WO2020147049A1 - 处理上行覆盖弱化的方法及装置、终端、网络设备 - Google Patents

处理上行覆盖弱化的方法及装置、终端、网络设备 Download PDF

Info

Publication number
WO2020147049A1
WO2020147049A1 PCT/CN2019/072046 CN2019072046W WO2020147049A1 WO 2020147049 A1 WO2020147049 A1 WO 2020147049A1 CN 2019072046 W CN2019072046 W CN 2019072046W WO 2020147049 A1 WO2020147049 A1 WO 2020147049A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
base station
terminal
indication information
uplink coverage
Prior art date
Application number
PCT/CN2019/072046
Other languages
English (en)
French (fr)
Inventor
王淑坤
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2019/072046 priority Critical patent/WO2020147049A1/zh
Priority to CN201980060428.6A priority patent/CN112703802B/zh
Publication of WO2020147049A1 publication Critical patent/WO2020147049A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA

Definitions

  • the embodiments of the present application relate to the field of mobile communication technologies, and in particular to a method, device, terminal, and network device for processing weakening of uplink coverage.
  • a fifth-generation (5 th Generation, 5G) communication technologies may be configured to supplement an uplink (Supplementary Uplink, SUL) carrier to improve uplink coverage.
  • SUL Supplemental Uplink
  • NUL normal Uplink
  • DCI Downlink Control Information
  • the embodiments of the present application provide a method, device, terminal, and network equipment for handling weakening of uplink coverage.
  • the terminal determines that the uplink coverage is weakened in the first cell
  • the terminal sends first indication information to the network side, where the first indication information is used to indicate that a cell has a weakening uplink coverage problem; or, the terminal triggers a radio resource control (Radio Resource Control, RRC) connection re-establishment process.
  • RRC Radio Resource Control
  • the target base station receives first indication information, where the first indication information is used to indicate that a cell has a weak uplink coverage problem, and the target base station is a base station where the first cell with a weak uplink coverage problem is located;
  • the target base station performs a first operation, and the first operation is used to recover the uplink coverage weakening problem.
  • the device for processing the weakening of uplink coverage is applied to a terminal, and the device includes:
  • a determining unit configured to determine that the first cell has an uplink coverage weakening problem
  • the processing unit is configured to send first indication information to the network side, where the first indication information is used to indicate that a cell has an uplink coverage weakening problem; or, to trigger an RRC connection re-establishment process.
  • the apparatus for processing the weakening of uplink coverage is applied to a target base station, and the apparatus includes:
  • a receiving unit configured to receive first indication information, where the first indication information is used to indicate that a cell has a weak uplink coverage problem, and the target base station is a base station where the first cell with a weak uplink coverage problem is located;
  • the execution unit is configured to execute a first operation, where the first operation is used to recover the uplink coverage weakening problem.
  • the terminal provided by the embodiment of the present application includes a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the above-mentioned method for processing the weakening of uplink coverage.
  • the network device provided by the embodiment of the present application includes a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the above-mentioned method for processing the weakening of uplink coverage.
  • the chip provided by the embodiment of the present application is used to implement the above-mentioned method for processing weakening of uplink coverage.
  • the chip includes: a processor, configured to call and run a computer program from the memory, so that the device installed with the chip executes the above-mentioned method for processing uplink coverage weakening.
  • the computer-readable storage medium provided by the embodiment of the present application is used to store a computer program, and the computer program causes a computer to execute the above-mentioned method for processing uplink coverage weakening.
  • the computer program product provided by the embodiment of the present application includes computer program instructions that cause a computer to execute the above-mentioned method for processing uplink coverage weakening.
  • the computer program provided by the embodiment of the present application when it runs on a computer, causes the computer to execute the above-mentioned method for processing uplink coverage weakening.
  • the terminal if the terminal is configured in Dual Connectivity (DC) or Carrier Aggregation (CA), if the new radio (NR, New Radio) cell has a weakened uplink coverage, the terminal sends a message to the network side
  • the first indication information informs the network side that a cell has a weak uplink coverage problem.
  • the network side can use operations such as changing the uplink carrier, or initiating a handover process, or changing the secondary node, or managing the secondary carrier to solve the problem of the weakening uplink coverage.
  • SA Stand Alone
  • the terminal initiates the RRC connection re-establishment process to solve the weak uplink coverage, thereby reducing the service interruption delay and improving user experience.
  • FIG. 1 is a schematic diagram of a communication system architecture provided by an embodiment of this application.
  • Figure 2 is a schematic diagram of a dual connectivity architecture provided by an embodiment of the application.
  • FIG. 3 is a schematic diagram of SUL and NUL provided by an embodiment of the application.
  • FIG. 4 is a schematic flowchart 1 of a method for processing uplink coverage weakening provided by an embodiment of the application;
  • FIG. 5 is a schematic diagram of a dual connection scenario provided by an embodiment of the application.
  • FIG. 6 is a schematic diagram of another dual-connection scenario provided by an embodiment of the application.
  • FIG. 7 is a schematic diagram 1 of MAC CE provided by an embodiment of this application.
  • FIG. 8 is a second schematic diagram of MAC CE provided by an embodiment of the application.
  • FIG. 9 is the third schematic diagram of MAC CE provided by an embodiment of this application.
  • FIG. 10 is a fourth schematic diagram of MAC CE provided by an embodiment of this application.
  • FIG. 11 is a second schematic flowchart of a method for processing uplink coverage weakening provided by an embodiment of this application.
  • FIG. 12 is a schematic diagram 1 of the structural composition of an apparatus for processing weakened uplink coverage provided by an embodiment of this application;
  • FIG. 13 is a schematic diagram 2 of the structural composition of an apparatus for processing uplink coverage weakening provided by an embodiment of the application;
  • FIG. 14 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • 15 is a schematic structural diagram of a chip according to an embodiment of the application.
  • FIG. 16 is a schematic block diagram of a communication system provided by an embodiment of this application.
  • GSM Global Mobile System
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • LTE-A Advanced Long Term Evolution
  • NR New Radio
  • NR Universal Mobile Telecommunication System
  • WiMAX Global Mobile Telecommunication System
  • WLAN Wireless Local Area Networks
  • WiMAX Worldwide Interoperability for Microwave Access
  • D2D Device to Device
  • M2M machine-to-machine
  • MTC machine type communication
  • V2V vehicle-to-vehicle
  • the communication system 100 applied in the embodiment of the present application is shown in FIG. 1.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a terminal device 120 (or referred to as a communication terminal, terminal).
  • the network device 110 can provide communication coverage for a specific geographic area, and can communicate with terminal devices located in the coverage area.
  • the network device 110 may be a base station (Base Transceiver Station, BTS) in a GSM system or a CDMA system, a base station (NodeB, NB) in a WCDMA system, or an evolved base station in an LTE system (Evolutional Node B, eNB or eNodeB), or a wireless controller in the Cloud Radio Access Network (CRAN), or the network equipment can be a mobile switching center, a relay station, an access point, an in-vehicle device, Wearable devices, hubs, switches, bridges, routers, network-side devices in 5G networks or network devices in future public land mobile networks (Public Land Mobile Network, PLMN), etc.
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • LTE Long Term Evolutional Node B
  • eNodeB evolved base station in an LTE system
  • CRAN Cloud Radio Access Network
  • the network equipment can be a mobile switching center, a relay station, an access point, an in-veh
  • the communication system 100 also includes at least one terminal device 120 within the coverage of the network device 110.
  • terminal equipment includes, but is not limited to, connections via wired lines, such as via Public Switched Telephone Networks (PSTN), Digital Subscriber Lines (DSL), digital cables, and direct cable connections ; And/or another data connection/network; and/or via wireless interfaces, such as for cellular networks, wireless local area networks (Wireless Local Area Network, WLAN), digital TV networks such as DVB-H networks, satellite networks, AM- FM broadcast transmitter; and/or another terminal device configured to receive/transmit communication signals; and/or Internet of Things (IoT) equipment.
  • PSTN Public Switched Telephone Networks
  • DSL Digital Subscriber Lines
  • WLAN wireless local area networks
  • digital TV networks such as DVB-H networks, satellite networks, AM- FM broadcast transmitter
  • IoT Internet of Things
  • a terminal device set to communicate through a wireless interface may be referred to as a "wireless communication terminal", “wireless terminal”, or “mobile terminal”.
  • mobile terminals include, but are not limited to, satellite or cellular telephones; Personal Communication Systems (PCS) terminals that can combine cellular radiotelephones with data processing, facsimile, and data communication capabilities; may include radiotelephones, pagers, Internet/internal PDA with networked access, web browser, notepad, calendar, and/or Global Positioning System (GPS) receiver; and conventional laptop and/or palm-type receivers or others including radiotelephone transceivers Electronic device.
  • PCS Personal Communication Systems
  • GPS Global Positioning System
  • Terminal equipment can refer to access terminal, user equipment (User Equipment), user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or User device.
  • Access terminals can be cellular phones, cordless phones, Session Initiation Protocol (SIP) phones, wireless local loop (Wireless Local Loop, WLL) stations, personal digital processing (Personal Digital Assistant (PDA), wireless communication Functional handheld devices, computing devices, or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in 5G networks, or terminal devices in PLMNs that will evolve in the future, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • direct terminal connection (Device to Device, D2D) communication may be performed between the terminal devices 120.
  • the 5G system or 5G network may also be referred to as a New Radio (NR) system or NR network.
  • NR New Radio
  • FIG. 1 exemplarily shows one network device and two terminal devices.
  • the communication system 100 may include multiple network devices and each network device may include other numbers of terminal devices within the coverage area. This application The embodiment does not limit this.
  • the communication system 100 may further include other network entities such as a network controller, a mobility management entity, etc. This embodiment of the present application does not limit this.
  • the devices with communication functions in the network/system in the embodiments of the present application may be referred to as communication devices.
  • the communication device may include a network device 110 and a terminal device 120 with a communication function, and the network device 110 and the terminal device 120 may be the specific devices described above, which will not be repeated here.
  • the communication device may also include other devices in the communication system 100, such as network controllers, mobility management entities, and other network entities, which are not limited in the embodiments of the present application.
  • 5G Enhanced Mobile Broadband
  • URLLC Ultra-Reliable Low-Latency Communications
  • mMTC Massive Machine-Type Communications
  • eMBB still aims at users' access to multimedia content, services and data, and its demand is growing rapidly.
  • eMBB may be deployed in different scenarios, such as indoors, urban areas, and rural areas, its capabilities and requirements are also quite different, so it cannot be generalized and must be analyzed in detail in conjunction with specific deployment scenarios.
  • Typical applications of URLLC include: industrial automation, power automation, telemedicine operations (surgery), traffic safety assurance, etc.
  • Typical characteristics of mMTC include: high connection density, small data volume, delay-insensitive services, low cost and long service life of modules.
  • NR In the early deployment of NR, complete NR coverage is difficult to obtain, so the typical network coverage is wide area LTE coverage and NR island coverage mode. Moreover, a large amount of LTE is deployed below 6GHz, and there are very few sub-6GHz spectrums available for 5G. Therefore, NR must study the application of frequency spectrum above 6GHz, and the high frequency band has limited coverage and fast signal fading. At the same time, in order to protect the early investment of mobile operators in LTE, a working mode of tight cooperation between LTE and NR was proposed.
  • EN-DC LTE-NR Dual Connectivity
  • the LTE base station serves as the master node (Master Node, MN)
  • the NR base station serves as the secondary node (Secondary Node, SN).
  • the network deployment and networking architecture of EN-DC As shown in Figure 2, among them, the Evolved Universal Terrestrial Radio Access Networ (E-UTRAN) represents the access network part, and the Evolved Packet Core network (EPC) represents the core network part.
  • E-UTRAN Evolved Universal Terrestrial Radio Access Networ
  • EPC Evolved Packet Core network
  • the access network part is composed of at least one eNB (two eNBs are shown in Figure 2) and at least one en-gNB (two en-gNBs are shown in Figure 2), where eNB serves as MN and en-gNB serves as SN , MN and SN are both connected to EPC.
  • the UE uplink power is limited, and the frequency of the NR spectrum is high, so the uplink coverage will be limited.
  • the LTE spectrum (lower frequency relative to the NR spectrum) is used as the uplink Frequency spectrum can improve uplink coverage.
  • SUL the concept of SUL is introduced.
  • the NR spectrum includes NR uplink (NR UL) and NR downlink (NR DL).
  • NR UL is used for uplink transmission
  • NR DL is used for downlink transmission.
  • NR UL can be regarded as NUL.
  • SUL is only used for uplink transmission, and the frequency of SUL is lower than that of NUL.
  • SUL, NUL, and NR DL belong to the same cell.
  • the UE will only work on one uplink carrier, and the network side dynamically instructs the UE on which carrier to perform uplink transmission through DCI.
  • the UE measures the Reference Signal Received Power (RSRP) of the downlink signal, and compares the RSRP with the threshold configured by the network side through system broadcast , To decide which uplink carrier to select SUL and NUL for uplink transmission; when RSRP is less than the threshold, select SUL, otherwise select NUL.
  • RSRP Reference Signal Received Power
  • the network side will configure a dedicated random access resource, and at the same time configure the dedicated random access resource On which carrier, SUL or NUL.
  • the switch between SUL and NUL is indicated by the DCI command issued by the network side, but because the frequency of NR is relatively high, the channel changes relatively quickly, so The network side may not have time to issue the DCI command to switch the uplink carrier, and the uplink coverage has been weakened to a certain extent, resulting in the inability to transmit uplink signals or data. If the UE's downlink is still in good condition, the UE will not trigger RRC The connection re-establishment process makes the uplink unable to send data, causing the uplink service data to be interrupted and the interruption time is too long, which affects the user experience.
  • FIG. 4 is a schematic flowchart 1 of a method for processing uplink coverage weakening according to an embodiment of the application. As shown in FIG. 4, the method for processing uplink coverage weakening includes the following steps:
  • Step 401 The terminal determines that the uplink coverage is weakened in the first cell.
  • the terminal may be any device capable of communicating with the network, such as a mobile phone, a tablet computer, a notebook, a vehicle-mounted terminal, and the like.
  • the first cell is a certain cell currently serving the terminal, and the base station where the cell is located is an NR base station (such as gNB, en-gNB). Based on this, the first cell is an NR cell .
  • the terminal may determine whether the first cell has an uplink coverage weakening problem through any one of the following methods:
