WO2023083125A1 - 通信方法、装置及系统 - Google Patents

通信方法、装置及系统 Download PDF

Info

Publication number
WO2023083125A1
WO2023083125A1 PCT/CN2022/130182 CN2022130182W WO2023083125A1 WO 2023083125 A1 WO2023083125 A1 WO 2023083125A1 CN 2022130182 W CN2022130182 W CN 2022130182W WO 2023083125 A1 WO2023083125 A1 WO 2023083125A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
time
time window
network device
terminal device
Prior art date
Application number
PCT/CN2022/130182
Other languages
English (en)
French (fr)
Inventor
骆喆
彭金磷
李新县
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023083125A1 publication Critical patent/WO2023083125A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/10Flow control between communication endpoints
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/003Arrangements to increase tolerance to errors in transmission or reception timing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the embodiments of the present application relate to the technical field of communication, and in particular, to a communication method, device, and system.
  • Carrier Aggregation is to aggregate two or more carrier units (Component Carrier, CC) together to support larger transmission bandwidth.
  • the carrier aggregation includes carrier aggregation under a single base station, and carrier aggregation under different base stations in a dual connectivity (DC) scenario.
  • Embodiments of the present application provide a communication method, device, and system, so as to improve communication efficiency between a terminal device and a network device in a carrier aggregation scenario.
  • an embodiment of the present application provides a communication method, including the network device sending first information to a terminal device based on the first frequency band and the first time unit, where the first information includes synchronization information; The network device sends second information to the terminal device based on the second frequency band and the second time unit, where the second information includes other information except the synchronization information.
  • the acquisition time window of the second information refers to the time window of the first information.
  • the terminal device uses the time window of the first information for receiving or acquiring the second information.
  • the time window of the first information and the time window of the second information may not be aligned or offset in the time domain, for example, the network device sends the first information in advance or sends the second information later, or the terminal device receives the information in advance The first message or the delayed reception of the second message.
  • the terminal device will read the second information based on the time window of the first information, thereby reducing the interference problem of shared synchronization information, and also reducing the impact of time deviation on system performance.
  • This solution can design the communication between the terminal equipment and the network equipment based on the synchronization signal shared between multiple frequency bands, so as to achieve the purpose of improving the communication efficiency between the terminal equipment and the network equipment.
  • the network device performs time calibration on the first time unit of the first frequency band and the second time unit of the second frequency band.
  • the above-mentioned time unit refers to a unit corresponding to a time unit.
  • the time unit refers to the time unit or scheduling unit in the time domain used for information transmission, and the time unit in the time domain may be a subframe, or a slot (slot), or a radio frame, a mini-slot ( mini slot or sub slot), multiple aggregated time slots, multiple aggregated subframes, symbols, etc., may also be a transmission time interval (transmission time interval, abbreviation: TTI), which is not limited in this application.
  • TTI transmission time interval
  • the time deviation between the first time unit and the second time unit is less than or equal to a first threshold.
  • the network device performs time calibration on multiple frequency bands to ensure that the absolute value of the time deviation of the frequency band not containing synchronization information (such as Band 2 or 3) compared to the frequency band containing synchronization information (such as Band 1) is smaller than the first threshold X, that is, between positive and negative X or between -X and X, where X is an integer, so as to improve the effectiveness of sharing synchronization signals between multiple frequency bands.
  • the first threshold X that is, between positive and negative X or between -X and X, where X is an integer
  • the first time unit is earlier than the second time unit in the time domain.
  • the network device advances a time window for obtaining the first information by a second threshold.
  • the first time unit includes a time window of the first information and a time window of a cyclic prefix, and the time window of the first information and the time window of the cyclic prefix do not overlap each other ;
  • the second time unit includes the time window of the second information and the time window of the cyclic prefix, and the time window of the second information and the time window of the cyclic prefix do not overlap each other.
  • network devices send synchronization information on the first frequency band in advance, so as to achieve delayed transmission of other information that does not contain synchronization information on other frequency bands, thereby reducing the impact of time deviation on performance and solving
  • the interference problem caused when the synchronization signal is shared also reduces the accuracy requirements for time calibration of multiple frequency bands, thereby improving the feasibility of implementation.
  • the embodiment of the present application provides a communication method, including that the terminal device receives first information from the network device based on the first frequency band and the first time unit, the first information includes synchronization information; the terminal device receives the first information based on the first time unit The second frequency band and the second time unit receive second information from the network device, where the second information includes other information except the synchronization signal.
  • the acquisition time window of the second information refers to the time window of the first information.
  • the time deviation between the first time unit and the second time unit is less than or equal to a first threshold.
  • the first time unit is earlier than the second time unit in the time domain.
  • the terminal device advances a time window for acquiring the first information by a second threshold.
  • the first time unit includes a time window of the first information and a time window of a cyclic prefix, and the time window of the first information and the time window of the cyclic prefix do not overlap each other ;
  • the second time unit includes the time window of the second information and the time window of the cyclic prefix, and the time window of the second information and the time window of the cyclic prefix do not overlap each other.
  • the embodiment of the present application provides a communication device, and the device may be a network device, or may be a chip used for the network device.
  • the device has the function of realizing the above-mentioned method of the first aspect or various implementation methods of the first aspect. This function may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the embodiment of the present application provides a communication device, and the device may be a terminal device, or may be a chip used for the terminal device.
  • the device has the function of realizing the above-mentioned method of the second aspect or each realization method of the second aspect. This function may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the embodiment of the present application provides a communication device, including a processor and a memory; the memory is used to store computer-executable instructions, and when the device is running, the processor executes the computer-executable instructions stored in the memory, so that The device executes any method in the above-mentioned first to second aspects and implementation methods of the first to second aspects.
  • the embodiment of the present application provides a communication device, including a processor and an interface circuit, the processor is used to communicate with other devices through the interface circuit, and implement the above-mentioned first to second aspects, first to second aspects Any of the implementation methods for .
  • the processor includes one or more.
  • the embodiment of the present application provides a communication device, including a processor, configured to be connected to a memory, and used to call a program stored in the memory to execute the above-mentioned first to second aspects, first to second Any of the implementation methods of the aspect.
  • the memory may be located within the device or external to the device.
  • the processor includes one or more.
  • the embodiment of the present application also provides a computer-readable storage medium, where instructions are stored in the computer-readable storage medium, and when it is run on a computer, the processor in the first to second aspects and the first Any of the implementation methods of the first to second aspects.
  • the embodiment of the present application also provides a computer program product, the computer product includes a computer program, and when the computer program runs, the above-mentioned first to second aspects and each implementation method of the first to second aspects Any method is executed.
  • the embodiment of the present application further provides a chip system, including: a processor, configured to execute any method in the above-mentioned first to second aspects and implementation methods of the first to second aspects.
  • the embodiment of the present application also provides a communication system, including a network device for performing the above-mentioned first aspect, or any implementation method of the first aspect, and for implementing the above-mentioned second aspect, or the second aspect A terminal device that implements any of the methods.
  • FIG. 1 is a schematic diagram of a network architecture applicable to an embodiment of the present application
  • FIG. 2 is a schematic diagram of a communication method provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a communication method provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of another communication method provided by the embodiment of the present application.
  • FIG. 5 is a schematic diagram of a communication device provided in an embodiment of the present application.
  • FIG. 6 is a schematic diagram of another communication device provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a terminal device provided in an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a network device provided by an embodiment of the present application.
  • the technical solutions provided in the embodiments of the present application can be applied to various communication systems, for example, a fifth generation (5th generation, 5G) communication system, a future evolution system, or a variety of communication fusion systems, and the like.
  • the technical solutions provided by the embodiments of the present application can be applied to various application scenarios, such as machine to machine (M2M), macro-micro communication, enhanced mobile broadband (eMBB), ultra-high reliability and ultra-low Scenarios such as ultra-reliable & low latency communication (URLLC) and massive machine type communication (mMTC).
  • M2M machine to machine
  • eMBB enhanced mobile broadband
  • ultra-high reliability and ultra-low Scenarios such as ultra-reliable & low latency communication (URLLC) and massive machine type communication (mMTC).
  • These scenarios may include, but are not limited to: communication scenarios between communication devices, communication scenarios between network devices, communication scenarios between network devices and communication devices, and the like. The following are all described by taking the application in the communication scenario between the network device and the
  • the network architecture and business scenarios described in the embodiments of the present application are for more clearly illustrating the technical solutions of the embodiments of the present application, and do not constitute limitations on the technical solutions provided by the embodiments of the present application. With the evolution of the network architecture and the emergence of new business scenarios, the technical solutions provided in the embodiments of the present application are also applicable to similar technical problems.
  • FIG. 1 shows a schematic diagram of a communication system 100 applicable to the embodiment of the present application.
  • the communication system may include at least one network device, such as a network device 101 .
  • the communication system may also include at least one terminal device, such as terminal devices 102 to 107 .
  • the terminal devices 102 to 107 may be mobile or fixed.
  • Each of the network device 101 and one or more of the terminal devices 102 to 107 may communicate via a wireless link. That is, network devices can send signals to terminal devices, and terminal devices can also send signals to network devices.
  • each network device can provide communication coverage for a specific geographical area, and can communicate with terminal devices located in the coverage area.
  • the network device may send configuration information to the terminal device, and the terminal device may send uplink data to the network device based on the configuration information.
  • the network device may send downlink data to the terminal device. Therefore, the network device 101 and the terminal devices 102 to 107 in FIG. 1 constitute a communication system.
  • terminal devices can also communicate directly with each other.
  • direct communication between terminal devices can be realized by using D2D technology and the like.
  • the D2D technology can be used for direct communication between terminal devices 105 and 106 and between terminal devices 105 and 107 .
  • Terminal device 106 and terminal device 107 may communicate with terminal device 105 individually or simultaneously.
  • the terminal devices 105 to 107 may also communicate with the network device 101 respectively. On the one hand, it can directly communicate with the network device 101 , for example, the terminal devices 105 and 106 in the figure can directly communicate with the network device 101 . On the other hand, it can communicate with the network device 101 indirectly, for example, the terminal device 107 in the figure communicates with the network device 101 via the terminal device 105 .
  • FIG. 1 shows a network device, multiple terminal devices, and communication links between communication devices.
  • the communication system 100 may include multiple network devices, and the coverage of each network device may include other numbers of terminal devices, for example, more or fewer terminal devices. This application does not specifically limit it.
  • Each of the aforementioned communication devices may be configured with multiple antennas.
  • the plurality of antennas may include at least one transmit antenna for transmitting signals and at least one receive antenna for receiving signals.
  • each communication device additionally includes a transmitter chain and a receiver chain, and those of ordinary skill in the art can understand that they all include a plurality of components related to signal transmission and reception (such as processors, modulators, multiplexers, etc.) , demodulator, demultiplexer or antenna, etc.). Therefore, the network device and the terminal device can communicate through the multi-antenna technology.
  • the wireless communication system 100 may also include other network entities such as a network controller and a mobility management entity, which are not specifically described in this application.
  • FIG. 1 is only a simplified schematic diagram for ease of understanding, and the communication system 100 may also include other network devices or other terminal devices, which are not shown in FIG. 1 .
  • the embodiments of the present application are based on signal transmission, and are also applicable to scenarios of homogeneous networks and heterogeneous networks, low-frequency scenarios (sub 6G), high-frequency scenarios (above 6G), terahertz, optical communication, frequency Frequency division duplex (FDD) and time division duplex (TDD) systems, non-terrestrial networks (NTN), such as satellite communications, etc.
  • the present application has no limitation on the transmission point, which may be coordinated multi-point transmission between a macro base station and a macro base station, between a micro base station and a micro base station, or between a macro base station and a micro base station. in addition.
  • the embodiment of the present application is applicable to the communication between the base station and the terminal, the communication between the terminal and the terminal, and the communication between the base station and the base station, and is also applicable to the CU/DU architecture and the CP/UP separation architecture.
  • the system includes uplink (from a terminal device to a network device) and downlink (from an access network device to a terminal device) communication in the communication system.
  • uplink communication includes transmission of uplink physical channels and uplink signals
  • downlink communication includes transmission of downlink physical channels and downlink signals.
  • the uplink physical channels include: random access channel (random access channel, PRACH), uplink control channel (physical uplink control channel, PUCCH), uplink data channel (physical uplink shared channel, PUSCH), etc.
  • Uplink signals include: channel sounding signal (sounding reference signal, SRS), uplink control channel demodulation reference signal (PUCCH de-modulation reference signal, PUCCH-DMRS), uplink data channel demodulation reference signal (PUSCH de-modulation reference signal, PUSCH-DMRS), uplink phase noise tracking signal (PTRS), uplink positioning signal, etc.
  • the downlink physical channels include: a broadcast channel (physical broadcast channel, PBCH), a downlink control channel (physical downlink control channel, PDCCH), a downlink data channel (physical downlink shared channel, PDSCH), etc.
  • Downlink signals include: primary synchronization signal (primary synchronization signal, PSS), secondary synchronization signal (secondary synchronization signal, SSS), downlink control channel demodulation reference signal (PDCCH de-modulation reference signal, PDCCH-DMRS), downlink data channel solution Modulation reference signal (PDSCH de-modulation reference signal, PDSCH-DMRS), phase noise tracking signal (phase tracking reference signal, PTRS), channel status information reference signal (channel status information reference signal, CSI-RS), cell signal (cell reference signal (CRS), fine synchronization signal (time/frequency tracking reference signal, TRS), positioning reference signal (positioning, RS), etc., which are not specifically limited in this application.
  • the technical solution provided in this application is mainly applied to a wireless communication system.
  • communication devices are included, and air interface resources can be used between communication devices to perform wireless communication.
  • the communication device may include a network device and a terminal device.
  • the air interface resources may include at least one of time domain resources, frequency domain resources, code resources and space resources.
  • the technical solution provided by this application is also applicable to other or future communication systems, such as the sixth generation mobile communication system and the like. This application is not limited to this.
  • a terminal device may be referred to as a user equipment (user equipment, UE), an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal , wireless communication devices, user agents or user devices, soft terminals, etc., including various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices or other processing devices connected to wireless modems.
  • UE user equipment
  • UE user equipment
  • an access terminal a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal , wireless communication devices, user agents or user devices, soft terminals, etc., including various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices or other processing devices connected to wireless modems.
  • the terminal can be a mobile station (mobile station, MS), a subscriber unit (subscriber unit), a cellular phone (cellular phone), a smart phone (smart phone), a wireless data card, a personal digital assistant (personal digital assistant, PDA) computer, a tablet Computers, wireless modems (modems), handheld devices (handsets), laptop computers (laptop computers), machine type communication (machine type communication, MTC) terminals, etc.
