WO2021087898A1 - 一种状态转换方法及装置、通信设备 - Google Patents

一种状态转换方法及装置、通信设备 Download PDF

Info

Publication number
WO2021087898A1
WO2021087898A1 PCT/CN2019/116375 CN2019116375W WO2021087898A1 WO 2021087898 A1 WO2021087898 A1 WO 2021087898A1 CN 2019116375 W CN2019116375 W CN 2019116375W WO 2021087898 A1 WO2021087898 A1 WO 2021087898A1
Authority
WO
WIPO (PCT)
Prior art keywords
scg
node
secondary node
notification message
terminal device
Prior art date
Application number
PCT/CN2019/116375
Other languages
English (en)
French (fr)
Inventor
王淑坤
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2019/116375 priority Critical patent/WO2021087898A1/zh
Priority to CN202310220277.4A priority patent/CN116234038A/zh
Priority to CN201980101824.9A priority patent/CN114642036A/zh
Priority to EP19951555.2A priority patent/EP4057703A4/en
Publication of WO2021087898A1 publication Critical patent/WO2021087898A1/zh
Priority to US17/729,609 priority patent/US20220248325A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0203Power saving arrangements in the radio access network or backbone network of wireless communication networks
    • H04W52/0206Power saving arrangements in the radio access network or backbone network of wireless communication networks in access points, e.g. base stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0251Power saving arrangements in terminal devices using monitoring of local events, e.g. events related to user activity
    • H04W52/0254Power saving arrangements in terminal devices using monitoring of local events, e.g. events related to user activity detecting a user operation or a tactile contact or a motion of the device
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0069Transmission or use of information for re-establishing the radio link in case of dual connectivity, e.g. decoupled uplink/downlink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0235Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a power saving command
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the embodiments of the present application relate to the field of mobile communication technology, and specifically relate to a state transition method and device, and communication equipment.
  • Dormancy SCG means that all cells in the SCG are in a dormancy state.
  • the cell can be called a dormancy cell.
  • the terminal device does not monitor the Physical Downlink Control Channel (PDCCH) in the dormancy cell, does not perform data transmission and reception, but performs radio resource management (Radio Resource Management, RRM)/channel status indicator (Channel Status Indicator, CSI) ) Measurement and beam management, etc. Therefore, how to support dormancy SCG is an issue that needs to be clarified.
  • PDCCH Physical Downlink Control Channel
  • RRM Radio Resource Management
  • CSI Channel Status Indicator
  • the embodiments of the present application provide a state transition method and device, and communication equipment.
  • the primary node receives first indication information sent by the secondary node, where the first indication information is used to indicate that the service on the secondary node side is not active;
  • the primary node sends first confirmation information to the secondary node, and the first confirmation information is used To trigger the SCG to enter the dormant state.
  • the secondary node sends first indication information to the primary node, where the first indication information is used to indicate that the service on the secondary node side is not active;
  • the secondary node If the secondary node receives the first confirmation message sent by the primary node, it triggers the SCG to enter the dormant state.
  • the master node determines that downlink data is forwarded to the slave node or the master node receives the third notification message sent by the terminal device, the third notification message is used to notify the master node to trigger
  • the master node sends a first request message to the secondary node, and the first request message is used to request the SCG to enter the non-sleep state or the activated state.
  • the secondary node determines that downlink data reaches the secondary node, the secondary node triggers the SCG to enter the non-dormant state or the activated state.
  • the terminal device determines that uplink data is sent to the secondary node, the terminal device sends a third notification message to the master node, where the third notification message is used to notify the master node to trigger the SCG to enter a non-sleep state or an activated state.
  • a receiving unit configured to receive first indication information sent by a secondary node, where the first indication information is used to indicate that services on the secondary node side are not active;
  • a determining unit configured to determine that no downlink data is forwarded to the secondary node and/or there is no uplink data sent from the secondary node;
  • the sending unit is configured to send first confirmation information to the secondary node, where the first confirmation information is used to trigger the SCG to enter the dormant state.
  • a sending unit configured to send first indication information to the master node, where the first indication information is used to indicate that the service on the secondary node side is not active;
  • the receiving unit is configured to trigger the SCG to enter the sleep state if the first confirmation message sent by the master node is received.
  • the sending unit is configured to, when the SCG is in a dormant state or in an inactive state, if the master node determines that downlink data is forwarded to the secondary node or the master node receives a third notification message sent by the terminal device, the third notification message is used for Notifying the master node to trigger the SCG to enter the non-sleeping state, then sending a first request message to the secondary node, where the first request message is used to request the SCG to enter the non-sleeping state or the activated state.
  • the trigger unit is configured to trigger the SCG to enter the non-sleep state or the activated state if it is determined that downlink data reaches the secondary node when the SCG is in the dormant state or the inactive state.
  • the determining unit is used to determine that uplink data is sent to the secondary node
  • the sending unit is configured to send a third notification message to the master node, where the third notification message is used to notify the master node to trigger the SCG to enter the non-sleep state or the activated state.
  • the communication device provided in the embodiment of the present application includes a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the above-mentioned state transition method.
  • the chip provided in the embodiment of the present application is used to implement the above-mentioned state transition method.
  • the chip includes: a processor, configured to call and run a computer program from the memory, so that the device installed with the chip executes the above-mentioned state transition method.
  • the computer-readable storage medium provided by the embodiment of the present application is used to store a computer program, and the computer program enables a computer to execute the above-mentioned state transition method.
  • the computer program product provided by the embodiment of the present application includes computer program instructions, and the computer program instructions cause the computer to execute the above-mentioned state transition method.
  • the computer program provided by the embodiment of the present application when it runs on a computer, causes the computer to execute the above-mentioned state transition method.
  • FIG. 1 is a schematic diagram of a communication system architecture provided by an embodiment of the present application.
  • Figure 2 is a network deployment and networking architecture diagram of EN-DC provided by an embodiment of the application
  • Figure 3-1 is a schematic diagram 1 of the BWP provided by an embodiment of the application.
  • Figure 3-2 is the second schematic diagram of the BWP provided by the embodiment of the application.
  • Figure 3-3 is the third schematic diagram of the BWP provided by the embodiment of the application.
  • FIG. 4 is a first flowchart of a state transition method provided by an embodiment of this application.
  • FIG. 5 is an interaction flowchart of Example 1 provided by an embodiment of this application.
  • FIG. 6 is a schematic diagram 2 of the flow of the state transition method provided by the embodiment of the application.
  • FIG. 7 is a third schematic flowchart of a state transition method provided by an embodiment of this application.
  • FIG. 8 is an interaction flowchart of Example 2 provided by an embodiment of this application.
  • FIG. 9 is an interaction flowchart of Example 3 provided by an embodiment of the application.
  • FIG. 10 is an interaction flowchart of Example 4 provided by an embodiment of this application.
  • FIG. 11 is a schematic diagram 1 of the structural composition of a state transition device provided by an embodiment of the application.
  • FIG. 12 is a second schematic diagram of the structural composition of the state transition device provided by the embodiment of the application.
  • FIG. 13 is a third structural diagram of the state transition device provided by an embodiment of the application.
  • FIG. 14 is a fourth schematic diagram of the structural composition of the state transition device provided by the embodiment of the application.
  • 15 is a schematic diagram five of the structure of the state transition device provided by the embodiment of the application.
  • FIG. 16 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 17 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • FIG. 18 is a schematic block diagram of a communication system provided by an embodiment of the present application.
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • 5G communication system 5G communication system or future communication system.
  • the communication system 100 applied in the embodiment of the present application is shown in FIG. 1.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a terminal 120 (or called a communication terminal or terminal).
  • the network device 110 may provide communication coverage for a specific geographic area, and may communicate with terminals located in the coverage area.
  • the network device 110 may be an evolved base station (Evolutional Node B, eNB, or eNodeB) in an LTE system, or a wireless controller in a cloud radio access network (Cloud Radio Access Network, CRAN), or
  • the network equipment can be a mobile switching center, a relay station, an access point, an in-vehicle device, a wearable device, a hub, a switch, a bridge, a router, a network side device in a 5G network, or a network device in a future communication system, etc.
  • the communication system 100 also includes at least one terminal 120 located within the coverage area of the network device 110.
  • the "terminal” used here includes, but is not limited to, connection via a wired line, such as via a public switched telephone network (PSTN), digital subscriber line (Digital Subscriber Line, DSL), digital cable, and direct cable connection; And/or another data connection/network; and/or via a wireless interface, such as for cellular networks, wireless local area networks (WLAN), digital TV networks such as DVB-H networks, satellite networks, AM-FM Broadcast transmitter; and/or another terminal's device configured to receive/send communication signals; and/or Internet of Things (IoT) equipment.
  • PSTN public switched telephone network
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • a terminal set to communicate through a wireless interface may be referred to as a "wireless communication terminal", a “wireless terminal” or a “mobile terminal”.
  • mobile terminals include, but are not limited to, satellite or cellular phones; Personal Communications System (PCS) terminals that can combine cellular radio phones with data processing, fax, and data communication capabilities; can include radio phones, pagers, Internet/intranet PDA with internet access, web browser, memo pad, calendar, and/or Global Positioning System (GPS) receiver; and conventional laptop and/or palmtop receivers or others including radio telephone transceivers Electronic device.
  • PCS Personal Communications System
  • GPS Global Positioning System
  • Terminal can refer to access terminal, user equipment (UE), user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user Device.
  • the access terminal can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital processing (Personal Digital Assistant, PDA), with wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminals in 5G networks, or terminals in the future evolution of PLMN, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • direct terminal connection (Device to Device, D2D) communication may be performed between the terminals 120.
  • the 5G communication system or 5G network may also be referred to as a New Radio (NR) system or NR network.
  • NR New Radio
  • FIG. 1 exemplarily shows one network device and two terminals.
  • the communication system 100 may include multiple network devices and the coverage of each network device may include other numbers of terminals. This embodiment of the present application There is no restriction on this.
  • the communication system 100 may also include other network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • the devices with communication functions in the network/system in the embodiments of the present application may be referred to as communication devices.
  • the communication device may include a network device 110 and a terminal 120 with communication functions, and the network device 110 and the terminal 120 may be the specific devices described above, which will not be repeated here; communication
  • the device may also include other devices in the communication system 100, such as other network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • 5G Enhanced Mobile Broadband
  • URLLC Ultra-Reliable Low-Latency Communications
  • mMTC Massive Machine-Type Communications
  • eMBB is still targeting users to obtain multimedia content, services and data, and its demand is growing very rapidly.
  • eMBB may be deployed in different scenarios, such as indoors, urban areas, rural areas, etc., its capabilities and requirements are also quite different, so it cannot be generalized and must be analyzed in detail in conjunction with specific deployment scenarios.
  • Typical applications of URLLC include: industrial automation, power automation, telemedicine operations (surgery), traffic safety protection, etc.
  • the typical characteristics of mMTC include: high connection density, small data volume, delay-insensitive services, low cost and long service life of the module.
  • EN-DC LTE-NR Dual Connectivity
  • the LTE base station eNB
  • the NR base station gNB or en-gNB
  • the secondary node Secondary Node, SN
  • E-UTRAN Evolved Universal Terrestrial Radio Access Networ
  • EPC Evolved Packet Core network
  • the access network part is composed of at least one eNB (two eNBs are shown in Figure 2) and at least one en-gNB (two en-gNBs are shown in Figure 2), where eNB serves as MN and en-gNB serves as SN , MN and SN are both connected to EPC.
  • eNB serves as MN
  • en-gNB serves as SN
  • MN and SN are both connected to EPC.
  • other DC modes will be supported, namely NE-DC, 5GC-EN-DC, and NR DC.
  • EN-DC the core network connected to the access network is EPC, while the core network connected to other DC modes is 5GC.
  • the MN is mainly responsible for the RRC control function and the control plane leading to the CN, and the SN can be configured with auxiliary signaling, such as SRB3, which mainly provides data transmission functions.
  • the maximum channel bandwidth can be 400MHZ (called a wideband carrier). Compared with the maximum 20M bandwidth of LTE, the bandwidth of a wideband carrier is very large. If the terminal device keeps working on a broadband carrier, the power consumption of the terminal device is very large. Therefore, it is recommended that the radio frequency (RF) bandwidth of the terminal device can be adjusted according to the actual throughput of the terminal device. For this reason, the concept of BWP is introduced.
  • the motivation of BWP is to optimize the power consumption of terminal equipment. For example, if the rate of the terminal device is very low, you can configure the terminal device with a smaller BWP (as shown in Figure 3-1).
  • BWP Bandwidth Modulation
  • BWP1 corresponds to basic parameter set (numerology) 1
  • BWP2 corresponds to numerology 2.
  • a terminal can be configured with a maximum of 4 uplink BWPs and a maximum of 4 downlink BWPs, but only one uplink BWP and downlink BWP can be activated at the same time.
  • RRC dedicated signaling it can indicate the first activated BWP among the configured BWPs.
  • DCI Downlink Control Information
  • the first activated BWP is the first activated BWP configured in the RRC dedicated signaling.
  • the configuration parameters of each BWP include:
  • PRB Physical resource block
  • the terminal only executes on the activated BWP, the inactive BWP does not need to be operated, and when switching between different BWPs, there is no need to reset the RLM Related timers and counters.
  • RRM measurement no matter which active BWP the terminal sends and receives data on, it will not affect the RRM measurement.
  • the terminal only needs to perform it on the activated BWP.
  • the initial first activated BWP is the first configured in RRC dedicated signaling BWP activated.
  • the value of the BWP identifier (BWP id) in the RRC dedicated signaling is 0 to 4, and the BWP with the BWP identifier of 0 is the initial BWP by default.
  • CA In order to meet high-speed requirements, CA technology is also supported in 5G.
  • CA enables the NR system to support a larger bandwidth by jointly scheduling and using resources on multiple component carriers (CC), thereby enabling a higher system peak rate.
  • CC component carriers
  • Intra-band Intra-band
  • PCC Primary Cell Component
  • NAS non-access stratum
  • SCC Secondary Cell Component
  • the PCC and the SCC are both called serving cells, where the cell on the PCC is a primary cell (Primary cell, Pcell), and the cell on the SCC is the Scell.
  • the standard stipulates that the aggregated carriers support a maximum of 5, that is, the maximum bandwidth after aggregation is 100MHZ, and the aggregated carriers belong to the same base station.
  • C-RNTI Cell-Radio Network Temporary Identifier
  • Dormancy SCG means that all cells in the SCG are in a dormant state, and a cell in the dormant state can be called a dormancy cell.
  • the terminal device does not monitor the PDCCH in the dormancy cell, and does not perform data transmission and reception, but RRM/CSI measurement and beam management, etc. Therefore, how to support dormancy SCG is an issue that needs to be clarified. To this end, the following technical solutions of the embodiments of the present application are proposed.
