domain position is determined with reference to the timing of the first carrier, that is, the first time domain position is synchronized with the timing on the first carrier.
  • the terminal device determines the second time domain position according to the first time domain position, the first time offset, and the second time offset.
  • the second time domain position is obtained based on the first time domain position plus the second time offset plus the first time offset; or, the second time domain position is based on the first time offset. It is obtained by adding a time domain position to the second time offset and subtracting the first time offset.
  • the first time domain position is determined with reference to the timing of the first carrier, that is, the first time domain position is synchronized with the timing on the first carrier.
  • the terminal device determines the second time domain position according to the first time domain position and the second time deviation; wherein, the second time deviation is based on at least the The first time deviation is determined.
  • the second time domain position is obtained based on the first time domain position plus the second time offset.
  • the first time domain position is determined with reference to the timing of the first carrier, that is, the first time domain position is synchronized with the timing on the first carrier.
  • the terminal device determines the second time domain position according to the first time domain position and the second time offset; wherein, the first time domain position is based on the timing of the second carrier Determined by reference, that is, the first time domain position and the timing on the second carrier are synchronized.
  • the second time domain position is obtained based on the first time domain position plus the second time offset.
  • the second time domain position determined by the above solution is determined with reference to the timing of the second carrier, that is, the second time domain position is synchronized with the timing on the second carrier .
  • receiving channel in the embodiments of the present application refers to receiving information through a channel
  • sending channel refers to sending information through a channel.
  • receiving PDCCH refers to receiving downlink control information through PDCCH.
  • Receiving PDSCH refers to receiving downlink data through PDSCH.
  • Sending PUSCH refers to sending uplink data through PUSCH.
  • Sending PUCCH refers to sending uplink control information (such as ACK/NACK feedback information) through PUCCH.
  • the following examples illustrate the technical solutions of the embodiments of the present application in combination with specific examples.
  • the following examples all use the time unit as a time slot for illustration, and it is not limited to this, and the time unit may also be a symbol.
  • the scheduled carrier is the first carrier
  • the scheduled carrier is the second carrier.
  • the scheduled carrier and the scheduled carrier are not synchronized, and the time deviation between the two carriers is The first time deviation.
  • the first time offset includes Y time slots (the length of the time slot refers to the time slot length corresponding to the SCS of the scheduled carrier).
  • the PDCCH is transmitted on the scheduled carrier
  • the PDSCH is transmitted on the scheduled carrier, wherein the time deviation of the start time slot of the PDSCH with respect to the start time slot of the PDCCH is the second time deviation.
  • the second time offset includes K0 time slots (the length of the time slot refers to the time slot length corresponding to the SCS of the scheduled carrier).
  • the scheduled carrier and the scheduled carrier have the same SCS, or the scheduled carrier and the scheduled carrier have different SCS.
  • the terminal equipment receives the PDCCH on the time slot n of the scheduling carrier, and the terminal equipment determines the scheduling carrier according to the first time deviation between the two carriers (the first time deviation includes Y time slots)
  • the time slot n corresponds to the time slot m of the scheduled carrier; the terminal equipment starts to receive the PDSCH on the time slot m+K0 of the scheduled carrier.
  • the time slot m is a time slot (n+Y) or a time slot (n-Y).
  • the terminal device receives the PDCCH in the time slot n of the scheduled carrier, and the terminal device receives the PDCCH in the time slot (n+K0+Y) or the time slot (n+K0-Y) of the scheduled carrier. Start receiving PDSCH.
  • the network side considers the first time offset of the two carriers when setting K0.
  • the terminal equipment receives the PDCCH on the time slot n of the scheduled carrier, and the terminal equipment starts to receive the PDSCH on the time slot (n+K0) of the scheduled carrier.
  • the terminal equipment receives the PDCCH at a certain time domain position of the scheduled carrier (the time domain position corresponds to the time slot n of the scheduled carrier), and the terminal equipment receives the PDCCH in the time slot (n +K0) to start receiving PDSCH.
  • the measurement unit (ie, time slot) of the first time deviation indicated by the network side is not the time slot corresponding to the SCS of the scheduled carrier
  • the scheduled carrier is the first carrier
  • the scheduled carrier is the second carrier.
  • the scheduled carrier and the scheduled carrier are not synchronized, and the time deviation between the two carriers is The first time deviation.
  • the first time offset includes Y time slots (the length of the time slot refers to the time slot length corresponding to the SCS of the scheduled carrier).
  • the PDCCH is transmitted on the scheduled carrier, and the PUSCH is transmitted on the scheduled carrier, where the time deviation of the start time slot of the PUSCH with respect to the start time slot of the PDCCH is the second time deviation.
  • the second time offset includes K2 time slots (the length of the time slot refers to the length of the time slot corresponding to the SCS of the scheduled carrier).
  • the scheduled carrier and the scheduled carrier have the same SCS, or the scheduled carrier and the scheduled carrier have different SCS.
  • the terminal equipment receives the PDCCH on the time slot n of the scheduling carrier, and the terminal equipment determines the scheduling carrier according to the first time deviation between the two carriers (the first time deviation includes Y time slots)
  • the time slot n corresponds to the time slot m of the scheduled carrier; the terminal equipment starts to send the PUSCH on the time slot m+K2 of the scheduled carrier.
  • the time slot m is a time slot (n+Y) or a time slot (n-Y).
  • the terminal device receives the PDCCH in the time slot n of the scheduled carrier, and the terminal device receives the PDCCH in the time slot (n+K2+Y) or the time slot (n+K2-Y) of the scheduled carrier. Start sending PUSCH.
  • the network side considers the first time offset of the two carriers when setting K2.
  • the terminal device receives the PDCCH on the time slot n of the scheduled carrier, and the terminal device starts to send the PUSCH on the time slot (n+K2) of the scheduled carrier.
  • the terminal equipment receives the PDCCH at a certain time domain position of the scheduled carrier (the time domain position corresponds to the time slot n of the scheduled carrier), and the terminal equipment receives the PDCCH in the time slot (n +K2) PUSCH starts to be sent on.
  • the measurement unit (ie, time slot) of the first time deviation indicated by the network side is not the time slot corresponding to the SCS of the scheduled carrier
  • the PDSCH carrier is the first carrier
  • the PUCCH carrier is the second carrier
  • the PDSCH carrier and the PUCCH carrier are not synchronized
  • the time deviation between the two carriers is the first Time deviation.
  • the first time offset includes Y time slots (the length of the time slot refers to the time slot length corresponding to the SCS of the PUCCH carrier).
  • the PDSCH is transmitted on the PDSCH carrier
  • the PUCCH is transmitted on the PUCCH carrier.
  • the PUCCH is used to carry PDSCH feedback information (such as ACK/NACK information).
  • the time deviation of the start time slot of PUCCH with respect to the start time slot of PDSCH is second Time deviation.
  • the second time offset includes K1 time slots (the length of the time slot refers to the time slot length corresponding to the SCS of the PUCCH carrier).
  • the PDSCH carrier and the PUCCH carrier have the same SCS, or the PDSCH carrier and the PUCCH carrier have different SCS.
  • the terminal equipment receives the PDSCH in the time slot n of the PDSCH carrier, and the terminal equipment determines the PDSCH carrier according to the first time offset between the two carriers (the first time offset includes Y time slots)
  • the time slot n corresponds to the time slot m of the PUCCH carrier; the terminal device starts to send the PUCCH on the time slot m+K1 of the PUCCH carrier.
  • the time slot m is a time slot (n+Y) or a time slot (n-Y).
  • the terminal device receives the PDSCH in the time slot n of the PDSCH carrier, and the terminal device starts in the time slot (n+K1+Y) or the time slot (n+K1-Y) of the PUCCH carrier Send PUCCH.
  • the network side considers the first time offset of the two carriers when setting K1.
  • the terminal device receives the PDSCH on the time slot n of the PDSCH carrier, and the terminal device starts to send the PUCCH on the time slot (n+K1) of the PUCCH carrier.
  • the terminal equipment receives the PDSCH at a certain time domain position of the PDSCH carrier (the time domain position corresponds to the time slot n of the PUCCH carrier), and the terminal equipment receives the PDSCH in the time slot (n+K1 of the PUCCH carrier). ) To start sending PUCCH.
  • the measurement unit (ie, time slot) of the first time deviation indicated by the network side is not the time slot corresponding to the SCS of the PUCCH carrier
  • the information indicated by the network side needs to be converted.
  • the first time offset indicated by the network side includes X first time slots
  • Y X ⁇ first time slot/second time slot
  • the second time slot is the second SCS (that is, of the PUCCH carrier).
  • SCS SCS
  • the first time slot is a time slot corresponding to the first SCS (that is, the SCS of the PDSCH carrier or the SCS of the reference SCS or the PUCCH carrier).
  • FIG. 8 is a schematic structural composition diagram of a cross-carrier transmission device provided by an embodiment of the application. As shown in FIG. 8, the cross-carrier transmission device includes:
  • the communication unit 801 is configured to receive a first channel on a first carrier and a first time domain position, and receive or send a second channel on a second carrier and a second time domain position;
  • the second time domain position is determined based on at least one of the first time domain position, a first time offset, and a second time offset, and the first time offset is the first carrier and the second time offset.