  • the terminal device in the embodiment of the present application may also be a mobile phone, a computer with a wireless transceiver function, a virtual reality (virtual reality, VR) terminal device, an augmented reality (augmented reality, AR) terminal device, an industrial control (industrial Wireless terminals in control, wireless terminals in self driving, wireless terminals in remote medical, wireless terminals in smart grid, wireless terminals in transportation safety Terminals, wireless terminals in a smart city, wireless terminals in a smart home, cellular phones, cordless phones, session initiation protocol (SIP) phones, wireless local loop , WLL) station, personal digital assistant (personal digital assistant, PDA), handheld terminal, notebook computer, cordless phone (cordless phone) or wireless local loop (wireless local loop, WLL) station, terminal equipment in the future 5G network, Or the terminal equipment in the public land mobile communication network PLMN that will evolve in the future, etc.
  • a virtual reality (virtual reality, VR) terminal device an augmented reality (augmented reality, AR) terminal device
  • industrial control industrial Wireless terminals
  • the terminal device may also be a terminal device in an Internet of Things (internet of things, IoT) system.
  • IoT Internet of things
  • Its main technical feature is to connect objects to the network through communication technology, so as to realize the intelligent network of human-machine interconnection and object interconnection. It should be understood that the present application does not limit the specific form of the terminal device.
  • terminal equipment can also include sensors such as smart printers, train detectors, and gas stations.
  • the main functions include collecting data (part of terminal equipment), receiving control information and downlink data from network equipment, sending electromagnetic waves, and transmitting uplink data to network equipment. .
  • the network device may be a device deployed in a radio access network to provide a wireless communication function for a terminal device, and may be a device for communicating with a terminal device or a chip of the device.
  • the network equipment includes but not limited to: radio network controller (radio network controller, RNC), base station controller (base station controller, BSC), home base station (for example, home evolved nodeB, or home node B, HNB), baseband unit (baseband unit, BBU), access point (access point, AP), wireless relay node, wireless backhaul node, transmission point (transmission point, TP) or sending and receiving point (transmission and reception point) in the wireless fidelity system , TRP), etc., can also be the gNB or transmission point TRP or TP in the 5G NR system, or one or a group (including multiple antenna panels) antenna panels of the base station in the 5G system, or it can also be a gNB or transmission point Point network nodes, such as baseband unit BBU, or distributed unit
  • the network equipment in the embodiment of this application may include various forms of macro base stations, micro base stations (also called small stations), relay stations, access points, etc., and may be base stations in the global mobile communication GSM system or code division multiple access CDMA (Base Transceiver Station, BTS), or a base station (NodeB, NB) in a wideband code division multiple access WCDMA system, or an evolved base station (Evolutional NodeB, eNB or eNodeB) in an LTE system, or a cloud
  • BTS Global Mobile Transceiver Station
  • NodeB, NB base station
  • Evolutional NodeB, eNB or eNodeB evolved base station
  • the network device can be a relay station, an access point, a wearable device or a vehicle-mounted device, a wearable device, and a network device in a future 5G network or Network equipment in the future evolving public land mobile network (public land mobile network, PLMN) network, etc.
  • CRAN Cloud Radio Access Network
  • network devices may include centralized units (centralized units, CUs) and distributed units (distributed units, DUs).
  • the network device may also include a radio frequency unit (radio unit, RU) and an active antenna unit (active antenna unit, AAU).
  • the CU implements some functions of the network device, such as responsible for processing non-real-time protocols and services, and realizes the functions of the radio resource control (radio resource control, RRC), packet data convergence protocol (packet data convergence protocol, PDCP) layer.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • DU implements some functions of network equipment, such as responsible for processing physical layer protocols and real-time services, and realizes radio link control (radio link control, RLC) layer, media access control (media access control, MAC) layer and physical (physical, PHY) ) layer functions.
  • the AAU implements some physical layer processing functions, radio frequency processing and related functions of active antennas. Because the information of the RRC layer will eventually become the information of the PHY layer, or be transformed from the information of the PHY layer. Therefore, under this framework, high-level signaling (for example, RRC layer signaling) can also be considered to be sent by the DU, or sent by the DU+AAU.
  • the network device may be a CU node, or a DU node, or a device including a CU node and a DU node.
  • a CU can be divided into network devices in the access network RAN, or a CU can be divided into network devices in the core network CN, which is not limited here.
  • the network device provides services for the cell, and the terminal device communicates with the cell through transmission resources (for example, frequency domain resources, or spectrum resources) allocated by the network device.
  • the cell may belong to a macro base station (for example, a macro eNB or a macro gNB, etc.), or It may belong to a base station corresponding to a small cell, and the small cell here may include: a metro cell, a micro cell, a pico cell, a femto cell, etc., these Small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • the network device can also be a positioning service center, for example, an evolved serving mobile location center (Evolved serving mobile location center, E-SMLC), a location management function (location measurement unit, LMF), etc., and the positioning service center is used for mobile phone network equipment and Measurement information and location information of end devices.
  • the positioning service center is also responsible for calculating the position of the terminal device's measured quantity, and then determining the position of the terminal device.
  • the information interaction between the terminal device and the positioning service center can be realized through the LTE positioning protocol (LTE positioning protocol) or the NR positioning protocol (NR positioning protocol).
  • LTE positioning protocol A LTE positioning protocol A, LPPa
  • NR positioning protocol A NR positioning protocol A
  • the network device and the terminal device include a radio resource control RRC signaling interaction module, a media access control MAC signaling interaction module, and a physical PHY signaling interaction module.
  • the RRC signaling interaction module may be: a module used by the network device and the terminal device for sending and receiving RRC signaling.
  • the MAC signaling interaction module may be: a module for the network device and the terminal device to send and receive media access control element (media access control element, MAC CE) signaling.
  • the PHY layer signaling and data interaction module may be: a module for network equipment and terminal equipment to send and receive uplink control signaling or downlink control signaling, uplink and downlink data or downlink data.
  • FDD frequency division duplex
  • CA Carrier Aggregation
  • the CA can aggregate two or more component carriers (CCs) together to support a larger transmission bandwidth.
  • CCs component carriers
  • each carrier generally does not exceed 20MHz at most.
  • a cell may contain at least one component carrier.
  • a carrier unit can be understood or equivalent to a frequency band.
  • carrier aggregation supports aggregation between different carrier components.
  • the CA function can support continuous or non-continuous carrier aggregation.
  • carrier aggregation supports aggregation between different component carriers. Specifically, it includes: aggregation of component carriers of the same or different bandwidths, aggregation of adjacent or non-adjacent component carriers in the same frequency band, aggregation of component carriers in different frequency bands. That is to say, the scenarios of carrier aggregation can be divided into three types, that is, in-band continuous carrier aggregation, in-band non-continuous carrier aggregation and out-of-band non-continuous carrier aggregation.
  • Carrier aggregation in a single link scenario is to configure a cell in the network device as the primary cell of the terminal device, and configure other cells under the network device as secondary cells for the terminal device.
  • the primary cell (Primary Cell, Pcell) is the cell established when the terminal device is initially connected, or the cell for radio resource control (Radio resource control, RRC) connection reestablishment, or the primary cell designated during the handover (handover) process.
  • the primary cell is responsible for the RRC communication with the terminal equipment.
  • the carrier component corresponding to the primary cell is called a Primary Component Carrier (PCC).
  • PCC Primary Component Carrier
  • the downlink carrier of the primary cell is called the downlink primary carrier (DL PCC)
  • the uplink carrier of the primary cell is called the uplink primary carrier (UL PCC).
  • the secondary cell (Secondary Cell, Scell) is added during RRC reconfiguration, and is used to provide additional radio resources. Generally, there is no RRC communication between the secondary cell and the terminal device.
  • the carrier component corresponding to the secondary cell is called a secondary component carrier (Secondary Component Carrier, SCC).
  • the downlink carrier of the secondary cell is called a downlink secondary carrier (DL SCC), and the uplink carrier of the secondary cell is called an uplink secondary carrier (UL SCC).
  • DL SCC downlink secondary carrier
  • UL SCC uplink secondary carrier
  • Carrier aggregation in the dual link scenario is to configure a cell in the primary network device as the primary cell of the terminal device (that is, the primary cell in the master cell group (Master cell group, MCG)), and configure a cell in the secondary network device
  • the cell is configured as the Primary Secondary Cell (Primary Scell) of the terminal device (that is, the primary cell in the Secondary cell group (SCG)), and the main network device or the secondary network device except the primary cell and A cell other than the primary secondary cell is configured as the secondary cell of the terminal device.
  • the primary cell is the cell established when the terminal equipment is initially connected, or the cell for RRC connection re-establishment, or the primary cell designated during the handover (handover) process.
  • the primary cell is mainly responsible for the RRC communication with the terminal equipment.
  • the carrier component corresponding to the primary cell is called the primary carrier component.
  • the downlink carrier of the primary cell is called the downlink primary carrier (DL PCC)
  • the uplink carrier of the primary cell is called the uplink primary carrier (UL PCC).
  • the primary and secondary cells are generally added during RRC reconfiguration to provide additional radio resources, and generally there is no RRC communication between the primary and secondary cells and the terminal device.
  • the component carrier corresponding to the primary and secondary cells is called a secondary carrier component.
  • the downlink carrier of the primary and secondary cells is called a downlink secondary carrier (DL SCC), and the uplink carrier of the primary and secondary cell is called an uplink secondary carrier (UL SCC).
  • DL SCC downlink secondary carrier
  • UL SCC uplink secondary carrier
  • the primary cell is determined when the connection is established, and the secondary cell is added/modified/released through the RRC connection reconfiguration message after the initial access is completed.
  • a cell has no physical entity, it is a logical concept, and it provides users with a complete set of services (calling, called, mobile, Internet access, etc.) in the mobile communication network. ) is the smallest logical unit.
  • a carrier is a radio signal (electromagnetic wave) with frequency, bandwidth, and standard emitted by network equipment. It is the main body used to carry information.
  • One cell may include one downlink carrier, one uplink carrier and one supplementary uplink (SUL) carrier, where the SUL carrier refers to the transmission with only uplink resources used for the current communication standard.
  • SUL supplementary uplink
  • frequency band groups The relationship among frequency band groups, cell groups, and/or carrier groups is further described below.
  • the frequency band group includes one or more frequency bands, one frequency band includes one or more cells, and one cell includes one or more carriers.
  • a cell group includes one or more cells, and one cell includes one or more carriers.
  • a carrier group includes one or more carriers.
  • the cell group includes one or more cells, one cell includes one or more carriers, and the at least one carrier belongs to one or more frequency bands.
  • the carriers included in each of the foregoing groups may be uplink carriers and/or downlink carriers.
  • cell 1 and cell 2 are configured on frequency band 1.
  • Cell 1 contains one uplink carrier (UL CC-1) and one downlink carrier (DL CC-1)
  • cell 2 contains two uplink carriers (UL CC-2).
  • cell 3 is configured on frequency band 2
  • cell 3 contains an uplink carrier (UL CC-4) and a downlink carrier (DL CC-3).
  • the corresponding carriers of the frequency band group include: UL CC-1, UL CC-2, UL CC-3, UL CC-4, DL CC-1, DL CC-2, DL CC-3.
  • the carriers corresponding to the cell group include: UL CC-1, UL CC-2, UL CC-3, DL CC-1, DL CC-2.
  • the carriers in the carrier group include: UL CC-1, UL-CC4, DL-CC1, DL -CC3.
  • the network device may also define an uplink carrier group and a downlink carrier group.
  • the network device defines an uplink carrier group ⁇ UL CC-1, UL CC-2, UL-CC3, UL-CC4 ⁇
  • the carriers in this carrier group include: UL CC-1, UL CC-2, UL- CC3, UL-CC4.
  • the network device defines a downlink carrier group ⁇ DL-CC1, DL-CC2, DL-CC3 ⁇ , then the carriers in the carrier group include: DL-CC1, DL-CC2, DL-CC3.
  • the network device can be understood as specifying a group of carriers.
  • PCell or SCell As far as PCell or SCell is concerned, it has two states, ie, activated state and deactivated state.
  • SCell when it is in the active state and the cell is configured with a physical downlink control channel (PDCCH), the terminal device needs to monitor the PDCCH of the cell, and based on the configuration of the network device and the uplink and downlink scheduling information communicate with network devices.
  • PDCCH physical downlink control channel
  • the terminal device When the SCell is in a deactivated state, the terminal device does not need to monitor and/or transmit uplink and downlink signals in the cell.
  • the CA configuration method may include: firstly, the network device instructs the terminal device to add an SCell through RRC signaling, and provides relevant configuration of the SCell, and the default state of the SCell at this time is the deactivated state. Then, the network device instructs the terminal device to activate or deactivate the SCell by activating/deactivating a wireless access control-control element (nedia access control-control element, MAC-CE) signaling. After the SCell is activated, the terminal equipment performs corresponding signal transmission in the cell. In addition, the network device may also configure a deactivation timer for the terminal device. When the timer expires, the UE considers that the state of the SCell changes from the activated state to the deactivated state.
  • a wireless access control-control element wireless access control-control element
  • hibernate state was introduced. That is, when the SCell is in the dormant state, the terminal device does not need to monitor the PDCCH scheduling information for the cell, and generally maintains the measurement and reporting of channel status information (CSI).
  • CSI channel status information
  • network devices can periodically broadcast synchronization signals and physical broadcast channel blocks (synchronization signal and physical broadcast channel block, SSB), and terminal devices can achieve time-frequency synchronization by receiving SSB.
  • the SSB can also be used for radio resource management (radio resource management, RRM) measurement and the like.
  • RRM radio resource management
  • the terminal device when the terminal device receives the SSB of the PCell or SCell, it can prepare for the radio frequency link, so as to perform CSI test and report on the PCell or SCell for normal data transmission.
  • cell activation needs to rely on synchronization and channel measurement.
  • burst data arrives, the burst packet cannot be transmitted based on the Scell due to a high activation delay.
  • each frequency band and/or carrier needs to send the SSB, it will lead to increased resource overhead and load balancing of network devices.
  • the synchronization signal can be shared between multiple frequency bands, that is, the communication device sends a synchronization signal on one frequency band, and after the terminal device obtains the synchronization information according to the synchronization signal, it applies the synchronization information to the newly activated adjacent frequency band, thereby realizing time-free
  • the synchronized frequency band is active.
  • This time-synchronization-free frequency band activation process only needs 1-2ms delay, and the frequency band can be directly activated through the downlink control information (DCI) instruction, so as to realize the transmission between network equipment and terminal equipment.
  • DCI downlink control information
  • the communication between the terminal device and the network device is designed based on the synchronization signal shared between multiple frequency bands, so as to improve the communication efficiency between the terminal device and the network device.
  • FIG. 2 it is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • the interaction between the network device and the terminal device is used as an example to illustrate.
  • the operations performed by the network device can also be performed by chips or modules inside the network device, and the operations performed by the terminal device can also be performed by chips or modules inside the terminal device. implement.
  • the method comprises the following steps:
  • a terminal device receives first information from a network device based on a first frequency band and a first time unit, where the first information includes synchronization information.
  • the network device sends first information to the terminal device based on the first frequency band and the first time unit, where the first information includes synchronization information.
  • the above synchronization information includes SSB and/or tracking reference signal (tracking reference signal, TRS), so that the terminal device can realize downlink synchronization with the base station according to the SSB and/or TRS.
  • the terminal device receives second information from the network device based on a second frequency band and a second time unit, where the second information includes other information except the synchronization information.
  • the network device sends second information to the terminal device based on the second frequency band and the second time unit, where the second information includes other information except the synchronization information.
  • first frequency band may also be the first carrier
  • second frequency band may also be the second carrier
  • the time window for obtaining the second information refers to the time window for the first information.
  • the terminal device uses the time window of the first information for receiving or acquiring the second information.
  • the time window of the first information and the time window of the second information may not be aligned or offset in the time domain, for example, the network device sends the first information in advance or sends the second information later, or the terminal device receives the information in advance The first message or the delayed reception of the second message.
  • the terminal device will read the second information based on the time window of the first information, thereby reducing the interference problem of shared synchronization information, and also reducing the impact of time deviation on system performance.
  • the above-mentioned time unit and the time window are related to a certain extent in the time domain.