  • FIG. 4 is a schematic diagram 1 of the flow of a state transition method provided by an embodiment of the application. As shown in FIG. 4, the state transition method includes the following steps:
  • Step 401 The primary node receives first indication information sent by the secondary node, where the first indication information is used to indicate that the service on the secondary node side is not active.
  • the technical solution of the embodiment of the present application can be applied but is not limited to a dual-connection architecture, such as a multi-connection architecture.
  • a dual-connection architecture or a multi-connection architecture the set of cells covered by the primary node (MN) is called the primary cell group (MCG), and the set of cells covered by the secondary node (SN) is called the SCG.
  • MCG includes one primary cell (PCell) and at least one secondary cell (SCell).
  • the SCG includes one primary and secondary cell (PScell) and at least one secondary cell (SCell).
  • the sleep state is supported.
  • the SCG in the dormant state is called dormancy SCG
  • the SCG in the non-dormant state is called non-dormancy SCG
  • the SCG in the active state is called active SCG.
  • the non-dormancy SCG and the activated SCG may refer to the same state.
  • the secondary node If the secondary node does not receive downlink data from the core network on the SCG bearer, and does not receive uplink data from a terminal device, the secondary node sends all the data to the primary node.
  • the first indication information or, 2) If the secondary node does not receive downlink data from the core network on the SCG bearer, and receives one or more BSR reports from the terminal device for the SCG bearer as 0 , The secondary node sends the first indication information to the primary node.
  • the first indication information is used to indicate that the service on the secondary node side is not active.
  • Step 402 If the primary node determines that no downlink data is forwarded to the secondary node and/or there is no uplink data sent from the secondary node, the primary node sends first confirmation information to the secondary node, and the first The confirmation information is used to trigger the SCG to enter the sleep state.
  • the primary node after the primary node receives the first indication information sent by the secondary node, it starts a first timer; if the primary node does not receive it before the first timer expires To the downlink data from the core network that needs to be forwarded to the secondary node and/or there is no uplink data sent from the secondary node, the primary node sends the first confirmation information to the secondary node.
  • that the master node determines that no downlink data is forwarded to the secondary node and/or there is no uplink data sent from the secondary node includes:
  • the master node determines that no downlink data is forwarded to the secondary node on the offload bearer terminated by the master node; and/or,
  • the master node determines that the BSR corresponding to the offload bearer terminated by the master node is reported as 0.
  • the secondary node For the secondary node, if the secondary node receives the first confirmation information sent by the primary node, it triggers the SCG to enter the dormant state.
  • the master node sends second indication information to the terminal device, where the second indication information is used to notify the terminal device that the SCG enters the dormant state. Further, optionally, the second indication information is carried by RRC signaling or MAC CE or PDCCH on the master node side.
  • the state transition method of this example includes the following processes:
  • the SN if the SN cannot receive the downlink data from the CN on the SCG RLC bearer, nor can it receive the uplink data from the UE at the same time, or for the uplink, the BSR corresponding to the SCG RLC bearer is reported as 0 (or the BSR is reported as 0), the SN notifies the MN that the service on the SN side is not active (see step 2 below).
  • the SN notifies the MN that the business on the SN side is not active.
  • the SN notifying the MN that the service on the SN side is not active can also be replaced by the SN notifying the MN that the dormancy condition is met on the SN side (SN inform MN the dormancy condition is met).
  • the MN can decide to let the SCG enter the dormant state.
  • the MN starts the first timer after receiving the indication that the service on the SN side is not active. If the first timer expires, it does not receive the downlink on the split bear terminated by the MN from the CN. If the data needs to be forwarded to the SN, the MN can decide to let the SCG enter the dormant state.
  • the MN notifies the SN that the SCG enters the dormant state.
  • the MN notifying the SN that the SCG enters the dormant state can also be understood as the MN sending the first confirmation information to the SN.
  • the first confirmation information is used to trigger the SCG to enter the dormant state. It should be understood that the first confirmation information is used to confirm the dormancy decision ( confirm the dormancy decision).
  • the MN informs the SN SCG to enter the dormant state through Xn/X2 interface signaling.
  • the MN notifies the UE that the SCG enters the dormant state.
  • the MN informs the UE that the SCG enters the dormant state through RRC signaling on the MN side, or MN MAC CE or MN PDCCH.
  • FIG. 6 is a schematic diagram of the second flow of the state transition method provided by the embodiment of the application. As shown in FIG. 6, the state transition method includes the following steps:
  • Step 601 When the SCG is in a dormant state or in an inactive state, if the master node determines that downlink data is forwarded to the secondary node or the master node receives a third notification message sent by the terminal device, the third notification message is used to notify the When the master node triggers the SCG to enter the non-sleep state, the master node sends a first request message to the secondary node, and the first request message is used to request the SCG to enter the non-sleep state or the activated state.
  • Scenario 1 The network triggers the SCG to enter the non-sleep state or active state
  • the master node triggers the SCG to enter the non-sleep state or the active state.
  • the primary node When the SCG is in a dormant state or in an inactive state, if the master node determines that downlink data is forwarded to the secondary node, the primary node sends a first request message to the secondary node, and the first request message is used to request the SCG Enter a non-sleeping state or an active state.
  • the master node determining that downlink data is forwarded to the secondary node includes: the master node determines that the downlink data reaches the offload bearer terminated by the master node, and/or determines that it is necessary to use the SCG bearer to transmit the downlink data.
  • the first request message carries a measurement result of the terminal device
  • the measurement result of the terminal device includes at least one of the following: the measurement result of the SCG serving cell, the measurement result of the SCG serving frequency, and the terminal All measurement results of the equipment.
  • the measurement result includes at least one of the following: RSRP measurement result, RSRQ measurement result, and SINR measurement result.
  • the measurement result is used by the secondary node to decide whether to change the PSCell; the method further includes: the primary node receives a first notification message sent by the secondary node, and the first notification message is used Then, notify the master node whether to change the PSCell. Further, optionally, in a case where the first notification message notifies the master node to change the PSCell, the first notification message carries identification information of the changed PSCell.
  • the identification information of the PSCell includes at least one of the following: physical cell identification (PCI), frequency point, and serving cell identification.
  • PCI physical cell identification
  • frequency point for example, the identification information of the PSCell is PCI plus frequency point information, or serving cell identification (serving cell index)
  • the master node sends a second notification message to the terminal device, where the second notification message is used to notify the terminal device that the SCG enters a non-sleep state or an activated state. Further, the second notification message is also used to notify the terminal device whether to change the PSCell.
  • the second notification message carries identification information of the changed PSCell.
  • the identification information of the PSCell includes at least one of the following: PCI, frequency point, and serving cell identification.
  • the identification information of the PSCell is PCI plus frequency point information, or a serving cell index (serving cell index).
  • Scenario 2 The terminal device triggers the SCG to enter the non-sleep state or active state
  • the master node When the SCG is in a dormant state or in an inactive state, if the master node receives a third notification message sent by the terminal device, the third notification message is used to notify the master node to trigger the SCG to enter the non-dormant state, then the master node Send a first request message to the secondary node, where the first request message is used to request the SCG to enter a non-sleep state or an activated state.
  • the terminal device determines that uplink data is sent to the secondary node, the terminal device sends a third notification message to the master node, and the third notification message is used to notify the master node to trigger the SCG to enter non-sleeping Status or activation status.
  • the terminal device determining that the uplink data is sent to the secondary node includes: the terminal device determining that the uplink data needs to be transmitted on the SCG bearer.
  • the third notification message is carried by RRC signaling or MAC CE on the master node side.
  • the third notification message includes N bearer identifiers, where N is an integer greater than or equal to 0, and the bearer identifier is used to indicate that there is a DRB identifier of a bearer for uplink data transmission.
  • the first request message carries a measurement result of the terminal device
  • the measurement result of the terminal device includes at least one of the following: the measurement result of the SCG serving cell, the measurement result of the SCG serving frequency, and the terminal All measurement results of the equipment.
  • the measurement result includes at least one of the following: RSRP measurement result, RSRQ measurement result, and SINR measurement result.
  • the measurement result is used by the secondary node to decide whether to change the PSCell; the method further includes: the primary node receives a first notification message sent by the secondary node, and the first notification message is used Then, notify the master node whether to change the PSCell. Further, optionally, in a case where the first notification message notifies the master node to change the PSCell, the first notification message carries identification information of the changed PSCell.
  • the identification information of the PSCell includes at least one of the following: PCI, frequency point, and serving cell identification.
  • the identification information of the PSCell is PCI plus frequency point information, or a serving cell index (serving cell index).
  • the master node sends a second notification message to the terminal device, where the second notification message is used to notify the terminal device that the SCG enters a non-sleep state or an activated state. Further, the second notification message is also used to notify the terminal device whether to change the PSCell.
  • the second notification message carries identification information of the changed PSCell.
  • the identification information of the PSCell includes at least one of the following: PCI, frequency point, and serving cell identification.
  • the identification information of the PSCell is PCI plus frequency point information, or a serving cell index (serving cell index).
  • Fig. 7 is the third schematic flow chart of the state transition method provided by the embodiment of the application. As shown in Fig. 7, the state transition method includes the following steps:
  • Step 701 When the SCG is in the dormant state or the inactive state, if the secondary node determines that downlink data reaches the secondary node, the secondary node triggers the SCG to enter the non-dormant state or the activated state.
  • the determination by the secondary node that downlink data reaches the secondary node includes: the secondary node determines that the downlink data reaches the SCG bearer or the offload bearer terminated by the secondary node.
  • the secondary node may obtain the measurement result of the terminal device in any of the following ways to determine whether to change the PSCell.
  • the secondary node Before the secondary node triggers the SCG to enter the non-dormant state or the active state, the secondary node receives the measurement result of the terminal device sent by the primary node, and the measurement result of the terminal device includes at least one of the following: Measurement results, measurement results of SCG service frequency points, and all measurement results of terminal equipment.
  • the measurement result includes at least one of the following: RSRP measurement result, RSRQ measurement result, and SINR measurement result.
  • Manner 2 The secondary node sends a second request message to the master node, where the second request message is used to request the SCG to enter an inactive state. Further, optionally, the second request message carries third indication information, and the third indication information is used to indicate the measurement result requested by the secondary node.
  • the secondary node receives the measurement result of the terminal device sent by the master node, and the measurement result of the terminal device includes at least one of the following: the measurement result of the SCG serving cell, the measurement result of the SCG serving frequency point, and all the measurement results of the terminal device.
  • the measurement result includes at least one of the following: RSRP measurement result, RSRQ measurement result, and SINR measurement result.
  • the measurement result is used by the secondary node to decide whether to change the PSCell; the method further includes: the primary node receives a first notification message sent by the secondary node, and the first notification message is used Then, notify the master node whether to change the PSCell. Further, optionally, in a case where the first notification message notifies the master node to change the PSCell, the first notification message carries identification information of the changed PSCell.
  • the identification information of the PSCell includes at least one of the following: PCI, frequency point, and serving cell identification.
  • the identification information of the PSCell is PCI plus frequency point information, or a serving cell index (serving cell index).
  • the master node sends a second notification message to the terminal device, where the second notification message is used to notify the terminal device that the SCG enters a non-sleep state or an activated state. Further, the second notification message is also used to notify the terminal device whether to change the PSCell.
  • the second notification message carries identification information of the changed PSCell.
  • the identification information of the PSCell includes at least one of the following: PCI, frequency point, and serving cell identification.
  • the identification information of the PSCell is PCI plus frequency point information, or a serving cell index (serving cell index).
  • the state transition method of this example includes the following processes:
  • the downlink data reaches the MN terminated split bearer (DL data arrive via MN terminated split bearer), and the MN triggers the SCG to enter the non-sleep state.
  • non-sleep state in this example can be replaced with the active state.
  • the MN triggers the SCG to enter the non-sleep state.
  • the MN sends a request message for the SCG to enter the non-dormant state to the SN.
  • the request message is used to notify the SN to resume the state of the SCG (ie, MN inform SN to resume SCG from dormancy).
  • the request message carries the UE measurement result
  • the measurement result includes at least one of the following: the measurement result of the SCG serving cell, the measurement result of the SCG serving frequency point, and the measurement result of all UEs.
  • the measurement result includes at least one of the following: RSRP measurement result, RSRQ measurement result, and SINR measurement result.
  • the SN judges whether the PSCell needs to be changed according to the measurement result, and the SN notifies the MN whether to change the PSCell.
  • the SN indicates the identification information of the new PScell to the MN.
  • the identification information may be PCI and frequency point, or serving cell identification (serving cell index).
  • the MN sends a confirmation message to the SN that the SCG enters the non-sleep state.
  • the MN sends the indication information that the SCG enters the non-sleep state to the UE.
  • the MN indicates the identification information of the new PScell to the UE.
  • the identification information may be PCI and frequency point, or serving cell identification (serving cell index).
  • the state transition method of this example includes the following processes:
  • the downlink data reaches the SCG bearer or the offload bearer terminated by the SN, and the SN triggers the SCG to enter the non-sleep state.
  • non-sleep state in this example can be replaced with the active state.
  • the SN determines whether the PSCell needs to be changed according to the measurement result, and the SN notifies the MN whether to change the PSCell.
  • the SN indicates the identification information of the new PScell to the MN.
  • the identification information may be PCI and frequency point, or serving cell identification (serving cell index).
  • the measurement result includes at least one of the following: the measurement result of the SCG serving cell, the measurement result of the SCG serving frequency point, and the measurement result of all UEs.
  • the measurement result includes at least one of the following: RSRP measurement result, RSRQ measurement result, and SINR measurement result. Then, proceed to step 5 below.
  • the request message carries an indication of requesting a measurement result. Then go to step 3 below.
  • the MN confirms the dormancy decision and forwards the measurement result to the SN.