  • Method 1 After the terminal sends the first uplink data channel on the first cell, it does not receive the feedback information for the first uplink data channel sent by the network side, and the feedback information is used to instruct the terminal to retransmit If the first uplink data channel or the newly transmitted second uplink data channel is used, it is determined that the first cell has an uplink coverage weakening problem.
  • the UE After the UE sends the Physical Uplink Shared Channel (PUSCH), it does not receive the feedback information about the PUSCH sent by the network side within a certain period of time.
  • the feedback information here may be used to indicate the retransmission of the PUSCH.
  • PUSCH indication information or newly transmitted PUSCH indication information.
  • Method 2 In the process of the terminal sending the first uplink data channel on the first cell, if the number of retransmissions of the RLC layer corresponding to the first uplink data channel exceeds a first threshold, the first uplink data channel is determined A cell has the problem of weak uplink coverage.
  • the first threshold is configured by the network side.
  • Method 3 When the terminal sends the first uplink data channel on the first cell, if the number of retransmissions of the MAC layer corresponding to the first uplink data channel exceeds a second threshold, then it is determined that the first uplink data channel A cell has the problem of weak uplink coverage.
  • the second threshold is configured by the network side.
  • Method 4 If the terminal fails to perform a random access procedure on the first cell, it is determined that the first cell has an uplink coverage weakening problem.
  • the terminal For example, if the terminal is performing random access, if it does not receive a random access response (Random Access Response, RAR) feedback, or MSG3 transmission is unsuccessful, or it does not receive media access control for conflict resolution (MAC, Media Access Control (Control Element, CE), etc., determine that the random access process fails, that is, it is determined that the first cell has a weakening uplink coverage problem.
  • RAR Random Access Response
  • MSG3 transmission MSG3 transmission is unsuccessful
  • media access control for conflict resolution MAC, Media Access Control (Control Element, CE), etc.
  • Step 402 The terminal sends first indication information to the network side, where the first indication information is used to indicate that a cell has an uplink coverage weakening problem; or, the terminal triggers an RRC connection re-establishment process.
  • the terminal in the case of a dual connectivity configuration, sends the first indication information to the network side if it is determined that the first cell has a weakened uplink coverage problem.
  • the dual connection configuration has different application scenarios. The following describes how the terminal sends the first instruction information to the network side in combination with different application scenarios of the dual connection configuration.
  • the primary node in the dual connectivity is an LTE base station, and the secondary node in the dual connectivity is an NR base station; the base station where the first cell with the problem of weak uplink coverage is located is the NR base station.
  • the terminal can send the first indication information to the network side in any of the following two ways.
  • the terminal uses the signaling on the master node side to carry SRB1 or SRB2, and sends the first indication information to the master node.
  • the terminal uses SRB1 or SRB2 on the master node side to send the cell identification information of the first cell to the master node.
  • the terminal generates a first MAC CE on the master node side, and sends the first MAC CE to the master node, where the first MAC CE carries the first indication information.
  • the first MAC CE also carries cell identification information of the first cell.
  • Figure 5 is an EN-DC or NG EN-DC dual-connection scenario.
  • the LTE base station is the primary node and the NR base station is the secondary node.
  • the UE finds that the NR cell has weakened uplink coverage; 2.
  • the UE uses the SRB1 or SRB2 or MAC CE on the master node side to report the first indication information to the master node.
  • the first indication information is used to indicate The cell has an uplink coverage weakening problem.
  • the UE reports the first indication information it also reports the cell identity of the NR cell with the uplink coverage weakening problem; 3.
  • the master node forwards the first indication information to the NR with the uplink coverage weakening problem.
  • the base station where the cell is located ie NR base station).
  • the primary node in the dual connectivity is an NR base station, and the secondary node in the dual connectivity is an LTE base station; the base station where the first cell with the problem of weak uplink coverage is located is the NR base station.
  • the terminal can send the first indication information to the network side in any of the following two ways.
  • the terminal sends the first indication information to the master node through the offload SRB1 or offload SRB2 on the secondary node side.
  • the terminal sends the cell identification information of the first cell to the master node through offload SRB1 or offload SRB2 on the secondary node side.
  • the terminal generates a second MAC CE on the secondary node side, and sends the second MAC CE to the secondary node, where the second MAC CE carries the first indication information.
  • the second MAC CE also carries cell identification information of the first cell.
  • Figure 6 shows the NE-DC dual-connection scenario.
  • the LTE base station is the secondary node
  • the NR base station is the primary node
  • the secondary node side is not configured with SRB3, but is configured with offloading SRB1 or Shunt SRB2.
  • the UE finds that the NR cell has weak uplink coverage; 2.
  • the UE uses the offload SRB1 or offload SRB2 on the secondary node side to report the first indication information to the primary node, or uses the MAC CE on the secondary node side to report the first indication to the primary node.
  • the node reports first indication information, which is used to indicate that a cell has a weakening uplink coverage problem.
  • the UE when the UE reports the first indication information, it also reports the cell identity of the NR cell with weak uplink coverage; 3.
  • the secondary node forwards the first indication information to the base station (that is, the NR base station) where the NR cell with the weakened uplink coverage problem is located.
  • the terminal in the case of carrier aggregation configuration, sends the first indication information to the network side if it is determined that the first cell has a weakened uplink coverage problem.
  • the cell serving the terminal includes at least one primary cell (Pcell) and one secondary cell (Scell), and the Pcell and Scell provide services for the terminal through carrier aggregation.
  • the terminal If the first cell with weak uplink coverage is the primary cell or the secondary cell in the carrier aggregation; the terminal generates a third MAC CE, and sends the third MAC CE to the base station, where The third MAC CE carries the first indication information.
  • the third MAC CE also carries cell identification information of the first cell.
  • the terminal may generate a MAC CE, which carries the first indication information, and optionally, also carries the cell identity of the first cell with the weak uplink coverage problem.
  • the terminal sends the MAC CE to the network side.
  • the MAC layer of the UE multiplexes the MAC CE in a TB, and the TB will not be transmitted on a cell with weak coverage.
  • the terminal sends the first indication information to the base station through SRB1 or SRB2.
  • the terminal sends the cell identification information of the first cell to the base station through SRB1 or SRB2.
  • the terminal can report the first indication information to the network side through SRB1 or SRB2.
  • the terminal when reporting the first indication information, it also reports the cell of the first cell with the uplink coverage weakening problem.
  • the cell identification information of the first cell includes at least one of the following:
  • Cell ID global cell ID, physical cell ID, frequency point, serving cell index number, indication information indicating the serving cell index number.
  • the terminal when the terminal reports the first indication information through an RRC message (ie SRB1 or SRB2 or offload SRB1 or offload SRB2), it also reports the cell identity of the first cell with weak uplink coverage through the RRC message.
  • the cell identity includes At least one of the following: cell identification, global cell identification, physical cell identification, frequency point, serving cell index number, and indication information indicating the serving cell index number.
  • the terminal when the terminal reports the first indication information through the MAC CE (that is, the first MAC CE or the second MAC CE or the third MAC CE), it defines an uplink MAC CE and defines a specific logical channel identifier (LCID) ), the specific logical channel identifier is used to represent the MAC CE that carries the first indication information.
  • the network side receives the MAC CE, the network side knows that the uplink coverage weakening problem has occurred, and at the same time decodes the MAC CE to obtain the cell identifier in the MAC CE, and knows that the specific cell has the uplink coverage weakening problem.
  • the network side forwards the first indication information to the RRC layer or the physical layer.
  • the physical layer can instruct to switch the carrier from the normal uplink carrier to the supplementary uplink carrier; if the first indication information is forwarded to the RRC layer, the RRC can trigger the handover or reconfiguration process.
  • Figures 7 to 10 show examples of several MAC CEs. The following describes the MAC CEs in Figures 7 to 10 respectively.
  • MAC CE includes a bitmap.
  • the bitmap is used to identify which cell is the cell with weak uplink coverage.
  • Each bit in the bitmap corresponds to a cell, and the value of the bit is used to indicate Whether the corresponding cell is a cell with weak uplink coverage.
  • Ci (1 ⁇ i ⁇ 24, or 1 ⁇ i ⁇ 7) represents the cell with index number i, and the value of the bit corresponding to Ci is 1, which means that Ci has a weakened uplink coverage problem If the value of the bit corresponding to Ci is 0, it means that Ci is not a cell with weak uplink coverage.
  • the MAC CE includes a cell index number, and the cell corresponding to the cell index number is a cell with weak uplink coverage.
  • the MAC CE includes a cell identity (CellIdentity), and the cell corresponding to the cell identity is a cell with a problem of weak uplink coverage.
  • the MAC CE includes a cell identifier and a public land mobile network (Public Land Mobile Network, PLMN) identifier, and the cell corresponding to the cell identifier and the PLMN is a cell with a problem of weak uplink coverage.
  • PLMN Public Land Mobile Network
  • the MAC CE includes a physical cell identity (Physical Cell Identity, PCI), and the cell corresponding to the PCI is a cell with weak uplink coverage.
  • PCI Physical Cell Identity
  • the MAC CE shown in Figures 7 to 10 is only exemplary, and the MAC CE in the embodiment of this application may include any combination of the following: cell identification, global cell identification, physical cell identification, frequency point , Serving cell index number, indicating information indicating the serving cell index number.
  • MAC CE is an uplink MAC CE
  • a specific uplink LCID is defined for it, and the specific uplink LCID is used to represent the MAC CE carrying the first indication information.
  • Table 1 is the current uplink LCID.
  • a new LCID is defined by using any one of the index numbers in Table 1 from 33 to 51, which is used to represent the first indication information (indicating information that there is a cell with weakened uplink coverage) The MAC CE. As shown in Table 2, the LCID corresponding to the index number 51 is selected as the first indication information.
  • the index number LCID value 0 Common control channel 64 bits (CCCH of size 64 bits) 1–32 Logical channel identification (Identity of the logical channel) 33–51 Reserved (Reserved) 52 Common control channel 48 bits (CCCH of size 48 bits) 53 Recommended bit rate query (Recommended bit rate query) 54 Multiple Entry Power Headroom Report (Multiple Entry PHR) (4 bytes C i ) 55 Pre-configured resource confirmation (Configured Grant Confirmation) 56 Multiple Entry Power Headroom Report (Multiple Entry PHR) (1 byte C i ) 57 Single Entry Power Headroom Report (Single Entry PHR) 58 Cell Radio Network Temporary Identity (C-RNTI) 59 Short Truncated Cache Status Report (Short Truncated BSR) 60 Long Truncated Cache Status Report (Long Truncated BSR) 61 Short Buffer Status Report (Short BSR) 62 Long Cache Status Report (Long BSR) 63 Padding
  • the index number LCID value 0 Common control channel 64 bits (CCCH of size 64 bits) 1–32 Logical channel identification (Identity of the logical channel) 33–50 Reserved (Reserved) 51 First instruction 52 Common control channel 48 bits (CCCH of size 48 bits) 53 Recommended bit rate query (Recommended bit rate query) 54 Multiple Entry Power Headroom Report (Multiple Entry PHR) (4 bytes C i ) 55 Pre-configured resource confirmation (Configured Grant Confirmation) 56 Multiple Entry Power Headroom Report (Multiple Entry PHR) (1 byte C i ) 57 Single Entry Power Headroom Report (Single Entry PHR) 58 Cell Radio Network Temporary Identity (C-RNTI) 59 Short Truncated Cache Status Report (Short Truncated BSR) 60 Long Truncated Cache Status Report (Long Truncated BSR) 61 Short Buffer Status Report (Short BSR) 62 Long Cache Status Report (Long BSR) 63 Padding
  • the RRC connection re-establishment process is triggered.
  • the first timer is started; if the weak uplink coverage problem still exists before the first timer expires, the RRC connection re-establishment process is triggered.
  • the terminal triggers the RRC connection re-establishment process, which specifically refers to that the terminal performs a cell search, and after finding a suitable cell, it sends an RRC connection re-establishment request message to the cell.
  • FIG. 11 is a second flowchart of a method for processing uplink coverage weakening according to an embodiment of the application. As shown in FIG. 11, the method for processing uplink coverage weakening includes the following steps:
  • Step 1101 The target base station receives first indication information, where the first indication information is used to indicate that a cell has a weak uplink coverage problem, and the target base station is a base station where the first cell with a weak uplink coverage problem is located.
  • the target base station is the base station where the first cell with weak uplink coverage is located.
  • the target base station in the scenario of dual connectivity configuration, is the master node in dual connectivity, the terminal reports the first indication information to the secondary node in dual connectivity, and the target base station receives the second node forwarded by the secondary node.
  • One instruction information In one embodiment, in the scenario of dual connectivity configuration, the target base station is the master node in dual connectivity, the terminal reports the first indication information to the secondary node in dual connectivity, and the target base station receives the second node forwarded by the secondary node.
  • One instruction information In one embodiment, in the scenario of dual connectivity configuration, the target base station is the master node in dual connectivity, the terminal reports the first indication information to the secondary node in dual connectivity, and the target base station receives the second node forwarded by the secondary node.
  • One instruction information In one embodiment, in the scenario of dual connectivity configuration, the target base station is the master node in dual connectivity, the terminal reports the first indication information to the secondary node in dual connectivity, and the target base station receives the second node forwarded by the secondary node.
  • the target base station is a secondary node in dual connectivity
  • the terminal reports the first indication information to the master node in dual connectivity
  • the target base station receives the information forwarded by the master node The first instruction information.
  • the target base station receives the first indication information sent by the terminal.
  • the target base station receives cell identification information of the first cell that has a problem of weak uplink coverage.
  • the cell identification information of the first cell includes at least one of the following: a cell identification, a global cell identification, a physical cell identification, a frequency point, a serving cell index number, and indication information indicating a serving cell index number.
  • the terminal sends the first indication information and the cell identification information of the first cell to the network side
  • the terminal sends the first indication information and the cell identification information of the first cell to the network side
  • Step 1102 The target base station performs a first operation, and the first operation is used to recover the uplink coverage weakening problem.
  • the target base station after receiving the first indication information, the target base station can perform any of the following operations to recover the uplink coverage weakening problem.
