WO2021027551A9 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2021027551A9
WO2021027551A9 PCT/CN2020/104985 CN2020104985W WO2021027551A9 WO 2021027551 A9 WO2021027551 A9 WO 2021027551A9 CN 2020104985 W CN2020104985 W CN 2020104985W WO 2021027551 A9 WO2021027551 A9 WO 2021027551A9
Authority
WO
WIPO (PCT)
Prior art keywords
bwp
time slot
terminal device
data
value
Prior art date
Application number
PCT/CN2020/104985
Other languages
English (en)
French (fr)
Other versions
WO2021027551A1 (zh
Inventor
薛祎凡
王键
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20853359.6A priority Critical patent/EP3993493B1/en
Priority to CN202080053933.0A priority patent/CN114208274A/zh
Priority to US17/634,510 priority patent/US20220295528A1/en
Priority to JP2022509118A priority patent/JP2023512854A/ja
Publication of WO2021027551A1 publication Critical patent/WO2021027551A1/zh
Publication of WO2021027551A9 publication Critical patent/WO2021027551A9/zh
Priority to JP2024040150A priority patent/JP2024069477A/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0042Arrangements for allocating sub-channels of the transmission path intra-user or intra-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of communication technology, and in particular, to a communication method and device.
  • the fifth generation (5th generation, 5G) new radio (new radio, NR) supports bandwidth part (BWP) technology, which supports the use of a portion of the bandwidth between network equipment and terminal equipment for transmission.
  • the network device can configure multiple BWPs (including multiple uplink BWPs and multiple downlink BWPs) for the terminal device so that the terminal device can support multiple services.
  • BWP switching when a terminal device works in a cell, there is only one activated downlink BWP and one activated uplink BWP. But the activated BWP can be changed, which is called BWP switching.
  • network equipment can instruct BWP switching through downlink control information (DCI) of scheduling data.
  • DCI downlink control information
  • the terminal device receives a DCI in time slot n on the downlink BWP1, and the DCI schedules the terminal device to receive downlink data (that is, physical downlink shared channel (PDSCH) data) in time slot n+M on the downlink BWP2. . Then the terminal device will start at the beginning of time slot n+M and receive downlink data on downlink BWP2.
  • DCI downlink control information
  • the terminal device is configured with a DRX cycle.
  • the DRX cycle consists of the "On Duration" part and the "Opportunity for DRX" part.
  • the terminal device monitors and receives physical downlink Control channel (physical downlink control channel, PDCCH) data, this time is the active time of C-DRX of the terminal device, and correspondingly the Opportunity for DRX time is the dormant period.
  • PDCCH physical downlink control channel
  • the terminal device will receive data scheduling during the activation period, but will not receive data scheduling during the dormant period. Therefore, the terminal device can only switch BWP during the activation period. It is currently proposed that before the activation period of C-DRX, the network equipment sends instruction information to allow the terminal equipment to perform BWP switching. However, since the terminal device cannot receive data scheduling outside the activation period, it is proposed that the newly introduced power saving signal can be used to carry BWP switching information. However, since the power saving signal does not carry data scheduling information, the problem of when the BWP switching takes effect needs to be solved urgently.
  • This application provides a communication method and device to indicate the effective time of BWP switching.
  • this application provides a communication method.
  • the method may include: the network device determines first information, and sends the first information to the terminal device at the first moment, where the first information is used to indicate the bandwidth part BWP.
  • Switch and indicate the starting time for the terminal equipment to work on the switched BWP.
  • the starting time is the starting time of the duration On Duration in the discontinuous reception DRX cycle; the terminal equipment performs the operation according to the first information.
  • BWP switches, and works on the switched BWP at the starting moment; wherein the first moment is before the On Duration.
  • the effective time of the BWP switching can be indicated in the first information, so that it is clear when the terminal device starts working on the switched BWP.
  • the time interval between the first moment and the starting moment of the On Duration is greater than a set time period, and the set time period is greater than or equal to the time period for the terminal device to perform BWP switching. In this way, the time when the network device sends the first information can be clarified to ensure that the terminal device completes the BWP switching before the On Duration.
  • the first information is also used to instruct the terminal device to complete the BWP switching before the On Duration.
  • the terminal device can be clearly instructed to complete the BWP switching before the On Duration, so that the terminal device can accurately work on the switched BWP at the starting moment of the On Duration.
  • this application provides a communication method, which may include:
  • the network device determines the BWP switching indication information, and sends the BWP switching indication information to the terminal device in time slot n.
  • the BWP switching indication information includes the first value and the minimum value of the first time slot difference, and the first time slot difference is The slot difference is the interval between the time slot in which the first data is transmitted and the time slot n; the terminal device determines the first target time slot according to the first value of the first time slot difference and the time slot n. , and enable the minimum value of the first time slot difference starting from the starting position of the first target time slot. In this way, when BWP switching and the minimum K0 or K2 value are simultaneously indicated, the effective time of the minimum K0 or K2 value can be clarified.
  • the first time slot difference when the first data is downlink data, the first time slot difference is K0; when the first data is uplink data, the first time slot difference is K2, so it is clear that the first time slot difference is K2.
  • the effective time of the minimum value of the gap can be used to determine the effective time of the minimum K0 or K2 value.
  • the BWP switching indication also includes the minimum value of the second time slot difference, where the second time slot difference is the interval between the time slot in which the second data is transmitted and the time slot n. ;
  • the terminal device determines the second target time slot according to the first value of the first time slot difference, the time slot n, the first BWP and the second BWP, wherein the first BWP is the terminal device according to the The second BWP is the BWP occupied after the terminal device performs BWP switching according to the BWP switching instruction information, or the second BWP is the BWP occupied by the terminal device according to the BWP switching.
  • the indication information indicates the BWP occupied before performing BWP switching; the terminal device starts activating the minimum value of the second time slot difference from the starting position of the second target time slot.
  • the effective time of the minimum K0 and K2 values can be clarified.
  • the first time slot difference is K0 and the second time slot difference is K2
  • the first data is uplink data data
  • the second data is downlink data
  • the first time slot difference is K2
  • the second time slot difference is K0. Therefore, if the effective time of the minimum value of the first time slot difference and the second time slot difference is clarified, the effective time of the minimum K0 and K2 values can be clarified.
  • the first data may be downlink data; the terminal device determines the first target time slot based on the first value of the first time slot difference and the time slot n, which may conform to the following formula :
  • A is the index value of the first target time slot
  • X is the first value of the first time slot difference
  • ⁇ PDSCH is the system parameter (numerology) of the BWP where the first data is located
  • ⁇ PDCCH is the The numerology of the BWP where the switching indication information is located.
  • the first target time slot can be accurately determined to clarify the effective time of the minimum K0 value.
  • the first data may be downlink data
  • the second data may be uplink data
  • the terminal device may be based on the first value of the first time slot difference, the time slot n,
  • the first BWP and the second BWP determine the second target time slot, which can conform to the following formula:
  • B is the index value of the second target time slot
  • X is the first value of the first time slot difference
  • ⁇ PDSCH is the numerology of the BWP where the first data is located
  • ⁇ PDCCH is the handover indication information.
  • the numerology of the BWP, ⁇ DL,BWP is the numerology of the first BWP, which is the downlink BWP, and ⁇ UL,BWP is the numerology of the second BWP, which is the uplink BWP.
  • the second target time slot can be accurately determined to clarify the effective time of the minimum K2 value.
  • the first data is uplink data; the terminal device determines the first target time slot based on the first value of the first time slot difference and the time slot n, which may conform to the following formula:
  • A is the index value of the first target time slot
  • X is the first value of the first time slot difference
  • ⁇ PUSCH is the numerology of the BWP where the first data is located
  • ⁇ PDCCH is the handover indication information.
  • the first target time slot can be accurately determined to clarify the effective time of the minimum K2 value.
  • the first data is downlink data
  • the second data is uplink data
  • the terminal device is based on the first value of the first time slot difference, the time slot n, the first The BWP and the second BWP determine the second target time slot, which can conform to the following formula:
  • B is the index value of the second target time slot
  • X is the first value of the first time slot difference
  • ⁇ PDSCH is the numerology of the BWP where the first data is located
  • ⁇ PDCCH is the handover indication information.
  • the numerology of the BWP where ⁇ UL,BWP is the numerology of the first BWP, which is the uplink BWP, and ⁇ DL,BWP is the numerology of the second BWP, which is the downlink BWP.
  • the second target time slot can be accurately determined to clarify the effective time of the minimum K0 value.
  • this application also provides a network device that has the function of implementing the network device in the method example of the first aspect or the second aspect.
  • Functions can be implemented by hardware, or by hardware executing corresponding software.
  • Hardware or software includes one or more modules corresponding to the above functions.
  • the structure of the network device includes a processing unit and a transceiver unit. These units can perform the corresponding functions in the method examples of the first aspect or the second aspect. For details, please refer to the detailed description in the method examples. Here No further details will be given.
  • the structure of the network device includes a transceiver and a processor, and may optionally include a memory.
  • the transceiver is used to send and receive data, and communicate and interact with other devices in the system.
  • the processor is configured In order to support the network device to perform the corresponding functions of the network device in the method of the first aspect or the second aspect.
  • the memory is coupled to the processor and stores necessary program instructions and data for the network device.
  • the present application also provides a terminal device, which has the function of implementing the terminal device in the method example of the first aspect or the second aspect.
  • Functions can be implemented by hardware, or by hardware executing corresponding software.
  • Hardware or software includes one or more modules corresponding to the above functions.
  • the structure of the terminal device includes a processing unit and a transceiver unit. These units can perform the corresponding functions in the method examples of the first aspect or the second aspect. For details, please refer to the detailed description in the method examples. Here No further details will be given.
  • the structure of the terminal device includes a transceiver and a processor, and may optionally include a memory.
  • the transceiver is used to send and receive data, and communicate and interact with other devices in the system.
  • the processor is configured In order to support the terminal device to perform the corresponding functions of the terminal device in the method of the first aspect or the second aspect.
  • the memory is coupled to the processor and holds the necessary program instructions and data for the terminal device.
  • the present application also provides a communication system, which includes at least one terminal device and a network device mentioned in the above design. Further, the network device in the communication system can perform any method performed by the network device in the above method, and the terminal device in the communication system can perform any method performed by the terminal device in the above method. method.
  • the present application provides a computer storage medium in which computer-executable instructions are stored. When called by the computer, the computer-executable instructions are used to cause the computer to execute any of the above. method.
  • the present application provides a computer program product containing instructions, which when run on a computer, causes the computer to perform any of the above methods.
  • the present application provides a chip, which is coupled to a memory and used to read and execute program instructions stored in the memory to implement any of the above methods.
  • Figure 1 is a schematic structural diagram of a communication system provided by this application.
  • FIG. 2 is a schematic diagram of a DRX cycle provided by this application.
  • FIG. 3 is a schematic diagram of data scheduling provided by this application.
  • Figure 4 is a flow chart of a communication method provided by this application.
  • Figure 5 is a schematic diagram of a terminal device receiving first information provided by this application.
  • FIG. 6 is a flow chart of another communication method provided by this application.
  • Figure 7 is a schematic diagram of the effective time of the minimum value of the first time slot difference provided by this application.
  • Figure 8 is a schematic diagram of the effective time of the minimum value of the first time slot difference and the second time slot difference provided by this application;
  • Figure 9 is a schematic structural diagram of a terminal device provided by this application.
  • Figure 10 is a schematic structural diagram of a network device provided by this application.
  • Figure 11 is a structural diagram of a terminal device provided by this application.
  • Figure 12 is a structural diagram of a network device provided by this application.
  • Embodiments of the present application provide a communication method and device to indicate the effective time of BWP switching.
  • the method and the device described in this application are based on the same technical concept. Since the principles of solving problems by the method and the device are similar, the implementation of the device and the method can be referred to each other, and the repeated parts will not be repeated.
  • Figure 1 shows the architecture of a possible communication system to which the communication method provided by the embodiment of the present application is applicable.
  • the architecture of the communication system includes network equipment and terminal equipment, where:
  • the network device is a device with wireless transceiver function or a chip that can be installed on the network device.
  • the network device includes but is not limited to: gNB, wireless network controller (radio network controller, RNC), Node B (Node B, NB). ), base station controller (base station controller, BSC), base transceiver station (BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), baseband unit (baseband unit, BBU), Access point (AP), wireless relay node, wireless backhaul node, transmission point (transmission and reception point, TRP or transmission point, TP), etc. in the wireless fidelity (WIFI) system, etc. It can be a network node that constitutes a gNB or transmission point, such as a baseband unit (BBU), or a distributed unit (DU), etc.
  • RNC radio network controller
  • Node B Node B
  • BSC base station controller
  • BTS base transceiver station
  • home base station for example, home
  • gNB may include centralized units (CUs) and DUs.
  • the gNB may also include a radio unit (RU).
  • CU implements some functions of gNB
  • DU implements some functions of gNB.
  • CU implements radio resource control (RRC) and packet data convergence protocol (PDCP) layer functions
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • DU implements wireless chain Radio link control (RLC), media access control (media access control, MAC) and physical (physical, PHY) layer functions.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • RLC wireless chain Radio link control
  • MAC media access control
  • PHY physical
  • the network device may be a CU node, a DU node, or a device including a CU node and a DU node.
  • the CU can be divided into network equipment in the access network RAN, or the CU can be divided into network equipment in the core network CN, without limitation.
  • the terminal equipment may also be called user equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication equipment , user agent or user device.
  • the terminal device in the embodiment of the present application may be a mobile phone (mobile phone), a tablet computer (Pad), a computer with wireless transceiver functions, a virtual reality (VR) terminal device, or an augmented reality (AR) terminal.
  • Equipment wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, transportation security ( Wireless terminals in transportation safety, wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • terminal equipment with wireless transceiver functions and chips that can be installed in the aforementioned terminal equipment are collectively referred to as terminal equipment.
  • the communication system shown in Figure 1 can be, but is not limited to, a fifth generation (5th Generation, 5G) system, such as a new generation wireless access technology (new radio access technology, NR).
  • 5G fifth generation
  • NR new radio access technology
  • this application The method of the embodiment is also applicable to various communication systems in the future, such as 6G systems or other communication networks.
  • the DRX cycle can include the "On Duration" part and the "Opportunity for DRX" part as shown in Figure 2.
  • the terminal device monitors and receives PDCCH, which can be considered an activation period; during the "Opportunity for DRX" time, the terminal device may not monitor or receive PDCCH to reduce power consumption, which can be considered a dormant period.
  • the terminal equipment receiving the PDCCH means that the terminal equipment receives the DCI carried on the PDCCH.
  • the network device When the network device schedules the terminal device to receive downlink data, or the network device schedules the terminal device to send uplink data, it will first send a scheduling information (PDCCH), which will indicate PDSCH (downlink data) or physical uplink shared channel (physical uplink shared channel). channel, PUSCH) (uplink data) transmission parameters. Among these transmission parameters, include the time domain resource location of PDSCH/PUSCH.
  • PDCH scheduling information