  • the measurement result is used to assist the SN to confirm whether the original PSCell is valid or to select a new PSCell (the SN determines whether the PSCell needs to be changed according to the measurement result).
  • the measurement result includes at least one of the following: the measurement result of the SCG serving cell, the measurement result of the SCG serving frequency point, and the measurement result of all UEs.
  • the measurement result includes at least one of the following: RSRP measurement result, RSRQ measurement result, and SINR measurement result.
  • the SN judges whether the PSCell needs to be changed according to the measurement result, and the SN notifies the MN whether to change the PSCell.
  • the SN indicates the identification information of the new PScell to the MN.
  • the identification information may be PCI and frequency point, or serving cell identification (serving cell index).
  • the MN sends a confirmation message to the SN that the SCG enters the non-sleep state.
  • the MN sends the indication information that the SCG enters the non-sleep state to the UE.
  • the MN indicates the identification information of the new PScell to the UE.
  • the identification information may be PCI and frequency point, or serving cell identification (serving cell index).
  • the state transition method of this example includes the following processes:
  • the UE If the uplink data reaches the need to use SCG or RLC bearer, the UE notifies the MN to trigger the SCG to enter the non-sleep state.
  • non-sleep state in this example can be replaced with the active state.
  • the UE may notify the MN to trigger the SCG to enter the non-sleep state through MN RRC or MN MAC CE.
  • the MN sends a request message for the SCG to enter the non-dormant state to the SN.
  • the request message is used to notify the SN to resume the state of the SCG (ie, MN inform SN to resume SCG from dormancy).
  • the request message carries the UE measurement result
  • the measurement result includes at least one of the following: the measurement result of the SCG serving cell, the measurement result of the SCG serving frequency point, and the measurement result of all UEs.
  • the measurement result includes at least one of the following: RSRP measurement result, RSRQ measurement result, and SINR measurement result.
  • the SN judges whether the PSCell needs to be changed according to the measurement result, and the SN notifies the MN whether to change the PSCell.
  • the SN indicates the identification information of the new PScell to the MN.
  • the identification information may be PCI and frequency point, or serving cell identification (serving cell index).
  • the MN sends a confirmation message to the SN that the SCG enters the non-sleep state.
  • the MN sends the indication information that the SCG enters the non-sleep state to the UE.
  • the MN indicates the identification information of the new PScell to the UE.
  • the identification information may be PCI and frequency point, or serving cell identification (serving cell index).
  • FIG. 11 is a schematic diagram 1 of the structural composition of a state transition device provided by an embodiment of the application, which is applied to a master node. As shown in FIG. 11, the state transition device includes:
  • the receiving unit 1101 is configured to receive first indication information sent by a secondary node, where the first indication information is used to indicate that the service on the secondary node side is not active;
  • the determining unit 1102 is configured to determine that no downlink data is forwarded to the secondary node and/or there is no uplink data sent from the secondary node;
  • the sending unit 1103 is configured to send first confirmation information to the secondary node, where the first confirmation information is used to trigger the SCG to enter the dormant state.
  • the receiving unit 1101 After the receiving unit 1101 receives the first indication information sent by the secondary node, it starts a first timer; if the first timer expires, it does not receive any information from the core If the network needs to forward the downlink data to the secondary node and/or there is no uplink data sent from the secondary node, the sending unit 1103 sends the first confirmation information to the secondary node.
  • the sending unit 1103 is further configured to send second indication information to the terminal device, where the second indication information is used to notify the terminal device that the SCG enters the dormant state.
  • the second indication information is carried by RRC signaling or MAC CE or PDCCH on the master node side.
  • the determining unit 1102 is configured to determine that no downlink data is forwarded to the secondary node on the offload bearer terminated by the master node; and/or determine that the offload bearer terminated by the master node corresponds to The BSR is reported as 0.
  • FIG. 12 is a second structural diagram of the state transition device provided by an embodiment of the application, which is applied to a secondary node. As shown in FIG. 12, the state transition device includes:
  • the sending unit 1201 is configured to send first indication information to the master node, where the first indication information is used to indicate that the service on the secondary node side is not active;
  • the receiving unit 1202 is configured to trigger the SCG to enter the sleep state if the first confirmation message sent by the master node is received.
  • the sending unit 1201 is configured to, if the secondary node does not receive the downlink data from the core network on the SCG bearer, and does not receive the uplink data from the terminal device, send a message to the The primary node sends the first indication information; or, if the secondary node does not receive downlink data from the core network on the SCG bearer, and receives one or more BSR reports for the SCG bearer from the terminal device If it is 0, the first indication information is sent to the master node.
  • FIG. 13 is a schematic diagram of the third structural composition of the state transition device provided by an embodiment of the application, which is applied to the master node. As shown in FIG. 13, the state transition device includes:
  • the sending unit 1301 is configured to, when the SCG is in a dormant state or in an inactive state, if the master node determines that downlink data is forwarded to the secondary node or the master node receives the third notification message sent by the terminal device, the third notification message is used After notifying the primary node to trigger the SCG to enter the non-sleeping state, a first request message is sent to the secondary node, where the first request message is used to request the SCG to enter the non-sleeping state or the activated state.
  • the first request message carries a measurement result of the terminal device
  • the measurement result of the terminal device includes at least one of the following:
  • the measurement result of the SCG serving cell the measurement result of the SCG serving frequency point, and all the measurement results of the terminal equipment.
  • the measurement result includes at least one of the following: RSRP measurement result, RSRQ measurement result, and SINR measurement result.
  • the measurement result is used for the secondary node to decide whether to change the PSCell; the apparatus further includes:
  • the receiving unit 1302 is configured to receive a first notification message sent by the secondary node, where the first notification message is used to notify the primary node whether to change the PSCell.
  • the first notification message when the first notification message notifies the master node of the change of the PSCell, the first notification message carries identification information of the changed PSCell.
  • the sending unit 1301 is further configured to send a second notification message to the terminal device, and the second notification message is used to notify the terminal device that the SCG enters a non-sleep state or an activated state.
  • the second notification message is also used to notify the terminal device whether to change the PSCell.
  • the second notification message when the second notification message notifies the terminal device to change the PSCell, the second notification message carries identification information of the changed PSCell.
  • the determining that the primary node has downlink data forwarded to the secondary node includes:
  • the master node determines that the downlink data reaches the offload bearer terminated by the master node, and/or determines that it is necessary to use the SCG bearer to transmit the downlink data.
  • the identification information of the PSCell includes at least one of the following: PCI, frequency point, and serving cell identification.
  • FIG. 14 is a schematic diagram 4 of the structural composition of the state transition device provided by an embodiment of the application, which is applied to a secondary node. As shown in FIG. 14, the state transition device includes:
  • the trigger unit 1401 is configured to trigger the SCG to enter the non-sleep state or the active state if it is determined that downlink data reaches the secondary node when the SCG is in the dormant state or in the inactive state.
  • the device further includes:
  • the receiving unit 1402 is configured to receive the measurement result of the terminal device sent by the master node before the triggering unit triggers the SCG to enter the non-sleep state or the activated state, and the measurement result of the terminal device includes at least one of the following:
  • the measurement results of the SCG serving cell the measurement results of the SCG serving frequency, and all the measurement results of the terminal equipment.
  • the device further includes:
  • the sending unit 1403 is configured to send a second request message to the master node, where the second request message is used to request the SCG to enter an inactive state.
  • the second request message carries third indication information, and the third indication information is used to indicate the measurement result requested by the secondary node.
  • the device further includes:
  • the receiving unit 1402 is configured to receive the measurement result of the terminal device sent by the master node, and the measurement result of the terminal device includes at least one of the following:
  • the measurement results of the SCG serving cell the measurement results of the SCG serving frequency, and all the measurement results of the terminal equipment.
  • the measurement result includes at least one of the following: RSRP measurement result, RSRQ measurement result, and SINR measurement result.
  • the measurement result is used for the secondary node to decide whether to change the PSCell; the apparatus further includes:
  • the sending unit 1403 is configured to send a first notification message to the master node, where the first notification message is used to notify the master node whether to change the PSCell.
  • the first notification message in a case where the first notification message notifies the master node of changing the PSCell, the first notification message carries identification information of the changed PSCell.
  • the device further includes:
  • the sending unit 1403 is configured to send a second notification message to the terminal device, where the second notification message is used to notify the terminal device that the SCG enters a non-sleep state or an activated state.
  • the second notification message is also used to notify the terminal device whether to change the PSCell.
  • the second notification message when the second notification message notifies the terminal device to change the PSCell, the second notification message carries identification information of the changed PSCell.
  • the device further includes:
  • the determining unit (not shown in the figure) is used to determine that downlink data arrives at the SCG bearer or the offload bearer terminated by the secondary node.
  • the identification information of the PSCell includes at least one of the following: PCI, frequency point, and serving cell identification.
  • FIG. 15 is a schematic diagram five of the structural composition of the state transition device provided by an embodiment of the application, which is applied to a terminal device. As shown in FIG. 15, the state transition device includes:
  • the determining unit 1501 is configured to determine that there is uplink data to be sent to the secondary node;
  • the sending unit 1502 is configured to send a third notification message to the master node, where the third notification message is used to notify the master node to trigger the SCG to enter the non-sleep state or the activated state.
  • the third notification message is carried by RRC signaling or MAC CE on the master node side.
  • the third notification message includes N bearer identifiers, where N is an integer greater than or equal to 0, and the bearer identifier is used to indicate that there is a DRB identifier of a bearer for uplink data transmission.
  • the determining unit 1501 is configured to determine that there is uplink data to be transmitted on the SCG bearer.
  • FIG. 16 is a schematic structural diagram of a communication device 1600 according to an embodiment of the present application.
  • the communication device may be a terminal device or a network device.
  • the communication device 1600 shown in FIG. 116 includes a processor 1610.
  • the processor 1610 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the communication device 1600 may further include a memory 1620.
  • the processor 1610 can call and run a computer program from the memory 1620 to implement the method in the embodiment of the present application.
  • the memory 1620 may be a separate device independent of the processor 1610, or may be integrated in the processor 1610.
  • the communication device 1600 may further include a transceiver 1630, and the processor 1610 may control the transceiver 1630 to communicate with other devices. Specifically, it may send information or data to other devices, or receive other devices. Information or data sent by the device.
  • the transceiver 1630 may include a transmitter and a receiver.
  • the transceiver 1630 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 1600 may specifically be a network device of an embodiment of the application, and the communication device 1600 may implement the corresponding process implemented by the network device in each method of the embodiment of the application. For the sake of brevity, details are not repeated here. .
  • the communication device 1600 may specifically be a mobile terminal/terminal device of an embodiment of the present application, and the communication device 1600 may implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • I won’t repeat it here.
  • FIG. 17 is a schematic structural diagram of a chip of an embodiment of the present application.
  • the chip 1700 shown in FIG. 17 includes a processor 1710, and the processor 1710 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the chip 1700 may further include a memory 1720.
  • the processor 1710 can call and run a computer program from the memory 1720 to implement the method in the embodiment of the present application.
  • the memory 1720 may be a separate device independent of the processor 1710, or may be integrated in the processor 1710.
  • the chip 1700 may further include an input interface 1730.
  • the processor 1710 can control the input interface 1730 to communicate with other devices or chips, and specifically, can obtain information or data sent by other devices or chips.
  • the chip 1700 may further include an output interface 1740.
  • the processor 1710 can control the output interface 1740 to communicate with other devices or chips, and specifically, can output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the chip can implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the chip can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the chip can implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • the chip can implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • the chip can implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • the chip mentioned in the embodiment of the present application may also be referred to as a system-level chip, a system-on-chip, a system-on-chip, or a system-on-chip.
  • FIG. 18 is a schematic block diagram of a communication system 1800 according to an embodiment of the present application. As shown in FIG. 18, the communication system 1800 includes a terminal device 1810 and a network device 1820.
  • the terminal device 1810 can be used to implement the corresponding function implemented by the terminal device in the above method
  • the network device 1820 can be used to implement the corresponding function implemented by the network device in the above method. For brevity, it will not be repeated here. .
  • the processor of the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC application specific integrated circuit
  • FPGA Field Programmable Gate Array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application can be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • DDR SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM, ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • Synchronous Link Dynamic Random Access Memory Synchronous Link Dynamic Random Access Memory
  • DR RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is to say, the memory in the embodiments of the present application is intended to include, but is not limited to, these and any other suitable types of memory.
  • the embodiment of the present application also provides a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium can be applied to the network device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer-readable storage medium can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application , For the sake of brevity, I won’t repeat it here.
  • the embodiments of the present application also provide a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program product can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application, For the sake of brevity, I will not repeat them here.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the network device in the embodiment of the present application.
  • the computer program runs on the computer, it causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • I won’t repeat it here.
  • the computer program can be applied to the mobile terminal/terminal device in the embodiment of the present application.
  • the computer program runs on the computer, the computer executes each method in the embodiment of the present application. For the sake of brevity, the corresponding process will not be repeated here.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory,) ROM, random access memory (Random Access Memory, RAM), magnetic disks or optical disks and other media that can store program codes. .