  • the communication unit 801 is further configured to receive a PDCCH sent by a network device, where the PDCCH carries first indication information, and the first indication information is used to indicate that the second time offset includes K K is a positive integer; the length of the second time unit is the length of the time unit corresponding to the SCS of the second carrier.
  • the length of the time unit corresponding to the SCS of the second carrier is the same as the length of the time unit corresponding to the SCS of the first carrier; or,
  • the length of the time unit corresponding to the SCS of the second carrier is different from the length of the time unit corresponding to the SCS of the first carrier.
  • the length of the first time offset is the length of Y second time units, and Y is a positive integer; the length of the second time unit is the time corresponding to the SCS of the second carrier The length of the unit.
  • the communication unit 801 is further configured to receive second indication information sent by a network device, where the second indication information is used to indicate that the first time deviation includes X1 first time units, X1 is a positive integer; the length of the first time unit is the length of the time unit corresponding to the SCS of the first carrier;
  • the value of Y is determined based on the value of X1, the length of the first time unit, and the length of the second time unit.
  • the communication unit 801 is further configured to receive second indication information sent by a network device, where the second indication information is used to indicate that the first time deviation includes Y second time units.
  • the communication unit 801 is further configured to receive second indication information sent by a network device, where the second indication information is used to indicate that the first time deviation includes X2 third time units, X2 is a positive integer; the length of the third time unit is the length of the time unit corresponding to the reference SCS;
  • the value of Y is determined based on the value of X2, the length of the third time unit, and the length of the second time unit.
  • the reference SCS is configured by the network or agreed upon by the protocol.
  • the time unit is a time slot or a symbol.
  • the device further includes:
  • the determining unit 802 is configured to determine a third time domain position according to the first time domain position and the first time deviation; wherein the first time domain position and the third time domain position are aligned; The third time domain position and the second time deviation determine the second time domain position.
  • the third time domain position is obtained based on the first time domain position plus the first time offset; or,
  • the third time domain position is obtained based on the first time domain position minus the first time offset.
  • the second time domain position is obtained based on the third time domain position plus the second time offset.
  • the device further includes:
  • the determining unit 802 is configured to determine the second time domain position according to the first time domain position, the first time deviation, and the second time deviation.
  • the second time domain position is obtained based on the first time domain position plus the second time offset plus the first time offset; or,
  • the second time domain position is obtained based on the first time domain position plus the second time offset and subtracting the first time offset.
  • the device further includes:
  • the determining unit 802 is configured to determine the second time domain position according to the first time domain position and the second time deviation;
  • the second time deviation is determined based on at least the first time deviation.
  • the second time domain position is obtained based on the first time domain position plus the second time offset.
  • the first time domain position is determined with reference to the timing of the first carrier.
  • the device further includes:
  • the determining unit 802 is configured to determine the second time domain position according to the first time domain position and the second time deviation;
  • the first time domain position is determined with reference to the timing of the second carrier.
  • the second time domain position is obtained based on the first time domain position plus the second time offset.
  • the communication unit 801 is configured to receive the PDCCH on the first carrier and the first time domain position, and receive the PDSCH on the second carrier and the second time domain position; wherein, the PDCCH uses To schedule the PDSCH.
  • the communication unit 801 is configured to receive the PDCCH on the first carrier and the first time domain position, and send the PUSCH on the second carrier and the second time domain position; wherein, the PDCCH uses To schedule the PUSCH.
  • the communication unit 801 is configured to receive the PDSCH on the first carrier and the first time domain position, and send the PUCCH on the second carrier and the second time domain position; wherein, the PUCCH uses To carry the feedback information of the PDSCH.
  • FIG. 9 is a schematic structural diagram of a communication device 900 provided by an embodiment of the present application.
  • the communication device may be a terminal device or a network device.
  • the communication device 900 shown in FIG. 9 includes a processor 910, and the processor 910 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the communication device 900 may further include a memory 920.
  • the processor 910 can call and run a computer program from the memory 920 to implement the method in the embodiment of the present application.
  • the memory 920 may be a separate device independent of the processor 910, or may be integrated in the processor 910.
  • the communication device 900 may further include a transceiver 930, and the processor 910 may control the transceiver 930 to communicate with other devices. Specifically, it may send information or data to other devices, or receive other devices. Information or data sent by the device.
  • the transceiver 930 may include a transmitter and a receiver.
  • the transceiver 930 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 900 may specifically be a network device in an embodiment of the present application, and the communication device 900 may implement the corresponding process implemented by the network device in each method of the embodiment of the present application. For brevity, details are not repeated here. .
  • the communication device 900 may specifically be a mobile terminal/terminal device of an embodiment of the present application, and the communication device 900 may implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • I won’t repeat it here.
  • FIG. 10 is a schematic structural diagram of a chip of an embodiment of the present application.
  • the chip 1000 shown in FIG. 10 includes a processor 1010, and the processor 1010 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the chip 1000 may further include a memory 1020.
  • the processor 1010 can call and run a computer program from the memory 1020 to implement the method in the embodiment of the present application.
  • the memory 1020 may be a separate device independent of the processor 1010, or may be integrated in the processor 1010.
  • the chip 1000 may further include an input interface 1030.
  • the processor 1010 can control the input interface 1030 to communicate with other devices or chips, and specifically, can obtain information or data sent by other devices or chips.
  • the chip 1000 may further include an output interface 1040.
  • the processor 1010 can control the output interface 1040 to communicate with other devices or chips, and specifically, can output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the chip can implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the chip can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the chip can implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • the chip can implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • the chip can implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • the chip mentioned in the embodiment of the present application may also be referred to as a system-level chip, a system-on-chip, a system-on-chip, or a system-on-chip.
  • FIG. 11 is a schematic block diagram of a communication system 1100 according to an embodiment of the present application. As shown in FIG. 11, the communication system 1100 includes a terminal device 1110 and a network device 1120.
  • the terminal device 1110 can be used to implement the corresponding function implemented by the terminal device in the above method
  • the network device 1120 can be used to implement the corresponding function implemented by the network device in the above method. For brevity, it will not be repeated here. .
  • the processor of the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC application specific integrated circuit
  • FPGA Field Programmable Gate Array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application can be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • DDR SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM, ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • Synchronous Link Dynamic Random Access Memory Synchronous Link Dynamic Random Access Memory
  • DR RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is to say, the memory in the embodiments of the present application is intended to include but not limited to these and any other suitable types of memory.
  • the embodiment of the present application also provides a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium can be applied to the network device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer-readable storage medium can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application , For the sake of brevity, I won’t repeat it here.
  • the embodiments of the present application also provide a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program product can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application, For the sake of brevity, I will not repeat them here.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the network device in the embodiment of the present application.
  • the computer program runs on the computer, it causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • I won’t repeat it here.
  • the computer program can be applied to the mobile terminal/terminal device in the embodiment of the present application.
  • the computer program runs on the computer, the computer executes each method in the embodiment of the present application. For the sake of brevity, the corresponding process will not be repeated here.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory,) ROM, random access memory (Random Access Memory, RAM), magnetic disks or optical disks and other media that can store program codes. .