  • PUSCH physical uplink shared channel
  • the time domain resource location includes the time slot in which the PDSCH/PUSCH is located, the starting position and length of the symbol occupied by the PDSCH/PUSCH in the above time slot.
  • the network device will first configure a time domain resource allocation (TDRA) table for the terminal device.
  • This table can be divided into 4 columns: the first column is the index value (index), which is used to index other parameters in this row.
  • the third column is the starting and length incdication value (SLIV). This value means the starting symbol and symbol length of the symbols occupied by PDSCH in a time slot.
  • mapping type This value is a joint coding , if S represents the sequence number of the starting symbol and L represents the symbol length, then SLIV is obtained through S and L according to certain rules.
  • the fourth column is the matching type (mapping type), which is divided into mapping type A and mapping type B.
  • Table 1 is the downward TDRA table
  • Table 2 is the upstream TDRA table:
  • the network device configures the TDRA table for the terminal device, when scheduling data transmission, it indicates an index in the PDCCH, and the terminal device can look up the time domain resource location based on the index and the configured table. Then go to the determined location to receive/send data.
  • BWP 5G NR supports the concept of BWP, which supports the use of a portion of the bandwidth between network equipment and terminal equipment for transmission.
  • the system bandwidth here refers to the bandwidth of a carrier, corresponding to each carrier component (CC) in a carrier aggregation (CA) or dual connectivity (DC) scenario
  • the bandwidth can be very large, such as 200MHz or 400MHz.
  • Some terminal devices cannot support such a large bandwidth, so the network device can configure BWP (part of the system bandwidth) for the terminal device, such as 20MHz, and the terminal device can communicate with the network device on 20MHz.
  • BWP is supported in frequency division duplexing (FDD) or time division duplexing (TDD) systems.
  • BWP can be divided into downlink BWP (downlink BWP, DL BWP) and uplink BWP (uplink BWP, UL BWP).
  • the network device can configure multiple DL BWP and multiple UL BWP for the terminal device, and activate at least one DL BWP and activate at least A UL BWP, the terminal device receives the downlink signal sent by the network device on the activated DL BWP (i.e. active DL BWP).
  • the downlink signal includes but is not limited to: downlink control signaling, downlink data; the terminal device receives the downlink signal on the activated UL BWP.
  • Uplink signals are sent uplink, and the uplink signals include but are not limited to: uplink control signaling, uplink data, scheduling request (scheduling request, SR), sounding reference signal (sounding reference signal, SRS), channel state information (channel state information, CSI)/channel quality indicator (channel quality indicator, CQI) feedback and so on.
  • uplink control signaling uplink data
  • scheduling request scheduling request
  • sounding reference signal sounding reference signal
  • SRS sounding reference signal
  • channel state information channel state information
  • CSI channel quality indicator
  • CQI channel quality indicator
  • the parameters of BWP include numerology (translated as system parameters or parameter sets), which refers to the subcarrier spacing, and the corresponding symbol length, cyclic prefix (CP) length and other parameters.
  • numerology translated as system parameters or parameter sets
  • CP cyclic prefix
  • the network device configures two DL BWPs for the terminal device, namely DL BWP1 and DL BWP2.
  • the activated DL BWP of the terminal equipment is DL BWP1.
  • the network equipment can send a BWP switching instruction (the switching instruction is a PDCCH) to switch the DL BWP of the terminal equipment to DL BWP2.
  • the network device can also instruct the terminal device's activated UL BWP to switch, also through the PDCCH instruction.
  • the DL BWP and UL BWP of the terminal equipment are always switched in pairs, that is, once the DL BWP is switched, the UL BWP is also automatically switched to the pre-paired UL BWP.
  • the UE's DL BWP switching and UL BWP switching are decoupled.
  • the standby time of terminal equipment is an important part that affects user experience. Since the 5G NR system needs to support larger bandwidth, higher transmission rate, and wider coverage than the 4G long term evolution (LTE) system, the power consumption of NR terminal equipment is higher than that of LTE terminal equipment. big.
  • the 3rd generation partnership project (3GPP) has launched a special project in Rel-16 on the topic of terminal equipment power consumption saving, and studied optimization solutions to reduce terminal equipment power consumption.
  • the scheduling method in (2) above is not conducive to energy saving of terminal equipment.
  • network equipment indicates a "minimum available K0 value” and/or "minimum available K2 value” to the terminal device through a power saving signal.
  • the terminal device After receiving this instruction, the terminal device will think that the network device will not indicate a K0/K2 value smaller than the "minimum value” when scheduling its own data.
  • this application proposes a communication method that can indicate the effective time of BWP switching.
  • the communication method provided by the embodiment of the present application will be described in detail below with reference to specific embodiments.
  • the communication method provided by the embodiment of the present application is suitable for the communication system shown in Figure 1.
  • the specific process of this method may include:
  • Step 401 The network device determines first information.
  • the first information is used to indicate BWP switching and indicates the starting time for the terminal device to work on the switched BWP.
  • the starting time is the start of On Duration in the DRX cycle. starting moment.
  • Step 402 The network device sends the first information to the terminal device at a first time, and the first time is before the On Duration.
  • Step 403 The terminal device performs BWP switching according to the first information, and works on the switched BWP at the starting time.
  • the network device may be predefined (or defaulted) to reserve sufficient time for the terminal device to switch BWP when sending the first information to the terminal device. That is to say, the time interval between the first moment and the starting moment of the On Duration is predefined to be greater than a set duration, and the set duration is greater than or equal to the duration for the terminal device to perform BWP switching. In this implementation, the network device will ensure that the time interval between the first moment and the starting moment of On Duration is large enough to ensure the time required for the terminal device to perform BWP switching.
  • the network device may clearly indicate that the time interval between the first moment and the starting moment of the On Duration is greater than a set duration, and the set duration is greater than or equal to the The duration for the terminal device to perform BWP switching. In this way, the terminal device can switch to the new BWP at the beginning of OnDuration. At this time, the terminal device will naturally work on the new (ie, switched) BWP during OnDuration.
  • the network device displays an indication that the time interval between the first moment and the starting moment of the On Duration is greater than a set duration, and the set duration is greater than or equal to the terminal device
  • the duration of BWP switching can be indicated by the first information.
  • the first information is also used to instruct the terminal device to complete the BWP switching before the On Duration. In this way, the first information clearly indicates that the terminal device completes the BWP switching before the On Duration, which means that the time interval between the first moment and the starting moment of the On Duration is not less than the terminal device performing BWP.
  • the duration of the switch is also used to instruct the terminal device to complete the BWP switching before the On Duration.
  • the terminal device performs BWP switching according to the first information. Specifically, the terminal device completes the BWP switching according to the first information before the On Duration.
  • Figure 5 shows a schematic diagram of the terminal device receiving the first information.
  • the terminal device can work on the switched BEWP from the starting moment of On Duration, that is, it can work on the switched BEWP. Receive or send data on BWP.
  • the network device determines the first information and sends the first information to the terminal device at the first moment.
  • the first information is used to indicate BWP switching of the bandwidth part and indicates that the terminal device is switching.
  • the starting time of working on the subsequent BWP the starting time is the starting time of the duration On Duration in the discontinuous reception DRX cycle; the terminal device performs BWP switching according to the first information, and at the starting time Work on the switched BWP at the first time; wherein the first time is before the On Duration.
  • the time required for the work that needs to be completed when the terminal device performs BWP switching includes: the time for the terminal device to unlock the DCI (that is, the instruction information for BWP switching), the time for the terminal device to adjust the radio frequency and baseband circuit, and the time required to match the new BWP. time and the time required for the terminal device to apply the parameters on the new BWP. That is to say, the final effective time of BWP switching cannot be earlier than the sum of the above four periods of time. If we only consider DCI decoding, it is obviously inappropriate to think that after DCI is solved, the new minimum K0/K2 value can take effect. Because the terminal device has not yet switched to the new BWP at this time, the parameters on the new BWP cannot be applied.
  • the effective time of BWP switching is the beginning of the time slot where the data scheduled by the DCI is switched. During the switching process, the terminal device will not send or receive any signals. Therefore, even if the effective time of the new minimum K0/K2 value is defined earlier than the effective time of BWP switching, the terminal device will not actually use these values. For example, the time required for the terminal device to complete the above four actions is 2 time slots. However, the terminal device receives the downlink data scheduled by the network device in time slot n+4 in time slot n. At this time, the terminal device will use the starting time of time slot n+4 as the effective time of the new BWP. After this effective time Only the terminal device will receive the schedule. Even if the terminal equipment starts to use the new minimum K0/K2 value in time slot n+2, it is meaningless.
  • the network device when during the active time of the DXR cycle, the network device indicates both BWP switching and the minimum K0/K2 value in the same DCI, then the effective time of the new minimum K0/K2 value It may need to be a little later, so the effective time of the new minimum K0/K2 value needs to be redefined.
  • this application proposes another communication method that can indicate the effective time of the minimum K0/K2 value.
  • the communication method provided by the embodiment of the present application will be described in detail below with reference to specific embodiments.
  • Another communication method provided by the embodiment of the present application is suitable for the communication system shown in Figure 1.
  • the specific process of this method may include:
  • Step 601 The network device determines the BWP switching indication information.
  • the BWP switching indication information includes the first value and the minimum value of the first time slot difference.
  • the first time slot difference is the time slot and time in which the first data is transmitted. The distance between gaps n.
  • Step 602 The terminal device receives the BWP switching indication information from the network device in the time slot n.
  • Step 603 The terminal device determines a first target time slot based on the first value of the first time slot difference and the time slot n.
  • Step 604 The terminal device starts activating the minimum value of the first time slot difference at the starting position of the first target time slot.
  • the BWP switching indication information may be DCI.
  • the BWP switching indication also includes the minimum value of a second time slot difference, where the second time slot difference is the time slot in which the second data is transmitted and the time slot n. interval; the terminal device also performs the following operations: the terminal device determines a second target time slot based on the first value of the first time slot difference, the time slot n, the first BWP and the second BWP; The first BWP is a BWP occupied after the terminal device performs BWP switching according to the BWP switching instruction information, the second BWP is a BWP occupied after the terminal device performs BWP switching according to the BWP switching instruction information, or the third BWP The second BWP is the BWP occupied by the terminal device before performing BWP switching according to the BWP switching indication information; the terminal device starts to activate the minimum value of the second time slot difference from the starting position of the second target time slot.
  • the first data may be downlink data (PDSCH data) or uplink data (PUSCH data).
  • PDSCH data downlink data
  • PUSCH data uplink data
  • the first time slot difference K0
  • the first time slot difference K2
  • the second time slot difference K2
  • the first data is uplink data
  • the second data is downlink data
  • the second time slot difference is K0.
  • the terminal device determines the first target time slot based on the first value of the first time slot difference and the time slot n, which may conform to the following formula 1 :
  • A is the index value of the first target time slot
  • X is the first value of the first time slot difference
  • ⁇ PDSCH is the system parameter (numerology) of the BWP where the first data is located
  • ⁇ PDCCH is the The numerology of the BWP where the switching indication information is located.
  • the terminal device determines the time slot value according to the first value of the first time slot difference, the time slot n, the first BWP and The second BWP determines the second target time slot, which can conform to the following formula 2:
  • B is the index value of the second target time slot
  • X is the first value of the first time slot difference
  • ⁇ PDSCH is the numerology of the BWP where the first data is located
  • ⁇ PDCCH is the handover indication information.
  • the numerology of the BWP, ⁇ DL, BWP is the numerology of the first BWP, the downstream BWP of the first BWP, and ⁇ UL
  • BWP is the numerology of the second BWP
  • the second BWP is the uplink BWP. That is to say, the first BWP is the downlink BWP after handover, the second BWP is the uplink BWP after handover, or the second BWP is the current (occupied before handover) uplink BWP.
  • the second BWP is the uplink BWP after the switch; if the current system is an FDD system, when the DLBWP is switched, the UL BWP There will be no switching. At this time, the second BWP is the current uplink BWP.
  • Figure 7 shows a schematic diagram of the effective time of the minimum value of the first timeslot difference.
  • the terminal equipment works in the FDD system, that is, the DL BWP and UL BWP are switched respectively.
  • the first time slot difference is K0
  • the second time slot difference is K2.
  • the new K0 minimum value is also indicated in this instruction. Therefore, as shown in Figure 7, according to Formula 1, the time slot of the terminal device on DL BWP2 Starting from the starting position, the new K0 minimum value takes effect. If the new K2 minimum value is also indicated in the indication, then according to formula 2, the time slot of the terminal equipment on UL BWP1 Starting from the starting position, the new K2 minimum value takes effect.
  • the terminal device determines the first target time slot based on the first value of the first time slot difference and the time slot n, which may conform to the following formula three:
  • A is the index value of the first target time slot
  • X is the first value of the first time slot difference
  • ⁇ PUSCH is the numerology of the BWP where the first data is located
  • ⁇ PDCCH is the handover indication information.
  • the terminal device determines the time slot value according to the first value of the first time slot difference, the time slot n, the first BWP and The second BWP determines the second target time slot, which can conform to the following formula 4:
  • B is the index value of the second target time slot
  • X is the first value of the first time slot difference
  • ⁇ PDSCH is the numerology of the BWP where the first data is located
  • ⁇ PDCCH is the handover indication information.
  • the numerology of the BWP where ⁇ UL,BWP is the numerology of the first BWP, which is the uplink BWP
  • ⁇ DL,BWP is the numerology of the second BWP, which is the downlink BWP. That is to say, the first BWP is the uplink BWP after switching, the second BWP is the downlink BWP after switching, or the second BWP is the current (occupied before switching) downlink BWP.
  • the second BWP is the downlink BWP after the switch; if the current system is an FDD system, when the ULBWP is switched, the DL BWP There will be no switching. At this time, the second BWP is the current downlink BWP.
  • Figure 8 shows a schematic diagram of the effective time of the minimum value of the first time slot difference and the second time slot difference.
  • the terminal equipment works in the FDD system, that is, the DL BWP and UL BWP are switched respectively.
  • the first time slot difference is K2
  • the second time slot difference is K0.
  • the instruction also indicates the new minimum value of K0 and the minimum value of K2.
  • the new K2 minimum value takes effect. If the new K2 minimum value is also indicated in the indication, then according to Formula 4, the time slot of the terminal equipment on DL BWP1 Starting from the starting position, the new K0 minimum value takes effect.
  • the network device determines the BWP switching indication information and sends the BWP switching indication information to the terminal device in time slot n.
  • the BWP switching indication information includes the first time slot difference of the first time slot. value and the minimum value, and the first time slot difference is the interval between the time slot in which the first data is transmitted and the time slot n; the terminal device calculates the first time slot difference according to the first value and the minimum value of the first time slot difference.
  • the time slot n determines the first target time slot, and the minimum value of the first time slot difference is started from the starting position of the first target time slot. In this way, when BWP switching and the minimum K0 or K2 value are simultaneously indicated, the effective time of the minimum K0 or K2 value can be clarified.
  • embodiments of the present application also provide a terminal device, which is applied to the communication system shown in Figure 1.
  • the terminal device may be used to implement the functions of the terminal device in the communication method shown in FIG. 4 or FIG. 6 .
  • the terminal device may include a processing unit 901 and a transceiver unit 902 .
  • the specific steps may be:
  • the transceiver unit 902 is configured to receive first information from the network device at the first moment.
  • the first information is used to indicate BWP switching and indicates the starting time for the terminal device to work on the switched BWP.