Abstract

本申请实施例提供一种状态转换方法及装置、通信设备,该方法包括:主节点接收辅节点发送的第一指示信息,所述第一指示信息用于指示所述辅节点侧的业务不活跃;若所述主节点确定没有下行数据转发给所述辅节点和/或没有来自辅节点发送的上行数据,则所述主节点向所述辅节点发送第一确认信息,所述第一确认信息用于触发SCG进入休眠状态。

Description

一种状态转换方法及装置、通信设备 技术领域
本申请实施例涉及移动通信技术领域,具体涉及一种状态转换方法及装置、通信设备。
背景技术
为了支持终端设备的节能以及快速建立辅小区组(Secondary Cell Group,SCG),提出休眠SCG(dormancy SCG)的概念,dormancy SCG意味着SCG中的所有小区处于休眠(dormancy)状态,处于休眠状态的小区可以称为dormancy小区。终端设备在dormancy小区不监听物理下行控制信道(Physical Downlink Control Channel,PDCCH),不执行数据的发送和接收,但是执行无线资源管理(Radio Resource Management,RRM)/信道状态指示(Channel Status Indicator,CSI)测量以及波束(beam)管理等。所以,如何支持dormancy SCG是个需要明确的问题。
发明内容
本申请实施例提供一种状态转换方法及装置、通信设备。
本申请实施例提供的状态转换方法,包括:
主节点接收辅节点发送的第一指示信息,所述第一指示信息用于指示所述辅节点侧的业务不活跃;
若所述主节点确定没有下行数据转发给所述辅节点和/或没有来自辅节点发送的上行数据,则所述主节点向所述辅节点发送第一确认信息,所述第一确认信息用于触发SCG进入休眠状态。
本申请实施例提供的状态转换方法,包括:
辅节点向主节点发送第一指示信息,所述第一指示信息用于指示所述辅节点侧的业务不活跃;
若所述辅节点接收所述主节点发送的第一确认信息,则触发SCG进入休眠状态。
本申请实施例提供的状态转换方法,包括:
SCG处于休眠状态或者非激活状态的情况下,若主节点确定有下行数据转发给辅节点或者主节点接收终端设备发送的第三通知消息,所述第三通知消息用于通知所述主节点触发SCG进入非休眠状态,则所述主节点向所述辅节点发送第一请求消息,所述第一请求消息用于请求SCG进入非休眠状态或者激活状态。
本申请实施例提供的状态转换方法,包括:
SCG处于休眠状态或者非激活状态的情况下,若辅节点确定有下行数据达到所述辅节点,则所述辅节点触发SCG进入非休眠状态或者激活状态。
本申请实施例提供的状态转换方法,包括:
若终端设备确定有上行数据发送给辅节点,则所述终端设备向主节点发送第三通知消息,所述第三通知消息用于通知所述主节点触发SCG进入非休眠状态或者激活状态。
本申请实施例提供的状态转换装置,包括:
接收单元,用于接收辅节点发送的第一指示信息,所述第一指示信息用于指示所述辅节点侧的业务不活跃;
确定单元,用于确定没有下行数据转发给所述辅节点和/或没有来自辅节点发送的上行数据;
发送单元,用于向所述辅节点发送第一确认信息,所述第一确认信息用于触发SCG进入休眠状态。
本申请实施例提供的状态转换装置,包括:
发送单元,用于向主节点发送第一指示信息,所述第一指示信息用于指示所述辅节点侧的业务不活跃;
接收单元,用于若接收所述主节点发送的第一确认信息,则触发SCG进入休眠状态。
本申请实施例提供的状态转换装置,包括:
发送单元,用于在SCG处于休眠状态或者非激活状态的情况下,若主节点确定有下行数据转发给辅节点或者主节点接收终端设备发送的第三通知消息,所述第三通知消息用于通知所述主节点触发SCG进入非休眠状态,则向所述辅节点发送第一请求消息,所述第一请求消息用于请求SCG进入非休眠状态或者激活状态。
本申请实施例提供的状态转换装置,包括:
触发单元,用于在SCG处于休眠状态或者非激活状态的情况下,若确定有下行数据达到所述辅节点,则触发SCG进入非休眠状态或者激活状态。
本申请实施例提供的状态转换装置,包括:
确定单元,用于确定有上行数据发送给辅节点;
发送单元,用于向主节点发送第三通知消息,所述第三通知消息用于通知所述主节点触发SCG进入非休眠状态或者激活状态。
本申请实施例提供的通信设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述的状态转换方法。
本申请实施例提供的芯片,用于实现上述的状态转换方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行上述的状态转换方法。
本申请实施例提供的计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述的状态转换方法。
本申请实施例提供的计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述的状态转换方法。
本申请实施例提供的计算机程序,当其在计算机上运行时,使得计算机执行上述的状态转换方法。
通过上述技术方案,明确了SCG在休眠(dormancy)状态和非休眠(non-dormancy)状态之间转换过程中的网络侧的过程和行为,使得网络侧有效支持dormancy SCG功能。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是本申请实施例提供的一种通信系统架构的示意性图;
图2为本申请实施例提供的EN-DC的网络部署和组网架构图;
图3-1为本申请实施例提供的BWP的示意图一;
图3-2为本申请实施例提供的BWP的示意图二;
图3-3为本申请实施例提供的BWP的示意图三;
图4为本申请实施例提供的状态转换方法的流程示意图一;
图5为本申请实施例提供的示例一的交互流程图;
图6为本申请实施例提供的状态转换方法的流程示意图二;
图7为本申请实施例提供的状态转换方法的流程示意图三;
图8为本申请实施例提供的示例二的交互流程图;
图9为本申请实施例提供的示例三的交互流程图;
图10为本申请实施例提供的示例四的交互流程图;
图11为本申请实施例提供的状态转换装置的结构组成示意图一;
图12为本申请实施例提供的状态转换装置的结构组成示意图二;
图13为本申请实施例提供的状态转换装置的结构组成示意图三;
图14为本申请实施例提供的状态转换装置的结构组成示意图四;
图15为本申请实施例提供的状态转换装置的结构组成示意图五;
图16是本申请实施例提供的一种通信设备示意性结构图;
图17是本申请实施例的芯片的示意性结构图;
图18是本申请实施例提供的一种通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、系统、5G通信系统或未来的通信系统等。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端进行通信。可选地,该网络设备110可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的网络侧设备或者未来通信系统中的网络设备等。
该通信系统100还包括位于网络设备110覆盖范围内的至少一个终端120。作为在此使用的“终端”包括但不限于经由有线线路连接,如经由公共交换电话网络(Public Switched Telephone Networks,PSTN)、数字用户线路(Digital Subscriber Line,DSL)、数字电缆、直接电缆连接;和/或另一数据连接/网络;和/或经由无线接口,如,针对蜂窝网络、无线局域网(Wireless Local Area Network,WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器;和/或另一终端的被设置成接收/发送通信信号的装置;和/或物联网(Internet of Things,IoT)设备。被设置成通过无线接口通信的终端可以被称为“无线通信终端”、“无线终端”或“移动终端”。移动终端的示例包括但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(Personal Communications System,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(Global Positioning System,GPS)接收器的PDA;以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。终端可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端或者未来演进的PLMN中的终端等。
可选地,终端120之间可以进行终端直连(Device to Device,D2D)通信。
可选地,5G通信系统或5G网络还可以称为新无线(New Radio,NR)系统或NR网络。
图1示例性地示出了一个网络设备和两个终端,可选地,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端120,网络设备110和终端120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
为便于理解本申请实施例的技术方案,以下对本申请实施例相关的技术方案进行说明。
随着人们对速率、延迟、高速移动性、能效的追求以及未来生活中业务的多样性、复杂性,为此第三代合作伙伴计划(3 rd Generation Partnership Project,3GPP)国际标准组织开始研发5G。5G的主要应用场景为:增强移动超宽带(enhanced Mobile Broadband,eMBB)、低时延高可靠通信(Ultra-Reliable Low-Latency Communications,URLLC)、大规模机器类通信(massive Machine-Type  Communications,mMTC)。
一方面,eMBB仍然以用户获得多媒体内容、服务和数据为目标,其需求增长十分迅速。另一方面,由于eMBB可能部署在不同的场景中,例如室内,市区,农村等,其能力和需求的差别也比较大,所以不能一概而论,必须结合具体的部署场景详细分析。URLLC的典型应用包括:工业自动化,电力自动化,远程医疗操作(手术),交通安全保障等。mMTC的典型特点包括:高连接密度,小数据量,时延不敏感业务,模块的低成本和长使用寿命等。
在NR早期部署时,完整的NR覆盖很难获取,所以典型的网络覆盖是广域的LTE覆盖和NR的孤岛覆盖模式。而且大量的LTE部署在6GHz以下,可用于5G的6GHz以下频谱很少。所以NR必须研究6GHz以上的频谱应用,而高频段覆盖有限、信号衰落快。同时为了保护移动运营商前期在LTE投资,提出了LTE和NR之间紧耦合(tight interworking)的工作模式。
为了能够尽快实现5G网络部署和商业应用,3GPP完成第一个5G版本,即EN-DC(LTE-NR Dual Connectivity)。在EN-DC中,LTE基站(eNB)作为主节点(Master Node,MN),NR基站(gNB或en-gNB)作为辅节点(Secondary Node,SN),EN-DC的网络部署和组网架构如图2所示,其中,演进的通用无线接入网(Evolved Universal Terrestrial Radio Access Networ,E-UTRAN)代表接入网部分,演进型分组核心网(Evolved Packet Core network,EPC)代表核心网部分,接入网部分由至少一个eNB(图2中示意出两个eNB)和至少一个en-gNB(图2中示意出两个en-gNB)组成,其中,eNB作为MN,en-gNB作为SN,MN和SN均连接到EPC。在R15后期,将支持其他DC模式,即NE-DC,5GC-EN-DC,NR DC。对于EN-DC,接入网络连接的核心网是EPC,而其他DC模式连接的核心网是5GC。
其中,MN主要负责RRC控制功能以及通向CN的控制面,SN可以配置辅助的信令,例如SRB3,主要提供数据传输功能。
在5G中,最大的信道带宽可以是400MHZ(称为宽带载波(wideband carrier)),相比于LTE最大20M带宽来说,宽带载波的带宽很大。如果终端设备保持工作在宽带载波上,则终端设备的功率消耗非常大。所以建议终端设备的射频(Radio Frequency,RF)带宽可以根据终端设备实际的吞吐量来调整。为此,引入BWP的概念,BWP的动机是优化终端设备的功率消耗。例如终端设备的速率很低,可以给终端设备配置小一点的BWP(如图3-1所示),如果终端设备的速率要求很高,则可以给终端设备配置大一点的BWP(如图3-2所示)。如果终端设备支持高速率,或者工作在载波聚合(Carrier Aggregation,CA)模式下,可以给终端设备配置多个BWP(如图3-3所示)。BWP的另一个目的就是触发一个小区中多个参数集(numerology)共存,如图3-3所示,BWP1对应基础参数集(numerology)1,BWP2对应numerology2。
通过无线资源控制(Radio Resource Control,RRC)专用信令可以给一个终端配置最多4个上行BWP和最多4个下行BWP,但同一时刻只能有一个上行BWP和下行BWP被激活。在RRC专用信令中,可以指示所配置的BWP中第一个激活的BWP。同时在终端处于连接态过程中,也可以通过下行控制信息(Downlink Control Information,DCI)在不同的BWP之间切换。当处于非激活状态的载波,进入激活状态后,第一个激活的BWP为RRC专用信令中配置的第一个激活的BWP。每个BWP的配置参数包括:
-子载波间隔(subcarrierSpacing);
-循环前缀(cyclicPrefix);
-BWP的第一个物理资源块(Physical Resource Block,PRB)以及连续的PRB个数(locationAndBandwidth);
-BWP标识(bwp-Id);
-BWP公共配置参数和专用配置参数(bwp-Common,bwp-Dedicated)。
终端在进行无线链路监控(Radio Link Monitor,RLM)过程中,只在激活的BWP上执行,非激活的BWP不需要操作,而在不同BWP之间进行切换的时候,也不需要重置RLM相关的定时器和计数器。对于RRM测量,无论终端在哪个激活的BWP上收发数据,都不影响RRM测量。对于CQI的测量,终端也只需要在激活的BWP上执行。
当一个载波被去激活,然后通过媒体接入控制控制单元(Media Access Control Control Element,MAC CE)激活了该载波,则初始的第一个激活的BWP为RRC专用信令中配置的第一个激活的BWP。
BWP标识(BWP id)在RRC专用信令中的取值为0到4,BWP标识为0的BWP默认为初始BWP。
在DCI中BWP指示(BWP indicator)为2比特(bit),如下表1所示。如果配置的BWP个数小于等于3个,则BWP indicator=1,2,3分别对应BWP id=1,2,3。如果BWP的个数为4个,则BWP indicator=0,1,2,3分别对应按照顺序索引配置的BWP。而且网络侧在配置BWP的时候使用连续的BWP id。
