WO2024067107A1 - 一种网络配置方法、装置及设备 - Google Patents
一种网络配置方法、装置及设备 Download PDFInfo
- Publication number
- WO2024067107A1 WO2024067107A1 PCT/CN2023/118646 CN2023118646W WO2024067107A1 WO 2024067107 A1 WO2024067107 A1 WO 2024067107A1 CN 2023118646 W CN2023118646 W CN 2023118646W WO 2024067107 A1 WO2024067107 A1 WO 2024067107A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- drx
- parameters
- lch
- timer
- drx parameters
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 144
- 230000011664 signaling Effects 0.000 claims description 104
- 230000005540 biological transmission Effects 0.000 claims description 91
- 238000004891 communication Methods 0.000 claims description 72
- 238000012545 processing Methods 0.000 claims description 22
- 239000000969 carrier Substances 0.000 claims description 12
- 230000003111 delayed effect Effects 0.000 claims description 10
- 238000005265 energy consumption Methods 0.000 abstract description 16
- 238000012544 monitoring process Methods 0.000 abstract description 3
- 230000006870 function Effects 0.000 description 18
- 238000010586 diagram Methods 0.000 description 17
- 208000016344 lissencephaly with cerebellar hypoplasia Diseases 0.000 description 14
- 230000008569 process Effects 0.000 description 14
- 230000001934 delay Effects 0.000 description 9
- 230000009286 beneficial effect Effects 0.000 description 8
- 238000004590 computer program Methods 0.000 description 7
- 238000013461 design Methods 0.000 description 7
- 230000002779 inactivation Effects 0.000 description 5
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 4
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 4
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 4
- 230000009471 action Effects 0.000 description 4
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 3
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000033764 rhythmic process Effects 0.000 description 3
- 230000003190 augmentative effect Effects 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000010295 mobile communication Methods 0.000 description 2
- 108700026140 MAC combination Proteins 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 229920001690 polydopamine Polymers 0.000 description 1
- 238000012913 prioritisation Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W76/00—Connection management
- H04W76/20—Manipulation of established connections
- H04W76/28—Discontinuous transmission [DTX]; Discontinuous reception [DRX]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/02—Power saving arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/02—Power saving arrangements
- H04W52/0209—Power saving arrangements in terminal devices
- H04W52/0225—Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/02—Power saving arrangements
- H04W52/0209—Power saving arrangements in terminal devices
- H04W52/0225—Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
- H04W52/0229—Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/02—Power saving arrangements
- H04W52/0209—Power saving arrangements in terminal devices
- H04W52/0225—Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
- H04W52/0248—Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal dependent on the time of the day, e.g. according to expected transmission activity
Definitions
- the present application relates to the field of communication technology, and in particular to a network configuration method, device and equipment.
- the access network device can configure discontinuous reception (DRX) for the terminal device. Then, in each DRX cycle, the terminal device turns on the receiver only during the listening time period to enter the DRX active state to listen to the downlink control signaling, and turns off the receiver to enter the DRX sleep state at other times of the DRX cycle, which can reduce the energy consumption of the terminal device.
- DRX discontinuous reception
- the terminal device turns on the receiver only during the listening time period to enter the DRX active state to listen to the downlink control signaling, and turns off the receiver to enter the DRX sleep state at other times of the DRX cycle, which can reduce the energy consumption of the terminal device.
- multi-stream data such as extended reality (XR) services
- the current DRX configuration may not match the characteristics of some of the multiple data streams, resulting in a large delay of some data streams or causing the terminal device to remain in the listening state when there is no data transmission, thereby reducing network capacity and not conducive to reducing the energy consumption of the terminal device.
- the present application provides a network configuration method, apparatus and equipment, which configures multiple groups of DRX parameters for multiple data streams respectively, and each group of DRX parameters matches the time characteristics of the corresponding data stream, thereby reducing the delay of the data stream, which is beneficial to improving network capacity and reducing the energy consumption of terminal equipment.
- the present application provides a network configuration method, which can be executed by a terminal device, or by a component of the terminal device (such as a processor, a chip, or a chip system, etc.), or by a logic module or software that can implement all or part of the terminal device functions.
- the terminal device receives multiple groups of discontinuous reception DRX parameters, and any group of DRX parameters in the multiple groups of DRX parameters includes a DRX cycle, which is determined according to the data arrival period of the data stream corresponding to the group of DRX parameters or the transmission period of the data on the carrier corresponding to the group of DRX parameters.
- the terminal device monitors the physical downlink control channel PDCCH.
- the terminal device can receive multiple groups of DRX parameters configured for different data streams, and the DRX cycle and other related parameters in each group of DRX parameters are configured differently, so that the DRX parameters can better match the characteristics of different data streams, avoid generating additional delays, thereby reducing the delay of the data stream, which is beneficial to improving network capacity and reducing the energy consumption of the terminal device.
- the terminal device receives a radio resource control RRC signaling, the RRC signaling includes a plurality of DRX configuration information elements, wherein one DRX configuration information element corresponds to a group of DRX parameters, the DRX configuration information element includes a DRX index, and the DRX index is used to associate with the corresponding DXR parameters.
- RRC signaling includes a plurality of DRX configuration information elements, wherein one DRX configuration information element corresponds to a group of DRX parameters, the DRX configuration information element includes a DRX index, and the DRX index is used to associate with the corresponding DXR parameters.
- the terminal device obtains multiple groups of DRX parameters by receiving RRC signaling, for example, receiving multiple DRX configuration information elements, where the DRX configuration information element carries a DRX index.
- any set of DRX parameters among the multiple sets of DRX parameters further includes one or more of the following parameters:
- DRX duration timer (drx-onDurationTimer), used to indicate the length of time the terminal device is in the active state
- DRX inactivity timer (drx-InactivityTimer), used to indicate the length of time the terminal device monitors the PDCCH after receiving the initial PDCCH;
- DRX Hybrid Automatic Repeat Request Round Trip Timer (drx-HARQ-RTT-TimerUL/drx-HARQ-RTT-TimerDL), which indicates the minimum number of symbols between the current transmission and the next retransmission.
- DRX retransmission timer (drx-RetransmissionTimerUL/drx-RetransmissionTimerDL), used to indicate the maximum time for the terminal device to wait for retransmission of data when it is in an activated state;
- DRX start offset (drx-SlotOffset), used to indicate the start subframe of the DRX cycle
- the DRX time slot offset (drx-StartOffset) is used to indicate the duration for which the DRX duration timer is delayed from the front boundary of the start subframe of the DRX cycle.
- any DRX configuration information element does not include all parameters in a corresponding set of DRX parameters
- the values of parameters not included are taken as default values, and the default values are the parameter values configured by the access network device according to the protocol.
- the terminal device obtains part or all of the parameters in the DRX parameters by receiving RRC signaling. If the RRC signaling does not include some of the parameters in the DRX parameters, the values of the parameters follow the values configured by the access network device according to the current protocol.
- any two groups of DRX parameters in the multiple groups of DRX parameters have different DRX cycles and/or different DRX start offsets.
- the starting position of the DRX duration timer in any group of DRX parameters is configured according to the DRX cycle, DRX start offset, and DRX time slot offset in the group of DRX parameters.
- each set of DRX parameters can match data streams with different time characteristics.
- the terminal device can then select and configure different DRX parameters according to the characteristics of different data streams to avoid additional delays in the service.
- the RRC signaling further includes a plurality of groups of DRX parameters respectively associated with a data radio bearer DRB or a logical channel LCH.
- any one of the DRX configuration information elements in the RRC signaling carries the corresponding DRB identifier or LCH identifier or logical channel group LCG identifier; or, any one of the DRB configuration information elements in the RRC signaling carries the corresponding DRX index; or, any one of the LCH configuration information elements in the RRC signaling carries the corresponding DRX index.
- the terminal device obtains the bearer or logical channel related to each group of DRX parameters by receiving RRC signaling, thereby obtaining the association between the DRX parameters and the data flow.
- a first preset parameter is received, where the first preset parameter is used to indicate a value of a DRX inactivity timer.
- the terminal device can configure the corresponding DRX inactive timer according to the value of the DRX inactive timer indicated by the first preset parameter.
- the first preset parameter can be the value of the DRX inactive timer in the DRX parameters specified in the protocol, or the first preset parameter can be the value of the DRX inactive timer specified in the RRC signaling.
- the terminal device when receiving a PDCCH indicating an initial transmission, the terminal device starts or restarts a DRX inactivity timer configured according to a first preset parameter; or,
- the terminal device When receiving the PDCCH indicating the initial transmission, the terminal device starts or restarts the DRX inactivity timer configured according to the protocol.
- the terminal device when receiving a PDCCH indicating an initial uplink transmission, determines the LCH for transmitting data on the physical uplink shared channel PUSCH corresponding to the PDCCH, and then starts or restarts a DRX inactivity timer configured according to DRX parameters associated with the LCH, or starts or restarts a DRX inactivity timer configured according to DRX parameters associated with the DRB corresponding to the LCH, or starts or restarts a DRX inactivity timer configured according to DRX parameters associated with the LCG to which the LCH belongs.
- the terminal device can select a corresponding DRX inactive timer according to the logical channel for transmitting the uplink data.
- the terminal device when receiving a PDCCH indicating an initial downlink transmission, decodes the data transmitted on the physical downlink shared channel PDSCH corresponding to the PDCCH, determines the LCH that caches the data, and then starts or restarts a DRX inactivity timer configured according to DRX parameters associated with the LCH, or starts or restarts a DRX inactivity timer configured according to DRX parameters associated with the DRB corresponding to the LCH, or starts or restarts a DRX inactivity timer configured according to DRX parameters associated with the LCG to which the LCH belongs.
- the terminal device when an initial downlink transmission occurs, the terminal device can select a corresponding DRX inactivation timer according to the source of the initial transmission data.
- the terminal device when receiving a PDCCH indicating an initial uplink transmission, determines the corresponding LCH according to the logical channel priority LCP rule, and then starts or restarts the DRX inactivity timer configured according to the DRX parameters associated with the LCH, or starts or restarts the DRX inactivity timer configured according to the DRX parameters associated with the DRB corresponding to the LCH, or starts or restarts the DRX inactivity timer configured according to the DRX parameters associated with the LCG to which the LCH belongs.
- the terminal device when the initial uplink transmission occurs, if the source of the data is unknown, the terminal device can select the corresponding DRX inactive timer according to the LCP rule.
- the terminal device receives a second preset parameter, where the second preset parameter is used to indicate a value of a DRX hybrid automatic repeat request round trip time timer.
- the terminal device can configure the corresponding hybrid automatic repeat request round trip time timer according to the value of the hybrid automatic repeat request round trip time timer indicated by the second preset parameter.
- the second preset parameter can be the value of the DRX hybrid automatic repeat request round trip time timer in the DRX parameters specified in the protocol, or the second preset parameter can be the value of the DRX hybrid automatic repeat request round trip time timer specified in the RRC signaling.
- the terminal device when sending a physical uplink shared channel PUSCH, starts or restarts an uplink DRX hybrid automatic repeat request round trip time timer configured according to a second preset parameter; when the uplink DRX hybrid automatic repeat request round trip time timer times out, the corresponding uplink DRX retransmission timer is started.
- the terminal device can determine the uplink DRX hybrid automatic repeat request round trip time according to the second preset parameter. Timer.
- the terminal device when receiving PDSCH and sending corresponding hybrid automatic repeat request HARQ feedback, starts or restarts the downlink DRX hybrid automatic repeat request round trip time timer configured according to the second preset parameters; when the downlink DRX hybrid automatic repeat request round trip time timer times out, the corresponding downlink DRX retransmission timer is started.
- the terminal device can determine the downlink DRX hybrid automatic repeat request round-trip time timer according to the second preset parameter.
- the terminal device when sending PUSCH, determines the LCH for transmitting data on the PUSCH, and then starts or restarts the uplink DRX hybrid automatic repeat request round trip time timer configured according to the DRX parameters associated with the LCH, or starts or restarts the uplink DRX hybrid automatic repeat request round trip time timer configured according to the DRX parameters associated with the DRB corresponding to the LCH, or starts or restarts the uplink DRX hybrid automatic repeat request round trip time timer configured according to the DRX parameters associated with the LCG to which the LCH belongs; when the uplink DRX hybrid automatic repeat request round trip time timer times out, start the corresponding uplink DRX retransmission timer.
- the terminal device can select the corresponding DRX hybrid automatic repeat request round trip time timer according to the logical channel for transmitting uplink data.
- the terminal device when receiving PDSCH, decodes the data on the PDSCH and determines the LCH for caching the data; when sending HARQ feedback of the PDSCH, starts or restarts the downlink DRX hybrid automatic repeat request round trip time timer configured according to the DRX parameters associated with the LCH, or starts or restarts the downlink DRX hybrid automatic repeat request round trip time timer configured according to the DRX parameters associated with the DRB corresponding to the LCH, or starts or restarts the downlink DRX hybrid automatic repeat request round trip time timer configured according to the DRX parameters associated with the LCG to which the LCH belongs; when the downlink DRX hybrid automatic repeat request round trip time timer times out, starts the corresponding downlink DRX retransmission timer.
- the terminal device can select the corresponding DRX hybrid automatic repeat request round trip time timer according to the source of the downlink data.
- the RRC signaling further includes carriers associated with multiple groups of DRX parameters, and the carriers are associated with cells or partial bandwidth BWPs.
- any DRX configuration information element in the RRC signaling carries the corresponding cell identifier or cell group identifier or BWP identifier; or, any cell configuration information element in the RRC signaling carries the corresponding DRX index; or, any cell group configuration information element in the RRC signaling carries the corresponding DRX index; or, any BWP configuration information element in the RRC signaling carries the corresponding DRX index.
- the terminal device obtains the cell or BWP related to each group of DRX parameters by receiving RRC signaling, thereby obtaining the association relationship between the DRX parameters and the carrier.
- the terminal device when receiving a PDCCH indicating an initial transmission on a first carrier, the terminal device starts or restarts a DRX inactivation timer corresponding to the first carrier.
- the terminal device can determine the DRX inactivation timer corresponding to the specified carrier based on the association between the carrier and the DRX parameters.
- the terminal device when data is transmitted on a first carrier, the terminal device starts or restarts the DRX hybrid automatic repeat request round trip time timer corresponding to the first carrier; when the DRX hybrid automatic repeat request round trip time timer times out, the corresponding DRX retransmission timer is started.
- the terminal device can determine the DRX hybrid automatic repeat request round trip time timer corresponding to the specified carrier according to the association between the carrier and the DRX parameter.
- the terminal device receives multiple groups of secondary DRX parameters corresponding to the multiple groups of DRX parameters, and the secondary DRX parameters include a DRX duration timer and a DRX inactivity timer.
- the terminal device can receive multiple groups of secondary DRX parameters corresponding to multiple groups of DRX parameters, so that the DRX parameters of different data streams can better match the transmission rhythm of the data streams in the low-frequency service cell and the high-frequency service cell, which is beneficial to reducing the energy consumption of the terminal device.
- the terminal device may configure a corresponding set of secondary DRX parameters for each set of DRX parameters; or, for each set of secondary DRX parameters, specify a corresponding set of DRX parameters; or, configure the multiple sets of secondary DRX parameters according to a set of specified DRX parameters.
- the terminal device can configure the secondary DRX parameters in multiple ways, and the configuration method is more flexible.
- the present application provides another network configuration method, which can be executed by an access network device, or by a component of the access network device (such as a processor, a chip, or a chip system, etc.), or by a logic module or software that can implement all or part of the functions of the access network device.
- the access network device determines multiple groups of DRX parameters and sends the multiple groups of DRX parameters to the terminal device. Any group of DRX parameters in the multiple groups of DRX parameters includes a DRX cycle, which is a data arrival period of the data flow corresponding to the group of DRX parameters. Or it is determined by the transmission period of the data on the carrier.
- the access network equipment can configure multiple groups of DRX parameters for different data streams, and the DRX cycle and other related parameters in each group of DRX parameters are configured differently, so that the DRX configuration can better match the characteristics of different data streams, avoid generating additional delays, thereby reducing the delay of the data stream, which is beneficial to improving network capacity and reducing the energy consumption of terminal equipment.
- the access network device sends an RRC signaling to the terminal device, the RRC signaling includes a plurality of DRX configuration information elements, wherein one DRX configuration information element corresponds to a group of DRX parameters, the DRX configuration information element includes a DRX index, and the DRX index is used to associate with the corresponding DXR parameters.
- the access network device configures multiple groups of DRX parameters for the terminal device through RRC signaling, for example, multiple DRX configuration information elements are configured, and the DRX configuration information element carries a DRX index.
- any set of DRX parameters among the multiple sets of DRX parameters further includes one or more of the following parameters:
- DRX duration timer used to indicate the length of time the terminal device is in an active state
- DRX inactive timer used to indicate the length of time the terminal device monitors the PDCCH after receiving the initial PDCCH
- DRX hybrid automatic repeat request round trip timer used to indicate the minimum number of symbols between the current transmission and the next retransmission
- DRX retransmission timer used to indicate the maximum time for the terminal device to wait for retransmission of data when it is in an activated state
- DRX start offset used to indicate the start subframe of the DRX cycle
- the DRX time slot offset is used to indicate the time length for which the DRX duration timer is delayed from the front boundary of the start subframe of the DRX cycle.
- the value of the parameter not included is a default value, which is a parameter value configured by the access network device according to a protocol.
- the access network device can configure some or all parameters in the DRX parameters for the terminal device through RRC signaling. If the RRC signaling does not include some parameters in the DRX parameters, the values of these parameters follow the values configured by the access network device according to the current protocol.
- any two groups of DRX parameters among multiple groups of DRX parameters have different DRX cycles and/or different DRX start offsets; the starting position of the DRX duration timer in any group of DRX parameters is configured according to the DRX cycle, DRX start offset, and DRX time slot offset in the group of DRX parameters.
- each group of DRX parameters can match data streams with different time characteristics.
- the RRC signaling further includes a plurality of groups of DRX parameters respectively associated with a data radio bearer DRB or a logical channel LCH.
- any one of the DRX configuration information elements in the RRC signaling carries a corresponding DRB identifier or LCH identifier or a logical channel group LCG identifier; or, any one of the DRB configuration information elements in the RRC signaling carries a corresponding DRX index; or, any one of the LCH configuration information elements in the RRC signaling carries a corresponding DRX index.
- the access network device can specify a related bearer or logical channel for each set of DRX parameters through RRC signaling, thereby establishing an association relationship between the DRX parameters and the data flow.
- the access network device sends a first preset parameter to the terminal device, where the first preset parameter is used to indicate a value of a DRX inactivation timer.
- the access network device can directly specify the value of the DRX inactivity timer to the terminal device.
- the access network device sends a second preset parameter to the terminal device, where the second preset parameter is used to indicate a value of a DRX hybrid automatic repeat request round trip time timer.
- the access network device can directly specify the value of the DRX hybrid automatic repeat request round trip time timer to the terminal device.
- the RRC signaling further includes carriers associated with multiple groups of DRX parameters, and the carriers are associated with cells or partial bandwidth BWPs.
- any DRX configuration information element in the RRC signaling carries the corresponding cell identifier or cell group identifier or BWP identifier; or, any cell configuration information element in the RRC signaling carries the corresponding DRX index; or, any cell group configuration information element in the RRC signaling carries the corresponding DRX index; or, any BWP configuration information element in the RRC signaling carries the corresponding DRX index.
- the access network device can specify an associated cell or BWP for each set of DRX parameters through RRC signaling, thereby establishing an association relationship between the DRX parameters and the carrier.
- the access network device sends multiple groups of secondary DRX parameters corresponding to the multiple groups of DRX parameters to the terminal device, where the secondary DRX parameters include a DRX duration timer and a DRX inactivity timer.
- the access network device can configure multiple groups of secondary DRX parameters corresponding to multiple groups of DXR parameters to the terminal device, so that the DRX parameters of different data streams can better match the transmission rhythm of the data streams in the low-frequency service cell and the high-frequency service cell, which is conducive to reducing the terminal Energy consumption of the equipment.