  • the time is the starting time of the duration On Duration in the DRX cycle; the first time is located before the On Duration; the processing unit 901 is used to perform BWP switching according to the first information, and at the start Always working on the switched BWP.
  • the time interval between the first moment and the starting moment of the On Duration is greater than a set duration, and the set duration is greater than or equal to the duration for the terminal device to perform BWP switching.
  • the first information is also used to instruct the terminal device to complete the BWP switching before the On Duration; when the processing unit 901 performs the BWP switching according to the first information, specifically use At: Complete the BWP switching before the On Duration according to the first information.
  • the terminal device when the terminal device implements the functions of the terminal device in the communication method shown in Figure 6, the specific steps may be:
  • the transceiver unit 902 is configured to receive BWP switching indication information from the network device in time slot n.
  • the BWP switching indication information includes the first value and the minimum value of the first time slot difference, and the first time slot difference is the transmission The interval between the time slot in which the first data is located and the time slot n;
  • the processing unit 901 is configured to determine the first target time slot according to the first value of the first time slot difference and the time slot n; and enabling the minimum value of the first time slot difference starting from the starting position of the first target time slot.
  • the BWP switching indication also includes the minimum value of the second time slot difference.
  • the second time slot difference is the difference between the time slot in which the second data is transmitted and the time slot n. interval; the processing unit 901 is also configured to: determine a second target time slot according to the first value of the first time slot difference, the time slot n, the first BWP and the second BWP; the first BWP is The BWP occupied by the terminal device after performing BWP switching according to the BWP switching instruction information, the second BWP is the BWP occupied by the terminal device after performing BWP switching according to the BWP switching instruction information, or the second BWP is the BWP occupied by the terminal device according to the BWP switching instruction information.
  • the BWP switching indication information includes the BWP occupied before BWP switching; starting from the starting position of the second target time slot, the minimum value of the second time slot difference is enabled.
  • the first data is downlink data; when the processing unit 901 determines the first target time slot based on the first value of the first time slot difference and the time slot n, the processing unit 901 may comply with the following formula :
  • A is the index value of the first target time slot
  • X is the first value of the first time slot difference
  • ⁇ PDSCH is the system parameter numerology of the BWP where the first data is located
  • ⁇ PDCCH is the switching Indicates the numerology of the BWP where the information is located.
  • the first data is downlink data
  • the second data is uplink data
  • the processing unit 901 performs the processing according to the first value of the first time slot difference, the time slot n, the first BWP and
  • the second BWP determines the second target time slot, it can comply with the following formula:
  • B is the index value of the second target time slot
  • X is the first value of the first time slot difference
  • ⁇ PDSCH is the numerology of the BWP where the first data is located
  • ⁇ PDCCH is the handover indication information.
  • the numerology of the BWP where ⁇ DL,BWP is the numerology of the first BWP, which is the downlink BWP, and ⁇ UL,BWP is the numerology of the second BWP, which is the uplink BWP.
  • the first data is uplink data; when the processing unit 901 determines the first target time slot based on the first value of the first time slot difference and the time slot n, the processing unit 901 may meet the following requirements: formula:
  • A is the index value of the first target time slot
  • X is the first value of the first time slot difference
  • ⁇ PUSCH is the numerology of the BWP where the first data is located
  • ⁇ PDCCH is the handover indication information.
  • the first data is downlink data
  • the second data is uplink data
  • the processing unit 901 performs the processing according to the first value of the first time slot difference, the time slot n, the first BWP and
  • the second BWP determines the second target time slot, it can comply with the following formula:
  • B is the index value of the second target time slot
  • X is the first value of the first time slot difference
  • ⁇ PDSCH is the numerology of the BWP where the first data is located
  • ⁇ PDCCH is the handover indication information.
  • the numerology of the BWP where ⁇ UL,BWP is the numerology of the first BWP, which is the uplink BWP, and ⁇ DL,BWP is the numerology of the second BWP, which is the downlink BWP.
  • embodiments of the present application also provide a network device, which is applied to the communication system shown in Figure 1.
  • the network device may be used to implement 4 or the communication method shown in FIG. 6 .
  • the network device may include a processing unit 1001 and a transceiver unit 1002.
  • the specific steps may be:
  • the processing unit 1001 is used to determine first information, the first information is used to indicate bandwidth partial BWP switching, and indicates the starting time for the terminal device to work on the switched BWP, and the starting time is discontinuous reception.
  • the starting time of On Duration in the DRX cycle; the transceiver unit 1002 is configured to send the first information to the terminal device at a first time, and the first time is located before the On Duration.
  • the time interval between the first moment and the starting moment of the On Duration is greater than a set duration, and the set duration is greater than or equal to the duration for the terminal device to perform BWP switching.
  • the first information is also used to instruct the terminal device to complete BWP switching before the On Duration.
  • the processing unit 1001 is used to determine the BWP switching indication information.
  • the BWP switching indication information includes the first value and the minimum value of the first time slot difference.
  • the first time slot difference is the time slot in which the first data is transmitted. and the time slot n; the transceiver unit 1002 is configured to send the BWP switching indication information to the terminal device in time slot n.
  • the BWP switching indication also includes the minimum value of the second time slot difference, where the second time slot difference is the interval between the time slot in which the second data is transmitted and the time slot n.
  • each functional unit in the embodiment of the present application can be integrated into one processing unit, or each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the above integrated units can be implemented in the form of hardware or software functional units.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or contributes to the existing technology, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions to cause a computer device (which can be a personal computer, a server, or a network device, etc.) or a processor to execute all or part of the steps of the methods described in various embodiments of the application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program code. .
  • the terminal device includes: a transceiver 1101 and a processor 1102, where:
  • the processor 1102 may be a central processing unit (CPU), a network processor (NP), or a combination of CPU and NP.
  • the processor 1102 may further include a hardware chip.
  • the above-mentioned hardware chip can be an application-specific integrated circuit (ASIC), a programmable logic device (PLD) or a combination thereof.
  • the above-mentioned PLD can be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a general array logic (GAL) or any combination thereof.
  • CPLD complex programmable logic device
  • FPGA field-programmable gate array
  • GAL general array logic
  • the transceiver 1101 and the processor 1102 are connected to each other.
  • the transceiver 1101 and the processor 1102 are connected to each other through a bus 1104;
  • the bus 1104 can be a Peripheral Component Interconnect (PCI) bus or an Extended Industry Standard structure (Extended Industry Standard). Architecture, EISA) bus, etc.
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard structure
  • the bus can be divided into address bus, data bus, control bus, etc. For ease of presentation, only one thick line is used in Figure 11, but it does not mean that there is only one bus or one type of bus.
  • the terminal device may also include a memory 1103, which is used to store programs, etc.
  • the program may include program code including computer operating instructions.
  • the memory 1103 may include RAM, and may also include non-volatile memory (non-volatile memory), such as at least one disk memory.
  • the processor 1102 executes the application program stored in the memory 1103 to implement the above functions, thereby implementing the communication method as shown in Figure 4 or Figure 6 .
  • the specific steps may be:
  • the transceiver 1101 is configured to receive first information from a network device at a first moment.
  • the first information is used to indicate BWP switching and indicates a starting time for the terminal device to work on the switched BWP.
  • the starting time The time is the starting time of the duration On Duration in the DRX cycle; the first time is located before the On Duration; the processor 1102 is used to perform BWP switching according to the first information, and at the start Always working on the switched BWP.
  • the time interval between the first moment and the starting moment of the On Duration is greater than a set duration, and the set duration is greater than or equal to the duration for the terminal device to perform BWP switching.
  • the first information is also used to instruct the terminal device to complete the BWP switching before the On Duration; when the processor 1102 performs the BWP switching according to the first information, specifically use At: Complete the BWP switching before the On Duration according to the first information.
  • the terminal device when the terminal device implements the functions of the terminal device in the communication method shown in Figure 6, the specific steps may be:
  • the transceiver 1101 is configured to receive BWP switching indication information from the network device in time slot n.
  • the BWP switching indication information includes the first value and the minimum value of the first time slot difference, and the first time slot difference is the transmission The interval between the time slot in which the first data is located and the time slot n; the processor 1102 is configured to determine the first target time slot according to the first value of the first time slot difference and the time slot n; and enabling the minimum value of the first time slot difference starting from the starting position of the first target time slot.
  • the BWP switching indication also includes the minimum value of the second time slot difference.
  • the second time slot difference is the difference between the time slot in which the second data is transmitted and the time slot n. interval; the processor 1102 is further configured to: determine a second target time slot according to the first value of the first time slot difference, the time slot n, the first BWP and the second BWP; the first BWP is The BWP occupied by the terminal device after performing BWP switching according to the BWP switching instruction information, the second BWP is the BWP occupied by the terminal device after performing BWP switching according to the BWP switching instruction information, or the second BWP is the BWP occupied by the terminal device according to the BWP switching instruction information.
  • the BWP switching indication information includes the BWP occupied before BWP switching; starting from the starting position of the second target time slot, the minimum value of the second time slot difference is enabled.
  • the first data is downlink data; when the processor 1102 determines the first target time slot based on the first value of the first time slot difference and the time slot n, the processor 1102 may comply with the following formula :
  • A is the index value of the first target time slot
  • X is the first value of the first time slot difference
  • ⁇ PDSCH is the system parameter numerology of the BWP where the first data is located
  • ⁇ PDCCH is the switching Indicates the numerology of the BWP where the information is located.
  • the first data is downlink data
  • the second data is uplink data
  • the processor 1102 performs the processing according to the first value of the first time slot difference, the time slot n, the first BWP and
  • the second BWP determines the second target time slot, it can comply with the following formula:
  • B is the index value of the second target time slot
  • X is the first value of the first time slot difference
  • ⁇ PDSCH is the numerology of the BWP where the first data is located
  • ⁇ PDCCH is the handover indication information.
  • the numerology of the BWP where ⁇ DL,BWP is the numerology of the first BWP, which is the downlink BWP, and ⁇ UL,BWP is the numerology of the second BWP, which is the uplink BWP.
  • the first data is uplink data; when the processor 1102 determines the first target time slot based on the first value of the first time slot difference and the time slot n, the processor 1102 may meet the following requirements: formula:
  • A is the index value of the first target time slot
  • X is the first value of the first time slot difference
  • ⁇ PUSCH is the numerology of the BWP where the first data is located
  • ⁇ PDCCH is the handover indication information.
  • the first data is downlink data
  • the second data is uplink data
  • the processor 1102 performs the processing according to the first value of the first time slot difference, the time slot n, the first BWP and
  • the second BWP determines the second target time slot, it can comply with the following formula:
  • B is the index value of the second target time slot
  • X is the first value of the first time slot difference
  • ⁇ PDSCH is the numerology of the BWP where the first data is located
  • ⁇ PDCCH is the handover indication information.
  • the numerology of the BWP where ⁇ UL,BWP is the numerology of the first BWP, which is the uplink BWP, and ⁇ DL,BWP is the numerology of the second BWP, which is the downlink BWP.
  • embodiments of the present application also provide a network device, which is used to implement the functions of the network device in the communication method as shown in Figure 4 or Figure 6.
  • the network device includes: a transceiver 1201 and a processor 1202, where:
  • the processor 1202 may be a central processing unit (CPU), a network processor (NP), or a combination of CPU and NP.
  • the processor 1202 may further include hardware chips.
  • the above-mentioned hardware chip can be an application-specific integrated circuit (ASIC), a programmable logic device (PLD) or a combination thereof.
  • the above-mentioned PLD can be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a general array logic (GAL) or any combination thereof.
  • CPLD complex programmable logic device
  • FPGA field-programmable gate array
  • GAL general array logic
  • the transceiver 1201 and the processor 1202 are connected to each other.
  • the transceiver 1201 and the processor 1202 are connected to each other through a bus 1204;
  • the bus 1204 can be a Peripheral Component Interconnect (PCI) bus or an Extended Industry Standard structure (Extended Industry Standard). Architecture, EISA) bus, etc.
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard structure
  • the bus can be divided into address bus, data bus, control bus, etc. For ease of presentation, only one thick line is used in Figure 12, but it does not mean that there is only one bus or one type of bus.
  • the network device may also include a memory 1203, which is used to store programs, etc.
  • the program may include program code including computer operating instructions.
  • the memory 1203 may include RAM, and may also include non-volatile memory (non-volatile memory), such as at least one disk memory.
  • the processor 1202 executes the application program stored in the memory 1203 to implement the above functions, thereby implementing the communication method as shown in Figure 4 or Figure 6 .
  • the specific steps may be:
  • the processor 1202 is used to determine the first information, the first information is used to indicate the switching of the bandwidth part BWP, and to indicate the starting time for the terminal device to work on the switched BWP, and the starting time is discontinuous reception.
  • the starting time of On Duration in the DRX cycle; the transceiver 1201 is configured to send the first information to the terminal device at the first time, and the first time is located before the On Duration.
  • the time interval between the first moment and the starting moment of the On Duration is greater than a set duration, and the set duration is greater than or equal to the duration for the terminal device to perform BWP switching.
  • the first information is also used to instruct the terminal device to complete BWP switching before the On Duration.
  • the specific steps may be:
  • the processor 1202 is configured to determine the BWP switching indication information.
  • the BWP switching indication information includes the first value and the minimum value of the first time slot difference.
  • the first time slot difference is the time slot in which the first data is transmitted. and time slot n; the transceiver 1201 is configured to send the BWP switching indication information to the terminal device in the time slot n.
  • the BWP switching indication information also includes the minimum value of the second time slot difference, where the second time slot difference is the interval between the time slot in which the second data is transmitted and the time slot n.
  • the embodiments of the present application provide a mobility management method and device.
  • the control plane network element only needs to determine the MAC address of the mobile terminal device and notify the corresponding terminal device to update. There is no need to change the system.
  • MAC address forwarding table which can flexibly switch forwarding paths and ensure business continuity during the movement of terminal equipment.
  • embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment that combines software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including, but not limited to, disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory that causes a computer or other programmable data processing apparatus to operate in a particular manner, such that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction means, the instructions
  • the device implements the functions specified in a process or processes of the flowchart and/or a block or blocks of the block diagram.
  • These computer program instructions may also be loaded onto a computer or other programmable data processing device, causing a series of operating steps to be performed on the computer or other programmable device to produce computer-implemented processing, thereby executing on the computer or other programmable device.
  • Instructions provide steps for implementing the functions specified in a process or processes of a flowchart diagram and/or a block or blocks of a block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种通信方法及装置,用以指示BWP切换的生效时间。方法为:网络设备确定第一信息,在第一时刻向终端设备发送所述第一信息,所述第一信息用于指示BWP切换,且指示终端设备在切换后的BWP上工作的起始时刻,所述起始时刻为非连续接收DRX周期中持续时间On Duration的起始时刻;所述终端设备根据所述第一信息进行BWP切换,并在所述起始时刻在切换后的BWP上工作;其中,所述第一时刻位于所述On Duration之前。通过上述方法,在所述第一信息中不包含数据调度的信息时,可以指示BWP切换的生效时间,这样可以明确所述终端设备在何时开始在切换后的BWP上工作。