Figure PCTCN2019116375-appb-000001
表1
为了满足高速率的需求,5G中也支持CA技术。CA通过联合调度和使用多个成员载波(Component Carrier,CC)上的资源,使得NR系统可以支持更大的带宽,从而能够实现更高的系统峰值速率。根据所聚合载波的在频谱上的连续性可以分为,连续性载波聚合和非连续性载波聚合;根据聚合的载波所在的带宽(band)是否相同,分为带内(Intra-band)载波聚合和带间(inter-band)载波聚合。
在CA中,主载波(Primary Cell Component,PCC)有且只有一个,PCC提供RRC信令连接,非接入层(NAS)功能,安全功能等。物理上行控制信道(Physical Uplink Control Channel,PUCCH)在PCC上且只在PCC上存在。辅载波(Secondary Cell Component,SCC)只提供额外的无线资源。PCC和SCC同称为服务小区,其中,PCC上的小区为主小区(Primary cell,Pcell),SCC上的小区为Scell。标准上还规定聚合的载波最多支持5个,即聚合后的最大带宽为100MHZ,并且聚合载波属于同一个基站。所有的聚合载波使用相同的小区无线网络临时标识(Cell-Radio Network Temporary Identifier,C-RNTI),基站实现保证C-RNTI在每个载波所在的小区不发生冲突。由于支持不对称载波聚合和对称载波聚合两种,所以要求聚合的载波一定有下行,可以没有上行。而且对于PCC小区来说一定有本小区的PDCCH和PUCCH,而且只有主载波小区有PUCCH,其他辅载波小区可能有PDCCH。
为了支持终端设备的节能以及快速建立SCG,提出dormancy SCG的概念,dormancy SCG意味着SCG中的所有小区处于休眠状态,处于休眠状态的小区可以称为dormancy小区。终端设备在dormancy小区不监听PDCCH,不执行数据的发送和接收,但是RRM/CSI测量以及波束管理等。所以,如何支持dormancy SCG是个需要明确的问题。为此,提出了本申请实施例的以下技术方案。
图4为本申请实施例提供的状态转换方法的流程示意图一,如图4所示,所述状态转换方法包括以下步骤:
步骤401:主节点接收辅节点发送的第一指示信息,所述第一指示信息用于指示所述辅节点侧的业务不活跃。
本申请实施例的技术方案可以应用但不局限于双连接架构中,例如多连接架构。在双连接架构或多连接架构中,主节点(MN)覆盖的小区集合称为主小区组(MCG),辅节点(SN)覆盖的小区集合称为SCG。MCG包括一个主小区(PCell)和至少一个辅小区(SCell)。SCG包括一个主辅小区(PScell)和至少一个辅小区(SCell)。
对于辅节点侧的SCG而言,支持休眠状态。本申请实施例将处于休眠状态的SCG称为dormancy SCG,将处于非休眠状态的SCG称为non-dormancy SCG,将处于激活状态的SCG称为激活SCG。可选地,non-dormancy SCG和激活SCG可以指同一状态。
本申请实施例中,1)若所述辅节点在SCG承载上未接收到来自核心网的下行数据,且未接收到来自终端设备的上行数据,则所述辅节点向所述主节点发送所述第一指示信息;或者,2)若所述辅节点在SCG承载上未接收到来自核心网的下行数据,且接收到来自终端设备的针对所述SCG承载的一次或者多次BSR上报为0,则所述辅节点向所述主节点发送所述第一指示信息。其中,所述第一指示信息用于指示所述辅节点侧的业务不活跃。
步骤402:若所述主节点确定没有下行数据转发给所述辅节点和/或没有来自辅节点发送的上行数据,则所述主节点向所述辅节点发送第一确认信息,所述第一确认信息用于触发SCG进入休眠状态。
在一可选实施方式中,所述主节点接收到所述辅节点发送的所述第一指示信息后,启动第一定时器;若所述第一定时器超时之前,所述主节点未接收到来自核心网的需要转发给所述辅节点的下行数据和/或没有来自辅节点发送的上行数据,则所述主节点向所述辅节点发送所述第一确认信息。
本申请实施例中,所述主节点确定没有下行数据转发给所述辅节点和/或没有来自辅节点发送的上行数据,包括:
所述主节点确定所述主节点终结的分流承载上没有下行数据转发给所述辅节点;和/或,
所述主节点确定所述主节点终结的分流承载对应的BSR上报为0。
对于所述辅节点来说,若所述辅节点接收所述主节点发送的第一确认信息,则触发SCG进入休眠状态。
在一可选实施方式中,所述主节点向终端设备发送第二指示信息,所述第二指示信息用于通知所述终端设备SCG进入休眠状态。进一步,可选地,所述第二指示信息通过所述主节点侧的RRC信令或者MAC CE或者PDCCH携带。
以下结合具体示例对本申请实施例的技术方案进行举例说明。
示例一
参照图5,本示例的状态转换方法包括以下流程:
1、SN检测到业务不活跃。
这里,SN在SCG RLC承载上如果接收不到来自CN的下行数据,同时也接收不到来自UE的上行数据,或者对于上行该SCG RLC承载对应的BSR上报为0(或者持续几次BSR上报为0),则SN向MN通知SN侧的业务不活跃(见如下步骤2)。
2、SN向MN通知SN侧的业务不活跃。
这里,SN向MN通知SN侧的业务不活跃也可以替换成SN向MN通知SN侧的休眠条件满足(SN inform MN the dormancy condition is met)。
具体地,MN收到SN发送的SN侧的业务不活跃的指示后,判断MN终结的分流承载(split bear)上没有下行数据需要转发给SN,则MN可以判决让SCG进入休眠状态。可选地,在这个过程中MN在接收到SN侧的业务不活跃的指示后,启动第一定时器,如果第一定时器超时前,没有接收到来自CN的MN终结的split bear上的下行数据需要转发给SN,则MN可以判决让SCG进入休眠状态。
3、MN向SN通知SCG进入休眠状态。
这里,MN向SN通知SCG进入休眠状态也可以理解为MN向SN发送第一确认信息,所述第一确认信息用于触发SCG进入休眠状态,应理解,第一确认信息用于确认休眠决定(confirm the dormancy decision)。
具体地,MN通过Xn/X2接口信令通知SN SCG进入休眠状态。
4、MN向UE通知SCG进入休眠状态。
具体地,MN通过MN侧的RRC信令或者MN MAC CE或者MN PDCCH通知UE SCG进入休眠状态。
图6为本申请实施例提供的状态转换方法的流程示意图二,如图6所示,所述状态转换方法包括以下步骤:
步骤601:SCG处于休眠状态或者非激活状态的情况下,若主节点确定有下行数据转发给辅节点或者主节点接收终端设备发送的第三通知消息,所述第三通知消息用于通知所述主节点触发SCG进入非休眠状态,则所述主节点向所述辅节点发送第一请求消息,所述第一请求消息用于请求SCG进入非休眠状态或者激活状态。
本申请实施例中,触发SCG进入非休眠状态或者激活状态有两种应用场景,以下具体描述。
Figure PCTCN2019116375-appb-000002
场景一:网络触发SCG进入非休眠状态或者激活状态
这里,由主节点触发SCG进入非休眠状态或者激活状态。
SCG处于休眠状态或者非激活状态的情况下,若主节点确定有下行数据转发给辅节点,则所述主节点向所述辅节点发送第一请求消息,所述第一请求消息用于请求SCG进入非休眠状态或者激活状态。
这里,所述主节点确定有下行数据转发给辅节点,包括:所述主节点确定下行数据达到所述主节点终结的分流承载,和/或,确定需要使用SCG承载传输下行数据。
在一可选实施方式中,所述第一请求消息携带终端设备的测量结果,所述终端设备的测量结果包括以下至少之一:SCG服务小区的测量结果、SCG服务频点的测量结果、终端设备的全部测量结果。进一步,可选地,所述测量结果包括以下至少之一:RSRP测量结果、RSRQ测量结果、SINR测量结果。
本申请实施例中,所述测量结果用于所述辅节点判决是否变更PSCell;所述方法还包括:所述主节点接收所述辅节点发送的第一通知消息,所述第一通知消息用于向所述主节点通知是否变更PSCell。进一步,可选地,所述第一通知消息向所述主节点通知变更PSCell的情况下,所述第一通知消息携带变更后的PSCell的标识信息。这里,所述PSCell的标识信息包括以下至少之一:物理小区标识(PCI)、频点、服务小区标识。例如所述PSCell的标识信息为PCI加频点信息,或者为服务小区标识(servingcell index)
在一可选实施方式中,所述主节点向终端设备发送第二通知消息,所述第二通知消息用于向所述终端设备通知SCG进入非休眠状态或者激活状态。进一步,所述第二通知消息还用于通知所述终端设备是否变更PSCell。这里,可选地,所述第二通知消息通知所述终端设备变更PSCell的情况下,所述第二通知消息携带变更后的PSCell的标识信息。这里,所述PSCell的标识信息包括以下至少之一:PCI、频点、服务小区标识。例如所述PSCell的标识信息为PCI加频点信息,或者为服务小区标识(servingcell index)。
Figure PCTCN2019116375-appb-000003
场景二:终端设备触发SCG进入非休眠状态或者激活状态
SCG处于休眠状态或者非激活状态的情况下,若主节点接收终端设备发送的第三通知消息,所述第三通知消息用于通知所述主节点触发SCG进入非休眠状态,则所述主节点向所述辅节点发送第一请求消息,所述第一请求消息用于请求SCG进入非休眠状态或者激活状态。
本申请实施例中,若终端设备确定有上行数据发送给辅节点,则所述终端设备向主节点发送第三通知消息,所述第三通知消息用于通知所述主节点触发SCG进入非休眠状态或者激活状态。
这里,所述终端设备确定有上行数据发送给辅节点,包括:终端设备确定有上行数据需要在SCG承载上传输。
在一可选实施方式中,所述第三通知消息通过所述主节点侧的RRC信令或者MAC CE携带。
在一可选实施方式中,所述第三通知消息包含N个承载标识,N为大于等于0的整数,所述承载标识用于指示存在上行数据发送的承载的DRB标识。
在一可选实施方式中,所述第一请求消息携带终端设备的测量结果,所述终端设备的测量结果包括以下至少之一:SCG服务小区的测量结果、SCG服务频点的测量结果、终端设备的全部测量结果。进一步,可选地,所述测量结果包括以下至少之一:RSRP测量结果、RSRQ测量结果、SINR测量结果。
本申请实施例中,所述测量结果用于所述辅节点判决是否变更PSCell;所述方法还包括:所述主节点接收所述辅节点发送的第一通知消息,所述第一通知消息用于向所述主节点通知是否变更PSCell。进一步,可选地,所述第一通知消息向所述主节点通知变更PSCell的情况下,所述第一通知消息携带变更后的PSCell的标识信息。这里,所述PSCell的标识信息包括以下至少之一:PCI、频点、服务小区标识。例如所述PSCell的标识信息为PCI加频点信息,或者为服务小区标识(servingcell index)。
在一可选实施方式中,所述主节点向终端设备发送第二通知消息,所述第二通知消息用于向所述终端设备通知SCG进入非休眠状态或者激活状态。进一步,所述第二通知消息还用于通知所述终端设备是否变更PSCell。这里,可选地,所述第二通知消息通知所述终端设备变更PSCell的情况下,所述第二通知消息携带变更后的PSCell的标识信息。这里,所述PSCell的标识信息包括以下至少之一:PCI、频点、服务小区标识。例如所述PSCell的标识信息为PCI加频点信息,或者为服务小区标识(servingcell index)。
图7为本申请实施例提供的状态转换方法的流程示意图三,如图7所示,所述状态转换方法包括以下步骤:
步骤701:SCG处于休眠状态或者非激活状态的情况下,若辅节点确定有下行数据达到所述辅节点,则所述辅节点触发SCG进入非休眠状态或者激活状态。
这里,所述辅节点确定有下行数据达到所述辅节点,包括:所述辅节点确定有下行数据到达SCG承载或者所述辅节点终结的分流承载。
本申请实施例中,所述辅节点可以通过以下任意一种方式获取终端设备的测量结果来判决是否变更PSCell。
方式一:所述辅节点触发SCG进入非休眠状态或者激活状态之前,所述辅节点接收主节点发送的终端设备的测量结果,所述终端设备的测量结果包括以下至少之一:SCG服务小区的测量结果、SCG服务频点的测量结果、终端设备的全部测量结果。
进一步,可选地,所述测量结果包括以下至少之一:RSRP测量结果、RSRQ测量结果、SINR测量结果。
方式二:所述辅节点向所述主节点发送第二请求消息,所述第二请求消息用于请求SCG进入非激活状态。进一步,可选地,所述第二请求消息携带第三指示信息,所述第三指示信息用于指示所述辅节点索要的测量结果。所述辅节点接收主节点发送的终端设备的测量结果,所述终端设备的测量结果包括以下至少之一:SCG服务小区的测量结果、SCG服务频点的测量结果、终端设备的全部测量结果。
进一步,可选地,所述测量结果包括以下至少之一:RSRP测量结果、RSRQ测量结果、SINR测量结果。
本申请实施例中,所述测量结果用于所述辅节点判决是否变更PSCell;所述方法还包括:所述主节点接收所述辅节点发送的第一通知消息,所述第一通知消息用于向所述主节点通知是否变更PSCell。进一步,可选地,所述第一通知消息向所述主节点通知变更PSCell的情况下,所述第一通知消息携带变更后的PSCell的标识信息。这里,所述PSCell的标识信息包括以下至少之一:PCI、频点、服务小区标识。例如所述PSCell的标识信息为PCI加频点信息,或者为服务小区标识(servingcell index)。
在一可选实施方式中,所述主节点向终端设备发送第二通知消息,所述第二通知消息用于向所述终端设备通知SCG进入非休眠状态或者激活状态。进一步,所述第二通知消息还用于通知所述终端设备是否变更PSCell。这里,可选地,所述第二通知消息通知所述终端设备变更PSCell的情况下,所述第二通知消息携带变更后的PSCell的标识信息。这里,所述PSCell的标识信息包括以下至少之一:PCI、频点、服务小区标识。例如所述PSCell的标识信息为PCI加频点信息,或者为服务小区标识(servingcell index)。
以下结合具体示例对本申请实施例的技术方案进行举例说明。
示例二
参照图8,本示例的状态转换方法包括以下流程:
1、下行数据达到MN终结的分流承载(DL data arrive via MN terminated split bearer),MN触发SCG进入非休眠状态。
需要说明的是,本示例中的非休眠状态都可以替换成激活状态。
具体地,若下行数据到达MN终结的分流承载和/或需要使用SCG RLC承载,则MN触发SCG进入非休眠状态。
2、MN向SN发送SCG进入非休眠状态的请求消息。
这里,可以理解,该请求消息用于通知SN恢复SCG的状态(即MN inform SN to resume SCG from dormancy)。