  • the first time unit corresponding to the first frequency band includes a first time window, and because the first time window is used to acquire the first information, it may also be referred to as an acquisition time window or an actual time window of the first information.
  • the second time unit corresponding to the second frequency band includes the second time window, because the terminal device obtains the second information with reference to the first time window, so the second time window may be different from the second information acquisition time window or actual time in the time domain
  • the windows are offset or not aligned with each other.
  • the first time window may be called a reference time window or an original time window.
  • the first time window is an actual time window when the network device sends the first information, and the terminal device advances the actual time window as a reference time window or an original time window for acquiring the second information.
  • the above-mentioned time unit refers to a unit corresponding to a time unit.
  • the time unit refers to the time unit or scheduling unit in the time domain used for information transmission, and the time unit in the time domain may be a subframe, or a slot (slot), or a radio frame, a mini-slot ( mini slot or sub slot), multiple aggregated time slots, multiple aggregated subframes, symbols, etc., may also be a transmission time interval (transmission time interval, abbreviation: TTI), which is not limited in this application.
  • TTI transmission time interval
  • one or more time units of one time unit may contain time units of another time unit, or the length of one or more time units of one time unit in the time domain is equal to the time of another time unit Unit length and, for example, multiple symbols within a minislot/slot/subframe/radio frame, multiple minislots within a slot/subframe/radio frame, and symbols within a subframe/radio frame
  • time slots one radio frame includes multiple subframes, etc., and other examples may also exist, which are not limited in this application.
  • the identifier of the time unit may also be referred to as an index of the time unit or other names, for example, it is used to distinguish or mark or count different time units of a time unit.
  • first information and/or second information may be carried in a message, and sent by the network device to the terminal device.
  • the message can be high-level signaling, such as broadcast messages, system messages, downlink messages during access (such as message 2 or message 4), radio resource control (English: Radio Resource Control, abbreviation: RRC) signaling, or media Access control (English: Media Access Control or Medium Access Control, abbreviation: MAC) CE (Control Element).
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • the message may also be physical layer downlink control information (English: Downlink Control Information, abbreviation: DCI), that is, the above-mentioned first information and/or second information may be carried through a physical channel, and the physical channel may be a physical downlink control channel, Etc., this application does not limit.
  • DCI Downlink Control Information
  • the first implementation manner is described below, that is, 201 occurs before 202 .
  • the network device first sends the SSB to the terminal device, and then sends other information to the terminal device, so as to ensure that the terminal can apply synchronization information to adjacent frequency bands in advance, such as newly activated adjacent frequency bands and/or adjacent carriers, Thus, the activation of frequency bands and/or carriers without synchronization information is realized.
  • the network device may perform time calibration on the first time unit of the first frequency band and the second time unit of the second frequency band. Specifically, the network device adjusts the time deviation between the first time unit and the second time unit to be less than or equal to the first threshold.
  • the network device performs time calibration on multiple frequency bands to ensure that the absolute value of the time deviation of the frequency band not containing synchronization information (such as Band 2 or 3) compared to the frequency band containing synchronization information (such as Band 1) is smaller than the first threshold X, that is, between positive and negative X or between -X and X, where X is an integer, so as to improve the effectiveness of sharing synchronization signals between multiple frequency bands.
  • the length of X is less than the length of the cyclic prefix (Cyclic Prefix, CP), and the length of the CP is less than the length of an Orthogonal Frequency Division Multiplexing (OFDM) symbol, thereby reducing the network How difficult it is for the device to perform time calibration.
  • the length of X can be much smaller than the length of CP, and the length of CP can be much smaller than the length of OFDM symbols.
  • the value of X can be any one of 32.5 nanoseconds (nanosecond, ns), 50 ns, 65 ns, and 100 ns, and the CP length is about 4 microseconds (us).
  • NCP Normal Cyclic Prefix
  • ECP Extended Cyclic Prefix
  • the radio access network device can configure the CP according to the time unit or at least one channel or at least one symbol within the time unit. to meet the needs of different users.
  • MCS Modulation and Coding Scheme
  • the first time unit includes a time window of the first information and a time window of the cyclic prefix, and the time window of the first information and the time window of the cyclic prefix do not overlap each other.
  • the second time unit includes a time window of the second information and a time window of the cyclic prefix, and the time window of the information and the time window of the cyclic prefix do not overlap each other.
  • the first information or the second information above can be understood as an OFDM symbol or an information carrier based on an OFDM symbol.
  • a method of performing time calibration through a calibration link including a time offset measurement module and a sending time adjustment module.
  • the time deviation measurement module is used to measure the time deviation of the two frequency band signals
  • the sending time adjustment template is used to adjust the sending time of the two frequency band signals according to the result of the above time deviation, so as to ensure that the absolute value of the time deviation is less than the threshold X.
  • the time deviation may include the limited calibration accuracy and real-time performance of the calibration link, and/or the deviation introduced by subsequent parts that are not calibrated.
  • a method for time calibration via a wideband module can be sent through the same broadband module, and the input of the above-mentioned broadband module is a digital signal of multiple frequency bands, so as to ensure no time deviation, or the broadband module is used to ensure the signal of multiple frequency bands output by it.
  • the absolute value of the time offset is smaller than the threshold X.
  • the time deviation may include the deviation of the broadband module itself, and/or the deviation introduced by the subsequent parts that are not calibrated.
  • the network device can control the absolute value of the time deviation within a certain range. Further, the network device needs to determine directions of time offsets corresponding to the above multiple frequency bands.
  • the first time unit is earlier than the second time unit in the time domain.
  • the network device advances the first time unit based on the second threshold; or, the network device delays the second time unit based on the third threshold.
  • the above time offset is used to determine the timing relationship of information transmission between multiple frequency bands.
  • the terminal device may receive indication information sent by the network device, which is used to indicate relative or absolute positions for sending different information on different frequency bands.
  • the network device can flexibly indicate the offset of the second location relative to the first location, and the terminal device can determine the second location by combining the first location with the above offset according to the indication information, thereby improving the flexibility of resource allocation, or Avoid the conflict of sending timings of different information on different frequency bands.
  • the offset may be an offset value and/or an offset direction between the first location where the first information is sent and the second location where the second information is sent.
  • the granularity of the offset value can be resource element (resource element, RE), resource block (resource block, RB), resource block group (resource block group, RBG), time slot ( slot), symbol (symbol), basic time unit, subcarrier (subcarrier) or subbandwidth (sub band), etc.
  • the granularity of the offset value may be a unit used when calculating the offset value between the first position and the second position.
  • the second position is the first position moved up or down by N RBs, and the granularity of the offset value at this time is RB; in the time domain, the second position is also the first position moved up or down Move down N timeslots, and the granularity of the offset value is timeslots.
  • the upward shift means an shift toward an increase in frequency or an earlier time
  • the lower shift means an shift toward a lower frequency or a later time.
  • a terminal device uses synchronization information obtained from one frequency band and applies the synchronization information to other frequency bands.
  • applying the synchronization information can be understood as intercepting the time window position of the OFDM symbol corresponding to the synchronization information.
  • a signal sent by a network device may be represented as a continuous complex function in the time domain, including multiple OFDM symbols and CPs. Each OFDM symbol is preceded by its corresponding CP.
  • the information or content associated with the CP may be the information or content at the end or last of the OFDM symbol.
  • the continuous signal is discretely sampled in the basic time unit.
  • the basic time unit can be understood as the sampling interval of the terminal device for the continuous signal.
  • the sampling interval is 32.55ns.
  • the discrete sequence after sampling is equivalent to the original continuous signal in terms of description, and the length of the sequence corresponds to the duration of the signal.
  • the time-domain discrete signal of OFDM symbols is a sequence [S 0 , S 1 ,...,S NM-1 ,S NM ,S N-M+1 ,...,S N-1 ], N is the OFDM symbol length, and the corresponding CP
  • the time-domain discrete signal of is a sequence [S NM , SN -M+1 ,..., SN-1 ], M is the length of the CP, and it can be seen that the content of the CP can be the same as the content at the end of the OFDM symbol.
  • the time-domain discrete signal after splicing the OFDM symbol and its CP is [S NM , SN-M+1 ,..., SN-1 ,S 0 ,S 1 ,..., SN-1 ], so the OFDM symbol The corresponding CP will be placed in front of the OFDM symbol.
  • the terminal device needs to remove the CP according to the position of the time window, so as to obtain OFDM symbols, that is, to obtain [S 0 , S 1 ,..., SN-1 ].
  • the terminal device can obtain an accurate time window position according to the synchronization information.
  • the terminal uses the same time window position as that of the frequency band containing synchronization information to acquire OFDM symbols.
  • the intercepted OFDM symbol when the time deviation of the frequency band does not contain synchronization information, the intercepted OFDM symbol includes a part of the actual OFDM symbol and a part of the corresponding CP, for example, intercepted to [S NK , S N-K+1 ,...,S N -1 ,S 0 ,S 1 ,...,S NK-1 ], K is the length of interception in advance, so the intercepted OFDM symbol is the cyclic shift of the actual OFDM symbol, for the terminal equipment, the interception method is equivalent to Latency spread increases with little impact on performance.
  • the intercepted OFDM symbol includes a part of the corresponding CP, and a part of the corresponding CP of the next OFDM symbol.
  • this interception method will cause the symbol Interference Interference (ISI) has a great impact on performance.
  • a method of sending in advance is that the network device sends a signal containing synchronization information on the first frequency band (such as Band 1) in advance, and the time of sending in advance The amount may be the threshold X described above.
  • Another method of sending in advance is that the network device performs a forward cyclic shift on the OFDM symbols on Band 1, and then adds the CP.
  • the sent OFDM symbol is [S K , S K+1 ,...,S N-1 ,S 0 ,S 1 ,...,S K-1 ], and the sent CP is [S N-M+K ,S N -M+K+1 ,...,S N-1 ,S 0 ,S 1 ,...,S K-1 ], where K is the length of sending in advance, and the time corresponding to K basic time units is X. Since the CP of the OFDM symbol is the same as the last part of the OFDM symbol, this mode is equivalent to sending in advance.
  • Another method of sending in advance is that the network device adjusts the transmission time so that the signal of Band 1 including the synchronization signal is sent in advance.
  • the terminal device receives the synchronization information sent by the network device through Band 1, uses the synchronization information to perform time synchronization with the network device, and obtains the time window position of the OFDM symbol corresponding to the frequency band.
  • the network device sends the synchronization information in advance, so that the time advance amount of the time window position acquired by the terminal device is the threshold X.
  • the terminal device uses the same time window position as Band 1 containing the synchronization signal on the second frequency band and/or the third frequency band (such as Band 2 and/or 3) not containing the synchronization signal.
  • the time deviation range of Band 2 or Band 3 that does not contain synchronization signals compared to Band 1 that contains synchronization signals is between the positive and negative threshold X, that is, between -X and X, Therefore, the deviation of the time window position obtained according to the synchronization information from the actual time window position on Band 2 and 3 is between 0 and 2X, and no negative value will appear, that is, the time is guaranteed to advance and there will be no time delay or time lag.
  • the OFDM symbol intercepted using the time window position of Band 1 on Band 2 or 3 contains the CP of the current OFDM symbol on this frequency band, but will not contain the CP of the next OFDM symbol on this frequency band.
  • the current OFDM symbol and the next OFDM symbol refer to the time sequence of OFDM symbol transmission in the time domain, for example, the current OFDM symbol is earlier than the next OFDM symbol in time.
  • the time for the network device to send the second message to the terminal device through Band 2 is 30ns later than the time for sending the first message to the terminal device on Band 1
  • the time to send the second message to the terminal device on Band 3 is 30ns later.
  • the time of the third message is 20ns earlier than the time of sending the first message to the terminal device on Band 1, so the time window position obtained according to the synchronization signal is 80ns earlier than the actual time window position of Band 2, and compared to the actual time window position of Band 3 The position is advanced by 30ns.
  • network devices send synchronization information on the first frequency band in advance, so as to achieve delayed transmission of other information that does not contain synchronization information on other frequency bands, thereby reducing the impact of time deviation on performance and solving
  • the interference problem caused when the synchronization signal is shared also reduces the accuracy requirements for time calibration of multiple frequency bands, thereby improving the feasibility of implementation.
  • the network device mainly sends the SSB to the terminal device first, and then sends other information to the terminal device later.
  • the order in which the network device sends information is not limited.
  • the network device can send other information to the terminal device first, and then send SSB to the terminal device; it can also send SSB and other information to the terminal device at the same time; Or the transmission of other information lies in the transmission of the SSB.
  • This approach can also ensure that the terminal device applies synchronization information to adjacent frequency bands in advance, for example, newly activated adjacent frequency bands and/or adjacent carriers, so as to realize the activation of frequency bands and/or carriers without synchronization information.
  • the terminal device receives the synchronization information sent by the network device through Band 1, uses the synchronization information to synchronize time with the network device, and obtains the time window of the OFDM symbol corresponding to the frequency band Location.
  • the terminal device advances the time window position obtained from Band 1 containing the synchronization information, and the advanced time difference is the threshold X.
  • the OFDM symbol intercepted on Band 1 based on the time window without advance is [S 0 , S 1 ,...,S N-1 ]
  • the OFDM symbol intercepted on Band 1 with the advanced time window is [S NK , S N -K+1 ,...,S N-1 ,S 0 ,S 1 ,...,S NK-1 ]
  • K is the advance length
  • the time corresponding to K basic time units is X.
  • the terminal device uses the aforementioned advanced time window position on Band 2 or Band 3 that does not contain synchronization information.
  • the network equipment can ensure that the time deviation range of Band 2 or Band 3 that does not contain synchronization signals compared to Band 1 that contains synchronization signals is within the positive and negative threshold X, that is, between -X and X, Therefore, the deviation of the time window position obtained according to the synchronization information from the actual time window position on Band 2 and Band 3 is between 0 and 2X, and no negative value will appear, that is, the time is ensured to be advanced without time delay or time lag. Therefore, the OFDM symbol intercepted on Band 2 or 3 using the time window position of Band 1 includes the CP of the current OFDM symbol on the frequency band, but does not include the CP of the next OFDM symbol on the frequency band.
  • the terminal device can avoid intercepting the CP of the next OFDM symbol on the frequency band that does not contain synchronization information by using the time window position obtained in advance from the frequency band that contains synchronization information. , reduce the impact of time deviation on performance, solve the interference problem caused by sharing synchronization signals, and reduce the accuracy requirements for time calibration of multiple frequency bands, thereby further improving the feasibility of implementation.
  • the same subcarrier spacing (subcarrier spacing, SCS) can generally be applied to OFDM symbols between multiple carriers, or the duration of OFDM symbols on multiple carriers is the same as the duration of their corresponding CPs.
  • SCS subcarrier spacing
  • the above solution can be further extended to a scenario where OFDM symbols between multiple carriers use different subcarrier spacings.
  • the SCS of Band 1 that includes synchronization information is 15 kilohertz (kHz)
  • the SCS of Band 2 that does not include synchronization signals is 30 kHz.
  • the total length of one OFDM symbol on Band 1 and its corresponding CP is equal to the total length of two OFDM symbols on Band 2 and their respective corresponding CPs.
  • each network element includes a corresponding hardware structure and/or software module for performing each function.
  • the present invention can be realized in the form of hardware or a combination of hardware and computer software in combination with the units and algorithm steps of each example described in the embodiments disclosed herein. Whether a certain function is executed by hardware or computer software drives hardware depends on the specific application and design constraints of the technical solution. Skilled artisans may use different methods to implement the described functions for each specific application, but such implementation should not be regarded as exceeding the scope of the present invention.
  • corresponding steps or operations implemented by the terminal device may also be implemented by components (such as chips or circuits) configured on the terminal device.
  • the corresponding steps or operations implemented by the network device may also be implemented by components (such as chips or circuits) configured on the network device.
  • the embodiment of the present application also provides an apparatus for implementing any of the above methods, for example, an apparatus including a unit (or means) for implementing each step performed by the terminal device in any of the above methods.
  • an apparatus is provided that includes units (or means) configured to implement each step performed by the network device in any one of the above methods.
  • FIG. 5 it is a schematic diagram of a communication device provided by an embodiment of the present application.