Description

一种通信方法及装置
相关申请的交叉引用
本申请要求在2019年08月15日提交中国专利局、申请号为201910753227.6、申请名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
第五代(5 generation,5G)新无线(new radio,NR)中支持带宽部分(bandwidth part,BWP)技术,即支持网络设备和终端设备之间占用一部分带宽进行传输。在一个载波上,网络设备可以给终端设备配置多个BWP(包括多个上行BWP和多个下行BWP),以使终端设备能支持多种业务。在现有标准中,终端设备在一个小区上工作的时候,只有一个激活的下行BWP和一个激活的上行BWP。但是激活的BWP可以变化,这叫做BWP切换。
通常情况下,网络设备可以通过调度数据的下行控制信息(downlink control information,DCI)指示BWP切换。比如终端设备在下行BWP1上在时隙n接收了一个DCI,该DCI调度终端设备在下行BWP2上在时隙n+M接收下行数据(即物理下行共享信道(physical downlink shared channel,PDSCH)数据)。那么终端设备会在时隙n+M的开头位置开始,在下行BWP2上接收下行数据。
目前,针对终端设备的功耗节省的研究越来越普遍,但是上述BWP的切换方法并不能使终端设备的功耗降低。为了响应终端设备的功耗节省研究,现提出可以在终端设备的连接态下的(CONNECTED mode,C)-非连续接收(discontinuous reception,DRX)的激活期(active time)之前,用一个功耗节省信号指示BWP切换。其中,终端设备被配置了一个DRX周期,DRX周期由“持续时间(On Duration)”部分和“DRX机会(Opportunity for DRX)”部分组成,在“On Duration”时间内终端设备监听并接收物理下行控制信道(physical downlink control channel,PDCCH)数据,此时间内为终端设备的C-DRX的active time,相应地Opportunity for DRX时间内为休眠期。
但是在现有的传输机制中在激活期内终端设备会接收数据调度,在休眠期内不会接收数据调度,因此,终端设备只能在激活期内切换BWP。目前有提出在C-DRX的激活期之前,网络设备发送指示信息让终端设备进行BWP切换。但是由于在激活期之外,终端设备无法接收数据调度,因此提出可以使用当前新引入的功耗节省信号来承载BWP切换信息。但是这样一来,由于功耗节省信号不会承载数据调度的信息,BWP切换在何时生效的问题亟需解决。
发明内容
本申请提供一种通信方法及装置,用以指示BWP切换的生效时间。
第一方面,本申请提供了一种通信方法,该方法可以包括:网络设备确定第一信息,在第一时刻向终端设备发送所述第一信息,所述第一信息用于指示带宽部分BWP切换,且指示终端设备在切换后的BWP上工作的起始时刻,所述起始时刻为非连续接收DRX周期中持续时间On Duration的起始时刻;所述终端设备根据所述第一信息进行BWP切换,并在所述起始时刻在切换后的BWP上工作;其中,所述第一时刻位于所述On Duration之前。
通过上述方法,在所述第一信息中可以指示BWP切换的生效时间,这样可以明确所述终端设备在何时开始在切换后的BWP上工作。
在一个可能的设计中,所述第一时刻与所述On Duration的起始时刻的时间间隔大于设定时长,所述设定时长大于或者等于所述终端设备进行BWP切换的时长。这样可以明确网络设备发送所述第一信息的时间,以保证所述终端设备在所述On Duration之前完成BWP切换。
在一个可能的设计中,所述第一信息还用于指示所述终端设备在所述On Duration之前完成BWP切换。这样可以明确指示所述终端设备在所述On Duration之前完成BWP切换,以使终端设备准确地在On Duration的起始时刻在切换后的BWP上工作。
第二方面,本申请提供了一种通信方法,该方法可以包括:
网络设备确定BWP切换指示信息,并在时隙n向终端设备发送所述BWP切换指示信息,所述BWP切换指示信息中包含第一时隙差的第一值和最小值,所述第一时隙差为传输第一数据所在的时隙与所述时隙n之间的间隔;所述终端设备根据所述第一时隙差的第一值和所述时隙n确定第一目标时隙,并在所述第一目标时隙的起始位置开始启用所述第一时隙差的最小值。这样,可以在同时指示BWP切换以及最小K0或者K2值时,明确最小K0或者K2值的生效时间。其中,当所述第一数据为下行数据时,第一时隙差为K0;当所述第一数据为上行数据时,所述第一时隙差为K2,因此明确了所述第一时隙差的最小值的生效时间,就可以明确最小K0或者K2值的生效时间。
在一个可能的设计中,所述BWP切换指示中还包括第二时隙差的最小值,所述第二时隙差为传输第二数据所在的时隙与所述时隙n之间的间隔;所述终端设备根据所述第一时隙差的第一值、所述时隙n、第一BWP和第二BWP确定第二目标时隙,其中,所述第一BWP为终端设备根据所述BWP切换指示信息进行BWP切换后占用的BWP,所述第二BWP为终端设备根据所述BWP切换指示信息进行BWP切换后占用的BWP,或者所述第二BWP为终端设备根据所述BWP切换指示信息进行BWP切换前占用的BWP;所述终端设备在所述第二目标时隙的起始位置开始启用所述第二时隙差的最小值。这样可以在同时指示BWP切换以及最小K0和K2值时,明确最小K0和K2值的生效时间。其中,当所述第一数据为下行数据,所述第二数据为上行数据时,所述第一时隙差为K0,所述第二时隙差为K2;当所述第一数据为上行数据,所述第二数据为下行数据时,所述第一时隙差为K2,所述第二时隙差为K0。因此,明确了所述第一时隙差和所述第二时隙差的最小值的生效时间,则可以明确最小K0和K2值的生效时间。
在一个可能的设计中,所述第一数据可以为下行数据;所述终端设备根据所述第一时隙差的第一值和所述时隙n确定第一目标时隙,可以符合以下公式:
Figure PCTCN2020104985-appb-000001
其中,A为所述第一目标时隙的索引值,X为所述第一时隙差的第一值,μ PDSCH为所述第一数据所在BWP的系统参数(numerology),μ PDCCH为所述切换指示信息所在BWP的numerology。
通过上述方法可以准确地确定第一目标时隙,以明确最小K0值的生效时间。
在一个可能的设计中,所述第一数据可以为下行数据,所述第二数据可以为上行数据;所述终端设备根据所述第一时隙差的第一值、所述时隙n、第一BWP和第二BWP确定第二目标时隙,可以符合以下公式:
Figure PCTCN2020104985-appb-000002
其中,B为所述第二目标时隙的索引值,X为所述第一时隙差的第一值,μ PDSCH为所述第一数据所在BWP的numerology,μ PDCCH为所述切换指示信息所在BWP的numerology,μ DL,BWP为第一BWP的numerology,所述第一BWP为下行BWP,μ UL,BWP为第二BWP的numerology,所述第二BWP为上行BWP。
通过上述方法可以准确地确定第二目标时隙,以明确最小K2值的生效时间。
在一个可能的设计中,所述第一数据为上行数据;所述终端设备根据所述第一时隙差的第一值和所述时隙n确定第一目标时隙,可以符合以下公式:
Figure PCTCN2020104985-appb-000003
其中,A为所述第一目标时隙的索引值,X为所述第一时隙差的第一值,μ PUSCH为所述第一数据所在BWP的numerology,μ PDCCH为所述切换指示信息所在BWP的numerology。
通过上述方法可以准确地确定第一目标时隙,以明确最小K2值的生效时间。
在一个可能的设计中,所述第一数据为下行数据,所述第二数据为上行数据;所述终端设备根据所述第一时隙差的第一值、所述时隙n、第一BWP和第二BWP确定第二目标时隙,可以符合以下公式:
Figure PCTCN2020104985-appb-000004
其中,B为所述第二目标时隙的索引值,X为所述第一时隙差的第一值,μ PDSCH为所述第一数据所在BWP的numerology,μ PDCCH为所述切换指示信息所在BWP的numerology,μ UL,BWP为第一BWP的numerology,所述第一BWP为上行BWP,μ DL,BWP 为第二BWP的numerology,所述第二BWP为下行BWP。
通过上述方法可以准确地确定第二目标时隙,以明确最小K0值的生效时间。
第三方面,本申请还提供了一种网络设备,具有实现上述第一方面或第二方面方法实例中网络设备的功能。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,所述网络设备的结构中包括处理单元和收发单元,这些单元可以执行上述第一方面或第二方面方法示例中的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
在一个可能的设计中,所述网络设备的结构中包括收发器和处理器,可选的还可以包括存储器,收发器用于收发数据,以及与系统中的其他设备进行通信交互,处理器被配置为支持网络设备执行上述第一方面或第二方面方法中网络设备相应的功能。存储器与处理器耦合,其保存网络设备必要的程序指令和数据。
第四方面,本申请还提供了一种终端设备,具有实现上述第一方面或第二方面方法实例中终端设备的功能。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,所述终端设备的结构中包括处理单元和收发单元,这些单元可以执行上述第一方面或第二方面方法示例中的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
在一个可能的设计中,所述终端设备的结构中包括收发器和处理器,可选的还可以包括存储器,收发器用于收发数据,以及与系统中的其他设备进行通信交互,处理器被配置为支持终端设备执行上述第一方面或第二方面方法中终端设备相应的功能。存储器与处理器耦合,其保存终端设备必要的程序指令和数据。
第五方面,本申请还提供了一种通信系统,所述通信系统包括至少一个上述设计中提及的终端设备和网络设备。进一步地,所述通信系统中的所述网络设备可以执行上述方法中网络设备执行的任一种方法,以及所述通信系统中的所述终端设备可以执行上述方法中终端设备执行的任一种方法。
第六方面,本申请提供了一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令在被所述计算机调用时用于使所述计算机执行上述任一种方法。
第七方面,本申请提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述任一种方法。
第八方面,本申请提供了一种芯片,所述芯片与存储器耦合,用于读取并执行所述存储器中存储的程序指令,以实现上述任一种方法。
附图说明
图1为本申请提供的一种通信系统的结构示意图;
图2为本申请提供的一种DRX周期的示意图;
图3为本申请提供的一种数据调度的示意图;
图4为本申请提供的一种通信方法的流程图;
图5为本申请提供的一种终端设备接收第一信息的示意图;
图6为本申请提供的另一种通信方法的流程图;
图7为本申请提供的一种第一时隙差的最小值的生效时间示意图;
图8为本申请提供的一种第一时隙差和第二时隙差的最小值的生效时间示意图;
图9为本申请提供的一种终端设备的结构示意图;
图10为本申请提供的一种网络设备的结构示意图;
图11为本申请提供的一种终端设备的结构图;
图12为本申请提供的一种网络设备的结构图。
具体实施方式
下面将结合附图对本申请作进一步地详细描述。
本申请实施例提供一种通信方法及装置,用以指示BWP切换的生效时间。其中,本申请所述方法和装置基于同一技术构思,由于方法及装置解决问题的原理相似,因此装置与方法的实施可以相互参见,重复之处不再赘述。
在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
为了更加清晰地描述本申请实施例的技术方案,下面结合附图,对本申请实施例提供的通信方法及装置进行详细说明。
图1示出了本申请实施例提供的通信方法适用的一种可能的通信系统的架构,所述通信系统的架构中包括网络设备和终端设备,其中:
所述网络设备为具有无线收发功能的设备或可设置于该网络设备的芯片,该网络设备包括但不限于:gNB、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission and reception point,TRP或者transmission point,TP)等,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括射频单元(radio unit,RU)。CU实现gNB的部分功能,DU实现gNB的部分功能,比如,CU实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能,DU实现无线链路控制(radio link control,RLC)、媒体接入控制(media access control,MAC)和物理(physical,PHY)层的功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令或PHCP层信令,也可以认为是由DU发送的,或者,由DU+RU发送的。可以理解的是,网络设备可以为CU节点、或DU节点、或包括CU节点和DU节点的设备。此外,CU可以划分为接入网RAN中的网络设备,也可以将CU划分为核心网CN中的网络设备,对此不作限定。
所述终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、 用户代理或用户装置。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。本申请中将具有无线收发功能的终端设备及可设置于前述终端设备的芯片统称为终端设备。
需要说明的是,图1所示的通信系统可以但不限于为第五代(5th Generation,5G)系统,如新一代无线接入技术(new radio access technology,NR),可选的,本申请实施例的方法还适用于未来的各种通信系统,例如6G系统或者其他通信网络等。
下面,为方便对本申请实施例的理解,首先介绍一下本申请实施例涉及到的概念和基础知识。
(1)DRX周期,可以包括如图2所示的“On Duration”部分和“Opportunity for DRX”部分。在“On Duration”时间内终端设备监听并接收PDCCH,可以认为是激活期;在“Opportunity for DRX”时间内终端设备可以不监听或不接收PDCCH以减少功耗,可以认为是休眠期。其中,需要说明的是,所述终端设备接收PDCCH是指所述终端设备接收承载在PDCCH上的DCI。
(2)NR标准release 15中网络设备的调度方式
网络设备调度终端设备接收下行数据,或网络设备调度终端设备发送上行数据的时候,首先会发一个调度信息(PDCCH),该调度信息会指示PDSCH(下行数据)或物理上行共享信道(physical uplink shared channel,PUSCH)(上行数据)的传输参数,在这些传输参数中,就包括PDSCH/PUSCH的时域资源位置。
具体来说,时域资源位置包括PDSCH/PUSCH所在的时隙、PDSCH/PUSCH在上述时隙中所占用的符号的起始位置以及长度。
从流程上来说,以下行为例,网络设备会先给终端设备配置一个时域资源分配(time domain resource allocation,TDRA)表格。这个表格可以分给4列:第一列是索引值(index),用于索引这一行中其他参数的。第二列是K0(上行时为K2),该值的意思是PDCCH所在的时隙与PDSCH所在的时隙之间间隔的时隙差。比如K0=0就代表着PDCCH与PDSCH在相同时隙,K0=1就代表着PDSCH在PDCCH的下一个时隙。第三列是起始和长度表示值(starting and length incdication value,SLIV),该值的意思是PDSCH在一个时隙中,所占用的符号的起始符号以及符号长度,这个值是一个联合编码,如果S代表起始符号的序号,L代表符号长度,那么SLIV就按照一定规则通过S和L得到。第四列是匹配类型(mapping type),分为mapping type A以及mapping type B。
例如,下表1下行TDRA表格,下表2为上行TDRA表格:
表1
Index K0 SLIV Mapping type
0 0 66 A
1 1 27 B
2 1 101 B
表2
Index K2 SLIV Mapping type
0 2 27 B
1 2 91 B