- the present application provides a communication device, which may be a terminal device, or a device in a terminal device, or a device that can be used in combination with a terminal device.
- the communication device may include a module that executes a method/operation/step/action described in the first aspect and any possible implementation of the first aspect, and the module may be a hardware circuit, or software, or a combination of a hardware circuit and software.
- the communication device may include a processing unit and a communication unit.
- the specific description of the method/operation/step/action performed by the terminal device can refer to the corresponding description in the above-mentioned first aspect and any possible implementation of the first aspect, and will not be repeated here. It can be understood that the communication device can also achieve the effect that can be achieved in the first aspect.
- the present application provides another communication device, which may be an access network device, or a device in an access network device, or a device that can be used in combination with an access network device.
- the communication device may include a module that executes the method/operation/step/action described in the second aspect and any possible implementation of the second aspect, and the module may be a hardware circuit, or software, or a combination of a hardware circuit and software.
- the communication device may include a processing unit and a communication unit.
- the specific description of the method executed by the access network device can refer to the corresponding description in the above second aspect and any possible implementation of the second aspect, which will not be repeated here. It can be understood that the communication device can also achieve the effect that can be achieved in the second aspect.
- the present application provides a terminal device, comprising: a processor, the processor is coupled to a memory, the memory is used to store instructions, when the instructions are executed by the processor, the terminal device implements the method in the above-mentioned first aspect and any possible implementation manner of the first aspect.
- the present application provides an access network device, comprising: a processor, the processor is coupled to a memory, the memory is used to store instructions, and when the instructions are executed by the processor, the access network device implements the method in the above-mentioned second aspect and any possible implementation manner of the second aspect.
- the present application provides a communication system, the communication system comprising one or more communication devices or equipment provided in aspects 3 to 6.
- the communication system comprises the communication devices provided in aspects 3 and 4, or the communication system comprises the access network device provided in aspect 5 and the terminal device provided in aspect 6.
- the present application provides a computer-readable storage medium storing instructions, which, when executed on a computer, enables the computer to execute the method in the first aspect and the second aspect, as well as any possible implementation of the first aspect and the second aspect.
- the present application provides a chip system, which includes a processor and an interface, and may also include a memory, for implementing the functions of the method in the first and second aspects, and any possible implementation of the first and second aspects.
- the chip system may be composed of a chip, or may include a chip and other discrete devices.
- the present application provides a computer program product, comprising instructions, which, when executed on a computer, enable the computer to execute the method in the first aspect and the second aspect, as well as any possible implementation of the first aspect and the second aspect.
- FIG1 is a schematic diagram of a communication system provided by the present application.
- FIG2 is a schematic diagram of arrival time of multi-stream data
- FIG3 is a schematic diagram of arrival time of multi-stream data of a multi-cell group
- FIG4 is a flow chart of a network configuration method provided by the present application.
- FIG5 is a schematic diagram of multi-stream data and corresponding multiple groups of DRX cycles provided by the present application.
- FIG6 is a schematic diagram of a multi-carrier and corresponding multiple groups of DRX cycles provided by the present application.
- FIG. 7 is a diagram showing a correspondence relationship between multiple groups of DRX parameters and secondary DRX parameters provided by the present application.
- FIG8 is a schematic diagram of a communication device provided by the present application.
- FIG. 9 is a schematic diagram of a communication device provided in the present application.
- “/” can indicate that the objects associated with each other are in an “or” relationship, for example, A/B can indicate A or B; “and/or” can be used to describe that there are three relationships between the associated objects, for example, A and/or B can indicate: A exists alone, A and B exist at the same time, and B exists alone, where A and B can be singular or plural.
- the words “first”, “second”, etc. can be used to distinguish between technical features with the same or similar functions.
- the words “first”, “second”, etc. The number and execution order are not limited, and the words “first”, “second” and the like do not necessarily limit the difference.
- the present application provides a network configuration method, which can configure multiple groups of DRX parameters for multiple data streams respectively, and each group of DRX parameters matches the time characteristics of the corresponding data stream, thereby reducing the delay of the data stream, which is beneficial to improving network capacity and reducing the energy consumption of terminal devices.
- FIG1 is a schematic diagram of a communication system provided in the present application, and the communication system includes a terminal device and an access network device. The terminal device and the access network device are connected in communication.
- the communication systems mentioned in this application include but are not limited to: narrowband Internet of things (NB-IoT), global system for mobile communications (GSM), enhanced data rate for GSM evolution (EDGE), wideband code division multiple access (WCDMA), code division multiple access 2000 (CDMA2000), time division synchronous code division multiple access (TD-SCDMA), and 5G wireless communication.
- NB-IoT narrowband Internet of things
- GSM global system for mobile communications
- EDGE enhanced data rate for GSM evolution
- WCDMA wideband code division multiple access
- CDMA2000 code division multiple access 2000
- TD-SCDMA time division synchronous code division multiple access
- 5G wireless communication The three major application scenarios of 5G mobile communication systems are enhanced mobile broadband (eMBB), ultra-reliable and low latency communications (URLLC) and enhanced machine-type communications (eMTC) as well as future communication systems (such as 6G/7G, etc.).
- eMBB enhanced mobile broadband
- URLLC ultra-reliable and low latency communications
- eMTC
- Terminal equipment also known as user equipment (UE), mobile station (MS), mobile terminal (MT), etc.
- UE user equipment
- MS mobile station
- MT mobile terminal
- terminal devices are: mobile phones, tablet computers, laptops, PDAs, mobile internet devices (MID), wearable devices, drones, virtual reality (VR) devices, augmented reality (AR) devices, wireless terminals in industrial control, wireless terminals in self driving, wireless terminals in remote medical surgery, wireless terminals in smart grids, wireless terminals in transportation safety, wireless terminals in smart cities, wireless terminals in smart homes, terminal devices in 5G networks, terminal devices in future evolved PLMN networks or terminal devices in future communication systems, etc.
- Access network equipment refers to the radio access network (RAN) node (or device) that connects terminal devices to the wireless network, which can also be called a base station.
- RAN nodes are: evolved Node B (gNB), transmission reception point (TRP), evolved Node B (eNB), radio network controller (RNC), Node B (NB), base station controller (BSC), base transceiver station (BTS), home base station (e.g., home evolved NodeB, or home Node B, HNB), base band unit (BBU), or wireless fidelity (Wifi) access point (AP), satellite in satellite communication system, wireless controller in cloud radio access network (CRAN) scenario, wearable device, drone, or device in Internet of Vehicles (e.g., vehicle to everything (V2X)), or communication device in device to device (D2D) communication, etc.
- V2X vehicle to everything
- D2D communication device to device
- the access network device may include a centralized unit (CU) node, a distributed unit (DU) node, or a RAN device including a CU node and a DU node.
- the RAN device including the CU node and the DU node splits the protocol layer of the eNB in the long term evolution (LTE) system, places the functions of some protocol layers in the CU for centralized control, and distributes the functions of the remaining part or all of the protocol layers in the DU, and the DU is centrally controlled by the CU.
- LTE long term evolution
- XR refers to various environments that combine reality and virtuality, as well as interactions between humans and machines, generated by computing technology and wearable devices.
- XR includes the following typical forms: augmented reality (AR), mixed reality (MR), virtual reality (VR), cloud gaming (CG), etc.
- AR augmented reality
- MR mixed reality
- VR virtual reality
- CG cloud gaming
- XR is one of the 5G multimedia applications that is currently being considered in the industrial field.
- XR services will periodically generate data frames at a certain frame rate.
- XR services may contain multiple data streams at the same time.
- the same XR service (such as a game service) may include multiple data streams such as video data, audio data, or gesture information.
- the data arrival intervals, data volume, and other characteristics of multiple data streams of XR services may differ.
- a downlink virtual reality (DL VR) service may contain a video stream and an audio stream.
- the video stream data arrives at a frame rate of 60/120 frames per second (fps), and the data frame is relatively large; the audio stream data arrives at a period of 10 milliseconds (ms), and the data frame is relatively small.
- fps frames per second
- ms milliseconds
- the access network device can configure DRX for the terminal device.
- the terminal device only turns on the receiver to enter the DRX active state at the necessary time (such as the arrival time of the data stream) to monitor the downlink control signaling; and turns off the receiver to enter the DRX sleep state at other times to reduce the energy consumption of the terminal device.
- the terminal device does not need to monitor and analyze the physical downlink control channel (PDCCH) all the time to determine whether the access network device has scheduled transmission resources for itself.
- PDCCH physical downlink control channel
- the access network device can configure the terminal device with the following DRX parameters, including but not limited to:
- (1) DRX cycle In each DRX cycle, the terminal device will wake up for a period of time (i.e. enter the DRX active state) to monitor the PDCCH.
- the DRX cycle includes a long cycle and a short cycle, and the long cycle is an integer multiple of the short cycle.
- DRX duration timer used to indicate the duration that the terminal device is in the active state.
- the value of drx-onDurationTimer is a continuous downlink duration, during which the terminal device needs to listen to the PDCCH, that is, the terminal device is in the active state during this period.
- the start time of drx-onDurationTimer is determined according to the DRX cycle and the DRX start offset (used to indicate the starting subframe of the DRX cycle). For example, drx-onDurationTimer starts at the moment when the start position of each DRX cycle is offset backward by drx-SlotOffset.
- DRX inactivity timer used to indicate the duration of monitoring PDCCH after receiving the initial transmission PDCCH.
- the value of drx-InactivityTimer is a continuous downlink duration during which the terminal device needs to monitor PDCCH.
- drx-InactivityTimer is started or restarted when the terminal device receives a PDCCH indicating an initial transmission (used to indicate uplink or downlink initial transmission scheduling).
- drx-HARQ-RTT-Timer used to indicate the minimum number of symbols between the current transmission and the next retransmission, which can also be called the minimum retransmission scheduling interval.
- drx-HARQ-RTT-Timer can be divided into uplink and downlink, namely drx-HARQ-RTT-TimerUL and drx-HARQ-RTT-TimerDL.
- drx-HARQ-RTT-TimerDL starts at the first symbol after the HARQ feedback of the downlink transmission of a hybrid automatic repeat request (HARQ) process ends.
- HARQ hybrid automatic repeat request
- drx-HARQ-RTT-TimerUL starts at the first symbol after the uplink transmission of a HARQ process.
- the uplink is a repeated transmission (repetition transmission)
- drx-HARQ-RTT-TimerUL starts at the first symbol after the first repetition ends).
- drx-RetransmissionTimer used to indicate the maximum time for the terminal device to wait for retransmission data when it is in an activated state, that is, the waiting time for receiving the retransmission schedule.
- drx-RetransmissionTimer can be divided into uplink and downlink, namely drx-RetransmissionTimerUL and drx-RetransmissionTimerDL.
- drx-RetransmissionTimerDL is started at the first symbol after the round trip time (RTT) timer times out when the drx-HARQ-RTT-TimerDL of a HARQ process times out and the downlink transport block (TB) is not successfully decoded.
- drx-RetransmissionTimerUL is started at the first symbol after the drx-HARQ-RTT-TimerUL of a HARQ process times out.
- DRX start offset (drx-StartOffset): used to indicate the start subframe of the DRX cycle. For example, drx-onDurationTimer is started at the time when the start position of each DRX cycle is offset by drx-SlotOffset.
- DRX slot offset used to indicate the length of time by which the DRX duration timer is delayed from the front boundary of the start subframe of the DRX cycle.
- Short cycle timer (drx-shortCycleTimer): used to indicate the life cycle of the short cycle.
- the DRX long cycle needs to be used.
- the drx-shortCycleTimer is started or restarted in the following two situations: when the drx-InactivityTimer times out, or when the terminal device receives a DRX command media access control layer control element (DRX command MAC CE).
- the DRX command MAC CE refers to the MAC CE that causes the terminal device to immediately enter the sleep period.
- the terminal device receives the DRX command MAC CE, it immediately stops the drx-onDurationTimer and drx-InactivityTimer.
- the terminal device can maintain them according to the following rules:
- DRX cycle, drx-onDurationTimer, drx-InactivityTimer, and drx-shortCycleTimer are maintained by each MAC entity, that is, a MAC entity of the UE only maintains one set of DRX cycle states, as well as onDurationTimer and InactivityTimer.
- drx-HARQ-RTT-Timer and drx-Retransmission-Timer are maintained by each HARQ process, that is, each HARQ process can start/restart the drx-HARQ-RTT-Timer and drx-Retransmission-Timer associated with the HARQ process according to conditions.
- the following rules can be used to determine whether the terminal device is in the DRX activation state:
- Rule 1 One or more of the timers drx-onDurationTimer, drx-InactivityTimer, drx-RetransmissionTimerDL, or drx-RetransmissionTimerUL are in running state.
- Rule 3 The terminal device sends a scheduling request (SR) on the physical uplink control channel (PUCCH), but the triggered SR is still in a pending state.
- SR scheduling request
- PUCCH physical uplink control channel
- Rule 4 During the random access process with conflict avoidance, the terminal device successfully receives the random access response (RAR), but does not receive the initial transmission of the PDCCH scheduled by the cell radio network temporary identifier (C-RNTI).
- RAR random access response
- C-RNTI cell radio network temporary identifier
- FIG. 1 is a schematic diagram of the arrival time of multi-stream data.
- the data of the audio stream may be delayed by a maximum of 13.33 milliseconds (ms), as shown in extradelay_1 in Figure 2.
- the data of the video stream may be delayed by a maximum of 6.67ms, as shown in extradelay_2 in Figure 2.
- the packet delay budget (PDB) of the video stream data packet may be only 10ms. In this case, the video stream data is prone to timeout problems, resulting in a decrease in network capacity.
- timers such as drx-onDurationTimer and drx-InactivityTimer are related to the amount of data. Since the average packet size of different data streams may vary greatly, when only one set of common DRX parameters is configured, the timer may be too long for data streams with small data volumes, causing the terminal device to remain in the listening state when there is no data transmission, reducing the energy saving effect.
- the current protocol introduces the concept of secondary DRX group.
- the service cell of a MAC entity can be divided into two DRX groups (for example, called the first DRX group and the second DRX group).
- the second DRX group cell can use drx-onDurationTimer and drx-InactivityTimer different from the first DRX group cell, and other DRX parameters are the same as the DRX parameters of the first DRX group cell.
- the access network device configures the specified cell to belong to the secondary DRX group through the secondary cell configuration (ScellConfig) information element in the radio resource control (radioresourcecontrol, RRC) message, and the DRX parameters of the first DRX group and the second DRX group are configured through the DRX configuration (DRX-Config) information element and the DRX configuration secondary group (DRX-ConfigsecondaryGroup) information element respectively.
- the first DRX group cell and the second DRX group cell are in different frequency bands, and for multiple cells in the same DRX group, they are in the same frequency band.
- FIG3 is a schematic diagram of the arrival time of multi-stream data of a multi-cell group.
- the DRX cycle of the first DRX and the second DRX are the same. If the DRX cycle is determined according to the data arrival cycle of the data flow 1 (flow 1) of the first cell group (first cell group), the data of the data flow 2 (flow 2) may be delayed by extradelay_1 at most, and the data of the data flow 3 (flow 3) may be delayed by extradelay_2 at most, as shown in FIG3. Furthermore, different DRX configurations are only effective for service cell groups with different frequency bands. For different data streams within the same service cell group, the problem of different data arrival time intervals of different data streams cannot be solved.
- FIG4 is a flow chart of a network configuration method provided by the present application.
- the network configuration method is applied to the communication system shown in FIG1 and to a service scenario including multi-stream data.
- the network configuration method can be implemented by interaction between an access network device and a terminal device, and the method includes the following steps:
- the access network device sends multiple sets of DRX parameters to the terminal device; correspondingly, the terminal device receives the multiple sets of DRX parameters.
- the access network device can configure multiple groups of DRX parameters for the terminal device through RRC signaling.
- the access network device sends RRC signaling to the terminal device, and the RRC signaling includes multiple DRX configuration information elements, and one DRX configuration information element corresponds to a group of DRX parameters.
- the terminal device receives the RRC signaling and obtains the multiple groups of DRX parameters included in the RRC signaling.
- the access network device can also configure multiple groups of DRX parameters for the terminal device through other signaling, which is not limited in this embodiment.
- the RRC signaling may include a list of DRX configuration information elements.
- the list of DRX configuration information elements is called drxConfigList, and the drxConfigList includes multiple DRX configuration information elements, each of which includes a DRX index, and the DRX index is used to associate with corresponding DRX parameters.
- Table 1 is a list of DRX configuration information elements provided in the present application, and the list includes a DRX index, a DRX configuration information element, and a DRX parameter.
- Table 1 List of DRX configuration information elements
- any one of the multiple groups of DRX parameters may include, but is not limited to, the following parameters described in the previous section 3: DRX cycle, DRX duration timer (drx-onDurationTimer), DRX inactivity timer (drx-InactivityTimer), DRX hybrid automatic repeat request round trip time timer (drx-HARQ-RTT-Timer), DRX retransmission timer (drx-RetransmissionTimer), DRX start offset (drx-StartOffset), DRX slot offset (drx-SlotOffset), etc.
- DRX cycle DRX duration timer (drx-onDurationTimer), DRX inactivity timer (drx-InactivityTimer), DRX hybrid automatic repeat request round trip time timer (drx-HARQ-RTT-Timer), DRX retransmission timer (drx-RetransmissionTimer), DRX start offset (drx-StartOffset), DRX slot offset (
- any set of DRX parameters received by the terminal device may include all of the above parameters, or only some of the parameters.
- only one or more parameters of DRX cycle, drx-onDurationTimer, and drx-InactivityTimer are included.
- one or more parameters of drx-HARQ-RTT-Timer, drx-RetransmissionTimer, drx-StartOffset, drx-SlotOffset, and drx-ShortCycleTimer are also included.
- the value of the parameter not included is a default value
- the default value is the parameter value configured by the access network device according to the protocol.
- the DRX configuration information element includes only some parameters, for parameters not included in the DRX configuration information element (for example, assuming that drx-HARQ-RTT-Timer is not included in the DRX configuration information element), its value can be regarded as the same as the value in the DRX parameter configured in the existing protocol (for example, the value of drx-HARQ-RTT-Timer in the DRX parameter configured in the existing protocol).
- Any one of the multiple sets of DRX parameters includes a DRX cycle, and the DRX cycle is determined according to a data arrival cycle of a data stream corresponding to the set of DRX parameters or a data transmission cycle on a carrier corresponding to the set of DRX parameters.
- the configuration of multiple sets of DRX parameters will be described in detail below through two implementation methods.
- the DRX parameter is related to the data arrival period of the corresponding data flow.
- the access network device can specify the associated data radio bearer (DRB) or logical channel (LCH) for multiple groups of DRX parameters through RRC signaling, so that the DRX parameters are associated with the data stream.
- the terminal device receives RRC signaling, which includes DRBs or LCHs associated with multiple groups of DRX parameters.
- the data stream is associated with the DRB or LCH or logical channel group (LCG).
- LCG logical channel group
- the data stream is mapped to the DRB, the data stream is carried on the LCH, one DRB is associated with one LCH, and multiple LCHs constitute an LCG.
- the RRC signaling includes a plurality of sets of DRX parameters respectively associated with the DRB or LCH, which may include but is not limited to the following situations:
- any DRX configuration information element in the RRC signaling carries the corresponding DRB identity (ID) or LCH identity or LCG identity.
- the DRX configuration information element may carry one or more DRB IDs, or one or more LCH IDs, or one or more LCG IDs, thereby establishing an association relationship between the DRX parameters and the DRB, LCH or LCG.
- Case 2 Any DRB configuration information element in the RRC signaling carries the corresponding DRX index.
- the DRX index can be added to the existing DRB configuration information element to establish an association relationship between the DRB and the DRX parameters.
- Case 3 Any LCH configuration information element in the RRC signaling carries the corresponding DRX index. For example, in the existing LCH A DRX index is added to the configuration information element to establish an association between LCH and DRX parameters.
- the DRX cycle is determined according to the data arrival period of the data flow corresponding to the DRX parameters.