可选地,该请求消息中携带UE测量结果,该测量结果包含以下至少之一:SCG服务小区的测量结果、SCG服务频点的测量结果、全部UE的测量结果。其中,测量结果包括以下至少之一:RSRP测量结果、RSRQ测量结果、SINR测量结果。
3、SN根据测量结果判决是否需要变更PSCell,SN通知MN是否变更PSCell。
这里,如果变更PSCell,则SN向MN指示新的PScell的标识信息,该标识信息可以是PCI和频点,或者服务小区标识(servingcell index)。
而后,MN向SN发送SCG进入非休眠状态的确认信息。
4、MN向UE发送SCG进入非休眠状态的指示信息。
这里,如果变更PSCell,则MN向UE指示新的PScell的标识信息,该标识信息可以是PCI和频点,或者服务小区标识(servingcell index)。
示例三
参照图9,本示例的状态转换方法包括以下流程:
1、下行数据达到SCG承载或者SN终结的分流承载,SN触发SCG进入非休眠状态。
需要说明的是,本示例中的非休眠状态都可以替换成激活状态。
2、执行以下两个步骤分支:
分支(a):在步骤1之前,若MN已经转发UE测量结果给SN,则SN根据测量结果判决是否需要变更PSCell,SN通知MN是否变更PSCell。这里,如果变更PSCell,则SN向MN指示新的PScell的标识信息,该标识信息可以是PCI和频点,或者服务小区标识(servingcell index)。其中,测量结果包含以下至少之一:SCG服务小区的测量结果、SCG服务频点的测量结果、全部UE的测量结果。其中,测量结果包括以下至少之一:RSRP测量结果、RSRQ测量结果、SINR测量结果。然后,进入以下步骤5。
分支(b):MN向SN发送SCG进入非休眠状态的请求消息。
可选的,该请求消息携带索要测量结果指示。然后进入以下步骤3。
3、MN确认休眠决定,向SN转发测量结果。
这里,测量结果用于辅助SN确认原来PSCell是否有效或者选择新的PSCell(SN根据测量结果判决是否需要变更PSCell)。其中,测量结果包含以下至少之一:SCG服务小区的测量结果、SCG服务频点的测量结果、全部UE的测量结果。其中,测量结果包括以下至少之一:RSRP测量结果、RSRQ测量结果、SINR测量结果。
4、SN根据测量结果判决是否需要变更PSCell,SN通知MN是否变更PSCell。
这里,如果变更PSCell,则SN向MN指示新的PScell的标识信息,该标识信息可以是PCI和频点,或者服务小区标识(servingcell index)。
而后,MN向SN发送SCG进入非休眠状态的确认信息。
5、MN向UE发送SCG进入非休眠状态的指示信息。
这里,如果变更PSCell,则MN向UE指示新的PScell的标识信息,该标识信息可以是PCI和频点,或者服务小区标识(servingcell index)。
示例四
参照图10,本示例的状态转换方法包括以下流程:
1、若上行数据达到需要使用SCG RLC承载,则UE通知MN触发SCG进入非休眠状态。
需要说明的是,本示例中的非休眠状态都可以替换成激活状态。
这里,UE可以通过MN RRC或者MN MAC CE来通知MN触发SCG进入非休眠状态。
2、MN向SN发送SCG进入非休眠状态的请求消息。
这里,可以理解,该请求消息用于通知SN恢复SCG的状态(即MN inform SN to resume SCG from dormancy)。
可选地,该请求消息中携带UE测量结果,该测量结果包含以下至少之一:SCG服务小区的测量结果、SCG服务频点的测量结果、全部UE的测量结果。其中,测量结果包括以下至少之一:RSRP测量结果、RSRQ测量结果、SINR测量结果。
3、SN根据测量结果判决是否需要变更PSCell,SN通知MN是否变更PSCell。
这里,如果变更PSCell,则SN向MN指示新的PScell的标识信息,该标识信息可以是PCI和频点,或者服务小区标识(servingcell index)。
而后,MN向SN发送SCG进入非休眠状态的确认信息。
4、MN向UE发送SCG进入非休眠状态的指示信息。
这里,如果变更PSCell,则MN向UE指示新的PScell的标识信息,该标识信息可以是PCI和频点,或者服务小区标识(servingcell index)。
图11为本申请实施例提供的状态转换装置的结构组成示意图一,应用于主节点,如图11所示,所述状态转换装置包括:
接收单元1101,用于接收辅节点发送的第一指示信息,所述第一指示信息用于指示所述辅节点侧的业务不活跃;
确定单元1102,用于确定没有下行数据转发给所述辅节点和/或没有来自辅节点发送的上行数据;
发送单元1103,用于向所述辅节点发送第一确认信息,所述第一确认信息用于触发SCG进入休眠状态。
在一可选实施方式中,所述接收单元1101接收到所述辅节点发送的所述第一指示信息后,启动第一定时器;若所述第一定时器超时之前,未接收到来自核心网的需要转发给所述辅节点的下行数据和/或没有来自辅节点发送的上行数据,则所述发送单元1103向所述辅节点发送所述第一确认信息。
在一可选实施方式中,所述发送单元1103,还用于向终端设备发送第二指示信息,所述第二指示信息用于通知所述终端设备SCG进入休眠状态。
在一可选实施方式中,所述第二指示信息通过所述主节点侧的RRC信令或者MAC CE或者PDCCH携带。
在一可选实施方式中,所述确定单元1102,用于确定所述主节点终结的分流承载上没有下行数据转发给所述辅节点;和/或,确定所述主节点终结的分流承载对应的BSR上报为0。
本领域技术人员应当理解,本申请实施例的上述状态转换装置的相关描述可以参照本申请实施例的状态转换方法的相关描述进行理解。
图12为本申请实施例提供的状态转换装置的结构组成示意图二,应用于辅节点,如图12所示,所述状态转换装置包括:
发送单元1201,用于向主节点发送第一指示信息,所述第一指示信息用于指示所述辅节点侧的业务不活跃;
接收单元1202,用于若接收所述主节点发送的第一确认信息,则触发SCG进入休眠状态。
在一可选实施方式中,所述发送单元1201,用于若所述辅节点在SCG承载上未接收到来自核心网的下行数据,且未接收到来自终端设备的上行数据,则向所述主节点发送所述第一指示信息;或者,若所述辅节点在SCG承载上未接收到来自核心网的下行数据,且接收到来自终端设备的针对所述SCG承载的一次或者多次BSR上报为0,则向所述主节点发送所述第一指示信息。
本领域技术人员应当理解,本申请实施例的上述状态转换装置的相关描述可以参照本申请实施例的状态转换方法的相关描述进行理解。
图13为本申请实施例提供的状态转换装置的结构组成示意图三,应用于主节点,如图13所示,所述状态转换装置包括:
发送单元1301,用于在SCG处于休眠状态或者非激活状态的情况下,若主节点确定有下行数据转发给辅节点或者主节点接收终端设备发送的第三通知消息,所述第三通知消息用于通知所述主节点触发SCG进入非休眠状态,则向所述辅节点发送第一请求消息,所述第一请求消息用于请求SCG进入非休眠状态或者激活状态。
在一可选实施方式中,所述第一请求消息携带终端设备的测量结果,所述终端设备的测量结果包括以下至少之一:
SCG服务小区的测量结果、SCG服务频点的测量结果、终端设备的全部测量结果。
在一可选实施方式中,所述测量结果包括以下至少之一:RSRP测量结果、RSRQ测量结果、SINR测量结果。
在一可选实施方式中,所述测量结果用于所述辅节点判决是否变更PSCell;所述装置还包括:
接收单元1302,用于接收所述辅节点发送的第一通知消息,所述第一通知消息用于向所述主节点通知是否变更PSCell。
在一可选实施方式中,所述第一通知消息向所述主节点通知变更PSCell的情况下,所述第一通知消息携带变更后的PSCell的标识信息。
在一可选实施方式中,所述发送单元1301,还用于向终端设备发送第二通知消息,所述第二通知消息用于向所述终端设备通知SCG进入非休眠状态或者激活状态。
在一可选实施方式中,所述第二通知消息还用于通知所述终端设备是否变更PSCell。
在一可选实施方式中,所述第二通知消息通知所述终端设备变更PSCell的情况下,所述第二通知消息携带变更后的PSCell的标识信息。
在一可选实施方式中,所述主节点确定有下行数据转发给辅节点,包括:
所述主节点确定下行数据达到所述主节点终结的分流承载,和/或,确定需要使用SCG承载传输下行数据。
在一可选实施方式中,所述PSCell的标识信息包括以下至少之一:PCI、频点、服务小区标识。
本领域技术人员应当理解,本申请实施例的上述状态转换装置的相关描述可以参照本申请实施例的状态转换方法的相关描述进行理解。
图14为本申请实施例提供的状态转换装置的结构组成示意图四,应用于辅节点,如图14所示,所述状态转换装置包括:
触发单元1401,用于在SCG处于休眠状态或者非激活状态的情况下,若确定有下行数据达到所述辅节点,则触发SCG进入非休眠状态或者激活状态。
在一可选实施方式中,所述装置还包括:
接收单元1402,用于在所述触发单元触发SCG进入非休眠状态或者激活状态之前,接收主节点发送的终端设备的测量结果,所述终端设备的测量结果包括以下至少之一:
SCG服务小区的测量结果、SCG服务频点的测量结果、终端设备的全部测量结果。
在一可选实施方式中,所述装置还包括:
发送单元1403,用于向所述主节点发送第二请求消息,所述第二请求消息用于请求SCG进入非激活状态。
在一可选实施方式中,所述第二请求消息携带第三指示信息,所述第三指示信息用于指示所述辅节点索要的测量结果。
在一可选实施方式中,所述装置还包括:
接收单元1402,用于接收主节点发送的终端设备的测量结果,所述终端设备的测量结果包括以下至少之一:
SCG服务小区的测量结果、SCG服务频点的测量结果、终端设备的全部测量结果。
在一可选实施方式中,所述测量结果包括以下至少之一:RSRP测量结果、RSRQ测量结果、SINR测量结果。
在一可选实施方式中,所述测量结果用于所述辅节点判决是否变更PSCell;所述装置还包括:
发送单元1403,用于向所述主节点发送第一通知消息,所述第一通知消息用于向所述主节点通知是否变更PSCell。
在一可选实施方式中,所述第一通知消息向所述主节点通知变更PSCell的情况下,所述第一通知消息携带变更后的PSCell的标识信息。
在一可选实施方式中,所述装置还包括:
发送单元1403,用于向终端设备发送第二通知消息,所述第二通知消息用于向所述终端设备通知SCG进入非休眠状态或者激活状态。
在一可选实施方式中,所述第二通知消息还用于通知所述终端设备是否变更PSCell。
在一可选实施方式中,所述第二通知消息通知所述终端设备变更PSCell的情况下,所述第二通知消息携带变更后的PSCell的标识信息。
在一可选实施方式中,所述装置还包括:
确定单元(图中未示出),用于确定有下行数据到达SCG承载或者所述辅节点终结的分流承载。
在一可选实施方式中,所述PSCell的标识信息包括以下至少之一:PCI、频点、服务小区标识。
本领域技术人员应当理解,本申请实施例的上述状态转换装置的相关描述可以参照本申请实施例的状态转换方法的相关描述进行理解。
图15为本申请实施例提供的状态转换装置的结构组成示意图五,应用于终端设备,如图15所示,所述状态转换装置包括:
确定单元1501,用于确定有上行数据发送给辅节点;
发送单元1502,用于向主节点发送第三通知消息,所述第三通知消息用于通知所述主节点触发SCG进入非休眠状态或者激活状态。
在一可选实施方式中,所述第三通知消息通过所述主节点侧的RRC信令或者MAC CE携带。
在一可选实施方式中,所述第三通知消息包含N个承载标识,N为大于等于0的整数,所述承载标识用于指示存在上行数据发送的承载的DRB标识。
在一可选实施方式中,所述确定单元1501,用于确定有上行数据需要在SCG承载上传输。
本领域技术人员应当理解,本申请实施例的上述状态转换装置的相关描述可以参照本申请实施例的状态转换方法的相关描述进行理解。
图16是本申请实施例提供的一种通信设备1600示意性结构图。该通信设备可以是终端设备,也可以是网络设备,图116所示的通信设备1600包括处理器1610,处理器1610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图116所示,通信设备1600还可以包括存储器1620。其中,处理器1610可以从存储器1620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1620可以是独立于处理器1610的一个单独的器件,也可以集成在处理器1610中。
可选地,如图116所示,通信设备1600还可以包括收发器1630,处理器1610可以控制该收发器1630与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器1630可以包括发射机和接收机。收发器1630还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备1600具体可为本申请实施例的网络设备,并且该通信设备1600可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备1600具体可为本申请实施例的移动终端/终端设备,并且该通信设备1600可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
图17是本申请实施例的芯片的示意性结构图。图17所示的芯片1700包括处理器1710,处理器1710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图117所示,芯片1700还可以包括存储器1720。其中,处理器1710可以从存储器1720中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1720可以是独立于处理器1710的一个单独的器件,也可以集成在处理器1710中。
可选地,该芯片1700还可以包括输入接口1730。其中,处理器1710可以控制该输入接口1730与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片1700还可以包括输出接口1740。其中,处理器1710可以控制该输出接口1740与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的移动终端/终端设备,并且该芯片可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图18是本申请实施例提供的一种通信系统1800的示意性框图。如图18所示,该通信系统1800包括终端设备1810和网络设备1820。
其中,该终端设备1810可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备1820可以用于实现上述方法中由网络设备实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、 同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (73)