网络设备给终端设备配置好了TDRA表格之后,在调度数据传输的时候,在PDCCH中指示一个index,终端设备就可以根据index以及配置好的表格,查表得到时域资源位置。之后就去确定的位置接收/发送数据。
在上述调度方式中,如果PDCCH与PDSCH(或PUSCH)在相同时隙,称为同时隙调度(对应K0=0或K2=0的情况),如果PDCCH与PDSCH(或PUSCH)在不同时隙,称为跨时隙调度(对应K0>0或K2>0的情况)。显然跨时隙调度会导致更大的传输时延。
在终端设备成功解码PDCCH之前,终端设备不知道PDCCH中指示的index是多少。以下行为例,如果网络设备给终端设备配置的TDRA表格中既包括K0=0,又包括K0>0的情况,终端设备在解码PDCCH之前就不知道当前这次调度到底是同时隙调度还是跨时隙调度。
(3)BWP,5G NR中支持BWP的概念,即支持网络设备和终端设备之间占用一部分带宽进行传输。主要是由于5G的系统带宽(这里的系统带宽是指一个载波的带宽,对应载波聚合(carrier aggregation,CA)或者双连接(dual connectivity,DC)场景中,每个载波分量(carrier component,CC)的带宽)可以很大,例如200MHz或者400MHz。有些终端设备支持不了这么大的带宽,因此网络设备可以给终端设备配置BWP(系统带宽的一部分),例如20MHz,终端设备可以在20MHz上与网络设备进行通信。
在频分双工(frequency division duplexing,FDD)或者时分双工(time division duplexing,TDD)系统中,都支持BWP。BWP可以分为下行BWP(downlink BWP,DL BWP)和上行BWP(uplink BWP,UL BWP),网络设备可以为终端设备配置多个DL BWP以及多个UL BWP,并且激活至少一个DL BWP和激活至少一个UL BWP,终端设备在激活的DL BWP(即active DL BWP)上接收网络设备发送的下行信号,所述下行信号包括但不限于:下行控制信令,下行数据;终端设备在激活的UL BWP上发送上行信号,所述上行信号包括但不限于:上行控制信令,上行数据,调度请求(scheduling request,SR),探测参考信号(sounding reference signal,SRS),信道状态信息(channel state information,CSI)/信道质量指示(channel quality indicator,CQI)反馈等等。
BWP的参数中包括numerology(翻译为系统参数或参数集),指子载波间隔,以及与之对应的符号长度,循环前缀(cyclic prefix,CP)长度等参数。
在现有标准中,终端设备在一个小区上工作的时候,只有一个激活的DL BWP和一个激活的UL BWP。但是激活的BWP可以变化,这叫做BWP切换。比如,网络设备为终端设备配置了两个DL BWP,分别为DL BWP1和DL BWP2。终端设备激活的DL BWP为DL BWP1,此时网络设备可以发送BWP切换指示(该切换指示是一个PDCCH),令终端设备的DL BWP切换为DL BWP2。同样,网络设备也可以指示终端设备的激活的UL BWP进行切换,也是通过PDCCH指示。
在TDD系统中,终端设备的DL BWP与UL BWP总是成对切换,即一旦DL BWP切 换,UL BWP也自动切换到预先配对的UL BWP上。而FDD系统中,UE的DL BWP切换与UL BWP切换是解耦的。
(4)NR Rel-16的功耗节省课题中的跨时隙调度
终端设备的待机时间是影响用户体验的一个重要部分。由于5G NR系统需要支持比4G长期演进(long term evolution,LTE)系统更大的带宽,更高的传输速率,更广的覆盖范围,因此NR终端设备的功耗比LTE终端设备的功耗更大。为了保证良好的用户体验,第三代合作伙伴计划(3rd generation partnership project,3GPP)在Rel-16中针对终端设备功耗节省课题进行了专门的立项,研究减少终端设备功耗的优化方案。
NR的功耗节省课题中,有公司提出上述(2)中的调度方式不利于终端设备节能。如图3左侧所示,如果终端设备不知道当前时隙内是否有同时隙调度(只要网络设备配置的TDRA表格中包括K0=0,就可能存在同时隙调度),为了避免丢失信号,终端设备在接收PDCCH之后,解码PDCCH的同时,必须缓存下行信号。如果如图3右侧所示,终端设备提前能够知道,当前时隙一定不会存在调度,那么终端设备在接收PDCCH之后,解码PDCCH的过程中,就可以放心的把射频模块关闭,不缓存任何信号,从而可以达到节能的效果(图3右侧右下角阴影部分即为节省的能量)。
为了达到节省功耗的目的,在现有标准的讨论过程中,已经同意网络设备通过功耗节省信号为终端设备指示一个“最小可用的K0值”和/或“最小可用的K2值”。终端设备接到该指示之后,会认为网络设备调度自身的数据时,不会指示小于该“最小值”的K0/K2值。比如以下行为例,当网络设备为终端设备配置的TDRA表格如下表3所示时,如果网络设备进一步指示“最小K0值”为1,则网络设备在调度终端设备时在调度信息中只会指示index=1和index=2的两行,不会指示index=0的那一行。
表3
Index K0 SLIV Mapping type
0 0 66 A
1 1 27 B
2 1 101 B
目前,为了降低终端设备的功耗,一些研究表明可以使用当前新引入的功耗节省信号来承载BWP切换信息。但是这样一来,由于功耗节省信号不会承载数据调度的信息,BWP切换的生效时间并不明确。基于此,本申请提出了一种通信方法,可以指示BWP切换的生效时间。下面结合具体的实施例对本申请实施例提供的通信方法进行详细说明。
本申请实施例提供的一种通信方法,适用于图1所示的通信系统。参阅图4所示,该方法的具体流程可以包括:
步骤401、网络设备确定第一信息,所述第一信息用于指示BWP切换,且指示终端设备在切换后的BWP上工作的起始时刻,所述起始时刻为DRX周期中On Duration的起始时刻。
步骤402、所述网络设备在第一时刻向所述终端设备发送所述第一信息,所述第一时刻位于所述On Duration之前。
步骤403、所述终端设备根据所述第一信息进行BWP切换,并在所述起始时刻在切换后的BWP上工作。
一种实施方式中,可以预定义(或默认)所述网络设在向所述终端设备发送所述第一 信息时,会给所述终端设备切换BWP预留足够的时间。也即预定义所述第一时刻与所述On Duration的起始时刻的时间间隔大于设定时长,所述设定时长大于或者等于所述终端设备进行BWP切换的时长。在这种实施方式中,所述网络设备会保证所述第一时刻与所述On Duration的起始时刻的时间间隔足够大,以保证所述终端设备进行BWP切换所述需的时间。
另一种实施方式中,所述网络设备可以明确指示,即显示指示所述第一时刻与所述On Duration的起始时刻的时间间隔大于设定时长,所述设定时长大于或者等于所述终端设备进行BWP切换的时长。这样,所述终端设备就能够在OnDuration的起始时刻就已经切换到新的BWP上了,此时终端设备在OnDuration内自然而然就会在新的(即切换后的)BWP上工作。
在一种可选的实施方式中,所述网络设备显示指示所述第一时刻与所述On Duration的起始时刻的时间间隔大于设定时长,所述设定时长大于或者等于所述终端设备进行BWP切换的时长时,可以通过所述第一信息进行指示,例如,所述第一信息还用于指示所述终端设备在所述On Duration之前完成BWP切换。这样通过所述第一信息明确指示所述终端设备在所述On Duration之前完成BWP切换,即表明所述第一时刻与所述On Duration的起始时刻的时间间隔不小于所述终端设备进行BWP切换的时长。
具体的,所述终端设备根据所述第一信息进行BWP切换,具体可以为:所述终端设备根据所述第一信息在所述On Duration之前完成BWP切换。
示例性的,图5示出了所述终端设备接收所述第一信息的示意图,所述终端设备在On Duration的起始时刻开始能够在切换后的BEWP上工作,也即能够在切换后的BWP上接收或者发送数据。
采用本申请实施例提供的通信方法,网络设备确定第一信息,在第一时刻向终端设备发送所述第一信息,所述第一信息用于指示带宽部分BWP切换,且指示终端设备在切换后的BWP上工作的起始时刻,所述起始时刻为非连续接收DRX周期中持续时间On Duration的起始时刻;所述终端设备根据所述第一信息进行BWP切换,并在所述起始时刻在切换后的BWP上工作;其中,所述第一时刻位于所述On Duration之前。通过上述方法,在所述第一信息中不包含数据调度的信息时,可以指示BWP切换的生效时间,这样可以明确所述终端设备在何时开始在切换后的BWP上工作。
目前,当终端设备进行BWP切换时需要完成的工作需要的时间包括:终端设备解锁DCI(即BWP切换的指示信息)的时间、终端设备调整射频以及基带电路的时间、匹配新的BWP所需的时间以及所述终端设备应用新的BWP上的参数所需的时间。也就是说最终BWP切换的生效时间不能早于上述四段时间加起来的时间。如果只考虑DCI解码,认为解出DCI之后,新的最小K0/K2值就可以生效,显然是不合适的。因为这个时候终端设备还没有切换到新的BWP上,也无法应用新的BWP上的参数。
另外,在现有标准中规定,BWP切换的生效时间,即为切换DCI所调度的数据所在的时隙(slot)的开头,在切换过程中,终端设备不会收发任何信号。因此即使将新的最小K0/K2值的生效时间定义的比BWP切换的生效时间早,终端设备也不会真正去用到这些值。比如,终端设备完成上述四个动作所需要的时间为2个时隙。但是终端设备在时隙n收到了网络设备调度在时隙n+4上的下行数据,此时终端设备会将时隙n+4的起始时刻作为新BWP的生效时间,在这个生效时间之后终端设备才会接收调度。即使终端设备在时 隙n+2开始使用新的最小K0/K2值,也是没有意义的。
因此,当在DXR周期的激活期(active time)内,网络设备在同一条DCI中既指示了BWP切换,又指示了最小K0/K2值的时候,那么新的最小K0/K2值的生效时间可能需要更晚一点,因此需要重新定义新的最小K0/K2值的生效时间。
基于此,本申请提出了另一种通信方法,可以指示最小K0/K2值的生效时间。下面结合具体的实施例对本申请实施例提供的通信方法进行详细说明。
本申请实施例提供的另一种通信方法,适用于图1所示的通信系统。参阅图6所示,该方法的具体流程可以包括:
步骤601、网络设备确定BWP切换指示信息,所述BWP切换指示信息中包含第一时隙差的第一值和最小值,所述第一时隙差为传输第一数据所在的时隙与时隙n之间的间隔。
步骤602、终端设备在所述时隙n从网络设备接收所述BWP切换指示信息。
步骤603、所述终端设备根据所述第一时隙差的第一值和所述时隙n确定第一目标时隙。
步骤604、所述终端设备在所述第一目标时隙的起始位置开始启用所述第一时隙差的最小值。
其中,所述BWP切换指示信息可以是DCI。
在一种可选的实施方式中,所述BWP切换指示中还包括第二时隙差的最小值,所述第二时隙差为传输第二数据所在的时隙与所述时隙n之间的间隔;所述终端设备还执行以下操作:所述终端设备根据所述第一时隙差的第一值、所述时隙n、第一BWP和第二BWP确定第二目标时隙;所述第一BWP为终端设备根据所述BWP切换指示信息进行BWP切换后占用的BWP,所述第二BWP为终端设备根据所述BWP切换指示信息进行BWP切换后占用的BWP,或者所述第二BWP为终端设备根据所述BWP切换指示信息进行BWP切换前占用的BWP;所述终端设备在所述第二目标时隙的起始位置开始启用所述第二时隙差的最小值。
在具体实现时,所述第一数据可能为下行数据(PDSCH数据),也可能为上行数据(PUSCH数据)。相应地,当所述第一数据为下行数据时,所述第一时隙差即为K0;当所述第一数据为上行数据时,所述第一时隙差即为K2。进一步地,当所述第一数据为下行数据时,所述第二数据为上行数据,所述第二时隙差即为K2;当所述第一数据为上行数据时,所述第二数据为下行数据,所述第二时隙差即为K0。
一种示例中,当所述第一数据为下行数据时,所述终端设备根据所述第一时隙差的第一值和所述时隙n确定第一目标时隙,可以符合以下公式一:
Figure PCTCN2020104985-appb-000005
其中,A为所述第一目标时隙的索引值,X为所述第一时隙差的第一值,μ PDSCH为所述第一数据所在BWP的系统参数(numerology),μ PDCCH为所述切换指示信息所在BWP的numerology。
进一步地,当所述第一数据为下行数据,所述第二数据为上行数据时,所述终端设备根据所述第一时隙差的第一值、所述时隙n、第一BWP和第二BWP确定第二目标时隙,可以符合以下公式二:
Figure PCTCN2020104985-appb-000006
其中,B为所述第二目标时隙的索引值,X为所述第一时隙差的第一值,μ PDSCH为所述第一数据所在BWP的numerology,μ PDCCH为所述切换指示信息所在BWP的numerology,μ DL,BWP为第一BWP的numerology,所述第一BWP下行BWP,μ UL,BWP为第二BWP的numerology,所述第二BWP为上行BWP。这里也即所述第一BWP为切换后的下行BWP,所述第二BWP为切换后的上行BWP或者所述第二BWP为当前(切换前占用的)上行BWP。
需要说明的是,如果当前系统是TDD系统,DL BWP与UL BWP会同时切换,此时,所述第二BWP为切换后的上行BWP;如果当前系统是FDD系统,DLBWP切换的时候,UL BWP不会切换,此时所述第二BWP为当前上行BWP。
例如,图7示出了一种第一时隙差的最小值的生效时间示意图,在图7中终端设备工作在FDD系统,即DL BWP与UL BWP分别切换。第一时隙差为K0,第二时隙差为K2。终端设备在时隙n中收到BWP切换指示,指示将DL BWP切换到DL BWP2,该BWP切换指示中指示的K0值X=3。同时,该指示中还指示了新的K0最小值。因此如图7所示,根据公式一,终端设备在DL BWP2上的时隙
Figure PCTCN2020104985-appb-000007
的起始位置开始,新的K0最小值开始生效。如果该指示中还指示了新的K2最小值,则根据公式二,终端设备在UL BWP1上的时隙
Figure PCTCN2020104985-appb-000008
的起始位置开始,新的K2最小值开始生效。
另一种示例中,当所述第一数据为上行数据时,所述终端设备根据所述第一时隙差的第一值和所述时隙n确定第一目标时隙,可以符合以下公式三:
Figure PCTCN2020104985-appb-000009
其中,A为所述第一目标时隙的索引值,X为所述第一时隙差的第一值,μ PUSCH为所述第一数据所在BWP的numerology,μ PDCCH为所述切换指示信息所在BWP的numerology。
进一步地,当所述第一数据为下行数据,所述第二数据为上行数据时,所述终端设备根据所述第一时隙差的第一值、所述时隙n、第一BWP和第二BWP确定第二目标时隙,可以符合以下公式四:
Figure PCTCN2020104985-appb-000010
其中,B为所述第二目标时隙的索引值,X为所述第一时隙差的第一值,μ PDSCH为所述第一数据所在BWP的numerology,μ PDCCH为所述切换指示信息所在BWP的numerology,μ UL,BWP为第一BWP的numerology,所述第一BWP为上行BWP,μ DL,BWP为第二BWP的numerology,所述第二BWP为下行BWP。这里也即所述第一BWP为切换后的上行BWP,所述第二BWP为切换后的下行BWP或者所述第二BWP为当前(切换前占用的)下行BWP。
需要说明的是,如果当前系统是TDD系统,DL BWP与UL BWP会同时切换,此时,所述第二BWP为切换后的下行BWP;如果当前系统是FDD系统,ULBWP切换的时候,DL BWP不会切换,此时所述第二BWP为当前下行BWP。
例如,图8示出了一种第一时隙差和第二时隙差的最小值的生效时间示意图,在图8中终端设备工作在FDD系统,即DL BWP与UL BWP分别切换。第一时隙差为K2,第二时隙差为K0。终端设备在时隙n中收到BWP切换指示,指示将UL BWP切换到UL BWP2,该BWP切换指示中指示的K2值X=3。同时,该指示中还指示了新的K0最小值以及K2最小值。因此如图8所示,根据公式三,终端设备在UL BWP2上的时隙
Figure PCTCN2020104985-appb-000011
的起始位置开始,新的K2最小值开始生效。如果该指示中还指示了新的K2最小值,则根据公式四,终端设备在DL BWP1上的时隙