  • the apparatus is used to implement various steps performed by corresponding network devices in the method embodiment in FIG. 2 above. As shown in FIG. 5
  • the transceiver unit 510 is configured to send first information to the terminal device based on the first frequency band and the first time unit, where the first information includes synchronization information; and send the first information to the terminal device based on the second frequency band and the second time unit
  • the terminal device sends second information, where the second information includes other information except the synchronization information;
  • the determining unit 520 is configured to perform time on the first time unit of the first frequency band and the second time unit of the second frequency band calibration.
  • the acquisition time window of the second information refers to the time window of the first information.
  • the determining unit 520 is specifically configured to adjust the time deviation between the first time unit and the second time unit to be less than or equal to a first threshold.
  • the first time unit is earlier than the second time unit in the time domain.
  • the determining unit 520 advances the first time unit based on a second threshold; or, the determining unit 520 delays the second time unit based on a third threshold.
  • the first time unit includes a time window of the first information and a time window of a cyclic prefix, and the time window of the first information and the time window of the cyclic prefix do not overlap each other ;
  • the second time unit includes the time window of the second information and the time window of the cyclic prefix, and the time window of the second information and the time window of the cyclic prefix do not overlap each other.
  • each of the above-mentioned units may also be called a module or a circuit, and each of the above-mentioned units may be provided independently, or may be fully or partially integrated.
  • the above-mentioned transceiver unit 510 may also be called a communication interface.
  • the above-mentioned communication device 500 may further include a storage unit, which is used to store data or instructions (also referred to as codes or programs), and each of the above-mentioned units may interact or be coupled with the storage unit to implement a corresponding method or Function.
  • the processing unit may read data or instructions in the storage unit, so that the communication device implements the methods in the foregoing embodiments.
  • FIG. 6 it is a schematic diagram of a communication device provided by an embodiment of the present application.
  • the apparatus is used to implement various steps performed by the corresponding terminal device in the method embodiment in FIG. 2 above.
  • the apparatus 600 includes a transceiver unit 610 and a processing unit 620 .
  • the transceiving unit 610 is configured to receive the first information from the network device based on the first frequency band and the first time unit, the first information includes synchronization information; receive the first information from the network device based on the second frequency band and the second time unit Two information, the second information includes other information except the synchronization signal.
  • the acquisition time window of the second information refers to the time window of the first information.
  • the time deviation between the first time unit and the second time unit is less than or equal to a first threshold.
  • the first time unit is earlier than the second time unit in the time domain.
  • the processing unit 620 is configured to advance the acquisition time window of the first information by a second threshold.
  • the first time unit includes a time window of the first information and a time window of a cyclic prefix, and the time window of the first information and the time window of the cyclic prefix do not overlap each other ;
  • the second time unit includes the time window of the second information and the time window of the cyclic prefix, and the time window of the second information and the time window of the cyclic prefix do not overlap each other.
  • each of the above-mentioned units may also be called a module or a circuit, and each of the above-mentioned units may be provided independently, or may be fully or partially integrated.
  • the transceiver unit 610 may also be called a communication interface, and the processing unit 620 may also be called a processor.
  • the communication device 600 may further include a storage unit, which is used to store data or instructions (also referred to as codes or programs), and each of the above units may interact or be coupled with the storage unit to implement a corresponding method or Function.
  • the processing unit may read data or instructions in the storage unit, so that the communication device implements the methods in the foregoing embodiments.
  • each unit in the device can be implemented in the form of software called by the processing element; they can also be implemented in the form of hardware; some units can also be implemented in the form of software called by the processing element, and some units can be implemented in the form of hardware.
  • each unit can be a separate processing element, or it can be integrated in a certain chip of the device.
  • it can also be stored in the memory in the form of a program, which is called and executed by a certain processing element of the device. Function.
  • all or part of these units can be integrated together, or implemented independently.
  • the processing element mentioned here may also be a processor, which may be an integrated circuit with signal processing capabilities.
  • each step of the above method or each unit above may be implemented by an integrated logic circuit of hardware in the processor element or implemented in the form of software called by the processing element.
  • the units in any of the above devices may be one or more integrated circuits configured to implement the above method, for example: one or more specific integrated circuits (Application Specific Integrated Circuit, ASIC), or, one or Multiple microprocessors (digital signal processor, DSP), or, one or more Field Programmable Gate Arrays (Field Programmable Gate Array, FPGA), or a combination of at least two of these integrated circuit forms.
  • ASIC Application Specific Integrated Circuit
  • DSP digital signal processor
  • FPGA Field Programmable Gate Array
  • the units in the device can be implemented in the form of a processing element scheduler
  • the processing element can be a general-purpose processor, such as a central processing unit (Central Processing Unit, CPU) or other processors that can call programs.
  • CPU central processing unit
  • these units can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip
  • the above unit for receiving is an interface circuit of the device for receiving signals from other devices.
  • the receiving unit is an interface circuit for the chip to receive signals from other chips or devices.
  • the above unit for sending is an interface circuit of the device, and is used to send signals to other devices.
  • the sending unit is an interface circuit used by the chip to send signals to other chips or devices.
  • the terminal device is used to realize the operations of the terminal device in the above embodiment corresponding to FIG. 2 .
  • the terminal device includes: an antenna 710 , a radio frequency device 720 , and a baseband device 730 .
  • the antenna 710 is connected to the radio frequency device 720 .
  • the radio frequency device 720 receives the information sent by the network device through the antenna 710, and sends the information sent by the network device to the baseband device 730 for processing.
  • the baseband device 730 processes the information of the terminal device and sends it to the radio frequency device 720
  • the radio frequency device 720 processes the information of the terminal device and sends it to the network device through the antenna 710 .
  • the baseband device 730 is used to realize the processing of each communication protocol layer of data.
  • the baseband device 730 can be a subsystem of the terminal equipment, and the terminal equipment can also include other subsystems, such as a central processing subsystem, which is used to realize the processing of the operating system and application layer of the terminal equipment; another example, the peripheral subsystem Used to realize the connection with other devices.
  • the baseband device 730 may be a separately configured chip.
  • the baseband device 730 may include one or more processing elements 731 , including, for example, a master CPU and other integrated circuits, and interface circuits 733 .
  • the baseband device 730 may further include a storage element 732 .
  • the storage element 732 is used to store data and programs, and the program used to execute the method executed by the terminal device in the above methods may or may not be stored in the storage element 732, for example, stored in a memory other than the baseband device 730 , the baseband device 730 loads the program into the cache for use during use.
  • Interface circuitry 733 is used to communicate with the device.
  • the above devices can be located in the baseband device 730, and the baseband device 730 can be realized by a chip, the chip includes at least one processing element and an interface circuit, wherein the processing element is used to execute each step of any method performed by the above terminal equipment, and the interface circuit uses for communicating with other devices.
  • the unit that implements each step in the above method can be implemented in the form of a processing element scheduler, for example, the device includes a processing element and a storage element, and the processing element calls the program stored in the storage element to execute the above method embodiment. The method executed by the end device.
  • the storage element may be a storage element on the same chip as the processing element, that is, an on-chip storage element.
  • the program for executing the method executed by the terminal device in the above method may be stored in a storage element on a different chip from the processing element, that is, an off-chip storage element.
  • the processing element invokes or loads a program from the off-chip storage element on the on-chip storage element, so as to invoke and execute the method performed by the terminal device in the above method embodiment.
  • the unit of the terminal device that implements each step in the above method may be configured as one or more processing elements, and these processing elements are set on the baseband device 730, where the processing elements may be integrated circuits, for example: One or more ASICs, or one or more DSPs, or one or more FPGAs, or a combination of these types of integrated circuits. These integrated circuits can be integrated together to form a chip.
  • the units for implementing each step in the above method can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • SOC chip is used to implement the above method.
  • the chip may integrate at least one processing element and a storage element, and the processing element calls the stored program of the storage element to realize the method executed by the above terminal device; or, the chip may integrate at least one integrated circuit for realizing the above terminal
  • the method executed by the device; or, the above implementation manners may be combined, the functions of some units are implemented in the form of calling programs by processing elements, and the functions of some units are implemented in the form of integrated circuits.
  • the above apparatus may include at least one processing element and an interface circuit, where at least one processing element is configured to execute any method executed by a terminal device provided in the above method embodiments.
  • the processing element can perform some or all of the steps performed by the terminal device in the first way: that is, by calling the program stored in the storage element; or in the second way: through the integrated logic circuit of the hardware in the processor element combined with instructions Part or all of the steps performed by the terminal device may be performed in a manner; of course, some or all of the steps performed by the terminal device may also be performed in combination with the first method and the second method.
  • the processing element here is the same as the above description, and can be a general-purpose processor, such as a CPU, and can also be one or more integrated circuits configured to implement the above method, such as: one or more ASICs, or, one or more microprocessors DSP, or, one or more FPGAs, etc., or a combination of at least two of these integrated circuit forms.
  • a storage element may be a memory, or may be a general term for multiple storage elements.
  • the network device is used to implement the operations of the network device in the above embodiment corresponding to FIG. 2 .
  • the network device includes: an antenna 810 , a radio frequency device 820 , and a baseband device 830 .
  • the antenna 810 is connected to the radio frequency device 820 .
  • the radio frequency device 820 receives the information sent by the terminal device through the antenna 810, and sends the information sent by the terminal device to the baseband device 830 for processing.
  • the baseband device 830 processes the information of the terminal device and sends it to the radio frequency device 820
  • the radio frequency device 820 processes the information of the terminal device and sends it to the terminal device through the antenna 810 .
  • the baseband device 830 may include one or more processing elements 831 , for example, including a master CPU and other integrated circuits, and also include an interface 833 .
  • the baseband device 830 may also include a storage element 832, the storage element 832 is used to store programs and data; the interface 833 is used to exchange information with the radio frequency device 820, the interface is, for example, a common public radio interface (common public radio interface, CPRI) .
  • CPRI common public radio interface
  • the above apparatus for network equipment may be located in the baseband apparatus 830, for example, the above apparatus for network equipment may be a chip on the baseband apparatus 830, the chip includes at least one processing element and an interface circuit, wherein the processing element is used to execute the above network The steps of any method performed by the device, and the interface circuit is used to communicate with other devices.
  • the unit for the network device to implement each step in the above method may be implemented in the form of a processing element scheduler, for example, the device for the network device includes a processing element and a storage element, and the processing element calls the program stored in the storage element to Execute the method executed by the network device in the above method embodiment.
  • the storage element may be a storage element on the same chip as the processing element, that is, an on-chip storage element, or may be a storage element that is on a different chip from the processing element, that is, an off-chip storage element.
  • the unit of the network device implementing each step in the above method may be configured as one or more processing elements, and these processing elements are set on the baseband device, where the processing element may be an integrated circuit, for example: a Or multiple ASICs, or, one or more DSPs, or, one or more FPGAs, or a combination of these types of integrated circuits. These integrated circuits can be integrated together to form a chip.
  • the units of the network device for implementing each step in the above method can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • the baseband device includes the SOC chip for implementing the above method.
  • the chip may integrate at least one processing element and a storage element, and the processing element calls the stored program of the storage element to realize the method performed by the above network device; or, the chip may integrate at least one integrated circuit for realizing the above network
  • the method executed by the device; or, the above implementation manners may be combined, the functions of some units are implemented in the form of calling programs by processing elements, and the functions of some units are implemented in the form of integrated circuits.
  • the above apparatus for a network device may include at least one processing element and an interface circuit, where at least one processing element is configured to execute any one of the methods performed by the network device provided in the above method embodiments.
  • the processing element can perform some or all of the steps performed by the network device in the first way: that is, by calling the program stored in the storage element; or in the second way: that is, through the integrated logic circuit of the hardware in the processor element combined with instructions Part or all of the steps performed by the network device may be performed in a manner; of course, some or all of the steps performed by the above network device may also be performed in combination with the first method and the second method.
  • the processing element here is the same as the above description, and can be a general-purpose processor, such as a CPU, and can also be one or more integrated circuits configured to implement the above method, such as: one or more ASICs, or, one or more microprocessors DSP, or, one or more FPGAs, etc., or a combination of at least two of these integrated circuit forms.
  • a storage element may be a memory, or may be a general term for multiple storage elements.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server or data center Transmission to another website site, computer, server, or data center by wired (eg, coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device including a server, a data center, and the like integrated with one or more available media.
  • the available medium may be a magnetic medium (such as a floppy disk, a hard disk, or a magnetic tape), an optical medium (such as a DVD), or a semiconductor medium (such as a solid state disk (solid state disk, SSD)), etc.
  • At least one item (one, species) of a, b, or c can represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c can be single or Multiple. "Multiple" refers to two or more than two, and other quantifiers are similar.
  • the various illustrative logic units and circuits described in the embodiments of the present application can be implemented by a general-purpose processor, a digital signal processor, an application-specific integrated circuit (ASIC), a field-programmable gate array (FPGA) or other programmable logic devices, Discrete gate or transistor logic, discrete hardware components, or any combination of the above designed to implement or operate the described functions.
  • the general-purpose processor may be a microprocessor, and optionally, the general-purpose processor may also be any conventional processor, controller, microcontroller or state machine.
  • a processor may also be implemented by a combination of computing devices, such as a digital signal processor and a microprocessor, multiple microprocessors, one or more microprocessors combined with a digital signal processor core, or any other similar configuration to accomplish.
  • the above functions described in this application may be implemented in hardware, software, firmware or any combination of the three. If implemented in software, the functions can be stored on or transmitted over as one or more instructions or code on a computer-readable medium.
  • Computer-readable media includes computer storage media and communication media that facilitate transfer of a computer program from one place to another. Storage media may be any available media that can be accessed by a general purpose or special computer.
  • Such computer-readable media may include, but are not limited to, RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other device that can be used to carry or store instructions or data structures and Other medium of program code in a form readable by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor.
  • any connection is properly defined as a computer-readable medium, for example, if the software is transmitted from a web site, server, or other remote source via a coaxial cable, fiber optic computer, twisted pair, digital subscriber line (DSL) Or transmitted by wireless means such as infrared, wireless and microwave are also included in the definition of computer readable media.
  • DSL digital subscriber line
  • the disc (disk) and disc (disc) include compact discs, laser discs, optical discs, digital versatile discs (English: Digital Versatile Disc, referred to as: DVD), floppy discs and Blu-ray discs. Disks usually reproduce data magnetically, while Data is optically reproduced on discs, usually with lasers. Combinations of the above can also be contained on a computer readable medium.
  • Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a storage media may be any available media that can be accessed by a general purpose or special purpose computer.