- FIG5 is a schematic diagram of a multi-flow data and corresponding multiple groups of DRX cycles provided by the present application. Among them, the DRC cycle in the first group of DRX parameters is the same as the data arrival period of flow 1, and the DRC cycle in the second group of DRX parameters is the same as the data arrival period of flow 2.
- the terminal device when the data arrival period of the data flow received by the terminal device is the same as the data arrival period of flow 1 or is an integer multiple of the data arrival period of flow 1, the terminal device can configure the value of the DRX cycle to the DRX cycle in the first group of DRX parameters; when the data arrival period of the data flow received by the terminal device is the same as the data arrival period of flow 2 or is an integer multiple of the data arrival period of flow 2, the terminal device can configure the value of the DRX cycle to the DRX cycle in the second group of DRX parameters.
- the DRX cycles and/or DRX start offsets of any two sets of DRX parameters in the multiple sets of DRX parameters are different.
- the DRX cycles of any two sets of DRX parameters in the multiple sets of DRX parameters are different (as shown in Figure 5)
- the two sets of DRX parameters can also be applicable to data streams with different data arrival cycles.
- the starting position of the DRX duration timer in any set of DRX parameters is configured according to the DRX cycle, DRX start offset, and DRX slot offset in the set of DRX parameters.
- DRX cycle For example, for drx-onDurationTimer, its start and stop are periodic, and the position is determined by DRX cycle, drx-StartOffset, and drx-SlotOffset.
- the positions of multiple drx-onDurationTimers can be calculated independently according to the current rules.
- Mode 1 drx-InactivityTimer is configured according to a first preset parameter, where the first preset parameter is used to indicate a value of the DRX inactivity timer.
- the access network device can send a first preset parameter to the terminal device, and correspondingly, the terminal device receives the first preset parameter and configures the drx-InactivityTimer according to the first preset parameter.
- the access network device sends an RRC signaling to the terminal device, and a DRX configuration information element in the RRC signaling includes the first preset parameter.
- the cell configuration information element in the RRC signaling carries a DRX index, and the DRX index is used to associate with the corresponding DRX configuration information element, so that the terminal device can obtain the first preset parameter included in the DRX configuration information element.
- the terminal device starts or restarts the drx-InactivityTimer specified in the RRC signaling (that is, the drx-InactivityTimer configured according to the first preset parameter).
- the first preset parameter may also be the value of the drx-InactivityTimer defined in the protocol.
- the protocol has defined a set of DRX parameters, including the value of the drx-InactivityTimer.
- the terminal device can configure the drx-InactivityTimer according to the value of the drx-InactivityTimer defined in the protocol.
- the terminal device starts or restarts the drx-InactivityTimer specified in the RRC signaling (that is, the drx-InactivityTimer configured according to the protocol).
- Method 2 When the initial transmission occurs, select the corresponding drx-InactivityTimer according to the source of the data stream.
- the initial transmission can be divided into uplink initial transmission and downlink initial transmission.
- the terminal device can perform the following operations:
- Start or restart the DRX inactivity timer configured according to the DRX parameters associated with the LCH, or start or restart the DRX inactivity timer configured according to the DRX parameters associated with the DRB corresponding to the LCH, or start or restart the DRX inactivity timer configured according to the DRX parameters associated with the LCG to which the LCH belongs.
- the MAC entity when the terminal device receives a PDCCH indicating an initial uplink transmission, the MAC entity obtains the cached data from the LCH and generates a MAC protocol data unit (MAC PDU) for PUSCH transmission, that is, the LCH is an LCH that transmits data on the PUSCH corresponding to the PDCCH.
- the MAC PDU may contain data from different LCHs.
- the LCH refers to the LCH with the highest priority among multiple LCHs.
- the terminal device starts or restarts the drx-InactivityTimer configured according to the DRX parameters associated with the LCH; or, starts or restarts the drx-InactivityTimer configured according to the DRX parameters associated with the DRB corresponding to the LCH, or, starts or restarts the drx-InactivityTimer configured according to the DRX parameters associated with the LCG to which the LCH belongs.
- the terminal device can perform the following operations:
- Start or restart the DRX inactivity timer configured according to the DRX parameters associated with the LCH, or start or restart the DRX inactivity timer configured according to the DRX parameters associated with the LCH
- the DRX inactivity timer configured according to the DRX parameters associated with the corresponding DRB, or the DRX inactivity timer configured according to the DRX parameters associated with the LCG to which the LCH belongs is started or restarted.
- the MAC entity decodes the TB data received on the PDSCH corresponding to the PDCCH, and obtains the LCH of the data source, that is, the LCH is the LCH that transmits data on the PUSCH corresponding to the PDCCH.
- the TB data may also come from multiple different LCHs.
- the LCH refers to the LCH with the highest priority among the multiple LCHs.
- the terminal device starts or restarts the drx-InactivityTimer configured according to the DRX parameters associated with the LCH; or, starts or restarts the drx-InactivityTimer configured according to the DRX parameters associated with the DRB corresponding to the LCH, or, starts or restarts the drx-InactivityTimer configured according to the DRX parameters associated with the LCG to which the LCH belongs.
- Method 3 When the initial transmission occurs, select the corresponding drx-InactivityTimer according to the possible source of the data flow.
- the terminal device can perform the following operations:
- the corresponding LCH is determined according to the logical channel prioritization (LCP) rule;
- Start or restart the DRX inactivity timer configured according to the DRX parameters associated with the LCH, or start or restart the DRX inactivity timer configured according to the DRX parameters associated with the DRB corresponding to the LCH, or start or restart the DRX inactivity timer configured according to the DRX parameters associated with the LCG to which the LCH belongs.
- the MAC entity when receiving a PDCCH indicating an initial uplink transmission, the MAC entity first determines the LCH that can carry the data stream this time according to the LCP rules.
- the LCP rules are used to divide different LCHs. The reliability of data on different LCHs is different, and different requirements are placed on the resources for transmission. For example, multiple possible LCHs can be determined according to the LCP rules.
- the LCH that can carry the data stream this time refers to the LCH with the highest priority among the multiple LCHs.
- the terminal device starts or restarts the drx-InactivityTimer configured according to the DRX parameters associated with the LCH; or, starts or restarts the drx-InactivityTimer configured according to the DRX parameters associated with the DRB corresponding to the LCH, or, starts or restarts the drx-InactivityTimer configured according to the DRX parameters associated with the LCG to which the LCH belongs.
- the terminal device since there is no LCP rule in the downlink, the possible data source cannot be determined, so for the downlink initial transmission, the terminal device still performs the operation performed for the downlink initial transmission described in method 2.
- the terminal device can also configure the drx-InactivityTimer according to the value of the drx-InactivityTimer defined in the protocol.
- drx-HARQ-RTT-Timer and drx-RetransmissionTimer are configured according to a second preset parameter, and the second preset parameter is used to indicate the values of the DRX hybrid automatic repeat request round trip time timer and the DRX retransmission timer.
- the access network device can send a second preset parameter to the terminal device, and correspondingly, the terminal device receives the second preset parameter and configures the drx-HARQ-RTT-Timer and drx-RetransmissionTimer according to the second preset parameter.
- the access network device sends RRC signaling to the terminal device, and a DRX configuration information element in the RRC signaling includes the second preset parameter.
- the cell configuration information element in the RRC signaling carries a DRX index, and the DRX index is used to associate with the corresponding DRX configuration information element, so that the terminal device can obtain the second preset parameter included in the DRX configuration information element.
- drx-HARQ-RTT-Timer it is divided into uplink drx-HARQ-RTT-Timer (drx-HARQ-RTT-TimerUL) and downlink drx-HARQ-RTT-Timer (drx-HARQ-RTT-TimerDL).
- drx-RetransmissionTimer it is also divided into uplink drx-RetransmissionTimer (drx-RetransmissionTimerUL) and downlink drx-RetransmissionTimer (drx-RetransmissionTimerDL).
- configuring drx-HARQ-RTT-Timer and drx-RetransmissionTimer according to the second preset parameter specifically includes two cases of uplink and downlink:
- Case 1 For uplink, when sending PUSCH, the terminal device starts or restarts the drx-HARQ-RTT-TimerUL specified in the RRC signaling (that is, the drx-HARQ-RTT-TimerUL configured according to the second preset parameter). Further, when the drx-HARQ-RTT-TimerUL times out, the corresponding drx-RetransmissionTimerUL is started.
- Case 2 For downlink, when receiving PDSCH and sending corresponding HARQ feedback, the terminal device starts or restarts the drx-HARQ-RTT-TimerDL specified in the RRC signaling (that is, the drx-HARQ-RTT-TimerDL configured according to the second preset parameter). Further, when the drx-HARQ-RTT-TimerDL times out, the corresponding drx-RetransmissionTimerDL is started.
- Method 2 Select the corresponding drx-HARQ-RTT-Timer according to the source of the data stream.
- the corresponding drx-HARQ-RTT-Timer is selected according to the source of the data stream, including both uplink and downlink situations:
- Case 1 For uplink transmission, the terminal device can perform the following operations:
- the uplink DRX hybrid automatic repeat request round trip time timer When the uplink DRX hybrid automatic repeat request round trip time timer times out, the corresponding uplink DRX retransmission timer is started.
- the LCH is determined to be the LCH that transmits data on the PUSCH.
- the MAC PDU may contain data from multiple LCHs.
- the LCH refers to the LCH with the highest priority among the multiple LCHs.
- Case 2 For downlink transmission, the terminal device can perform the following operations:
- the MAC entity decodes the TB data received on the PDSCH and obtains the LCH of the data source, that is, the LCH is the LCH that caches the data transmitted on the PDSCH.
- the TB data may also come from multiple different LCHs.
- the LCH refers to the LCH with the highest priority among the multiple LCHs.
- the terminal device starts or restarts the drx-HARQ-RTT-TimerDL configured according to the DRX parameters associated with the LCH; or, starts or restarts the drx-HARQ-RTT-TimerDL configured according to the DRX parameters associated with the DRB corresponding to the LCH, or, starts or restarts the drx-HARQ-RTT-TimerDL configured according to the DRX parameters associated with the DRB corresponding to the LCH, or, starts or restarts the drx-HARQ-RTT-TimerDL configured according to the DRX parameters associated with the LCG to which the LCH belongs.
- the DRX parameter is related to the transmission period of data on the corresponding carrier.
- the access network device can specify the associated cells or bandwidth parts (BWP) for multiple groups of DRX parameters through RRC signaling, so that the DRX parameters are associated with the carrier.
- the terminal device receives RRC signaling, which includes the carriers associated with multiple groups of DRX parameters.
- RRC signaling which includes the carriers associated with multiple groups of DRX parameters.
- the carrier belongs to the cell and is the carrier of the cell service; BWP is a bandwidth configured in the cell. That is, the RRC signaling includes the cells or BWP associated with multiple groups of DRX parameters.
- the RRC signaling includes cells or partial bandwidths BWP associated with multiple groups of DRX parameters, including but not limited to the following situations:
- any DRX configuration information element in the RRC signaling carries the corresponding cell ID or cell group ID or BWP ID.
- the DRX configuration information element may carry one or more cell IDs, or one or more cell group IDs, or one or more BWP IDs, thereby establishing an association relationship between the DRX parameters and the cell or cell group or partial bandwidth BWP.
- Case 2 Any cell configuration information element in the RRC signaling carries the corresponding DRX index.
- the DRX index may be added to the existing cell configuration information element, thereby establishing an association relationship between the cell and the DRX parameter.
- Case 3 Any cell group configuration information element in the RRC signaling carries the corresponding DRX index.
- the DRX index may be added to the existing cell group configuration information element, thereby establishing an association relationship between the cell group and the DRX parameter.
- Case 4 Any BWP configuration information element in the RRC signaling carries the corresponding DRX index.
- the DRX index can be added to the existing BWP configuration information element, thereby establishing an association relationship between the BWP and the DRX parameters.
- the DRX cycle is determined according to the transmission cycle of the data on the carrier corresponding to the DRX parameters.
- FIG6 is a schematic diagram of a multi-carrier and corresponding multiple groups of DRX cycles provided by the present application.
- the same data stream is divided into different carriers according to a certain rule.
- the I frame data in a video stream is transmitted on carrier 1 (carrier 1)
- the P frame data is transmitted on carrier 2 (carrier 2), as shown in FIG6.
- the DRC cycle in the first group of DRX parameters can be configured to be the same as the transmission cycle of the data on carrier 1
- the DRC cycle in the second group of DRX parameters can be configured to be the same as the transmission cycle of the data on carrier 2.
- the DRX cycles and/or DRX start offsets of any two groups of DRX parameters in the multiple groups of DRX parameters are different.
- the starting position of the DRX duration timer in any group of DRX parameters is configured according to the DRX cycle, DRX start offset, and DRX time slot offset in the group of DRX parameters.
- the specific configuration method can refer to the corresponding description in Implementation Method 1, which will not be repeated here.
- the terminal device may start or restart the DRX inactivity timer corresponding to the first carrier.
- the value of drx-InactivityTimer is directly determined according to the first carrier.
- the terminal device when data is transmitted on the first carrier, the terminal device can start or restart the DRX hybrid automatic repeat request round-trip time timer corresponding to the first carrier; and when the DRX hybrid automatic repeat request round-trip time timer times out, start the corresponding DRX retransmission timer.
- the drx-HARQ-RTT-TimerUL corresponding to the first carrier is started or restarted, and the corresponding drx-RetransmissionTimerUL is started after the drx-HARQ-RTT-TimerUL times out.
- the drx-HARQ-RTT-TimerDL corresponding to the first carrier is started or restarted, and the corresponding drx-RetransmissionTimerDL is started after the drx-HARQ-RTT-TimerDL times out.
- drx-onDurationTimer or drx-InactivityTimer or drx-RetransmissionTimer in any set of DRX parameters when drx-onDurationTimer or drx-InactivityTimer or drx-RetransmissionTimer in any set of DRX parameters is in a running state, it means that the UE is in an activated state, and the UE monitors the PDCCH.
- drx-onDurationTimer or drx-InactivityTimer or drx-RetransmissionTimer of any set of DRX is in a running state, the UE monitors the PDCCH for the first carrier.
- the network configuration method provided in this embodiment can configure multiple groups of DRX parameters for different data streams, and the DRX cycle and other related parameters in each group of DRX parameters are configured differently, so that the DRX configuration can better match the characteristics of different data streams, such as data arrival time, data volume, etc., so that the terminal device can wake up in time when the data arrives, and monitor the PDCCH for a suitable period of time to ensure service delay and user experience, while avoiding the monitoring time being greater than the data volume requirement, which is beneficial to reducing the energy consumption of the terminal device.
- the present application can also configure corresponding secondary DRX parameters for the multiple groups of DRX parameters respectively, so that the DRX parameters of different data streams can better match the transmission rhythm of the data streams in the low-frequency service cell and the high-frequency service cell, which is beneficial to reducing the energy consumption of the terminal device.
- the access network device may configure multiple sets of secondary DRX parameters for the terminal device through RRC signaling.
- the access network device sends RRC signaling to the terminal device, and the RRC signaling includes multiple sets of secondary DRX parameters corresponding to the multiple sets of DRX parameters, and one set of secondary DRX parameters includes a DRX duration timer and a DRX inactivity timer.
- Method 1 For each set of DRX parameters, configure a corresponding set of secondary DRX parameters.
- multiple groups of secondary DRX parameters correspond one-to-one to the configured multiple groups of DRX parameters, that is, each group of DRX parameters is associated with a group of secondary DRX parameters.
- Figure 7 is a correspondence diagram of multiple groups of DRX parameters and secondary DRX parameters provided by the present application. Among them, (a) in Figure 7 shows a one-to-one correspondence, that is, the secondary DRX corresponding to DRX0 is DRX0', the secondary DRX corresponding to DRX1 is DRX1', and the secondary DRX corresponding to DRX2 is DRX2'.
- the secondary DRX can be directly configured in the DRX configuration cell. If the secondary DRX is not configured in the DRX configuration cell, the group of DRX parameters has no corresponding secondary DRX parameters.
- Method 2 For each set of secondary DRX parameters, specify a set of corresponding DRX parameters.
- a set of DRX parameters is specified for it, and the remaining parameters of the secondary DRX reuse the remaining parameters in the specified DRX parameters.
- (ii) in Figure 7 shows the specified relationship.
- the terminal device can configure DRX0' and DRX1' according to the specified relationship.
- a DRX index can be carried in the secondary DRX configuration information element to indicate the specified DRX parameters.
- Method 3 Configure multiple groups of secondary DRX parameters according to a set of specified DRX parameters.
- the access network device specifies a set of default DRX parameters for the terminal device through RRC signaling, and multiple sets of secondary DRX parameters are configured based on the parameters of the default DRX.
- (three) in Figure 7 shows a one-to-many relationship.
- the designated default DRX is DRX0
- when configuring the parameters of the secondary DRX (such as DRX0' and DRX1'), they are configured based on the parameters of DRX0.
- the default flag can be carried in the DRX configuration information element to indicate that the secondary DRX parameters are configured based on the parameters of the default DRX.
- the secondary DRX has the same validity scope as its corresponding DRX, for example, a set of DRX parameters and a corresponding set of secondary DRX parameters are valid for the same DRB.
- the device or equipment provided by the present application may include a hardware structure and/or a software module, and the above functions are realized in the form of a hardware structure, a software module, or a hardware structure plus a software module. Whether a certain function in the above functions is executed in the form of a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraints of the technical solution.
- the division of modules in the present application is schematic, which is only a logical function division, and there may be other division methods in actual implementation.
- each functional module in each embodiment of the present application can be integrated in a processor, or it can be physically present separately, or two or more modules can be integrated in one module.
- the above integrated module can be implemented in the form of hardware or in the form of software functional modules.
- FIG 8 is a schematic diagram of a communication device provided by the present application.
- the communication device may include a module corresponding to the method/operation/step/action described in the method embodiment corresponding to Figure 4, and the module may be a hardware circuit, or software, or a combination of a hardware circuit and software.
- the communication device 800 includes a communication unit 801 and a processing unit 802, which are used to implement the method executed by the terminal device or the access network device in the above-mentioned embodiment.
- the communication unit 801 is used to receive multiple groups of discontinuous reception DRX parameters, any group of DRX parameters in the multiple groups of DRX parameters includes a DRX cycle, and the DRX cycle is determined according to a data arrival period of a data stream corresponding to the group of DRX parameters or a data transmission period on a carrier corresponding to the group of DRX parameters.
- the processing unit 802 is used to monitor a physical downlink control channel PDCCH when any group of DRX parameters indicates that the terminal device is in an activated state.
- the terminal device receives a radio resource control RRC signaling, the RRC signaling includes a plurality of DRX configuration information elements, wherein one DRX configuration information element corresponds to a group of DRX parameters, the DRX configuration information element includes a DRX index, and the DRX index is used to associate with the corresponding DXR parameters.
- RRC signaling includes a plurality of DRX configuration information elements, wherein one DRX configuration information element corresponds to a group of DRX parameters, the DRX configuration information element includes a DRX index, and the DRX index is used to associate with the corresponding DXR parameters.
- any set of DRX parameters in the multiple sets of DRX parameters further includes one or more of the following parameters:
- DRX duration timer (drx-onDurationTimer), used to indicate the length of time the terminal device is in the active state
- DRX inactivity timer (drx-InactivityTimer), used to indicate the length of time the terminal device monitors the PDCCH after receiving the initial PDCCH;
- DRX Hybrid Automatic Repeat Request Round Trip Timer (drx-HARQ-RTT-TimerUL/drx-HARQ-RTT-TimerDL), which indicates the minimum number of symbols between the current transmission and the next retransmission.
- DRX retransmission timer (drx-RetransmissionTimerUL/drx-RetransmissionTimerDL), used to indicate the maximum time for the terminal device to wait for retransmission of data when it is in an activated state;
- DRX start offset (drx-SlotOffset), used to indicate the start subframe of the DRX cycle
- the DRX time slot offset (drx-StartOffset) is used to indicate the duration for which the DRX duration timer is delayed from the front boundary of the start subframe of the DRX cycle.