Figure PCTCN2020104985-appb-000012
的起始位置开始,新的K0最小值开始生效。
采用本申请实施例提供的通信方法,网络设备确定BWP切换指示信息,并在时隙n向终端设备发送所述BWP切换指示信息,所述BWP切换指示信息中包含第一时隙差的第一值和最小值,所述第一时隙差为传输第一数据所在的时隙与所述时隙n之间的间隔;所述终端设备根据所述第一时隙差的第一值和所述时隙n确定第一目标时隙,并在所述第一目标时隙的起始位置开始启用所述第一时隙差的最小值。这样,可以在同时指示BWP切换以及最小K0或者K2值时,明确最小K0或者K2值的生效时间。
基于以上实施例,本申请实施例还提供了一种终端设备,该终端设备应用于图1所示通信系统。所述终端设备可以用于实现图4或图6所示的通信方法中终端设备的功能。参阅图9所示,该终端设备可以包括处理单元901和收发单元902。
在一个实施例中,当所述终端设备实现图4所示的通信方法中终端设备的功能时,具体可以为:
所述收发单元902用于在第一时刻从网络设备接收第一信息,所述第一信息用于指示BWP切换,且指示终端设备在切换后的BWP上工作的起始时刻,所述起始时刻为DRX周期中持续时间On Duration的起始时刻;所述第一时刻位于所述On Duration之前;所述处理单元901,用于根据所述第一信息进行BWP切换,并在所述起始时刻在切换后的BWP上工作。
示例性的,所述第一时刻与所述On Duration的起始时刻的时间间隔大于设定时长,所述设定时长大于或者等于所述终端设备进行BWP切换的时长。
一种具体的实施方式中,所述第一信息还用于指示所述终端设备在所述On Duration之前完成BWP切换;所述处理单元901在根据所述第一信息进行BWP切换时,具体用于:根据所述第一信息在所述On Duration之前完成BWP切换。
在另一个实施例中,当所述终端设备实现图6所示的通信方法中终端设备的功能时,具体可以为:
所述收发单元902用于在时隙n从网络设备接收BWP切换指示信息,所述BWP切换指示信息中包含第一时隙差的第一值和最小值,所述第一时隙差为传输第一数据所在的时隙与所述时隙n之间的间隔;所述处理单元901用于根据所述第一时隙差的第一值和所述时隙n确定第一目标时隙;以及在所述第一目标时隙的起始位置开始启用所述第一时隙差的最小值。
一种具体的实施方式中,所述BWP切换指示中还包括第二时隙差的最小值,所述第二时隙差为传输第二数据所在的时隙与所述时隙n之间的间隔;所述处理单元901还用于:根据所述第一时隙差的第一值、所述时隙n、第一BWP和第二BWP确定第二目标时隙;所述第一BWP为终端设备根据所述BWP切换指示信息进行BWP切换后占用的BWP,所述第二BWP为终端设备根据所述BWP切换指示信息进行BWP切换后占用的BWP,或者所述第二BWP为终端设备根据所述BWP切换指示信息进行BWP切换前占用的BWP;在所述第二目标时隙的起始位置开始启用所述第二时隙差的最小值。
一种示例中,所述第一数据为下行数据;所述处理单元901在根据所述第一时隙差的第一值和所述时隙n确定第一目标时隙时,可以符合以下公式:
Figure PCTCN2020104985-appb-000013
其中,A为所述第一目标时隙的索引值,X为所述第一时隙差的第一值,μ PDSCH为所述第一数据所在BWP的系统参数numerology,μ PDCCH为所述切换指示信息所在BWP的numerology。
具体的,所述第一数据为下行数据,所述第二数据为上行数据;所述处理单元901在根据所述第一时隙差的第一值、所述时隙n、第一BWP和第二BWP确定第二目标时隙时,可以符合以下公式:
Figure PCTCN2020104985-appb-000014
其中,B为所述第二目标时隙的索引值,X为所述第一时隙差的第一值,μ PDSCH为所述第一数据所在BWP的numerology,μ PDCCH为所述切换指示信息所在BWP的numerology,μ DL,BWP为第一BWP的numerology,所述第一BWP为下行BWP,μ UL,BWP为第二BWP的numerology,所述第二BWP为上行BWP。
另一种示例中,所述第一数据为上行数据;所述处理单元901在根据所述第一时隙差的第一值和所述时隙n确定第一目标时隙时,可以符合以下公式:
Figure PCTCN2020104985-appb-000015
其中,A为所述第一目标时隙的索引值,X为所述第一时隙差的第一值,μ PUSCH为所述第一数据所在BWP的numerology,μ PDCCH为所述切换指示信息所在BWP的 numerology。
具体的,所述第一数据为下行数据,所述第二数据为上行数据;所述处理单元901在根据所述第一时隙差的第一值、所述时隙n、第一BWP和第二BWP确定第二目标时隙时,可以符合以下公式:
Figure PCTCN2020104985-appb-000016
其中,B为所述第二目标时隙的索引值,X为所述第一时隙差的第一值,μ PDSCH为所述第一数据所在BWP的numerology,μ PDCCH为所述切换指示信息所在BWP的numerology,μ UL,BWP为第一BWP的numerology,所述第一BWP为上行BWP,μ DL,BWP为第二BWP的numerology,所述第二BWP为下行BWP。
基于以上实施例,本申请实施例还提供了一种网络设备,该网络设备应用于图1所示通信系统。所述网络设备可以用于实现4或者图6所示的通信方法中。参阅图10所示,该网络设备可以包括处理单元1001和收发单元1002。
在一个实施例中,当所述网络设备实现图4所示的通信方法中网络设备的功能时,具体可以为:
所述处理单元1001用于确定第一信息,所述第一信息用于指示带宽部分BWP切换,且指示终端设备在切换后的BWP上工作的起始时刻,所述起始时刻为非连续接收DRX周期中持续时间On Duration的起始时刻;所述收发单元1002用于在第一时刻向终端设备发送所述第一信息,所述第一时刻位于所述On Duration之前。
具体的,所述第一时刻与所述On Duration的起始时刻的时间间隔大于设定时长,所述设定时长大于或者等于所述终端设备进行BWP切换的时长。
一种示例中,所述第一信息还用于指示所述终端设备在所述On Duration之前完成BWP切换。
在另一个实施例中,当所述网络设备实现图6所示的通信方法中网络设备的功能时,具体可以为:
所述处理单元1001用于确定BWP切换指示信息,所述BWP切换指示信息中包含第一时隙差的第一值和最小值,所述第一时隙差为传输第一数据所在的时隙与所述时隙n之间的间隔;所述收发单元1002用于在时隙n向终端设备发送所述BWP切换指示信息。
示例性的,所述BWP切换指示中还包括第二时隙差的最小值,所述第二时隙差为传输第二数据所在的时隙与所述时隙n之间的间隔。
需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。在本申请的实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个 实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
基于以上实施例,本申请实施例还提供了一种终端设备,所述终端设备用于实现如图4或图6所示的通信方法中终端设备的功能。参阅图11所示,所述终端设备包括:收发器1101和处理器1102,其中:
所述处理器1102可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合。所述处理器1102还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。所述处理器1102在实现上述功能时,可以通过硬件实现,当然也可以通过硬件执行相应的软件实现。
所述收发器1101和所述处理器1102之间相互连接。可选的,所述收发器1101和所述处理器1102通过总线1104相互连接;所述总线1104可以是外设部件互连标准(Peripheral Component Interconnect,PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,EISA)总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图11中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
可选的,所述终端设备还可以包括存储器1103,所述存储器1103,用于存放程序等。具体地,程序可以包括程序代码,该程序代码包括计算机操作指令。所述存储器1103可能包括RAM,也可能还包括非易失性存储器(non-volatile memory),例如至少一个磁盘存储器。所述处理器1102执行所述存储器1103所存放的应用程序,实现上述功能,从而实现如图4或图6所示的通信方法。
在一个实施例中,当所述终端设备实现图4所示的通信方法中终端设备的功能时,具体可以为:
所述收发器1101用于在第一时刻从网络设备接收第一信息,所述第一信息用于指示BWP切换,且指示终端设备在切换后的BWP上工作的起始时刻,所述起始时刻为DRX周期中持续时间On Duration的起始时刻;所述第一时刻位于所述On Duration之前;所述处理器1102,用于根据所述第一信息进行BWP切换,并在所述起始时刻在切换后的BWP上工作。
示例性的,所述第一时刻与所述On Duration的起始时刻的时间间隔大于设定时长,所述设定时长大于或者等于所述终端设备进行BWP切换的时长。
一种具体的实施方式中,所述第一信息还用于指示所述终端设备在所述On Duration之前完成BWP切换;所述处理器1102在根据所述第一信息进行BWP切换时,具体用于:根据所述第一信息在所述On Duration之前完成BWP切换。
在另一个实施例中,当所述终端设备实现图6所示的通信方法中终端设备的功能时,具体可以为:
所述收发器1101用于在时隙n从网络设备接收BWP切换指示信息,所述BWP切换指示信息中包含第一时隙差的第一值和最小值,所述第一时隙差为传输第一数据所在的时 隙与所述时隙n之间的间隔;所述处理器1102用于根据所述第一时隙差的第一值和所述时隙n确定第一目标时隙;以及在所述第一目标时隙的起始位置开始启用所述第一时隙差的最小值。
一种具体的实施方式中,所述BWP切换指示中还包括第二时隙差的最小值,所述第二时隙差为传输第二数据所在的时隙与所述时隙n之间的间隔;所述处理器1102还用于:根据所述第一时隙差的第一值、所述时隙n、第一BWP和第二BWP确定第二目标时隙;所述第一BWP为终端设备根据所述BWP切换指示信息进行BWP切换后占用的BWP,所述第二BWP为终端设备根据所述BWP切换指示信息进行BWP切换后占用的BWP,或者所述第二BWP为终端设备根据所述BWP切换指示信息进行BWP切换前占用的BWP;在所述第二目标时隙的起始位置开始启用所述第二时隙差的最小值。
一种示例中,所述第一数据为下行数据;所述处理器1102在根据所述第一时隙差的第一值和所述时隙n确定第一目标时隙时,可以符合以下公式:
Figure PCTCN2020104985-appb-000017
其中,A为所述第一目标时隙的索引值,X为所述第一时隙差的第一值,μ PDSCH为所述第一数据所在BWP的系统参数numerology,μ PDCCH为所述切换指示信息所在BWP的numerology。
具体的,所述第一数据为下行数据,所述第二数据为上行数据;所述处理器1102在根据所述第一时隙差的第一值、所述时隙n、第一BWP和第二BWP确定第二目标时隙时,可以符合以下公式:
Figure PCTCN2020104985-appb-000018
其中,B为所述第二目标时隙的索引值,X为所述第一时隙差的第一值,μ PDSCH为所述第一数据所在BWP的numerology,μ PDCCH为所述切换指示信息所在BWP的numerology,μ DL,BWP为第一BWP的numerology,所述第一BWP为下行BWP,μ UL,BWP为第二BWP的numerology,所述第二BWP为上行BWP。
另一种示例中,所述第一数据为上行数据;所述处理器1102在根据所述第一时隙差的第一值和所述时隙n确定第一目标时隙时,可以符合以下公式:
Figure PCTCN2020104985-appb-000019
其中,A为所述第一目标时隙的索引值,X为所述第一时隙差的第一值,μ PUSCH为所述第一数据所在BWP的numerology,μ PDCCH为所述切换指示信息所在BWP的numerology。
具体的,所述第一数据为下行数据,所述第二数据为上行数据;所述处理器1102在根据所述第一时隙差的第一值、所述时隙n、第一BWP和第二BWP确定第二目标时隙时,可以符合以下公式:
Figure PCTCN2020104985-appb-000020
其中,B为所述第二目标时隙的索引值,X为所述第一时隙差的第一值,μ PDSCH为所述第一数据所在BWP的numerology,μ PDCCH为所述切换指示信息所在BWP的numerology,μ UL,BWP为第一BWP的numerology,所述第一BWP为上行BWP,μ DL,BWP为第二BWP的numerology,所述第二BWP为下行BWP。
基于以上实施例,本申请实施例还提供了一种网络设备,所述网络设备用于实现如图4或图6所示的通信方法中网络设备的功能。参阅图12所示,所述网络设备包括:收发器1201和处理器1202,其中:
所述处理器1202可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合。所述处理器1202还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。所述处理器1202在实现上述功能时,可以通过硬件实现,当然也可以通过硬件执行相应的软件实现。
所述收发器1201和所述处理器1202之间相互连接。可选的,所述收发器1201和所述处理器1202通过总线1204相互连接;所述总线1204可以是外设部件互连标准(Peripheral Component Interconnect,PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,EISA)总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图12中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
可选的,所述网络设备还可以包括存储器1203,所述存储器1203,用于存放程序等。具体地,程序可以包括程序代码,该程序代码包括计算机操作指令。所述存储器1203可能包括RAM,也可能还包括非易失性存储器(non-volatile memory),例如至少一个磁盘存储器。所述处理器1202执行所述存储器1203所存放的应用程序,实现上述功能,从而实现如图4或图6所示的通信方法。
在一个实施例中,当所述网络设备实现图4所示的通信方法中网络设备的功能时,具体可以为:
所述处理器1202用于确定第一信息,所述第一信息用于指示带宽部分BWP切换,且指示终端设备在切换后的BWP上工作的起始时刻,所述起始时刻为非连续接收DRX周期中持续时间On Duration的起始时刻;所述收发器1201用于在第一时刻向终端设备发送所述第一信息,所述第一时刻位于所述On Duration之前。
具体的,所述第一时刻与所述On Duration的起始时刻的时间间隔大于设定时长,所述设定时长大于或者等于所述终端设备进行BWP切换的时长。
一种示例中,所述第一信息还用于指示所述终端设备在所述On Duration之前完成BWP切换。
在另一个实施例中,当所述网络设备实现图6所示的通信方法中网络设备的功能时, 具体可以为:
所述处理器1202用于确定BWP切换指示信息,所述BWP切换指示信息中包含第一时隙差的第一值和最小值,所述第一时隙差为传输第一数据所在的时隙与时隙n之间的间隔;所述收发器1201用于在所述时隙n向终端设备发送所述BWP切换指示信息。
示例性的,所述BWP切换指示信息中还包括第二时隙差的最小值,所述第二时隙差为传输第二数据所在的时隙与所述时隙n之间的间隔。
综上所述,通过本申请实施例提供一种移动性管理方法及装置,只需所述控制面网元决定移动的终端设备的MAC地址,并通知相应的终端设备更新,可以无需改变系统中的MAC地址转发表,从而可以灵活地实现转发路径的切换,保证终端设备移动过程中业务的连续性。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实施例的范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (30)

