WO2023202621A1 - 压缩机构的涡旋部件、压缩机构及涡旋压缩机 - Google Patents

压缩机构的涡旋部件、压缩机构及涡旋压缩机 Download PDF

Info

Publication number
WO2023202621A1
WO2023202621A1 PCT/CN2023/089235 CN2023089235W WO2023202621A1 WO 2023202621 A1 WO2023202621 A1 WO 2023202621A1 CN 2023089235 W CN2023089235 W CN 2023089235W WO 2023202621 A1 WO2023202621 A1 WO 2023202621A1
Authority
WO
WIPO (PCT)
Prior art keywords
scroll
compression mechanism
extension section
section
compression
Prior art date
Application number
PCT/CN2023/089235
Other languages
English (en)
French (fr)
Inventor
张跃
梁计
丁月新
林燕
缪仲威
Original Assignee
艾默生环境优化技术(苏州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210416181.0A external-priority patent/CN116950894A/zh
Priority claimed from CN202220922030.8U external-priority patent/CN217926287U/zh
Application filed by 艾默生环境优化技术(苏州)有限公司 filed Critical 艾默生环境优化技术(苏州)有限公司
Publication of WO2023202621A1 publication Critical patent/WO2023202621A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents

Definitions

  • the present disclosure relates to a scroll component.
  • the present disclosure relates to a scroll component having high fatigue resistance strength.
  • the present disclosure also relates to a compression mechanism including the scroll member and a scroll compressor including the compression mechanism.
  • a scroll compressor generally includes a casing, a driving mechanism accommodated in the casing, a compression mechanism driven by the driving mechanism, a main bearing seat supporting the compression mechanism, etc.
  • the compression mechanism generally includes an orbiting scroll and a fixed scroll that mesh with each other to form a series of compression chambers for compression between the two.
  • the movable scroll can be driven through the crank pin of the drive shaft, so that the movable scroll performs translational rotation relative to the fixed scroll.
  • the axis of the orbiting scroll orbits in a circular orbit relative to the axis of the stationary scroll, but both the orbiting and stationary scrolls themselves do not rotate about their respective axes.
  • the movable scroll blades and the fixed scroll blades are in contact with each other in the radial direction and bear lateral contact force.
  • the number of contact pairs between the orbiting scroll blades and the fixed scroll blades changes between 4 pairs and 6 pairs. Therefore, when the total lateral contact force is basically constant, when the number of contact pairs between the orbiting scroll blades and the fixed scroll blades is 4 pairs, the lateral contact force shared by each contact pair is the largest. At this time The vortex blades are prone to failure at the contact point or even complete rupture of the vortex blades.
  • the rotation speed exceeds, for example, 6000 RPM, the scroll blades are particularly prone to breakage.
  • One object of the present disclosure is to provide a scroll member, a compression mechanism including the scroll member, and a scroll compressor including the compression mechanism.
  • the scroll blades of the scroll member include scroll blades capable of intermeshing with each other.
  • the extended section that generates contact can not only increase the number of contact pairs between the two intermeshing scroll blades, but also effectively reduce the radial load borne by each contact pair, thus improving the fatigue resistance of the scroll components. , Reduce the risk of scroll component failure, while basically not affecting the displacement and pressure ratio of the compression mechanism.
  • Another object of the present disclosure is to provide a scroll component, a compression mechanism including the scroll component, and a scroll compressor including the compression mechanism.
  • the scroll blades of the scroll component not only have high fatigue resistance but also have high scroll blades. There is no significant increase in power consumption of rotating parts.
  • Another object of the present disclosure is to provide a scroll component, a compression mechanism including the scroll component, and a scroll compressor including the compression mechanism.
  • the scroll component has a simple structure, is easy to produce and process, and is low in cost.
  • a scroll component of a compression mechanism including: an end plate and scroll blades.
  • the scroll blades are formed on one side of the end plate.
  • the scroll blades are formed along a spiral from a substantially central position of the end plate.
  • the profile direction of the shape extends from the inside to the outside, wherein the scroll blade includes a compression section and an extension section connected to each other.
  • the compression section is located inside the extension section in the profile direction, and the compression section is suitable for structural purposes.
  • the radial thickness of the extension section is smaller than the radial thickness of the compression section, the extension section is formed with a material removal portion, and the chamber constructed by the extension section can pass through the material removal portion and the external part of the compression mechanism. Low pressure environment is connected.
  • the scroll component is a fixed scroll
  • the fixed scroll further includes an outer peripheral wall arranged around the scroll blades, and the extension section is arranged close to a radially inner surface of the outer peripheral wall.