Abstract

本申请实施例提供一种跨载波传输方法及装置、终端设备,包括:终端设备在第一载波以及第一时域位置上接收第一信道,在第二载波以及第二时域位置上接收或发送第二信道;其中,所述第二时域位置基于所述第一时域位置、第一时间偏差以及第二时间偏差中的至少之一确定,所述第一时间偏差为所述第一载波和所述第二载波之间的时间偏差,所述第二时间偏差为所述第一信道的起始时域位置和所述第二信道的起始时域位置之间的时间偏差。

Description

一种跨载波传输方法及装置、终端设备 技术领域
本申请实施例涉及移动通信技术领域,具体涉及一种跨载波传输方法及装置、终端设备。
背景技术
为了满足高速率的需求,第五代(5 th Generation,5G)系统中支持载波聚合(Carrier Aggregation,CA)技术。CA即通过联合调度和使用多个成员载波(Component Carrier,CC)上的资源,使得系统可以支持更大的带宽,从而能够实现更高的系统峰值速率。CA中存在跨载波调度的场景,如果跨载波调度的两个载波之间不同步,会存在时序不准确的问题。
发明内容
本申请实施例提供一种跨载波传输方法及装置、终端设备。
本申请实施例提供的跨载波传输方法,包括:
终端设备在第一载波以及第一时域位置上接收第一信道,在第二载波以及第二时域位置上接收或发送第二信道;
其中,所述第二时域位置基于所述第一时域位置、第一时间偏差以及第二时间偏差中的至少之一确定,所述第一时间偏差为所述第一载波和所述第二载波之间的时间偏差,所述第二时间偏差为所述第一信道的起始时域位置和所述第二信道的起始时域位置之间的时间偏差。
本申请实施例提供的跨载波传输装置,包括:
通信单元,用于在第一载波以及第一时域位置上接收第一信道,在第二载波以及第二时域位置上接收或发送第二信道;
其中,所述第二时域位置基于所述第一时域位置、第一时间偏差以及第二时间偏差中的至少之一确定,所述第一时间偏差为所述第一载波和所述第二载波之间的时间偏差,所述第二时间偏差为所述第一信道的起始时域位置和所述第二信道的起始时域位置之间的时间偏差。
本申请实施例提供的终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述的跨载波传输方法。
本申请实施例提供的芯片,用于实现上述的跨载波传输方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行上述的跨载波传输方法。
本申请实施例提供的计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述的跨载波传输方法。
本申请实施例提供的计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述的跨载波传输方法。
本申请实施例提供的计算机程序,当其在计算机上运行时,使得计算机执行上述的跨载波传输方法。
通过上述技术方案,对于不同步的两个载波,明确了两个载波之间的时序关系,从而保证终端设备能够获取准备的定时,有效进行信号的传输。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是本申请实施例提供的一种通信系统架构的示意性图;
图2-1为本申请实施例提供的BWP的示意图一;
图2-2为本申请实施例提供的BWP的示意图二;
图2-3为本申请实施例提供的BWP的示意图三;
图3-1为本申请实施例提供的同载波调度的示意图;
图3-2为本申请实施例提供的跨载波调度的示意图;
图3-3为本申请实施例提供的载波之间时序关系图;
图4为本申请实施例提供的跨载波传输方法的流程示意;
图5为本申请实施例提供的示例一的时序关系图;
图6为本申请实施例提供的示例二的时序关系图;
图7为本申请实施例提供的示例三的时序关系图;
图8为本申请实施例提供的跨载波传输装置的结构组成示意图;
图9是本申请实施例提供的一种通信设备示意性结构图;
图10是本申请实施例的芯片的示意性结构图;
图11是本申请实施例提供的一种通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、系统、5G通信系统或未来的通信系统等。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端进行通信。可选地,该网络设备110可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的网络侧设备或者未来通信系统中的网络设备等。
该通信系统100还包括位于网络设备110覆盖范围内的至少一个终端120。作为在此使用的“终端”包括但不限于经由有线线路连接,如经由公共交换电话网络(Public Switched Telephone Networks,PSTN)、数字用户线路(Digital Subscriber Line,DSL)、 数字电缆、直接电缆连接;和/或另一数据连接/网络;和/或经由无线接口,如,针对蜂窝网络、无线局域网(Wireless Local Area Network,WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器;和/或另一终端的被设置成接收/发送通信信号的装置;和/或物联网(Internet of Things,IoT)设备。被设置成通过无线接口通信的终端可以被称为“无线通信终端”、“无线终端”或“移动终端”。移动终端的示例包括但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(Personal Communications System,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(Global Positioning System,GPS)接收器的PDA;以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。终端可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端或者未来演进的PLMN中的终端等。
可选地,终端120之间可以进行终端直连(Device to Device,D2D)通信。
可选地,5G通信系统或5G网络还可以称为新无线(New Radio,NR)系统或NR网络。
图1示例性地示出了一个网络设备和两个终端,可选地,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端120,网络设备110和终端120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
为便于理解本申请实施例的技术方案,以下对本申请实施例相关的技术方案进行说明。
随着人们对速率、延迟、高速移动性、能效的追求以及未来生活中业务的多样性、复杂性,为此第三代合作伙伴计划(3 rd Generation Partnership Project,3GPP)国际标准组织开始研发5G。5G的主要应用场景为:增强移动超宽带(enhanced Mobile Broadband,eMBB)、低时延高可靠通信(Ultra-Reliable Low-Latency Communications,URLLC)、大规模机器类通信(massive Machine-Type Communications,mMTC)。
一方面,eMBB仍然以用户获得多媒体内容、服务和数据为目标,其需求增长十分迅速。另一方面,由于eMBB可能部署在不同的场景中,例如室内,市区,农村等,其能力和需求的差别也比较大,所以不能一概而论,必须结合具体的部署场景详细分析。URLLC的典型应用包括:工业自动化,电力自动化,远程医疗操作(手术),交通安全 保障等。mMTC的典型特点包括:高连接密度,小数据量,时延不敏感业务,模块的低成本和长使用寿命等。
在NR早期部署时,完整的NR覆盖很难获取,所以典型的网络覆盖是广域的LTE覆盖和NR的孤岛覆盖模式。而且大量的LTE部署在6GHz以下,可用于5G的6GHz以下频谱很少。所以NR必须研究6GHz以上的频谱应用,而高频段覆盖有限、信号衰落快。同时为了保护移动运营商前期在LTE投资,提出了LTE和NR之间紧密合作(tight interworking)的工作模式。