- any DRX configuration information element does not include all parameters in a corresponding set of DRX parameters
- the values of the parameters not included are default values
- the default values are parameter values configured by the access network device according to the protocol.
- any two groups of DRX parameters in the multiple groups of DRX parameters have different DRX cycles and/or different DRX start offsets.
- the starting position of the DRX duration timer in any group of DRX parameters is configured according to the DRX cycle, DRX start offset, and DRX time slot offset in the group of DRX parameters.
- the RRC signaling also includes data radio bearers DRB or logical channels LCH respectively associated with multiple groups of DRX parameters.
- any DRX configuration information element in the RRC signaling carries the corresponding DRB identifier or LCH identifier or logical channel group LCG identifier; or, any DRB configuration information element in the RRC signaling carries the corresponding DRX index; or, any LCH configuration information element in the RRC signaling carries the corresponding DRX index.
- the communication unit 801 is used to receive a first preset parameter, where the first preset parameter is used to indicate a value of a DRX inactivity timer.
- processing unit 802 is configured to:
- a DRX inactivity timer configured according to the protocol is started or restarted.
- processing unit 802 is configured to:
- processing unit 802 is configured to:
- Start or restart the DRX inactivity timer configured according to the DRX parameters associated with the LCH, or start or restart the DRX inactivity timer configured according to the DRX parameters associated with the DRB corresponding to the LCH, or start or restart the DRX inactivity timer configured according to the DRX parameters associated with the LCG to which the LCH belongs.
- processing unit 802 is configured to:
- the corresponding LCH is determined according to the logical channel priority LCP rule
- Start or restart the DRX inactivity timer configured according to the DRX parameters associated with the LCH, or start or restart the DRX inactivity timer configured according to the DRX parameters associated with the DRB corresponding to the LCH, or start or restart the DRX inactivity timer configured according to the DRX parameters associated with the LCG to which the LCH belongs.
- the communication unit 801 is used to receive a second preset parameter, where the second preset parameter is used to indicate a value of a DRX hybrid automatic repeat request round trip time timer.
- processing unit 802 is configured to:
- the uplink DRX hybrid automatic repeat request round trip time timer When the uplink DRX hybrid automatic repeat request round trip time timer times out, the corresponding uplink DRX retransmission timer is started.
- processing unit 802 is configured to:
- processing unit 802 is configured to:
- the uplink DRX hybrid automatic repeat request round trip time timer When the uplink DRX hybrid automatic repeat request round trip time timer times out, the corresponding uplink DRX retransmission timer is started.
- processing unit 802 is configured to:
- the RRC signaling also includes carriers associated with multiple groups of DRX parameters, and the carriers are associated with the cell or the partial bandwidth BWP.
- any DRX configuration information element in the RRC signaling carries the corresponding cell identifier or cell group identifier or BWP identifier; or, any cell configuration information element in the RRC signaling carries the corresponding DRX index; or, any cell group configuration information element in the RRC signaling carries the corresponding DRX index; or, any BWP configuration information element in the RRC signaling carries the corresponding DRX index.
- processing unit 802 is configured to:
- a DRX inactivity timer corresponding to the first carrier is started or restarted.
- processing unit 802 is configured to:
- the communication unit 801 is used to receive multiple groups of secondary DRX parameters corresponding to the multiple groups of DRX parameters, where the secondary DRX parameters include a DRX duration timer and a DRX inactivity timer.
- processing unit 802 is configured to:
- For each set of secondary DRX parameters specify a set of corresponding DRX parameters; or,
- multiple sets of secondary DRX parameters are configured.
- the specific execution process of the communication unit 801 and the processing unit 802 in this implementation mode can also refer to the description in the method embodiment corresponding to Figure 4, which will not be repeated here.
- the network configuration method implemented by the communication device can receive multiple groups of DRX parameters configured for different data streams, and the DRX cycle and other related parameters in each group of DRX parameters are configured differently, so that the DRX parameters can better match the characteristics of different data streams, avoid generating additional delays, thereby reducing the delay of the data stream, which is conducive to improving network capacity and reducing the energy consumption of terminal equipment.
- the processing unit 802 is used to determine multiple groups of DRX parameters, any group of DRX parameters in the multiple groups of DRX parameters includes a DRX cycle, and the DRX cycle is determined according to a data arrival period of a data stream corresponding to the group of DRX parameters or a data transmission period on a carrier.
- the communication unit 801 is used to send multiple groups of DRX parameters to the terminal device.
- the communication unit 801 is used to send RRC signaling to the terminal device, where the RRC signaling includes multiple DRX configuration information elements, wherein one DRX configuration information element corresponds to a group of DRX parameters, and the DRX configuration information element includes a DRX index, and the DRX index is used to associate with the corresponding DXR parameters.
- any set of DRX parameters in the multiple sets of DRX parameters further includes one or more of the following parameters:
- DRX duration timer used to indicate the length of time the terminal device is in an active state
- DRX inactive timer used to indicate the length of time the terminal device monitors the PDCCH after receiving the initial PDCCH
- DRX hybrid automatic repeat request round trip timer used to indicate the minimum number of symbols between the current transmission and the next retransmission
- DRX retransmission timer used to indicate the maximum time for the terminal device to wait for retransmission of data when it is in an activated state
- DRX start offset used to indicate the start subframe of the DRX cycle
- the DRX time slot offset is used to indicate the time length for which the DRX duration timer is delayed from the front boundary of the start subframe of the DRX cycle.
- the value of the parameter not included is a default value, which is a parameter value configured by the access network device according to the protocol.
- any two groups of DRX parameters in multiple groups of DRX parameters have different DRX cycles and/or different DRX start offsets; the starting position of the DRX duration timer in any group of DRX parameters is configured according to the DRX cycle, DRX start offset, and DRX time slot offset in the group of DRX parameters.
- the RRC signaling also includes data radio bearers DRB or logical channels LCH respectively associated with multiple groups of DRX parameters.
- any DRX configuration information element in the RRC signaling carries the corresponding DRB identifier or LCH identifier or logical channel group LCG identifier; or, any DRB configuration information element in the RRC signaling carries the corresponding DRX index; or, any LCH configuration information element in the RRC signaling carries the corresponding DRX index.
- the communication unit 801 is used to send a first preset parameter to the terminal device, where the first preset parameter is used to indicate a value of a DRX inactivation timer.
- the communication unit 801 is used to send a second preset parameter to the terminal device, where the second preset parameter is used to indicate a value of a DRX hybrid automatic repeat request round trip time timer.
- the RRC signaling also includes carriers associated with multiple groups of DRX parameters, and the carriers are associated with the cell or the partial bandwidth BWP.
- any DRX configuration information element in the RRC signaling carries the corresponding cell identifier or cell group identifier or BWP identifier; or, any cell configuration information element in the RRC signaling carries the corresponding DRX index; or, any cell group configuration information element in the RRC signaling carries the corresponding DRX index; or, any BWP configuration information element in the RRC signaling carries the corresponding DRX index.
- the communication unit 801 is used to send multiple groups of secondary DRX parameters corresponding to the multiple groups of DRX parameters to the terminal device, where the secondary DRX parameters include a DRX duration timer and a DRX inactivity timer.
- the specific execution process of the communication unit 801 and the processing unit 802 in this implementation mode can also refer to the description in the method embodiment corresponding to Figure 4, which will not be repeated here.
- the network configuration method implemented by the communication device can configure multiple groups of DRX parameters for different data streams, and the DRX cycle and other related parameters in each group of DRX parameters are configured differently, so that the DRX configuration can better match the characteristics of different data streams, avoid generating additional delays, thereby reducing the delay of the data stream, which is conducive to improving network capacity and reducing the energy consumption of terminal equipment.
- Figure 9 is a schematic diagram of a communication device provided by the present application, which is used to implement the network configuration method in the above method embodiment.
- the communication device 900 can also be a chip system. It can be understood that the device 900 can be, for example, a terminal device or an access network device.
- the communication device 900 includes a communication interface 901 and a processor 902.
- the communication interface 901 may be, for example, a transceiver, an interface, a bus, a circuit, or a device capable of implementing transceiver functions.
- the communication interface 901 is used to communicate with other devices through a transmission medium, thereby The device 900 can communicate with other devices.
- the processor 902 is used to perform processing-related operations.
- the communication interface 901 is used to receive multiple groups of discontinuous reception DRX parameters, and any group of DRX parameters in the multiple groups of DRX parameters includes a DRX cycle, and the DRX cycle is determined according to a data arrival period of a data stream corresponding to the group of DRX parameters or a data transmission period on a carrier corresponding to the group of DRX parameters.
- the processor 902 is used to monitor a physical downlink control channel PDCCH when any group of DRX parameters indicates that the terminal device is in an activated state.
- the specific execution process of the communication interface 901 and the processor 902 in this implementation manner can also refer to the description in the first aspect and the method embodiment corresponding to FIG4, or refer to the description in the communication unit 801 and the processing unit 802 in FIG8, which will not be repeated here.