  1. 一种状态转换方法,所述方法包括:
    主节点接收辅节点发送的第一指示信息,所述第一指示信息用于指示所述辅节点侧的业务不活跃;
    若所述主节点确定没有下行数据转发给所述辅节点和/或没有来自辅节点发送的上行数据,则所述主节点向所述辅节点发送第一确认信息,所述第一确认信息用于触发SCG进入休眠状态。
  2. 根据权利要求1所述的方法,其中,所述若所述主节点确定没有下行数据转发给所述辅节点和/或没有来自辅节点发送的上行数据,则所述主节点向所述辅节点发送第一确认信息,包括:
    所述主节点接收到所述辅节点发送的所述第一指示信息后,启动第一定时器;
    若所述第一定时器超时之前,所述主节点未接收到来自核心网的需要转发给所述辅节点的下行数据和/或没有来自辅节点发送的上行数据,则所述主节点向所述辅节点发送所述第一确认信息。
  3. 根据权利要求1或2所述的方法,其中,所述方法还包括:
    所述主节点向终端设备发送第二指示信息,所述第二指示信息用于通知所述终端设备SCG进入休眠状态。
  4. 根据权利要求3所述的方法,其中,所述第二指示信息通过所述主节点侧的RRC信令或者MAC CE或者PDCCH携带。
  5. 根据权利要求1至4中任一项所述的方法,其中,所述主节点确定没有下行数据转发给所述辅节点和/或没有来自辅节点发送的上行数据,包括:
    所述主节点确定所述主节点终结的分流承载上没有下行数据转发给所述辅节点;和/或,
    所述主节点确定所述主节点终结的分流承载对应的BSR上报为0。
  6. 一种状态转换方法,所述方法包括:
    辅节点向主节点发送第一指示信息,所述第一指示信息用于指示所述辅节点侧的业务不活跃;
    若所述辅节点接收所述主节点发送的第一确认信息,则触发SCG进入休眠状态。
  7. 根据权利要求6所述的方法,其中,所述辅节点向主节点发送第一指示信息,包括:
    若所述辅节点在SCG承载上未接收到来自核心网的下行数据,且未接收到来自终端设备的上行数据,则所述辅节点向所述主节点发送所述第一指示信息;或者,
    若所述辅节点在SCG承载上未接收到来自核心网的下行数据,且接收到来自终端设备的针对所述SCG承载的一次或者多次BSR上报为0,则所述辅节点向所述主节点发送所述第一指示信息。
  8. 一种状态转换方法,所述方法包括:
    SCG处于休眠状态或者非激活状态的情况下,若主节点确定有下行数据转发给辅节点或者主节点接收终端设备发送的第三通知消息,所述第三通知消息用于通知所述主节点触发SCG进入非休眠状态,则所述主节点向所述辅节点发送第一请求消息,所述第一请求消息用于请求SCG进入非休眠状态或者激活状态。
  9. 根据权利要求8所述的方法,其中,所述第一请求消息携带终端设备的测量结果,所述终端设备的测量结果包括以下至少之一:
    SCG服务小区的测量结果、SCG服务频点的测量结果、终端设备的全部测量结果。
  10. 根据权利要求9所述的方法,其中,所述测量结果包括以下至少之一:RSRP测量结果、RSRQ测量结果、SINR测量结果。
  11. 根据权利要求9或10所述的方法,其中,所述测量结果用于所述辅节点判决是否变更PSCell;所述方法还包括:
    所述主节点接收所述辅节点发送的第一通知消息,所述第一通知消息用于向所述主节点通知是否变更PSCell。
  12. 根据权利要求11所述的方法,其中,所述第一通知消息向所述主节点通知变更PSCell的情况下,所述第一通知消息携带变更后的PSCell的标识信息。
  13. 根据权利要求8至12中任一项所述的方法,其中,所述方法还包括:
    所述主节点向终端设备发送第二通知消息,所述第二通知消息用于向所述终端设备通知SCG进入非休眠状态或者激活状态。
  14. 根据权利要求13所述的方法,其中,所述第二通知消息还用于通知所述终端设备是否变更PSCell。
  15. 根据权利要求14所述的方法,其中,所述第二通知消息通知所述终端设备变更PSCell的情况下,所述第二通知消息携带变更后的PSCell的标识信息。
  16. 根据权利要求8至15中任一项所述的方法,其中,所述主节点确定有下行数据转发给辅节点,包括:
    所述主节点确定下行数据达到所述主节点终结的分流承载,和/或,确定需要使用SCG承载传输下行数据。
  17. 根据权利要求12或15所述的方法,其中,所述PSCell的标识信息包括以下至少之一:PCI、频点、服务小区标识。
  18. 一种状态转换方法,所述方法包括:
    SCG处于休眠状态或者非激活状态的情况下,若辅节点确定有下行数据达到所述辅节点,则所述辅节点触发SCG进入非休眠状态或者激活状态。
  19. 根据权利要求18所述的方法,其中,所述辅节点触发SCG进入非休眠状态或者激活状态之前,所述方法还包括:
    所述辅节点接收主节点发送的终端设备的测量结果,所述终端设备的测量结果包括以下至少之一:
    SCG服务小区的测量结果、SCG服务频点的测量结果、终端设备的全部测量结果。
  20. 根据权利要求18所述的方法,其中,所述方法还包括:
    所述辅节点向所述主节点发送第二请求消息,所述第二请求消息用于请求SCG进入非激活状态。
  21. 根据权利要求20所述的方法,其中,所述第二请求消息携带第三指示信息,所述第三指示信息用于指示所述辅节点索要的测量结果。
  22. 根据权利要求20或21所述的方法,其中,所述方法还包括:
    所述辅节点接收主节点发送的终端设备的测量结果,所述终端设备的测量结果包括以下至少之一:
    SCG服务小区的测量结果、SCG服务频点的测量结果、终端设备的全部测量结果。
  23. 根据权利要求19或22所述的方法,其中,所述测量结果包括以下至少之一:RSRP测量结果、RSRQ测量结果、SINR测量结果。
  24. 根据权利要求19、22、23中任一项所述的方法,其中,所述测量结果用于所述辅节点判决是否变更PSCell;所述方法还包括:
    所述辅节点向所述主节点发送第一通知消息,所述第一通知消息用于向所述主节点通知是否变更PSCell。
  25. 根据权利要求24所述的方法,其中,所述第一通知消息向所述主节点通知变更PSCell的情况下,所述第一通知消息携带变更后的PSCell的标识信息。
  26. 根据权利要求18至25中任一项所述的方法,其中,所述方法还包括:
    所述主节点向终端设备发送第二通知消息,所述第二通知消息用于向所述终端设备通知SCG进入非休眠状态或者激活状态。
  27. 根据权利要求26所述的方法,其中,所述第二通知消息还用于通知所述终端设备是否变更PSCell。
  28. 根据权利要求27所述的方法,其中,所述第二通知消息通知所述终端设备变更PSCell的情况下,所述第二通知消息携带变更后的PSCell的标识信息。
  29. 根据权利要求18至28中任一项所述的方法,其中,所述辅节点确定有下行数据达到所述辅节点,包括:
    所述辅节点确定有下行数据到达SCG承载或者所述辅节点终结的分流承载。
  30. 根据权利要求25或28所述的方法,其中,所述PSCell的标识信息包括以下至少之一:PCI、频点、服务小区标识。
  31. 一种状态转换方法,所述方法包括:
    若终端设备确定有上行数据发送给辅节点,则所述终端设备向主节点发送第三通知消息,所 述第三通知消息用于通知所述主节点触发SCG进入非休眠状态或者激活状态。
  32. 根据权利要求31所述的方法,其中,所述第三通知消息通过所述主节点侧的RRC信令或者MAC CE携带。
  33. 根据权利要求31或32所述的方法,其中,所述第三通知消息包含N个承载标识,N为大于等于0的整数,所述承载标识用于指示存在上行数据发送的承载的DRB标识。
  34. 根据权利要求31至33中任一项所述的方法,其中,所述终端设备确定有上行数据发送给辅节点,包括:
    终端设备确定有上行数据需要在SCG承载上传输。
  35. 一种状态转换装置,所述装置包括:
    接收单元,用于接收辅节点发送的第一指示信息,所述第一指示信息用于指示所述辅节点侧的业务不活跃;
    确定单元,用于确定没有下行数据转发给所述辅节点和/或没有来自辅节点发送的上行数据;
    发送单元,用于向所述辅节点发送第一确认信息,所述第一确认信息用于触发SCG进入休眠状态。
  36. 根据权利要求35所述的装置,其中,所述接收单元接收到所述辅节点发送的所述第一指示信息后,启动第一定时器;若所述第一定时器超时之前,未接收到来自核心网的需要转发给所述辅节点的下行数据和/或没有来自辅节点发送的上行数据,则所述发送单元向所述辅节点发送所述第一确认信息。
  37. 根据权利要求35或36所述的装置,其中,所述发送单元,还用于向终端设备发送第二指示信息,所述第二指示信息用于通知所述终端设备SCG进入休眠状态。
  38. 根据权利要求37所述的装置,其中,所述第二指示信息通过所述主节点侧的RRC信令或者MAC CE或者PDCCH携带。
  39. 根据权利要求35至38中任一项所述的装置,其中,所述确定单元,用于确定所述主节点终结的分流承载上没有下行数据转发给所述辅节点;和/或,确定所述主节点终结的分流承载对应的BSR上报为0。
  40. 一种状态转换装置,所述装置包括:
    发送单元,用于向主节点发送第一指示信息,所述第一指示信息用于指示所述辅节点侧的业务不活跃;
    接收单元,用于若接收所述主节点发送的第一确认信息,则触发SCG进入休眠状态。
  41. 根据权利要求40所述的装置,其中,所述发送单元,用于若所述辅节点在SCG承载上未接收到来自核心网的下行数据,且未接收到来自终端设备的上行数据,则向所述主节点发送所述第一指示信息;或者,若所述辅节点在SCG承载上未接收到来自核心网的下行数据,且接收到来自终端设备的针对所述SCG承载的一次或者多次BSR上报为0,则向所述主节点发送所述第一指示信息。
  42. 一种状态转换装置,所述装置包括:
    发送单元,用于在SCG处于休眠状态或者非激活状态的情况下,若主节点确定有下行数据转发给辅节点或者主节点接收终端设备发送的第三通知消息,所述第三通知消息用于通知所述主节点触发SCG进入非休眠状态,则向所述辅节点发送第一请求消息,所述第一请求消息用于请求SCG进入非休眠状态或者激活状态。
  43. 根据权利要求42所述的装置,其中,所述第一请求消息携带终端设备的测量结果,所述终端设备的测量结果包括以下至少之一:
    SCG服务小区的测量结果、SCG服务频点的测量结果、终端设备的全部测量结果。
  44. 根据权利要求43所述的装置,其中,所述测量结果包括以下至少之一:RSRP测量结果、RSRQ测量结果、SINR测量结果。
  45. 根据权利要求43或44所述的装置,其中,所述测量结果用于所述辅节点判决是否变更PSCell;所述装置还包括:
    接收单元,用于接收所述辅节点发送的第一通知消息,所述第一通知消息用于向所述主节点通知是否变更PSCell。
  46. 根据权利要求45所述的装置,其中,所述第一通知消息向所述主节点通知变更PSCell的情况下,所述第一通知消息携带变更后的PSCell的标识信息。
  47. 根据权利要求42至46中任一项所述的装置,其中,所述发送单元,还用于向终端设备 发送第二通知消息,所述第二通知消息用于向所述终端设备通知SCG进入非休眠状态或者激活状态。
  48. 根据权利要求47所述的装置,其中,所述第二通知消息还用于通知所述终端设备是否变更PSCell。
  49. 根据权利要求48所述的装置,其中,所述第二通知消息通知所述终端设备变更PSCell的情况下,所述第二通知消息携带变更后的PSCell的标识信息。
  50. 根据权利要求42至49中任一项所述的装置,其中,所述主节点确定有下行数据转发给辅节点,包括:
    所述主节点确定下行数据达到所述主节点终结的分流承载,和/或,确定需要使用SCG承载传输下行数据。
  51. 根据权利要求46或49所述的装置,其中,所述PSCell的标识信息包括以下至少之一:PCI、频点、服务小区标识。
  52. 一种状态转换装置,所述装置包括:
    触发单元,用于在SCG处于休眠状态或者非激活状态的情况下,若确定有下行数据达到所述辅节点,则触发SCG进入非休眠状态或者激活状态。
  53. 根据权利要求52所述的装置,其中,所述装置还包括:
    接收单元,用于在所述触发单元触发SCG进入非休眠状态或者激活状态之前,接收主节点发送的终端设备的测量结果,所述终端设备的测量结果包括以下至少之一:
    SCG服务小区的测量结果、SCG服务频点的测量结果、终端设备的全部测量结果。
  54. 根据权利要求52所述的装置,其中,所述装置还包括:
    发送单元,用于向所述主节点发送第二请求消息,所述第二请求消息用于请求SCG进入非激活状态。
  55. 根据权利要求54所述的装置,其中,所述第二请求消息携带第三指示信息,所述第三指示信息用于指示所述辅节点索要的测量结果。
  56. 根据权利要求54或55所述的装置,其中,所述装置还包括:
    接收单元,用于接收主节点发送的终端设备的测量结果,所述终端设备的测量结果包括以下至少之一:
    SCG服务小区的测量结果、SCG服务频点的测量结果、终端设备的全部测量结果。
  57. 根据权利要求53或56所述的装置,其中,所述测量结果包括以下至少之一:RSRP测量结果、RSRQ测量结果、SINR测量结果。
  58. 根据权利要求53、56、57中任一项所述的装置,其中,所述测量结果用于所述辅节点判决是否变更PSCell;所述装置还包括:
    发送单元,用于向所述主节点发送第一通知消息,所述第一通知消息用于向所述主节点通知是否变更PSCell。
  59. 根据权利要求58所述的装置,其中,所述第一通知消息向所述主节点通知变更PSCell的情况下,所述第一通知消息携带变更后的PSCell的标识信息。
  60. 根据权利要求52至59中任一项所述的装置,其中,所述装置还包括:
    发送单元,用于向终端设备发送第二通知消息,所述第二通知消息用于向所述终端设备通知SCG进入非休眠状态或者激活状态。
  61. 根据权利要求60所述的装置,其中,所述第二通知消息还用于通知所述终端设备是否变更PSCell。
  62. 根据权利要求61所述的装置,其中,所述第二通知消息通知所述终端设备变更PSCell的情况下,所述第二通知消息携带变更后的PSCell的标识信息。
  63. 根据权利要求52至62中任一项所述的装置,其中,所述装置还包括:
    确定单元,用于确定有下行数据到达SCG承载或者所述辅节点终结的分流承载。
  64. 根据权利要求59或62所述的装置,其中,所述PSCell的标识信息包括以下至少之一:PCI、频点、服务小区标识。
  65. 一种状态转换装置,所述装置包括:
    确定单元,用于确定有上行数据发送给辅节点;
    发送单元,用于向主节点发送第三通知消息,所述第三通知消息用于通知所述主节点触发SCG进入非休眠状态或者激活状态。
  66. 根据权利要求65所述的装置,其中,所述第三通知消息通过所述主节点侧的RRC信令或者MAC CE携带。
  67. 根据权利要求65或66所述的装置,其中,所述第三通知消息包含N个承载标识,N为大于等于0的整数,所述承载标识用于指示存在上行数据发送的承载的DRB标识。
  68. 根据权利要求65至67中任一项所述的装置,其中,所述确定单元,用于确定有上行数据需要在SCG承载上传输。
  69. 一种通信设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至34中任一项所述的方法。
  70. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至34中任一项所述的方法。
  71. 一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至34中任一项所述的方法。
  72. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至34中任一项所述的方法。
  73. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1至34中任一项所述的方法。
PCT/CN2019/116375 2019-11-07 2019-11-07 一种状态转换方法及装置、通信设备 WO2021087898A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/CN2019/116375 WO2021087898A1 (zh) 2019-11-07 2019-11-07 一种状态转换方法及装置、通信设备
CN202310220277.4A CN116234038A (zh) 2019-11-07 2019-11-07 一种状态转换方法及装置、通信设备
CN201980101824.9A CN114642036A (zh) 2019-11-07 2019-11-07 一种状态转换方法及装置、通信设备
EP19951555.2A EP4057703A4 (en) 2019-11-07 2019-11-07 METHOD AND DEVICE FOR STATE CONVERSION AND COMMUNICATION DEVICE
US17/729,609 US20220248325A1 (en) 2019-11-07 2022-04-26 Status conversion method and apparatus, and communication device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/116375 WO2021087898A1 (zh) 2019-11-07 2019-11-07 一种状态转换方法及装置、通信设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/729,609 Continuation US20220248325A1 (en) 2019-11-07 2022-04-26 Status conversion method and apparatus, and communication device