在5G中,最大的信道带宽可以是400MHZ(称为宽带载波(wideband carrier)),相比于LTE最大20M带宽来说,宽带载波的带宽很大。如果终端设备保持工作在宽带载波上,则终端设备的功率消耗非常大。所以建议终端设备的射频(Radio Frequency,RF)带宽可以根据终端设备实际的吞吐量来调整。为此,引入带宽(BandWidth Part,BWP)的概念,BWP的动机是优化终端设备的功率消耗。例如终端设备的速率很低,可以给终端设备配置小一点的BWP(如图2-1所示),如果终端设备的速率要求很高,则可以给终端设备配置大一点的BWP(如图2-2所示)。如果终端设备支持高速率,或者工作在载波聚合(Carrier Aggregation,CA)模式下,可以给终端设备配置多个BWP(如图2-3所示)。BWP的另一个目的就是触发一个小区中多个基础参数集(numerology)共存,如图2-3所示,BWP1对应基础参数集1(numerology1),BWP2对应基础参数集2(numerology2)。
通过无线资源控制(Radio Resource Control,RRC)专用信令可以给一个终端设备配置最多4个上行BWP和最多4个下行BWP,但同一时刻只能有一个上行BWP和下行BWP被激活。在RRC专用信令中,可以指示所配置的BWP中第一个激活的BWP(即初始激活BWP)。同时在终端设备处于连接态过程中,也可以通过下行控制信息(Downlink Control Information,DCI)在不同的BWP之间切换。当处于非激活状态的载波,进入激活状态后,第一个激活的BWP为RRC专用信令中配置的第一个激活的BWP。
为了满足高速率的需求,5G中也支持载波聚合(Carrier Aggregation,CA)技术。CA即通过联合调度和使用多个成员载波(Component Carrier,CC)上的资源,使得NR系统可以支持更大的带宽,从而能够实现更高的系统峰值速率。根据所聚合载波的在频谱上的连续性可以分为,连续性载波聚合和非连续性载波聚合;根据聚合的载波所在的频段(band)是否相同,分为频段内(Intra-band)载波聚合和频段间(inter-band)载波聚合。
在CA中,有且只有一个主载波(Primary Cell Component,PCC),PCC提供RRC信令连接,非接入层(Non-Access Stratrum,NAS)功能,安全等。物理上行控制信道(Physical Downlink Control Channel,PUCCH)在PCC上且只在PCC上存在。在CA中,可以有一个或多个辅载波(Secondary Cell Component,SCC),SCC只提供额外的无线资源。PCC和SCC同称为服务小区,其中,PCC上的小区为主小区(Pcell),SCC上的小区为辅小区(Scell)。标准上还规定聚合的载波最多支持5个,即聚合后的最大带宽为100MHZ,并且聚合载波属于同一个基站。所有的聚合载波使用相同的小区无线网络临时标识(Cell-Radio Network Temporary Identifier,C-RNTI),基站实现保证C-RNTI在每个载波所在的小区不发生冲突。由于支持不对称载波聚合和对称载波聚合两种,所以要求聚合的载波一定有下行载波,可以没有上行载波。而且对于主载波小区来说一定有本小区的物理下行控制信道(Physical Downlink Control Channel,PDCCH)和PUCCH,而且只有主载波小区有PUCCH,其他辅载波小区可能有PDCCH。
在载波聚合中关于每个载波的调度按照调度使用的PDCCH资源所在的载波分为同 载波调度,跨载波调度。参照图3-1,同载波调度,即载波的调度信息放在自己载波的PDCCH中调度。参照图3-2,跨载波调度,即载波的调度信息放在另一个载波上进行调度。跨载波调度的引入是基于异构网络的干扰规避。
在跨载波调度中,不同载波间的调度信息通过DCI中载波指示域(Carrier Indicator Field,CIF)字段来区分,CIF用于指示载波的编号,固定3bit,取值0到7,其中PCC的CIF固定为0。存在PDCCH的载波可能有多个,但是PCC一定有自己的PDCCH。高层配置当前SCC使用哪个载波的PDCCH进行调度。
目前载波聚合的载波之间是同步的,且为系统帧号(System Frame Number,SFN)同步的。但是有些场景运营商可能有不同步的两个载波之间进行聚合。例如TDD场景下,运营商A和运营商B的邻频之间为了不互相干扰,要求两个运营商之间的载波同步,参照图3-3中的运营商A的载波1和运营商B的载波同步;运营商A和运营商C的邻频之间为了不互相干扰,要求两个运营商之间的载波同步,参照图3-3中的运营商A的载波2和运营商C的载波同步。所以导致运营商A的两个载波(即载波1和载波2)之间不能同步,导致无法做载波聚合。
由于CA中存在跨载波调度场景,例如终端设备在载波1上时隙1上接收到PDCCH,在载波2上时隙n+K0上接收物理下行共享信道(Physical Downlink Shared Channel,PDSCH)。但是由于载波1和载波2之间不同步,所以存在时序不准确的问题。该问题同时存在在下行调度,上行调度以及下行反馈的场景中。为此,提出出了本申请实施例的以下技术方案,本申请实施例的技术方案在不同步的步载波之间进行跨载波调度时,能够使终端设备找到正确的时序关系进行数据的收发和反馈。
图4为本申请实施例提供的跨载波传输方法的流程示意图,如图4所示,所述跨载波传输方法包括以下步骤:
步骤401:终端设备在第一载波以及第一时域位置上接收第一信道,在第二载波以及第二时域位置上接收或发送第二信道;其中,所述第二时域位置基于所述第一时域位置、第一时间偏差以及第二时间偏差中的至少之一确定,所述第一时间偏差为所述第一载波和所述第二载波之间的时间偏差,所述第二时间偏差为所述第一信道的起始时域位置和所述第二信道的起始时域位置之间的时间偏差。
本申请实施例的技术方案可以应用于CA场景中,CA中的所述第一载波和所述第二载波不同步,即所述第一载波和所述第二载波之间具有一个时间偏差,该时间偏差称为第一时间偏差。
在本申请一可选实施方式中,所述第一信道用于调度所述第二信道。相应地,所述第一载波可以称为调度载波,所述第二载波可以称为被调度载波。
在本申请另一可选实施方式中,所述第二信道可以是所述第一信道的反馈信道,即所述第二信道用于承载所述第一信道的反馈信息。相应地,所述第一载波可以称为被调度载波,所述第二载波可以称为反馈载波。
本申请实施例中,所述终端设备在第一载波以及第一时域位置上接收第一信道,在第二载波以及第二时域位置上接收或发送第二信道,可以具有以下应用场景:
●场景一
所述终端设备在第一载波以及第一时域位置上接收PDCCH,在第二载波以及第二时域位置上接收PDSCH;其中,所述PDCCH用于调度所述PDSCH。
●场景二
所述终端设备在第一载波以及第一时域位置上接收PDCCH,在第二载波以及第二时域位置上发送物理上行共享信道(Physical Uplink Shared Channel,PUSCH);其中,所述PDCCH用于调度所述PUSCH。
●场景三
所述终端设备在第一载波以及第一时域位置上接收PDSCH,在第二载波以及第二时域位置上发送PUCCH;其中,所述PUCCH用于承载所述PDSCH的反馈信息。
本申请实施例中,由于所述第一载波和所述第二载波不同步,因此需要明确所述第一时域位置和所述第二时隙位置的时序关系,以下具体对其进行描述。
1)第二时隙偏差的确定
这里,所述第二时间偏差为所述第一信道的起始时域位置和所述第二信道的起始时域位置之间的时间偏差。
在一可选实施方式中,所述终端设备接收网络设备发送的PDCCH,所述PDCCH携带第一指示信息,所述第一指示信息用于指示所述第二时间偏差包括K个第二时间单元,K为正整数;所述第二时间单元的长度为所述第二载波的子载波间隔(Sub-Carrier Space,SCS)对应的时间单元的长度。
需要说明的是,所述第二载波的SCS对应的时间单元的长度与所述第一载波的SCS对应的时间单元的长度相同;或者,所述第二载波的SCS对应的时间单元的长度与所述第一载波的SCS对应的时间单元的长度不同。
2)第一时隙偏差的确定
这里,所述第一时间偏差为所述第一载波和所述第二载波之间的时间偏差。
需要说明的是,所述第一时间偏差需要与上述第二时间偏差保持一致的衡量单位(即时间单元),才可以进行加减运算。所述第一时间偏差的长度为Y个第二时间单元的长度,Y为正整数;所述第二时间单元的长度为所述第二载波的SCS对应的时间单元的长度。
本申请实施例中,网络侧给终端设备配置的第一时间偏差有可能不是按照上述第二时间单元为衡量单位进行配置,为此,需要根据网络侧的配置变换得到所述Y的取值。
a)在一可选方式中,所述终端设备接收网络设备发送的第二指示信息,所述第二指示信息用于指示所述第一时间偏差包括X1个第一时间单元,X1为正整数;所述第一时间单元的长度为所述第一载波的SCS对应的时间单元的长度;其中,所述Y的取值基于所述X1的取值、所述第一时间单元的长度以及所述第二时间单元的长度确定。
例如:Y=X1×第一时间单元的长度/第二时间单元的长度。