  1. 一种通信方法,其特征在于,包括:
    网络设备确定第一信息,所述第一信息用于指示带宽部分BWP切换,且指示终端设备在切换后的BWP上工作的起始时刻,所述起始时刻为非连续接收DRX周期中持续时间On Duration的起始时刻;
    所述网络设备在第一时刻向终端设备发送所述第一信息,所述第一时刻位于所述On Duration之前。
  2. 如权利要求1所述的方法,其特征在于,所述第一时刻与所述On Duration的起始时刻的时间间隔大于设定时长,所述设定时长大于或者等于所述终端设备进行BWP切换的时长。
  3. 如权利要求1或2所述的方法,其特征在于,所述第一信息还用于指示所述终端设备在所述On Duration之前完成BWP切换。
  4. 一种通信方法,其特征在于,包括:
    终端设备在第一时刻从网络设备接收第一信息,所述第一信息用于指示BWP切换,且指示终端设备在切换后的BWP上工作的起始时刻,所述起始时刻为DRX周期中持续时间On Duration的起始时刻;所述第一时刻位于所述On Duration之前;
    所述终端设备根据所述第一信息进行BWP切换,并在所述起始时刻在切换后的BWP上工作。
  5. 如权利要求4所述的方法,其特征在于,所述第一时刻与所述On Duration的起始时刻的时间间隔大于设定时长,所述设定时长大于或者等于所述终端设备进行BWP切换的时长。
  6. 如权利要求4或5所述的方法,其特征在于,所述第一信息还用于指示所述终端设备在所述On Duration之前完成BWP切换;
    所述终端设备根据所述第一信息进行BWP切换,包括:
    所述终端设备根据所述第一信息在所述On Duration之前完成BWP切换。
  7. 一种网络设备,其特征在于,包括:
    处理器,用于确定第一信息,所述第一信息用于指示带宽部分BWP切换,且指示终端设备在切换后的BWP上工作的起始时刻,所述起始时刻为非连续接收DRX周期中持续时间On Duration的起始时刻;
    收发器,用于在第一时刻向终端设备发送所述第一信息,所述第一时刻位于所述On Duration之前。
  8. 如权利要求7所述的网络设备,其特征在于,所述第一时刻与所述On Duration的起始时刻的时间间隔大于设定时长,所述设定时长大于或者等于所述终端设备进行BWP切换的时长。
  9. 如权利要求7或8所述的网络设备,其特征在于,所述第一信息还用于指示所述终端设备在所述On Duration之前完成BWP切换。
  10. 一种终端设备,其特征在于,包括:
    收发器,用于在第一时刻从网络设备接收第一信息,所述第一信息用于指示BWP切换,且指示终端设备在切换后的BWP上工作的起始时刻,所述起始时刻为非连续接收DRX 周期中持续时间On Duration的起始时刻;所述第一时刻位于所述On Duration之前;
    处理器,用于根据所述第一信息进行BWP切换,并在所述起始时刻在切换后的BWP上工作。
  11. 如权利要求10所述的终端设备,其特征在于,所述第一时刻与所述On Duration的起始时刻的时间间隔大于设定时长,所述设定时长大于或者等于所述终端设备进行BWP切换的时长。
  12. 如权利要求10或11所述的终端设备,其特征在于,所述第一信息还用于指示所述终端设备在所述On Duration之前完成BWP切换;
    所述处理器,在根据所述第一信息进行BWP切换时,具体用于:
    根据所述第一信息在所述On Duration之前完成BWP切换。
  13. 一种通信方法,其特征在于,包括:
    终端设备在时隙n从网络设备接收BWP切换指示信息,所述BWP切换指示信息中包含第一时隙差的第一值和最小值,所述第一时隙差为传输第一数据所在的时隙与所述时隙n之间的间隔;
    所述终端设备根据所述第一时隙差的第一值和所述时隙n确定第一目标时隙;
    所述终端设备在所述第一目标时隙的起始位置开始启用所述第一时隙差的最小值。
  14. 如权利要求13所述的方法,其特征在于,所述BWP切换指示信息中还包括第二时隙差的最小值,所述第二时隙差为传输第二数据所在的时隙与所述时隙n之间的间隔;
    所述方法还包括:
    所述终端设备根据所述第一时隙差的第一值、所述时隙n、第一BWP和第二BWP确定第二目标时隙;所述第一BWP为终端设备根据所述BWP切换指示信息进行BWP切换后占用的BWP,所述第二BWP为终端设备根据所述BWP切换指示信息进行BWP切换后占用的BWP,或者所述第二BWP为终端设备根据所述BWP切换指示信息进行BWP切换前占用的BWP;
    所述终端设备在所述第二目标时隙的起始位置开始启用所述第二时隙差的最小值。
  15. 如权利要求13或14所述的方法,其特征在于,所述第一数据为下行数据;
    所述终端设备根据所述第一时隙差的第一值和所述时隙n确定第一目标时隙,符合以下公式:
    Figure PCTCN2020104985-appb-100001
    其中,A为所述第一目标时隙的索引值,X为所述第一时隙差的第一值,μ PDSCH为所述第一数据所在BWP的系统参数numerology,μ PDCCH为所述切换指示信息所在BWP的numerology。
  16. 如权利要求14所述的方法,其特征在于,所述第一数据为下行数据,所述第二数据为上行数据;
    所述终端设备根据所述第一时隙差的第一值、所述时隙n、第一BWP和第二BWP确定第二目标时隙,符合以下公式:
    Figure PCTCN2020104985-appb-100002
    其中,B为所述第二目标时隙的索引值,X为所述第一时隙差的第一值,μ PDSCH为所述第一数据所在BWP的numerology,μ PDCCH为所述切换指示信息所在BWP的numerology,μ DL,BWP为第一BWP的numerology,所述第一BWP为下行BWP,μUL,BWP为第二BWP的numerology,所述第二BWP为上行BWP。
  17. 如权利要求13或14所述的方法,其特征在于,所述第一数据为上行数据;
    所述终端设备根据所述第一时隙差的第一值和所述时隙n确定第一目标时隙,符合以下公式:
    Figure PCTCN2020104985-appb-100003
    其中,A为所述第一目标时隙的索引值,X为所述第一时隙差的第一值,μ PUSCH为所述第一数据所在BWP的numerology,μ PDCCH为所述切换指示信息所在BWP的numerology。
  18. 如权利要求14所述的方法,其特征在于,所述第一数据为下行数据,所述第二数据为上行数据;
    所述终端设备根据所述第一时隙差的第一值、所述时隙n、第一BWP和第二BWP确定第二目标时隙,符合以下公式:
    Figure PCTCN2020104985-appb-100004
    其中,B为所述第二目标时隙的索引值,X为所述第一时隙差的第一值,μ PDSCH为所述第一数据所在BWP的numerology,μ PDCCH为所述切换指示信息所在BWP的numerology,μ UL,BWP为第一BWP的numerology,所述第一BWP为上行BWP,μ DL,BWP为第二BWP的numerology,所述第二BWP为下行BWP。
  19. 一种通信方法,其特征在于,包括:
    网络设备确定BWP指示信息,所述BWP切换指示信息中包含第一时隙差的第一值和最小值,所述第一时隙差为传输第一数据所在的时隙与时隙n之间的间隔;
    所述网络设备在时隙n向终端设备发送所述BWP切换指示信息。
  20. 如权利要求19所述的方法,其特征在于,所述BWP切换指示信息中还包括第二时隙差的最小值,所述第二时隙差为传输第二数据所在的时隙与所述时隙n之间的间隔。
  21. 一种终端设备,其特征在于,包括:
    收发器,用于在时隙n从网络设备接收BWP切换指示信息,所述BWP切换指示信息中包含第一时隙差的第一值和最小值,所述第一时隙差为传输第一数据所在的时隙与所述时隙n之间的间隔;
    处理器,用于根据所述第一时隙差的第一值和所述时隙n确定第一目标时隙;以及在所述第一目标时隙的起始位置开始启用所述第一时隙差的最小值。
  22. 如权利要求21所述的终端设备,其特征在于,所述BWP切换指示信息中还包括第二时隙差的最小值,所述第二时隙差为传输第二数据所在的时隙与所述时隙n之间的间隔;
    所述处理器还用于:
    根据所述第一时隙差的第一值、所述时隙n、第一BWP和第二BWP确定第二目标时隙;所述第一BWP为终端设备根据所述BWP切换指示信息进行BWP切换后占用的BWP,所述第二BWP为终端设备根据所述BWP切换指示信息进行BWP切换后占用的BWP,或者所述第二BWP为终端设备根据所述BWP切换指示信息进行BWP切换前占用的BWP;
    所述第二目标时隙的起始位置开始启用所述第二时隙差的最小值。
  23. 如权利要求21或22所述的终端设备,其特征在于,所述第一数据为下行数据;
    所述处理器,在根据所述第一时隙差的第一值和所述时隙n确定第一目标时隙时,符合以下公式:
    Figure PCTCN2020104985-appb-100005
    其中,A为所述第一目标时隙的索引值,X为所述第一时隙差的第一值,μ PDSCH为所述第一数据所在BWP的系统参数numerology,μ PDCCH为所述切换指示信息所在BWP的numerology。
  24. 如权利要求22所述的终端设备,其特征在于,所述第一数据为下行数据,所述第二数据为上行数据;
    所述处理器,在根据所述第一时隙差的第一值、所述时隙n、第一BWP和第二BWP确定第二目标时隙时,符合以下公式:
    Figure PCTCN2020104985-appb-100006
    其中,B为所述第二目标时隙的索引值,X为所述第一时隙差的第一值,μ PDSCH为所述第一数据所在BWP的numerology,μ PDCCH为所述切换指示信息所在BWP的numerology,μ DL,BWP为第一BWP的numerology,所述第一BWP为下行BWP,μ UL,BWP为第二BWP的numerology,所述第二BWP为上行BWP。
  25. 如权利要求21或22所述的终端设备,其特征在于,所述第一数据为上行数据;
    所述处理器,在根据所述第一时隙差的第一值和所述时隙n确定第一目标时隙时,符合以下公式:
    Figure PCTCN2020104985-appb-100007
    其中,A为所述第一目标时隙的索引值,X为所述第一时隙差的第一值,μ PUSCH为所述第一数据所在BWP的numerology,μ PDCCH为所述切换指示信息所在BWP的numerology。
  26. 如权利要求22所述的终端设备,其特征在于,所述第一数据为下行数据,所述 第二数据为上行数据;
    所述处理器,在根据所述第一时隙差的第一值、所述时隙n、第一BWP和第二BWP确定第二目标时隙时,符合以下公式:
    Figure PCTCN2020104985-appb-100008
    其中,B为所述第二目标时隙的索引值,X为所述第一时隙差的第一值,μ PDSCH为所述第一数据所在BWP的numerology,μ PDCCH为所述切换指示信息所在BWP的numerology,μ UL,BWP为第一BWP的numerology,所述第一BWP为上行BWP,μ DL,BWP为第二BWP的numerology,所述第二BWP为下行BWP。
  27. 一种网络设备,其特征在于,包括:
    处理器,用于确定BWP切换指示信息,所述BWP切换指示信息中包含第一时隙差的第一值和最小值,所述第一时隙差为传输第一数据所在的时隙与时隙n之间的间隔;
    收发器,用于在时隙n向终端设备发送所述BWP切换指示信息。
  28. 如权利要求27所述的网络设备,其特征在于,所述BWP切换指示信息中还包括第二时隙差的最小值,所述第二时隙差为传输第二数据所在的时隙与所述时隙n之间的间隔。
  29. 一种计算机存储介质,其特征在于,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令在被所述计算机调用时用于使所述计算机执行上述权利要求1-6或权利要求13-20中任一项所述的方法。
  30. 一种包含指令的计算机程序产品,其特征在于,当其在计算机上运行时,使得计算机执行上述权利要求1-6或权利要求13-20中任一项所述的方法。
PCT/CN2020/104985 2019-08-15 2020-07-27 一种通信方法及装置 WO2021027551A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP20853359.6A EP3993493B1 (en) 2019-08-15 2020-07-27 Communication method and device
CN202080053933.0A CN114208274A (zh) 2019-08-15 2020-07-27 一种通信方法及装置
US17/634,510 US20220295528A1 (en) 2019-08-15 2020-07-27 Communication method and apparatus
JP2022509118A JP2023512854A (ja) 2019-08-15 2020-07-27 通信方法および装置
JP2024040150A JP2024069477A (ja) 2019-08-15 2024-03-14 通信方法および装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910753227.6 2019-08-15
CN201910753227.6A CN112399571B (zh) 2019-08-15 2019-08-15 一种通信方法及装置