  • the target base station sends second indication information to the terminal, where the second indication information is used to instruct the carrier to switch from the normal uplink carrier to the supplementary uplink carrier.
  • the target base station issues DCI to the terminal, and the DCI instructs the terminal to switch the carrier from NUL to SUL.
  • the target base station sends an RRC reconfiguration message to the terminal, where the RRC reconfiguration message is used to configure a supplementary uplink carrier and instruct to switch the carrier from a normal uplink carrier to the supplementary uplink carrier.
  • the target base station performs a handover process and releases the first cell.
  • the target base station performs a handover process and releases a cell with weak uplink coverage.
  • the target base station executes the secondary node change process to release or deactivate the first cell.
  • the target base station executes the secondary node change process to release or deactivate the cell with weak uplink coverage.
  • the target base station executes the secondary carrier management process to release or deactivate the first cell.
  • the target base station performs the secondary carrier management process to release or deactivate the cell with weak uplink coverage.
  • FIG. 12 is a schematic diagram 1 of the structural composition of an apparatus for processing uplink coverage weakening provided by an embodiment of the application.
  • the apparatus is applied to a terminal.
  • the apparatus includes:
  • the determining unit 1201 is configured to determine that the first cell has an uplink coverage weakening problem
  • the processing unit 1202 is configured to send first indication information to the network side, where the first indication information is used to indicate that a cell has an uplink coverage weakening problem; or, to trigger an RRC connection re-establishment process.
  • the processing unit 1202 is configured to send the first indication information to the network side if it is determined that the first cell has a weakening uplink coverage problem in the case of a dual connectivity configuration.
  • the primary node in the dual connectivity is an LTE base station
  • the secondary node in the dual connectivity is an NR base station
  • the base station where the first cell with weak uplink coverage is located is the NR base station
  • the processing unit 1202 is configured to use the SRB1 or SRB2 on the master node side to send the first indication information to the master node.
  • the processing unit 1202 is further configured to: use the SRB1 or SRB2 on the master node side to send the cell identification information of the first cell to the master node.
  • the primary node in the dual connectivity is an LTE base station
  • the secondary node in the dual connectivity is an NR base station
  • the base station where the first cell with weak uplink coverage is located is the NR base station
  • the processing unit 1202 is configured to generate a first MAC CE on the master node side, and send the first MAC CE to the master node, where the first MAC CE carries the first indication information.
  • the first MAC CE also carries cell identification information of the first cell.
  • the primary node in the dual connectivity is an NR base station
  • the secondary node in the dual connectivity is an LTE base station
  • the base station where the first cell with weak uplink coverage is located is the NR base station
  • the processing unit 1202 is configured to send the first indication information to the master node through the offload SRB1 or offload SRB2 on the secondary node side.
  • the processing unit 1202 is further configured to: send the cell identification information of the first cell to the master node through offload SRB1 or offload SRB2 on the secondary node side.
  • the primary node in the dual connectivity is an NR base station
  • the secondary node in the dual connectivity is an LTE base station
  • the base station where the first cell with weak uplink coverage is located is the NR base station
  • the processing unit 1202 is configured to generate a second MAC CE on the secondary node side, and send the second MAC CE to the secondary node, where the second MAC CE carries the first indication information.
  • the second MAC CE also carries cell identification information of the first cell.
  • the processing unit 1202 is configured to send the first indication information to the network side if the terminal determines that the first cell has a weakening uplink coverage problem in the case of carrier aggregation configuration.
  • the first cell with a problem of weak uplink coverage is a primary cell or a secondary cell in the carrier aggregation
  • the processing unit 1202 is configured to generate a third MAC CE, and send the third MAC CE to a base station, where the third MAC CE carries the first indication information.
  • the third MAC CE also carries cell identification information of the first cell.
  • the first cell having a problem of weak uplink coverage is a secondary cell in the carrier aggregation
  • the processing unit 1202 is configured to send the first indication information to the base station through SRB1 or SRB2.
  • the processing unit 1202 is further configured to send the cell identification information of the first cell to the base station through SRB1 or SRB2.
  • the MAC CE corresponds to a specific logical channel identifier, and the specific logical channel identifier is used to represent the MAC CE carrying the first indication information.
  • the network side forwards the first indication information to the RRC layer or the physical layer.
  • the cell identification information of the first cell includes at least one of the following:
  • Cell ID global cell ID, physical cell ID, frequency point, serving cell index number, indication information indicating the serving cell index number.
  • the processing unit 1202 is configured to trigger an RRC connection re-establishment process if it is determined that the first cell has a weakened uplink coverage in the case of an independent networking configuration.
  • the processing unit 1202 is configured to: if it is determined that the first cell has a weakening uplink coverage problem, start a first timer; if the weakening uplink coverage problem still exists before the first timer expires , The RRC connection re-establishment process is triggered.
  • the determining unit 1021 is configured to: after sending the first uplink data channel on the first cell, the feedback information for the first uplink data channel sent by the network side is not received, and the feedback The information is used to instruct the terminal to retransmit the first uplink data channel or newly transmit the second uplink data channel, then it is determined that the first cell has a weakening uplink coverage problem.
  • the determining unit 1201 is configured to: in the process of sending the first uplink data channel on the first cell, the number of retransmissions of the RLC layer corresponding to the first uplink data channel exceeds the first uplink data channel. Threshold value, it is determined that the first cell has a weakening uplink coverage problem.
  • the determining unit 1201 is configured to: in the process of sending the first uplink data channel on the first cell, the number of retransmissions of the MAC layer corresponding to the first uplink data channel exceeds the second Threshold value, it is determined that the first cell has a weakening uplink coverage problem.
  • the determining unit 1201 is configured to: if a random access procedure fails to be performed on the first cell, it is determined that the first cell has a weakening uplink coverage problem.
  • FIG. 13 is a schematic diagram 2 of the structural composition of an apparatus for processing uplink coverage weakening provided by an embodiment of the application.
  • the apparatus is applied to a target base station. As shown in FIG. 13, the apparatus includes:
  • the receiving unit 1301 is configured to receive first indication information, where the first indication information is used to indicate that a cell has an uplink coverage weakening problem, and the target base station is the base station where the first cell with the uplink coverage weakening problem is located;
  • the execution unit 1302 is configured to execute a first operation, where the first operation is used to recover the uplink coverage weakening problem.
  • the receiving unit 1301 is further configured to receive the cell identification information of the first cell that has the problem of weak uplink coverage.
  • the cell identification information of the first cell includes at least one of the following:
  • Cell ID global cell ID, physical cell ID, frequency point, serving cell index number, indication information indicating the serving cell index number.
  • the execution unit 1302 is configured to send second indication information to the terminal, where the second indication information is used to instruct the carrier to switch from the normal uplink carrier to the supplementary uplink carrier.
  • the execution unit 1302 is configured to send an RRC reconfiguration message to the terminal, where the RRC reconfiguration message is used to configure a supplementary uplink carrier and instruct the carrier to switch from a normal uplink carrier to the supplementary uplink Carrier.
  • the execution unit 1302 is configured to execute a handover process and release the first cell.
  • the executing unit 1302 is configured to execute a secondary node change process, and release or deactivate the first cell.
  • the execution unit 1302 is configured to execute a secondary carrier management process, and release or deactivate the first cell.
  • the receiving unit 1301 is configured to: receive the first instruction information forwarded by the primary node or the secondary node; or, receive the first instruction information sent by the terminal.
  • FIG. 14 is a schematic structural diagram of a communication device 600 provided by an embodiment of the present application.
  • the communication device may be a terminal or a base station.
  • the communication device 600 shown in FIG. 14 includes a processor 610.
  • the processor 610 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the communication device 600 may further include a memory 620.
  • the processor 610 can call and run a computer program from the memory 620 to implement the method in the embodiments of the present application.
  • the memory 620 may be a separate device independent of the processor 610, or may be integrated in the processor 610.
  • the communication device 600 may further include a transceiver 630, and the processor 610 may control the transceiver 630 to communicate with other devices. Specifically, it may send information or data to other devices, or receive other devices. Information or data sent by the device.
  • the transceiver 630 may include a transmitter and a receiver.
  • the transceiver 630 may further include antennas, and the number of antennas may be one or more.
  • the communication device 600 may specifically be a network device according to an embodiment of the present application, and the communication device 600 may implement the corresponding process implemented by the network device in each method of the embodiment of the present application. .
  • the communication device 600 may specifically be a mobile terminal/terminal according to an embodiment of the application, and the communication device 600 may implement the corresponding procedures implemented by the mobile terminal/terminal in each method of the embodiments of the application. For the sake of brevity, This will not be repeated here.
  • FIG. 15 is a schematic structural diagram of a chip of an embodiment of the present application.
  • the chip 700 shown in FIG. 15 includes a processor 710, and the processor 710 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the chip 700 may further include a memory 720.
  • the processor 710 can call and run a computer program from the memory 720 to implement the method in the embodiments of the present application.
  • the memory 720 may be a separate device independent of the processor 710, or may be integrated in the processor 710.
  • the chip 700 may further include an input interface 730.
  • the processor 710 can control the input interface 730 to communicate with other devices or chips. Specifically, it can obtain information or data sent by other devices or chips.
  • the chip 700 may further include an output interface 740.
  • the processor 710 can control the output interface 740 to communicate with other devices or chips. Specifically, it can output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the chip can implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the chip can be applied to the mobile terminal/terminal in the embodiments of the present application, and the chip can implement the corresponding process implemented by the mobile terminal/terminal in each method of the embodiments of the present application. Repeat.
  • chips mentioned in the embodiments of the present application may also be referred to as system-level chips, system chips, chip systems, or system-on-chip chips.
  • FIG. 16 is a schematic block diagram of a communication system 900 according to an embodiment of the present application. As shown in FIG. 16, the communication system 900 includes a terminal 910 and a network device 920.
  • the terminal 910 may be used to implement the corresponding functions implemented by the terminal in the above method
  • the network device 920 may be used to implement the corresponding functions implemented by the network device in the above method.
  • the processor of the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments may be completed by instructions in the form of hardware integrated logic circuits or software in the processor.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA ready-made programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in combination with the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a mature storage medium in the art, such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory, an electrically erasable programmable memory, and a register.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be Read-Only Memory (ROM), Programmable Read-Only Memory (Programmable ROM, PROM), Erasable Programmable Read-Only Memory (Erasable PROM, EPROM), and Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • enhanced SDRAM ESDRAM
  • Synchlink DRAM SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiments of the present application may also be static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data) SDRAM (DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is to say, the memories in the embodiments of the present application are intended to include but are not limited to these and any other suitable types of memories.
  • Embodiments of the present application also provide a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium may be applied to the network device in the embodiments of the present application, and the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiments of the present application.
  • the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiments of the present application.
  • the computer-readable storage medium may be applied to the mobile terminal/terminal in the embodiments of the present application, and the computer program causes the computer to execute the corresponding processes implemented by the mobile terminal/terminal in each method of the embodiments of the present application, in order to It is concise and will not be repeated here.
  • An embodiment of the present application also provides a computer program product, including computer program instructions.
  • the computer program product may be applied to the network device in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application. Repeat again.
  • the computer program product can be applied to the mobile terminal/terminal in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding procedures implemented by the mobile terminal/terminal in the various methods of the embodiments of the present application. , I won’t repeat it here.
  • the embodiment of the application also provides a computer program.
  • the computer program can be applied to the network device in the embodiment of the present application.
  • the computer program runs on the computer, the computer is allowed to execute the corresponding process implemented by the network device in each method of the embodiment of the present application. And will not be repeated here.
  • the computer program can be applied to the mobile terminal/terminal in the embodiments of the present application, and when the computer program runs on the computer, the computer is allowed to execute the corresponding implementation of the mobile terminal/terminal in each method of the embodiments of the present application For the sake of brevity, I will not repeat them here.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical, or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present application essentially or part of the contribution to the existing technology or part of the technical solution can be embodied in the form of a software product
  • the computer software product is stored in a storage medium, including Several instructions are used to enable a computer device (which may be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the methods described in the embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory,) ROM, random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种处理上行覆盖弱化的方法及装置、终端、网络设备,该方法包括:终端确定第一小区存在上行覆盖弱化问题;所述终端向网络侧发送第一指示信息,所述第一指示信息用于指示有小区存在上行覆盖弱化问题;或者,所述终端触发RRC连接重建过程。