b)在另一可选方式中,所述终端设备接收网络设备发送的第二指示信息,所述第二指示信息用于指示所述第一时间偏差包括Y个第二时间单元。
c)在又一可选方式中,所述终端设备接收网络设备发送的第二指示信息,所述第二指示信息用于指示所述第一时间偏差包括X2个第三时间单元,X2为正整数;所述第三时间单元的长度为参考SCS对应的时间单元的长度;其中,所述Y的取值基于所述X2的取值、所述第三时间单元的长度以及所述第二时间单元的长度确定。
例如:Y=X2×第三时间单元的长度/第二时间单元的长度。
进一步,所述参考SCS为网络配置的或者协议约定的。
需要说明的是,本申请实施例上述方案中的所述时间单元(如第一时间单元、第二时间单元)为时隙或符号。
3)第二时域位置的确定
I)在一可选方式中,所述终端设备根据所述第一时域位置和所述第一时间偏差,确定第三时域位置;其中,所述第一时域位置和所述第三时域位置对齐;所述终端设备根据所述第三时域位置和所述第二时间偏差,确定所述第二时域位置。
具体地,所述第三时域位置基于所述第一时域位置加上所述第一时间偏差得到;或者,所述第三时域位置基于所述第一时域位置减去所述第一时间偏差得到。
具体地,所述第二时域位置基于所述第三时域位置加上所述第二时间偏差得到。
这里,所述第一时域位置是以所述第一载波的定时为参考确定的,即所述第一时域位置与所述第一载波上的定时是同步的。
II)在另一可选方式中,所述终端设备根据所述第一时域位置、所述第一时间偏差以及所述第二时间偏差,确定所述第二时域位置。
具体地,所述第二时域位置基于所述第一时域位置加上所述第二时间偏差再加上所述第一时间偏差得到;或者,所述第二时域位置基于所述第一时域位置加上所述第二时间偏差再减去所述第一时间偏差得到。
这里,所述第一时域位置是以所述第一载波的定时为参考确定的,即所述第一时域位置与所述第一载波上的定时是同步的。
III)在又一可选方式中,所述终端设备根据所述第一时域位置和所述第二时间偏差,确定所述第二时域位置;其中,所述第二时间偏差至少基于所述第一时间偏差确定。
具体地,所述第二时域位置基于所述第一时域位置加上所述第二时间偏差得到。
这里,所述第一时域位置是以所述第一载波的定时为参考确定的,即所述第一时域位置与所述第一载波上的定时是同步的。
IV)所述终端设备根据所述第一时域位置和所述第二时间偏差,确定所述第二时域位置;其中,所述第一时域位置是以所述第二载波的定时为参考确定的,即所述第一时域位置与所述第二载波上的定时是同步的。
具体地,所述第二时域位置基于所述第一时域位置加上所述第二时间偏差得到。
需要说明的是,通过上述方案确定出的第二时域位置是以所述第二载波的定时为参考确定的,即所述第二时域位置与所述第二载波上的定时是同步的。
需要说明的是,本申请实施例中的接收信道是指通过信道接收信息,发送信道是指通过信道发送信息。例如:接收PDCCH是指通过PDCCH接下行控制信息。接收PDSCH是指通过PDSCH接收下行数据。发送PUSCH是指通过PUSCH发送上行数据。发送PUCCH是指通过PUCCH发送上行控制信息(如ACK/NACK反馈信息)。
以下结合具体示例对本申请实施例的技术方案进行举例说明,以下示例均以时间单元为时隙进行举例说明,不局限于此,时间单元还可以是符号。
示例一:下行调度场景
本示例对应于上述技术方案的场景一,参照图5,调度载波即为第一载波,被调度载波即为第二载波,调度载波和被调度载波不同步,两个载波之间的时间偏差为第一时间偏差。第一时间偏差包括Y个时隙(该时隙的长度是指被调度载波的SCS对应的时隙长度)。调度载波上传输PDCCH,被调度载波上传输PDSCH,其中,PDSCH的起始时隙相对于PDCCH的起始时隙的时间偏差为第二时间偏差。第二时间偏差包括K0个时隙(该时隙的长度是指被调度载波的SCS对应的时隙长度)。
在跨载波调度中,调度载波和被调度载波具有相同的SCS,或者,调度载波和被调度载波具有不相同的SCS。
I)在一可选方式中,终端设备在调度载波的时隙n上接收到PDCCH,终端设备根据两个载波之间的第一时间偏差(第一时间偏差包括Y个时隙)确定调度载波的时隙n对应被调度载波的时隙m;终端设备在被调度载波的时隙m+K0上开始接收PDSCH。其中时隙m为时隙(n+Y)或者时隙(n-Y)。
II)在另一可选方式中,终端设备在调度载波的时隙n上接收到PDCCH,终端 设备在被调度载波的时隙(n+K0+Y)或者时隙(n+K0-Y)开始接收PDSCH。
III)在又一实施方式中,网络侧在设置K0时,考虑两个载波的第一时间偏差。终端设备在调度载波的时隙n上接收到PDCCH,终端设备在被调度载波的时隙(n+K0)上开始接收PDSCH。
IV)在又一实施方式中,终端设备在调度载波的某个时域位置(该时域位置对应被调度载波的时隙n)上接收到PDCCH,终端设备在被调度载波的时隙(n+K0)上开始接收PDSCH。
需要说明的是,上述方案中,当网络侧指示的第一时间偏差的衡量单位(即时隙)不是被调度载波的SCS对应的时隙时,需要对网络侧指示的信息进行转换。具体地,若网络侧指示的第一时间偏差包括X个第一时隙,则Y=X×第一时隙/第二时隙,所述第二时隙为第二SCS(即被调度载波的SCS)对应的时隙,所述第一时隙为第一SCS(即调度载波的SCS或者参考SCS或者被调度载波的SCS)对应的时隙。
示例二:上行调度场景
本示例对应于上述技术方案的场景二,参照图6,调度载波即为第一载波,被调度载波即为第二载波,调度载波和被调度载波不同步,两个载波之间的时间偏差为第一时间偏差。第一时间偏差包括Y个时隙(该时隙的长度是指被调度载波的SCS对应的时隙长度)。调度载波上传输PDCCH,被调度载波上传输PUSCH,其中,PUSCH的起始时隙相对于PDCCH的起始时隙的时间偏差为第二时间偏差。第二时间偏差包括K2个时隙(该时隙的长度是指被调度载波的SCS对应的时隙长度)。
在跨载波调度中,调度载波和被调度载波具有相同的SCS,或者,调度载波和被调度载波具有不相同的SCS。
I)在一可选方式中,终端设备在调度载波的时隙n上接收到PDCCH,终端设备根据两个载波之间的第一时间偏差(第一时间偏差包括Y个时隙)确定调度载波的时隙n对应被调度载波的时隙m;终端设备在被调度载波的时隙m+K2上开始发送PUSCH。其中时隙m为时隙(n+Y)或者时隙(n-Y)。
II)在另一可选方式中,终端设备在调度载波的时隙n上接收到PDCCH,终端设备在被调度载波的时隙(n+K2+Y)或者时隙(n+K2-Y)开始发送PUSCH。
III)在又一实施方式中,网络侧在设置K2时,考虑两个载波的第一时间偏差。终端设备在调度载波的时隙n上接收到PDCCH,终端设备在被调度载波的时隙(n+K2)上开始发送PUSCH。
IV)在又一实施方式中,终端设备在调度载波的某个时域位置(该时域位置对应被调度载波的时隙n)上接收到PDCCH,终端设备在被调度载波的时隙(n+K2)上开始发送PUSCH。
需要说明的是,上述方案中,当网络侧指示的第一时间偏差的衡量单位(即时隙)不是被调度载波的SCS对应的时隙时,需要对网络侧指示的信息进行转换。具体地,若网络侧指示的第一时间偏差包括X个第一时隙,则Y=X×第一时隙/第二时隙,所述第二时隙为第二SCS(即被调度载波的SCS)对应的时隙,所述第一时隙为第一SCS(即调度载波的SCS或者参考SCS或者被调度载波的SCS)对应的时隙。
示例三:PUCCH反馈场景
本示例对应于上述技术方案的场景三,参照图7,PDSCH载波即为第一载波,PUCCH载波即为第二载波,PDSCH载波和PUCCH载波不同步,两个载波之间的时间偏差为第一时间偏差。第一时间偏差包括Y个时隙(该时隙的长度是指PUCCH载波的SCS对应的时隙长度)。PDSCH载波上传输PDSCH,PUCCH载波上传输PUCCH,PUCCH用于承载PDSCH的反馈信息(如ACK/NACK信息),其中,PUCCH 的起始时隙相对于PDSCH的起始时隙的时间偏差为第二时间偏差。第二时间偏差包括K1个时隙(该时隙的长度是指PUCCH载波的SCS对应的时隙长度)。
PDSCH载波和PUCCH载波具有相同的SCS,或者,PDSCH载波和PUCCH载波具有不相同的SCS。
I)在一可选方式中,终端设备在PDSCH载波的时隙n上接收到PDSCH,终端设备根据两个载波之间的第一时间偏差(第一时间偏差包括Y个时隙)确定PDSCH载波的时隙n对应PUCCH载波的时隙m;终端设备在PUCCH载波的时隙m+K1上开始发送PUCCH。其中时隙m为时隙(n+Y)或者时隙(n-Y)。
II)在另一可选方式中,终端设备在PDSCH载波的时隙n上接收到PDSCH,终端设备在PUCCH载波的时隙(n+K1+Y)或者时隙(n+K1-Y)开始发送PUCCH。
III)在又一实施方式中,网络侧在设置K1时,考虑两个载波的第一时间偏差。终端设备在PDSCH载波的时隙n上接收到PDSCH,终端设备在PUCCH载波的时隙(n+K1)上开始发送PUCCH。