Publications (2)

Publication Number Publication Date
WO2021027551A1 WO2021027551A1 (zh) 2021-02-18
WO2021027551A9 true WO2021027551A9 (zh) 2023-11-16

Family

ID=74570495

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/104985 WO2021027551A1 (zh) 2019-08-15 2020-07-27 一种通信方法及装置

Country Status (5)

Country Link
US (1) US20220295528A1 (zh)
EP (1) EP3993493B1 (zh)
JP (2) JP2023512854A (zh)
CN (2) CN112399571B (zh)
WO (1) WO2021027551A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021035544A1 (en) * 2019-08-27 2021-03-04 Qualcomm Incorporated Channel state information processing criteria
CN113518452A (zh) * 2020-04-10 2021-10-19 华为技术有限公司 一种检测方法及装置
CN113543291A (zh) * 2020-04-22 2021-10-22 维沃移动通信有限公司 节能模式切换方法、终端及网络侧设备

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109151897B (zh) * 2017-06-16 2020-03-10 华为技术有限公司 通信方法及装置
CN109586866B (zh) * 2017-09-28 2024-06-28 华为技术有限公司 通信方法、装置和设备
US10721765B2 (en) * 2017-09-29 2020-07-21 Kt Corporation Method and apparatus for switching bandwidth part in new radio
EP3611866A1 (en) * 2017-10-26 2020-02-19 Ofinno, LLC Reference signal received power report
CN109788553A (zh) * 2017-11-10 2019-05-21 华为技术有限公司 一种带宽切换方法及装置
WO2019127138A1 (zh) * 2017-12-27 2019-07-04 Oppo广东移动通信有限公司 管理定时器的方法和终端设备
US10993254B2 (en) * 2018-02-16 2021-04-27 Qualcomm Incorporated Downlink control information signaling schemes for bandwidth part switching
WO2020077575A1 (zh) * 2018-10-17 2020-04-23 北京小米移动软件有限公司 带宽部分切换方法及装置
US11095419B2 (en) * 2019-01-02 2021-08-17 Ofinno, Llc Simultaneous bandwidth parts switching
CN109804662B (zh) * 2019-01-08 2023-10-03 北京小米移动软件有限公司 带宽部分切换的方法及装置
WO2020222509A1 (ko) * 2019-05-02 2020-11-05 삼성전자 주식회사 무선 통신 시스템에서 단말의 전력 절약을 위한 방법 및 장치
WO2020231320A1 (en) * 2019-05-15 2020-11-19 Telefonaktiebolaget Lm Ericsson (Publ) Method and system for adapting concurrent bandwidth part switching on multiple links in a wireless network

Also Published As

Publication number Publication date
EP3993493A4 (en) 2022-09-14
WO2021027551A1 (zh) 2021-02-18
JP2024069477A (ja) 2024-05-21
CN114208274A (zh) 2022-03-18
EP3993493A1 (en) 2022-05-04
CN112399571A (zh) 2021-02-23
CN112399571B (zh) 2024-05-07
JP2023512854A (ja) 2023-03-30
US20220295528A1 (en) 2022-09-15
EP3993493B1 (en) 2023-11-08

Similar Documents

Publication Publication Date Title
CN115021881B (zh) 对无线通信设备能力的临时处理
US9363847B2 (en) Method and apparatus for providing for discontinuous reception via cells having different time division duplex subframe configurations
US20220006602A1 (en) Discontinuous Reception for Carrier Aggregation
TWI632819B (zh) 處理裝置對裝置通訊的裝置及方法
WO2021027551A9 (zh) 一种通信方法及装置
US10623981B2 (en) Information transmission method, apparatus, and system
EP4106358A1 (en) Wireless communication method and communication apparatus
JP7248816B2 (ja) 情報送信方法および情報送信装置
JP2020523949A (ja) 通信装置、方法及びコンピュータプログラム
JP2023511894A (ja) Pdcch監視をスキップするように指示するための方法及び装置
US20230413087A1 (en) Flexible Downlink Control Signal Monitoring in Wireless Communications
JP2024073481A (ja) 通信方法及び装置
WO2016168967A1 (zh) 一种分量载波组的配置方法及设备
WO2016180463A1 (en) Methods and apparatusses for enabling/disabling a drx mode
CN116391370A (zh) 无线通信期间连接状态下的多媒体广播和组播服务(mbms)传输和接收
WO2022188638A1 (zh) 一种数据传输方法及装置
WO2022120609A1 (zh) 无线通信方法和设备
US11864112B2 (en) Apparatus, method and computer program
CN111867013B (zh) 一种节能及其控制方法及装置
WO2023174201A1 (zh) 数据传输方法及装置、计算机可读存储介质
WO2024067081A1 (zh) 一种musim间隙的处理方法和装置
WO2022116965A1 (zh) 一种物理下行控制信道监测的方法及装置
EP4346143A1 (en) User equipment and base station involved in time-division communication
CN117812674A (zh) 一种网络配置方法、装置及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20853359

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020853359

Country of ref document: EP

Effective date: 20220128

ENP Entry into the national phase

Ref document number: 2022509118

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE