WO2022116965A1 - 一种物理下行控制信道监测的方法及装置 - Google Patents
一种物理下行控制信道监测的方法及装置 Download PDFInfo
- Publication number
- WO2022116965A1 WO2022116965A1 PCT/CN2021/134414 CN2021134414W WO2022116965A1 WO 2022116965 A1 WO2022116965 A1 WO 2022116965A1 CN 2021134414 W CN2021134414 W CN 2021134414W WO 2022116965 A1 WO2022116965 A1 WO 2022116965A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- time slot
- pdcch
- time domain
- terminal device
- domain position
- Prior art date
Links
- 238000012544 monitoring process Methods 0.000 title claims abstract description 131
- 238000000034 method Methods 0.000 title claims abstract description 96
- 230000005540 biological transmission Effects 0.000 claims description 37
- 230000015654 memory Effects 0.000 claims description 36
- 238000004590 computer program Methods 0.000 claims description 17
- 238000003860 storage Methods 0.000 claims description 16
- 238000004891 communication Methods 0.000 description 58
- 238000013461 design Methods 0.000 description 40
- 230000006870 function Effects 0.000 description 35
- 238000010586 diagram Methods 0.000 description 26
- 238000012545 processing Methods 0.000 description 23
- 230000011664 signaling Effects 0.000 description 17
- 230000007704 transition Effects 0.000 description 11
- 230000008569 process Effects 0.000 description 8
- 238000001514 detection method Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 230000003190 augmentative effect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 1
- 238000000802 evaporation-induced self-assembly Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000013468 resource allocation Methods 0.000 description 1
- 239000004984 smart glass Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/02—Power saving arrangements
- H04W52/0209—Power saving arrangements in terminal devices
- H04W52/0225—Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/02—Power saving arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/0446—Resources in time domain, e.g. slots or frames
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/12—Wireless traffic scheduling
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/23—Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
Definitions
- the present application relates to the field of communication technologies, and in particular, to a method and apparatus for monitoring a physical downlink control channel (PDCCH).
- PDCH physical downlink control channel
- the network device Before the network device and the terminal device perform data transmission, the network device sends data scheduling information, such as PDCCH, to the terminal device. To avoid losing scheduling information, the terminal device needs to monitor the PDCCH frequently according to the configuration of the network device. However, the frequent monitoring of the PDCCH by the terminal equipment may lead to high power consumption of the terminal equipment. At present, research on power consumption saving of terminal equipment is becoming more and more common, and detailed optimization schemes for reducing power consumption of terminal equipment have become the research direction of the industry.
- data scheduling information such as PDCCH
- the present application provides a PDCCH monitoring method and apparatus, which are used to specify how a terminal device monitors the PDCCH.
- the present application provides a method for monitoring PDCCH, the method may include: a terminal device receives downlink control information (DCI) from a network device in a time slot n, where the DCI includes a first time slot The first value k of the difference, the k is used to determine the first time domain position; then the terminal device monitors the PDCCH at the first time domain position, where the k is the time slot where the first data is transmitted and the The time slot interval between the time slots n, and the first data is the data scheduled by the DCI.
- DCI downlink control information
- the terminal device can specify how to monitor the PDCCH through the first time domain location determined based on the k, thereby reducing PDCCH monitoring and reducing power consumption of the terminal device.
- the network device reuses k in the existing DCI to instruct the terminal device to monitor the first time domain position of the PDCCH, which can reduce PDCCH monitoring and avoid high signaling overhead, that is, reduce the power consumption of the terminal device. At the same time, the signaling overhead is reduced.
- the first time domain position may be time slot n+k, where k is not equal to 0.
- the terminal device monitors the PDCCH in the time slot with data transmission, which can save the power consumption of the terminal device.
- the terminal device monitors the PDCCH in the time slot with data transmission, which can save the power consumption of the terminal device.
- the terminal device does not monitor the PDCCH from time slot n+1 to time slot n+k-1. In this way, the terminal equipment does not monitor the PDCCH in the time slot without data transmission, which can reduce the monitoring of the PDCCH, thereby reducing the power consumption of the terminal equipment.
- the first time domain location may be time slot n+k+1.
- the terminal equipment monitors the PDCCH in the next time slot with data transmission, which can reduce the power consumption of the terminal equipment.
- the terminal device performs data transmission in time slot n+k, and monitors PDCCH in time slot n+k+1.
- the two tasks of monitoring PDCCH and performing data transmission can be completed in a similar time, thereby reducing the number of The number of times the terminal device switches between "sleep mode" and "work mode” to reduce power consumption caused by state transitions.
- the first time domain location may include time slot n+k-m1 to time slot n+k+m2; or the first time domain location may include time slot n+k to time slot n+k+m3; or the first time domain location may include time slot n+k+m4 to time slot n+k+m5; or the first time domain location may include time slot n+k-m6 to Time slot n+k; wherein, the m1 is an integer greater than or equal to 0, the m2 is an integer greater than or equal to 0, the m3 is an integer greater than or equal to 0, and the m4 is an integer greater than or equal to 0 Integer, the m5 is an integer greater than or equal to 0, and the m6 is an integer greater than or equal to 0.
- the terminal device monitors the PDCCH in a time slot interval related to the time slot with data transmission, so that the two tasks of monitoring the PDCCH and performing data transmission can be completed in a similar time, thereby saving the power consumption of the terminal device. And compared with monitoring the PDCCH in only one time slot, monitoring the PDCCH in one time slot interval can improve the scheduling flexibility of the network device.
- the terminal device when the terminal device does not receive the PDCCH at the first time domain position, the terminal device may monitor the PDCCH according to the first search space group after the first time domain position; wherein , the terminal device is configured with a set of search spaces, and the set of search spaces is the first search space group; or the terminal device is configured with two sets of search spaces, and the two sets of search spaces include the a first search space group and a second search space group; or the terminal device is configured with at least three groups of search spaces, the at least three groups of search spaces include the first search space group; the first search space group includes the first time domain location.
- the terminal device when the terminal device does not receive the PDCCH at the first time domain position, the terminal device may determine the first time domain symbol and the first frequency domain position according to the configuration information of the search space; The terminal device monitors the PDCCH at the first time domain symbol and the first frequency domain location. In this way, when the terminal device does not receive the PDCCH at the first time domain position, it can specify how to monitor the PDCCH.
- the DCI may further include first indication information, where the first indication information is used to indicate whether to monitor the PDCCH in the first time slot, the first time slot is from time slot n to The time slot between the second time domain positions, where the second time domain position is the previous time domain position of the first time domain position.
- the DCI may further include second indication information, where the second indication information is used to indicate that the PDCCH is to be monitored at the first time domain position. This allows the network device to dynamically instruct the terminal device how to monitor the PDCCH, thereby increasing the scheduling flexibility of the network device.
- the terminal device when the terminal device is configured with a minimum scheduling time slot interval, when the terminal device does not receive the PDCCH at the first time domain position, the terminal device monitors the PDCCH next time.
- the time slot interval between the time domain position and the first time domain position is not less than the first value.
- the terminal device can reduce the processing speed of the PDCCH by itself, thereby reducing its own power consumption. By restricting the time slot interval between the time domain position of the terminal equipment to monitor the PDCCH next time and the first time domain position to be no less than the first value, it can be ensured that the terminal equipment must be able to complete the monitoring of the time domain position of the PDCCH next time. Decoding of PDCCH.
- the terminal device when the terminal device is configured with a minimum scheduling slot interval, and the minimum scheduling slot interval is greater than 0, the m1 is less than or equal to the k minus the minimum scheduling slot difference in interval.
- the terminal device can reduce the processing speed of the PDCCH by itself, thereby reducing its own power consumption.
- m1 By limiting m1 to be less than or equal to the difference between the k minus the minimum scheduling slot interval, it can be ensured that the terminal device can complete the decoding of the PDCCH before the time slot n+k-m1, so as to determine that the time slot n+ Whether k-m1 should monitor PDCCH.
- the present application provides a method for monitoring PDCCH.
- the method may include: a network device determines DCI, and sends the DCI to a terminal device in the time slot n, where the DCI includes a first time slot The first value k of the difference, the k is used to determine the first time domain position; the k is the time slot interval between the time slot where the first data is transmitted and the time slot n, and the first data is the Data scheduled by DCI.
- the terminal device can specify how to monitor the PDCCH through the first time domain position determined based on the k, thereby reducing PDCCH monitoring and reducing power consumption of the terminal device.
- the network device reuses k in the existing DCI to instruct the terminal device to monitor the first time domain position of the PDCCH, which can reduce PDCCH monitoring and avoid high signaling overhead, that is, reduce the power consumption of the terminal device. At the same time, the signaling overhead is reduced.
- the first time domain position may be time slot n+k, where k is not equal to 0.
- the terminal device can monitor the PDCCH in the time slot with data transmission, which can save the power consumption of the terminal device.
- the terminal device can monitor the PDCCH in the time slot with data transmission, which can save the power consumption of the terminal device.
- the first time domain location may be time slot n+k+1.
- the terminal equipment monitors the PDCCH in the next time slot with data transmission, which can reduce the power consumption of the terminal equipment.
- the terminal device performs data transmission in time slot n+k, and monitors PDCCH in time slot n+k+1.
- the two tasks of monitoring PDCCH and performing data transmission can be completed in a similar time, thereby reducing the number of The number of times the terminal device switches between "sleep mode" and "work mode” to reduce power consumption caused by state transitions.
- the first time domain location includes time slot n+k-m1 to time slot n+k+m2; or the first time domain location includes time slot n+k to time slot n+ k+m3; or the first time domain location includes time slot n+k+m4 to time slot n+k+m5; or the first time domain location includes time slot n+k-m6 to time slot n+ k; wherein, the m1 is an integer greater than or equal to 0, the m2 is an integer greater than or equal to 0, the m3 is an integer greater than or equal to 0, the m4 is an integer greater than or equal to 0, and the m5 is an integer greater than or equal to 0, and m6 is an integer greater than or equal to 0.
- the terminal device can monitor the PDCCH in a time slot interval related to the time slot in which data is transmitted, which can save the power consumption of the terminal device. And compared with monitoring the PDCCH in only one time slot, monitoring the PDCCH in one time slot interval can improve the scheduling flexibility of the network device.
- the DCI may further include first indication information, where the first indication information is used to indicate whether to monitor the PDCCH in the first time slot, the first time slot is from time slot n to The time slot between the second time domain positions, where the second time domain position is the previous time domain position of the first time domain position.
- the DCI may further include second indication information, where the second indication information is used to indicate that the PDCCH is to be monitored at the first time domain position. This allows the network device to dynamically instruct the terminal device how to monitor the PDCCH, thereby increasing the scheduling flexibility of the network device.
- the terminal device when the terminal device is configured with a minimum scheduling slot interval, and the minimum scheduling slot interval is greater than 0, the m1 is less than or equal to the k minus the minimum scheduling slot difference in interval.
- the terminal device can reduce the processing speed of the PDCCH by itself, thereby reducing its own power consumption.
- m1 By limiting m1 to be less than or equal to the difference between the k minus the minimum scheduling slot interval, it can be ensured that the terminal device can complete the decoding of the PDCCH before the time slot n+k-m1, so as to determine that the time slot n+ Whether k-m1 should monitor PDCCH.
- the present application provides a method for monitoring PDCCH.
- the method may include: a terminal device receiving third indication information from a network device, where the third indication information is used to indicate that the PDCCH is not to be monitored on at least one time slot and receive downlink control information DCI from the network device, the DCI indicates that data is transmitted in the time slot x; when the time slot x is in the at least one time slot, the terminal device determines that the data can be transmitted in the third time slot x
- the PDCCH is monitored at the time domain position; wherein, the third time domain position is the time slot x; or the third time domain position is the time slot x+1; or the third time domain position includes the time slot x -y1 to slot x+y2; or the third time domain location includes slot x to slot x+y3; or the third time domain location includes slot x+y4 to slot x+y5; or
- the third time domain position includes time slot x-y6 to time slot x; wherein, the y
- the terminal device when the network device instructs to skip the PDCCH monitoring of some locations, the terminal device can add some other monitoring PDCCH locations based on the location where the data needs to be transmitted, which can save the power consumption of the terminal device and obtain more
- the opportunity to monitor the PDCCH also allows the network device to obtain more opportunities to schedule terminal devices, thereby increasing the scheduling flexibility of the network device.
- the present application further provides a communication apparatus, the communication apparatus may be a terminal device, and the communication apparatus has the function of implementing the terminal device in the first aspect or each possible design example of the first aspect.
- the functions can be implemented by hardware, or can be implemented by hardware executing corresponding software.
- the hardware or software includes one or more modules corresponding to the above functions.
- the structure of the communication device includes a transceiver unit and a processing unit, and these units can perform the corresponding functions of the terminal device in the first aspect or each possible design example of the first aspect.
- these units can perform the corresponding functions of the terminal device in the first aspect or each possible design example of the first aspect.
- the method example The detailed description in , will not be repeated here.
- the structure of the communication device includes a transceiver and a processor, and optionally a memory, where the transceiver is used to send and receive data, and to communicate and interact with other devices in the communication system,
- the processor is configured to support the communication apparatus to perform corresponding functions of the terminal device in the first aspect or each possible design example of the first aspect.
- the memory is coupled to the processor and holds program instructions and data necessary for the communication device.
- the present application further provides a communication apparatus, the communication apparatus may be a network device, and the communication apparatus has the function of implementing the network device in the second aspect or each possible design example of the second aspect.
- the functions can be implemented by hardware, or can be implemented by hardware executing corresponding software.
- the hardware or software includes one or more modules corresponding to the above functions.
- the structure of the communication device includes a transceiver unit and a processing unit, and these units can perform the corresponding functions of the network device in the second aspect or each possible design example of the second aspect.
- these units can perform the corresponding functions of the network device in the second aspect or each possible design example of the second aspect.
- the structure of the communication device includes a transceiver and a processor, and optionally a memory, where the transceiver is used to send and receive data, and to communicate and interact with other devices in the communication system,
- the processor is configured to support the communication apparatus to perform the corresponding functions of the network device in the second aspect or each possible design example of the second aspect.
- the memory is coupled to the processor and holds program instructions and data necessary for the communication device.
- the present application further provides a communication apparatus, the communication apparatus may be a terminal device, and the communication apparatus has the function of implementing the terminal device in the third aspect or each possible design example of the third aspect.
- the functions can be implemented by hardware, or can be implemented by hardware executing corresponding software.
- the hardware or software includes one or more modules corresponding to the above functions.
- the structure of the communication apparatus includes a transceiver unit and a processing unit, and these units can perform the corresponding functions of the terminal device in the third aspect or each possible design example of the third aspect.
- these units can perform the corresponding functions of the terminal device in the third aspect or each possible design example of the third aspect.
- the method example The detailed description in , will not be repeated here.
- the structure of the communication device includes a transceiver and a processor, and optionally a memory, where the transceiver is used to send and receive data, and to communicate and interact with other devices in the communication system,
- the processor is configured to support the communication apparatus to perform the corresponding functions of the terminal device in the third aspect or each possible design example of the third aspect.
- the memory is coupled to the processor and holds program instructions and data necessary for the communication device.
- an embodiment of the present application provides a communication system, which may include the above-mentioned terminal device and network device.
- a computer-readable storage medium provided by an embodiment of the present application, the computer-readable storage medium stores a program instruction, and when the program instruction is executed on a computer, makes the computer execute the first aspect of the embodiment of the present application and its contents.
- a computer-readable storage medium can be any available medium that can be accessed by a computer.
- computer readable media may include non-transitory computer readable media, random-access memory (RAM), read-only memory (ROM), electrically erasable Except programmable read only memory (electrically EPROM, EEPROM), CD-ROM or other optical disk storage, magnetic disk storage medium or other magnetic storage device, or capable of carrying or storing desired program code in the form of instructions or data structures and capable of Any other media accessed by a computer.
- RAM random-access memory
- ROM read-only memory
- EEPROM electrically erasable Except programmable read only memory
- CD-ROM or other optical disk storage magnetic disk storage medium or other magnetic storage device, or capable of carrying or storing desired program code in the form of instructions or data structures and capable of Any other media accessed by a computer.
- the embodiments of the present application provide a computer program product including computer program codes or instructions, which, when run on a computer, enables the computer to implement the first aspect or any possible design of the first aspect, or the first aspect.
- the present application further provides a chip, including a processor, which is coupled to a memory and configured to read and execute program instructions stored in the memory, so that the chip implements the above-mentioned first aspect Or any possible design of the first aspect, or the second aspect and any possible design thereof, or the method described in the third aspect and any possible design thereof.
- FIG. 1 is a schematic diagram of the architecture of a communication system provided by the present application.
- FIG. 3 is a schematic diagram of monitoring PDCCH provided by the present application.
- FIG. 4 is a schematic diagram of another monitoring PDCCH provided by the present application.
- FIG. 5 is a schematic diagram of another monitoring PDCCH provided by the present application.
- FIG. 6 is a schematic diagram of another monitoring PDCCH provided by the present application.
- FIG. 7 is a schematic diagram of another monitoring PDCCH provided by the present application.
- FIG. 8 is a schematic diagram of another monitoring PDCCH provided by the present application.
- FIG. 9 is a schematic diagram of another monitoring PDCCH provided by the present application.
- FIG. 10 is a schematic diagram of another monitoring PDCCH provided by this application.
- FIG. 11 is a schematic diagram of another monitoring PDCCH provided by this application.
- FIG. 12 is a schematic diagram of another monitoring PDCCH provided by this application.
- FIG. 13 is a schematic diagram of another monitoring PDCCH provided by this application.
- 15 is a schematic diagram of another monitoring PDCCH provided by this application.
- 16 is a schematic structural diagram of a communication device provided by the application.
- FIG. 17 is a structural diagram of a communication device provided by this application.
- Embodiments of the present application provide a method and apparatus for monitoring PDCCH, so as to specify how a terminal device monitors PDCCH.
- the methods and devices described in this application are based on the same technical concept. Since the methods and devices have similar principles for solving problems, the implementations of the devices and methods can be referred to each other, and repeated descriptions will not be repeated here.
- At least one (species) refers to one (species) or multiple (species), and multiple (species) refers to two (species) or more than two (species).
- FIG. 1 shows an architecture of a communication system involved in an embodiment of the present application.
- the architecture of the communication system includes a network device and a terminal device, where:
- the network device is a device with a wireless transceiver function or a chip that can be provided in the network device, and the network device includes but is not limited to: a base station (generation node B, gNB), a radio network controller (radio network controller, RNC), Node B (Node B, NB), base station controller (base station controller, BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), baseband unit (baseband unit, BBU), access point (AP), wireless relay node, wireless backhaul node, transmission point (transmission and reception point, TRP or transmission) in wireless fidelity (wireless fidelity, WIFI) systems point, TP), etc., and may also be a network node that constitutes a gNB or a transmission point, such as a baseband unit (BBU), or a distributed unit (distributed unit, DU), etc.
- RNC radio network controller
- a gNB may include a centralized unit (CU) and a DU.
- the gNB may also include a radio unit (RU).
- CU implements some functions of gNB
- DU implements some functions of gNB, for example, CU implements radio resource control (radio resource control, RRC), packet data convergence protocol (packet data convergence protocol, PDCP) layer functions
- DU implements wireless chain
- the functions of the road control radio link control, RLC
- media access control media access control, MAC
- physical (physical, PHY) layers The functions of the road control (radio link control, RLC), media access control (media access control, MAC) and physical (physical, PHY) layers.
- the network device may be a CU node, a DU node, or a device including a CU node and a DU node.
- the CU may be divided into network equipment in the access network RAN, and the CU may also be divided into network equipment in the core network CN, which is not limited.
- the terminal equipment may also be referred to as user equipment (UE), access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device , user agent or user device.
- the terminal device in the embodiment of the present application may be a mobile phone (mobile phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (virtual reality, VR) terminal device, an augmented reality (augmented reality, AR) terminal equipment, wireless terminals in industrial control, wireless terminals in self driving, wireless terminals in remote medical, wireless terminals in smart grid, transportation security ( Wireless terminals in transportation safety), wireless terminals in smart cities, smart wearable devices (smart glasses, smart watches, smart headphones, etc.), wireless terminals in smart homes, and so on.
- the embodiments of the present application do not limit application scenarios.
- a terminal device with a wireless transceiver function and a chip that can be installed in the aforementioned terminal device are collectively referred to as
- the communication system shown in FIG. 1 may be, but is not limited to, a fifth generation (5th Generation, 5G) system, such as a new generation radio access technology (NR).
- 5G fifth generation
- NR new generation radio access technology
- the method of the embodiment is also applicable to various communication systems in the future, such as a 6G system or other communication networks.
- network devices are scheduled as follows:
- a network device When a network device schedules a terminal device to receive downlink data, or when a network device schedules a terminal device to send uplink data, it first sends a scheduling message (PDCCH), which indicates the physical downlink shared channel (PDSCH) (where Including downlink data) or physical uplink shared channel (physical uplink shared channel, PUSCH) (which contains uplink data) transmission parameters, in these transmission parameters, including PDSCH/PUSCH time domain resource location.
- the PDCCH carries downlink control information (downlink control information, DCI), and the network device indicates the above-mentioned time domain resource location through the DCI.
- DCI downlink control information
- the network device will indicate the K0 value through the time domain resource allocation (TDRA) field in the DCI, which is used to determine the time slot interval between the PDCCH and PDSCH; for the uplink data, the network device will The K2 value is indicated by the TDRA field in the DCI to determine the slot interval between the PDCCH and the PUSCH.
- TDRA time domain resource allocation
- a terminal device When a terminal device receives its own DCI, it needs to blindly detect (blind detect, BD) the PDCCH sent to itself in the downlink control area, that is, the terminal device monitors many PDCCH candidate positions (PDCCH candidate), and finds out whether there are any Sent to myself.
- a set of candidate positions that the UE needs to blindly detect forms a search space.
- the terminal device may monitor one (group) or multiple (group) search spaces to find out whether there is a PDCCH sent to itself.
- the terminal equipment needs to monitor the position of the PDCCH, which may also be referred to as a PDCCH monitoring occasion (PDCCH monitoring occasion).
- the terminal equipment will frequently monitor the PDCCH, but if the terminal equipment has no service for a period of time, that is, when there is no downlink data or uplink data to be transmitted, the terminal equipment cannot receive the data sent to itself even if it monitors the PDCCH. PDCCH. Therefore, the terminal equipment will still monitor the PDCCH at these times, which will cause power consumption of the terminal equipment.
- the network equipment can send an indication message to the terminal equipment, instructing the terminal equipment to skip the PDCCH monitoring for a period of time, that is, not to monitor the PDCCH within the indicated period of time .
- the search space switching scheme has also been standardized in the NR unlicensed spectrum (NR-U) of 3GPP Rel-16
- another scheme to reduce the power consumption of the terminal equipment may be: the network equipment can Send an indication message to instruct the terminal device to switch between the two groups of preconfigured search spaces.
- the terminal device is configured with two groups of search spaces, the monitoring period corresponding to the first search space group is one slot (slot), and the monitoring period corresponding to the second search space group is four time slots (slot).
- the network device may send an indication message to the terminal device, instructing the terminal device to switch from monitoring the first search space group to monitoring the second search space group, thereby reducing the number of times of PDCCH monitoring and saving the power consumption of the terminal device.
- the above two solutions can both achieve the purpose of "reducing PDCCH monitoring".
- the terminal device does not monitor the PDCCH for a period of time, and then returns to the normal monitoring state.
- the terminal device After one indication and before the next indication, the terminal device keeps monitoring the indicated search space unchanged.
- physical layer signaling such as DCI
- DCI is usually used to carry relevant indication information, and the more types of information to be indicated, the more bits are required.
- the terminal equipment can only be instructed to "skip 3 time slots” and "do not skip the PDCCH” two kinds of information, 1 bit is enough; if the terminal equipment is instructed to "skip 2 time slots” slots", “skip 4 slots”, “skip 6 slots” and “do not skip PDCCH”, then 2 bits are required and so on.
- the second solution if the period of switching or the number of search spaces (groups) for switching is greater, more bits are required, which will result in higher signaling overhead.
- the present application proposes a PDCCH monitoring method, which specifies how to monitor the PDCCH, and can minimize the signaling overhead while maintaining the flexibility of the PDCCH monitoring.
- what can monitor or not monitor the PDCCH may be a terminal device, or a processor in the terminal device, or a chip or a chip system, or a functional module, etc.; How the device monitors the PDCCH may be a network device, or a processor in the network device, or a chip or a chip system, or a functional module, or the like.
- the PDCCH monitoring method provided by the present application is described in detail by taking the terminal device and the network device as examples, but the present application is not limited.
- a PDCCH monitoring method provided by the embodiment of the present application is applicable to the communication system shown in FIG. 1 .
- the specific flow of the method may include:
- Step 201 The network device determines the DCI, where the DCI includes a first value k of the first time slot difference, where the first value k is used to determine the first time domain position; the first value k is the time slot where the first data is transmitted The time slot interval between time slot n, the first data is data scheduled by DCI.
- the first value k may be the value of K0 (corresponding to downlink data PDSCH) or K2 (corresponding to uplink data PUSCH) indicated by the TDRA field in the DCI when the network device in the prior art schedules data transmission of the terminal device.
- the multiplexing of the existing TDRA field is also used to indicate the first time-domain location, that is, to indicate the next time the terminal device monitors the PDCCH, so no additional signaling overhead may be introduced.
- the DCI also indicates that there is data transmission in time slot n+k, that is, the first data is transmitted in time slot n+k.
- Step 202 The network device sends the DCI to the terminal device in the time slot n.
- Step 203 The terminal equipment monitors the PDCCH at the first time domain position.
- the first time domain position may be time slot n+k. That is, the terminal can monitor the PDCCH in time slot n+k. Illustratively, the terminal device does not monitor the PDCCH in time slot n+1 to time slot n+k-1.
- the above process of monitoring the PDCCH can be shown in FIG. 3 , and it can be seen from FIG. 3 that the terminal device monitors the PDCCH only at the location where data transmission is scheduled.
- the terminal device When the terminal device does not send and receive signals, the terminal device can turn off the radio frequency circuit, thereby reducing its own power consumption, which is why reducing PDCCH monitoring can save power consumption.
- the terminal device every time the terminal device switches between the states of "not sending and receiving signals” and “receiving and sending signals", power consumption caused by "state transition” will be generated.
- the terminal device needs to perform a state transition near the PDCCH and another state transition near the data.
- the terminal equipment only needs to perform one state transition, and the two tasks can be completed together. Therefore, in this embodiment, the method of "monitoring the PDCCH in the data transmission time slot (ie, monitoring the PDCCH in the time slot n+k)" can avoid excessive power consumption due to state transitions.
- the first time domain position may be time slot n+k+1. That is, the terminal equipment can monitor the PDCCH in the time slot n+k+1. Illustratively, the terminal device does not monitor the PDCCH in timeslots n+1 to n+k.
- the above process of monitoring the PDCCH may be as shown in FIG. 4 .
- the monitoring position of the PDCCH and the data transmission position can be relatively close, thereby avoiding excessive power consumption due to state transitions.
- the time slot n+k+1 may be an uplink time slot, which is also the timing of monitoring the PDCCH in the time slot n+k+1.
- Some or all of the symbols may be uplink symbols, that is, the slot n+k+1 may not be a legal PDCCH monitoring opportunity.
- the first time domain position in the above-mentioned embodiment can be changed from time slot n+k+1 to: if the terminal device receives the DCI indication in time slot n that there is data transmission in time slot n+k, then The terminal equipment monitors the PDCCH at the earliest PDCCH monitoring opportunity after time slot n+k, that is, the first time domain position at this time is the time slot where the earliest PDCCH monitoring opportunity after time slot n+k is located.
- the network device when the terminal device determines at what time domain location to monitor the PDCCH in a certain way, the network device needs to determine at what time domain location the PDCCH can be sent in the same way.
- the network device can only send the PDCCH on a specific time slot, instead of sending the PDCCH on any time slot, which may limit the scheduling flexibility of the network device to a certain extent.
- the first time domain position for monitoring the PDCCH may be extended from one time slot to one time slot interval (or referred to as a time window).
- the first time domain position may include time slot n+k-m1 to time slot n+k+m2; or the first time domain position may include time slot n+k to time slot n+k+m3; or the first time domain location may include time slot n+k+m4 to time slot n+k+m5; or the first time domain location may include time slot n+k-m6 to time Slot n+k; where m1 is an integer greater than or equal to 0, m2 is an integer greater than or equal to 0, m3 is an integer greater than or equal to 0, m4 is an integer greater than or equal to 0, and m5 is an integer greater than or equal to 0 Integer, m6 is an integer greater than or equal to 0.
- the terminal The device can monitor the PDCCH from time slot n+2 to time slot n+4.
- time slots n+2 to n+4 are still near the data transmission position (ie, time slot n+3), the power consumption caused by excessive state transitions of the terminal device can still be avoided to a certain extent, and In this way, the flexibility of network device scheduling can also be improved, that is, the network device can select any time slot from time slot n+2 to time slot n+4 to send the PDCCH.
- the network device can complete the scheduling of data retransmission as soon as possible without having to wait until a later time to schedule the retransmission, so the delay of data transmission can be reduced.
- the terminal equipment monitors the PDCCH at the first time domain position, and obtains the position where the next PDCCH needs to be monitored in the DCI included in the monitored PDCCH.
- the terminal device may not receive the PDCCH at the first time domain location, that is, the scheduling information is not received, that is, there is no scheduling.
- the terminal device may monitor the PDCCH according to the first search space group after the first time domain position; wherein the terminal device is configured with a set of search spaces space, a group of search spaces is the first search space group; or the terminal device is configured with two groups of search spaces, and the two groups of search spaces include the first search space group and the second search space group; or the terminal device is configured with at least three groups Search spaces, at least three groups of search spaces include a first search space group; the first search space group includes a first time domain location.
- the monitoring period of the first search space group may be greater than the monitoring period of the second search space group.
- the monitoring period of the first search space group may also be less than or equal to the monitoring period of the second search space group, which is not limited in this application.
- a search space group may include one or more search spaces.
- the detection periods of the multiple search spaces may be the same, not identical, or completely different. The application is not limited in this regard.
- the terminal device is configured to monitor the PDCCH every time slot, that is, a set of search spaces configured by the terminal device includes one search space, and the monitoring period of the search space is one time slot.
- the terminal device receives a scheduling information (ie PDCCH) in time slot n, and schedules the data of time slot n+3, then the terminal device monitors PDCCH in time slot n+3, and in time slot n+1 And slot n+2 does not monitor PDCCH.
- a scheduling information ie PDCCH
- the terminal equipment does not monitor the PDCCH in the time slot n+3 (that is, it does not receive the PDCCH, that is, does not monitor the PDCCH sent to itself), the terminal equipment will follow the configured search space group, that is, according to the time slot by time slot. Monitor PDCCH. Assuming that the terminal device monitors the PDCCH in the time slot n+7 and schedules the data in the time slot n+9, the terminal device does not monitor the PDCCH in the time slot n+8, but monitors the PDCCH in the time slot n+9.
- FIG. 7 shows a schematic diagram of monitoring the PDCCH where the first time domain position indicated by the DCI is one time slot. As shown in FIG.
- FIG. 8 shows a schematic diagram of monitoring the PDCCH in which the first time domain position indicated by the DCI includes a time slot interval.
- the terminal equipment monitors the PDCCH according to the second search space group, that is, the terminal equipment monitors the PDCCH according to each time slot, when the terminal equipment monitors the PDCCH according to the first time domain position indicated in the DCI
- the terminal equipment monitors the PDCCH according to the first time domain position indicated in the DCI
- the PDCCH sent to itself is not monitored, for example, when k indicated by the DCI in FIG.
- the terminal equipment does not monitor the first time domain position from time slot n+2 to time slot n+4
- the terminal device then monitors the PDCCH according to the first search space group, that is, the terminal device monitors the PDCCH every 5 time slots until the PDCCH is monitored again, for example, in Figure 8, the time slot n+19 If the PDCCH is monitored in the PDCCH, the terminal device switches to the second search space group, and monitors the PDCCH according to the position indicated by the DCI in the PDCCH.
- time slot n+4 to time slot n+7 are time slots that are determined according to the configuration of the first search space group and do not include PDCCH monitoring opportunities.
- time slot n+4 to time slot n+8 are time slots that are determined according to the configuration of the first search space group and do not include PDCCH monitoring opportunities.
- the terminal device does not receive the scheduling information, it may be because there is no data to transmit temporarily. At this time, the terminal device should avoid monitoring the PDCCH (because even if the PDCCH is monitored, no data can be received).
- the terminal device when the terminal device does not receive the scheduling information, it needs to monitor the PDCCH in many time slots (ie, each time slot).
- the examples in FIG. 7 and FIG. 8 can be optimized on the basis of the example in FIG. 6. By configuring the search space group, when the terminal device does not receive scheduling information, the time slot for monitoring the PDCCH is reduced, so that the time slot for monitoring the PDCCH can be better saved. The power consumption of the end device.
- search space group can also be implemented by replacing it with a search space, which is not limited in this application.
- the terminal device may determine the first time domain symbol and the first frequency domain location according to the configuration information of the search space, and perform the first time domain symbol at the first time domain location.
- the PDCCH is monitored at the symbol and the first frequency domain location.
- the terminal device may determine the time slot to monitor the PDCCH according to a preconfigured rule, and then determine the first time domain symbol and the first frequency domain position in the time slot for monitoring the PDCCH according to the configuration information of the search space.
- the terminal device when the terminal device is configured with a set of search spaces, the set of search spaces includes one search space, and the monitoring period of the search space is 5 time slots, that is, the terminal device is configured to monitor the PDCCH every 5 time slots.
- the terminal device when the terminal device does not receive the PDCCH at the first time domain position, it can monitor the PDCCH in each time slot according to the pre-configured rules, and dynamically skip the monitoring of some PDCCHs on this basis, instead of monitoring according to the configured search space. PDCCH.
- the terminal device can determine, according to the configuration information of the configured search space, which orthogonal frequency division multiplexing (orthogonal frequency division multiplexing, OFDM) symbols need to be monitored in the time slot of the PDCCH (that is, determined according to the parameter monitoringSymbolsWithinSlot), and which frequency domain positions need to be monitored (ie, the associated control resource set (control resource set, CORESET) configuration), that is, determine the first time domain symbol and the first frequency domain position in the time slot for monitoring the PDCCH.
- OFDM orthogonal frequency division multiplexing
- OFDM orthogonal frequency division multiplexing
- the existing DCI can be reused to indicate the position of monitoring the PDCCH, which can realize how to monitor the PDCCH clearly, and can save the power consumption of the terminal and reduce the signaling overhead.
- L1 signaling is physical layer signaling.
- the DCI may further include first indication information, where the first indication information is used to indicate whether to monitor the PDCCH in the first time slot, and the first time slot is the time from time slot n to the second time domain position. slot, the second time domain position is the previous time domain position of the first time domain position.
- the second time domain position is timeslot n+k-1; for another example, the first time domain position includes timeslot n+k-m1 to timeslot n+ When k+m2, the second time domain position is time slot n+k-m1-1.
- first time domain position is timeslot n+k
- second time domain position is time slot n+k-m1-1.
- the first indication information may be represented by a 1 bit (bit), for example, it may be 1 or 0.
- bit a 1 bit
- the first indication information when the first indication information is 1, it can indicate that the PDCCH is not monitored in the first time slot, that is, only the PDCCH can be monitored according to the first time domain position indicated by k in the DCI; when the first indication information is 0, It can be expressed that the PDCCH is monitored in the first time slot, that is, the PDCCH can be monitored in every time slot between the time slot n and the first time domain position.
- the first indication information when the first indication information is 0, it means that the PDCCH is monitored in the first time slot; when the first indication information is 1, it means that the PDCCH is not monitored in the first time slot. This application does not limit this.
- FIG. 9 shows the first time domain when k in the DCI indicates An example diagram of the process of the terminal equipment monitoring the PDCCH when the location is one time slot. As shown in FIG.
- the first time domain position corresponding to the PDCCH received in time slot n is time slot n+3, and when the first indication information in time slot n is 1, it means PDCCH is not monitored in time slot 1 and time slot 2 (that is, the second time domain position is time slot 2); as shown in FIG. 9, PDCCH is monitored in time slot n+3, assuming that k indicated by DCI is 3, the corresponding first time domain position at this time is time slot n+6, and when the first indication information in time slot n+3 is 0, it means that time slot n+4 and time slot n+5 (this The PDCCH is monitored in the time slot n+5 as the second time domain position).
- the terminal equipment When the terminal equipment does not monitor the PDCCH sent to itself in timeslot n+6, the terminal equipment monitors the PDCCH every 5 timeslots, that is, switches from the second search space group (monitoring the PDCCH every timeslot) According to the first search space group (monitoring the PDCCH every 5 time slots), until the PDCCH is monitored again, for example, the PDCCH is monitored in the time slot n+16 in FIG. 9, then the terminal equipment switches to the second search space group again, The PDCCH is monitored according to the first indication information and the indication of the DCI, and the principle is the same, which will not be described in detail here. In another embodiment, FIG.
- FIG. 10 shows an example diagram of the process of monitoring the PDCCH by the terminal equipment when the first time domain position indicated by k in the DCI includes a time slot interval.
- the corresponding first time domain position when the PDCCH is received in time slot n includes time slot n+2 to time slot n+4, and the first indication in time slot n is
- the information is 1, it means that the PDCCH is not monitored in time slot 1 (that is, the second time domain position is time slot 1); as shown in FIG.
- the terminal device monitors the PDCCH every 5 time slots, that is, switches from the second search space group (monitoring the PDCCH every time slot) to the first search space group (every 5 time slots). Slot monitoring PDCCH), until the PDCCH is monitored again, for example, the PDCCH is monitored in the time slot n+19 in FIG. 10, then the terminal equipment switches to the second search space group again.
- the corresponding first time domain position at this time includes time slot n+21 to time slot 23.
- the first indication information in time slot n+19 is 0, it means that The PDCCH is monitored in time slot n+20 (time slot n+20 is taken as the second time domain position at this time).
- time slot n+7 to time slot n+10 are time slots that are determined according to the configuration of the first search space group and do not include PDCCH monitoring opportunities.
- time slot n+4 to time slot n+8 are time slots that are determined according to the configuration of the first search space group and do not include PDCCH monitoring opportunities.
- the DCI may further include second indication information.
- the second indication information When the second indication information satisfies the first condition, it instructs to monitor the PDCCH at the first time domain position.
- the second indication information When the second indication information satisfies the second condition, it indicates that the first The time domain location does not monitor the PDCCH.
- the second indication information may be represented by one bit, for example, may be 1 or 0.
- the second indication information when the second indication information is 1 (that is, the first condition is satisfied), it is possible to instruct to monitor the PDCCH at the first time domain position, that is, only monitor the PDCCH according to the first time domain position indicated by k in the DCI;
- the second indication information When the second indication information is 0 (that is, the second condition is satisfied), it may be indicated that the PDCCH is not to be monitored at the first time domain position.
- the terminal device can directly monitor the PDCCH according to the first search space group, wherein the explanation of the first search space group can refer to the description of the case where the PDCCH is not received at the first time domain position in the previous example, which will not be repeated here.
- FIG. 11 shows an example diagram of a process for the terminal equipment to monitor the PDCCH when the first time domain location indicated by k in the DCI is one time slot. As shown in Fig.
- the first time domain position corresponding to the PDCCH received in time slot n is time slot n+3, and when the second indication information in time slot n is 1, Indicates that the PDCCH is monitored in the first time domain position, namely slot n+3; the PDCCH is monitored in the time slot n+3, assuming that the k indicated by the DCI is 2, the corresponding first time domain position at this time is the time slot n+5 , when the second indication information in the time slot n+3 is 0, it means that the PDCCH is not monitored in the time slot n+5. As shown in FIG.
- the terminal device monitors the PDCCH every 5 time slots, that is, from the second search space group (each Time slot monitoring PDCCH) is switched to according to the first search space group (monitoring PDCCH every 5 time slots), until the PDCCH is monitored again, for example, the PDCCH is monitored in the time slot n+16 in FIG.
- the second search space group is used to monitor the PDCCH according to the second indication information and the indication of the DCI, and the principle is the same, which will not be described in detail here.
- the last meaningless PDCCH monitoring can be avoided by setting the second indication information to 0.
- the minimum scheduling slot interval that is, the minimum value of K0 (K0min) and/or the minimum value of K2 (K2min)
- K0min the minimum value of K0
- K2min the minimum value of K2
- the range of values of K0 and K2 that can be indicated by the network device is limited.
- K0 the larger the minimum value of K0 is, the slower the terminal device can decode the DCI.
- the minimum value of K0 is equal to 3
- K0 must be greater than or equal to 3
- the terminal device After the terminal device receives the DCI in time slot n, it does not need to complete the blind detection of DCI too quickly, because the terminal device only needs to complete the blind DCI detection before time slot n+3 to determine that there is a schedule for itself. In the case of , data transmission and reception are performed at the location of the scheduled data.
- the terminal device when the terminal device is configured with the minimum scheduling slot interval, when the terminal device does not receive the PDCCH at the first time domain position, the terminal device next monitors the time domain position of the PDCCH and the first time domain position.
- the time slot interval is not less than the first value.
- the first value may be the currently valid K0min or K2min, or a predefined value (for example, 1 time slot, or 2 time slots, or 3 time slots, etc.) or the like.
- the terminal equipment since the terminal equipment may reduce the speed of PDCCH decoding, the decoding will not be completed until K0min or K2min. Therefore, when the terminal equipment does not receive the PDCCH at the first time domain position, it will cause switching to other monitoring methods (for example, switching to a larger monitoring method).
- the effective time of the search space monitoring in the monitoring period will have a delay, that is, the time slot interval between the time domain position where the terminal device next monitors the PDCCH and the first time domain position is not less than the first value. For details, please refer to FIG. 12 .
- the minimum scheduling time slot interval configured on the terminal device may specifically be: the terminal device is configured with minimumSchedulingOffsetK0 (or minimumSchedulingOffsetK2).
- the indicated K0 value (or K2 value) when the terminal device is scheduled will not be smaller than the currently valid K0min (or K2min).
- the network device configures minimumSchedulingOffsetK0 (or minimumSchedulingOffsetK2) for the terminal device, it can configure 1 or 2 available K0min (or K2min), and through the "minimum available scheduling interval indication" field in the DCI, indicate the configured available Whether K0min (or K2min) is valid, or which K0min (or K2min) is currently valid.
- the network device reuses k in the existing DCI to instruct the terminal device to monitor the first time domain position of the PDCCH, which can reduce PDCCH monitoring and avoid high signaling overhead , that is, while reducing the power consumption of the terminal device, the signaling overhead is reduced.
- the embodiment of the present application further provides another PDCCH monitoring method, which is applicable to the communication system shown in FIG. 1 .
- the specific flow of the method may include:
- Step 1401 The terminal device receives third indication information from the network device, where the third indication information is used to indicate that the PDCCH is not to be monitored in at least one time slot.
- At least one time slot is also one or more time slots.
- the multiple timeslots may be continuous or discrete, which is not limited in this application.
- the third indication information may be PDCCH skipping information, and not monitoring the PDCCH on at least one time slot may be PDCCH monitoring skipping at least one time slot.
- Step 1402 The terminal device receives the DCI from the network device, where the DCI indicates that data is transmitted in the time slot x.
- Step 1403 When the time slot x is within the at least one time slot, the terminal device determines to monitor the PDCCH at the third time domain position.
- the third time domain position is time slot x; or the third time domain position is time slot x+1; or the third time domain position includes time slot x-y1 to time slot x+y2; or the third time domain position includes slot x to slot x+y3; or the third time domain location includes slot x+y4 to slot x+y5; or the third time domain location includes slot x-y6 to slot x; where y1 is an integer greater than or equal to 0, y2 is an integer greater than or equal to 0, y3 is an integer greater than or equal to 0, y4 is an integer greater than or equal to 0, y5 is an integer greater than or equal to 0, and y6 is an integer greater than or equal to 0 the integer.
- the method may be: on the basis of skipping the time slot for PDCCH monitoring indicated by the network device, the terminal device adds some positions that need to monitor the PDCCH based on the position of the scheduled data transmission (that is, the third time domain). location), and also add some locations where the network device can send the PDCCH.
- the terminal device is instructed not to monitor the PDCCH in the 3rd to 6th time slots. But the terminal device is scheduled for data transmission in the fourth time slot (ie, slot x), and the terminal device can monitor the PDCCH in the fourth time slot, as shown in (b) of FIG. 15 .
- the terminal device already needs to perform data transmission in the fourth time slot, and doing some additional PDCCH monitoring here will not cause a large increase in power consumption, and on the other hand, it can also provide additional possible transmission scheduling for the network device. Opportunities for DCI.
- the fourth time slot for monitoring the PDCCH can be replaced by a time slot interval, and the time slot interval can be any time slot interval that conforms to the third time domain position, such as the first time slot interval. 4 timeslots to 5th timeslots, etc. This application is not shown in detail here.
- the terminal device can add some other monitoring PDCCH locations based on the location where data needs to be transmitted, which can save the power consumption of the terminal device at the same time.
- Obtaining more opportunities to monitor the PDCCH also enables the network device to obtain more opportunities to schedule terminal devices, thereby increasing the scheduling flexibility of the network device.
- the communication apparatus 1600 may include a transceiver unit 1601 and a processing unit 1602 .
- the transceiver unit 1601 is used for the communication device 1600 to receive information (message or data) or send information (message or data), and the processing unit 1602 is used to control and manage the actions of the communication device 1600 .
- the processing unit 1602 may also control the steps performed by the transceiving unit 1601 .
- the communication apparatus 1600 may specifically be the terminal device in the foregoing embodiment, a processor in the terminal device, or a chip or a chip system, or a functional module, etc.; or, the communication apparatus 1600 may specifically be The network device in the foregoing embodiment, the processor of the network device, or a chip or a chip system, or a functional module, etc.
- the specific method may include:
- the transceiver unit 1601 is configured to receive the DCI from the network device at the time slot n, where the DCI includes a first value k of the first time slot difference, and the k is used to determine the first time domain position; the k is The time slot interval between the time slot where the first data is transmitted and the time slot n, the first data is the data scheduled by the DCI; the processing unit 1602 is used for the first time domain position Monitor PDCCH.
- the first time domain position may be time slot n+k, where k is not equal to 0.
- the processing unit 1602 may also be configured to not monitor the PDCCH from time slot n+1 to time slot n+k-1.
- the first time domain position may be time slot n+k+1.
- the first time domain location may include time slot n+k-m1 to time slot n+k+m2; or the first time domain location may include time slot n+ k to slot n+k+m3; or the first time domain location may include slot n+k+m4 to slot n+k+m5; or the first time domain location may include slot n+ k-m6 to timeslot n+k; wherein m1 is an integer greater than or equal to 0, m2 is an integer greater than or equal to 0, m3 is an integer greater than or equal to 0, and m4 is an integer greater than or equal to 0 or an integer equal to 0, the m5 is an integer greater than or equal to 0, and the m6 is an integer greater than or equal to 0.
- the transceiver unit 1601 is further configured to receive the PDCCH, and when the transceiver unit 1601 does not receive the PDCCH at the first time domain position, the processing unit 1602 is further configured to: After the first time domain location, the PDCCH is monitored according to the first search space group; wherein, the terminal device is configured with a group of search spaces, and the group of search spaces is the first search space group; or the terminal The device is configured with two sets of search spaces, the two sets of search spaces including the first search space group and the second search space group; the first search space group containing the first time domain location.
- the transceiver unit 1601 is further configured to receive the PDCCH, and when the transceiver unit 1601 does not receive the PDCCH at the first time domain position, the processing unit 1602 is further configured to: Determine the first time domain symbol and the first frequency domain position according to the configuration information of the search space; monitor the PDCCH on the first time domain symbol and the first frequency domain position.
- the DCI may further include first indication information, where the first indication information is used to indicate whether to monitor the PDCCH in the first time slot, the first time slot is from the time slot n to the second time slot The time slot between the time domain positions, the second time domain position is the previous time domain position of the first time domain position.
- the DCI may further include second indication information, where the second indication information is used to instruct to monitor the PDCCH at the first time domain position.
- the processing unit 1602 executes the following command: The time slot interval between the time domain position where the PDCCH is monitored once and the first time domain position is not less than the first value.
- the terminal device when configured with a minimum scheduling slot interval, and the minimum scheduling slot interval is greater than 0, the m1 is less than or equal to the difference between the k and the minimum scheduling slot interval. value.
- the communication apparatus 1600 when configured to implement the function of the network device in the embodiment described in FIG. 2, it may specifically include:
- the processing unit 1602 is configured to determine DCI, where the DCI includes a first value k of the first time slot difference, and the k is used to determine the first time domain position; the k is the time slot where the first data is transmitted The time slot interval between time slot n and time slot n, the first data is the data scheduled by the DCI; the transceiver unit 1601 is configured to send the DCI to the terminal device in the time slot n.
- the first time domain position may be time slot n+k, where k is not equal to 0.
- the first time domain position may be time slot n+k+1.
- the first time domain location may include time slot n+k-m1 to time slot n+k+m2; or the first time domain location may include time slot n+ k to slot n+k+m3; or the first time domain location may include slot n+k+m4 to slot n+k+m5; or the first time domain location may include slot n+ k-m6 to timeslot n+k; wherein m1 is an integer greater than or equal to 0, m2 is an integer greater than or equal to 0, m3 is an integer greater than or equal to 0, and m4 is an integer greater than or equal to 0 or an integer equal to 0, the m5 is an integer greater than or equal to 0, and the m6 is an integer greater than or equal to 0.
- the DCI may further include first indication information, where the first indication information is used to indicate whether to monitor the PDCCH in the first time slot, the first time slot is from the time slot n to the second time slot The time slot between the time domain positions, the second time domain position is the previous time domain position of the first time domain position.
- the DCI may further include second indication information, where the second indication information is used to instruct to monitor the PDCCH at the first time domain position.
- the terminal device when configured with a minimum scheduling slot interval, and the minimum scheduling slot interval is greater than 0, the m1 is less than or equal to the k minus the minimum scheduling slot interval. difference in gap spacing.
- the communication apparatus 1600 when configured to implement the functions of the terminal device in the embodiment described in FIG. 14, it may specifically include:
- the transceiver unit 1601 is configured to receive third indication information from a network device, where the third indication information is used to indicate that the PDCCH is not to be monitored on at least one time slot; and receive DCI from the network device, the DCI indicates Data is transmitted in the time slot x; the processing unit 1602 is configured to determine to monitor the PDCCH at the third time domain position when the time slot x is within the at least one time slot; wherein, the third time domain The location is the time slot x; or the third time domain location is time slot x+1; or the third time domain location includes time slot x-y1 to time slot x+y2; or the third time domain location The domain location includes time slot x to time slot x+y3; or the third time domain location includes time slot x+y4 to time slot x+y5; or the third time domain location includes time slot x-y6 to time slot Slot x; wherein, the y1 is an integer greater than or equal to 0, the y2 is an integer greater than or equal to 0,
- each functional unit in the embodiments of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
- the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
- the integrated unit if implemented in the form of a software functional unit and sold or used as an independent product, may be stored in a computer-readable storage medium.
- the technical solutions of the present application can be embodied in the form of software products in essence, or the parts that contribute to the prior art, or all or part of the technical solutions, and the computer software products are stored in a storage medium , including several instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor (processor) to execute all or part of the steps of the methods described in the various embodiments of the present application.
- the aforementioned storage medium includes: U disk, removable hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program codes .
- an embodiment of the present application further provides a communication apparatus.
- the communication apparatus 1700 may include a transceiver 1701 and a processor 1702 .
- the communication apparatus 1700 may further include a memory 1703 .
- the memory 1703 may be disposed inside the communication device 1700 or outside the communication device 1700 .
- the processor 1702 can control the transceiver 1701 to receive and transmit data and the like.
- the processor 1702 may be a central processing unit (CPU), a network processor (NP), or a combination of CPU and NP.
- the processor 1702 may further include a hardware chip.
- the above-mentioned hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD) or a combination thereof.
- the above-mentioned PLD can be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a general-purpose array logic (generic array logic, GAL) or any combination thereof.
- the transceiver 1701, the processor 1702 and the memory 1703 are connected to each other.
- the transceiver 1701, the processor 1702 and the memory 1703 are connected to each other through a bus 1704;
- the bus 1704 may be a Peripheral Component Interconnect (PCI) bus or an extended industry standard Structure (Extended Industry Standard Architecture, EISA) bus, etc.
- PCI Peripheral Component Interconnect
- EISA Extended Industry Standard Architecture
- the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in FIG. 17, but it does not mean that there is only one bus or one type of bus.
- the memory 1703 is used to store programs and the like.
- the program may include program code including computer operation instructions.
- the memory 1703 may include RAM, and may also include non-volatile memory, such as one or more disk memories.
- the processor 1702 executes the application program stored in the memory 1703 to realize the above-mentioned functions, thereby realizing the functions of the communication device 1700 .
- the communication apparatus 1700 may be the terminal device in the foregoing embodiment; it may also be the network device in the foregoing embodiment.
- the transceiver 1701 when the communication apparatus 1700 implements the function of the terminal device in the embodiment shown in FIG. 2 , the transceiver 1701 can implement the transceiving operation performed by the terminal device in the embodiment shown in FIG. 2 ; processing The controller 1702 may implement other operations other than the transceiving operation performed by the terminal device in the embodiment shown in FIG. 2 .
- the controller 1702 may implement other operations other than the transceiving operation performed by the terminal device in the embodiment shown in FIG. 2 .
- the transceiver 1701 may implement the transceiving operation performed by the network device in the embodiment shown in FIG. 2 ;
- the processor 1702 may implement other operations other than the transceiving operation performed by the network device in the embodiment shown in FIG. 2 .
- the transceiver 1701 can implement the transceiving operation performed by the terminal device in the embodiment shown in FIG. 14 ;
- the processor 1702 may implement other operations other than the transceiving operation performed by the terminal device in the embodiment shown in FIG. 14 .
- the embodiments of the present application provide a communication system, and the communication system may include the terminal device, the network device, and the like involved in the above embodiments.
- Embodiments of the present application further provide a computer-readable storage medium, where the computer-readable storage medium is used to store a computer program, and when the computer program is executed by a computer, the computer can implement the PDCCH monitoring method provided by the above method embodiments .
- Embodiments of the present application further provide a computer program product, where the computer program product is used to store a computer program, and when the computer program is executed by a computer, the computer can implement the PDCCH monitoring method provided by the above method embodiments.
- Embodiments of the present application further provide a chip, including a processor, which is coupled to a memory and configured to invoke a program in the memory so that the chip implements the PDCCH monitoring method provided by the above method embodiments.
- An embodiment of the present application further provides a chip, where the chip is coupled to a memory, and the chip is used to implement the PDCCH monitoring method provided by the above method embodiments.
- the embodiments of the present application may be provided as a method, a system, or a computer program product. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
- computer-usable storage media including, but not limited to, disk storage, CD-ROM, optical storage, etc.
- These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions
- the apparatus implements the functions specified in the flow or flows of the flowcharts and/or the block or blocks of the block diagrams.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
一种物理下行控制信道监测的方法及装置,用以明确终端设备如何监测PDCCH。其中,网络设备确定DCI,并在时隙n向终端设备发送所述DCI,所述DCI包括第一时隙差的第一值k,所述k用于确定第一时域位置;所述k为传输第一数据所在的时隙与所述时隙n之间的时隙间隔,所述第一数据为所述DCI调度的数据;所述终端设备在所述第一时域位置监测PDCCH。这样可以使终端设备明确如何监测PDCCH,进而减少PDCCH监测,降低终端设备的功耗。
Description
相关申请的交叉引用
本申请要求在2020年12月03日提交中国专利局、申请号为202011412517.3、申请名称为“一种指示PDCCH skipping的方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中;本申请要求在2021年01月15日提交中国专利局、申请号为202110053613.1、申请名称为“一种物理下行控制信道监测的方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及通信技术领域,尤其涉及一种物理下行控制信道(physical downlink control channel,PDCCH)监测的方法及装置。
在网络设备和终端设备进行数据传输之前,网络设备会向终端设备发送数据调度信息,例如PDCCH,为了避免丢失调度信息,终端设备需要按照网络设备的配置频繁地监测PDCCH。而终端设备频繁监测PDCCH的行为会导致终端设备的功耗较高。目前,针对终端设备的功耗节省的研究越来越普遍,减少终端设备功耗的细节优化方案成为业界研究方向。
发明内容
本申请提供一种PDCCH监测的方法及装置,用以明确终端设备如何监测PDCCH。
第一方面,本申请提供了一种PDCCH监测的方法,该方法可以包括:终端设备在时隙n接收来自网络设备的下行控制信息(downlink control information,DCI),所述DCI包括第一时隙差的第一值k,所述k用于确定第一时域位置;之后所述终端设备在所述第一时域位置监测PDCCH,其中,所述k为传输第一数据所在的时隙与所述时隙n之间的时隙间隔,所述第一数据为所述DCI调度的数据。
通过上述方法,所述终端设备可以通过基于所述k确定的所述第一时域位置明确如何监测PDCCH,进而减少PDCCH监测,降低终端设备的功耗。并且,网络设备复用现有的DCI中的k来指示终端设备监测PDCCH的第一时域位置,这样可以减少PDCCH监测的同时避免较高的信令开销,也即在减少终端设备的功耗的同时,减少信令开销。
在一个可能的设计中,所述第一时域位置可以为时隙n+k,k不等于0。这样所述终端设备在有数据传输的时隙监测PDCCH,可以节省终端设备的功耗。具体的,通过将监测PDCCH和进行数据传输两件工作集中在同一个时隙内完成,可以减少终端设备在“休眠模式”和“工作模式”之间的切换次数,从而降低状态转换导致的功耗。
在一个可能的设计中,所述终端设备在时隙n+1到时隙n+k-1中不监测PDCCH。这样所述终端设备在没有数据传输的时隙不监测PDCCH,可以减少PDCCH的监测,进而可以减少终端设备的功耗。
在一个可能的设计中,所述第一时域位置可以为时隙n+k+1。这样所述终端设备在有数据传输的下一个时隙监测PDCCH,可以减少终端设备的功耗。此时,所述终端设备在时隙n+k进行数据传输,在时隙n+k+1监测PDCCH,同样可以将监测PDCCH和进行数据传输两件工作集中在相近的时间内完成,从而减少终端设备在“休眠模式”和“工作模式”之间的切换次数,降低状态转换导致的功耗。
在一个可能的设计中,所述第一时域位置可以包括时隙n+k-m1至时隙n+k+m2;或者所述第一时域位置可以包括时隙n+k至时隙n+k+m3;或者所述第一时域位置可以包括时隙n+k+m4至时隙n+k+m5;或者所述第一时域位置可以包括时隙n+k-m6至时隙n+k;其中,所述m1为大于或等于0的整数,所述m2为大于或等于0的整数,所述m3为大于或等于0的整数,所述m4为大于或等于0的整数,所述m5为大于或等于0的整数,所述m6为大于或等于0的整数。这样所述终端设备在与有数据传输的时隙相关的一个时隙区间内监测PDCCH,可以将监测PDCCH和进行数据传输两件工作集中在相近的时间内完成,从而节省终端设备的功耗。并且与仅在一个时隙内监测PDCCH相比,在一个时隙区间内监测PDCCH可以提高网络设备的调度灵活度。
在一个可能的设计中,当所述终端设备在所述第一时域位置未收到PDCCH时,所述终端设备可以在所述第一时域位置之后按照第一搜索空间组监测PDCCH;其中,所述终端设备被配置了一组搜索空间,所述一组搜索空间为所述第一搜索空间组;或者所述终端设备被配置了两组搜索空间,所述两组搜索空间包括所述第一搜索空间组和第二搜索空间组;或者所述终端设备被配置了至少三组搜索空间,所述至少三组搜索空间包括所述第一搜索空间组;所述第一搜索空间组包含所述第一时域位置。
通过上述方法,这样所述终端设备在所述第一时域位置未收到PDCCH时,可以明确如何监测PDCCH。
在一个可能的设计中,当所述终端设备在所述第一时域位置未收到PDCCH时,所述终端设备可以根据搜索空间的配置信息确定第一时域符号和第一频域位置;所述终端设备在所述第一时域符号和所述第一频域位置上监测PDCCH。这样所述终端设备在所述第一时域位置未收到PDCCH时,可以明确如何监测PDCCH。
在一个可能的设计中,所述DCI还可以包括第一指示信息,所述第一指示信息用于指示是否在第一时隙监测PDCCH,所述第一时隙为从所述时隙n到第二时域位置之间的时隙,所述第二时域位置为所述第一时域位置的前一个时域位置。这样可以允许网络设备动态指示所述终端设备如何监测PDCCH,从而增加网络设备的调度灵活度。
在一个可能的设计中,所述DCI还可以包括第二指示信息,所述第二指示信息用于指示在所述第一时域位置监测PDCCH。这样可以允许网络设备动态指示所述终端设备如何监测PDCCH,从而增加网络设备的调度灵活度。
在一个可能的设计中,当所述终端设备被配置了最小调度时隙间隔时,当所述终端设备在所述第一时域位置未收到PDCCH时,所述终端设备下一次监测PDCCH的时域位置与所述第一时域位置之间的时隙间隔不小于第一数值。终端设备被配置了最小调度时隙间隔时,终端设备可以降低自身对PDCCH的处理速度,从而降低自身功耗。通过限制终端设备下一次监测PDCCH的时域位置与所述第一时域位置之间的时隙间隔不小于第一数值,可以确保所述终端设备在下一次监测PDCCH的时域位置之前一定能完成PDCCH的解码。
在一个可能的设计中,当所述终端设备被配置了最小调度时隙间隔,且所述最小调度 时隙间隔大于0时,所述m1小于或者等于所述k减去所述最小调度时隙间隔的差值。终端设备被配置了最小调度时隙间隔时,终端设备可以降低自身对PDCCH的处理速度,从而降低自身功耗。通过限制m1小于或者等于所述k减去所述最小调度时隙间隔的差值,可以确保所述终端设备在时隙n+k-m1之前能够完成PDCCH的解码,从而确定在时隙n+k-m1是否要监测PDCCH。
第二方面,本申请提供了一种PDCCH监测的方法,该方法可以包括:网络设备确定DCI,并在所述时隙n向终端设备发送所述DCI,其中,所述DCI包括第一时隙差的第一值k,所述k用于确定第一时域位置;所述k为传输第一数据所在的时隙与时隙n之间的时隙间隔,所述第一数据为所述DCI调度的数据。
通过上述方法,可以使所述终端设备可以通过基于所述k确定的所述第一时域位置明确如何监测PDCCH,进而减少PDCCH监测,降低终端设备的功耗。并且,网络设备复用现有的DCI中的k来指示终端设备监测PDCCH的第一时域位置,这样可以减少PDCCH监测的同时避免较高的信令开销,也即在减少终端设备的功耗的同时,减少信令开销。
在一个可能的设计中,所述第一时域位置可以为时隙n+k,k不等于0。这样可以使所述终端设备在有数据传输的时隙监测PDCCH,可以节省终端设备的功耗。具体的,通过将监测PDCCH和进行数据传输两件工作集中在同一个时隙内完成,可以减少终端设备在“休眠模式”和“工作模式”之间的切换次数,从而降低状态转换导致的功耗。
在一个可能的设计中,所述第一时域位置可以为时隙n+k+1。这样所述终端设备在有数据传输的下一个时隙监测PDCCH,可以减少终端设备的功耗。此时,所述终端设备在时隙n+k进行数据传输,在时隙n+k+1监测PDCCH,同样可以将监测PDCCH和进行数据传输两件工作集中在相近的时间内完成,从而减少终端设备在“休眠模式”和“工作模式”之间的切换次数,降低状态转换导致的功耗。
在一个可能的设计中,所述第一时域位置包括时隙n+k-m1至时隙n+k+m2;或者所述第一时域位置包括时隙n+k至时隙n+k+m3;或者所述第一时域位置包括时隙n+k+m4至时隙n+k+m5;或者所述第一时域位置包括时隙n+k-m6至时隙n+k;其中,所述m1为大于或等于0的整数,所述m2为大于或等于0的整数,所述m3为大于或等于0的整数,所述m4为大于或等于0的整数,所述m5为大于或等于0的整数,所述m6为大于或等于0的整数。这样可以使所述终端设备在与有数据传输的时隙相关的一个时隙区间内监测PDCCH,可以节省终端设备的功耗。并且与仅在一个时隙内监测PDCCH相比,在一个时隙区间内监测PDCCH可以提高所述网络设备的调度灵活度。
在一个可能的设计中,所述DCI还可以包括第一指示信息,所述第一指示信息用于指示是否在第一时隙监测PDCCH,所述第一时隙为从所述时隙n到第二时域位置之间的时隙,所述第二时域位置为所述第一时域位置的前一个时域位置。这样可以允许网络设备动态指示所述终端设备如何监测PDCCH,从而增加网络设备的调度灵活度。
在一个可能的设计中,所述DCI还可以包括第二指示信息,所述第二指示信息用于指示在所述第一时域位置监测PDCCH。这样可以允许网络设备动态指示所述终端设备如何监测PDCCH,从而增加网络设备的调度灵活度。
在一个可能的设计中,当所述终端设备被配置了最小调度时隙间隔,且所述最小调度时隙间隔大于0时,所述m1小于或者等于所述k减去所述最小调度时隙间隔的差值。终端设备被配置了最小调度时隙间隔时,终端设备可以降低自身对PDCCH的处理速度,从 而降低自身功耗。通过限制m1小于或者等于所述k减去所述最小调度时隙间隔的差值,可以确保所述终端设备在时隙n+k-m1之前能够完成PDCCH的解码,从而确定在时隙n+k-m1是否要监测PDCCH。
第三方面,本申请提供了一种PDCCH监测的方法,该方法可以包括:终端设备接收来自网络设备的第三指示信息,所述第三指示信息用于指示在至少一个时隙上不监测PDCCH;以及接收来自所述网络设备的下行控制信息DCI,所述DCI指示数据在时隙x传输;当所述时隙x在所述至少一个时隙内时,所述终端设备确定可以在第三时域位置上监测PDCCH;其中,所述第三时域位置为所述时隙x;或者所述第三时域位置为时隙x+1;或者所述第三时域位置包括时隙x-y1至时隙x+y2;或者所述第三时域位置包括时隙x至时隙x+y3;或者所述第三时域位置包括时隙x+y4至时隙x+y5;或者所述第三时域位置包括时隙x-y6至时隙x;其中,所述y1为大于或等于0的整数,所述y2为大于或等于0的整数,所述y3为大于或等于0的整数,所述y4为大于或等于0的整数,所述y5为大于或等于0的整数,所述y6为大于或等于0的整数。
通过上述方法,可以在网络设备指示跳过一些位置的PDCCH监测的情况下,终端设备基于需要传输数据的位置增加一些其他的监测PDCCH的位置,可以在保证节省终端设备功耗的同时获得更多监测PDCCH的机会,也令网络设备可以获得更多调度终端设备的机会,从而增加网络设备的调度灵活度。
第四方面,本申请还提供了一种通信装置,所述通信装置可以是终端设备,该通信装置具有实现上述第一方面或第一方面的各个可能的设计示例中终端设备的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,所述通信装置的结构中包括收发单元和处理单元,这些单元可以执行上述第一方面或第一方面的各个可能的设计示例中终端设备的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
在一个可能的设计中,所述通信装置的结构中包括收发器和处理器,可选的还包括存储器,所述收发器用于收发数据,以及用于与通信系统中的其他设备进行通信交互,所述处理器被配置为支持所述通信装置执行上述第一方面或第一方面的各个可能的设计示例中终端设备的相应的功能。所述存储器与所述处理器耦合,其保存所述通信装置必要的程序指令和数据。
第五方面,本申请还提供了一种通信装置,所述通信装置可以是网络设备,该通信装置具有实现上述第二方面或第二方面的各个可能的设计示例中网络设备的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,所述通信装置的结构中包括收发单元和处理单元,这些单元可以执行上述第二方面或第二方面的各个可能的设计示例中网络设备的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
在一个可能的设计中,所述通信装置的结构中包括收发器和处理器,可选的还包括存储器,所述收发器用于收发数据,以及用于与通信系统中的其他设备进行通信交互,所述处理器被配置为支持所述通信装置执行上述第二方面或第二方面的各个可能的设计示例中网络设备的相应的功能。所述存储器与所述处理器耦合,其保存所述通信装置必要的程 序指令和数据。
第六方面,本申请还提供了一种通信装置,所述通信装置可以是终端设备,该通信装置具有实现上述第三方面或第三方面的各个可能的设计示例中终端设备的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,所述通信装置的结构中包括收发单元和处理单元,这些单元可以执行上述第三方面或第三方面的各个可能的设计示例中终端设备的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
在一个可能的设计中,所述通信装置的结构中包括收发器和处理器,可选的还包括存储器,所述收发器用于收发数据,以及用于与通信系统中的其他设备进行通信交互,所述处理器被配置为支持所述通信装置执行上述第三方面或第三方面的各个可能的设计示例中终端设备的相应的功能。所述存储器与所述处理器耦合,其保存所述通信装置必要的程序指令和数据。
第七方面,本申请实施例提供了一种通信系统,可以包括上述提及的终端设备和网络设备。
第八方面,本申请实施例提供的一种计算机可读存储介质,该计算机可读存储介质存储有程序指令,当程序指令在计算机上运行时,使得计算机执行本申请实施例第一方面及其任一可能的设计,或者第二方面及其任一可能的设计,或者第三方面及其任一可能的设计中所述的方法。示例性的,计算机可读存储介质可以是计算机能够存取的任何可用介质。以此为例但不限于:计算机可读介质可以包括非瞬态计算机可读介质、随机存取存储器(random-access memory,RAM)、只读存储器(read-only memory,ROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)、CD-ROM或其他光盘存储、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质。
第九方面,本申请实施例提供一种包括计算机程序代码或指令的计算机程序产品,当其在计算机上运行时,使得计算机实现上述第一方面或第一方面任一种可能的设计,或者第二方面及其任一可能的设计,或者第三方面及其任一可能的设计中所述的方法。
第十方面,本申请还提供了一种芯片,包括处理器,所述处理器与存储器耦合,用于读取并执行所述存储器中存储的程序指令,以使所述芯片实现上述第一方面或第一方面任一种可能的设计,或者第二方面及其任一可能的设计,或者第三方面及其任一可能的设计中所述的方法。
上述第四方面至第十方面中的各个方面以及各个方面可能达到的技术效果请参照上述针对第一方面、第二方面或第三方面中的各种可能方案可以达到的技术效果说明,这里不再重复赘述。
图1为本申请提供的一种通信系统的架构示意图;
图2为本申请提供的一种PDCCH监测的方法的流程图;
图3为本申请提供的一种监测PDCCH的示意图;
图4为本申请提供的另一种监测PDCCH的示意图;
图5为本申请提供的另一种监测PDCCH的示意图;
图6为本申请提供的另一种监测PDCCH的示意图;
图7为本申请提供的另一种监测PDCCH的示意图;
图8为本申请提供的另一种监测PDCCH的示意图;
图9为本申请提供的另一种监测PDCCH的示意图;
图10为本申请提供的另一种监测PDCCH的示意图;
图11为本申请提供的另一种监测PDCCH的示意图;
图12为本申请提供的另一种监测PDCCH的示意图;
图13为本申请提供的另一种监测PDCCH的示意图;
图14为本申请提供的另一种PDCCH监测的方法的流程图;
图15为本申请提供的另一种监测PDCCH的示意图;
图16为本申请提供的一种通信装置的结构示意图;
图17为本申请提供的一种通信装置的结构图。
下面将结合附图对本申请作进一步地详细描述。
本申请实施例提供一种PDCCH监测的方法及装置,用以明确终端设备如何监测PDCCH。其中,本申请所述方法和装置基于同一技术构思,由于方法及装置解决问题的原理相似,因此装置与方法的实施可以相互参见,重复之处不再赘述。
在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
在本申请中的描述中,“至少一个(种)”是指一个(种)或者多个(种),多个(种)是指两个(种)或者两个(种)以上。
为了更加清晰地描述本申请实施例的技术方案,下面结合附图,对本申请实施例提供的PDCCH监测方法及装置进行详细说明。
图1示出了本申请实施例涉及的通信系统的架构,所述通信系统的架构中包括网络设备和终端设备,其中:
所述网络设备为具有无线收发功能的设备或可设置于该网络设备的芯片,该网络设备包括但不限于:基站(generation node B,gNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission and reception point,TRP或者transmission point,TP)等,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括射频单元(radio unit,RU)。CU实现gNB的部分功能,DU实现gNB的部分功能,比如,CU实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能,DU实现无线链路控制(radio link control,RLC)、媒体接入控制(media access control,MAC)和物理(physical,PHY)层的功能。 由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令或PHCP层信令,也可以认为是由DU发送的,或者,由DU+RU发送的。可以理解的是,网络设备可以为CU节点、或DU节点、或包括CU节点和DU节点的设备。此外,CU可以划分为接入网RAN中的网络设备,也可以将CU划分为核心网CN中的网络设备,对此不作限定。
所述终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智能穿戴设备(智能眼镜、智能手表、智能耳机等)、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。本申请中将具有无线收发功能的终端设备及可设置于前述终端设备的芯片统称为终端设备。
需要说明的是,图1所示的通信系统可以但不限于为第五代(5th Generation,5G)系统,如新一代无线接入技术(new radio access technology,NR),可选的,本申请实施例的方法还适用于未来的各种通信系统,例如6G系统或者其他通信网络等。
目前,在NR中,网络设备的调度方式如下:
网络设备调度终端设备接收下行数据,或网络设备调度终端设备发送上行数据的时候,首先会发一个调度信息(PDCCH),该调度信息会指示物理下行共享信道(physical downlink shared channel,PDSCH)(其中包含下行数据)或物理上行共享信道(physical uplink shared channel,PUSCH)(其中包含上行数据)的传输参数,在这些传输参数中,包括PDSCH/PUSCH的时域资源位置。具体地,PDCCH中携带下行控制信息(downlink control information,DCI),网络设备通过DCI指示上述时域资源位置。其中,对于下行数据,网络设备会通过DCI中的时域资源分配(time domain resource allocation,TDRA)字段指示K0值,用于确定PDCCH和PDSCH之间的时隙间隔;对于上行数据,网络设备会通过DCI中的TDRA字段指示K2值,用于确定PDCCH和PUSCH之间的时隙间隔。
终端设备在接收自己的DCI时,需要在下行控制区域中盲检(blind detect,BD)发送给自己的PDCCH,即终端设备监听(monitor)许多PDCCH候选位置(PDCCH candidate),从中找出是否有发给自己的。UE需要盲检的一组候选位置组成一个搜索空间(search space)。根据网络设备的配置,终端设备可能会监测一个(组)或多个(组)搜索空间,从中寻找是否有发送给自己的PDCCH。其中,终端设备需要监测PDCCH的位置,也可以被称为PDCCH监测时机(PDCCH monitoring occasion)。
基于上述描述,终端设备会频繁地监测PDCCH,但是若在一段时间内,终端设备并没有业务发生,即没有下行数据或上行数据需要传输时,终端设备即使监测PDCCH也无法接收到发送给自己的PDCCH。因此终端设备在这些时间仍会监测PDCCH,这样会造成终端设备的功耗。
为了降低终端设备的功耗,目前标准讨论的一种方案是:网络设备可以向终端设备发送一个指示信息,指示终端设备跳过一段时间的PDCCH监测,也即指示的这段时间内不 监测PDCCH。由于在3GPP Rel-16的NR非授权频谱(NR unlicensed,NR-U)中也已经标准化了搜索空间切换的方案,进而降低终端设备功耗的另一种方案可以是:网络设备可以向终端设备发送一个指示信息,指示终端设备在预先配置的两组搜索空间中切换。例如,终端设备被配置2组搜索空间,第一搜索空间组对应的监测周期为1个时隙(slot),第二搜索空间组对应的监测周期为4个时隙(slot)。网络设备可以向终端设备发送一个指示信息,指示终端设备可以从监测第一搜索空间组切换为监测第二搜索空间组,从而减少PDCCH监测的次数,以节省终端设备的功耗。
上述两种方案,都能够达到“减少PDCCH监测”的目的。但是第一种方案中,每次指示后,终端设备仅一段时间不监测PDCCH,之后会恢复到正常的监测状态。第二种方案中,在一次指示之后,到下次指示之前,终端设备均保持监测被指示的搜索空间不变。在上述两种方案中,通常会使用物理层信令(例如DCI)携带相关的指示信息,需要指示的信息种类越多,需要的比特数就越多。例如,在第一种方案中,如果终端设备只能被指示“跳过3个时隙”和“不跳过PDCCH”两种信息,则1个比特足够;如果终端设备被指示“跳过2个时隙”、“跳过4个时隙”、“跳过6个时隙”和“不跳过PDCCH”,则需要2个比特等等。在第二种方案中,如果想切换的周期、或切换的搜索空间(组)数量越多,就需要越多的比特数,这样会造成信令开销较大。
基于此,本申请提出了一种PDCCH监测的方法,明确了如何监测PDCCH,并且可以在保持PDCCH监测的灵活度的同时尽量减少信令开销。
需要说明的是,在本申请实施例中可实现监测或者不监测PDCCH的可以是终端设备,或者是终端设备中的处理器,或者是芯片或芯片系统,或者是一个功能模块等;实现指示终端设备如何监测PDCCH的可以是网络设备,或者是网络设备中的处理器,或者是芯片或芯片系统,或者是一个功能模块等。在以下的实施例中,仅以终端设备和网络设备为例对本申请提供的PDCCH监测的方法进行详细说明,但对本申请并不作为限定。
基于以上描述,本申请实施例提供的一种PDCCH监测的方法,适用于图1所示的通信系统。参阅图2所示,该方法的具体流程可以包括:
步骤201:网络设备确定DCI,该DCI包括第一时隙差的第一值k,其中,第一值k用于确定第一时域位置;第一值k为传输第一数据所在的时隙与时隙n之间的时隙间隔,第一数据为DCI调度的数据。
其中,第一值k可以为现有技术中网络设备在调度终端设备的数据传输时,通过DCI中的TDRA字段指示的K0(对应下行数据PDSCH)或K2(对应上行数据PUSCH)值。在本申请中复用现有TDRA字段也用于指示第一时域位置,也即指示终端设备下一次监测PDCCH的时机,则可以不用引入额外信令开销。
示例性地,DCI还指示在时隙n+k有数据传输,也即在时隙n+k中传输第一数据。
步骤202:网络设备在时隙n向终端设备发送该DCI。
步骤203:终端设备在第一时域位置监测PDCCH。
在一种可选的实施方式中,当k不等于0时,第一时域位置可以为时隙n+k。也即终端可以在时隙n+k监测PDCCH。示例性地,终端设备在时隙n+1到时隙n+k-1中不监测PDCCH。例如,上述监测PDCCH的过程可以如图3所示,在图3中可以看出,终端设备仅在被调度了数据传输的位置监测PDCCH。
当终端设备不收发信号时,终端设备可以关闭射频电路,从而降低自身功耗,这也是 减少PDCCH监测之所以能够节省功耗的原因。但是每次终端设备在“不收发信号”于“收发信号”状态之间转换的时候,会产生“状态转换”带来的功耗。如果PDCCH的监测位置和数据的传输位置相隔比较远,终端设备需要在PDCCH附近做一次状态转换,在数据附近再做一次状态转换。而如果PDCCH的监测位置和数据的传输位置比较近,则终端设备仅需要做一次状态转换,就可以把两件工作一起完成。因此在这种实施方式中“在数据传输的时隙内监测PDCCH(也即在时隙n+k监测PDCCH)”的方法,可以避免过多的由于状态转换造成的功耗。
在又一种可选的实施方式中,第一时域位置可以为时隙n+k+1。也即终端设备可以在时隙n+k+1监测PDCCH。示例性地,终端设备在时隙n+1到时隙n+k中不监测PDCCH。例如,上述监测PDCCH的过程可以如图4所示。同理,可以实现PDCCH的监测位置和数据的传输位置比较近,从而避免过多的由于状态转换造成的功耗。
需要说明的是,如果是在时分双工(time division duplexing,TDD)系统中,时隙n+k+1可能是上行时隙,也即时隙n+k+1中的监测PDCCH的时机对应的符号部分或全部可能是上行符号,即时隙n+k+1可能不是一个合法的PDCCH监测时机。此时可以将上述实施方式中的第一时域位置可以为时隙n+k+1改为:若终端设备在时隙n中收到DCI指示在时隙n+k有数据传输时,则终端设备在时隙n+k之后最早的PDCCH监测时机监测PDCCH,也即此时第一时域位置为时隙n+k之后最早的PDCCH监测时机所在的时隙。
在具体实施时,当终端设备按照某一方式确定在什么时域位置监测PDCCH时,网络设备需要按照相同的方式确定在什么时域位置才能够发送PDCCH。在上述两种实施方式中,网络设备只能在特定的时隙上发送PDCCH,而不是在任意时隙上发送PDCCH,这样可能在一定程度上限制了网络设备的调度灵活性。为了降低对网络设备调度的限制,可以将监测PDCCH的第一时域位置从一个时隙扩展成一个时隙区间(或称为一个时间窗)。
基于此,在另一种可选的实施方式中,第一时域位置可以包括时隙n+k-m1至时隙n+k+m2;或者第一时域位置可以包括时隙n+k至时隙n+k+m3;或者第一时域位置可以包括时隙n+k+m4至时隙n+k+m5;或者第一时域位置可以包括时隙n+k-m6至时隙n+k;其中,m1为大于或等于0的整数,m2为大于或等于0的整数,m3为大于或等于0的整数,m4为大于或等于0的整数,m5为大于或等于0的整数,m6为大于或等于0的整数。
例如,如图5所示,假设网络设备在时隙n调度了时隙n+3的数据传输,也即网络设备在时隙n向终端设备发送的DCI中包含的k值为3,则终端设备可以在时隙n+2~时隙n+4监测PDCCH。
在该例中,由于时隙n+2~时隙n+4仍然在数据传输的位置(即时隙n+3)附近,仍然可以一定程度上避免终端设备过多状态转换造成的功耗,并且这样还可以提高网络设备调度的灵活度,即网络设备可以选择时隙n+2~时隙n+4中的任意时隙发送PDCCH。
在上述实施方式中,通过合理配置第一时域位置包括的时隙区间,若在时隙n+k之后的时隙仍监测PDCCH,还可以在这段时间内监测可能的重传调度。在这种情况下,网络设备可以尽快完成数据重传的调度,而不必等到较晚的时间再调度重传,因此可以降低数据传输的时延。
需要说明的是,在上述图3和图4所示的示例中,均是以终端设备第一时域位置监测到PDCCH,并在监测到的PDCCH包含的DCI中得到下一个需要监测PDCCH的位置为例进行说明的。在一种场景中,终端设备在第一时域位置可能未收到PDCCH,也即没有 收到调度信息,也即无调度。
在一种示例中,当终端设备在第一时域位置未收到PDCCH时,终端设备可以在第一时域位置之后按照第一搜索空间组监测PDCCH;其中,终端设备被配置了一组搜索空间,一组搜索空间为第一搜索空间组;或者终端设备被配置了两组搜索空间,两组搜索空间包括第一搜索空间组和第二搜索空间组;或者终端设备被配置了至少三组搜索空间,至少三组搜索空间包括第一搜索空间组;第一搜索空间组包含第一时域位置。
其中,在一种具体的实施方式中,第一搜索空间组的监测周期可以大于第二搜索空间组的监测周期。当然,在实现时,第一搜索空间组的监测周期也可以小于或者等于第二搜索空间组的监测周期,本申请对此不作限定。
可选的,一个搜索空间组可以包含一个或者多个搜索空间,当一个搜索空间组包含多个搜索空间时,多个搜索空间的检测周期可以相同,可以不完全相同,或者可以完全不同,本申请对此不作限定。
例如,假设终端设备被配置了每个时隙均监测PDCCH,也即终端被配置的一组搜索空间包含一个搜索空间,该搜索空间的监测周期为一个时隙。如图6所示,终端设备在时隙n收到一个调度信息(即PDCCH),调度了时隙n+3的数据,则终端设备在时隙n+3监测PDCCH,在时隙n+1和时隙n+2不监测PDCCH。但是如果终端设备在时隙n+3没有监测到PDCCH(也即未收到PDCCH,也即未监测到发送给自己的PDCCH),则终端设备就按照配置的搜索空间组也即按照逐个时隙监测PDCCH。假设,终端设备直到在时隙n+7中监测到了PDCCH,调度了时隙n+9内的数据,则终端设备不在时隙n+8监测PDCCH,而是在时隙n+9监测PDCCH。
又例如,假设终端设备被配置了两组搜索空间,第一搜索空间组包含一个搜索空间,该搜索空间的监测周期为5个时隙,也即终端设备被配置每5个时隙监测PDCCH;第二搜索空间组包含一个搜索空间,该搜索空间的监测周期为1个时隙,也即终端设备被配置每1个时隙监测PDCCH。一种实施例中,图7示出了DCI指示的第一时域位置为一个时隙的监测PDCCH的示意图。如图7所示,当终端设备在按照第二搜索空间组监测PDCCH时,也即终端设备按照每个时隙监测PDCCH的情况下,当终端设备在根据DCI中指示的第一时域位置监测PDCCH时,当未监测到发送给自己的PDCCH时,例如图7中在DCI指示的k为3时,终端设备在第一时域位置时隙n+3未监测到发送给自己的PDCCH时,终端设备则在之后按照第一搜索空间组监测PDCCH,也即终端设备按照每5个时隙监测PDCCH,直至再次监测到PDCCH,例如图7中在时隙n+18中监测到PDCCH,则终端设备再切换到第二搜索空间组,并按照PDCCH中的DCI指示的位置监测PDCCH。另一种实施例中,图8示出了DCI指示的第一时域位置包括一个时隙区间的监测PDCCH的示意图。如图8所示,当终端设备在按照第二搜索空间组监测PDCCH时,也即终端设备按照每个时隙监测PDCCH的情况下,当终端设备在根据DCI中指示的第一时域位置监测PDCCH时,当未监测到发送给自己的PDCCH时,例如图8中在DCI指示的k为3时,终端设备在第一时域位置即时隙n+2到时隙n+4中未监测到发送给自己的PDCCH时,终端设备则在之后按照第一搜索空间组监测PDCCH,也即终端设备按照每5个时隙监测PDCCH,直至再次监测到PDCCH,例如图8中在时隙n+19中监测到PDCCH,则终端设备再切换到第二搜索空间组,并按照PDCCH中的DCI指示的位置监测PDCCH。
需要说明的是,图7中时隙n+3之后的3个监测PDCCH的位置均为根据第一搜索空 间组的配置确定的PDCCH监测时机。其中,时隙n+4到时隙n+7是根据第一搜索空间组的配置确定的不包含PDCCH监测时机的时隙。
同理,图8中时隙n+4之后的3个监测PDCCH的位置均为根据第一搜索空间组的配置确定的PDCCH监测时机。其中,时隙n+5到时隙n+8是根据第一搜索空间组的配置确定的不包含PDCCH监测时机的时隙。
通常情况下,若终端设备没有收到调度信息,可能是因为暂时没有数据需要传输,此时终端设备应该避免监测PDCCH(因为即使监测了PDCCH,也收不到数据)。但是上述图6所示的示例中,终端设备在没有收到调度信息的时候,需要反而需要在很多时隙(即每个时隙)监测PDCCH。而图7和图8中的示例可以是在图6示例的基础上的优化,通过配置搜索空间组,在终端设备没有收到调度信息时,减少监测PDCCH的时隙,从而可以更好地节省终端设备的功耗。
需要说明的是,在本申请中,搜索空间组也可以替换成搜索空间来实现,本申请对此不作限定。
在另一种示例中,当终端设备在第一时域位置未收到PDCCH时,终端设备可以根据搜索空间的配置信息确定第一时域符号和第一频域位置,并在第一时域符号和第一频域位置上监测PDCCH。
具体地,终端设备可以根据预先配置的规则确定需要监测PDCCH的时隙,然后在根据搜索空间的配置信息确定监测PDCCH的时隙内的第一时域符号和第一频域位置。
例如,当终端设备配置了一组搜索空间,该组搜索空间中包括一个搜索空间,该搜索空间的监测周期为5个时隙,也即终端设备被配置每5个时隙监测PDCCH。但是当终端设备在第一时域位置未收到PDCCH时,可以按照预先配置的规则按照每个时隙监测PDCCH,同时在此基础上动态跳过一些PDCCH的监测,不按照配置的搜索空间监测PDCCH。具体地,终端设备可以根据被配置的搜索空间的配置信息,确定需要监测PDCCH的时隙内需要监测哪些正交频分复用(orthogonal frequency division multiplexing,OFDM)符号(即根据参数monitoringSymbolsWithinSlot确定),以及需要监测哪些频域位置(即关联的控制资源集合(control resource set,CORESET)配置),也即确定监测PDCCH的时隙内的第一时域符号和第一频域位置。
通过上述方法,可以复用现有DCI指示监测PDCCH的位置,这样可以实现明确如何监测PDCCH,并且可以在节省终端的功耗的同时减少信令开销。
在一种可选的实施方式中,为了更灵活的适配业务变化,可以引入有限的层1(layer1,L1)信令开销。具体地,L1信令即为物理层信令。
一种实施方式中,DCI还可以包括第一指示信息,第一指示信息用于指示是否在第一时隙监测PDCCH,第一时隙为从时隙n到第二时域位置之间的时隙,第二时域位置为第一时域位置的前一个时域位置。
例如,第一时域位置为时隙n+k时,第二时域位置为时隙n+k-1;又例如,第一时域位置包括时隙n+k-m1至时隙n+k+m2时,第二时域位置为时隙n+k-m1-1。当然,第一时域位置还有其他多种可能的示例,进而第二时域位置也还有多种可能的示例,此处不再一一列举。
示例性地,第一指示信息可以通过一个1比特(bit)表示,例如可以为1或0。例如,第一指示信息为1时,可以表示在第一时隙不监测PDCCH,也即只按照DCI中的k指示 的第一时域位置监测PDCCH即可;当第一指示信息为0时,可以表示在第一时隙监测PDCCH,也即可以在时隙n到第一时域位置之间的每个时隙均监测PDCCH。
当然,在具体实施时,也可以第一指示信息为0时,表示在第一时隙监测PDCCH;当第一指示信息为1时,表示在第一时隙不监测PDCCH。本申请对此不做限定。
例如,假设第一指示信息为1时,表示在第一时隙不监测PDCCH;当第一指示信息为0时,表示在第一时隙监测PDCCH。结合终端设备在第一时域位置未收到PDCCH(也即未监测到发送给自己的PDCCH)的情况,一种实施例中,图9示出了当DCI中的k指示的第一时域位置为一个时隙时,终端设备监测PDCCH的过程的一种示例图。如图9所示,假设k为3时,在时隙n中收到PDCCH时对应的第一时域位置为时隙n+3,在时隙n中的第一指示信息为1时,表示在时隙1和时隙2(也即第二时域位置为时隙2)中不监测PDCCH;如图9中所示,在时隙n+3中监测到了PDCCH,假设DCI指示的k为3时,此时对应的第一时域位置为时隙n+6,在时隙n+3中的第一指示信息为0时,表示在时隙n+4和时隙n+5(此时时隙n+5即作为第二时域位置)中监测PDCCH。当终端设备在时隙n+6中未监测到发送给自己的PDCCH时,终端设备按照每5个时隙监测PDCCH,也即,从按照第二搜索空间组(每个时隙监测PDCCH)切换到按照第一搜索空间组(每5个时隙监测PDCCH),直至再次监测到PDCCH,例如图9中在时隙n+16中监测到PDCCH,则终端设备再切换到第二搜索空间组,并按照第一指示信息以及DCI的指示监测PDCCH,原理相同,此处不再详细描述。另一种实施例中,图10示出了当DCI中的k指示的第一时域位置包括一个时隙区间时,终端设备监测PDCCH的过程的一种示例图。如图10所示,假设k为3时,在时隙n中收到PDCCH时对应的第一时域位置包括时隙n+2到时隙n+4,在时隙n中的第一指示信息为1时,表示在时隙1(也即第二时域位置为时隙1)中不监测PDCCH;如图10中所示,在时隙n+2到时隙n+4中未监测到发送给自己的PDCCH,则终端设备按照每5个时隙监测PDCCH,也即,从按照第二搜索空间组(每个时隙监测PDCCH)切换到按照第一搜索空间组(每5个时隙监测PDCCH),直至再次监测到PDCCH,例如图10中在时隙n+19中监测到PDCCH,则终端设备再切换到第二搜索空间组。此时,假设DCI指示的k为3时,此时对应的第一时域位置包括时隙n+21到时隙23,在时隙n+19中的第一指示信息为0时,表示在时隙n+20(此时时隙n+20即作为第二时域位置)中监测PDCCH。
需要说明的是,图9中时隙n+6之后的2个监测PDCCH的位置均为根据第一搜索空间组的配置确定的PDCCH监测时机。其中,时隙n+7到时隙n+10是根据第一搜索空间组的配置确定的不包含PDCCH监测时机的时隙。
同理,图10中时隙n+4之后的3个监测PDCCH的位置均为根据第一搜索空间组的配置确定的PDCCH监测时机。其中,时隙n+5到时隙n+8是根据第一搜索空间组的配置确定的不包含PDCCH监测时机的时隙。
另一种实施方式中,DCI还可以包括第二指示信息,第二指示信息满足第一条件时,指示在第一时域位置监测PDCCH,第二指示信息满足第二条件时,指示在第一时域位置不监测PDCCH。
示例性地,第二指示信息可以通过一个1bit表示,例如可以为1或0。例如,第二指示信息为1时(即满足第一条件),可以指示在第一时域位置监测PDCCH,也即只按照DCI中的k指示的第一时域位置监测PDCCH即可;当第二指示信息为0时(即满足第二 条件),可以指示在第一时域位置不监测PDCCH。此时,终端设备可以直接按照第一搜索空间组监测PDCCH,其中对第一搜索空间组的解释可以参考前面示例中针对第一时域位置未收到PDCCH的情况的描述,这里不再赘述。
当然,在具体实施时,也可以第二指示信息为0时,表示在第一时域位置监测PDCCH;当第二指示信息为1时,表示在第一时域位置不监测PDCCH。本申请对此不做限定。
例如,假设第二指示信息为1时,表示在第一时域位置监测PDCCH;当第一指示信息为0时,表示在第一时域位置不监测PDCCH,结合在终端设备在第一时域位置未收到PDCCH的情况,图11示出了一种当DCI中的k指示的第一时域位置为一个时隙时,终端设备监测PDCCH的过程的一种示例图。如图11所示,结合搜k为3时,在时隙n中收到PDCCH时对应的第一时域位置为时隙n+3,在时隙n中的第二指示信息为1时,表示在第一时域位置即时隙n+3监测PDCCH;在时隙n+3中监测到了PDCCH,假设DCI指示的k为2时,此时对应的第一时域位置为时隙n+5,在时隙n+3中的第二指示信息为0时,表示在时隙n+5中不监测PDCCH。如图11所示,在时隙n+6中,终端设备未监测到发送给自己的PDCCH时,终端设备按照每5个时隙监测PDCCH,也即,从按照第二搜索空间组(每个时隙监测PDCCH)切换到按照第一搜索空间组(每5个时隙监测PDCCH),直至再次监测到PDCCH,例如图11中在时隙n+16中监测到PDCCH,则终端设备再切换到第二搜索空间组,并按照第二指示信息以及DCI的指示监测PDCCH,原理相同,此处不再详细描述。
在该实施方式中,如果网络设备确定当前发送的数据已经是最后一部分数据,则可以通过第二指示信息为0,来避免最后一次无意义的PDCCH监测。
目前,在3GPP Rel-16的终端设备功耗节省(UE power saving)课题中,引入了对跨时隙调度的支持。通过引入最小调度时隙间隔,即K0最小值(K0min)和/或K2最小值(K2min),限制网络设备可以指示的K0值以及K2值的取值范围。以K0为例,K0最小值越大,终端设备解码DCI的速度就可以越慢。例如,当K0最小值等于3的时候,就意味着K0一定大于或等于3,即PDCCH和其调度的PDSCH之间至少会间隔3个时隙(slot)。此时终端设备在时隙n收到DCI之后,就不需要过于快速的对DCI完成盲检,因为终端设备只需要在时隙n+3之前完成DCI盲检就能够在确定有针对自己的调度的情况下,在被调度的数据的位置进行数据收发。
基于此,当终端设备被配置了最小调度时隙间隔时,当终端设备在第一时域位置未收到PDCCH时,终端设备下一次监测PDCCH的时域位置与第一时域位置之间的时隙间隔不小于第一数值。其中,第一数值可以为当前生效的K0min或K2min,或者为预定义的取值(例如为1个时隙,或2个时隙,或3个时隙等等)等。
也就是说,由于终端设备可能降低PDCCH解码的速度,到K0min或K2min才完成解码,因此终端设备在第一时域位置上未收到PDCCH时,导致切换到其他监测方式(例如切换到更大监测周期的搜索空间监测)的生效时间会有一个延时(delay),也即终端设备下一次监测PDCCH的时域位置与第一时域位置之间的时隙间隔不小于第一数值。具体可以参见图12所示。
在一种示例性的实施方式中,当终端设备被配置了最小调度时隙间隔,且最小调度时隙间隔大于0时,m1小于或者等于k减去最小调度时隙间隔的差值。也就是说,如果第一时域位置包括时隙n+k-m1至时隙n+k+m2时,需要约束该时隙区间的起始位置要在时 隙n+K0min(或K2min)之后,即m1<=k-K0min或m1<=k-K2min,例如图13所示。
在一种可选的实施方式中,终端设备被配置了最小调度时隙间隔具体可以为:终端设备被配置了minimumSchedulingOffsetK0(或minimumSchedulingOffsetK2)。此时终端设备被调度时被指示的K0值(或K2值)不会小于当前正在生效的K0min(或K2min)。其中,网络设备为终端设备配置minimumSchedulingOffsetK0(或minimumSchedulingOffsetK2)时,可以配置1个或2个可用的K0min(或K2min),并通过DCI中的“最小可用调度间隔指示”域,指示被配置的可用的K0min(或K2min)是否生效,或当前生效的K0min(或K2min)是哪个。
采用本申请实施例提供的PDCCH监测的方法,网络设备复用现有的DCI中的k来指示终端设备监测PDCCH的第一时域位置,这样可以减少PDCCH监测的同时避免较高的信令开销,也即在减少终端设备的功耗的同时,减少信令开销。
本申请实施例还提供了另一种PDCCH监测的方法,适用于图1所示的通信系统。参阅图14所示,该方法的具体流程可以包括:
步骤1401:终端设备接收来自网络设备的第三指示信息,该第三指示信息用于指示在至少一个时隙上不监测PDCCH。
其中,至少一个时隙也即一个或多个时隙。示例性地,当至少一个时隙为多个时隙时,多个时隙可以是连续的,也可以是离散的,本申请对此不作限定。
具体地,第三指示信息可以为PDCCH跳过(skipping)信息,在至少一个时隙上不监测PDCCH可以为跳过至少一个时隙的PDCCH监测。
步骤1402:终端设备接收来自网络设备的DCI,该DCI指示数据在时隙x传输。
步骤1403:当时隙x在该至少一个时隙内时,终端设备确定在第三时域位置上监测PDCCH。
其中,第三时域位置为时隙x;或者第三时域位置为时隙x+1;或者第三时域位置包括时隙x-y1至时隙x+y2;或者第三时域位置包括时隙x至时隙x+y3;或者第三时域位置包括时隙x+y4至时隙x+y5;或者第三时域位置包括时隙x-y6至时隙x;其中,y1为大于或等于0的整数,y2为大于或等于0的整数,y3为大于或等于0的整数,y4为大于或等于0的整数,y5为大于或等于0的整数,y6为大于或等于0的整数。
简单来说,该方法可以为:在网络设备指示的跳过PDCCH监测的时隙的基础上,终端设备基于被调度的数据传输的位置再增加一些需要监测PDCCH的位置(也即第三时域位置),同时也为网络设备增加一些可以发送PDCCH的位置。
例如,如图15中的(a)所示,终端设备被指示在第3~第6个时隙中不监测PDCCH。但是终端设备在第四个时隙(即时隙x)中被调度了数据传输,终端设备可以在第4个时隙监测PDCCH,如图15中的(b)所示。这样,一方面终端设备已经需要在第4个时隙进行数据传输了,在这里做一些额外的PDCCH监测不会造成功耗的大量上升,另一方面还可以为网络设备提供额外的可能发送调度DCI的机会。
需要说明的是图15中的(b)中,监测PDCCH的第4个时隙可以被替换成一个时隙区间,时隙区间可以为符合第三时域位置的任一个时隙区间,例如第4个时隙至第5个时隙等。本申请此处不再详细示出。
采用上述PDCCH监测的方法,在网络设备指示跳过一些位置的PDCCH监测的情况下,终端设备可以基于需要传输数据的位置增加一些其他的监测PDCCH的位置,可以在 保证节省终端设备功耗的同时获得更多监测PDCCH的机会,也令网络设备可以获得更多调度终端设备的机会,从而增加网络设备的调度灵活度。
基于以上实施例,本申请实施例还提供了一种通信装置,参阅图16所示,通信装置1600可以包括收发单元1601和处理单元1602。其中,所述收发单元1601用于所述通信装置1600接收信息(消息或数据)或发送信息(消息或数据),所述处理单元1602用于对所述通信装置1600的动作进行控制管理。所述处理单元1602还可以控制所述收发单元1601执行的步骤。
示例性地,该通信装置1600具体可以是上述实施例中的终端设备、所述终端设备中的处理器,或者芯片或者芯片系统,或者是一个功能模块等;或者,该通信装置1600具体可以是上述实施例中的网络设备、所述网络设备的处理器,或者芯片或者芯片系统,或者是一个功能模块等。
在一个实施例中,所述通信装置1600用于实现上述图2所述的实施例中终端设备的功能时,具体可以包括:
所述收发单元1601,用于在时隙n接收来自网络设备的DCI,所述DCI包括第一时隙差的第一值k,所述k用于确定第一时域位置;所述k为传输第一数据所在的时隙与所述时隙n之间的时隙间隔,所述第一数据为所述DCI调度的数据;所述处理单元1602,用于在所述第一时域位置监测PDCCH。
在一种可选的实施方式中,所述第一时域位置可以为时隙n+k,k不等于0。
具体地,所述处理单元1602还可以用于在时隙n+1到时隙n+k-1中不监测PDCCH。
在另一种可选的实施方式中,所述第一时域位置可以为时隙n+k+1。
在又一种可选的实施方式中,所述第一时域位置可以包括时隙n+k-m1至时隙n+k+m2;或者所述第一时域位置可以包括时隙n+k至时隙n+k+m3;或者所述第一时域位置可以包括时隙n+k+m4至时隙n+k+m5;或者所述第一时域位置可以包括时隙n+k-m6至时隙n+k;其中,所述m1为大于或等于0的整数,所述m2为大于或等于0的整数,所述m3为大于或等于0的整数,所述m4为大于或等于0的整数,所述m5为大于或等于0的整数,所述m6为大于或等于0的整数。
一种示例性的实施方式中,所述收发单元1601还用于接收PDCCH,当所述收发单元1601在所述第一时域位置未收到PDCCH时,所述处理单元1602还用于:在所述第一时域位置之后按照第一搜索空间组监测PDCCH;其中,所述终端设备被配置了一组搜索空间,所述一组搜索空间为所述第一搜索空间组;或者所述终端设备被配置了两组搜索空间,所述两组搜索空间包括所述第一搜索空间组和第二搜索空间组;所述第一搜索空间组包含所述第一时域位置。
另一种示例性的实施方式中,所述收发单元1601还用于接收PDCCH,当所述收发单元1601在所述第一时域位置未收到PDCCH时,所述处理单元1602还用于:根据搜索空间的配置信息确定第一时域符号和第一频域位置;在所述第一时域符号和所述第一频域位置上监测PDCCH。
一种示例中,所述DCI还可以包括第一指示信息,所述第一指示信息用于指示是否在第一时隙监测PDCCH,所述第一时隙为从所述时隙n到第二时域位置之间的时隙,所述第二时域位置为所述第一时域位置的前一个时域位置。
另一种示例中,所述DCI还可以包括第二指示信息,所述第二指示信息用于指示在所 述第一时域位置监测PDCCH。
在一种具体的实施方式中,当所述终端设备被配置了最小调度时隙间隔时,当所述收发单元1601在所述第一时域位置未收到PDCCH时,所述处理单元1602下一次监测PDCCH的时域位置与所述第一时域位置之间的时隙间隔不小于第一数值。
示例性地,当所述终端设备被配置了最小调度时隙间隔,且所述最小调度时隙间隔大于0时,所述m1小于或者等于所述k减去所述最小调度时隙间隔的差值。
在另一个实施例中,所述通信装置1600用于实现上述图2所述的实施例中网络设备的功能时,具体可以包括:
所述处理单元1602,用于确定DCI,所述DCI包括第一时隙差的第一值k,所述k用于确定第一时域位置;所述k为传输第一数据所在的时隙与时隙n之间的时隙间隔,所述第一数据为所述DCI调度的数据;所述收发单元1601,用于在所述时隙n向终端设备发送所述DCI。
在一种可选的实施方式中,所述第一时域位置可以为时隙n+k,k不等于0。
在另一种可选的实施方式中,所述第一时域位置可以为时隙n+k+1。
在又一种可选的实施方式中,所述第一时域位置可以包括时隙n+k-m1至时隙n+k+m2;或者所述第一时域位置可以包括时隙n+k至时隙n+k+m3;或者所述第一时域位置可以包括时隙n+k+m4至时隙n+k+m5;或者所述第一时域位置可以包括时隙n+k-m6至时隙n+k;其中,所述m1为大于或等于0的整数,所述m2为大于或等于0的整数,所述m3为大于或等于0的整数,所述m4为大于或等于0的整数,所述m5为大于或等于0的整数,所述m6为大于或等于0的整数。
一种示例中,所述DCI还可以包括第一指示信息,所述第一指示信息用于指示是否在第一时隙监测PDCCH,所述第一时隙为从所述时隙n到第二时域位置之间的时隙,所述第二时域位置为所述第一时域位置的前一个时域位置。
另一种示例中,所述DCI还可以包括第二指示信息,所述第二指示信息用于指示在所述第一时域位置监测PDCCH。
一种具体的实施方式中,当所述终端设备被配置了最小调度时隙间隔,且所述最小调度时隙间隔大于0时,所述m1小于或者等于所述k减去所述最小调度时隙间隔的差值。
在另一个实施例中,所述通信装置1600用于实现上述图14所述的实施例中终端设备的功能时,具体可以包括:
所述收发单元1601用于接收来自网络设备的第三指示信息,所述第三指示信息用于指示在至少一个时隙上不监测PDCCH;以及接收来自所述网络设备的DCI,所述DCI指示数据在时隙x传输;所述处理单元1602,用于当所述时隙x在所述至少一个时隙内时,确定在第三时域位置上监测PDCCH;其中,所述第三时域位置为所述时隙x;或者所述第三时域位置为时隙x+1;或者所述第三时域位置包括时隙x-y1至时隙x+y2;或者所述第三时域位置包括时隙x至时隙x+y3;或者所述第三时域位置包括时隙x+y4至时隙x+y5;或者所述第三时域位置包括时隙x-y6至时隙x;其中,所述y1为大于或等于0的整数,所述y2为大于或等于0的整数,所述y3为大于或等于0的整数,所述y4为大于或等于0的整数,所述y5为大于或等于0的整数,所述y6为大于或等于0的整数。
需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。在本申请的实施例中的各功能单元可以集成在一个处 理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
基于以上实施例,本申请实施例还提供了一种通信装置,参阅图17所示,通信装置1700可以包括收发器1701和处理器1702。可选的,所述通信装置1700中还可以包括存储器1703。其中,所述存储器1703可以设置于所述通信装置1700内部,还可以设置于所述通信装置1700外部。其中,所述处理器1702可以控制所述收发器1701接收和发送数据等。
具体地,所述处理器1702可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合。所述处理器1702还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。
其中,所述收发器1701、所述处理器1702和所述存储器1703之间相互连接。可选的,所述收发器1701、所述处理器1702和所述存储器1703通过总线1704相互连接;所述总线1704可以是外设部件互连标准(Peripheral Component Interconnect,PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,EISA)总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图17中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在一种可选的实施方式中,所述存储器1703,用于存放程序等。具体地,程序可以包括程序代码,该程序代码包括计算机操作指令。所述存储器1703可能包括RAM,也可能还包括非易失性存储器(non-volatile memory),例如一个或多个磁盘存储器。所述处理器1702执行所述存储器1703所存放的应用程序,实现上述功能,从而实现通信装置1700的功能。
示例性地,该通信装置1700可以是上述实施例中的终端设备;还可以是上述实施例中的网络设备。
在一个实施例中,所述通信装置1700在实现图2所示的实施例中终端设备的功能时,收发器1701可以实现图2所示的实施例中的由终端设备执行的收发操作;处理器1702可以实现图2所示的实施例中由终端设备执行的除收发操作以外的其他操作。具体的相关具体描述可以参见上述图2所示的实施例中的相关描述,此处不再详细介绍。
在另一个实施例中,所述通信装置1700在实现图2所示的实施例中网络设备的功能 时,收发器1701可以实现图2所示的实施例中的由网络设备执行的收发操作;处理器1702可以实现图2所示的实施例中由网络设备执行的除收发操作以外的其他操作。具体的相关具体描述可以参见上述图2所示的实施例中的相关描述,此处不再详细介绍。
在又一个实施例中,所述通信装置1700在实现图14所示的实施例中终端设备的功能时,收发器1701可以实现图14所示的实施例中的由终端设备执行的收发操作;处理器1702可以实现图14所示的实施例中由终端设备执行的除收发操作以外的其他操作。具体的相关具体描述可以参见上述图14所示的实施例中的相关描述,此处不再详细介绍。
基于以上实施例,本申请实施例提供了一种通信系统,该通信系统可以包括上述实施例涉及的终端设备和网络设备等。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的PDCCH监测的方法。
本申请实施例还提供一种计算机程序产品,所述计算机程序产品用于存储计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的PDCCH监测的方法。
本申请实施例还提供一种芯片,包括处理器,所述处理器与存储器耦合,用于调用所述存储器中的程序使得所述芯片实现上述方法实施例提供的PDCCH监测的方法。
本申请实施例还提供一种芯片,所述芯片与存储器耦合,所述芯片用于实现上述方法实施例提供的PDCCH监测的方法。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实 施例的范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。
Claims (23)
- 一种物理下行控制信道PDCCH监测的方法,其特征在于,包括:终端设备在时隙n接收来自网络设备的下行控制信息DCI,所述DCI包括第一时隙差的第一值k,所述k用于确定第一时域位置;所述k为传输第一数据所在的时隙与所述时隙n之间的时隙间隔,所述第一数据为所述DCI调度的数据;所述终端设备在所述第一时域位置监测PDCCH。
- 如权利要求1所述的方法,其特征在于,所述第一时域位置为时隙n+k,k不等于0。
- 如权利要求2所述的方法,其特征在于,所述方法还包括:所述终端设备在时隙n+1到时隙n+k-1中不监测PDCCH。
- 如权利要求1所述的方法,其特征在于,所述第一时域位置为时隙n+k+1。
- 如权利要求1所述的方法,其特征在于,所述第一时域位置包括时隙n+k-m1至时隙n+k+m2;或者所述第一时域位置包括时隙n+k至时隙n+k+m3;或者所述第一时域位置包括时隙n+k+m4至时隙n+k+m5;或者所述第一时域位置包括时隙n+k-m6至时隙n+k;其中,所述m1为大于或等于0的整数,所述m2为大于或等于0的整数,所述m3为大于或等于0的整数,所述m4为大于或等于0的整数,所述m5为大于或等于0的整数,所述m6为大于或等于0的整数。
- 如权利要求1-5任一项所述的方法,其特征在于,当所述终端设备在所述第一时域位置未收到PDCCH时,所述方法还包括:所述终端设备在所述第一时域位置之后按照第一搜索空间组监测PDCCH;其中,所述终端设备被配置了一组搜索空间,所述一组搜索空间为所述第一搜索空间组;或者所述终端设备被配置了两组搜索空间,所述两组搜索空间包括所述第一搜索空间组和第二搜索空间组;所述第一搜索空间组包含所述第一时域位置。
- 如权利要求1-5任一项所述的方法,其特征在于,当所述终端设备在所述第一时域位置未收到PDCCH时,所述方法还包括:所述终端设备根据搜索空间的配置信息确定第一时域符号和第一频域位置;所述终端设备在所述第一时域符号和所述第一频域位置上监测PDCCH。
- 如权利要求1-7任一项所述的方法,其特征在于,所述DCI还包括第一指示信息,所述第一指示信息用于指示是否在第一时隙监测PDCCH,所述第一时隙为从所述时隙n到第二时域位置之间的时隙,所述第二时域位置为所述第一时域位置的前一个时域位置。
- 如权利要求1-7任一项所述的方法,其特征在于,所述DCI还包括第二指示信息,所述第二指示信息用于指示在所述第一时域位置监测PDCCH。
- 如权利要求1-9任一项所述的方法,其特征在于,当所述终端设备被配置了最小调度时隙间隔时,当所述终端设备在所述第一时域位置未收到PDCCH时,所述终端设备下一次监测PDCCH的时域位置与所述第一时域位置之间的时隙间隔不小于第一数值。
- 如权利要求5所述的方法,其特征在于,当所述终端设备被配置了最小调度时隙间隔,且所述最小调度时隙间隔大于0时,所述m1小于或者等于所述k减去所述最小调度时隙间隔的差值。
- 一种物理下行控制信道PDCCH监测的方法,其特征在于,包括:网络设备确定下行控制信息DCI,所述DCI包括第一时隙差的第一值k,所述k用于确定第一时域位置;所述k为传输第一数据所在的时隙与时隙n之间的时隙间隔,所述第一数据为所述DCI调度的数据;所述网络设备在所述时隙n向终端设备发送所述DCI。
- 如权利要求12所述的方法,其特征在于,所述第一时域位置为时隙n+k,k不等于0。
- 如权利要求12所述的方法,其特征在于,所述第一时域位置为时隙n+k+1。
- 如权利要求12所述的方法,其特征在于,所述第一时域位置包括时隙n+k-m1至时隙n+k+m2;或者所述第一时域位置包括时隙n+k至时隙n+k+m3;或者所述第一时域位置包括时隙n+k+m4至时隙n+k+m5;或者所述第一时域位置包括时隙n+k-m6至时隙n+k;其中,所述m1为大于或等于0的整数,所述m2为大于或等于0的整数,所述m3为大于或等于0的整数,所述m4为大于或等于0的整数,所述m5为大于或等于0的整数,所述m6为大于或等于0的整数。
- 如权利要求12-15任一项所述的方法,其特征在于,所述DCI还包括第一指示信息,所述第一指示信息用于指示是否在第一时隙监测PDCCH,所述第一时隙为从所述时隙n到第二时域位置之间的时隙,所述第二时域位置为所述第一时域位置的前一个时域位置。
- 如权利要求12-16任一项所述的方法,其特征在于,所述DCI还包括第二指示信息,所述第二指示信息用于指示在所述第一时域位置监测PDCCH。
- 如权利要求15所述的方法,其特征在于,当所述终端设备被配置了最小调度时隙间隔,且所述最小调度时隙间隔大于0时,所述m1小于或者等于所述k减去所述最小调度时隙间隔的差值。
- 一种终端设备,其特征在于,包括存储器,处理器和收发器,其中:所述存储器用于存储计算机指令;所述收发器用于接收和发送信息;所述处理器与存储器耦合,用于调用所述存储器中的计算机指令使得所述终端设备执行如权利要求1-11任一项所述的方法。
- 一种网络设备,其特征在于,包括存储器,处理器和收发器,其中:所述存储器用于存储计算机指令;所述收发器,用于接收和发送信息;所述处理器,与存储器耦合,用于调用所述存储器中的计算机指令使得所述网络设备执行如权利要求12-18任一项所述的方法。
- 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机可执行指令,所述计算机可执行指令在被所述计算机调用时用于使所述计算机执行上述权利要求1-11中任一项所述的方法,或者执行上述权利要求12-18中任一项所述的方法。
- 一种包含指令的计算机程序产品,其特征在于,当所述计算机程序产品在计算机上运行时,使得所述计算机如执行权利要求1-11中任一项所述的方法,或者执行如权利要求12-18中任一项所述的方法。
- 一种芯片,其特征在于,所述芯片与存储器耦合,用于读取并执行所述存储器中存储的程序指令,以实现如权利要求1-11中任一项所述的方法,或者实现如述权利要求12-18中任一项所述的方法。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011412517.3 | 2020-12-03 | ||
CN202011412517 | 2020-12-03 | ||
CN202110053613.1A CN114599075B (zh) | 2020-12-03 | 2021-01-15 | 一种物理下行控制信道监测的方法及装置 |
CN202110053613.1 | 2021-01-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022116965A1 true WO2022116965A1 (zh) | 2022-06-09 |
Family
ID=81813701
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/134414 WO2022116965A1 (zh) | 2020-12-03 | 2021-11-30 | 一种物理下行控制信道监测的方法及装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN114599075B (zh) |
WO (1) | WO2022116965A1 (zh) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019214734A1 (en) * | 2018-05-11 | 2019-11-14 | Telefonaktiebolaget Lm Ericsson (Publ) | Methods, terminal device and base station for physical downlink control channel monitoring |
CN111865541A (zh) * | 2019-04-30 | 2020-10-30 | 华为技术有限公司 | 一种调度切换方法及装置 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020164137A1 (zh) * | 2019-02-15 | 2020-08-20 | 华为技术有限公司 | 一种通信方法及装置 |
-
2021
- 2021-01-15 CN CN202110053613.1A patent/CN114599075B/zh active Active
- 2021-11-30 WO PCT/CN2021/134414 patent/WO2022116965A1/zh active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019214734A1 (en) * | 2018-05-11 | 2019-11-14 | Telefonaktiebolaget Lm Ericsson (Publ) | Methods, terminal device and base station for physical downlink control channel monitoring |
CN111865541A (zh) * | 2019-04-30 | 2020-10-30 | 华为技术有限公司 | 一种调度切换方法及装置 |
WO2020221111A1 (zh) * | 2019-04-30 | 2020-11-05 | 华为技术有限公司 | 一种调度切换方法及装置 |
Non-Patent Citations (1)
Title |
---|
ZTE: ""R1-1911928 Discussion on Potential Techniques for UE Power Saving"", 3GPP TSG_RAN\WG1_RL1, 8 November 2019 (2019-11-08), XP051823109 * |
Also Published As
Publication number | Publication date |
---|---|
CN114599075A (zh) | 2022-06-07 |
CN114599075B (zh) | 2024-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110691416B (zh) | 一种资源调度的方法和装置 | |
EP3668172B1 (en) | Apparatus for use in media access control layer packets | |
WO2021027551A1 (zh) | 一种通信方法及装置 | |
EP3840500A1 (en) | Method and device for determining and configuring scheduling request resource, and storage medium | |
CN115720132A (zh) | 利用无线通信网络中的短传输时间间隔的方法及装置 | |
WO2021030991A1 (zh) | 一种上行传输资源的确定方法及装置 | |
CN114424482A (zh) | 通信方法及装置 | |
JP2023512807A (ja) | 無線通信において、低減した能力のデバイスをサポートする方法及び装置 | |
JP2022530668A (ja) | クロススロットスケジューリング適応化のための装置及び方法 | |
WO2018137700A1 (zh) | 一种通信方法,装置及系统 | |
WO2021032022A1 (zh) | 一种调度方法及装置 | |
JP7306662B2 (ja) | アップリンク伝送時間領域リソース決定方法および装置 | |
CN107534984B (zh) | 一种分量载波组的配置方法及设备 | |
TWI678939B (zh) | 一種資訊傳輸方法及裝置 | |
JP2024519220A (ja) | ユーザ機器、スケジューリングノード、ユーザ機器のための方法、スケジューリングノードのための方法および集積回路 | |
WO2022179398A1 (zh) | 一种物理下行控制信道监测的方法及装置 | |
CN114731586A (zh) | 用于跨时隙调度适配的设备和方法 | |
WO2021035448A1 (zh) | 一种跨时隙调度的指示方法及装置 | |
WO2020082933A1 (zh) | 一种数据传输方法及其装置 | |
WO2022116965A1 (zh) | 一种物理下行控制信道监测的方法及装置 | |
WO2022179420A1 (zh) | 一种物理下行控制信道监测的方法及装置 | |
WO2022224942A1 (ja) | 端末、基地局及び通信方法 | |
WO2022077351A1 (zh) | 通信方法和通信装置 | |
WO2017167270A1 (zh) | 控制信道检测方法、tti长度的上报方法及装置 | |
WO2021023294A1 (zh) | 信息传输方法及电子设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21899996 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21899996 Country of ref document: EP Kind code of ref document: A1 |