IV)在又一实施方式中,终端设备在PDSCH载波的某个时域位置(该时域位置对应PUCCH载波的时隙n)上接收到PDSCH,终端设备在PUCCH载波的时隙(n+K1)上开始发送PUCCH。
需要说明的是,上述方案中,当网络侧指示的第一时间偏差的衡量单位(即时隙)不是PUCCH载波的SCS对应的时隙时,需要对网络侧指示的信息进行转换。具体地,若网络侧指示的第一时间偏差包括X个第一时隙,则Y=X×第一时隙/第二时隙,所述第二时隙为第二SCS(即PUCCH载波的SCS)对应的时隙,所述第一时隙为第一SCS(即PDSCH载波的SCS或者参考SCS或者PUCCH载波的SCS)对应的时隙。
图8为本申请实施例提供的跨载波传输装置的结构组成示意图,如图8所示,所述跨载波传输装置包括:
通信单元801,用于在第一载波以及第一时域位置上接收第一信道,在第二载波以及第二时域位置上接收或发送第二信道;
其中,所述第二时域位置基于所述第一时域位置、第一时间偏差以及第二时间偏差中的至少之一确定,所述第一时间偏差为所述第一载波和所述第二载波之间的时间偏差,所述第二时间偏差为所述第一信道的起始时域位置和所述第二信道的起始时域位置之间的时间偏差。
在一可选实施方式中,所述通信单元801,还用于接收网络设备发送的PDCCH,所述PDCCH携带第一指示信息,所述第一指示信息用于指示所述第二时间偏差包括K个第二时间单元,K为正整数;所述第二时间单元的长度为所述第二载波的SCS对应的时间单元的长度。
在一可选实施方式中,所述第二载波的SCS对应的时间单元的长度与所述第一载波的SCS对应的时间单元的长度相同;或者,
所述第二载波的SCS对应的时间单元的长度与所述第一载波的SCS对应的时间单元的长度不同。
在一可选实施方式中,所述第一时间偏差的长度为Y个第二时间单元的长度,Y为正整数;所述第二时间单元的长度为所述第二载波的SCS对应的时间单元的长度。
在一可选实施方式中,所述通信单元801,还用于接收网络设备发送的第二指示信息,所述第二指示信息用于指示所述第一时间偏差包括X1个第一时间单元,X1为正整数;所述第一时间单元的长度为所述第一载波的SCS对应的时间单元的长度;
其中,所述Y的取值基于所述X1的取值、所述第一时间单元的长度以及所述第二时间单元的长度确定。
在一可选实施方式中,所述通信单元801,还用于接收网络设备发送的第二指示信息,所述第二指示信息用于指示所述第一时间偏差包括Y个第二时间单元。
在一可选实施方式中,所述通信单元801,还用于接收网络设备发送的第二指示信息,所述第二指示信息用于指示所述第一时间偏差包括X2个第三时间单元,X2为正整数;所述第三时间单元的长度为参考SCS对应的时间单元的长度;
其中,所述Y的取值基于所述X2的取值、所述第三时间单元的长度以及所述第二时间单元的长度确定。
在一可选实施方式中,所述参考SCS为网络配置的或者协议约定的。
在一可选实施方式中,所述时间单元为时隙或符号。
在一可选实施方式中,所述装置还包括:
确定单元802,用于根据所述第一时域位置和所述第一时间偏差,确定第三时域位置;其中,所述第一时域位置和所述第三时域位置对齐;根据所述第三时域位置和所述第二时间偏差,确定所述第二时域位置。
在一可选实施方式中,所述第三时域位置基于所述第一时域位置加上所述第一时间偏差得到;或者,
所述第三时域位置基于所述第一时域位置减去所述第一时间偏差得到。
在一可选实施方式中,所述第二时域位置基于所述第三时域位置加上所述第二时间偏差得到。
在一可选实施方式中,所述装置还包括:
确定单元802,用于根据所述第一时域位置、所述第一时间偏差以及所述第二时间偏差,确定所述第二时域位置。
在一可选实施方式中,所述第二时域位置基于所述第一时域位置加上所述第二时间偏差再加上所述第一时间偏差得到;或者,
所述第二时域位置基于所述第一时域位置加上所述第二时间偏差再减去所述第一时间偏差得到。
在一可选实施方式中,所述装置还包括:
确定单元802,用于根据所述第一时域位置和所述第二时间偏差,确定所述第二时域位置;
其中,所述第二时间偏差至少基于所述第一时间偏差确定。
在一可选实施方式中,所述第二时域位置基于所述第一时域位置加上所述第二时间偏差得到。
在一可选实施方式中,所述第一时域位置是以所述第一载波的定时为参考确定的。
在一可选实施方式中,所述装置还包括:
确定单元802,用于根据所述第一时域位置和所述第二时间偏差,确定所述第二时域位置;
其中,所述第一时域位置是以所述第二载波的定时为参考确定的。
在一可选实施方式中,所述第二时域位置基于所述第一时域位置加上所述第二时间偏差得到。
在一可选实施方式中,所述通信单元801,用于在第一载波以及第一时域位置上接收PDCCH,在第二载波以及第二时域位置上接收PDSCH;其中,所述PDCCH用于调度所述PDSCH。
在一可选实施方式中,所述通信单元801,用于在第一载波以及第一时域位置上接收PDCCH,在第二载波以及第二时域位置上发送PUSCH;其中,所述PDCCH用 于调度所述PUSCH。
在一可选实施方式中,所述通信单元801,用于在第一载波以及第一时域位置上接收PDSCH,在第二载波以及第二时域位置上发送PUCCH;其中,所述PUCCH用于承载所述PDSCH的反馈信息。
本领域技术人员应当理解,本申请实施例的上述跨载波传输装置的相关描述可以参照本申请实施例的跨载波传输方法的相关描述进行理解。
图9是本申请实施例提供的一种通信设备900示意性结构图。该通信设备可以是终端设备,也可以是网络设备,图9所示的通信设备900包括处理器910,处理器910可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图9所示,通信设备900还可以包括存储器920。其中,处理器910可以从存储器920中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器920可以是独立于处理器910的一个单独的器件,也可以集成在处理器910中。
可选地,如图9所示,通信设备900还可以包括收发器930,处理器910可以控制该收发器930与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器930可以包括发射机和接收机。收发器930还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备900具体可为本申请实施例的网络设备,并且该通信设备900可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备900具体可为本申请实施例的移动终端/终端设备,并且该通信设备900可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
图10是本申请实施例的芯片的示意性结构图。图10所示的芯片1000包括处理器1010,处理器1010可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图10所示,芯片1000还可以包括存储器1020。其中,处理器1010可以从存储器1020中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1020可以是独立于处理器1010的一个单独的器件,也可以集成在处理器1010中。
可选地,该芯片1000还可以包括输入接口1030。其中,处理器1010可以控制该输入接口1030与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片1000还可以包括输出接口1040。其中,处理器1010可以控制该输出接口1040与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的移动终端/终端设备,并且该芯片可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图11是本申请实施例提供的一种通信系统1100的示意性框图。如图11所示,该通信系统1100包括终端设备1110和网络设备1120。
其中,该终端设备1110可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备1120可以用于实现上述方法中由网络设备实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现 的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应 涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (49)