- the network configuration method implemented by the device can receive multiple groups of DRX parameters configured for different data streams, and the DRX cycle and other related parameters in each group of DRX parameters are configured differently, so that the DRX parameters can better match the characteristics of different data streams, avoid generating additional delays, thereby reducing the delay of the data stream, which is beneficial to improving network capacity and reducing the energy consumption of terminal devices.
- the processor 902 is used to determine multiple groups of DRX parameters, any group of DRX parameters in the multiple groups of DRX parameters includes a DRX cycle, and the DRX cycle is determined according to a data arrival period of a data stream corresponding to the group of DRX parameters or a data transmission period on a carrier.
- the communication interface 901 is used to send multiple groups of DRX parameters to the terminal device.
- the specific execution process of the communication interface 901 and the processor 902 in this implementation manner can also refer to the description in the first aspect and the method embodiment corresponding to FIG4, or refer to the description in the communication unit 801 and the processing unit 802 in FIG8, which will not be repeated here.
- the network configuration method implemented by the device can configure multiple groups of DRX parameters for different data streams, and the DRX cycle and other related parameters in each group of DRX parameters are configured differently, so that the DRX configuration can better match the characteristics of different data streams, avoid generating additional delays, thereby reducing the delay of the data stream, which is conducive to improving network capacity and reducing the energy consumption of terminal devices.
- the device 900 may also include at least one memory 903 for storing program instructions and/or data.
- the memory and the processor are coupled.
- the coupling in this application is an indirect coupling or communication connection between devices, units or modules, which may be electrical, mechanical or other forms, for information exchange between devices, units or modules.
- the processor may operate in conjunction with the memory.
- the processor may execute program instructions stored in the memory.
- the at least one memory and the processor are integrated together.
- connection medium between the above-mentioned communication interface, processor and memory is not limited in this application.
- the memory, processor and communication interface are connected via a bus, and bus 904 is represented by a bold line in FIG9 .
- the connection mode between other components is only for schematic illustration and is not limited.
- the bus can be divided into an address bus, a data bus, a control bus, etc.
- only one bold line is used in FIG9 , but it does not mean that there is only one bus or one type of bus.
- the processor may be a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, and may implement or execute the methods, steps, and logic block diagrams disclosed in this application.
- a general-purpose processor may be a microprocessor or any conventional processor, etc. The steps of the method disclosed in this application may be directly embodied as being executed by a hardware processor, or may be executed by a combination of hardware and software modules in the processor.
- the memory may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., or a volatile memory (volatile memory), such as a random-access memory (RAM).
- the memory is any other medium that can be used to carry or store the desired program code in the form of instructions or data structures and can be accessed by a computer, but is not limited thereto.
- the memory in the present application may also be a circuit or any other device that can realize a storage function, used to store program instructions and/or data.
- the present application provides a communication system, which includes a terminal device and an access network device as shown in the embodiment corresponding to FIG. 4 .
- the present application provides a computer-readable storage medium.
- the computer-readable storage medium stores a program or instruction.
- the program or instruction is executed on a computer, the computer executes the network configuration method in the embodiment corresponding to FIG. 4 .
- the present application provides a computer program product.
- the computer program product includes instructions. When the instructions are executed on a computer, the computer executes the network configuration method in the embodiment corresponding to FIG. 4 .
- the present application provides a chip or a chip system, which includes at least one processor and an interface, the interface and the at least one processor are interconnected through lines, and the at least one processor is used to run a computer program or instruction to execute the network configuration method in the embodiment corresponding to Figure 4.
- the interface in the chip may be an input/output interface, a pin or a circuit, etc.
- the above-mentioned chip system can be a system on chip (SOC) or a baseband chip, etc., wherein the baseband chip can include a processor, a channel encoder, a digital signal processor, a modem and an interface module, etc.
- SOC system on chip
- baseband chip can include a processor, a channel encoder, a digital signal processor, a modem and an interface module, etc.
- the chip or chip system described above in the present application further includes at least one memory, in which instructions are stored.
- the memory may be a storage unit inside the chip, such as a register, a cache, etc., or a storage unit of the chip (e.g., a read-only memory, a random access memory, etc.).
- the technical solution provided in this application can be implemented in whole or in part by software, hardware, firmware or any combination thereof.
- software When implemented by software, it can be implemented in whole or in part in the form of a computer program product.
- the computer program product includes one or more computer instructions.
- the computer can be a general-purpose computer, a special-purpose computer, a computer network, a network device, a terminal device or other programmable device.
- the computer instructions can be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
- the computer instructions can be transmitted from a website site, computer, server or data center to another website site, computer, server or data center by wired (e.g., coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (e.g., infrared, wireless, microwave, etc.) mode.
- the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server or data center that includes one or more available media integrated.
- the available medium may be a magnetic medium (e.g., a floppy disk, a hard disk, a magnetic tape), an optical medium (e.g., a digital video disc (DVD)), or a semiconductor medium, etc.
- the various embodiments may reference each other, for example, the methods and/or terms between method embodiments may reference each other, for example, the functions and/or terms between device embodiments may reference each other, for example, the functions and/or terms between device embodiments and method embodiments may reference each other.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本申请提供一种网络配置方法、装置及设备,该方法中终端设备可以接收多组DRX参数,并且多组DRX参数中的DRX周期等相关参数配置不同,从而使得DRX配置能够更好的匹配不同数据流的特征,如数据到达时间、数据量大小等,使终端设备可以在数据达到时及时醒来,并持续一段合适的时间对PDCCH进行监听,保证业务时延和用户体验,同时避免监听时间大于数据量需要,有利于降低终端设备的能耗。
Description
本申请要求于2022年9月26日提交中国专利局、申请号为202211174807.8,申请名称为“一种网络配置方法、装置及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及通信技术领域,尤其涉及一种网络配置方法、装置及设备。
新空口(new radio,NR)系统中,接入网设备可以为终端设备配置非连续接收(discontinuous reception,DRX),则终端设备在每个DRX周期内,仅在监听时间段内打开接收机进入DRX激活态,以监听下行控制信令,而在DRX周期的其他时间关闭接收机进入DRX休眠态,可以降低终端设备的能耗。但是,当终端设备同时进行具有多流数据的业务(例如扩展现实(extended reality,XR)业务)时,多个数据流的到达时间可能是相互错开的。目前的DRX配置可能与多个数据流中的部分数据流的特征不匹配,导致部分数据流的时延较大或者导致终端设备在没有数据传输时仍然处于监听状态,从而降低网络容量,也不利于降低终端设备的能耗。
发明内容
本申请提供一种网络配置方法、装置及设备,该方法针对多个数据流分别配置多组DRX参数,各组DRX参数与对应的数据流的时间特征相匹配,从而降低数据流的时延,有利于提高网络容量,降低终端设备的能耗。
第一方面,本申请提供一种网络配置方法,该方法可以由终端设备所执行,也可以由终端设备的部件(例如处理器、芯片、或芯片系统等)执行,还可以由能实现全部或部分终端设备功能的逻辑模块或软件实现。其中,终端设备接收多组非连续接收DRX参数,多组DRX参数中的任意一组DRX参数包括DRX周期,DRX周期是根据该组DRX参数对应的数据流的数据到达周期或者该组DRX参数对应的载波上的数据的传输周期确定的。当任意一组DRX参数指示终端设备处于激活状态时,终端设备监听物理下行控制信道PDCCH。
该方法中,终端设备可以接收针对不同数据流配置的多组DRX参数,并且每一组DRX参数中的DRX周期等相关参数配置不同,从而使得DRX参数能够更好的匹配不同数据流的特征,避免产生额外的时延,从而降低数据流的时延,有利于提高网络容量,降低终端设备的能耗。
一种可能的实施方式中,终端设备接收无线资源控制RRC信令,RRC信令包括多个DRX配置信元。其中,一个DRX配置信元对应一组DRX参数,DRX配置信元包括DRX索引,DRX索引用于关联对应的DXR参数。
该方法中,终端设备通过接收RRC信令来获取多组DRX参数。例如,接收多个DRX配置信元,DRX配置信元中携带DRX索引。
一种可能的实施方式中,多组DRX参数中的任意一组DRX参数还包括以下一种或多种参数:
DRX持续时间定时器(drx-onDurationTimer),用于指示终端设备处于激活状态的时长;
DRX非激活定时器(drx-InactivityTimer),用于指示当终端设备接收初传PDCCH后监听PDCCH的时长;
DRX混合自动重传请求往返时间定时器(drx-HARQ-RTT-TimerUL/drx-HARQ-RTT-TimerDL),用于指示下一次重传出现时与当前传输间隔的最小符号数量;
DRX重传定时器(drx-RetransmissionTimerUL/drx-RetransmissionTimerDL),用于指示终端设备处于激活状态时等待重传数据的最大时长;
DRX起始偏置(drx-SlotOffset),用于指示DRX周期的起始子帧;
DRX时隙偏置(drx-StartOffset),用于指示DRX周期的起始子帧的前边界向后推迟启动DRX持续时间定时器的时长。
一种可能的实施方式中,当任意一个DRX配置信元中不包括对应的一组DRX参数中的全部参数时,
未包括的参数的取值为默认值,默认值为接入网设备根据协议配置的参数值。
该方法中,终端设备通过接收RRC信令来获取DRX参数中的部分或全部参数。其中,若RRC信令中不包括DRX参数中的部分参数,则该部分参数的取值遵循接入网设备根据当前协议配置的取值。
一种可能的实施方式中,多组DRX参数中任意两组DRX参数的DRX周期不同和/或DRX起始偏置不同。其中,任意一组DRX参数中的DRX持续时间定时器的起始位置是根据该组DRX参数中的DRX周期、DRX起始偏置、DRX时隙偏置配置的。
该方法中,当任意两组DRX参数的DRX周期不同和/或DRX起始偏置不同时,使得每一组DRX参数可以匹配不同时间特征的数据流,则终端设备可以根据不同数据流的特征选择配置不同的DRX参数,避免业务产生额外的时延。
一种可能的实施方式中,RRC信令还包括多组DRX参数分别关联的数据无线承载DRB或逻辑信道LCH。其中,RRC信令中的任意一个DRX配置信元中携带对应的DRB标识或LCH标识或逻辑信道组LCG标识;或者,RRC信令中的任意一个DRB配置信元中携带对应的DRX索引;或者,RRC信令中的任意一个LCH配置信元中携带对应的DRX索引。
该方法中,终端设备通过接收RRC信令来获取每一组DRX参数相关的承载或逻辑信道,从而获取DRX参数与数据流的关联关系。
一种可能的实施方式中,接收第一预设参数,第一预设参数用于指示DRX非激活定时器的取值。
该方法中,终端设备可以根据第一预设参数所指示的DRX非激活定时器的取值配置对应的DRX非激活定时器。例如,第一预设参数可以是协议规定的DRX参数中的DRX非激活定时器的取值,或者,第一预设参数可以是RRC信令中指定的DRX非激活定时器的取值。
一种可能的实施方式中,当接收指示初传的PDCCH时,终端设备启动或重启根据第一预设参数配置的DRX非激活定时器;或者,
当接收指示初传的PDCCH时,终端设备启动或重启根据协议配置的DRX非激活定时器。
一种可能的实施方式中,当接收指示上行初传的PDCCH时,终端设备确定在PDCCH对应的物理上行共享信道PUSCH上传输数据的LCH,然后启动或重启根据所述LCH关联的DRX参数配置的DRX非激活定时器,或者,启动或重启根据所述LCH对应的DRB关联的DRX参数配置的DRX非激活定时器,或者,启动或重启根据所述LCH所属的LCG关联的DRX参数配置的DRX非激活定时器。
该方法中,当发生上行初传时,若已知数据的来源,则终端设备可以根据传输上行数据的逻辑信道选择对应的DRX非激活定时器。
一种可能的实施方式中,当接收指示下行初传的PDCCH时,终端设备解码PDCCH对应的物理下行共享信道PDSCH上传输的数据,确定缓存该数据的LCH,然后启动或重启根据该LCH关联的DRX参数配置的DRX非激活定时器,或者,启动或重启根据该LCH对应的DRB关联的DRX参数配置的DRX非激活定时器,或者,启动或重启根据该LCH所属的LCG关联的DRX参数配置的DRX非激活定时器。
该方法中,当发生下行初传时,终端设备可以根据初传数据的来源选择对应的DRX非激活定时器。
一种可能的实施方式中,当接收指示上行初传的PDCCH时,终端设备根据逻辑信道优先级LCP规则,确定对应的LCH,然后启动或重启根据该LCH关联的DRX参数配置的DRX非激活定时器,或者,启动或重启根据该LCH对应的DRB关联的DRX参数配置的DRX非激活定时器,或者,启动或重启根据该LCH所属的LCG关联的DRX参数配置的DRX非激活定时器。
该方法中,当发生上行初传时,若未知数据的来源,则终端设备可以根据LCP规则选择对应的DRX非激活定时器。
一种可能的实施方式中,终端设备接收第二预设参数,第二预设参数用于指示DRX混合自动重传请求往返时间定时器的取值。
该方法中,终端设备可以根据第二预设参数所指示的混合自动重传请求往返时间定时器的取值配置对应的混合自动重传请求往返时间定时器。例如,第二预设参数可以是协议规定的DRX参数中的DRX混合自动重传请求往返时间定时器的取值,或者,第二预设参数可以是RRC信令中指定的DRX混合自动重传请求往返时间定时器的取值。
一种可能的实施方式中,当发送物理上行共享信道PUSCH时,终端设备启动或重启根据第二预设参数配置的上行DRX混合自动重传请求往返时间定时器;当上行DRX混合自动重传请求往返时间定时器超时,启动对应的上行DRX重传定时器。
该方法中,对于上行传输,终端设备可以根据第二预设参数确定上行DRX混合自动重传请求往返时
间定时器。
一种可能的实施方式中,当接收PDSCH并发送对应的混合自动重传请求HARQ反馈时,终端设备启动或重启根据第二预设参数配置的下行DRX混合自动重传请求往返时间定时器;当下行DRX混合自动重传请求往返时间定时器超时,启动对应的下行DRX重传定时器。
该方法中,对于下行传输,终端设备可以根据第二预设参数确定下行DRX混合自动重传请求往返时间定时器。
一种可能的实施方式中,当发送PUSCH时,终端设备确定在PUSCH上传输数据的LCH,然后启动或重启根据该LCH关联的DRX参数配置的上行DRX混合自动重传请求往返时间定时器,或者,启动或重启根据该LCH对应的DRB关联的DRX参数配置的上行DRX混合自动重传请求往返时间定时器,或者,启动或重启根据该LCH所属的LCG关联的DRX参数配置的上行DRX混合自动重传请求往返时间定时器;当上行DRX混合自动重传请求往返时间定时器超时,启动对应的上行DRX重传定时器。
该方法中,对于上行传输,终端设备可以根据传输上行数据的逻辑信道选择对应的DRX混合自动重传请求往返时间定时器。
一种可能的实施方式中,当接收PDSCH时,终端设备解码该PDSCH上的数据,确定缓存该数据的LCH;当发送该PDSCH的HARQ反馈时,启动或重启根据该LCH关联的DRX参数配置的下行DRX混合自动重传请求往返时间定时器,或者,启动或重启根据该LCH对应的DRB关联的DRX参数配置的下行DRX混合自动重传请求往返时间定时器,或者,启动或重启根据该LCH所属的LCG关联的DRX参数配置的下行DRX混合自动重传请求往返时间定时器;当下行DRX混合自动重传请求往返时间定时器超时,启动对应的下行DRX重传定时器。
该方法中,对于下行传输,终端设备可以根据下行数据的来源选择对应的DRX混合自动重传请求往返时间定时器。
一种可能的实施方式中,RRC信令还包括多组DRX参数分别关联的载波,载波与小区或部分带宽BWP相关联。其中,该RRC信令中的任意一个DRX配置信元中携带对应的小区标识或小区组标识或BWP标识;或者,该RRC信令中的任意一个小区配置信元中携带对应的DRX索引;或者,该RRC信令中的任意一个小区组配置信元中携带对应的DRX索引;或者,该RRC信令中的任意一个BWP配置信元中携带对应的DRX索引。
该方法中,终端设备通过接收RRC信令来获取每一组DRX参数相关的小区或BWP,从而获取DRX参数与载波的关联关系。
一种可能的实施方式中,当在第一载波上接收指示初传的PDCCH时,终端设备启动或重启该第一载波对应的DRX非激活定时器。
该方法中,终端设备可以根据载波和DRX参数的关联关系,确定指定的载波对应的DRX非激活定时器。
一种可能的实施方式中,当在第一载波上进行数据传输时,终端设备启动或重启该第一载波对应的DRX混合自动重传请求往返时间定时器;当DRX混合自动重传请求往返时间定时器超时,启动对应的DRX重传定时器。
该方法中,终端设备可以根据载波和DRX参数的关联关系,确定指定的载波对应的DRX混合自动重传请求往返时间定时器。
一种可能的实施方式中,终端设备接收多组DRX参数对应的多组次级DRX参数,次级DRX参数包括DRX持续时间定时器和DRX非激活定时器。
该方法中,终端设备可以接收多组DRX参数对应的多组次级DRX参数,从而使得不同数据流的DRX参数更好的匹配数据流在低频服务小区和高频服务小区的传输节奏,有利于降低终端设备的能耗。
一种可能的实施方式中,终端设备可以针对每一组DRX参数,配置对应的一组次级DRX参数;或者,针对每一组次级DRX参数,指定一组对应的DRX参数;或者根据一组指定的DRX参数,配置所述多组次级DRX参数。
该方法中,终端设备可以采用多种方式配置次级DRX参数,配置方法更灵活。
第二方面,本申请提供另一种网络配置方法,该方法可以由接入网设备所执行,也可以由接入网设备的部件(例如处理器、芯片、或芯片系统等)执行,还可以由能实现全部或部分接入网设备功能的逻辑模块或软件实现。其中,接入网设备确定多组DRX参数,并向终端设备发送多组DRX参数。多组DRX参数中的任意一组DRX参数包括DRX周期,DRX周期是根据该组DRX参数对应的数据流的数据到达周期
或者载波上的数据的传输周期确定的。
该方法中,接入网设备可以针对不同数据流配置多组DRX参数,并且每一组DRX参数中的DRX周期等相关参数配置不同,从而使得DRX配置能够更好的匹配不同数据流的特征,避免产生额外的时延,从而降低数据流的时延,有利于提高网络容量,降低终端设备的能耗。
一种可能的实施方式中,接入网设备向终端设备发送RRC信令,该RRC信令包括多个DRX配置信元。其中,一个DRX配置信元对应一组DRX参数,DRX配置信元包括DRX索引,DRX索引用于关联对应的DXR参数。
该方法中,接入网设备通过RRC信令为终端设备配置多组DRX参数。例如,配置多个DRX配置信元,DRX配置信元中携带DRX索引。
一种可能的实施方式中,多组DRX参数中的任意一组DRX参数还包括以下一种或多种参数:
DRX持续时间定时器,用于指示终端设备处于激活状态的时长;
DRX非激活定时器,用于指示当终端设备接收初传PDCCH后监听PDCCH的时长;
DRX混合自动重传请求往返时间定时器,用于指示下一次重传出现时与当前传输间隔的最小符号数量;
DRX重传定时器,用于指示终端设备处于激活状态时等待重传数据的最大时长;
DRX起始偏置,用于指示DRX周期的起始子帧;
DRX时隙偏置,用于指示DRX周期的起始子帧的前边界向后推迟启动DRX持续时间定时器的时长。
一种可能的实施方式中,当任意一个DRX配置信元中不包括对应的一组DRX参数中的全部参数时,未包括的参数的取值为默认值,该默认值为接入网设备根据协议配置的参数值。
该方法中,接入网设备可以通过RRC信令为终端设备配置DRX参数中的部分或全部参数。其中,若RRC信令中不包括DRX参数中的部分参数,则该部分参数的取值遵循接入网设备根据当前协议配置的取值。
一种可能的实施方式中,多组DRX参数中任意两组DRX参数的DRX周期不同和/或DRX起始偏置不同;任意一组DRX参数中的DRX持续时间定时器的起始位置是根据该组DRX参数中的DRX周期、DRX起始偏置、DRX时隙偏置配置的。
该方法中,当任意两组DRX参数的DRX周期不同和/或DRX起始偏置不同时,使得每一组DRX参数可以匹配不同时间特征的数据流。
一种可能的实施方式中,RRC信令还包括多组DRX参数分别关联的数据无线承载DRB或逻辑信道LCH。其中,该RRC信令中的任意一个DRX配置信元中携带对应的DRB标识或LCH标识或逻辑信道组LCG标识;或者,该RRC信令中的任意一个DRB配置信元中携带对应的DRX索引;或者,该RRC信令中的任意一个LCH配置信元中携带对应的DRX索引。
该方法中,接入网设备可以通过RRC信令为每一组DRX参数指定相关的承载或逻辑信道,从而建立DRX参数与数据流的关联关系。
一种可能的实施方式中,接入网设备向终端设备发送第一预设参数,第一预设参数用于指示DRX非激活定时器的取值。
该方法中,接入网设备可以直接向终端设备指定DRX非激活定时器的取值。
一种可能的实施方式中,接入网设备向终端设备发送第二预设参数,第二预设参数用于指示DRX混合自动重传请求往返时间定时器的取值。
该方法中,接入网设备可以直接向终端设备指定DRX混合自动重传请求往返时间定时器的取值。
一种可能的实施方式中,RRC信令还包括多组DRX参数分别关联的载波,载波与小区或部分带宽BWP相关联。其中,该RRC信令中的任意一个DRX配置信元中携带对应的小区标识或小区组标识或BWP标识;或者,该RRC信令中的任意一个小区配置信元中携带对应的DRX索引;或者,该RRC信令中的任意一个小区组配置信元中携带对应的DRX索引;或者,该RRC信令中的任意一个BWP配置信元中携带对应的DRX索引。
该方法中,接入网设备可以通过RRC信令为每一组DRX参数指定关联的小区或BWP,从而建立DRX参数与载波的关联关系。
一种可能的实施方式中,接入网设备向终端设备发送多组DRX参数对应的多组次级DRX参数,次级DRX参数包括DRX持续时间定时器和DRX非激活定时器。
该方法中,接入网设备可以向终端设备配置多组DXR参数分别对应的多组次级DRX参数,从而使得不同数据流的DRX参数更好的匹配数据流在低频服务小区和高频服务小区的传输节奏,有利于降低终端
设备的能耗。
第三方面,本申请提供一种通信装置,该通信装置可以是终端设备,也可以是终端设备中的装置,或者是能够和终端设备匹配使用的装置。一种设计中,该通信装置可以包括执行如第一方面和第一方面中任一种可能的实施方式中描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可以是软件,也可以是硬件电路结合软件实现。一种设计中,该通信装置可以包括处理单元和通信单元。
其中,对终端设备执行的方法/操作/步骤/动作的具体描述可以参考上述第一方面和第一方面中任一种可能的实施方式中对应的描述,此处不再赘述。可以理解的是,该通信装置也可以实现如第一方面中可以实现的效果。
第四方面,本申请提供另一种通信装置,该通信装置可以是接入网设备,也可以是接入网设备中的装置,或者是能够和接入网设备匹配使用的装置。一种设计中,该通信装置可以包括执行如第二方面和第二方面中任一种可能的实施方式中描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可以是软件,也可以是硬件电路结合软件实现。一种设计中,该通信装置可以包括处理单元和通信单元。
其中,对接入网设备执行的方法的具体描述可以参考上述第二方面和第二方面中任一种可能的实施方式中对应的描述,此处不再赘述。可以理解的是,该通信装置也可以实现如第二方面中可以实现的效果。
第五方面,本申请提供一种终端设备,包括:处理器,该处理器与存储器耦合,该存储器用于存储指令,当指令被处理器执行时,使得该终端设备实现上述第一方面和第一方面任一种可能的实施方式中的方法。
第六方面,本申请提供一种接入网设备,包括:处理器,该处理器与存储器耦合,该存储器用于存储指令,当指令被处理器执行时,使得该接入网设备实现上述第二方面和第二方面中任一种可能的实施方式中的方法。
第七方面,本申请提供一种通信系统,该通信系统包括第三方面至第六方面提供的一种或多种通信装置或设备。例如,该通信系统包括如第三方面和第四方面提供的通信装置,或者,该通信系统包括如第五方面提供的接入网设备和第六方面提供的终端设备。
第八方面,本申请提供一种计算机可读存储介质,所述计算机可读存储介质上存储指令,当所述指令在计算机上运行时,使得计算机执行第一方面和第二方面,以及第一方面和第二方面中任一种可能的实施方式中的方法。
第九方面,本申请提供一种芯片系统,该芯片系统包括处理器和接口,还可以包括存储器,用于实现上述第一方面和第二方面,以及第一方面和第二方面中任一种可能的实施方式中的方法中的功能。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第十方面,本申请提供一种计算机程序产品,包括指令,当所述指令在计算机上运行时,使得计算机执行第一方面和第二方面,以及第一方面和第二方面中任一种可能的实施方式中的方法。
图1为本申请提供的一种通信系统的示意图;
图2为一种多流数据的到达时间的示意图;
图3为一种多小区组的多流数据的到达时间的示意图;
图4为本申请提供的一种网络配置方法的流程示意图;
图5为本申请提供的一种多流数据和对应的多组DRX周期的示意图;
图6为本申请提供的一种多载波和对应的多组DRX周期的示意图;
图7为本申请提供的一种多组DRX参数与次级DRX参数的对应关系图;
图8为本申请提供的一种通信装置的示意图;
图9为本申请提供的一种通信设备的示意图。
在本申请中,“/”可以表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;“和/或”可以用于描述关联对象存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。为了便于描述本申请的技术方案,在本申请中,可以采用“第一”、“第二”等字样对功能相同或相似的技术特征进行区分。该“第一”、“第二”等字
样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。在本申请中,“示例性的”或者“例如”等词用于表示例子、例证或说明,被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念,便于理解。
下面将结合本申请中的附图,对本申请中的技术方案进行描述。
为了解决目前的DRX配置可能与多个数据流中的部分数据流的特征不匹配,导致部分数据流的时延较大或者导致终端设备在没有数据传输时仍然处于监听状态的问题,本申请提供了网络配置方法,该方法可以针对多个数据流分别配置多组DRX参数,各组DRX参数与对应的数据流的时间特征相匹配,从而降低数据流的时延,有利于提高网络容量,降低终端设备的能耗。
一、本申请涉及的相关概念:
1、本申请的通信系统:
其中,本申请提供的网络配置方法可以应用于通信系统,具体可以应用于终端设备和接入网设备之间的空口通信。例如,图1为本申请提供的一种通信系统的示意图,该通信系统包括终端设备和接入网设备。其中,终端设备和接入网设备之间通信连接。
本申请提及的通信系统包括但不限于:窄带物联网系统(narrow band-Internet of things,NB-IoT)、全球移动通信系统(global system for mobile communications,GSM)、增强型数据速率GSM演进系统(enhanced data rate for GSM evolution,EDGE)、宽带码分多址系统(wideband code division multiple access,WCDMA)、码分多址2000系统(code division multiple access,CDMA2000)、时分同步码分多址系统(time division-synchronization code division multiple access,TD-SCDMA),长期演进系统(long term evolution,LTE)以及5G移动通信系统的三大应用场景增强移动宽带(enhanced mobility broad band,eMBB),超高可靠与低时延通信(ultra-reliable and low latency communications,URLLC)和增强型机器类通信(enhanced machine-type communication,eMTC)以及未来的通信系统(例如6G/7G等)。
终端设备,又称之为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等,是指向用户提供语音和/或数据连通性的设备。例如,具有无线连接功能的手持式设备、车载设备等。目前,一些终端设备的举例为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,无人机、虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、5G网络中的终端设备、未来演进的PLMN网络中的终端设备或未来的通信系统中的终端设备等。
接入网设备,是指将终端设备接入到无线网络的无线接入网(radio access network,RAN)节点(或设备),又可以称为基站。目前,一些RAN节点的举例为:继续演进的节点B(gNB)、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),或无线保真(wireless fidelity,Wifi)接入点(access point,AP)、卫星通信系统中的卫星、云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器、可穿戴设备、无人机、或者车联网中的设备(例如车联万物设备(vehicle to everything,V2X)),或者设备间(device to device,D2D)通信中的通信设备等。另外,在一种网络结构中,接入网设备可以包括集中单元(centralized unit,CU)节点、或分布单元(distributed unit,DU)节点、或包括CU节点和DU节点的RAN设备。其中包括CU节点和DU节点的RAN设备将长期演进(long term evolution,LTE)系统中eNB的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU。
2.扩展现实(extended reality,XR)业务:
XR是指各类由计算技术以及可穿戴设备生成的现实和虚拟相结合的环境,以及人机之间的交互。例如,XR包括如下几种典型的形式:增强现实(augmented reality,AR)、混合现实(mixed reality,MR)、虚拟现实(virtual reality,VR)、云游戏(cloud gaming,CG)等。其中,XR是目前工业领域重点考虑的5G多媒体应用之一。目前协议对XR的业务特征进行了建模分析,通常XR业务会按照一定的帧率周期性地生成数据帧。
其中,XR业务可能同时包含多条数据流。例如,同一XR业务(如游戏业务)下可能包括视频数据、音频数据或手势信息等多条数据流。基于现有协议中对XR业务特征的分析和建模,XR业务的多条数据流的数据到达间隔、数据量大小等特征可能存在差异。例如,下行虚拟现实(downlink virtual reality,DL VR)业务可能包含视频流和音频流,视频流数据以60/120每秒传输帧数(frames per second,fps)的帧率到达,数据帧较大;音频流数据以10毫秒(ms)的周期到达,数据帧较小。
3.非连续接收(discontinuous reception,DRX):
新空口(new radio,NR)系统中,接入网设备可以为终端设备配置DRX。终端设备仅在必要的时间(例如数据流的到达时间)打开接收机进入DRX激活态,以监听下行控制信令;而在其他时间关闭接收机进入DRX休眠态,降低终端设备的能耗。通过DRX,终端设备不需要时刻去监听和解析物理下行控制信道(physical cownlink control channel,PDCCH)以确定接入网设备是否为自身调度了传输资源。
例如,在NR DRX中,接入网设备可以为终端设备配置包括但不限于以下DRX参数:
(1)DRX周期(DRX cycle):每个DRX周期内终端设备会醒来一段时间(即进入DRX激活态)用于监听PDCCH。其中,DRX cycle包括长周期和短周期,长周期是短周期的整数倍。
(2)DRX持续时间定时器(drx-onDurationTimer):用于指示终端设备处于激活状态的时长。例如,drx-onDurationTimer的取值为一段连续的下行时长,在这段时间内终端设备需要侦听PDCCH,也即是在这段时间内终端设备处于激活状态。其中,drx-onDurationTimer的启动时刻是根据DRX周期和DRX起始偏置(用于指示DRX周期的起始子帧)确定的。例如,drx-onDurationTimer在每个DRX周期的开始位置向后偏移drx-SlotOffset的时刻启动。
(3)DRX非激活定时器(drx-InactivityTimer):用于指示当终端设备接收初传PDCCH后监听PDCCH的时长。例如,drx-InactivityTimer的取值为一段连续的下行时长,在这个时间段内终端设备需要侦听PDCCH。drx-InactivityTimer在终端设备接收指示初传的PDCCH(用于指示上行或下行初传调度)时启动或重启。
(4)DRX混合自动重传请求往返时间定时器(drx-HARQ-RTT-Timer):用于指示下一次重传出现时与当前传输间隔的最小符号数量,也可以称为最小的重传调度间隔。例如,drx-HARQ-RTT-Timer可以分为上行和下行,即drx-HARQ-RTT-TimerUL和drx-HARQ-RTT-TimerDL。其中,drx-HARQ-RTT-TimerDL在一个混合自动重传请求(hybrid automatic repeat request,HARQ)进程的下行传输的HARQ反馈结束后的第一个符号处启动。drx-HARQ-RTT-TimerUL在一个HARQ进程的上行传输后的第一个符号处启动。可选的,如果上行是重复传输(repetition传输),则drx-HARQ-RTT-TimerUL在第一次repetition结束后的第一个符号处启动)。
(5)DRX重传定时器(drx-RetransmissionTimer):用于指示终端设备处于激活状态时等待重传数据的最大时长,也即是接收重传调度的等待时间。例如,drx-RetransmissionTimer可以分为上行和下行,即drx-RetransmissionTimerUL和drx-RetransmissionTimerDL。其中drx-RetransmissionTimerDL在一个HARQ进程的drx-HARQ-RTT-TimerDL超时后且下行传输块(transport block,TB)未成功解码的情况下,在往返时间(roundtriptime,RTT)timer超时后的第一个符号处启动。drx-RetransmissionTimerUL在一个HARQ进程的drx-HARQ-RTT-TimerUL超时后的第一个符号处启动。
(6)DRX起始偏置(drx-StartOffset):用于指示DRX周期的起始子帧。例如,drx-onDurationTimer在每个DRX周期的开始位置向后偏移drx-SlotOffset的时刻启动。
(7)DRX时隙偏置(drx-SlotOffset):用于指示DRX周期的起始子帧的前边界向后推迟启动DRX持续时间定时器的时长。
(8)短周期定时器(drx-shortCycleTimer):用于指示短周期的生命周期,当drx-shortCycleTimer超时,需要使用DRX长周期。例如,在配置了DRX短周期的情况下,drx-shortCycleTimer在如下两种情况下启动或重启:drx-InactivityTimer超时,或者终端设备接收DRX命令媒体接入控制层控制元素(DRX command media access control control element,DRX command MAC CE)。其中DRX command MAC CE是指使终端设备立即进入休眠期的MAC CE,当终端设备收到DRX command MAC CE后立刻停止drx-onDurationTimer和drx-InactivityTimer。
可选的,对于上述DRX cycle状态以及各类定时器,终端设备可以按照如下规则进行维护:
规则一:DRX cycle,drx-onDurationTimer,drx-InactivityTimer,drx-shortCycleTimer是通过每一个MAC实体(entity)维护的,即UE的一个MAC entity只维护一套DRX cycle状态,以及onDurationTimer和InactivityTimer等。
规则二:drx-HARQ-RTT-Timer和drx-RetransmissionTimer是通过每一个HARQ进程维护的,即每个HARQ进程根据条件可以启动/重启该HARQ进程相关联的drx-HARQ-RTT-Timer和drx-Retransmission-Timer。
可选的,在NR Uu接口上,协议定义了配置DRX cycle后,可以通过如下规则确定终端设备处于DRX激活状态:
规则一:drx-onDurationTimer或drx-InactivityTimer或drx-RetransmissionTimerDL或drx-RetransmissionTimerUL中的一种或多种定时器处于运行状态。
规则二:随机接入过程中用于接收消息Msg4的争用解决定时器(ra-ContentionResolutionTimer)处于运行状态。
规则三:终端设备在物理上行控制信道(physical uplink control channel,PUCCH)上发送了一个调度请求(scheduling request,SR),但是触发的SR仍处于挂起状态。
规则四:终端设备在冲突避免的随机接入过程中,成功接收到随机接入响应(random access response,RAR),但是没有收到小区无线网络临时标识(cell radio network temporary identifier,C-RNTI)加扰的PDCCH调度的初传。
下面对采用现有配置的DRX参数应用于具有多流数据的XR业务中的情况进行举例说明。对于XR业务,其时延要求通常较高。当终端设备进行具有多流数据的XR业务时,多个数据流的到达时间可能是相互错开的。但是,目前终端设备只能为多个数据流配置一套公用的DRX参数,导致DRX参数可能与部分数据流的特征不匹配,从而导致额外的等待时延。例如,图2为一种多流数据的到达时间的示意图。如果按照视频流的到达周期配置drx-onDurationTimer,则音频流的数据最大可能被延迟13.33毫秒(ms),如图2中的extradelay_1所示。反之,如果按照音频流的到达周期配置drx-onDurationTimer,则视频流的数据最大可能被延迟6.67ms,如图2中的extradelay_2所示。并且,视频流的数据包的包时延预算(packet delay budget,PDB)可能只有10ms,在这种情况下,视频流数据很容易发生超时问题,导致网络容量下降。
另外,drx-onDurationTimer和drx-InactivityTimer等定时器的取值与数据量大小有关。由于不同数据流的平均数据包大小可能存在较大的差异,在目前只配置一套公用的DRX参数的情况下,对于数据量较小的数据流而言,定时器可能过长,导致终端设备在没有数据传输的时候仍处于监听状态,节能效果下降。
4.次级DRX组(secondary DRX group):
目前协议引入了secondary DRX group的概念,对于支持该功能的终端设备,可以将一个MAC实体的服务小区划分为两个DRX组(例如称为第一DRX组和第二DRX组)。其中,第二DRX组小区可以使用不同于第一DRX组小区的drx-onDurationTimer和drx-InactivityTimer,其它DRX参数与第一DRX组小区的DRX参数相同。例如,接入网设备通过无线资源控制(radioresourcecontrol,RRC)消息中的次级小区配置(ScellConfig)信元配置指定的小区属于secondary DRX group,第一DRX组和第二DRX组的DRX参数分别通过DRX配置(DRX-Config)信元和DRX配置次级组(DRX-ConfigsecondaryGroup)信元进行配置。可选的,第一DRX组小区和第二DRX组小区处于不同的频段内,而对于同一DRX组内的多个小区,处于相同的频段内。
下面对采用现有配置的次级DRX组应用于具有多小区组多流数据的XR业务中的情况进行举例说明。目前虽然可以配置两组DRX参数,但是两组DRX参数中的DRX cycle等参数是相同的,只有drx-onDurationTimer和drx-InactivityTimer不同,依然无法解决不同数据流的数据到达时间间隔不同的问题。例如,图3为一种多小区组的多流数据的到达时间的示意图。如图3所示,虽然配置了两组DRX参数(第一组DRX参数(first DRX)和第二组DRX参数(second DRX)),但是first DRX和second DRX的DRX cycle是相同的。若按照第一小区组(firstcellgroup)的数据流1(flow 1)的数据到达周期来确定DRX cycle,则数据流2(flow 2)的数据最大可能被延迟extradelay_1,数据流3(flow 3)的数据最大可能被延迟extradelay_2,如图3所示。并且,不同的DRX配置只能对频段不同的服务小区组生效,对于相同服务小区组内的不同数据流,也无法解决不同数据流的数据到达时间间隔不同的问题。
二、本申请提供的网络配置方法:
图4为本申请提供的一种网络配置方法的流程示意图。该网络配置方法应用于如图1所示的通信系统,以及应用于包括多流数据的业务场景中。例如,该网络配置方法可以由接入网设备和终端设备之间的交互实现,该方法包括以下步骤:
S101,接入网设备向终端设备发送多组DRX参数;对应的,终端设备接收多组DRX参数。
其中,接入网设备可以通过RRC信令为终端设备配置多组DRX参数。例如,接入网设备向终端设备发送RRC信令,该RRC信令包括多个DRX配置信元,一个DRX配置信元对应一组DRX参数。对应的,终端设备接收该RRC信令,并获取该RRC信令中包括的多组DRX参数。可选的,接入网设备还可以通过其他信令为终端设备配置多组DRX参数,本实施例不作限定。
可选的,RRC信令可以包括一个DRX配置信元的列表。例如,该DRX配置信元的列表称为drxConfigList,该drxConfigList中包括多个DRX配置信元,各个DRX配置信元中包括DRX索引,DRX索引用于关联对应的DRX参数。例如,表1为本申请提供的一种DRX配置信元的列表,该列表中包括DRX索引、DRX配置信元和DRX参数。
表1:一种DRX配置信元的列表
本实施例中,多组DRX参数中的任意一组DRX参数可以包括但不限于前文第3小节中描述的以下参数:DRX周期(DRX cycle)、DRX持续时间定时器(drx-onDurationTimer)、DRX非激活定时器(drx-InactivityTimer)、DRX混合自动重传请求往返时间定时器(drx-HARQ-RTT-Timer)、DRX重传定时器(drx-RetransmissionTimer)、DRX起始偏置(drx-StartOffset)、DRX时隙偏置(drx-SlotOffset)等。上述参数的定义可以参考第3小节中对应的描述,此处不再赘述。