Abstract

本申请实施例提供通信方法、装置及系统。该方法包括:网络设备对第一频段的第一时间单元和第二频段的第二时间单元进行时间校准;所述网络设备基于所述第一频段和所述第一时间单元向终端设备发送第一信息,所述第一信息包括同步信息;所述网络设备基于所述第二频段和第二时间单元向所述终端设备发送第二信息,所述第二信息包括除所述同步信息之外的其他信息;其中,所述第二信息的获取时间窗参考所述第一信息的时间窗。从而提升终端设备与网络设备之间在载波聚合场景中的通信效率。

Description

通信方法、装置及系统
本申请要求于2021年11月10日提交中国专利局、申请号为202111327690.8、申请名称为“通信方法、装置及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,尤其涉及通信方法、装置及系统。
背景技术
智能终端用户的不断增长,用户业务量和数据吞吐量不断增加,对通信速率提出了更高要求,为了满足更大的下行和上行峰值速率的要求,需要提供更大的传输带宽。由于大带宽的连续频谱的稀缺,提出了载波聚合(Carrier Aggregation,CA)的解决方案。载波聚合是将两个或更多个载波单元(Component Carrier,CC)聚合在一起以支持更大的传输带宽。其中,载波聚合包括单基站下的载波聚合,和双链接(dual connectivity,DC)场景中不同基站下的的载波聚合。
目前,在为一个终端设备配置多个载波时,如何提升终端设备与网络设备之间的通信效率,是需要解决的问题。
发明内容
本申请实施例提供通信方法、装置及系统,用以实现在载波聚合场景中,提升终端设备与网络设备之间的通信效率。
第一方面,本申请实施例提供一种通信方法,包括所述网络设备基于所述第一频段和所述第一时间单元向终端设备发送第一信息,所述第一信息包括同步信息;所述网络设备基于所述第二频段和第二时间单元向所述终端设备发送第二信息,所述第二信息包括除所述同步信息之外的其他信息。
其中,所述第二信息的获取时间窗参考所述第一信息的时间窗。
例如,终端设备将第一信息的时间窗用于第二信息的接收或获取。具体而言,第一信息的时间窗和第二信息的时间窗在时域上可以不对齐或者存在偏移,例如网络设备提前发送第一信息或延后发送第二信息,或者终端设备提前接收第一信息或延后接收第二信息。此时,终端设备会基于第一信息的时间窗对第二信息进行读取,从而降低共享同步信息的干扰问题,也可以减轻时间偏差对系统性能的影响。
该方案可以对终端设备与网络设备之间的通信基于多频段间共享同步信号进行设计,从而达到提高终端设备与网络设备之间的通信效率的目的。
在一种可能的实现方法中,网络设备对第一频段的第一时间单元和第二频段的第二时间单元进行时间校准。
通常而言,上述时间单元是指一种时间单位对应的一个单元。该时间单位是指用于进行信息传输的时域内的时间单位或者调度单位,该时间单位的时域内可以是子帧,也可以是时隙(slot),还可以是无线帧、微时隙(mini slot或sub slot)、多个聚合的时隙、多个聚合的子帧、符号等等,还可以是传输时间间隔(transmission time interval,缩写:TTI),本申请不做限定。
在一种可能的实现方法中,所述第一时间单元和所述第二时间单元之间的时间偏差小于或等于第一阈值。
示例性的,网络设备对多个频段进行时间校准,保证不包含同步信息的频段(如Band 2或3)相比包含同步信息的频段(如Band 1)的时间偏差的绝对值小于第一阈值X,即在正负X之间或在-X到X之间,X为整数,从而提升多频段间共享同步信号的有效性。
在一种可能的实现方法中,所述第一时间单元在时域上早于所述第二时间单元。
在一种可能的实现方法中,网络设备将所述第一信息的获取时间窗提前第二阈值。
在一种可能的实现方法中,所述第一时间单元包括所述第一信息的时间窗和循环前缀的时间窗,所述第一信息的时间窗和所述循环前缀的时间窗互不重叠;所述第二时间单元包括所述第二信息的时间窗和循环前缀的时间窗,所述第二信息的时间窗和所述循环前缀的时间窗互不重叠。
因此,网络设备通过在多个频段进行时间校准,提前在第一频段上发送同步信息,达到在其他频段上不包含同步信息的其他信息的延后传输,从而减轻时间偏差对性能的影响,解决共享同步信号时导致的干扰问题,也降低了对多个频段进行时间校准的精度要求,从而提升实现可行性。
第二方面,本申请实施例提供一种通信方法,包括终端设备基于第一频段和第一时间单元接收来自网络设备的第一信息,所述第一信息包括同步信息;所述终端设备基于第二频段和第二时间单元接收来自所述网络设备的第二信息,所述第二信息包括除所述同步信号之外的其他信息。
其中,所述第二信息的获取时间窗参考所述第一信息的时间窗。
在一种可能的实现方法中,所述第一时间单元和所述第二时间单元之间的时间偏差小于或等于第一阈值。
在一种可能的实现方法中,所述第一时间单元在时域上早于所述第二时间单元。
在一种可能的实现方法中,终端设备将所述第一信息的获取时间窗提前第二阈值。
在一种可能的实现方法中,所述第一时间单元包括所述第一信息的时间窗和循环前缀的时间窗,所述第一信息的时间窗和所述循环前缀的时间窗互不重叠;所述第二时间单元包括所述第二信息的时间窗和循环前缀的时间窗,所述第二信息的时间窗和所述循环前缀的时间窗互不重叠。
第三方面,本申请实施例提供一种通信装置,该装置可以是网络设备,还可以是用于网络设备的芯片。该装置具有实现上述第一方面的方法或第一方面的各实现方法的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
第四方面,本申请实施例提供一种通信装置,该装置可以是终端设备,还可以是用于终端设备的芯片。该装置具有实现上述第二方面的方法或第二方面的各实现方法的功能。 该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
第五方面,本申请实施例提供一种通信装置,包括处理器和存储器;该存储器用于存储计算机执行指令,当该装置运行时,该处理器执行该存储器存储的该计算机执行指令,以使该装置执行如上述第一至第二方面、第一至第二方面的各实现方法中的任意方法。
第六方面,本申请实施例提供一种通信装置,包括处理器和接口电路,所述处理器用于通过接口电路与其它装置通信,并执行上述第一至第二方面、第一至第二方面的各实现方法中的任意方法。该处理器包括一个或多个。
第七方面,本申请实施例提供一种通信装置,包括处理器,用于与存储器相连,用于调用所述存储器中存储的程序,以执行上述第一至第二方面、第一至第二方面的各实现方法中的任意方法。该存储器可以位于该装置之内,也可以位于该装置之外。且该处理器包括一个或多个。
第八方面,本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得处理器上述第一至第二方面、第一至第二方面的各实现方法中的任意方法。
第九方面,本申请实施例还提供一种计算机程序产品,该计算机产品包括计算机程序,当计算机程序运行时,使得上述第一至第二方面、第一至第二方面的各实现方法中的任意方法被执行。
第十方面,本申请实施例还提供一种芯片系统,包括:处理器,用于执行上述第一至第二方面、第一至第二方面的各实现方法中的任意方法。
第十一方面,本申请实施例还提供一种通信系统,包括用于执行上述第一方面、或第一方面的任意实现方法的网络设备,和用于执行上述第二方面、或第二方面的任意实现方法的终端设备。
附图说明
图1为本申请实施例所适用的一种网络架构示意图;
图2为本申请实施例提供的一种通信方法示意图;
图3为本申请实施例提供的一种通信方法示意图;
图4为本申请实施例提供的另一种通信方法示意图;
图5为本申请实施例提供的一种通信装置示意图;
图6为本申请实施例提供的另一种通信装置示意图;
图7为本申请实施例提供的一种终端设备示意图;
图8为本申请实施例提供的一种网络设备示意图。
具体实施方式
本申请实施例提供的技术方案可以应用于各种通信系统,例如,第五代(5th generation,5G)通信系统,未来演进系统或者多种通信融合系统等等。本申请实施例提供的技术方案可以应用于多种应用场景,例如,机器对机器(machine to machine,M2M)、宏微通信、增强型移动互联网(enhanced mobile broadband,eMBB)、超高可靠超低时延通信(ultra-reliable &low latency communication,URLLC)以及海量物联网通信(massive machine type communication,mMTC)等场景。这些场景可以包括但不限于:通信设备与通信设备之间的通信场景,网络设备与网络设备之间的通信场景,网络设备与通信设备之间的通信场景等。下文中均是以应用于网络设备和终端之间的通信场景中为例进行说明的。
此外,本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
为便于理解本申请技术方案,图1示出了适用于本申请实施例的通信系统100的示意图。如图1所示,该通信系统可以包括至少一个网络设备,如网络设备101。该通信系统还可以包括至少一个终端设备,如终端设备102至107。其中,该终端设备102至107可以是移动的或固定的。网络设备101和终端设备102至107中的一个或多个均可以通过无线链路通信。即网络设备可以向终端设备发送信号,终端设备也可以向网络设备发送信号。示例性的,每个网络设备可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备通信。例如,网络设备可以向终端设备发送配置信息,终端设备可以基于该配置信息向网络设备发送上行数据。又例如,网络设备可以向终端设备发送下行数据。因此,图1中的网络设备101和终端设备102至107构成一个通信系统。
可选地,终端设备之间也可以直接通信。例如,可以利用D2D技术等实现终端设备之间的直接通信。如图1所示,终端设备105与106之间、终端设备105与107之间可以利用D2D技术直接通信。终端设备106和终端设备107可以单独或同时与终端设备105通信。
其中,终端设备105至107也可以分别与网络设备101通信。一方面,可以直接与网络设备101通信,如图中的终端设备105和106可以直接与网络设备101通信。另一方面,可以间接地与网络设备101通信,如图中的终端设备107经由终端设备105与网络设备101通信。
应理解,图1示出了一个网络设备和多个终端设备,以及各通信装置之间的通信链路。可选地,该通信系统100可以包括多个网络设备,并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,例如更多或更少的终端设备。本申请对此不作具体限定。
上述各个通信装置,如图1中的网络设备101和终端设备102至107,可以配置多个天线。该多个天线可以包括至少一个用于发送信号的发射天线和至少一个用于接收信号的接收天线。另外,各通信装置还附加地包括发射机链和接收机链,本领域普通技术人员可以理解,它们均可包括与信号发送和接收相关的多个部件(例如处理器、调制器、复用器、解调器、解复用器或天线等)。因此,网络设备与终端设备之间可通过多天线技术通信。
可选地,该无线通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请对此不作具体。
还应理解,图1仅为便于理解而示例的简化示意图,该通信系统100中还可以包括其他网络设备或者还可以包括其他终端设备,图1中未予以画出。
需要说明的是,本申请实施例以信号传输为背景,也适用于同构网络与异构网络的场景、低频场景(sub 6G)、高频场景(6G以上)、太赫兹、光通信、频分双工(frequency division duplex,FDD)和时分双工(time division duplex,TDD)系统、非地面通信网络(non-terrestrial  networks,NTN),例如卫星通信等。同时,本申请对于传输点也没有限制,可以是宏基站与宏基站、微基站与微基站、宏基站与微基站间的多点协同传输等。另外。本申请实施例适用于基站和终端的通信,终端和终端通信,以及基站和基站通信,还适用于CU/DU架构、以及CP/UP分离的架构等。以基于波束的多载波通信系统,例如NR系统为例,该系统中包括通信系统中的上行(终端设备到网络设备)和下行(接入网络设备到终端设备)通信。其中,上行通信包括上行物理信道和上行信号的传输,下行通信包括下行物理信道和下行信号的传输。其中,上行物理信道包括:随机接入信道(random access channel,PRACH)、上行控制信道(physical uplink control channel,PUCCH)、上行数据信道(physical uplink shared channel,PUSCH)等。上行信号包括:信道探测信号(sounding reference signal,SRS)、上行控制信道解调参考信号(PUCCH de-modulation reference signal,PUCCH-DMRS)、上行数据信道解调参考信号(PUSCH de-modulation reference signal,PUSCH-DMRS)、上行相位噪声跟踪信号(phase noise tracking reference signal,PTRS)、上行定位信号等。下行物理信道包括:广播信道(physical broadcast channel,PBCH)、下行控制信道(physical downlink control channel,PDCCH)、下行数据信道(physical downlink shared channel,PDSCH)等。下行信号包括:主同步信号(primary synchronization signal,PSS)、辅同步信号(secondary synchronization signal,SSS)、下行控制信道解调参考信号(PDCCH de-modulation reference signal,PDCCH-DMRS)、下行数据信道解调参考信号(PDSCH de-modulation reference signal,PDSCH-DMRS)、相位噪声跟踪信号(phase tracking reference signal,PTRS)、信道状态信息参考信号(channel status information reference signal,CSI-RS)、小区信号(cell reference signal,CRS)、精同步信号(time/frequency tracking reference signal,TRS)、定位参考信号(positioning,RS)等,本申请对此不作具体限定。
应理解,本申请提供的技术方案主要应用于无线通信系统,在无线通信系统中,包括通信设备,通信设备间可以利用空口资源进行无线通信。其中,通信设备可以包括网络设备和终端设备。空口资源可以包括时域资源、频域资源、码资源和空间资源中的至少一个。本申请提供的技术方案还应用于其他的或未来的通信系统,如第六代移动通信系统等。本申请对此不作限定。
在本申请实施例中,终端设备可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置、软终端等,包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备。终端可以是移动站(mobile station,MS)、用户单元(subscriber unit)、蜂窝电话(cellular phone)、智能电话(smart phone)、无线数据卡、个人数字助理(personal digital assistant,PDA)电脑、平板型电脑、无线调制解调器(modem)、手持设备(handset)、膝上型电脑(laptop computer)、机器类型通信(machine type communication,MTC)终端等。
本申请实施例中的终端设备也可以是手机(mobile phone)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart  home)中的无线终端、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、手持终端、笔记本电脑、无绳电话(cordless phone)或者无线本地环路(wireless local loop,WLL)台、未来5G网络中的终端设备,或者未来演进的公用陆地移动通信网络PLMN中的终端设备等。
此外,终端设备还可以是物联网(internet of things,IoT)系统中的终端设备。IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,从而实现人机互连,物物互连的智能化网络。应理解,本申请对于终端设备的具体形式不作限定。
此外,终端设备还可以包括智能打印机、火车探测器、加油站等传感器,主要功能包括收集数据(部分终端设备)、接收网络设备的控制信息与下行数据,并发送电磁波,向网络设备传输上行数据。
在本申请实施例中,网络设备可以是一种部署在无线接入网中为终端设备提供无线通信功能的装置,可以是用于与终端设备通信的设备或者该设备的芯片。该网络设备包括但不限于:无线网络控制器(radio network controller,RNC)、基站控制器(base station controller,BSC)、家庭基站(例如,home evolved nodeB,或home node B,HNB)、基带单元(baseband unit,BBU),无线保真系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G NR系统中的gNB或传输点TRP或TP,或者5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者还可以为构成gNB或传输点的网络节点,如基带单元BBU,或分布式单元(distributed unit,DU)等。
本申请实施例中的网络设备可以包括各种形式的宏基站,微基站(也称为小站),中继站,接入点等,可以是全球移动通讯GSM系统或码分多址CDMA中的基站(Base Transceiver Station,BTS),也可以是宽带码分多址WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional NodeB,eNB或eNodeB),还可以是云无线接入网络(Cloud Radio Access Network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、可穿戴设备或车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)网络中的网络设备等。
在一些网络部署中,网络设备可以包括集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU)。网络设备还可以包括射频单元(radio unit,RU)、有源天线单元(active antenna unit,AAU)。CU实现网络设备的部分功能,比如负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU实现网络设备的部分功能,比如负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来。因而在这种架构下,高层信令(例如,RRC层信令)也可以认为是由DU发送的,或者由DU+AAU发送的。
可以理解的是,网络设备可以为CU节点、或DU节点、或包括CU节点和DU节点的设备。此外,CU可以划分为接入网RAN中的网络设备,也可以将CU划分为核心网CN中的网络设备,在此不做限定。
网络设备为小区提供服务,终端设备通过网络设备分配的传输资源(例如,频域资源,或者频谱资源)与小区进行通信,该小区可以属于宏基站(例如,宏eNB或宏gNB等),也可以属于小小区(small cell)对应的基站,这里的小小区可以包括:城市小区(metro cell)、微小区(micro cell)、微微小区(pico cell)、毫微微小区(femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
网络设备还可以为定位服务中心,例如,演进服务移动位置中心(evolved serving mobile location center,E-SMLC)、位置管理功能(location measurement unit,LMF)等,该定位服务中心用于手机网络设备和终端设备的测量信息和位置信息。定位服务中心还负责将终端设备的测量量进行位置解算,进而确定终端设备的位置。其中,终端设备和定位服务中心之间的信息交互可以通过LTE定位协议(LTE positioning protocol)或者NR定位协议实现(NR positioning protocol)。网络设备和定位中心之间的交互通过LTE定位协议A(LTE positioning protocol A,LPPa)或NR定位协议A(NR positioning protocol A,NRPPa)实现。
在本申请实施例中,网络设备和终端设备包括无线资源控制RRC信令交互模块、媒体接入控制MAC信令交互模块、以及物理PHY信令交互模块。其中,RRC信令交互模块可以为:网络设备和终端设备用于发送及接收RRC信令的模块。MAC信令交互模块可以为:网络设备和终端设备用于发送及接收媒体接入控制控制元素(media access control element,MAC CE)信令的模块。PHY层信令及数据交互模块可以为:网络设备和终端设备用于发送及接收上行控制信令或下行控制信令、上下行数据或下行数据的模块。
随着日益增长的网络容量需求,频分复用(frequency division duplex,FDD)FDD频谱资源被广泛应用。并且,智能终端用户的不断增长,用户业务量和数据吞吐量不断增加,对通信速率提出了更高要求,为了满足更大的下行和上行峰值速率的要求,需要提供更大的传输带宽。由于大带宽的连续频谱的稀缺,提出了载波聚合(Carrier Aggregation,CA)的解决方案。载波聚合是将两个或更多个载波单元(Component Carrier,CC)聚合在一起以支持更大的传输带宽,进而实现FDD载波聚合,提升用户设备UE频谱使用量。具体来说,CA可以实现多频资源整合,把相同频段或者不同频段的频谱资源聚合起来供终端设备使用,从而提升整个网络系统的资源利用率,改善用户体验。
应理解,CA可以将两个或更多个载波单元(component carrier,CC)聚合在一起,以支持更大的传输带宽。为了保证后向兼容性,每个载波一般最大不超过20MHz。实际上,一个小区可以包含至少一个载波单元。通常可以将一个载波单元理解或等同于一个频段。为了高效地利用零碎的频谱,载波聚合支持不同载波单元之间的聚合。
在本申请实施例中,载波和载波单元的含义可以理解为相同。CA功能可以支持连续或非连续载波聚合,为了高效地利用零碎的频谱,载波聚合支持不同成员载波之间的聚合。具体包括:相同或不同带宽的载波单元聚合、同一频带内邻接或非邻接的载波单元聚合、不同频带内的载波单元聚合。也就是说,载波聚合的场景可以分为3种,即带内连续载波聚合,带内非连续载波聚合和带外非连续载波聚合。
单链接场景中的载波聚合,是将网络设备中的一个小区配置为终端设备的主小区,该 网络设备下的其他小区配置为该终端设备的辅小区。主小区(Primary Cell,Pcell)是终端设备初始连接时建立的小区,或进行无线资源控制(Radio resource control,RRC)连接重建的小区,或是在切换(handover)过程中指定的主小区。主小区负责与终端设备之间的RRC通信。主小区对应的载波单元称为主载波单元(Primary Component Carrier,PCC)。其中,主小区的下行载波称为下行主载波(DL PCC),主小区的上行载波称为上行主载波(UL PCC)。辅小区(Secondary Cell,Scell)是在RRC重配置时添加的,用于提供额外的无线资源,辅小区与终端设备之间一般不存在RRC通信。辅小区对应的载波单元称为辅载波单元(Secondary Component Carrier,SCC)。其中,辅小区的下行载波称为下行辅载波(DL SCC),辅小区的上行载波称为上行辅载波(UL SCC)。
双链接场景中的载波聚合,是将主网络设备中的一个小区配置为终端设备的主小区(也即主小区组(Master cell group,MCG)中的主小区),将辅网络设备中的一个小区配置为终端设备的主辅小区(Primary Secondary Cell,Primary Scell)(也即辅小区组(Secondary cell group,SCG)中的主小区),将主网络设备或辅网络设备下的除主小区和主辅小区之外的小区配置为终端设备的辅小区。主小区是终端设备初始连接时建立的小区,或进行RRC连接重建的小区,或是在切换(handover)过程中指定的主小区。主小区主要负责与终端设备之间的RRC通信。主小区对应的载波单元称为主载波单元。其中,主小区的下行载波称为下行主载波(DL PCC),主小区的上行载波称为上行主载波(UL PCC)。主辅小区一般是在RRC重配置时添加的,用于提供额外的无线资源,主辅小区与终端设备之间一般不存在RRC通信。主辅小区对应的载波单元称为辅载波单元。其中,主辅小区的下行载波称为下行辅载波(DL SCC),主辅小区的上行载波称为上行辅载波(UL SCC)。
主小区是在连接建立时确定的,辅小区是在初始接入完成之后,通过RRC连接重配置消息添加/修改/释放的。
小区(cell)与载波(carrier)的关系为:小区没有物理实体,它是一个逻辑概念,它是移动通信网络里给用户提供一套完整服务(主叫、被叫、可以移动、可以上网等)的最小逻辑单元。载波是网络设备发射出来的、有频率、带宽、制式的无线电信号(电磁波),它是用来承载信息的主体,一个小区中可以有一个或多个下行载波,和/或一个或多个上行载波。1个小区中可以包括1个下行载波,1个上行载波和一个增补上行(supplementary uplink,SUL)载波,其中SUL载波是指仅有上行资源用于当前通信制式的传输。
以下进一步阐述频段组、小区组、和/或载波组之间的关系。
示例性的,频段组包括一个或多个频段,一个频段上包括一个或多个小区,一个小区内包括一个或多个载波。小区组包括一个或多个小区,一个小区内包括一个或多个载波。载波组包括一个或多个载波。
或者,小区组包括一个或多个小区,一个小区内包括一个或多个载波,该至少一个载波属于一个或多个频段。
上述各组所包括的载波均可以为上行载波和/或下行载波。
下面结合一个示例说明。比如,频段1上配置了小区1和小区2,小区1内包含一个上行载波(UL CC-1)和一个下行载波(DL CC-1),小区2内包含两个上行载波(UL CC-2、UL CC-3)和一个下行载波(DL CC-2),频段2上配置了小区3,小区3内包含一个上行载波(UL CC-4)和一个下行载波(DL CC-3)。
若网络设备定义了一个频段组{频段1,频段2},则该频段组对应的载波包括:UL CC-1、UL CC-2、UL CC-3、UL CC-4、DL CC-1、DL CC-2、DL CC-3。
若网络设备定义了一个小区组{小区1,小区2},则该小区组对应的载波包括:UL CC-1、UL CC-2、UL CC-3、DL CC-1、DL CC-2。
若网络设备定义了一个载波组{UL CC-1,UL-CC4,DL-CC1,DL-CC3},则该载波组内的载波包括:UL CC-1,UL-CC4,DL-CC1,DL-CC3。
可选的,网络设备还可以定义一个上行载波组和一个下行载波组。比如网络设备定义了一个上行载波组{UL CC-1,UL CC-2,UL-CC3,UL-CC4},则该载波组内的载波包括:UL CC-1,UL CC-2,UL-CC3,UL-CC4。再比如,网络设备定义了一个下行载波组{DL-CC1,DL-CC2,DL-CC3},则该载波组内的载波包括:DL-CC1,DL-CC2,DL-CC3。
因此,网络设备通过定义频段组、小区组、和/或载波组,可以理解为指定一组载波。
就PCell或SCell而言,其有两种状态,即激活状态和去激活状态。以SCell举例而言,当其处于激活状态,且该小区配置了物理下行控制信道(physical downlink control channel,PDCCH),终端设备需要监听该小区的PDCCH,并基于网络设备的配置以及上下行调度信息与网络设备进行传输。当SCell处于去激活状态,终端设备无需在该小区进行上下行信号监听和/或传输。
具体来说,CA的配置方式可以包括:首先,网络设备通过RRC信令指示终端设备进行SCell添加,并提供SCell的相关配置,此时SCell的默认状态是去激活态。然后,网络设备通过激活/去激活无线接入控制-控制单元(nedia access control-control element,MAC-CE)信令指示终端设备进行SCell的激活或去激活。当SCell激活后,终端设备在该小区进行相应的信号传输。此外,网络设备还可以为终端设备配置去激活定时器,当定时器超时时,UE认为SCell的状态从激活态转为去激活态。
随着CA技术的增强,引入了休眠态。即当SCell处于休眠态时,终端设备无须监听针对该小区的PDCCH调度信息,一般维持信道状态信息(channel status information,CSI)的测量和上报。
此外,网络设备可以周期性地广播同步信号和物理广播信道块(synchonization signal and physical broadcast channel block,SSB),终端设备通过接收SSB以实现时频同步。此外SSB还可以用于无线资源管理(radio resource management,RRM)测量等。就PCell或SCell而言,当终端设备接收到PCell或SCell的SSB,可以进行射频链路的准备工作,以便后续在该PCell或SCell上进行CSI的测试和上报,以进行正常的数据传输。在上述方案中,小区激活需要依赖于同步与信道测量。当有突发数据到达时,由于较高的激活延时,导致该突发包无法基于该Scell进行传输。此外,若每个频段和/或载波都需要发送SSB,则会导致增加网络设备的资源开销和负载均衡。
为解决每个频段上都需要发送SSB导致的小区激活时延较高、同步信号开销较大的问题,考虑到对于临近频段,网络设备可以保证多个频段间的时频同步,提出了多频段共享同步信号传输,激活相邻频段免同步过程的方案。具体而言,多频段之间可以共享同步信号,即通信设备在一个频段上发送同步信号,终端设备根据同步信号获取同步信息后,把同步信息应用到新激活的相邻频段,从而实现免时间同步的频段激活。这种免时间同步的频段激活流程只需要1-2ms时延,通过下行控制信息(downlink control inforamtion,DCI) 指示就可以直接激活频段,从而实现网络设备和终端设备之间的传输。
本申请实施例针对载波聚合场景下,对终端设备与网络设备之间的通信基于多频段间共享同步信号进行设计,达到提高终端设备与网络设备之间的通信效率的目的。
结合前面的描述,如图2所示,为本申请实施例提供的一种通信方法流程示意图。图2中,以网络设备与终端设备之间交互为例进行说明,网络设备执行的操作也可以由网络设备内部的芯片或模块执行,终端设备执行的操作也可以由终端设备内部的芯片或模块执行。参见图2,该方法包括以下步骤:
201,终端设备基于第一频段和第一时间单元接收来自网络设备的第一信息,所述第一信息包括同步信息。
相应的,网络设备基于所述第一频段和所述第一时间单元向终端设备发送第一信息,所述第一信息包括同步信息。示例性的,上述同步信息包括SSB和/或跟踪参考信号(tracking reference signal,TRS),终端设备从而可以根据SSB和/或TRS与基站实现下行同步。
202,终端设备基于第二频段和第二时间单元接收来自所述网络设备的第二信息,所述第二信息包括除所述同步信息之外的其他信息。
相应的,网络设备基于所述第二频段和第二时间单元向所述终端设备发送第二信息,所述第二信息包括除所述同步信息之外的其他信息。
可以理解,上述第一频段也可以为第一载波,第二频段也可以为第二载波,从而实现在载波聚合场景下的通信交互。
本申请实施例中,第二信息的获取时间窗参考第一信息的时间窗。本领域的技术人员可以理解,该参考动作可以由终端设备执行。例如,终端设备将第一信息的时间窗用于第二信息的接收或获取。具体而言,第一信息的时间窗和第二信息的时间窗在时域上可以不对齐或者存在偏移,例如网络设备提前发送第一信息或延后发送第二信息,或者终端设备提前接收第一信息或延后接收第二信息。此时,终端设备会基于第一信息的时间窗对第二信息进行读取,从而降低共享同步信息的干扰问题,也可以减轻时间偏差对系统性能的影响。
示例性的,上述时间单元和时间窗在时域上存在一定关联。例如,对应第一频段的第一时间单元包含第一时间窗,因为该第一时间窗用于获取第一信息,所以也可以称为第一信息的获取时间窗或实际时间窗。对应第二频段的第二时间单元包含第二时间窗,因为终端设备获取第二信息参考第一时间窗,所以该第二时间窗在时域上可能与第二信息的获取时间窗或实际时间窗存在偏移或相互不对齐。此时,该第一时间窗可以称为参考时间窗或原始时间窗。例如,第一时间窗为网络设备发送第一信息的实际时间窗,终端设备将该实际时间窗提前,作为获取第二信息的参考时间窗或原始时间窗。
通常而言,上述时间单元是指一种时间单位对应的一个单元。该时间单位是指用于进行信息传输的时域内的时间单位或者调度单位,该时间单位的时域内可以是子帧,也可以是时隙(slot),还可以是无线帧、微时隙(mini slot或sub slot)、多个聚合的时隙、多个聚合的子帧、符号等等,还可以是传输时间间隔(transmission time interval,缩写:TTI),本申请不做限定。其中,一种时间单位的一个或多个时间单元时域内可以包含另一种时间单位的时间单元,或者一种时间单位的一个或多个时间单元时域内的长度等于另一种时间单位的时间单元长度和,例如,一个微时隙/时隙/子帧/无线帧内包含多个符号,一个时隙/子 帧/无线帧内包含多个微时隙,一个子帧/无线帧内包含多个时隙,一个无线帧包含多个子帧等,也可以存在其余包含举例,本申请不做限定。
在本发明实施例中,时间单位的标识也可以称为时间单元的索引或其他名称,如用于对一种时间单位的不同时间单元进行区分或标记或计数。
可以理解,上述第一信息和/或第二信息可以携带在消息中,并且由网络设备向终端设备发送。该消息可以为高层信令,比如广播消息,系统消息,接入过程中的下行消息(如消息2或者消息4),无线资源控制(英文:Radio Resource Control,缩写:RRC)信令,或者媒体访问控制(英文:Media Access Control或者Medium Access Control,缩写:MAC)CE(Control Element)。或者,该消息还可以为物理层下行控制信息(英文:Downlink Control Information,缩写:DCI),即上述第一信息和/或第二信息可通过物理信道携带,物理信道可以为物理下行控制信道,等等,本申请不做限定。
以下描述第一种实现方式,即201发生在202之前。具体而言,网络设备先行向终端设备发送SSB,后续再向终端设备发送其他信息,从而保证终端可以提前将同步信息应用到相邻频段,例如新激活的相邻频段和/或相邻载波,从而实现无同步信息的频段和/或载波的激活。
通常,网络设备可以对第一频段的第一时间单元和第二频段的第二时间单元进行时间校准。具体而言,网络设备调整第一时间单元和第二时间单元之间的时间偏差小于或等于第一阈值。示例性的,网络设备对多个频段进行时间校准,保证不包含同步信息的频段(如Band 2或3)相比包含同步信息的频段(如Band 1)的时间偏差的绝对值小于第一阈值X,即在正负X之间或在-X到X之间,X为整数,从而提升多频段间共享同步信号的有效性。
可选的,在时域上,X的长度小于循环前缀(Cyclic Prefix,CP)的长度,CP的长度小于一个正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号的长度,从而降低网络设备进行时间校准的难度。就时间长度而言,X的长度可以远小于CP的长度CP的长度可以远小于OFDM符号的长度。例如,X的取值可以为32.5纳秒(nanosecond,ns),50ns,65ns,100ns中的任意一个,CP长度约为4微秒(us)。
在基于OFDM的无线通信系统中,为了抵抗信道多径引起的符号间干扰,采用了在符号中增加CP的设计。其中,多径的时延扩展越大,对CP的需求越长。针对特定类型的子载波间隔,为了满足不同场景的时延扩展需求,可以采用普通CP(Normal Cyclic Prefix,NCP)或扩展CP(Extended Cyclic Prefix,ECP)两种CP类型。其中,NCP和ECP为两种长度不同的CP类型,ECP长度比NCP长度更长,CP开销更高。
在进行CP配置时,由于不同终端的信道的时延扩展不同,或不同终端的或者同一终端的不同信道的调制与编码策略(Modulation and Coding Scheme,MCS)、或传输模式、或传输的业务所需的BLER、或最大可传输的次数等参数不同,对于CP类型的需求也就不同,由此,无线接入网设备可按照时间单元或者时间单元内的至少一个信道或者至少一个符号来配置CP,以满足不同用户需求。
本发明实施例中,第一时间单元包括第一信息的时间窗和循环前缀的时间窗,第一信息的时间窗和循环前缀的时间窗互不重叠。第二时间单元包括第二信息的时间窗和循环前缀的时间窗,所述信息的时间窗和循环前缀的时间窗互不重叠。例如,上述第一信息或第二信息均可以理解为OFDM符号或基于OFDM符号的信息载体。
以下描述网络设备进行时间校准的两种方法:
方法一
通过校准链路进行时间校准的方式,该链路包括时间偏差测量模块与发送时间调整模块。时间偏差测量模块用于测量两个频段信号的时间偏差,发送时间调整模板用于根据上述时间偏差的结果调整两个频段信号的发送时间,以确保时间偏差的绝对值小于阈值X。该时间偏差可以包括校准链路的校准精度与实时性有限,和/或后续没有被校准的部分所引入的偏差。
方法二
通过宽频模块进行时间校准的方法。其中,多个频段可以通过相同的宽频模块进行发送,上述宽频模块的输入为多个频段的数字信号,从而保证无时间偏差,或者宽频模块用于保证其输出的多个频段的信号之间的时间偏差的绝对值小于阈值X。该时间偏差可以包括宽频模块自身的偏差,和/或后续没有被校准的部分引入的偏差。
因此,通过对多个频段的时间校准,网络设备可以将时间偏差的绝对值控制在一定范围。进一步的,网络设备需要确定上述多个频段所对应的时间偏移的方向。
本发明实施例中,第一时间单元在时域上早于第二时间单元。例如,网络设备将第一时间单元基于第二阈值进行提前;或,网络设备将第二时间单元基于第三阈值进行延后。
具体而言,上述时间偏移用于确定多个频段之间信息传输的时序关系。可选地,终端设备可以接收网络设备发送的指示信息,用于指示不同频段上用于发送不同信息的相对位置或绝对位置。例如,网络设备可以灵活的指示第二位置相对于第一位置的偏移,终端设备根据该指示信息可以通过第一位置结合上述偏移确定第二位置,从而提高资源分配的灵活性,也可以避免不同信息在不同频段上的发送时机冲突。
以发送第一信息和第二信息为例,该该偏移可以是发送第一信息的第一位置与发送第二信息的第二位置的偏移值和/或偏移方向。
可选地,就时频域而言,偏移值的粒度可以为资源元素(resource element,RE)、资源块(resource block,RB)、资源块组(resource block group,RBG)、时隙(slot)、符号(symbol)、基础时间单位、子载波(subcarrier)或子带宽(sub band)等。
具体地,该偏移值的粒度可以是计算第一位置和第二位置之间的偏移值时使用的单位。例如,就频域而言,第二位置为第一位置向上或向下移动N个RB,此时偏移值的粒度为RB;就时域而言,第二位置也为第一位置向上或向下移动N个时隙,此时偏移值的粒度为时隙。可以理解,该向上偏移表示向频率增大或时间靠前的方向偏移,该向下偏移表示向频率减小或时间靠后的方向偏移。
就共享同步信息的多频段系统而言,终端设备使用从一个频段获取的同步信息,并将该同步信息应用到其他频段上。具体而言,应用同步信息可以理解为截取该同步信息对应的OFDM符号的时间窗位置。网络设备发送的信号在时域上可以表现为一个连续复数函数,其中包括多个OFDM符号以及CP。每个OFDM符号前都会有其对应的CP,举例而言,CP关联的信息或内容可以为位于OFDM符号尾端或最后的信息或内容。为了方便描述,以基础时间单位对连续信号进行离散采样,所述的基础时间单位可以理解为终端设备对于连续信号的采样间隔,例如对于20兆赫兹(megahertz,MHz)带宽的载波使用30.72MHz的频率进行采样,采样间隔为32.55ns。采样后的离散序列与原连续信号在描述上是等价的, 此时序列长度与信号的持续时间对应。OFDM符号的时域离散信号为序列[S 0,S 1,…,S N-M-1,S N-M,S N-M+1,…,S N-1],N为OFDM符号长度,对应的CP的时域离散信号为序列[S N-M,S N-M+1,…,S N-1],M为CP长度,可以看出CP的内容可以与OFDM符号尾端的内容相同。此时,OFDM符号与其CP拼接后的时域离散信号为[S N-M,S N-M+1,…,S N-1,S 0,S 1,…,S N-1],因此OFDM符号对应的CP会被放置在该OFDM符号前面。终端设备在接收时需要根据该时间窗位置去除CP,从而获取OFDM符号,即获取[S 0,S 1,…,S N-1]。在包含同步信息的频段上,终端设备根据同步信息可以获取准确的时间窗位置。而在不包含同步信息的频段上,终端使用与包含同步信息的频段相同的时间窗位置来获取OFDM符号。
但是,在实际通信过程中,由于元器件和信道的差异性,经过校准的多频段信号间仍然会有一定的残留时间偏差。由于残留时间偏差的存在,终端在不包含同步信息的频段上截取的OFDM符号与实际的OFDM符号会存在时间偏差。例如,对于不包含同步信息的频段的时间向后偏差时,截取的OFDM符号包括实际OFDM符号的一部分和相应CP的一部分,例如截取到[S N-K,S N-K+1,…,S N-1,S 0,S 1,…,S N-K-1],K为提前截取的长度,因此截取的OFDM符号为实际OFDM符号的循环移位,对于终端设备而言,该截取方式等效于时延扩展增加,对性能影响较小。但是,对于不包含同步信息的频段的时间向前偏差时,截取的OFDM符号包括相应CP的一部分,以及下一个OFDM符号的相应CP的一部分,对于终端设备而言,该截取方方式会造成符号间干扰(ISI),对性能影响较大。
如图3所示,为确保网络设备可以提前向终端设备发送同步信息,一种提前发送的方法是网络设备提前发送位于第一频段(如Band 1)上包含同步信息的信号,提前发送的时间量可以为上述阈值X。另一种提前发送的方法是网络设备对Band 1上的OFDM符号进行向前的循环移位,然后再添加CP。例如发送的OFDM符号为[S K,S K+1,…,S N-1,S 0,S 1,…,S K-1],发送的CP为[S N-M+K,S N-M+K+1,…,S N-1,S 0,S 1,…,S K-1],其中K为提前发送的长度,K个基础时间单位对应的时间为X。由于OFDM符号的CP与该OFDM符号的最后一部分相同,该方式等效于提前发送。再一种提前发送的方法是网络设备通过发射时间的调整,使得包含同步信号的Band 1的信号提前发送。
随后,终端设备通过Band 1接收到网络设备发送的同步信息,使用该同步信息进行与网络设备时间同步,并且获取该频段对应的OFDM符号的时间窗位置。网络设备通过提前发送同步信息,使得终端设备获取的时间窗位置的时间提前量为阈值X。
进一步的,终端设备在不包含同步信号的第二频段和/或第三频段(如Band 2和/或3)上使用与包含同步信号的Band 1相同的时间窗位置。网络设备通过多频段之间的时间校准,可以确保不包含同步信号的Band 2或Band 3比包含同步信号的Band 1的时间偏差范围在正负阈值X之间,即-X到X之间,因此根据同步信息获得的时间窗位置比Band 2和3上实际时间窗位置的偏差为0到2X之间,且不会出现负值,即确保了时间提前且不会出现时间延期或时间滞后。因此,在Band 2或3上使用Band 1的时间窗位置所截取的OFDM符号包含该频段上当前OFDM符号的CP,而不会包含该频段下一个OFDM符号的CP。本领域的技术人员可以理解,当前OFDM符号和下一个OFDM符号指时域上OFDM符号传输的时间先后顺序,例如当前OFDM符号在时间上早于下一个OFDM符号。
示例性的,假设阈值X等于50ns,网络设备通过Band 2向终端设备发送第二信息的时 间比在Band 1上向终端设备发送第一信息的时间滞后30ns,在Band 3上向终端设备发送第三信息的时间比在Band 1上向终端设备发送第一信息的时间提前20ns,因此根据同步信号获取的时间窗位置相比Band 2的实际时间窗位置提前80ns,相比Band 3的实际时间窗位置提前30ns。
因此,网络设备通过在多个频段进行时间校准,提前在第一频段上发送同步信息,达到在其他频段上不包含同步信息的其他信息的延后传输,从而减轻时间偏差对性能的影响,解决共享同步信号时导致的干扰问题,也降低了对多个频段进行时间校准的精度要求,从而提升实现可行性。
以下描述第二种实现方式,即不限定201和202的时序关系。具体而言,第一种实现方式中主要通过网络设备先行向终端设备发送SSB,后续再向终端设备发送其他信息。在本实现方式中,不限定网络设备发送信息的先后顺序,例如网络设备可以先行向终端设备发送其他信息,后续再向终端设备发送SSB;也可以在相同时间向终端设备发送SSB和其他信息;或者其他信息的发送在于SSB的发送。该方式同样可以保证终端设备提前将同步信息应用到相邻频段,例如新激活的相邻频段和/或相邻载波,从而实现无同步信息的频段和/或载波的激活。
与第一种实现方式类似,如图4所示,终端设备通过Band 1接收到网络设备发送的同步信息,使用该同步信息进行与网络设备时间同步,并且获取该频段对应的OFDM符号的时间窗位置。
随后,终端设备把从包含同步信息的Band 1上获取的时间窗位置进行提前,提前的时间差为阈值X。例如基于没有提前的时间窗在Band 1上截取的OFDM符号为[S 0,S 1,…,S N-1],提前的时间窗在Band 1上截取的OFDM符号为[S N-K,S N-K+1,…,S N-1,S 0,S 1,…,S N-K-1],其中K为提前的长度,K个基础时间单位对应的时间为X。进一步的,终端设备在不包含同步信息的Band 2或band 3上使用上述经过提前的时间窗位置。网络设备通过多频段之间的时间校准,可以确保不包含同步信号的Band 2或Band 3比包含同步信号的Band 1的时间偏差范围在正负阈值X之间,即-X到X之间,因此根据同步信息获得的时间窗位置比Band 2和3上实际时间窗位置的偏差为0到2X之间,且不会出现负值,即确保了时间提前且不会出现时间延期或时间滞后。因此,在Band 2或3上使用Band 1的时间窗位置所截取的OFDM符号包含该频段上当前OFDM符号的CP,而不会包含该频段上下一个OFDM符号的CP。
因此,终端设备通过在不包含同步信息的频段上使用经过提前的从包含同步信息的频段上获取的时间窗位置,达到在不包含同步信息的频段上避免截取到下一个OFDM符号的CP的效果,减轻时间偏差对性能的影响,解决了共享同步信号时导致的干扰问题,降低了对于多个频段进行时间校准的精度要求,从而进一步提升了实现可行性。
本发明实施例中,通常可以应用于多个载波间的OFDM符号使用相同的子载波间隔(subcarrier spacing,SCS),或者多个载波上的OFDM符号的持续时间与其对应的CP的持续时间相同。可以理解的是,上述方案还可以进一步扩展到多个载波间的OFDM符号使用了不同的子载波间隔的情景。例如,包含同步信息的Band 1的SCS为15千赫兹(kHz),不包含同步信号的Band 2的SCS为30kHz。此时,Band 1上的一个OFDM符号与其对应CP的总长度等于Band 2上的两个OFDM符号与其各自对应CP的总长度。当Band 1的时 间窗位置与Band 2的时间窗位置对齐时,如果基于Band 1的时间窗位置在Band 1上截取的OFDM符号为[S 0,S 1,…,S N-1],应用该时间窗位置在Band 2上截取到的OFDM符号为
Figure PCTCN2022130182-appb-000001
Figure PCTCN2022130182-appb-000002
当Band 1的时间窗位置比Band 2的时间窗位置提前时,应用该时间窗位置在Band 2上截取到的OFDM符号为
Figure PCTCN2022130182-appb-000003
Figure PCTCN2022130182-appb-000004
其中K为提前的长度,K个基础时间单位对应的时间为X。
上述主要从各个网元之间交互的角度对本申请提供的方案进行了介绍。可以理解的是,上述实现各网元为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本发明能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
可以理解的是,上述各个方法实施例中,对应由终端设备实现的步骤或者操作,也可以由配置于终端设备的部件(例如芯片或者电路)实现。对应由网络设备实现的步骤或者操作,也可以由配置于网络设备的部件(例如芯片或者电路)实现。
本申请实施例还提供用于实现以上任一种方法的装置,例如,提供一种装置包括用以实现以上任一种方法中终端设备所执行的各个步骤的单元(或手段)。例如,提供一种装置包括用以实现以上任一种方法中网络设备所执行的各个步骤的单元(或手段)。
参考图5,为本申请实施例提供的一种通信装置的示意图。该装置用于实现上述图2的方法实施例中对应网络设备所执行的各个步骤,如图5所示,该装置500包括收发单元510和确定单元520。
收发单元510,用于基于所述第一频段和所述第一时间单元向终端设备发送第一信息,所述第一信息包括同步信息;基于所述第二频段和第二时间单元向所述终端设备发送第二信息,所述第二信息包括除所述同步信息之外的其他信息;确定单元520,用于对第一频段的第一时间单元和第二频段的第二时间单元进行时间校准。
其中,所述第二信息的获取时间窗参考所述第一信息的时间窗。
在一种可能的实现方法中,确定单元520具体用于调整所述第一时间单元和所述第二时间单元之间的时间偏差小于或等于第一阈值。
在一种可能的实现方法中,所述第一时间单元在时域上早于所述第二时间单元。
在一种可能的实现方法中,确定单元520将所述第一时间单元基于第二阈值进行提前;或,确定单元520将所述第二时间单元基于第三阈值进行延后。
在一种可能的实现方法中,所述第一时间单元包括所述第一信息的时间窗和循环前缀的时间窗,所述第一信息的时间窗和所述循环前缀的时间窗互不重叠;所述第二时间单元包括所述第二信息的时间窗和循环前缀的时间窗,所述第二信息的时间窗和所述循环前缀的时间窗互不重叠。
可以理解的是,上述各个单元也可以称为模块或者电路等,并且上述各个单元可以独立设置,也可以全部或者部分集成。上述收发单元510也可称为通信接口。
可选的,上述通信装置500还可以包括存储单元,该存储单元用于存储数据或者指令 (也可以称为代码或者程序),上述各个单元可以和存储单元交互或者耦合,以实现对应的方法或者功能。例如,处理单元可以读取存储单元中的数据或者指令,使得通信装置实现上述实施例中的方法。
参考图6,为本申请实施例提供的一种通信装置的示意图。该装置用于实现上述图2的方法实施例中对应终端设备所执行的各个步骤,如图6所示,该装置600包括收发单元610和处理单元620。
上述收发单元610用于基于第一频段和第一时间单元接收来自网络设备的第一信息,所述第一信息包括同步信息;基于第二频段和第二时间单元接收来自所述网络设备的第二信息,所述第二信息包括除所述同步信号之外的其他信息。
其中,所述第二信息的获取时间窗参考所述第一信息的时间窗。
在一种可能的实现方法中,所述第一时间单元和所述第二时间单元之间的时间偏差小于或等于第一阈值。
在一种可能的实现方法中,所述第一时间单元在时域上早于所述第二时间单元。
在一种可能的实现方法中,处理单元620用于将所述第一信息的获取时间窗提前第二阈值。
在一种可能的实现方法中,所述第一时间单元包括所述第一信息的时间窗和循环前缀的时间窗,所述第一信息的时间窗和所述循环前缀的时间窗互不重叠;所述第二时间单元包括所述第二信息的时间窗和循环前缀的时间窗,所述第二信息的时间窗和所述循环前缀的时间窗互不重叠。
可以理解的是,上述各个单元也可以称为模块或者电路等,并且上述各个单元可以独立设置,也可以全部或者部分集成。上述收发单元610也可称为通信接口,上述处理单元620也可以称为处理器。
可选的,上述通信装置600还可以包括存储单元,该存储单元用于存储数据或者指令(也可以称为代码或者程序),上述各个单元可以和存储单元交互或者耦合,以实现对应的方法或者功能。例如,处理单元可以读取存储单元中的数据或者指令,使得通信装置实现上述实施例中的方法。
应理解以上装置中单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且装置中的单元可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分单元以软件通过处理元件调用的形式实现,部分单元以硬件的形式实现。例如,各个单元可以为单独设立的处理元件,也可以集成在装置的某一个芯片中实现,此外,也可以以程序的形式存储于存储器中,由装置的某一个处理元件调用并执行该单元的功能。此外这些单元全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件又可以成为处理器,可以是一种具有信号的处理能力的集成电路。在实现过程中,上述方法的各步骤或以上各个单元可以通过处理器元件中的硬件的集成逻辑电路实现或者以软件通过处理元件调用的形式实现。
在一个例子中,以上任一装置中的单元可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA),或这些集成电路形式中至少两种的组合。 再如,当装置中的单元可以通过处理元件调度程序的形式实现时,该处理元件可以是通用处理器,例如中央处理器(Central Processing Unit,CPU)或其它可以调用程序的处理器。再如,这些单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
以上用于接收的单元(例如接收单元)是一种该装置的接口电路,用于从其它装置接收信号。例如,当该装置以芯片的方式实现时,该接收单元是该芯片用于从其它芯片或装置接收信号的接口电路。以上用于发送的单元(例如发送单元)是一种该装置的接口电路,用于向其它装置发送信号。例如,当该装置以芯片的方式实现时,该发送单元是该芯片用于向其它芯片或装置发送信号的接口电路。
参考图7,其为本申请实施例提供的一种终端设备的结构示意图。该终端设备用于实现以上图2对应的实施例中终端设备的操作。如图7所示,该终端设备包括:天线710、射频装置720、基带装置730。天线710与射频装置720连接。在下行方向上,射频装置720通过天线710接收网络设备发送的信息,将网络设备发送的信息发送给基带装置730进行处理。在上行方向上,基带装置730对终端设备的信息进行处理,并发送给射频装置720,射频装置720对终端设备的信息进行处理后经过天线710发送给网络设备。
基带装置730用于实现对数据各通信协议层的处理。基带装置730可以为该终端设备的一个子系统,则该终端设备还可以包括其它子系统,例如中央处理子系统,用于实现对终端设备操作系统以及应用层的处理;再如,周边子系统用于实现与其它设备的连接。基带装置730可以为单独设置的芯片。
基带装置730可以包括一个或多个处理元件731,例如,包括一个主控CPU和其它集成电路,以及包括接口电路733。此外,该基带装置730还可以包括存储元件732。存储元件732用于存储数据和程序,用于执行以上方法中终端设备所执行的方法的程序可能存储,也可能不存储于该存储元件732中,例如,存储于基带装置730之外的存储器中,使用时基带装置730加载该程序到缓存中进行使用。接口电路733用于与装置通信。以上装置可以位于基带装置730,该基带装置730可以通过芯片实现,该芯片包括至少一个处理元件和接口电路,其中处理元件用于执行以上终端设备执行的任一种方法的各个步骤,接口电路用于与其它装置通信。在一种实现中,实现以上方法中各个步骤的单元可以通过处理元件调度程序的形式实现,例如该装置包括处理元件和存储元件,处理元件调用存储元件存储的程序,以执行以上方法实施例中终端设备执行的方法。存储元件可以为处理元件处于同一芯片上的存储元件,即片内存储元件。
在另一种实现中,用于执行以上方法中终端设备所执行的方法的程序可以在与处理元件处于不同芯片上的存储元件,即片外存储元件。此时,处理元件从片外存储元件调用或加载程序于片内存储元件上,以调用并执行以上方法实施例中终端设备执行的方法。
在又一种实现中,终端设备实现以上方法中各个步骤的单元可以是被配置成一个或多个处理元件,这些处理元件设置于基带装置730上,这里的处理元件可以为集成电路,例如:一个或多个ASIC,或,一个或多个DSP,或,一个或者多个FPGA,或者这些类集成电路的组合。这些集成电路可以集成在一起,构成芯片。
实现以上方法中各个步骤的单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现,该SOC芯片,用于实现以上方法。该芯片内可以集成至少一个处理元件和存储元件,由处理元件调用存储元件的存储的程序的形式实现以上终端设备执行的方法;或 者,该芯片内可以集成至少一个集成电路,用于实现以上终端设备执行的方法;或者,可以结合以上实现方式,部分单元的功能通过处理元件调用程序的形式实现,部分单元的功能通过集成电路的形式实现。
可见,以上装置可以包括至少一个处理元件和接口电路,其中至少一个处理元件用于执行以上方法实施例所提供的任一种终端设备执行的方法。处理元件可以以第一种方式:即调用存储元件存储的程序的方式执行终端设备执行的部分或全部步骤;也可以以第二种方式:即通过处理器元件中的硬件的集成逻辑电路结合指令的方式执行终端设备执行的部分或全部步骤;当然,也可以结合第一种方式和第二种方式执行终端设备执行的部分或全部步骤。
这里的处理元件同以上描述,可以是通用处理器,例如CPU,还可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个ASIC,或,一个或多个微处理器DSP,或,一个或者多个FPGA等,或这些集成电路形式中至少两种的组合。存储元件可以是一个存储器,也可以是多个存储元件的统称。
参考图8,为本申请实施例提供的一种网络设备的结构示意图。该网络设备用于实现以上图2对应的实施例中网络设备的操作。如图8所示,该网络设备包括:天线810、射频装置820、基带装置830。天线810与射频装置820连接。在上行方向上,射频装置820通过天线810接收终端设备发送的信息,将终端设备发送的信息发送给基带装置830进行处理。在下行方向上,基带装置830对终端设备的信息进行处理,并发送给射频装置820,射频装置820对终端设备的信息进行处理后经过天线810发送给终端设备。
基带装置830可以包括一个或多个处理元件831,例如,包括一个主控CPU和其它集成电路,以及还包括接口833。此外,该基带装置830还可以包括存储元件832,存储元件832用于存储程序和数据;接口833用于与射频装置820交互信息,该接口例如为通用公共无线接口(common public radio interface,CPRI)。以上用于网络设备的装置可以位于基带装置830,例如,以上用于网络设备的装置可以为基带装置830上的芯片,该芯片包括至少一个处理元件和接口电路,其中处理元件用于执行以上网络设备执行的任一种方法的各个步骤,接口电路用于与其它装置通信。在一种实现中,网络设备实现以上方法中各个步骤的单元可以通过处理元件调度程序的形式实现,例如用于网络设备的装置包括处理元件和存储元件,处理元件调用存储元件存储的程序,以执行以上方法实施例中网络设备执行的方法。存储元件可以为处理元件处于同一芯片上的存储元件,即片内存储元件,也可以为与处理元件处于不同芯片上的存储元件,即片外存储元件。
在另一种实现中,网络设备实现以上方法中各个步骤的单元可以是被配置成一个或多个处理元件,这些处理元件设置于基带装置上,这里的处理元件可以为集成电路,例如:一个或多个ASIC,或,一个或多个DSP,或,一个或者多个FPGA,或者这些类集成电路的组合。这些集成电路可以集成在一起,构成芯片。
网络设备实现以上方法中各个步骤的单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现,例如,基带装置包括该SOC芯片,用于实现以上方法。该芯片内可以集成至少一个处理元件和存储元件,由处理元件调用存储元件的存储的程序的形式实现以上网络设备执行的方法;或者,该芯片内可以集成至少一个集成电路,用于实现以上网络设备执行的方法;或者,可以结合以上实现方式,部分单元的功能通过 处理元件调用程序的形式实现,部分单元的功能通过集成电路的形式实现。
可见,以上用于网络设备的装置可以包括至少一个处理元件和接口电路,其中至少一个处理元件用于执行以上方法实施例所提供的任一种网络设备执行的方法。处理元件可以以第一种方式:即调用存储元件存储的程序的方式执行网络设备执行的部分或全部步骤;也可以以第二种方式:即通过处理器元件中的硬件的集成逻辑电路结合指令的方式执行网络设备执行的部分或全部步骤;当然,也可以结合第一种方式和第二种方式执行以上网络设备执行的部分或全部步骤。
这里的处理元件同以上描述,可以是通用处理器,例如CPU,还可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个ASIC,或,一个或多个微处理器DSP,或,一个或者多个FPGA等,或这些集成电路形式中至少两种的组合。存储元件可以是一个存储器,也可以是多个存储元件的统称。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包括一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解:本申请中涉及的第一、第二、第三、第四等各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围,也表示先后顺序。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。“至少一个”是指一个或者多个。至少两个是指两个或者多个。“至少一个”、“任意一个”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个、种),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。“多个”是指两个或两个以上,其它量词与之类似。
本申请实施例中所描述的各种说明性的逻辑单元和电路可以通过通用处理器,数字信号处理器,专用集成电路(ASIC),现场可编程门阵列(FPGA)或其它可编程逻辑装置,离散门或晶体管逻辑,离散硬件部件,或上述任何组合的设计来实现或操作所描述的功能。通用处理器可以为微处理器,可选地,该通用处理器也可以为任何传统的处理器、控制器、微控制器或状态机。处理器也可以通过计算装置的组合来实现,例如数字信号处理器和微处理器,多个微处理器,一个或多个微处理器联合一个数字信号处理器核,或任何其它类似的配置来实现。
在一个或多个示例性的设计中,本申请所描述的上述功能可以在硬件、软件、固件或 这三者的任意组合来实现。如果在软件中实现,这些功能可以存储与电脑可读的媒介上,或以一个或多个指令或代码形式传输于电脑可读的媒介上。电脑可读媒介包括电脑存储媒介和便于使得让电脑程序从一个地方转移到其它地方的通信媒介。存储媒介可以是任何通用或特殊电脑可以接入访问的可用媒体。例如,这样的电脑可读媒体可以包括但不限于RAM、ROM、EEPROM、CD-ROM或其它光盘存储、磁盘存储或其它磁性存储装置,或其它任何可以用于承载或存储以指令或数据结构和其它可被通用或特殊电脑、或通用或特殊处理器读取形式的程序代码的媒介。此外,任何连接都可以被适当地定义为电脑可读媒介,例如,如果软件是从一个网站站点、服务器或其它远程资源通过一个同轴电缆、光纤电脑、双绞线、数字用户线(DSL)或以例如红外、无线和微波等无线方式传输的也被包含在所定义的电脑可读媒介中。所述的碟片(disk)和磁盘(disc)包括压缩磁盘、镭射盘、光盘、数字通用光盘(英文:Digital Versatile Disc,简称:DVD)、软盘和蓝光光盘,磁盘通常以磁性复制数据,而碟片通常以激光进行光学复制数据。上述的组合也可以包含在电脑可读媒介中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述的具体实施方式,对本申请的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本申请的具体实施方式而已,并不用于限定本申请的保护范围,凡在本申请的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本申请的保护范围之内。本申请说明书的上述描述可以使得本领域技术任何可以利用或实现本申请的内容,任何基于所公开内容的修改都应该被认为是本领域显而易见的,本申请所描述的基本原则可以应用到其它变形中而不偏离本申请的发明本质和范围。因此,本申请所公开的内容不仅仅局限于所描述的实施例和设计,还可以扩展到与本申请原则和所公开的新特征一致的最大范围。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包括这些改动和变型在内。