  1. 一种跨载波传输方法,所述方法包括:
    终端设备在第一载波以及第一时域位置上接收第一信道,在第二载波以及第二时域位置上接收或发送第二信道;
    其中,所述第二时域位置基于所述第一时域位置、第一时间偏差以及第二时间偏差中的至少之一确定,所述第一时间偏差为所述第一载波和所述第二载波之间的时间偏差,所述第二时间偏差为所述第一信道的起始时域位置和所述第二信道的起始时域位置之间的时间偏差。
  2. 根据权利要求1所述的方法,其中,所述方法还包括:
    所述终端设备接收网络设备发送的物理下行控制信道PDCCH,所述PDCCH携带第一指示信息,所述第一指示信息用于指示所述第二时间偏差包括K个第二时间单元,K为正整数;所述第二时间单元的长度为所述第二载波的子载波间隔SCS对应的时间单元的长度。
  3. 根据权利要求2所述的方法,其中,
    所述第二载波的SCS对应的时间单元的长度与所述第一载波的SCS对应的时间单元的长度相同;或者,
    所述第二载波的SCS对应的时间单元的长度与所述第一载波的SCS对应的时间单元的长度不同。
  4. 根据权利要求1至3中任一项所述的方法,其中,所述第一时间偏差的长度为Y个第二时间单元的长度,Y为正整数;所述第二时间单元的长度为所述第二载波的SCS对应的时间单元的长度。
  5. 根据权利要求4所述的方法,其中,所述方法还包括:
    所述终端设备接收网络设备发送的第二指示信息,所述第二指示信息用于指示所述第一时间偏差包括X1个第一时间单元,X1为正整数;所述第一时间单元的长度为所述第一载波的SCS对应的时间单元的长度;
    其中,所述Y的取值基于所述X1的取值、所述第一时间单元的长度以及所述第二时间单元的长度确定。
  6. 根据权利要求4所述的方法,其中,所述方法还包括:
    所述终端设备接收网络设备发送的第二指示信息,所述第二指示信息用于指示所述第一时间偏差包括Y个第二时间单元。
  7. 根据权利要求4所述的方法,其中,所述方法还包括:
    所述终端设备接收网络设备发送的第二指示信息,所述第二指示信息用于指示所述第一时间偏差包括X2个第三时间单元,X2为正整数;所述第三时间单元的长度为参考SCS对应的时间单元的长度;
    其中,所述Y的取值基于所述X2的取值、所述第三时间单元的长度以及所述第二时间单元的长度确定。
  8. 根据权利要求7所述的方法,其中,所述参考SCS为网络配置的或者协议约定的。
  9. 根据权利要求2至8中任一项所述的方法,其中,所述时间单元为时隙或符号。
  10. 根据权利要求1至9中任一项所述的方法,其中,所述方法还包括:
    所述终端设备根据所述第一时域位置和所述第一时间偏差,确定第三时域位置; 其中,所述第一时域位置和所述第三时域位置对齐;
    所述终端设备根据所述第三时域位置和所述第二时间偏差,确定所述第二时域位置。
  11. 根据权利要求10所述的方法,其中,
    所述第三时域位置基于所述第一时域位置加上所述第一时间偏差得到;或者,
    所述第三时域位置基于所述第一时域位置减去所述第一时间偏差得到。
  12. 根据权利要求10或11所述的方法,其中,所述第二时域位置基于所述第三时域位置加上所述第二时间偏差得到。
  13. 根据权利要求1至9中任一项所述的方法,其中,所述方法还包括:
    所述终端设备根据所述第一时域位置、所述第一时间偏差以及所述第二时间偏差,确定所述第二时域位置。
  14. 根据权利要求13所述的方法,其中,
    所述第二时域位置基于所述第一时域位置加上所述第二时间偏差再加上所述第一时间偏差得到;或者,
    所述第二时域位置基于所述第一时域位置加上所述第二时间偏差再减去所述第一时间偏差得到。
  15. 根据权利要求1至9中任一项所述的方法,其中,所述方法还包括:
    所述终端设备根据所述第一时域位置和所述第二时间偏差,确定所述第二时域位置;
    其中,所述第二时间偏差至少基于所述第一时间偏差确定。
  16. 根据权利要求15所述的方法,其中,所述第二时域位置基于所述第一时域位置加上所述第二时间偏差得到。
  17. 根据权利要求1至16中任一项所述的方法,其中,所述第一时域位置是以所述第一载波的定时为参考确定的。
  18. 根据权利要求1至9中任一项所述的方法,其中,所述方法还包括:
    所述终端设备根据所述第一时域位置和所述第二时间偏差,确定所述第二时域位置;
    其中,所述第一时域位置是以所述第二载波的定时为参考确定的。
  19. 根据权利要求18所述的方法,其中,所述第二时域位置基于所述第一时域位置加上所述第二时间偏差得到。
  20. 根据权利要求1至19中任一项所述的方法,其中,所述终端设备在第一载波以及第一时域位置上接收第一信道,在第二载波以及第二时域位置上接收第二信道,包括:
    所述终端设备在第一载波以及第一时域位置上接收PDCCH,在第二载波以及第二时域位置上接收物理下行共享信道PDSCH;其中,所述PDCCH用于调度所述PDSCH。
  21. 根据权利要求1至19中任一项所述的方法,其中,所述终端设备在第一载波以及第一时域位置上接收第一信道,在第二载波以及第二时域位置上发送第二信道,包括:
    所述终端设备在第一载波以及第一时域位置上接收PDCCH,在第二载波以及第二时域位置上发送物理上行共享信道PUSCH;其中,所述PDCCH用于调度所述PUSCH。
  22. 根据权利要求1至19中任一项所述的方法,其中,所述终端设备在第一载波以及第一时域位置上接收第一信道,在第二载波以及第二时域位置上发送第二信 道,包括:
    所述终端设备在第一载波以及第一时域位置上接收物理下行共享信道PDSCH,在第二载波以及第二时域位置上发送物理上行控制信道PUCCH;其中,所述PUCCH用于承载所述PDSCH的反馈信息。
  23. 一种跨载波传输装置,所述装置包括:
    通信单元,用于在第一载波以及第一时域位置上接收第一信道,在第二载波以及第二时域位置上接收或发送第二信道;
    其中,所述第二时域位置基于所述第一时域位置、第一时间偏差以及第二时间偏差中的至少之一确定,所述第一时间偏差为所述第一载波和所述第二载波之间的时间偏差,所述第二时间偏差为所述第一信道的起始时域位置和所述第二信道的起始时域位置之间的时间偏差。
  24. 根据权利要求23所述的装置,其中,所述通信单元,还用于接收网络设备发送的PDCCH,所述PDCCH携带第一指示信息,所述第一指示信息用于指示所述第二时间偏差包括K个第二时间单元,K为正整数;所述第二时间单元的长度为所述第二载波的SCS对应的时间单元的长度。
  25. 根据权利要求24所述的装置,其中,
    所述第二载波的SCS对应的时间单元的长度与所述第一载波的SCS对应的时间单元的长度相同;或者,
    所述第二载波的SCS对应的时间单元的长度与所述第一载波的SCS对应的时间单元的长度不同。
  26. 根据权利要求23至25中任一项所述的装置,其中,所述第一时间偏差的长度为Y个第二时间单元的长度,Y为正整数;所述第二时间单元的长度为所述第二载波的SCS对应的时间单元的长度。
  27. 根据权利要求26所述的装置,其中,所述通信单元,还用于接收网络设备发送的第二指示信息,所述第二指示信息用于指示所述第一时间偏差包括X1个第一时间单元,X1为正整数;所述第一时间单元的长度为所述第一载波的SCS对应的时间单元的长度;
    其中,所述Y的取值基于所述X1的取值、所述第一时间单元的长度以及所述第二时间单元的长度确定。
  28. 根据权利要求26所述的装置,其中,所述通信单元,还用于接收网络设备发送的第二指示信息,所述第二指示信息用于指示所述第一时间偏差包括Y个第二时间单元。
  29. 根据权利要求26所述的装置,其中,所述通信单元,还用于接收网络设备发送的第二指示信息,所述第二指示信息用于指示所述第一时间偏差包括X2个第三时间单元,X2为正整数;所述第三时间单元的长度为参考SCS对应的时间单元的长度;
    其中,所述Y的取值基于所述X2的取值、所述第三时间单元的长度以及所述第二时间单元的长度确定。
  30. 根据权利要求29所述的装置,其中,所述参考SCS为网络配置的或者协议约定的。
  31. 根据权利要求24至30中任一项所述的装置,其中,所述时间单元为时隙或符号。
  32. 根据权利要求23至31中任一项所述的装置,其中,所述装置还包括:
    确定单元,用于根据所述第一时域位置和所述第一时间偏差,确定第三时域位置; 其中,所述第一时域位置和所述第三时域位置对齐;根据所述第三时域位置和所述第二时间偏差,确定所述第二时域位置。
  33. 根据权利要求32所述的装置,其中,
    所述第三时域位置基于所述第一时域位置加上所述第一时间偏差得到;或者,
    所述第三时域位置基于所述第一时域位置减去所述第一时间偏差得到。
  34. 根据权利要求32或33所述的装置,其中,所述第二时域位置基于所述第三时域位置加上所述第二时间偏差得到。
  35. 根据权利要求23至31中任一项所述的装置,其中,所述装置还包括:
    确定单元,用于根据所述第一时域位置、所述第一时间偏差以及所述第二时间偏差,确定所述第二时域位置。
  36. 根据权利要求35所述的装置,其中,
    所述第二时域位置基于所述第一时域位置加上所述第二时间偏差再加上所述第一时间偏差得到;或者,
    所述第二时域位置基于所述第一时域位置加上所述第二时间偏差再减去所述第一时间偏差得到。
  37. 根据权利要求23至31中任一项所述的装置,其中,所述装置还包括:
    确定单元,用于根据所述第一时域位置和所述第二时间偏差,确定所述第二时域位置;
    其中,所述第二时间偏差至少基于所述第一时间偏差确定。
  38. 根据权利要求37所述的装置,其中,所述第二时域位置基于所述第一时域位置加上所述第二时间偏差得到。
  39. 根据权利要求23至38中任一项所述的装置,其中,所述第一时域位置是以所述第一载波的定时为参考确定的。
  40. 根据权利要求23至31中任一项所述的装置,其中,所述装置还包括:
    确定单元,用于根据所述第一时域位置和所述第二时间偏差,确定所述第二时域位置;
    其中,所述第一时域位置是以所述第二载波的定时为参考确定的。
  41. 根据权利要求40所述的装置,其中,所述第二时域位置基于所述第一时域位置加上所述第二时间偏差得到。
  42. 根据权利要求23至41中任一项所述的装置,其中,所述通信单元,用于在第一载波以及第一时域位置上接收PDCCH,在第二载波以及第二时域位置上接收PDSCH;其中,所述PDCCH用于调度所述PDSCH。
  43. 根据权利要求23至41中任一项所述的装置,其中,所述通信单元,用于在第一载波以及第一时域位置上接收PDCCH,在第二载波以及第二时域位置上发送PUSCH;其中,所述PDCCH用于调度所述PUSCH。
  44. 根据权利要求23至41中任一项所述的装置,其中,所述通信单元,用于在第一载波以及第一时域位置上接收PDSCH,在第二载波以及第二时域位置上发送PUCCH;其中,所述PUCCH用于承载所述PDSCH的反馈信息。
  45. 一种终端设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至22中任一项所述的方法。
  46. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至22中任一项所述的方法。
  47. 一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算 机执行如权利要求1至22中任一项所述的方法。
  48. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至22中任一项所述的方法。
  49. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1至22中任一项所述的方法。
PCT/CN2019/118857 2019-11-15 2019-11-15 一种跨载波传输方法及装置、终端设备 WO2021092920A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
PCT/CN2019/118857 WO2021092920A1 (zh) 2019-11-15 2019-11-15 一种跨载波传输方法及装置、终端设备
CN202110872226.0A CN113595708B (zh) 2019-11-15 2019-11-15 一种跨载波传输方法及装置、终端设备
EP19952813.4A EP3930397A4 (en) 2019-11-15 2019-11-15 CROSS CARRIER TRANSMISSION METHOD AND DEVICE AND TERMINAL
CN201980081531.9A CN113170463A (zh) 2019-11-15 2019-11-15 一种跨载波传输方法及装置、终端设备
BR112022000912A BR112022000912A2 (pt) 2019-11-15 2019-11-15 Método para transmissão entre portadoras e dispositivo de transmissão entre portadoras
JP2021576402A JP7410190B2 (ja) 2019-11-15 2019-11-15 クロスキャリア伝送方法及び装置、端末機器
KR1020217043418A KR20220100522A (ko) 2019-11-15 2019-11-15 크로스 캐리어 전송 방법 및 장치, 단말 기기
US17/448,400 US20220007398A1 (en) 2019-11-15 2021-09-22 Method for cross-carrier transmission and terminal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/118857 WO2021092920A1 (zh) 2019-11-15 2019-11-15 一种跨载波传输方法及装置、终端设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/448,400 Continuation US20220007398A1 (en) 2019-11-15 2021-09-22 Method for cross-carrier transmission and terminal device