Description

处理上行覆盖弱化的方法及装置、终端、网络设备 技术领域
本申请实施例涉及移动通信技术领域,具体涉及一种处理上行覆盖弱化的方法及装置、终端、网络设备。
背景技术
在第五代(5 th Generation,5G)通信技术中,可以配置补充上行(Supplementary Uplink,SUL)载波来提高上行覆盖。SUL载波和正常上行(Normal Uplink,NUL)载波之间的切换是通过网络侧下发的下行控制信息(Downlink Control Information,DCI)命令来指示的,然而,由于5G的NUL载波的频率较高,信道变化比较快,所以网络侧可能没有来得及下发切换上行载波的DCI命令,就已经发生了上行覆盖弱化的问题,导致上行业务数据中断且中断时间过长,影响用户体验。
发明内容
本申请实施例提供一种处理上行覆盖弱化的方法及装置、终端、网络设备。
本申请实施例提供的处理上行覆盖弱化的方法,包括:
终端确定第一小区存在上行覆盖弱化问题;
所述终端向网络侧发送第一指示信息,所述第一指示信息用于指示有小区存在上行覆盖弱化问题;或者,所述终端触发无线资源控制(Radio Resource Control,RRC)连接重建过程。
本申请实施例提供的处理上行覆盖弱化的方法,包括:
目标基站接收第一指示信息,所述第一指示信息用于指示有小区存在上行覆盖弱化问题,所述目标基站为存在上行覆盖弱化问题的第一小区所在的基站;
所述目标基站执行第一操作,所述第一操作用于恢复所述上行覆盖弱化问题。
本申请实施例提供的处理上行覆盖弱化的装置,应用于终端,所述装置包括:
确定单元,用于确定第一小区存在上行覆盖弱化问题;
处理单元,用于向网络侧发送第一指示信息,所述第一指示信息用于指示有小区存在上行覆盖弱化问题;或者,触发RRC连接重建过程。
本申请实施例提供的处理上行覆盖弱化的装置,应用于目标基站,所述装置包括:
接收单元,用于接收第一指示信息,所述第一指示信息用于指示有小区存在上行覆盖弱化问题,所述目标基站为存在上行覆盖弱化问题的第一小区所在的基站;
执行单元,用于执行第一操作,所述第一操作用于恢复所述上行覆盖弱化问题。
本申请实施例提供的终端,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述的处理上行覆盖弱化的方法。
本申请实施例提供的网络设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述的处理上行覆盖弱化的方法。
本申请实施例提供的芯片,用于实现上述的处理上行覆盖弱化的方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行上述的处理上行覆盖弱化的方法。
本申请实施例提供的计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述的处理上行覆盖弱化的方法。
本申请实施例提供的计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述的处理上行覆盖弱化的方法。
本申请实施例提供的计算机程序,当其在计算机上运行时,使得计算机执行上述的处理上行覆盖弱化的方法。
通过上述技术方案,终端在双连接(Dual Connectivity,DC)或者载波聚合(Carrier Aggregation,CA)配置的情况下,如果新无线(NR,New Radio)小区出现上行覆盖弱化问题,终端向网络侧发送第一指示信息来通知网络侧有小区存在上行覆盖弱化问题,网络侧可以采用变更上行载波,或者发起切换过程,或者变更辅节点,或者管理辅载波等操作来解决上行覆盖弱化问题。终端在独立组网(Stand Alone,SA)配置的情况下,如果NR小区出现上行覆盖弱化问题,终端通过自主发起RRC连接重建过程来解决上行覆盖弱化问题,从而降低了业务中断时延,提升了用户体验。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为本申请实施例提供的一种通信系统架构的示意性图;
图2为本申请实施例提供的一种双连接架构示意图;
图3为本申请实施例提供的SUL与NUL的示意图;
图4为本申请实施例提供的处理上行覆盖弱化的方法的流程示意图一;
图5为本申请实施例提供的一种双连接场景的示意图;
图6为本申请实施例提供的另一种双连接场景的示意图;
图7为本申请实施例提供的MAC CE的示意图一;
图8为本申请实施例提供的MAC CE的示意图二;
图9为本申请实施例提供的MAC CE的示意图三;
图10为本申请实施例提供的MAC CE的示意图四;
图11为本申请实施例提供的处理上行覆盖弱化的方法的流程示意图二;
图12为本申请实施例提供的处理上行覆盖弱化的装置的结构组成示意图一;
图13为本申请实施例提供的处理上行覆盖弱化的装置的结构组成示意图二;
图14为本申请实施例提供的一种通信设备示意性结构图;
图15为本申请实施例的芯片的示意性结构图;
图16为本申请实施例提供的一种通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、非授权频段上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、非授权频段上的NR(NR-based access to unlicensed spectrum,NR-U)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、下一代通信系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),以及车辆间(Vehicle to Vehicle,V2V)通信等,本申请实施例也可以应用于这些通信系统。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可 以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。可选地,该网络设备110可以是GSM系统或CDMA系统中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的网络侧设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
该通信系统100还包括位于网络设备110覆盖范围内的至少一个终端设备120。作为在此使用的“终端设备”包括但不限于经由有线线路连接,如经由公共交换电话网络(Public Switched Telephone Networks,PSTN)、数字用户线路(Digital Subscriber Line,DSL)、数字电缆、直接电缆连接;和/或另一数据连接/网络;和/或经由无线接口,如,针对蜂窝网络、无线局域网(Wireless Local Area Network,WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器;和/或另一终端设备的被设置成接收/发送通信信号的装置;和/或物联网(Internet of Things,IoT)设备。被设置成通过无线接口通信的终端设备可以被称为“无线通信终端”、“无线终端”或“移动终端”。移动终端的示例包括但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(Personal Communications System,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(Global Positioning System,GPS)接收器的PDA;以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。终端设备可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端设备或者未来演进的PLMN中的终端设备等。
可选地,终端设备120之间可以进行终端直连(Device to Device,D2D)通信。
可选地,5G系统或5G网络还可以称为新无线(New Radio,NR)系统或NR网络。
图1示例性地示出了一个网络设备和两个终端设备,可选地,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
为便于理解本申请实施例的技术方案,以下对本申请实施例的相关技术进行说明,以下相关技术与本申请实施例的技术方案的任意结合均属于本申请实施例的保护范围。
随着人们对速率、延迟、高速移动性、能效的追求以及未来生活中业务的多样性、复杂性,为此第三代合作伙伴计划(3 rd Generation Partnership Project,3GPP)国际标准组织开始研发5G。5G的主要应用场景为:增强移动超宽带(enhanced Mobile Broadband,eMBB)、低时延高可靠通信(Ultra-Reliable Low-Latency Communications,URLLC)、大规模机器类通信(massive Machine-Type Communications,mMTC)。
一方面,eMBB仍然以用户获得多媒体内容、服务和数据为目标,其需求增长十分迅速。另一方面,由于eMBB可能部署在不同的场景中,例如室内,市区,农村等,其能力和需求的差别也比较大,所以不能一概而论,必须结合具体的部署场景详细分析。URLLC的典型应用包括:工业自动化,电力自动化,远程医疗操作(手术),交通安全保障等。mMTC的典型特点包括:高连接密度,小数据量,时延不敏感业务,模块的低成本和长使用寿命等。
在NR早期部署时,完整的NR覆盖很难获取,所以典型的网络覆盖是广域的LTE覆盖和NR 的孤岛覆盖模式。而且大量的LTE部署在6GHz以下,可用于5G的6GHz以下频谱很少。所以NR必须研究6GHz以上的频谱应用,而高频段覆盖有限、信号衰落快。同时为了保护移动运营商前期在LTE投资,提出了LTE和NR之间紧密合作(tight interworking)的工作模式。
为了能够尽快实现5G网络部署和商业应用,3GPP在2017年12底前首先完成第一个5G版本,即EN-DC(LTE-NR Dual Connectivity)。在EN-DC中,LTE基站(eNB)作为主节点(Master Node,MN),NR基站(gNB或en-gNB)作为辅节点(Secondary Node,SN),EN-DC的网络部署和组网架构如图2所示,其中,演进的通用无线接入网(Evolved Universal Terrestrial Radio Access Networ,E-UTRAN)代表接入网部分,演进型分组核心网(Evolved Packet Core network,EPC)代表核心网部分,接入网部分由至少一个eNB(图2中示意出两个eNB)和至少一个en-gNB(图2中示意出两个en-gNB)组成,其中,eNB作为MN,en-gNB作为SN,MN和SN均连接到EPC。
另一方面,在5G中,UE上行功率受限,而且NR频谱的频率又较高,所以上行覆盖会受限,为了提高上行覆盖,利用LTE频谱(相对NR频谱的频率较低)作为上行频谱,可以提高上行覆盖。为此,引入SUL的概念。参照图3,NR频谱包括NR上行(NR UL)和NR下行(NR DL),NR UL用于上行传输,NR DL用于下行传输,其中,NR UL可以视作NUL。SUL仅用于上行传输,SUL的频率低于NUL。
SUL和NUL,NR DL属于同一个小区,同一时刻,UE只会工作在一个上行载波上,网络侧通过DCI动态指示UE在哪个载波上进行上行传输。另一方面,对于空闲状态的UE初始接入网络侧时,UE测量下行信号的参考信号接收功率(Reference Signal Received Power,RSRP),通过将RSRP和网络侧通过系统广播配置的门限值进行对比,来决定选择SUL和NUL中的哪个上行载波进行上行传输;当RSRP小于门限时选择SUL,否则选择NUL。又一方面,在切换过程以及物理下行控制信道(Physical Downlink Control Channel,PDCCH)指示的非竞争随机接入过程中,网络侧会配置专用的随机接入资源,同时配置该专用的随机接入资源在SUL和NUL中的哪个载波上。
通过以上方案可知,虽然可以配置SUL作为上行覆盖不足的补充,但是SUL和NUL之间的切换是通过网络侧下发DCI命令来指示的,但是由于NR的频率比较高,信道变化比较快,所以网络侧可能没有来得及下发切换上行载波的DCI命令,上行覆盖就已经弱化到一定程度,导致不能发送上行信号或者数据,如果此时UE的下行链路还很好的情况,UE不会触发RRC连接重建过程,使得上行不能发送数据,导致上行业务数据中断且中断时间过长,影响用户体验。
图4为本申请实施例提供的处理上行覆盖弱化的方法的流程示意图一,如图4所示,所述处理上行覆盖弱化的方法包括以下步骤:
步骤401:终端确定第一小区存在上行覆盖弱化问题。
本申请实施例中,所述终端可以是手机、平板电脑、笔记本、车载终端等任意能够与网络进行通信的设备。
本申请实施例中,所述第一小区为当前为终端提供服务的某个小区,该小区所在的基站为NR基站(如gNB,en-gNB),基于此,所述第一小区为NR小区。所述终端可以通过以下方法中的任意一种方法来确定第一小区是否存在上行覆盖弱化问题:
方法一:所述终端在第一小区上发送第一上行数据信道后,未收到网络侧发送的针对所述第一上行数据信道的反馈信息,所述反馈信息用于指示所述终端重传所述第一上行数据信道或者新传第二上行数据信道,则确定所述第一小区存在上行覆盖弱化问题。
举个例子:UE发送物理上行共享信道(Physical Uplink Shared Channel,PUSCH)后,在一定时间内未接收到网络侧发送的关于该PUSCH的反馈信息,这里的反馈信息可以是用于指示重传该PUSCH的指示信息或者新传PUSCH的指示信息。
方法二:所述终端在所述第一小区上发送第一上行数据信道的过程中,所述第一上行数据信道对应的RLC层的重传次数超过第一门限值,则确定所述第一小区存在上行覆盖弱化问题。
举个例子:UE发送PUSCH后,RLC层的重传次数超过第一门限值,则确定第一小区不能正确接收数据,也即确定所述第一小区存在上行覆盖弱化问题。这里,第一门限值由网络侧配置。
方法三:所述终端在所述第一小区上发送第一上行数据信道的过程中,所述第一上行数据信道对应的MAC层的重传次数超过第二门限值,则确定所述第一小区存在上行覆盖弱化问题。
举个例子:UE发送PUSCH后,MAC层的重传次数超过第二门限值,则确定第一小区不能正确接收数据,也即确定所述第一小区存在上行覆盖弱化问题。这里,第二门限值由网络侧配置。
方法四:所述终端在所述第一小区上执行随机接入过程失败,则确定所述第一小区存在上行覆盖弱化问题。
举个例子:终端在执行随机接入过程中,如果没有接收到随机接入响应(Random Access Response,RAR)反馈,或者MSG3传输不成功,或者没有接收到用于冲突解决的媒体接入控制(MAC,Media Access Control)控制单元(Control Element,CE)等,则确定随机接入过程失败,也即确定所述第一小区存在上行覆盖弱化问题。
步骤402:所述终端向网络侧发送第一指示信息,所述第一指示信息用于指示有小区存在上行覆盖弱化问题;或者,所述终端触发RRC连接重建过程。
本申请实施例中,所述终端在双连接配置的情况下,如果确定第一小区存在上行覆盖弱化问题,则向网络侧发送所述第一指示信息。这里,双连接配置具有不同的应用场景,以下结合双连接配置的不同应用场景对终端如何向网络侧发送第一指示信息进行描述。
场景一:所述双连接中的主节点为LTE基站,所述双连接中的辅节点为NR基站;存在上行覆盖弱化问题的所述第一小区所在的基站为所述NR基站。
这种场景,终端可以通过以下两种方式中的任意一种方式向网络侧发送第一指示信息。
1)所述终端使用所述主节点侧的信令承载SRB1或者SRB2,向所述主节点发送所述第一指示信息。可选地,所述终端使用所述主节点侧的SRB1或者SRB2,向所述主节点发送所述第一小区的小区标识信息。
2)所述终端生成所述主节点侧的第一MAC CE,向所述主节点发送所述第一MAC CE,其中,所述第一MAC CE携带所述第一指示信息。可选地,所述第一MAC CE还携带所述第一小区的小区标识信息。
举个例子:参照图5,图5为EN-DC或NG EN-DC的双连接场景,在该双连接场景中,LTE基站为主节点,NR基站为辅节点。如图5所示,1、UE发现NR小区存在上行覆盖弱化问题;2、UE使用主节点侧的SRB1或SRB2或MAC CE向主节点上报第一指示信息,该第一指示信息用于指示有小区存在上行覆盖弱化问题,可选地,UE上报第一指示信息时还上报存在上行覆盖弱化问题的NR小区的小区标识;3、主节点将第一指示信息转发给存在上行覆盖弱化问题的NR小区所在的基站(即NR基站)。
场景二:所述双连接中的主节点为NR基站,所述双连接中的辅节点为LTE基站;存在上行覆盖弱化问题的所述第一小区所在的基站为所述NR基站。
这种场景,终端可以通过以下两种方式中的任意一种方式向网络侧发送第一指示信息。
1)所述终端通过所述辅节点侧的分流SRB1或分流SRB2,向所述主节点发送所述第一指示信息。可选地,所述终端通过所述辅节点侧的分流SRB1或分流SRB2,向所述主节点发送所述第一小区的小区标识信息。
2)所述终端生成所述辅节点侧的第二MAC CE,向所述辅节点发送所述第二MAC CE,其中,所述第二MAC CE携带所述第一指示信息。可选地,所述第二MAC CE还携带所述第一小区的小区标识信息。
举个例子:参照图6,图6为NE-DC的双连接场景,在该双连接场景中,LTE基站为辅节点,NR基站为主节点,辅节点侧没有配置SRB3,配置有分流SRB1或分流SRB2。如图6所示,1、UE发现NR小区存在上行覆盖弱化问题;2、UE使用辅节点侧的分流SRB1或分流SRB2向主节点上报第一指示信息,或者使用辅节点侧的MAC CE向辅节点上报第一指示信息,该第一指示信息用于指示有小区存在上行覆盖弱化问题,可选地,UE上报第一指示信息时还上报存在上行覆盖弱化问题的NR小区的小区标识;3、辅节点将第一指示信息转发给存在上行覆盖弱化问题的NR小区所在的基站(即NR基站)。
本申请实施例中,所述终端在载波聚合配置的情况下,如果确定第一小区存在上行覆盖弱化问题,则向网络侧发送所述第一指示信息。这里,在载波聚合配置中,为终端提供服务的小区至少包括一个主小区(Pcell)和一个辅小区(Scell),Pcell和Scell通过载波聚合的方式为终端提供服务,其中,
1)如果存在上行覆盖弱化问题的所述第一小区为所述载波聚合中的主小区或辅小区;则所述终端生成第三MAC CE,向基站发送所述第三MAC CE,其中,所述第三MAC CE携带所述第一指示信息。可选地,所述第三MAC CE还携带所述第一小区的小区标识信息。
具体地,如果是Pcell或者Scell存在上行覆盖弱化问题,则终端可以生成一个MAC CE,该MAC CE携带第一指示信息,可选地,还携带存在上行覆盖弱化问题的第一小区的小区标识,终端将该MAC CE发送给网络侧。进一步,UE的MAC层将该MAC CE复用在一个TB中,该TB不会在存在覆盖弱化问题的小区的上传输。
2)如果存在上行覆盖弱化问题的所述第一小区为所述载波聚合中的辅小区,则所述终端通过SRB1或者SRB2,向基站发送所述第一指示信息。可选地,所述终端通过SRB1或者SRB2,向所述基站发送所述第一小区的小区标识信息。
具体地,如果Scell存在上行覆盖弱化问题,则终端可以通过SRB1或者SRB2向网络侧上报第一指示信息,可选地,上报第一指示信息时还上报存在上行覆盖弱化问题的第一小区的小区标识。
上述方案中,所述第一小区的小区标识信息,包括以下至少之一:
小区标识、全球小区标识、物理小区标识、频点、服务小区索引号、表示服务小区索引号的指示信息。
上述方案中,终端通过RRC消息(即SRB1或者SRB2或者分流SRB1或者分流SRB2)上报第一指示信息时,还通过该RRC消息上报存在上行覆盖弱化问题的第一小区的小区标识,该小区标识包括以下至少之一:小区标识、全球小区标识、物理小区标识、频点、服务小区索引号、表示服务小区索引号的指示信息。
上述方案中,终端通过MAC CE(即第一MAC CE或第二MAC CE或第三MAC CE)上报第一指示信息时,定义一个上行MAC CE,并为其定义一个特定的逻辑信道标识(LCID),所述特定的逻辑信道标识用于代表携带所述第一指示信息的MAC CE。当网络侧收到该MAC CE,网络侧就知道发生了上行覆盖弱化问题,同时解码该MAC CE获取MAC CE里面的小区标识,就知道具体那个小区发生了上行覆盖弱化问题。进一步,携带所述第一指示信息的MAC CE被所述网络侧接收到后,所述网络侧将所述第一指示信息转发至RRC层或物理层。如此,将第一指示信息转发到物理层,则物理层可以指示将载波从正常上行载波切换到补充上行载波;将第一指示信息转发到RRC层,则RRC可以触发切换或者重配过程。
图7至图10给出了几种MAC CE的示例,以下对图7至图10中的MAC CE进行分别描述。
参照图7,MAC CE包括比特图(bitmap),通过比特图来标识哪个小区是存在上行覆盖弱化问题的小区,比特图中的每个比特位与一个小区对应,比特位的取值用于表示对应的小区是否是存在上行覆盖弱化问题的小区。如图7所示,Ci(1≤i≤24,或者,1≤i≤7)代表索引号为i的小区,Ci对应的比特位的取值为1,则代表Ci是存在上行覆盖弱化问题的小区,Ci对应的比特位的取值为0,则代表Ci不是存在上行覆盖弱化问题的小区。
参照图8,MAC CE包括小区索引号,该小区索引号对应的小区即为存在上行覆盖弱化问题的小区。
参照图9,MAC CE包括小区标识(CellIdentity),该小区标识对应的小区即为存在上行覆盖弱化问题的小区。或者,MAC CE包括小区标识和公共陆地移动网络(Public Land Mobile Network,PLMN)标识,该小区标识和PLMN对应的小区即为存在上行覆盖弱化问题的小区。
参照图10,MAC CE包括物理小区标识(Physical Cell Identity,PCI),该PCI对应的小区即为存在上行覆盖弱化问题的小区。
需要说明的是,上述图7至图10给出的MAC CE仅为示例性的,本申请实施例的MAC CE可以包括以下内容的任意组合:小区标识、全球小区标识、物理小区标识、频点、服务小区索引号、表示服务小区索引号的指示信息。
此外,由于上述MAC CE为上行的MAC CE,因此为其定义一个特定的上行LCID,所述特定的上行LCID用于代表携带所述第一指示信息的MAC CE。表1为目前的上行LCID,通过利用表1中的索引号从33到51中的任意一个来定义新的LCID,用于代表携带第一指示信息(有小区存在上行覆盖弱化问题的指示信息)的MAC CE。如表2所示,选取索引号为51对应的LCID取值为第一指示信息。
索引号 LCID取值
0 公共控制信道64比特(CCCH of size 64bits)
1–32 逻辑信道标识(Identity of the logical channel)
33–51 保留(Reserved)
52 公共控制信道48比特(CCCH of size 48bits)
53 建议比特率查询(Recommended bit rate query)
54 多入口功率余量报告(Multiple Entry PHR)(4字节C i)
55 预配置的资源确认(Configured Grant Confirmation)
56 多入口功率余量报告(Multiple Entry PHR)(1字节C i)
57 单入口功率余量报告(Single Entry PHR)
58 小区无线网络临时标识(C-RNTI)
59 短截断的缓存状态报告(Short Truncated BSR)
60 长截断的缓存状态报告(Long Truncated BSR)
61 短缓存状态报(Short BSR)
62 长缓存状态报告(Long BSR)
63 填充(Padding)
表1
索引号 LCID取值
0 公共控制信道64比特(CCCH of size 64bits)
1–32 逻辑信道标识(Identity of the logical channel)
33–50 保留(Reserved)
51 第一指示信息
52 公共控制信道48比特(CCCH of size 48bits)
53 建议比特率查询(Recommended bit rate query)
54 多入口功率余量报告(Multiple Entry PHR)(4字节C i)
55 预配置的资源确认(Configured Grant Confirmation)
56 多入口功率余量报告(Multiple Entry PHR)(1字节C i)
57 单入口功率余量报告(Single Entry PHR)
58 小区无线网络临时标识(C-RNTI)
59 短截断的缓存状态报告(Short Truncated BSR)
60 长截断的缓存状态报告(Long Truncated BSR)