可选的,对于终端设备接收的任意一组DRX参数,可以包括上述全部参数,也可以只包括部分参数。例如,只包括DRX cycle、drx-onDurationTimer、drx-InactivityTimer中的一种或多种参数。又例如,只包括DRX cycle、drx-onDurationTimer、drx-InactivityTimer中的一种或多种参数的基础上,还包括drx-HARQ-RTT-Timer、drx-RetransmissionTimer、drx-StartOffset、drx-SlotOffset、drx-ShortCycleTimer中的一种或多种参数。
可选的,当任意一个DRX配置信元中不包括对应的一组DRX参数中的全部参数时,未包括的参数的取值为默认值,默认值为接入网设备根据协议配置的参数值。例如,在DRX配置信元只包括部分参数的情况下,对于没有包含在DRX配置信元中的参数(例如假设drx-HARQ-RTT-Timer不包含在DRX配置信元中),其取值可以视为与现有协议中配置的DRX参数中的取值(例如现有协议中配置的DRX参数中的drx-HARQ-RTT-Timer的取值)相同。
其中,多组DRX参数中的任意一组DRX参数包括DRX周期,DRX周期是根据该组DRX参数对应的数据流的数据到达周期或者该组DRX参数对应的载波上的数据的传输周期确定的。下面将通过两种实施方式来详细描述多组DRX参数的配置。
1、实施方式一:DRX参数与对应的数据流的数据到达周期有关。
接入网设备可以通过RRC信令为多组DRX参数分别指定相关联的数据无线承载(dataradiobearer,DRB)或逻辑信道(logicalchannel,LCH),从而使得DRX参数与数据流建立关联关系。对应的,终端设备接收RRC信令,该RRC信令包括多组DRX参数分别关联的DRB或LCH。其中,数据流与DRB或LCH或逻辑信道组(logicalchannelgroup,LCG)存在关联关系。例如,数据流映射到DRB上,数据流承载于LCH,一个DRB关联一个LCH,多个LCH构成一个LCG。
具体来说,RRC信令包括多组DRX参数分别关联的DRB或LCH,可以包括但不限于以下几种情况:
情况一:RRC信令中的任意一个DRX配置信元中携带对应的DRB标识(identity,ID)或LCH标识或LCG标识。例如,DRX配置信元中可以携带一个或多个DRB ID,或者携带一个或多个LCH ID,或者携带一个或多个LCG ID,从而建立DRX参数与DRB或LCH或LCG的关联关系。
情况二:RRC信令中的任意一个DRB配置信元中携带对应的DRX索引。例如,可以在现有的DRB配置信元中增加DRX索引,从而建立DRB与DRX参数的关联关系。
情况三:RRC信令中的任意一个LCH配置信元中携带对应的DRX索引。例如,可以在现有的LCH
配置信元中增加DRX索引,从而建立LCH与DRX参数的关联关系。
下面对实施方式一中多组DRX参数的配置进行说明。
(1)DRX cycle、drx-onDurationTimer、drx-StartOffset和drx-SlotOffset
实施方式一中,DRX cycle是根据DRX参数对应的数据流的数据到达周期确定的。例如,图5为本申请提供的一种多流数据和对应的多组DRX周期的示意图。其中,第一组DRX参数中的DRC cycle与flow1的数据到达周期相同,第二组DRX参数中的DRC cycle与flow 2的数据到达周期相同。在这种情况下,当终端设备接收的数据流的数据到达周期与flow 1的数据到达周期相同或者为flow 1的数据到达周期的整数倍时,终端设备可以将DRX cycle的取值配置为第一组DRX参数中的DRX cycle;当终端设备接收的数据流的数据到达周期与flow 2的数据到达周期相同或者为flow 2的数据到达周期的整数倍时,终端设备可以将DRX cycle的取值配置为第二组DRX参数中的DRX cycle。
其中,多组DRX参数中任意两组DRX参数的DRX周期不同和/或DRX起始偏置不同。例如,假设多组DRX参数中任意两组DRX参数的DRX cycle不同(如图5所示),则表示这两组DRX参数适用于不同数据到达周期的数据流,从而避免导致业务产生额外的时延。又例如,假设多组DRX参数中任意两组DRX参数的DRX cycle相同,但是DRXdrx-StartOffset不同,则通过配置DRXdrx-StartOffset,可以使得两组DRX参数也适用于不同数据到达周期的数据流。
其中,任意一组DRX参数中的DRX持续时间定时器的起始位置是根据该组DRX参数中的DRX周期、DRX起始偏置、DRX时隙偏置配置的。例如,对于drx-onDurationTimer,其启动和停止是周期性的,位置由DRX cycle、drx-StartOffset和drx-SlotOffset决定。当配置多组DRX参数时,按照当前规则独立计算多个drx-onDurationTimer的位置即可。
(2)drx-InactivityTimer
对于drx-InactivityTimer,可以通过以下几种方式配置:
方式一:drx-InactivityTimer是根据第一预设参数配置的,第一预设参数用于指示DRX非激活定时器的取值。
其中,接入网设备可以向终端设备发送第一预设参数,对应的,终端设备接收第一预设参数,并根据第一预设参数配置drx-InactivityTimer。例如,接入网设备向终端设备发送RRC信令,该RRC信令中的某一个DRX配置信元包括第一预设参数。或者,该RRC信令中的小区配置信元中携带DRX索引,DRX索引用于关联对应的DRX配置信元,使得终端设备可以获取DRX配置信元中包括的第一预设参数。进一步,当接收指示初传的PDCCH时,终端设备启动或重启RRC信令中指定的drx-InactivityTimer(也即是根据第一预设参数配置的drx-InactivityTimer)。
可选的,该第一预设参数也可以是协议中定义的drx-InactivityTimer的取值。例如,协议已定义了一组DRX参数,包括了drx-InactivityTimer的取值。则终端设备可以根据协议中定义的drx-InactivityTimer的取值配置drx-InactivityTimer。进一步,当接收指示初传的PDCCH时,终端设备启动或重启RRC信令中指定的drx-InactivityTimer(也即是根据协议配置的drx-InactivityTimer)。
方式二:当发生初传时,根据数据流的来源选择相应的drx-InactivityTimer。
具体来说,初传可以分为上行初传或下行初传。对于上行初传,终端设备可以执行以下操作:
当接收指示上行初传的PDCCH时,确定在PDCCH对应的PUSCH上传输数据的LCH;
启动或重启根据该LCH关联的DRX参数配置的DRX非激活定时器,或者,启动或重启根据该LCH对应的DRB关联的DRX参数配置的DRX非激活定时器,或者,启动或重启根据该LCH所属的LCG关联的DRX参数配置的DRX非激活定时器。
例如,当终端设备收到指示上行初传的PDCCH时,MAC实体从LCH获取缓存数据,并生成MAC协议数据单元(MAC protocol data unit,MAC PDU)用于PUSCH传输,也即是,该LCH为在PDCCH对应的PUSCH上传输数据的LCH。其中,MAC PDU中可能包含来自不同LCH的数据,这种情况下,该LCH是指多个LCH中优先级最高的LCH。然后,终端设备启动或重启根据该LCH关联的DRX参数配置的drx-InactivityTimer;或者,启动或重启根据该LCH对应的DRB关联的DRX参数配置的drx-InactivityTimer,或者,启动或重启根据该LCH所属的LCG关联的DRX参数配置的drx-InactivityTimer。
对于下行初传,终端设备可以执行以下操作:
当接收指示下行初传的PDCCH时,解码PDCCH对应的物理下行共享信道PDSCH上传输的数据,确定缓存该数据的LCH;
启动或重启根据该LCH关联的DRX参数配置的DRX非激活定时器,或者,启动或重启根据该LCH
对应的DRB关联的DRX参数配置的DRX非激活定时器,或者,启动或重启根据该LCH所属的LCG关联的DRX参数配置的DRX非激活定时器。
例如,当终端设备接收指示下行初传的PDCCH时,MAC实体解码PDCCH对应的PDSCH上收到的TB数据,得到数据来源的LCH,也即是,该LCH为在PDCCH对应的PUSCH上传输数据的LCH。其中,TB数据也可能来自多个不同的LCH,这种情况下,该LCH是指多个LCH中优先级最高的LCH。然后,终端设备启动或重启根据该LCH关联的DRX参数配置的drx-InactivityTimer;或者,启动或重启根据该LCH对应的DRB关联的DRX参数配置的drx-InactivityTimer,或者,启动或重启根据该LCH所属的LCG关联的DRX参数配置的drx-InactivityTimer。
方式三:当发生初传时,根据数据流可能的来源选择相应的drx-InactivityTimer。
其中,当终端设备无法确定数据流的来源时,对于上行初传,终端设备可以执行以下操作:
当接收指示上行初传的PDCCH时,根据逻辑信道优先级(logical channel prioritization,LCP)规则,确定对应的LCH;
启动或重启根据该LCH关联的DRX参数配置的DRX非激活定时器,或者,启动或重启根据该LCH对应的DRB关联的DRX参数配置的DRX非激活定时器,或者,启动或重启根据该LCH所属的LCG关联的DRX参数配置的DRX非激活定时器。
例如,当接收指示上行初传的PDCCH时,MAC实体首先根据LCP规则确定此次可以承载数据流的LCH。其中,LCP规则用于划分不同LCH,在不同LCH上的数据的可靠性不同,对进行传输的资源有不同要求。例如,根据LCP规则可以确定多个可能的LCH,这种情况下,此次可以承载数据流的LCH是指多个LCH中优先级最高的LCH。然后,终端设备启动或重启根据该LCH关联的DRX参数配置的drx-InactivityTimer;或者,启动或重启根据该LCH对应的DRB关联的DRX参数配置的drx-InactivityTimer,或者,启动或重启根据该LCH所属的LCG关联的DRX参数配置的drx-InactivityTimer。
其中,由于下行不存在LCP规则,无法确定可能的数据来源,因此对于下行初传,终端设备还是执行方式二中描述的下行初传所执行的操作。可选的,对于下行初传,终端设备也可以根据协议中定义的drx-InactivityTimer的取值配置drx-InactivityTimer。
(3)drx-HARQ-RTT-Timer和drx-RetransmissionTimer
对于drx-HARQ-RTT-Timer和drx-RetransmissionTimer,可以通过以下几种方式配置:
方式一:drx-HARQ-RTT-Timer和drx-RetransmissionTimer是根据第二预设参数配置的,第二预设参数用于指示DRX混合自动重传请求往返时间定时器和DRX重传定时器的取值。
其中,接入网设备可以向终端设备发送第二预设参数,对应的,终端设备接收第二预设参数,并根据第二预设参数配置drx-HARQ-RTT-Timer和drx-RetransmissionTimer。例如,接入网设备向终端设备发送RRC信令,该RRC信令中的某一个DRX配置信元包括第二预设参数。或者,该RRC信令中的小区配置信元中携带DRX索引,DRX索引用于关联对应的DRX配置信元,使得终端设备可以获取DRX配置信元中包括的第二预设参数。其中,对于drx-HARQ-RTT-Timer,分为上行drx-HARQ-RTT-Timer(drx-HARQ-RTT-TimerUL)和下行drx-HARQ-RTT-Timer(drx-HARQ-RTT-TimerDL)。对于drx-RetransmissionTimer,也分为上行drx-RetransmissionTimer(drx-RetransmissionTimerUL)和下行drx-RetransmissionTimer(drx-RetransmissionTimerDL)。则方式一中根据第二预设参数配置drx-HARQ-RTT-Timer和drx-RetransmissionTimer具体包括上行和下行两种情况:
情况一:对于上行,当发送PUSCH时,终端设备启动或重启RRC信令中指定的drx-HARQ-RTT-TimerUL(也即是根据第二预设参数配置的drx-HARQ-RTT-TimerUL)。进一步,当drx-HARQ-RTT-TimerUL超时,启动对应的drx-RetransmissionTimerUL。
情况二:对于下行,当接收PDSCH并发送对应的HARQ反馈时,终端设备启动或重启RRC信令中指定的drx-HARQ-RTT-TimerDL(也即是根据第二预设参数配置的drx-HARQ-RTT-TimerDL)。进一步,当drx-HARQ-RTT-TimerDL超时,启动对应的drx-RetransmissionTimerDL。
方式二:根据数据流的来源选择相应的drx-HARQ-RTT-Timer。
其中,方式二中根据数据流的来源选择相应的drx-HARQ-RTT-Timer,也包括上行和下行两种情况:
情况一:对于上行传输,终端设备可以执行以下操作:
当发送PUSCH时,确定在PUSCH上传输数据的LCH;
启动或重启根据该LCH关联的DRX参数配置的上行DRX混合自动重传请求往返时间定时器,或者,启动或重启根据该LCH对应的DRB关联的DRX参数配置的上行DRX混合自动重传请求往返时间定时器,
或者,启动或重启根据该LCH所属的LCG关联的DRX参数配置的上行DRX混合自动重传请求往返时间定时器;
当上行DRX混合自动重传请求往返时间定时器超时,启动对应的上行DRX重传定时器。
例如,如果此次传输的MAC PDU的数据来源于某一个LCH,则确定该LCH为在PUSCH上传输数据的LCH。其中,MAC PDU可能包含来自多个LCH的数据,这种情况下,该LCH是指多个LCH中优先级最高的LCH。当发送PUSCH(如果有bundle重复则考虑第一次传输)时,启动或重启根据该LCH关联的DRX参数配置的drx-HARQ-RTT-TimerUL,或者,启动或重启根据该LCH对应的DRB关联的DRX参数配置的drx-HARQ-RTT-TimerUL,或者,启动或重启根据该LCH所属的LCG关联的DRX参数配置的drx-HARQ-RTT-TimerUL。当drx-HARQ-RTT-TimerUL超时后启动对应的drx-RetransmissionTimerUL。
情况二:对于下行传输,终端设备可以执行以下操作:
当接收PDSCH时,解码PDSCH上的数据,确定缓存该数据的LCH;
当发送PDSCH的HARQ反馈时,启动或重启根据该LCH关联的DRX参数配置的下行DRX混合自动重传请求往返时间定时器,或者,启动或重启根据该LCH对应的DRB关联的DRX参数配置的下行DRX混合自动重传请求往返时间定时器,或者,启动或重启根据该LCH所属的LCG关联的DRX参数配置的下行DRX混合自动重传请求往返时间定时器;
当下行DRX混合自动重传请求往返时间定时器超时,启动对应的下行DRX重传定时器。
例如,当终端设备接收PDSCH时,MAC实体解码PDSCH上收到的TB数据,得到数据来源的LCH,也即是,该LCH为缓存PDSCH上传输的数据的LCH。其中,TB数据也可能来自多个不同的LCH,这种情况下,该LCH是指多个LCH中优先级最高的LCH。然后,终端设备启动或重启根据该LCH关联的DRX参数配置的drx-HARQ-RTT-TimerDL;或者,启动或重启根据该LCH对应的DRB关联的DRX参数配置的drx-HARQ-RTT-TimerDL,或者,启动或重启根据该LCH所属的LCG关联的DRX参数配置的drx-HARQ-RTT-TimerDL。
2、实施方式二:DRX参数与对应的载波上的数据的传输周期有关。
接入网设备可以通过RRC信令为多组DRX参数分别指定相关联的小区(cell)或部分带宽(bandwidth part,BWP),从而使得DRX参数与载波建立关联关系。对应的,终端设备接收RRC信令,该RRC信令包括多组DRX参数分别关联的载波。其中,载波与小区或BWP存在关联关系。例如,载波归属小区,是小区业务的载体;BWP是小区内配置的一段带宽。也即是,该RRC信令包括多组DRX参数分别关联的小区或BWP。
具体来说,RRC信令包括多组DRX参数分别关联的小区或部分带宽BWP,可以包括但不限于以下几种情况:
情况一:RRC信令中的任意一个DRX配置信元中携带对应的小区标识或小区组标识或BWP标识。例如,DRX配置信元中可以携带一个或多个cell ID,或者携带一个或多个cellgroup ID,或者携带一个或多个BWP ID,从而建立DRX参数与小区或小区组或部分带宽BWP的关联关系。
情况二:RRC信令中的任意一个小区配置信元中携带对应的DRX索引。例如,可以在现有的小区配置信元中增加DRX索引,从而建立小区与DRX参数的关联关系。
情况三:RRC信令中的任意一个小区组配置信元中携带对应的DRX索引。例如,可以在现有的小区组配置信元中增加DRX索引,从而建立小区组与DRX参数的关联关系。
情况四:RRC信令中的任意一个BWP配置信元中携带对应的DRX索引。例如,可以在现有的BWP配置信元中增加DRX索引,从而建立BWP与DRX参数的关联关系。
下面对实施方式二中多组DRX参数的配置进行说明。
(1)DRX cycle、drx-onDurationTimer、drx-StartOffset和drx-SlotOffset
实施方式二中,DRX cycle是根据DRX参数对应的载波上的数据的传输周期确定的。例如,图6为本申请提供的一种多载波和对应的多组DRX周期的示意图。其中同一条数据流按一定规律分流到不同载波上。例如,一条视频流中的I帧数据在载波1(carrier 1)传输,P帧数据在载波2(carrier 2)传输,如图6所示。则可以配置第一组DRX参数中的DRC cycle与载波1上的数据的传输周期相同,第二组DRX参数中的DRC cycle与载波2上的数据的传输周期相同。
其中,多组DRX参数中任意两组DRX参数的DRX周期不同和/或DRX起始偏置不同。任意一组DRX参数中的DRX持续时间定时器的起始位置是根据该组DRX参数中的DRX周期、DRX起始偏置、DRX时隙偏置配置的。具体配置方式可以参考实施方式一中对应的描述,此处不再赘述。
(2)drx-InactivityTimer
其中,当在第一载波上接收指示初传的PDCCH时,终端设备可以启动或重启第一载波对应的DRX非激活定时器。也就是说,直接根据第一载波确定drx-InactivityTimer的取值。
(3)drx-HARQ-RTT-Timer和drx-RetransmissionTimer
其中,当在第一载波上进行数据传输时,终端设备可以启动或重启第一载波对应的DRX混合自动重传请求往返时间定时器;并且当DRX混合自动重传请求往返时间定时器超时,启动对应的DRX重传定时器。
例如,当在第一载波上进行上行传输时,启动或重启第一载波对应的drx-HARQ-RTT-TimerUL,drx-HARQ-RTT-TimerUL超时后启动对应的drx-RetransmissionTimerUL。又例如,当在第一载波上进行下行传输时,启动或重启第一载波对应的drx-HARQ-RTT-TimerDL,drx-HARQ-RTT-TimerDL超时后启动对应的drx-RetransmissionTimerDL。
S102,当任意一组DRX参数指示终端设备处于激活状态时,终端设备监听PDCCH。
例如,当任意一套DRX参数中的drx-onDurationTimer或drx-InactivityTimer或drx-RetransmissionTimer处于运行状态时,表示UE处于激活状态,则UE监听PDCCH。又例如,当任意一套DRX的drx-onDurationTimer或drx-InactivityTimer或drx-RetransmissionTimer处于运行状态时,UE为第一载波监听PDCCH。
可见,本实施例提供的网络配置方法可以针对不同数据流配置多组DRX参数,并且每一组DRX参数中的DRX cycle等相关参数配置不同,从而使得DRX配置能够更好的匹配不同数据流的特征,如数据到达时间、数据量大小等,使终端设备可以在数据达到时及时醒来,并持续一段合适的时间对PDCCH进行监听,保证业务时延和用户体验,同时避免监听时间大于数据量需要,有利于降低终端设备的能耗。
可选的,本申请在配置了多组DRX参数的情况下,还可以为多组DRX参数分别配置对应的次级(secondary)DRX参数,从而使得不同数据流的DRX参数更好的匹配数据流在低频服务小区和高频服务小区的传输节奏,有利于降低终端设备的能耗。
一种可能的实施方式中,接入网设备可以通过RRC信令为终端设备配置多组secondary DRX参数。例如,接入网设备向终端设备发送RRC信令,该RRC信令包括多组DRX参数对应的多组次级DRX参数,一组次级DRX参数包括DRX持续时间定时器和DRX非激活定时器。
当存在多组DRX参数时,可以采用以下几种方式配置secondaryDRX参数:
方式一:针对每一组DRX参数,配置对应的一组次级DRX参数。
例如,多组secondary DRX参数分别与配置的多组DRX参数一一对应,即每组DRX参数都关联一组secondary DRX参数。例如,图7为本申请提供的一种多组DRX参数与次级DRX参数的对应关系图。其中,图7中的(一)示出了一一对应的关系,即DRX0对应的secondary DRX为DRX0’,DRX1对应的secondary DRX为DRX1’,DRX2对应的secondary DRX为DRX2’。具体的,可以在DRX配置信元中直接配置secondary DRX。若未在DRX配置信元中配置secondary DRX,则该组DRX参数没有对应的secondary DRX参数。
方式二:针对每一组次级DRX参数,指定一组对应的DRX参数。
例如,在配置secondary DRX参数时为其指定一组DRX参数,该secondary DRX的其余参数复用该指定的DRX参数中的其余参数。例如,图7中的(二)示出了指定的关系,假设在配置secondary DRX0’时,指定的DRX参数为DRX0,在配置secondary DRX1’时,指定的DRX参数为DRX2,则终端设备可以根据该指定的关系配置DRX0’和DRX1’。具体的,可以在secondary DRX配置信元中携带DRX索引,用于指示所指定的DRX参数。
方式三:根据一组指定的DRX参数,配置多组次级DRX参数。
例如,接入网设备通过RRC信令为终端设备指定一套默认(default)的DRX参数,则多组secondary DRX参数都基于该defalut DRX的参数进行配置。例如,图7中的(三)示出了一对多的关系,假设指定的defalut DRX为DRX0,则在配置secondary DRX的参数时(例如DRX0’和DRX1’),都基于DRX0的参数进行配置。具体的,可以在DRX配置信元中携带default标识,用于指示secondary DRX参数都基于defalut DRX的参数进行配置。
可选的,secondary DRX具有和其对应的DRX相同的生效范围,例如,一组DRX参数和对应的一组secondary DRX参数对同一个DRB生效。
为了实现本申请提供的方法中的各功能,本申请提供的装置或设备可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。本申请中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
图8为本申请提供的一种通信装置的示意图。该通信装置可以包括执行如图4对应的方法实施例中所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可以是软件,也可以是硬件电路结合软件实现。
该通信装置800包括通信单元801和处理单元802,用于实现前述实施例中终端设备或者接入网设备所执行的方法。
一种可能的实施方式中,通信单元801用于接收多组非连续接收DRX参数,多组DRX参数中的任意一组DRX参数包括DRX周期,DRX周期是根据该组DRX参数对应的数据流的数据到达周期或者该组DRX参数对应的载波上的数据的传输周期确定的。处理单元802用于当任意一组DRX参数指示终端设备处于激活状态时,监听物理下行控制信道PDCCH。
可选的,终端设备接收无线资源控制RRC信令,RRC信令包括多个DRX配置信元。其中,一个DRX配置信元对应一组DRX参数,DRX配置信元包括DRX索引,DRX索引用于关联对应的DXR参数。
可选的,多组DRX参数中的任意一组DRX参数还包括以下一种或多种参数:
DRX持续时间定时器(drx-onDurationTimer),用于指示终端设备处于激活状态的时长;
DRX非激活定时器(drx-InactivityTimer),用于指示当终端设备接收初传PDCCH后监听PDCCH的时长;
DRX混合自动重传请求往返时间定时器(drx-HARQ-RTT-TimerUL/drx-HARQ-RTT-TimerDL),用于指示下一次重传出现时与当前传输间隔的最小符号数量;
DRX重传定时器(drx-RetransmissionTimerUL/drx-RetransmissionTimerDL),用于指示终端设备处于激活状态时等待重传数据的最大时长;
DRX起始偏置(drx-SlotOffset),用于指示DRX周期的起始子帧;
DRX时隙偏置(drx-StartOffset),用于指示DRX周期的起始子帧的前边界向后推迟启动DRX持续时间定时器的时长。
可选的,当任意一个DRX配置信元中不包括对应的一组DRX参数中的全部参数时,未包括的参数的取值为默认值,默认值为接入网设备根据协议配置的参数值。
可选的,多组DRX参数中任意两组DRX参数的DRX周期不同和/或DRX起始偏置不同。其中,任意一组DRX参数中的DRX持续时间定时器的起始位置是根据该组DRX参数中的DRX周期、DRX起始偏置、DRX时隙偏置配置的。
可选的,RRC信令还包括多组DRX参数分别关联的数据无线承载DRB或逻辑信道LCH。其中,RRC信令中的任意一个DRX配置信元中携带对应的DRB标识或LCH标识或逻辑信道组LCG标识;或者,RRC信令中的任意一个DRB配置信元中携带对应的DRX索引;或者,RRC信令中的任意一个LCH配置信元中携带对应的DRX索引。
可选的,通信单元801用于接收第一预设参数,第一预设参数用于指示DRX非激活定时器的取值。
可选的,处理单元802用于:
当接收指示初传的PDCCH时,启动或重启根据第一预设参数配置的DRX非激活定时器;或者,
当接收指示初传的PDCCH时,启动或重启根据协议配置的DRX非激活定时器。
可选的,处理单元802用于:
当接收指示上行初传的PDCCH时,确定在PDCCH对应的物理上行共享信道PUSCH上传输数据的LCH;
启动或重启根据所述LCH关联的DRX参数配置的DRX非激活定时器,或者,启动或重启根据所述LCH对应的DRB关联的DRX参数配置的DRX非激活定时器,或者,启动或重启根据所述LCH所属的LCG关联的DRX参数配置的DRX非激活定时器。
可选的,处理单元802用于:
当接收指示下行初传的PDCCH时,解码PDCCH对应的物理下行共享信道PDSCH上传输的数据,确定缓存该数据的LCH;
启动或重启根据该LCH关联的DRX参数配置的DRX非激活定时器,或者,启动或重启根据该LCH对应的DRB关联的DRX参数配置的DRX非激活定时器,或者,启动或重启根据该LCH所属的LCG关联的DRX参数配置的DRX非激活定时器。
可选的,处理单元802用于:
当接收指示上行初传的PDCCH时,根据逻辑信道优先级LCP规则,确定对应的LCH;
启动或重启根据该LCH关联的DRX参数配置的DRX非激活定时器,或者,启动或重启根据该LCH对应的DRB关联的DRX参数配置的DRX非激活定时器,或者,启动或重启根据该LCH所属的LCG关联的DRX参数配置的DRX非激活定时器。
可选的,通信单元801用于接收第二预设参数,第二预设参数用于指示DRX混合自动重传请求往返时间定时器的取值。
可选的,处理单元802用于:
当发送物理上行共享信道PUSCH时,启动或重启根据第二预设参数配置的上行DRX混合自动重传请求往返时间定时器;
当上行DRX混合自动重传请求往返时间定时器超时,启动对应的上行DRX重传定时器。
可选的,处理单元802用于:
当接收PDSCH并发送对应的混合自动重传请求HARQ反馈时,启动或重启根据第二预设参数配置的下行DRX混合自动重传请求往返时间定时器;
当下行DRX混合自动重传请求往返时间定时器超时,启动对应的下行DRX重传定时器。
可选的,处理单元802用于:
当发送PUSCH时,确定在PUSCH上传输数据的LCH,
启动或重启根据该LCH关联的DRX参数配置的上行DRX混合自动重传请求往返时间定时器,或者,启动或重启根据该LCH对应的DRB关联的DRX参数配置的上行DRX混合自动重传请求往返时间定时器,或者,启动或重启根据该LCH所属的LCG关联的DRX参数配置的上行DRX混合自动重传请求往返时间定时器;
当上行DRX混合自动重传请求往返时间定时器超时,启动对应的上行DRX重传定时器。
可选的,处理单元802用于:
当接收PDSCH时,解码该PDSCH上的数据,确定缓存该数据的LCH;
当发送该PDSCH的HARQ反馈时,启动或重启根据该LCH关联的DRX参数配置的下行DRX混合自动重传请求往返时间定时器,或者,启动或重启根据该LCH对应的DRB关联的DRX参数配置的下行DRX混合自动重传请求往返时间定时器,或者,启动或重启根据该LCH所属的LCG关联的DRX参数配置的下行DRX混合自动重传请求往返时间定时器;
当下行DRX混合自动重传请求往返时间定时器超时,启动对应的下行DRX重传定时器。
可选的,RRC信令还包括多组DRX参数分别关联的载波,载波与小区或部分带宽BWP相关联。其中,该RRC信令中的任意一个DRX配置信元中携带对应的小区标识或小区组标识或BWP标识;或者,该RRC信令中的任意一个小区配置信元中携带对应的DRX索引;或者,该RRC信令中的任意一个小区组配置信元中携带对应的DRX索引;或者,该RRC信令中的任意一个BWP配置信元中携带对应的DRX索引。
可选的,处理单元802用于:
当在第一载波上接收指示初传的PDCCH时,启动或重启该第一载波对应的DRX非激活定时器。
可选的,处理单元802用于:
当在第一载波上进行数据传输时,启动或重启该第一载波对应的DRX混合自动重传请求往返时间定时器;
当DRX混合自动重传请求往返时间定时器超时,启动对应的DRX重传定时器。
可选的,通信单元801用于接收多组DRX参数对应的多组次级DRX参数,次级DRX参数包括DRX持续时间定时器和DRX非激活定时器。
可选的,处理单元802用于:
针对每一组DRX参数,配置对应的一组次级DRX参数;或者,
针对每一组次级DRX参数,指定一组对应的DRX参数;或者,
根据一组指定的DRX参数,配置多组次级DRX参数。
该实施方式中通信单元801和处理单元802的具体执行流程还可以参考图4对应的方法实施例中的描述,此处不再赘述。该通信装置所实现的网络配置方法可以接收针对不同数据流配置的多组DRX参数,并且每一组DRX参数中的DRX周期等相关参数配置不同,从而使得DRX参数能够更好的匹配不同数据流的特征,避免产生额外的时延,从而降低数据流的时延,有利于提高网络容量,降低终端设备的能耗。
另一种可能的实施方式中,处理单元802用于确定多组DRX参数,多组DRX参数中的任意一组DRX参数包括DRX周期,DRX周期是根据该组DRX参数对应的数据流的数据到达周期或者载波上的数据的传输周期确定的。通信单元801用于向终端设备发送多组DRX参数。
可选的,通信单元801用于向终端设备发送RRC信令,该RRC信令包括多个DRX配置信元。其中,一个DRX配置信元对应一组DRX参数,DRX配置信元包括DRX索引,DRX索引用于关联对应的DXR参数。
可选的,多组DRX参数中的任意一组DRX参数还包括以下一种或多种参数:
DRX持续时间定时器,用于指示终端设备处于激活状态的时长;
DRX非激活定时器,用于指示当终端设备接收初传PDCCH后监听PDCCH的时长;
DRX混合自动重传请求往返时间定时器,用于指示下一次重传出现时与当前传输间隔的最小符号数量;
DRX重传定时器,用于指示终端设备处于激活状态时等待重传数据的最大时长;
DRX起始偏置,用于指示DRX周期的起始子帧;
DRX时隙偏置,用于指示DRX周期的起始子帧的前边界向后推迟启动DRX持续时间定时器的时长。
可选的,当任意一个DRX配置信元中不包括对应的一组DRX参数中的全部参数时,未包括的参数的取值为默认值,该默认值为接入网设备根据协议配置的参数值。
可选的,多组DRX参数中任意两组DRX参数的DRX周期不同和/或DRX起始偏置不同;任意一组DRX参数中的DRX持续时间定时器的起始位置是根据该组DRX参数中的DRX周期、DRX起始偏置、DRX时隙偏置配置的。
可选的,RRC信令还包括多组DRX参数分别关联的数据无线承载DRB或逻辑信道LCH。其中,该RRC信令中的任意一个DRX配置信元中携带对应的DRB标识或LCH标识或逻辑信道组LCG标识;或者,该RRC信令中的任意一个DRB配置信元中携带对应的DRX索引;或者,该RRC信令中的任意一个LCH配置信元中携带对应的DRX索引。
可选的,通信单元801用于向终端设备发送第一预设参数,第一预设参数用于指示DRX非激活定时器的取值。
可选的,通信单元801用于向终端设备发送第二预设参数,第二预设参数用于指示DRX混合自动重传请求往返时间定时器的取值。
可选的,RRC信令还包括多组DRX参数分别关联的载波,载波与小区或部分带宽BWP相关联。其中,该RRC信令中的任意一个DRX配置信元中携带对应的小区标识或小区组标识或BWP标识;或者,该RRC信令中的任意一个小区配置信元中携带对应的DRX索引;或者,该RRC信令中的任意一个小区组配置信元中携带对应的DRX索引;或者,该RRC信令中的任意一个BWP配置信元中携带对应的DRX索引。
可选的,通信单元801用于向终端设备发送多组DRX参数对应的多组次级DRX参数,次级DRX参数包括DRX持续时间定时器和DRX非激活定时器。
该实施方式中通信单元801和处理单元802的具体执行流程还可以参考图4对应的方法实施例中的描述,此处不再赘述。该通信装置所实现的网络配置方法可以针对不同数据流配置多组DRX参数,并且每一组DRX参数中的DRX周期等相关参数配置不同,从而使得DRX配置能够更好的匹配不同数据流的特征,避免产生额外的时延,从而降低数据流的时延,有利于提高网络容量,降低终端设备的能耗。
下面对包括图8所示的多个功能单元的设备进行描述。本申请所述的设备包括图8所示的多个功能单元。图9为本申请提供的一种通信设备的示意图,用于实现上述方法实施例中的网络配置方法。该通信设备900也可以是芯片系统。可以理解的是,该设备900例如可以是终端设备,也可以是接入网设备。
其中,通信设备900包括通信接口901和处理器902。通信接口901例如可以是收发器、接口、总线、电路或者能够实现收发功能的装置。其中,通信接口901用于通过传输介质和其它设备进行通信,从而用
于设备900可以和其它设备进行通信。处理器902用于执行处理相关的操作。
一种可能的实施方式中,通信接口901用于接收多组非连续接收DRX参数,多组DRX参数中的任意一组DRX参数包括DRX周期,DRX周期是根据该组DRX参数对应的数据流的数据到达周期或者该组DRX参数对应的载波上的数据的传输周期确定的。处理器902用于当任意一组DRX参数指示终端设备处于激活状态时,监听物理下行控制信道PDCCH。
该实施方式中通信接口901和处理器902的具体执行流程还可以参考第一方面以及图4对应的方法实施例中的描述,或者参考图8中的通信单元801和处理单元802中的描述,此处不再赘述。该设备所实现的网络配置方法可以接收针对不同数据流配置的多组DRX参数,并且每一组DRX参数中的DRX周期等相关参数配置不同,从而使得DRX参数能够更好的匹配不同数据流的特征,避免产生额外的时延,从而降低数据流的时延,有利于提高网络容量,降低终端设备的能耗。
另一种可能的实施方式中,处理器902用于确定多组DRX参数,多组DRX参数中的任意一组DRX参数包括DRX周期,DRX周期是根据该组DRX参数对应的数据流的数据到达周期或者载波上的数据的传输周期确定的。通信接口901用于向终端设备发送多组DRX参数。
该实施方式中通信接口901和处理器902的具体执行流程还可以参考第一方面以及图4对应的方法实施例中的描述,或者参考图8中的通信单元801和处理单元802中的描述,此处不再赘述。该设备所实现的网络配置方法可以针对不同数据流配置多组DRX参数,并且每一组DRX参数中的DRX周期等相关参数配置不同,从而使得DRX配置能够更好的匹配不同数据流的特征,避免产生额外的时延,从而降低数据流的时延,有利于提高网络容量,降低终端设备的能耗。
可选的,该设备900还可以包括至少一个存储器903,用于存储程序指令和/或数据。一种实施方式中,存储器和处理器耦合。本申请中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器可能和存储器协同操作。处理器可能执行存储器中存储的程序指令。所述至少一个存储器和处理器集成在一起。
本申请中不限定上述通信接口、处理器以及存储器之间的具体连接介质。例如,存储器、处理器以及通信接口之间通过总线连接,总线904在图9中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图9中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在本申请中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
在本申请中,存储器可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
本申请提供一种通信系统,该通信系统包括如图4对应的实施例中的终端设备和接入网设备。
本申请提供一种计算机可读存储介质。该计算机可读存储介质存储有程序或指令。当所述程序或指令在计算机上运行时,使得计算机执行如图4对应的实施例中的网络配置方法。
本申请中提供一种计算机程序产品。该计算机程序产品包括指令。当所述指令在计算机上运行时,使得计算机执行如图4对应的实施例中的网络配置方法。
本申请提供一种芯片或者芯片系统,该芯片或者芯片系统包括至少一个处理器和接口,接口和至少一个处理器通过线路互联,至少一个处理器用于运行计算机程序或指令,以执行如图4对应的实施例中的网络配置方法。
其中,芯片中的接口可以为输入/输出接口、管脚或电路等。
上述芯片系统可以是片上系统(system on chip,SOC),也可以是基带芯片等,其中基带芯片可以包括处理器、信道编码器、数字信号处理器、调制解调器和接口模块等。
在一种实现方式中,本申请中上述描述的芯片或者芯片系统还包括至少一个存储器,该至少一个存储器中存储有指令。该存储器可以为芯片内部的存储单元,例如,寄存器、缓存等,也可以是该芯片的存储单元(例如,只读存储器、随机存取存储器等)。
本申请提供的技术方案可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、终端设备或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机可以存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,DVD))、或者半导体介质等。
在本申请中,在无逻辑矛盾的前提下,各实施例之间可以相互引用,例如方法实施例之间的方法和/或术语可以相互引用,例如装置实施例之间的功能和/或术语可以相互引用,例如装置实施例和方法实施例之间的功能和/或术语可以相互引用。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。
Claims (25)
- 一种网络配置方法,其特征在于,包括:接收多组非连续接收DRX参数,所述多组DRX参数中的任意一组DRX参数包括DRX周期,所述DRX周期是根据该组DRX参数对应的数据流的数据到达周期或者该组DRX参数对应的载波上的数据的传输周期确定的;当所述任意一组DRX参数指示终端设备处于激活状态时,监听物理下行控制信道PDCCH。
- 根据权利要求1所述的方法,其特征在于,所述接收多组非连续DRX参数,包括:接收无线资源控制RRC信令,所述RRC信令包括多个DRX配置信元,其中,一个DRX配置信元对应一组DRX参数,所述DRX配置信元包括DRX索引,所述DRX索引用于关联对应的DXR参数。
- 根据权利要求1或2所述的方法,其特征在于,所述多组DRX参数中的任意一组DRX参数还包括以下一种或多种参数:DRX持续时间定时器,用于指示终端设备处于激活状态的时长;DRX非激活定时器,用于指示当终端设备接收初传PDCCH后监听PDCCH的时长;DRX混合自动重传请求往返时间定时器,用于指示下一次重传出现时与当前传输间隔的最小符号数量;DRX重传定时器,用于指示终端设备处于激活状态时等待重传数据的最大时长;DRX起始偏置,用于指示DRX周期的起始子帧;DRX时隙偏置,用于指示DRX周期的起始子帧的前边界向后推迟启动DRX持续时间定时器的时长。
- 根据权利要求3所述的方法,其特征在于,当任意一个DRX配置信元中不包括对应的一组DRX参数中的全部参数时,未包括的参数的取值为默认值;所述默认值为接入网设备根据协议配置的参数值。
- 根据权利要求3所述的方法,其特征在于,所述多组DRX参数中任意两组DRX参数的DRX周期不同和/或DRX起始偏置不同;任意一组DRX参数中的DRX持续时间定时器的起始位置是根据该组DRX参数中的DRX周期、DRX起始偏置、DRX时隙偏置配置的。
- 根据权利要求2所述的方法,其特征在于,所述RRC信令还包括所述多组DRX参数分别关联的数据无线承载DRB或逻辑信道LCH;其中,所述RRC信令中的任意一个DRX配置信元中携带对应的DRB标识或LCH标识或逻辑信道组LCG标识;或者,所述RRC信令中的任意一个DRB配置信元中携带对应的DRX索引;或者,所述RRC信令中的任意一个LCH配置信元中携带对应的DRX索引。
- 根据权利要求3所述的方法,其特征在于,所述方法还包括:接收第一预设参数,所述第一预设参数用于指示所述DRX非激活定时器的取值。
- 根据权利要求7所述的方法,其特征在于,所述方法还包括:当接收指示初传的PDCCH时,启动或重启根据所述第一预设参数配置的DRX非激活定时器;或者,当接收指示初传的PDCCH时,启动或重启根据协议配置的DRX非激活定时器。
- 根据权利要求3所述的方法,其特征在于,所述方法还包括:当接收指示上行初传的PDCCH时,确定在所述PDCCH对应的物理上行共享信道PUSCH上传输数据的LCH;启动或重启根据所述LCH关联的DRX参数配置的DRX非激活定时器,或者,启动或重启根据所述LCH对应的DRB关联的DRX参数配置的DRX非激活定时器,或者,启动或重启根据所述LCH所属的LCG关联的DRX参数配置的DRX非激活定时器。
- 根据权利要求3所述的方法,其特征在于,所述方法还包括:当接收指示下行初传的PDCCH时,解码所述PDCCH对应的物理下行共享信道PDSCH上传输的数据,确定缓存所述数据的LCH;启动或重启根据所述LCH关联的DRX参数配置的DRX非激活定时器,或者,启动或重启根据所述 LCH对应的DRB关联的DRX参数配置的DRX非激活定时器,或者,启动或重启根据所述LCH所属的LCG关联的DRX参数配置的DRX非激活定时器。
- 根据权利要求3所述的方法,其特征在于,所述方法还包括:当接收指示上行初传的PDCCH时,根据逻辑信道优先级LCP规则,确定对应的LCH;启动或重启根据所述LCH关联的DRX参数配置的DRX非激活定时器,或者,启动或重启根据所述LCH对应的DRB关联的DRX参数配置的DRX非激活定时器,或者,启动或重启根据所述LCH所属的LCG关联的DRX参数配置的DRX非激活定时器。
- 根据权利要求3所述的方法,其特征在于,所述方法还包括:接收第二预设参数,所述第二预设参数用于指示所述DRX混合自动重传请求往返时间定时器的取值。
- 根据权利要求12所述的方法,其特征在于,所述方法还包括:当发送物理上行共享信道PUSCH时,启动或重启根据所述第二预设参数配置的上行DRX混合自动重传请求往返时间定时器;当所述上行DRX混合自动重传请求往返时间定时器超时,启动对应的上行DRX重传定时器。
- 根据权利要求12所述的方法,其特征在于,所述方法还包括:当接收PDSCH并发送对应的混合自动重传请求HARQ反馈时,启动或重启根据所述第二预设参数配置的下行DRX混合自动重传请求往返时间定时器;当所述下行DRX混合自动重传请求往返时间定时器超时,启动对应的下行DRX重传定时器。
- 根据权利要求3所述的方法,其特征在于,所述方法还包括:当发送PUSCH时,确定在所述PUSCH上传输数据的LCH;启动或重启根据所述LCH关联的DRX参数配置的上行DRX混合自动重传请求往返时间定时器,或者,启动或重启根据所述LCH对应的DRB关联的DRX参数配置的上行DRX混合自动重传请求往返时间定时器,或者,启动或重启根据所述LCH所属的LCG关联的DRX参数配置的上行DRX混合自动重传请求往返时间定时器;当所述上行DRX混合自动重传请求往返时间定时器超时,启动对应的上行DRX重传定时器。
- 根据权利要求3所述的方法,其特征在于,所述方法还包括:当接收PDSCH时,解码所述PDSCH上的数据,确定缓存所述数据的LCH;当发送所述PDSCH的HARQ反馈时,启动或重启根据所述LCH关联的DRX参数配置的下行DRX混合自动重传请求往返时间定时器,或者,启动或重启根据所述LCH对应的DRB关联的DRX参数配置的下行DRX混合自动重传请求往返时间定时器,或者,启动或重启根据所述LCH所属的LCG关联的DRX参数配置的下行DRX混合自动重传请求往返时间定时器;当所述下行DRX混合自动重传请求往返时间定时器超时,启动对应的下行DRX重传定时器。
- 根据权利要求2所述的方法,其特征在于,所述RRC信令还包括所述多组DRX参数分别关联的载波,所述载波与小区或部分带宽BWP相关联;其中,所述RRC信令中的任意一个DRX配置信元中携带对应的小区标识或小区组标识或BWP标识;或者,所述RRC信令中的任意一个小区配置信元中携带对应的DRX索引;或者,所述RRC信令中的任意一个小区组配置信元中携带对应的DRX索引;或者,所述RRC信令中的任意一个BWP配置信元中携带对应的DRX索引。
- 根据权利要求17所述的方法,其特征在于,所述方法还包括:当在第一载波上接收指示初传的PDCCH时,启动或重启所述第一载波对应的DRX非激活定时器。
- 根据权利要求17所述的方法,其特征在于,所述方法还包括:当在第一载波上进行数据传输时,启动或重启所述第一载波对应的DRX混合自动重传请求往返时间定时器;当所述DRX混合自动重传请求往返时间定时器超时,启动对应的DRX重传定时器。
- 根据权利要求1所述的方法,其特征在于,所述方法还包括:接收所述多组DRX参数对应的多组次级DRX参数;所述次级DRX参数包括DRX持续时间定时器和DRX非激活定时器。
- 根据权利要求20所述的方法,其特征在于,所述方法还包括:针对每一组DRX参数,配置对应的一组次级DRX参数;或者,针对每一组次级DRX参数,指定一组对应的DRX参数;或者根据一组指定的DRX参数,配置所述多组次级DRX参数。
- 一种通信装置,其特征在于,包括:通信单元,用于接收多组DRX参数,所述多组DRX参数中的任意一组DRX参数包括DRX周期,所述DRX周期是根据该组DRX参数对应的数据流的数据到达周期或者该组DRX参数对应的载波上的数据的传输周期确定的;处理单元,用于当所述任意一组DRX参数指示终端设备处于激活状态时,监听PDCCH。
- 一种通信设备,其特征在于,包括:处理器,该处理器与存储器耦合,该存储器用于存储指令,当指令被处理器执行时,使得如权利要求1至21中任一项所述的方法被执行。
- 一种芯片,其特征在于,包括处理器和接口;所述处理器用于读取指令以执行权利要求1至21中任一项所述的方法。
- 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储指令,当所述指令在计算机上运行时,使得计算机执行如权利要求1至21任一项所述的方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211174807.8 | 2022-09-26 | ||
CN202211174807.8A CN117812674A (zh) | 2022-09-26 | 2022-09-26 | 一种网络配置方法、装置及设备 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024067107A1 true WO2024067107A1 (zh) | 2024-04-04 |
Family
ID=90432049
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/118646 WO2024067107A1 (zh) | 2022-09-26 | 2023-09-13 | 一种网络配置方法、装置及设备 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN117812674A (zh) |
WO (1) | WO2024067107A1 (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20200120606A1 (en) * | 2017-08-11 | 2020-04-16 | Sony Corporation | Wireless communications system, communications device and wireless network infrastructure |
CN112543442A (zh) * | 2019-09-20 | 2021-03-23 | 维沃移动通信有限公司 | 非连续接收参数配置方法及设备 |
CN113518478A (zh) * | 2020-04-10 | 2021-10-19 | 华为技术有限公司 | 一种drx控制方法及装置 |
CN114424672A (zh) * | 2019-12-17 | 2022-04-29 | Oppo广东移动通信有限公司 | 监听唤醒信号的方法、终端设备和网络设备 |
-
2022
- 2022-09-26 CN CN202211174807.8A patent/CN117812674A/zh active Pending
-
2023
- 2023-09-13 WO PCT/CN2023/118646 patent/WO2024067107A1/zh unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20200120606A1 (en) * | 2017-08-11 | 2020-04-16 | Sony Corporation | Wireless communications system, communications device and wireless network infrastructure |
CN112543442A (zh) * | 2019-09-20 | 2021-03-23 | 维沃移动通信有限公司 | 非连续接收参数配置方法及设备 |
CN114424672A (zh) * | 2019-12-17 | 2022-04-29 | Oppo广东移动通信有限公司 | 监听唤醒信号的方法、终端设备和网络设备 |
CN113518478A (zh) * | 2020-04-10 | 2021-10-19 | 华为技术有限公司 | 一种drx控制方法及装置 |
Non-Patent Citations (1)
Title |
---|
SONY: "On power saving adaptation during the DRX active time", 3GPP DRAFT; R1-2009299, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. E-meeting; 20201026 - 20201113, 24 October 2020 (2020-10-24), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051946949 * |
Also Published As
Publication number | Publication date |
---|---|
CN117812674A (zh) | 2024-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7462053B2 (ja) | 不連続受信drxパラメーター構成方法及び装置 | |
CN113382379B (zh) | 无线通信方法和通信装置 | |
WO2020221093A1 (zh) | 搜索空间的监测、配置方法及装置 | |
WO2021023076A1 (zh) | 一种通信方法及装置 | |
WO2013020417A1 (zh) | 一种非连续接收方法及系统 | |
WO2013189293A1 (zh) | 通知上行数据发送的信道使用时间的方法、上行数据发送方法和设备 | |
US20180014165A1 (en) | Triggered wireless access protocol with grouped multi-user transmissions | |
WO2021027551A1 (zh) | 一种通信方法及装置 | |
WO2024169478A1 (zh) | 一种通信方法及装置 | |
US20210160742A1 (en) | Selective multi-link operation in wlan | |
WO2022062685A1 (zh) | 一种通信方法及设备 | |
WO2023046196A1 (zh) | 辅助信息上报方法、业务配置方法、终端及网络侧设备 | |
WO2023279865A1 (zh) | 一种通信方法及装置 | |
WO2023284376A1 (zh) | 一种多播业务修改通知方法及通信装置 | |
CN114286429A (zh) | 一种通信方法及设备 | |
WO2023030037A1 (zh) | 信息监听的方法和装置 | |
WO2024067107A1 (zh) | 一种网络配置方法、装置及设备 | |
WO2024208168A1 (zh) | 通信方法、装置及存储介质 | |
WO2023174041A1 (zh) | 一种通信方法及装置 | |
WO2024066908A1 (zh) | 基于drx配置的通信方法、通信装置及通信系统 | |
WO2024174270A1 (zh) | 一种通信方法及装置 | |
WO2023179357A1 (zh) | 一种通信方法及装置 | |
WO2023207878A1 (zh) | 一种设备唤醒方法及装置 | |
WO2024032402A1 (zh) | 通信方法和通信装置 | |
WO2023216837A1 (zh) | 数据传输方法及装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23870344 Country of ref document: EP Kind code of ref document: A1 |