Publications (1)

Publication Number Publication Date
WO2021092920A1 true WO2021092920A1 (zh) 2021-05-20

Family

ID=75911673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/118857 WO2021092920A1 (zh) 2019-11-15 2019-11-15 一种跨载波传输方法及装置、终端设备

Country Status (7)

Country Link
US (1) US20220007398A1 (zh)
EP (1) EP3930397A4 (zh)
JP (1) JP7410190B2 (zh)
KR (1) KR20220100522A (zh)
CN (2) CN113170463A (zh)
BR (1) BR112022000912A2 (zh)
WO (1) WO2021092920A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023083125A1 (zh) * 2021-11-10 2023-05-19 华为技术有限公司 通信方法、装置及系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113900595B (zh) * 2021-11-10 2023-12-15 哲库科技(北京)有限公司 Ddr访问方法、装置、电子设备及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102685897A (zh) * 2011-03-09 2012-09-19 中兴通讯股份有限公司 一种载波聚合系统中的时序配置方法及装置
CN102752090A (zh) * 2011-04-22 2012-10-24 北京三星通信技术研究有限公司 一种支持pusch的同步harq传输的方法
WO2015109594A1 (zh) * 2014-01-27 2015-07-30 华为技术有限公司 一种载波数据传输方法,及装置
US20150341962A1 (en) * 2011-04-12 2015-11-26 Broadcom Corporation Methods and apparatus of spectrum sharing for cellular-controlled offloading using unlicensed band
CN105981466A (zh) * 2014-03-14 2016-09-28 英特尔Ip公司 用于适机联网的系统、方法和设备
CN106537979A (zh) * 2014-07-31 2017-03-22 华为技术有限公司 用于多载波传输的系统和方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3603266A4 (en) * 2017-03-23 2021-05-26 Apple Inc. PLANNING, HYBRID AUTOMATIC REPEAT REQUEST OPERATION AND CODE BOOK DESIGN FOR NEW RADIO CARRIER AGGREGATION
CN109150456B (zh) * 2017-06-16 2023-05-12 华为技术有限公司 一种无线通信方法和设备
CN110636616B (zh) * 2018-06-22 2022-08-26 华为技术有限公司 无线通信方法及装置
WO2021054801A1 (ko) * 2019-09-19 2021-03-25 엘지전자 주식회사 무선 통신 시스템에서 신호를 송수신 하는 방법 및 이를 지원하는 장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102685897A (zh) * 2011-03-09 2012-09-19 中兴通讯股份有限公司 一种载波聚合系统中的时序配置方法及装置
US20150341962A1 (en) * 2011-04-12 2015-11-26 Broadcom Corporation Methods and apparatus of spectrum sharing for cellular-controlled offloading using unlicensed band
CN102752090A (zh) * 2011-04-22 2012-10-24 北京三星通信技术研究有限公司 一种支持pusch的同步harq传输的方法
WO2015109594A1 (zh) * 2014-01-27 2015-07-30 华为技术有限公司 一种载波数据传输方法,及装置
CN105981466A (zh) * 2014-03-14 2016-09-28 英特尔Ip公司 用于适机联网的系统、方法和设备
CN106537979A (zh) * 2014-07-31 2017-03-22 华为技术有限公司 用于多载波传输的系统和方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3930397A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023083125A1 (zh) * 2021-11-10 2023-05-19 华为技术有限公司 通信方法、装置及系统

Also Published As

Publication number Publication date
KR20220100522A (ko) 2022-07-15
CN113595708B (zh) 2023-06-20
US20220007398A1 (en) 2022-01-06
JP7410190B2 (ja) 2024-01-09
EP3930397A1 (en) 2021-12-29
CN113595708A (zh) 2021-11-02
JP2023505916A (ja) 2023-02-14
BR112022000912A2 (pt) 2022-06-28
CN113170463A (zh) 2021-07-23
EP3930397A4 (en) 2022-03-23

Similar Documents

Publication Publication Date Title
US11751278B2 (en) Cell state management method and apparatus, terminal device, and network device
WO2020237594A1 (zh) 一种bwp的管理方法及装置、终端
WO2021092860A1 (zh) 一种小区配置方法及装置、终端设备、网络设备
TW202015450A (zh) 通訊方法、終端設備和網路設備
US20220007398A1 (en) Method for cross-carrier transmission and terminal device
TW202019208A (zh) 一種回饋資源的複用方法、終端設備及網路設備
WO2020087545A1 (zh) 一种上行控制信息确定方法和通信设备
WO2020248143A1 (zh) 监听控制信道的方法、终端设备和网络设备
WO2020093399A1 (zh) 无线通信方法、网络设备和终端设备
WO2021142661A1 (zh) 控制小区状态的方法及装置、终端设备、网络设备
WO2022021136A1 (zh) 无线通信方法、终端设备和网络设备
WO2020232647A1 (zh) 用于检测pdcch的方法、装置和通信设备
WO2020087467A1 (zh) 无线通信的方法、终端设备和网络设备
WO2020056777A1 (zh) 无线通信的方法、发送节点和接收节点
EP3846567A1 (en) Communication method, terminal device, and network device
WO2022067697A1 (zh) 一种触发trs激活的方法及装置、终端设备、网络设备
US11956666B2 (en) HARQ process determination method, network device and terminal
WO2021159378A1 (zh) 一种反馈方法及装置、终端设备、网络设备
WO2023097622A1 (zh) 上行信号传输方法、设备、芯片、介质、产品及程序
WO2021232208A1 (zh) 一种srs的配置方法及装置、网络设备、终端设备
WO2021179133A1 (zh) 信道的处理方法、装置、存储介质、处理器及电子装置
WO2021087898A1 (zh) 一种状态转换方法及装置、通信设备
WO2020087311A1 (zh) 一种数据传输方法及装置、网络设备、终端
WO2020087533A1 (zh) 无线通信方法、网络设备和终端设备
WO2021030988A1 (zh) 信息反馈的方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19952813

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019952813

Country of ref document: EP

Effective date: 20210921

ENP Entry into the national phase

Ref document number: 2021576402

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022000912

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112022000912

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220118