61 短缓存状态报(Short BSR)
62 长缓存状态报告(Long BSR)
63 填充(Padding)
表2
本申请实施例中,所述终端在独立组网配置的情况下,如果确定第一小区存在上行覆盖弱化问题,则触发RRC连接重建过程。
在一种实施方式中,如果确定第一小区存在上行覆盖弱化问题,则启动第一定时器;如果所述第一定时器超时前所述上行覆盖弱化问题依然存在,则触发RRC连接重建过程。
这里,终端触发RRC连接重建过程,具体是指终端进行小区搜索,搜索到合适的小区后,向该小区发送RRC连接重建请求消息。
图11为本申请实施例提供的处理上行覆盖弱化的方法的流程示意图二,如图11所示,所述处理上行覆盖弱化的方法包括以下步骤:
步骤1101:目标基站接收第一指示信息,所述第一指示信息用于指示有小区存在上行覆盖弱化问题,所述目标基站为存在上行覆盖弱化问题的第一小区所在的基站。
本申请实施例中,所述目标基站为存在上行覆盖弱化问题的第一小区所在的基站。
在一实施方式中,在双连接配置的场景下,所述目标基站为双连接中的主节点,终端将第一指示信息上报给双连接中的辅节点,目标基站接收该辅节点转发的第一指示信息。
在另一实施方式中,在双连接配置的场景下,所述目标基站为双连接中的辅节点,终端将第一指示信息上报给双连接中的主节点,目标基站接收该主节点转发的第一指示信息。
在又一实施方式中,在载波聚合的场景下,所述目标基站接收终端发送的第一指示信息。
可选地,所述目标基站接收存在上行覆盖弱化问题的所述第一小区的小区标识信息。进一步,所述第一小区的小区标识信息,包括以下至少之一:小区标识、全球小区标识、物理小区标识、频点、服务小区索引号、表示服务小区索引号的指示信息。
这里,终端如何向网络侧发送第一指示信息以及第一小区的小区标识信息,可以参照前述终端侧的处理上行覆盖弱化的方法的描述进行理解,此处不再赘述。
步骤1102:所述目标基站执行第一操作,所述第一操作用于恢复所述上行覆盖弱化问题。
本申请实施例中,目标基站收到第一指示信息后,可以执行如下任意一种操作,来恢复上行覆盖弱化问题。
A)所述目标基站向终端发送第二指示信息,所述第二指示信息用于指示将载波从正常上行载波切换到补充上行载波。
举个例子:目标基站向终端下发DCI,该DCI指示终端将载波从NUL切换到SUL。
B)所述目标基站向终端发送RRC重配置消息,所述RRC重配置消息用于配置补充上行载波,以及指示将载波从正常上行载波切换到所述补充上行载波。
C)所述目标基站执行切换过程,释放所述第一小区。
举个例子:所述目标基站执行切换过程,释放存在上行覆盖弱化问题的小区。
D)所述目标基站执行辅节点变更过程,释放或去激活所述第一小区。
举个例子:所述目标基站执行辅节点变更过程,释放或去激活存在上行覆盖弱化问题的小区。
E)所述目标基站执行辅载波管理过程,释放或去激活所述第一小区。
举个例子:所述目标基站执行辅载波管理过程,释放或去激活存在上行覆盖弱化问题的小区。
图12为本申请实施例提供的处理上行覆盖弱化的装置的结构组成示意图一,该装置应用于终端,如图12所示,所述装置包括:
确定单元1201,用于确定第一小区存在上行覆盖弱化问题;
处理单元1202,用于向网络侧发送第一指示信息,所述第一指示信息用于指示有小区存在上行覆盖弱化问题;或者,触发RRC连接重建过程。
在一实施方式中,所述处理单元1202,用于:所述终端在双连接配置的情况下,如果确定第一小区存在上行覆盖弱化问题,则向网络侧发送所述第一指示信息。
在一实施方式中,所述双连接中的主节点为LTE基站,所述双连接中的辅节点为NR基站;存在上行覆盖弱化问题的所述第一小区所在的基站为所述NR基站;
所述处理单元1202,用于:使用所述主节点侧的SRB1或者SRB2,向所述主节点发送所述第一指示信息。
在一实施方式中,所述处理单元1202,还用于:使用所述主节点侧的SRB1或者SRB2,向所述主节点发送所述第一小区的小区标识信息。
在一实施方式中,所述双连接中的主节点为LTE基站,所述双连接中的辅节点为NR基站;存在上行覆盖弱化问题的所述第一小区所在的基站为所述NR基站;
所述处理单元1202,用于:生成所述主节点侧的第一MAC CE,向所述主节点发送所述第一MAC CE,其中,所述第一MAC CE携带所述第一指示信息。
在一实施方式中,所述第一MAC CE还携带所述第一小区的小区标识信息。
在一实施方式中,所述双连接中的主节点为NR基站,所述双连接中的辅节点为LTE基站;存在上行覆盖弱化问题的所述第一小区所在的基站为所述NR基站;
所述处理单元1202,用于:通过所述辅节点侧的分流SRB1或分流SRB2,向所述主节点发送所述第一指示信息。
在一实施方式中,所述处理单元1202,还用于:通过所述辅节点侧的分流SRB1或分流SRB2,向所述主节点发送所述第一小区的小区标识信息。
在一实施方式中,所述双连接中的主节点为NR基站,所述双连接中的辅节点为LTE基站;存在上行覆盖弱化问题的所述第一小区所在的基站为所述NR基站;
所述处理单元1202,用于:生成所述辅节点侧的第二MAC CE,向所述辅节点发送所述第二MAC CE,其中,所述第二MAC CE携带所述第一指示信息。
在一实施方式中,所述第二MAC CE还携带所述第一小区的小区标识信息。
在一实施方式中,所述处理单元1202,用于:所述终端在载波聚合配置的情况下,如果确定第一小区存在上行覆盖弱化问题,则向网络侧发送所述第一指示信息。
在一实施方式中,存在上行覆盖弱化问题的所述第一小区为所述载波聚合中的主小区或辅小区;
所述处理单元1202,用于:生成第三MAC CE,向基站发送所述第三MAC CE,其中,所述第三MAC CE携带所述第一指示信息。
在一实施方式中,所述第三MAC CE还携带所述第一小区的小区标识信息。
在一实施方式中,存在上行覆盖弱化问题的所述第一小区为所述载波聚合中的辅小区;
所述处理单元1202,用于:通过SRB1或者SRB2,向基站发送所述第一指示信息。
在一实施方式中,,所述处理单元1202,还用于:通过SRB1或者SRB2,向所述基站发送所述第一小区的小区标识信息。
在一实施方式中,所述MAC CE对应特定的逻辑信道标识,所述特定的逻辑信道标识用于代表携带所述第一指示信息的MAC CE。
在一实施方式中,携带所述第一指示信息的MAC CE被所述网络侧接收到后,所述网络侧将所述第一指示信息转发至RRC层或物理层。
在一实施方式中,所述第一小区的小区标识信息,包括以下至少之一:
小区标识、全球小区标识、物理小区标识、频点、服务小区索引号、表示服务小区索引号的指示信息。
在一实施方式中,所述处理单元1202,用于:所述终端在独立组网配置的情况下,如果确定第一小区存在上行覆盖弱化问题,则触发RRC连接重建过程。
在一实施方式中,所述处理单元1202,用于:如果确定第一小区存在上行覆盖弱化问题,则启动第一定时器;如果所述第一定时器超时前所述上行覆盖弱化问题依然存在,则触发RRC连接重建过程。
在一实施方式中,所述确定单元1021,用于:在第一小区上发送第一上行数据信道后,未收到网络侧发送的针对所述第一上行数据信道的反馈信息,所述反馈信息用于指示所述终端重传所述第一上行数据信道或者新传第二上行数据信道,则确定第一小区存在上行覆盖弱化问题。
在一实施方式中,所述确定单元1201,用于:在所述第一小区上发送第一上行数据信道的过程中,所述第一上行数据信道对应的RLC层的重传次数超过第一门限值,则确定所述第一小区存在上行覆盖弱化问题。
在一实施方式中,所述确定单元1201,用于:在所述第一小区上发送第一上行数据信道的过程中,所述第一上行数据信道对应的MAC层的重传次数超过第二门限值,则确定所述第一小区存在上行覆盖弱化问题。
在一实施方式中,所述确定单元1201,用于:在所述第一小区上执行随机接入过程失败,则确定所述第一小区存在上行覆盖弱化问题。
本领域技术人员应当理解,本申请实施例的上述处理上行覆盖弱化的装置的相关描述可以参照本申请实施例的处理上行覆盖弱化的方法的相关描述进行理解。
图13为本申请实施例提供的处理上行覆盖弱化的装置的结构组成示意图二,该装置应用于目标基站,如图13所示,所述装置包括:
接收单元1301,用于接收第一指示信息,所述第一指示信息用于指示有小区存在上行覆盖弱化问题,所述目标基站为存在上行覆盖弱化问题的第一小区所在的基站;
执行单元1302,用于执行第一操作,所述第一操作用于恢复所述上行覆盖弱化问题。
在一实施方式中,所述接收单元1301,还用于接收存在上行覆盖弱化问题的所述第一小区的小区标识信息。
在一实施方式中,所述第一小区的小区标识信息,包括以下至少之一:
小区标识、全球小区标识、物理小区标识、频点、服务小区索引号、表示服务小区索引号的指示信息。
在一实施方式中,所述执行单元1302,用于:向终端发送第二指示信息,所述第二指示信息用于指示将载波从正常上行载波切换到补充上行载波。
在一实施方式中,所述执行单元1302,用于:向终端发送RRC重配置消息,所述RRC重配置消息用于配置补充上行载波,以及指示将载波从正常上行载波切换到所述补充上行载波。
在一实施方式中,所述执行单元1302,用于:执行切换过程,释放所述第一小区。
在一实施方式中,所述执行单元1302,用于:执行辅节点变更过程,释放或去激活所述第一小区。
在一实施方式中,所述执行单元1302,用于:执行辅载波管理过程,释放或去激活所述第一小区。
在一实施方式中,所述接收单元1301,用于:接收主节点或辅节点转发的第一指示信息;或者,接收终端发送的第一指示信息。
本领域技术人员应当理解,本申请实施例的上述处理上行覆盖弱化的装置的相关描述可以参照本申请实施例的处理上行覆盖弱化的方法的相关描述进行理解。
图14是本申请实施例提供的一种通信设备600示意性结构图。该通信设备可以是终端,也可以是基站,图14所示的通信设备600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图14所示,通信设备600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
可选地,如图14所示,通信设备600还可以包括收发器630,处理器610可以控制该收发器630与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器630可以包括发射机和接收机。收发器630还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备600具体可为本申请实施例的网络设备,并且该通信设备600可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备600具体可为本申请实施例的移动终端/终端,并且该通信设备600可以实现本申请实施例的各个方法中由移动终端/终端实现的相应流程,为了简洁,在此不再赘述。
图15是本申请实施例的芯片的示意性结构图。图15所示的芯片700包括处理器710,处理器710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图15所示,芯片700还可以包括存储器720。其中,处理器710可以从存储器720中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器720可以是独立于处理器710的一个单独的器件,也可以集成在处理器710中。
可选地,该芯片700还可以包括输入接口730。其中,处理器710可以控制该输入接口730与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片700还可以包括输出接口740。其中,处理器710可以控制该输出接口740与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的移动终端/终端,并且该芯片可以实现本申请实施例的各个方法中由移动终端/终端实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图16是本申请实施例提供的一种通信系统900的示意性框图。如图16所示,该通信系统900包括终端910和网络设备920。
其中,该终端910可以用于实现上述方法中由终端实现的相应的功能,以及该网络设备920可以用于实现上述方法中由网络设备实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性 和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (76)

  1. 一种处理上行覆盖弱化的方法,所述方法包括:
    终端确定第一小区存在上行覆盖弱化问题;
    所述终端向网络侧发送第一指示信息,所述第一指示信息用于指示有小区存在上行覆盖弱化问题;或者,所述终端触发无线资源控制RRC连接重建过程。
  2. 根据权利要求1所述的方法,其中,所述终端在双连接配置的情况下,如果确定第一小区存在上行覆盖弱化问题,则向网络侧发送所述第一指示信息。
  3. 根据权利要求2所述的方法,其中,所述双连接中的主节点为长期演进LTE基站,所述双连接中的辅节点为新无线NR基站;存在上行覆盖弱化问题的所述第一小区所在的基站为所述NR基站;
    所述终端向网络侧发送第一指示信息,包括:
    所述终端使用所述主节点侧的信令承载SRB1或者SRB2,向所述主节点发送所述第一指示信息。
  4. 根据权利要求3所述的方法,其中,所述方法还包括:
    所述终端使用所述主节点侧的SRB1或者SRB2,向所述主节点发送所述第一小区的小区标识信息。
  5. 根据权利要求2所述的方法,其中,所述双连接中的主节点为LTE基站,所述双连接中的辅节点为NR基站;存在上行覆盖弱化问题的所述第一小区所在的基站为所述NR基站;
    所述终端向网络侧发送第一指示信息,包括:
    所述终端生成所述主节点侧的第一媒体接入控制控制单元MAC CE,向所述主节点发送所述第一MAC CE,其中,所述第一MAC CE携带所述第一指示信息。
  6. 根据权利要求5所述的方法,其中,所述第一MAC CE还携带所述第一小区的小区标识信息。
  7. 根据权利要求2所述的方法,其中,所述双连接中的主节点为NR基站,所述双连接中的辅节点为LTE基站;存在上行覆盖弱化问题的所述第一小区所在的基站为所述NR基站;
    所述终端向网络侧发送第一指示信息,包括:
    所述终端通过所述辅节点侧的分流SRB1或分流SRB2,向所述主节点发送所述第一指示信息。
  8. 根据权利要求7所述的方法,其中,所述方法还包括:
    所述终端通过所述辅节点侧的分流SRB1或分流SRB2,向所述主节点发送所述第一小区的小区标识信息。
  9. 根据权利要求2所述的方法,其中,所述双连接中的主节点为NR基站,所述双连接中的辅节点为LTE基站;存在上行覆盖弱化问题的所述第一小区所在的基站为所述NR基站;
    所述终端向网络侧发送第一指示信息,包括:
    所述终端生成所述辅节点侧的第二MAC CE,向所述辅节点发送所述第二MAC CE,其中,所述第二MAC CE携带所述第一指示信息。
  10. 根据权利要求9所述的方法,其中,所述第二MAC CE还携带所述第一小区的小区标识信息。
  11. 根据权利要求1所述的方法,其中,所述终端在载波聚合配置的情况下,如果确定第一小区存在上行覆盖弱化问题,则向网络侧发送所述第一指示信息。
  12. 根据权利要求11所述的方法,其中,存在上行覆盖弱化问题的所述第一小区为所述载波聚合中的主小区或辅小区;
    所述终端向网络侧发送第一指示信息,包括:
    所述终端生成第三MAC CE,向基站发送所述第三MAC CE,其中,所述第三MAC CE携带所述第一指示信息。
  13. 根据权利要求12所述的方法,其中,所述第三MAC CE还携带所述第一小区的小区标识信息。
  14. 根据权利要求11所述的方法,其中,存在上行覆盖弱化问题的所述第一小区为所述载 波聚合中的辅小区;
    所述终端向网络侧发送第一指示信息,包括:
    所述终端通过SRB1或者SRB2,向基站发送所述第一指示信息。
  15. 根据权利要求14所述的方法,其中,所述方法还包括:
    所述终端通过SRB1或者SRB2,向所述基站发送所述第一小区的小区标识信息。
  16. 根据权利要求5、6、9、10、12、13中任一项所述的方法,其中,所述MAC CE对应特定的逻辑信道标识,所述特定的逻辑信道标识用于代表携带所述第一指示信息的MAC CE。
  17. 根据权利要求5、6、9、10、12、13、16中任一项所述的方法,其中,携带所述第一指示信息的MAC CE被所述网络侧接收到后,所述网络侧将所述第一指示信息转发至RRC层或物理层。
  18. 根据权利要求4、6、8、10、13中任一项所述的方法,其中,所述第一小区的小区标识信息,包括以下至少之一:
    小区标识、全球小区标识、物理小区标识、频点、服务小区索引号、表示服务小区索引号的指示信息。
  19. 根据权利要求1所述的方法,其中,所述终端在独立组网配置的情况下,如果确定第一小区存在上行覆盖弱化问题,则触发RRC连接重建过程。
  20. 根据权利要求19所述的方法,其中,所述如果确定第一小区存在上行覆盖弱化问题,则触发RRC连接重建过程,包括:
    如果确定第一小区存在上行覆盖弱化问题,则启动第一定时器;
    如果所述第一定时器超时前所述上行覆盖弱化问题依然存在,则触发RRC连接重建过程。
  21. 根据权利要求1至20任一项所述的方法,其中,所述终端确定第一小区存在上行覆盖弱化问题,包括:
    所述终端在第一小区上发送第一上行数据信道后,未收到网络侧发送的针对所述第一上行数据信道的反馈信息,所述反馈信息用于指示所述终端重传所述第一上行数据信道或者新传第二上行数据信道,则确定所述第一小区存在上行覆盖弱化问题。
  22. 根据权利要求1至20任一项所述的方法,其中,所述终端确定第一小区存在上行覆盖弱化问题,包括:
    所述终端在所述第一小区上发送第一上行数据信道的过程中,所述第一上行数据信道对应的RLC层的重传次数超过第一门限值,则确定所述第一小区存在上行覆盖弱化问题。
  23. 根据权利要求1至20任一项所述的方法,其中,所述终端确定第一小区存在上行覆盖弱化问题,包括:
    所述终端在所述第一小区上发送第一上行数据信道的过程中,所述第一上行数据信道对应的MAC层的重传次数超过第二门限值,则确定所述第一小区存在上行覆盖弱化问题。
  24. 根据权利要求1至20任一项所述的方法,其中,所述终端确定第一小区存在上行覆盖弱化问题,包括:
    所述终端在所述第一小区上执行随机接入过程失败,则确定所述第一小区存在上行覆盖弱化问题。
  25. 一种处理上行覆盖弱化的方法,所述方法包括:
    目标基站接收第一指示信息,所述第一指示信息用于指示有小区存在上行覆盖弱化问题,所述目标基站为存在上行覆盖弱化问题的第一小区所在的基站;
    所述目标基站执行第一操作,所述第一操作用于恢复所述上行覆盖弱化问题。
  26. 根据权利要求25所述的方法,其中,所述方法还包括:
    所述目标基站接收存在上行覆盖弱化问题的所述第一小区的小区标识信息。
  27. 根据权利要求26所述的方法,其中,所述第一小区的小区标识信息,包括以下至少之一:
    小区标识、全球小区标识、物理小区标识、频点、服务小区索引号、表示服务小区索引号的指示信息。
  28. 根据权利要求25至27任一项所述的方法,其中,所述目标基站执行第一操作包括:
    所述目标基站向终端发送第二指示信息,所述第二指示信息用于指示将载波从正常上行载波切换到补充上行载波。
  29. 根据权利要求25至27任一项所述的方法,其中,所述目标基站执行第一操作包括:
    所述目标基站向终端发送RRC重配置消息,所述RRC重配置消息用于配置补充上行载波,以及指示将载波从正常上行载波切换到所述补充上行载波。
  30. 根据权利要求25至27任一项所述的方法,其中,所述目标基站执行第一操作包括:
    所述目标基站执行切换过程,释放所述第一小区。
  31. 根据权利要求25至27任一项所述的方法,其中,所述目标基站执行第一操作包括:
    所述目标基站执行辅节点变更过程,释放或去激活所述第一小区。
  32. 根据权利要求25至27任一项所述的方法,其中,所述目标基站执行第一操作包括:
    所述目标基站执行辅载波管理过程,释放或去激活所述第一小区。
  33. 根据权利要求25至32任一项所述的方法,其中,所述目标基站接收第一指示信息,包括:
    所述目标基站接收主节点或辅节点转发的第一指示信息;或者,
    所述目标基站接收终端发送的第一指示信息。
  34. 一种处理上行覆盖弱化的装置,应用于终端,所述装置包括:
    确定单元,用于确定第一小区存在上行覆盖弱化问题;
    处理单元,用于向网络侧发送第一指示信息,所述第一指示信息用于指示有小区存在上行覆盖弱化问题;或者,触发RRC连接重建过程。
  35. 根据权利要求34所述的装置,其中,所述处理单元,用于:所述终端在双连接配置的情况下,如果确定第一小区存在上行覆盖弱化问题,则向网络侧发送所述第一指示信息。
  36. 根据权利要求35所述的装置,其中,所述双连接中的主节点为LTE基站,所述双连接中的辅节点为NR基站;存在上行覆盖弱化问题的所述第一小区所在的基站为所述NR基站;
    所述处理单元,用于:使用所述主节点侧的SRB1或者SRB2,向所述主节点发送所述第一指示信息。
  37. 根据权利要求36所述的装置,其中,所述处理单元,还用于:使用所述主节点侧的SRB1或者SRB2,向所述主节点发送所述第一小区的小区标识信息。
  38. 根据权利要求35所述的装置,其中,所述双连接中的主节点为LTE基站,所述双连接中的辅节点为NR基站;存在上行覆盖弱化问题的所述第一小区所在的基站为所述NR基站;
    所述处理单元,用于:生成所述主节点侧的第一MAC CE,向所述主节点发送所述第一MAC CE,其中,所述第一MAC CE携带所述第一指示信息。
  39. 根据权利要求38所述的装置,其中,所述第一MAC CE还携带所述第一小区的小区标识信息。
  40. 根据权利要求35所述的装置,其中,所述双连接中的主节点为NR基站,所述双连接中的辅节点为LTE基站;存在上行覆盖弱化问题的所述第一小区所在的基站为所述NR基站;
    所述处理单元,用于:通过所述辅节点侧的分流SRB1或分流SRB2,向所述主节点发送所述第一指示信息。
  41. 根据权利要求40所述的装置,其中,所述处理单元,还用于:通过所述辅节点侧的分流SRB1或分流SRB2,向所述主节点发送所述第一小区的小区标识信息。
  42. 根据权利要求35所述的装置,其中,所述双连接中的主节点为NR基站,所述双连接中的辅节点为LTE基站;存在上行覆盖弱化问题的所述第一小区所在的基站为所述NR基站;
    所述处理单元,用于:生成所述辅节点侧的第二MAC CE,向所述辅节点发送所述第二MAC CE,其中,所述第二MAC CE携带所述第一指示信息。
  43. 根据权利要求42所述的装置,其中,所述第二MAC CE还携带所述第一小区的小区标识信息。
  44. 根据权利要求34所述的装置,其中,所述处理单元,用于:所述终端在载波聚合配置的情况下,如果确定第一小区存在上行覆盖弱化问题,则向网络侧发送所述第一指示信息。
  45. 根据权利要求44所述的装置,其中,存在上行覆盖弱化问题的所述第一小区为所述载波聚合中的主小区或辅小区;
    所述处理单元,用于:生成第三MAC CE,向基站发送所述第三MAC CE,其中,所述第三MAC CE携带所述第一指示信息。
  46. 根据权利要求45所述的装置,其中,所述第三MAC CE还携带所述第一小区的小区标识信息。
  47. 根据权利要求44所述的装置,其中,存在上行覆盖弱化问题的所述第一小区为所述载 波聚合中的辅小区;
    所述处理单元,用于:通过SRB1或者SRB2,向基站发送所述第一指示信息。
  48. 根据权利要求47所述的装置,其中,所述处理单元,还用于:通过SRB1或者SRB2,向所述基站发送所述第一小区的小区标识信息。
  49. 根据权利要求38、39、42、43、45、46中任一项所述的装置,其中,所述MAC CE对应特定的逻辑信道标识,所述特定的逻辑信道标识用于代表携带所述第一指示信息的MAC CE。
  50. 根据权利要求38、39、42、43、45、46、49中任一项所述的装置,其中,携带所述第一指示信息的MAC CE被所述网络侧接收到后,所述网络侧将所述第一指示信息转发至RRC层或物理层。
  51. 根据权利要求37、39、41、43、46中任一项所述的装置,其中,所述第一小区的小区标识信息,包括以下至少之一:
    小区标识、全球小区标识、物理小区标识、频点、服务小区索引号、表示服务小区索引号的指示信息。
  52. 根据权利要求34所述的装置,其中,所述处理单元,用于:所述终端在独立组网配置的情况下,如果确定第一小区存在上行覆盖弱化问题,则触发RRC连接重建过程。
  53. 根据权利要求52所述的装置,其中,所述处理单元,用于:如果确定第一小区存在上行覆盖弱化问题,则启动第一定时器;如果所述第一定时器超时前所述上行覆盖弱化问题依然存在,则触发RRC连接重建过程。
  54. 根据权利要求34至53任一项所述的装置,其中,所述确定单元,用于:在第一小区上发送第一上行数据信道后,未收到网络侧发送的针对所述第一上行数据信道的反馈信息,所述反馈信息用于指示所述终端重传所述第一上行数据信道或者新传第二上行数据信道,则确定第一小区存在上行覆盖弱化问题。
  55. 根据权利要求34至53任一项所述的装置,其中,所述确定单元,用于:在所述第一小区上发送第一上行数据信道的过程中,所述第一上行数据信道对应的RLC层的重传次数超过第一门限值,则确定所述第一小区存在上行覆盖弱化问题。
  56. 根据权利要求34至53任一项所述的装置,其中,所述确定单元,用于:在所述第一小区上发送第一上行数据信道的过程中,所述第一上行数据信道对应的MAC层的重传次数超过第二门限值,则确定所述第一小区存在上行覆盖弱化问题。
  57. 根据权利要求34至53任一项所述的装置,其中,所述确定单元,用于:在所述第一小区上执行随机接入过程失败,则确定所述第一小区存在上行覆盖弱化问题。
  58. 一种处理上行覆盖弱化的装置,应用于目标基站,所述装置包括:
    接收单元,用于接收第一指示信息,所述第一指示信息用于指示有小区存在上行覆盖弱化问题,所述目标基站为存在上行覆盖弱化问题的第一小区所在的基站;
    执行单元,用于执行第一操作,所述第一操作用于恢复所述上行覆盖弱化问题。
  59. 根据权利要求58所述的装置,其中,所述接收单元,还用于接收存在上行覆盖弱化问题的所述第一小区的小区标识信息。
  60. 根据权利要求59所述的装置,其中,所述第一小区的小区标识信息,包括以下至少之一:
    小区标识、全球小区标识、物理小区标识、频点、服务小区索引号、表示服务小区索引号的指示信息。
  61. 根据权利要求58至60任一项所述的装置,其中,所述执行单元,用于:向终端发送第二指示信息,所述第二指示信息用于指示将载波从正常上行载波切换到补充上行载波。
  62. 根据权利要求58至60任一项所述的装置,其中,所述执行单元,用于:向终端发送RRC重配置消息,所述RRC重配置消息用于配置补充上行载波,以及指示将载波从正常上行载波切换到所述补充上行载波。
  63. 根据权利要求58至60任一项所述的装置,其中,所述执行单元,用于:执行切换过程,释放所述第一小区。
  64. 根据权利要求58至60任一项所述的装置,其中,所述执行单元,用于:执行辅节点变更过程,释放或去激活所述第一小区。
  65. 根据权利要求58至60任一项所述的装置,其中,所述执行单元,用于:执行辅载波管理过程,释放或去激活所述第一小区。
  66. 根据权利要求58至65任一项所述的装置,其中,所述接收单元,用于:接收主节点或辅节点转发的第一指示信息;或者,接收终端发送的第一指示信息。
  67. 一种终端,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至24中任一项所述的方法。
  68. 一种网络设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求25至33中任一项所述的方法。
  69. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至24中任一项所述的方法。
  70. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求25至33中任一项所述的方法。
  71. 一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至24中任一项所述的方法。
  72. 一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求25至33中任一项所述的方法。
  73. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至24中任一项所述的方法。
  74. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求25至33中任一项所述的方法。
  75. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1至24中任一项所述的方法。
  76. 一种计算机程序,所述计算机程序使得计算机执行如权利要求25至33中任一项所述的方法。
PCT/CN2019/072046 2019-01-16 2019-01-16 处理上行覆盖弱化的方法及装置、终端、网络设备 WO2020147049A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/072046 WO2020147049A1 (zh) 2019-01-16 2019-01-16 处理上行覆盖弱化的方法及装置、终端、网络设备
CN201980060428.6A CN112703802B (zh) 2019-01-16 2019-01-16 处理上行覆盖弱化的方法及装置、终端、网络设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/072046 WO2020147049A1 (zh) 2019-01-16 2019-01-16 处理上行覆盖弱化的方法及装置、终端、网络设备

Publications (1)

Publication Number Publication Date
WO2020147049A1 true WO2020147049A1 (zh) 2020-07-23

Family

ID=71613517

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/072046 WO2020147049A1 (zh) 2019-01-16 2019-01-16 处理上行覆盖弱化的方法及装置、终端、网络设备

Country Status (2)

Country Link
CN (1) CN112703802B (zh)
WO (1) WO2020147049A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114466376A (zh) * 2020-11-10 2022-05-10 大唐移动通信设备有限公司 数据传输方法、装置、设备及存储介质
WO2022165708A1 (en) * 2021-02-04 2022-08-11 Lenovo (Beijing) Limited Method and apparatus for connection restoring in non-terrestrial networks

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102238750A (zh) * 2010-04-23 2011-11-09 中兴通讯股份有限公司 无线资源控制连接重建触发方法及装置
CN108401525A (zh) * 2017-12-25 2018-08-14 北京小米移动软件有限公司 功率余量报告传输方法和装置
CN108401539A (zh) * 2017-12-29 2018-08-14 北京小米移动软件有限公司 随机接入失败处理方法和装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103378928B (zh) * 2012-04-23 2016-09-28 电信科学技术研究院 预编码及信道质量指示信息反馈方法和设备
CN103716912B (zh) * 2012-10-09 2017-10-20 电信科学技术研究院 一种释放无线资源控制连接的方法、装置及系统
US10798693B2 (en) * 2016-04-01 2020-10-06 Nokia Technologies Oy Method for confirming uplink semi-persistent scheduling deactivation and terminal device
EP3508012B1 (en) * 2016-09-20 2022-04-20 Mediatek Inc. Method for data transmission with multiple uplink carrier in mobile communications
CN109151836A (zh) * 2017-06-19 2019-01-04 中国移动通信有限公司研究院 一种接入方法、网络设备及移动通信终端
US10708955B2 (en) * 2017-06-23 2020-07-07 Qualcomm Incorporated Techniques and apparatuses for supplementary uplink random access configuration
CN108055700B (zh) * 2017-12-13 2021-03-12 中国联合网络通信集团有限公司 一种上行数据传输的方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102238750A (zh) * 2010-04-23 2011-11-09 中兴通讯股份有限公司 无线资源控制连接重建触发方法及装置
CN108401525A (zh) * 2017-12-25 2018-08-14 北京小米移动软件有限公司 功率余量报告传输方法和装置
CN108401539A (zh) * 2017-12-29 2018-08-14 北京小米移动软件有限公司 随机接入失败处理方法和装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114466376A (zh) * 2020-11-10 2022-05-10 大唐移动通信设备有限公司 数据传输方法、装置、设备及存储介质
CN114466376B (zh) * 2020-11-10 2024-05-10 大唐移动通信设备有限公司 数据传输方法、装置、设备及存储介质
WO2022165708A1 (en) * 2021-02-04 2022-08-11 Lenovo (Beijing) Limited Method and apparatus for connection restoring in non-terrestrial networks

Also Published As

Publication number Publication date
CN112703802A (zh) 2021-04-23
CN112703802B (zh) 2023-06-16

Similar Documents

Publication Publication Date Title
WO2020147050A1 (zh) 一种信息上报方法及装置、终端
WO2021092860A1 (zh) 一种小区配置方法及装置、终端设备、网络设备
WO2020056721A1 (zh) 一种随机接入方法及装置、网络设备、终端
US11751278B2 (en) Cell state management method and apparatus, terminal device, and network device
WO2019237763A1 (zh) 一种rlf的处理方法及装置、通信设备
US20210298092A1 (en) Communications method and apparatus, and computer-readable storage medium
WO2019237805A1 (zh) 一种随机接入方法及装置、通信设备
WO2020056736A1 (zh) 一种随机接入控制方法及装置、网络设备、终端
WO2020029310A1 (zh) 一种数据传输方法及装置、终端
WO2020056717A1 (zh) 一种资源关联方法及装置、终端、网络设备
WO2020082248A1 (zh) 一种控制终端移动性的方法及装置、终端
WO2020056733A1 (zh) 一种负荷控制方法及装置、网络设备、终端
WO2020147049A1 (zh) 处理上行覆盖弱化的方法及装置、终端、网络设备
WO2020029086A1 (zh) 一种小区搜索方法及装置、终端
WO2020029109A1 (zh) 一种信息配置方法及装置、终端、网络设备
WO2019241969A1 (zh) 配置测量信息的方法、终端设备和网络设备
WO2021196100A1 (zh) 一种小区切换方法、电子设备及存储介质
WO2019095159A1 (zh) 确定非竞争随机接入资源的方法、网络设备和终端设备
WO2021056702A1 (zh) 上行信号的发送和接收方法以及装置
WO2020248143A1 (zh) 监听控制信道的方法、终端设备和网络设备
WO2022109955A1 (zh) 一种信息指示方法及装置、终端设备、网络设备
WO2022021136A1 (zh) 无线通信方法、终端设备和网络设备
WO2020258182A1 (zh) 数据传输方法、装置和通信设备
WO2021068172A1 (zh) 一种随机接入方法、电子设备及存储介质
WO2020010612A1 (zh) 波束失败恢复实现方法、装置、芯片及计算机程序

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19909693

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19909693

Country of ref document: EP

Kind code of ref document: A1