Publications (1)

Publication Number Publication Date
WO2021087898A1 true WO2021087898A1 (zh) 2021-05-14

Family

ID=75848647

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/116375 WO2021087898A1 (zh) 2019-11-07 2019-11-07 一种状态转换方法及装置、通信设备

Country Status (4)

Country Link
US (1) US20220248325A1 (zh)
EP (1) EP4057703A4 (zh)
CN (2) CN116234038A (zh)
WO (1) WO2021087898A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104737599A (zh) * 2012-11-06 2015-06-24 诺基亚通信公司 用于从处于较不活跃模式中的小区或网络接收定时信息的方法和装置
CN106465263A (zh) * 2014-01-06 2017-02-22 英特尔Ip公司 用于双连接架构的非连续接收(drx)对准技术
WO2019089125A1 (en) * 2017-11-03 2019-05-09 Qualcomm Incorporated Methods and apparatus for bandwidth part enhancement

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104737599A (zh) * 2012-11-06 2015-06-24 诺基亚通信公司 用于从处于较不活跃模式中的小区或网络接收定时信息的方法和装置
CN106465263A (zh) * 2014-01-06 2017-02-22 英特尔Ip公司 用于双连接架构的非连续接收(drx)对准技术
WO2019089125A1 (en) * 2017-11-03 2019-05-09 Qualcomm Incorporated Methods and apparatus for bandwidth part enhancement

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CATT: "Dormant SCG state", 3GPP DRAFT; R2-1912118, vol. RAN WG2, 3 October 2019 (2019-10-03), Chongqing, P.R.China, pages 1 - 4, XP051790171 *

Also Published As

Publication number Publication date
US20220248325A1 (en) 2022-08-04
CN114642036A (zh) 2022-06-17
CN116234038A (zh) 2023-06-06
EP4057703A4 (en) 2022-11-16
EP4057703A1 (en) 2022-09-14

Similar Documents

Publication Publication Date Title
WO2021087678A1 (zh) 一种小区状态管理方法及装置、终端设备、网络设备
US20220006599A1 (en) Method and device for managing band width part
WO2021092860A1 (zh) 一种小区配置方法及装置、终端设备、网络设备
WO2021056460A1 (zh) 一种测量管理方法及装置、通信设备
WO2019241969A1 (zh) 配置测量信息的方法、终端设备和网络设备
WO2021114206A1 (zh) 一种cli测量的方法及装置、终端设备、网络设备
WO2021092920A1 (zh) 一种跨载波传输方法及装置、终端设备
WO2020248143A1 (zh) 监听控制信道的方法、终端设备和网络设备
WO2020147049A1 (zh) 处理上行覆盖弱化的方法及装置、终端、网络设备
WO2021142661A1 (zh) 控制小区状态的方法及装置、终端设备、网络设备
WO2021142700A1 (zh) 一种测量方法及装置、终端设备
WO2022109955A1 (zh) 一种信息指示方法及装置、终端设备、网络设备
WO2022183341A1 (zh) 一种测量间隔的配置方法及装置、终端设备、网络设备
WO2022021136A1 (zh) 无线通信方法、终端设备和网络设备
WO2021212283A1 (zh) 一种请求系统广播信息的方法及装置、终端设备
WO2021108958A1 (zh) 一种定时器控制方法、配置方法、电子设备及存储介质
WO2021087898A1 (zh) 一种状态转换方法及装置、通信设备
WO2022183462A1 (zh) 一种scg的管理方法及装置、终端设备
WO2021159378A1 (zh) 一种反馈方法及装置、终端设备、网络设备
WO2022082766A1 (zh) 一种dc位置的上报方法及装置、终端设备、网络设备
WO2021232208A1 (zh) 一种srs的配置方法及装置、网络设备、终端设备
WO2022183336A1 (zh) 一种测量间隔的确定方法及装置、终端设备
WO2022151194A1 (zh) 一种测量方法及装置、终端设备
WO2022067697A1 (zh) 一种触发trs激活的方法及装置、终端设备、网络设备
EP3883316A1 (en) Communication method and apparatus and computer readable storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19951555

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019951555

Country of ref document: EP

Effective date: 20220607