Claims (14)

  1. 一种通信方法,其特征在于,包括:
    网络设备对第一频段的第一时间单元和第二频段的第二时间单元进行时间校准;
    所述网络设备基于所述第一频段和所述第一时间单元向终端设备发送第一信息,所述第一信息包括同步信息;
    所述网络设备基于所述第二频段和第二时间单元向所述终端设备发送第二信息,所述第二信息包括除所述同步信息之外的其他信息;
    其中,所述第二信息的获取时间窗参考所述第一信息的时间窗。
  2. 如权利要求1所述的方法,其特征在于,所述网络设备进行时间校准,具体包括:
    所述网络设备调整所述第一时间单元和所述第二时间单元之间的时间偏差小于或等于第一阈值。
  3. 如权利要求1或2所述的方法,其特征在于:
    所述第一时间单元在时域上早于所述第二时间单元。
  4. 如权利要求1至3任一项所述的方法,其特征在于,还包括:
    所述网络设备将所述第一时间单元基于第二阈值进行提前;或,
    所述网络设备将所述第二时间单元基于第三阈值进行延后。
  5. 如权利要求1至4任一项所述的方法,其特征在于:
    所述第一时间单元包括所述第一信息的时间窗和循环前缀的时间窗,所述第一信息的时间窗和所述循环前缀的时间窗互不重叠;
    所述第二时间单元包括所述第二信息的时间窗和循环前缀的时间窗,所述第二信息的时间窗和所述循环前缀的时间窗互不重叠。
  6. 一种通信方法,其特征在于,包括:
    终端设备基于第一频段和第一时间单元接收来自网络设备的第一信息,所述第一信息包括同步信息;
    所述终端设备基于第二频段和第二时间单元接收来自所述网络设备的第二信息,所述第二信息包括除所述同步信号之外的其他信息;
    其中,所述第二信息的获取时间窗参考所述第一信息的时间窗。
  7. 如权利要求6所述的方法,其特征在于:
    所述第一时间单元和所述第二时间单元之间的时间偏差小于或等于第一阈值。
  8. 如权利要求6或7所述的方法,其特征在于:
    所述第一时间单元在时域上早于所述第二时间单元。
  9. 如权利要求6至8任一项所述的方法,其特征在于,还包括:
    所述终端设备将所述第一信息的获取时间窗提前第二阈值。
  10. 如权利要求6至9任一项所述的方法,其特征在于:
    所述第一时间单元包括所述第一信息的时间窗和循环前缀的时间窗,所述第一信息的时间窗和所述循环前缀的时间窗互不重叠;
    所述第二时间单元包括所述第二信息的时间窗和循环前缀的时间窗,所述第二信息的时间窗和所述循环前缀的时间窗互不重叠。
  11. 一种通信装置,其特征在于,包括:存储器与处理器,所述存储器用于存储计算机程序或指令,所述处理器,用于执行所述存储器中存储的所述计算机程序或指令;当所述处理器执行所述计算机程序或指令时,如权利要求1至10中任意一项所述的方法被执行。
  12. 一种计算机可读存储介质,其特征在于,存储有计算机可读指令,当通信装置读取并执行所述计算机可读指令时,使得所述通信装置执行如权利要求1至10中任一项所述的方法。
  13. 一种计算机程序产品,其特征在于,存储有计算机可读指令,当通信装置读取并执行所述计算机可读指令,使得所述通信装置执行如权利要求1至10中任一项所述的方法。
  14. 一种芯片,其特征在于,包括处理器,所述处理器与存储器耦合,用于执行所述存储器中存储的计算机程序或指令,当所述处理器执行所述计算机程序或指令时,如权利要求1至10中任意一项所述的方法被执行。
PCT/CN2022/130182 2021-11-10 2022-11-07 通信方法、装置及系统 WO2023083125A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111327690.8 2021-11-10
CN202111327690.8A CN116133053A (zh) 2021-11-10 2021-11-10 通信方法、装置及系统

Publications (1)

Publication Number Publication Date
WO2023083125A1 true WO2023083125A1 (zh) 2023-05-19

Family

ID=86303177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/130182 WO2023083125A1 (zh) 2021-11-10 2022-11-07 通信方法、装置及系统

Country Status (2)

Country Link
CN (1) CN116133053A (zh)
WO (1) WO2023083125A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102547967A (zh) * 2012-01-11 2012-07-04 中国联合网络通信集团有限公司 时分双工长期演进系统实现同步的方法及系统、用户设备
CN110290581A (zh) * 2019-07-03 2019-09-27 重庆邮电大学 一种5g系统中的快速时频同步方法及终端
US20210051653A1 (en) * 2019-08-15 2021-02-18 Comcast Cable Communications, Llc Sidelink Communications
WO2021092920A1 (zh) * 2019-11-15 2021-05-20 Oppo广东移动通信有限公司 一种跨载波传输方法及装置、终端设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102547967A (zh) * 2012-01-11 2012-07-04 中国联合网络通信集团有限公司 时分双工长期演进系统实现同步的方法及系统、用户设备
CN110290581A (zh) * 2019-07-03 2019-09-27 重庆邮电大学 一种5g系统中的快速时频同步方法及终端
US20210051653A1 (en) * 2019-08-15 2021-02-18 Comcast Cable Communications, Llc Sidelink Communications
WO2021092920A1 (zh) * 2019-11-15 2021-05-20 Oppo广东移动通信有限公司 一种跨载波传输方法及装置、终端设备

Also Published As

Publication number Publication date
CN116133053A (zh) 2023-05-16

Similar Documents

Publication Publication Date Title
TWI719274B (zh) 用於選擇或發送針對相位追蹤參考信號的頻域模式的系統和方法
CN108810922B (zh) 一种通信方法及终端、基站
CN117241369A (zh) 无线通信的时间同步
JP7420812B2 (ja) 不連続受信中の起動シグナリングを容易にするための方法および装置
JP6612461B2 (ja) ナローバンドack/nack送信
CN113661664A (zh) 向用户装备进行的具有传播延迟补偿的参考定时递送
US20200396627A1 (en) Method and user equipment for performing measurement by using multiple reception beams
WO2018137703A1 (zh) 一种信息传输方法和装置
JP7200239B2 (ja) 位相トラッキング基準信号
CN109302739A (zh) 一种同步信号的发送方法、接收方法和装置
WO2019137536A1 (zh) 一种资源确定的方法和装置
EP4017177B1 (en) Resource multiplexing method and apparatus
CN105580415A (zh) 无线基站、用户终端以及通信控制方法
CN113039843A (zh) 基于独立定时管理组的数目的带内多载波操作的最大操作定时差的适配
WO2018171666A1 (zh) 信息收发方法和设备
CN115668817A (zh) 针对杂扰回波检测的自干扰测量
WO2020020376A1 (zh) 一种参考信号发送、接收方法、装置及设备
US20230137907A1 (en) Wireless communication method, terminal device, and network device
CN115023904A (zh) 辅助小区(scell)波束故障恢复(bfr)的用户设备(ue)能力
US20220224466A1 (en) Uplink transmission method and apparatus
WO2021056587A1 (zh) 一种通信方法及装置
WO2021062832A1 (zh) 一种波束失败检测方法及装置
WO2021031018A1 (zh) 一种通信方法及装置
WO2023083125A1 (zh) 通信方法、装置及系统
WO2022021136A1 (zh) 无线通信方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22891919

Country of ref document: EP

Kind code of ref document: A1