  • the extension section is provided in an area of the peripheral wall where the stiffness is greatest.
  • a suction window for allowing the working fluid to enter the compression mechanism is formed on the outer peripheral wall, and the extension section extends to the suction window along the profile direction, so that when the compression mechanism is running, the maximum length of the scroll blades along the profile direction is When the inner contact point has not yet come out of contact, the outermost contact point along the profile direction of the scroll blade is already in contact.
  • the material removal part is configured as an upper or lower part of the extension section in the axial direction.
  • the form of the removed material is such that the scroll blades have a step shape in the axial direction.
  • the angle at which the extension section extends along the profile direction is greater than or equal to 20° and less than 120°.
  • the material removal portion is configured as one or more apertures extending through the extension section in a thickness direction thereof, the apertures being in direct communication with the low-pressure environment formed on the peripheral wall and external to the compression mechanism
  • the through holes are aligned and connected.
  • the orifices are arranged along the profile direction or along the axial direction, and the orifices are multiple circular holes or the orifices are a single elongated slot.
  • the material removal portion is configured as an elongated groove that runs through the extension section in a thickness direction of the extension section and extends along the profile direction to an outer end of the extension section.
  • the elongated groove communicates with a communication groove formed on the outer peripheral wall, the communication groove extends outward from an outer end of the elongated groove, and a suction window for allowing working fluid to enter the compression mechanism is formed on the outer peripheral wall,
  • the communication groove is configured as a through hole that directly communicates with the low-pressure environment outside the compression mechanism or as a half groove that is recessed from the radially inner surface of the outer peripheral wall and communicates with the suction window.
  • a compression mechanism includes a fixed scroll and an orbiting scroll meshed with each other to form a series of compression chambers between the fixed scroll and the orbiting scroll, wherein the fixed scroll
  • the orbiting or orbiting scroll is configured as the scroll component described above.
  • the extended section of the scroll blade of one of the fixed scroll and the orbiting scroll can come into contact with the other of the fixed scroll and the orbiting scroll, but the extended section is not used to form a compression cavity.
  • a scroll compressor is provided, wherein the scroll compressor includes the above-described compression mechanism.
  • the scroll component, the compression mechanism including the scroll component, and the scroll compressor including the compression mechanism according to the present disclosure bring at least one of the following beneficial effects: since the scroll blades of the scroll component are configured with extensions This extended section can increase the contact points between the scroll blades and the scroll blades meshing with them, thereby improving the fatigue resistance of the scroll parts.
  • scroll The extended section of the scroll blade has a material removal part, thereby preventing the extended section from participating in compression and minimizing the impact on the displacement and pressure ratio of the compression mechanism; the extended section of the scroll blade passes through the material removal part (such as a hole or groove) is directly connected to the external low-pressure environment of the compression mechanism to avoid increasing compression power consumption and further ensure the efficiency of the compressor; the scroll component with the extended section has a simple structure, is easy to process and manufacture, has low production cost and a wide range of applications.
  • Figure 1a is a top perspective view of a fixed scroll according to a first embodiment of the present disclosure
  • Figure 1b is a top perspective view of the fixed scroll from another angle according to the first embodiment of the present disclosure
  • FIG. 2 is a longitudinal cross-sectional view of the fixed scroll according to the first embodiment of the present disclosure
  • 3a and 3b respectively show radial cross-sectional views of the compression mechanism according to the first embodiment of the present disclosure at time T1 just after the exhaust gas is started and at time T2 after 180° of rotation after the exhaust gas is started;
  • 4a and 4b respectively show radial cross-sectional views of the compression mechanism in the comparative example at time T1 just after the exhaust gas is started and at time T2 when the exhaust gas is started and rotated 180°;
  • FIG. 5 is a top perspective view of a fixed scroll according to a second embodiment of the present disclosure.
  • FIG. 6 is a radial cross-sectional view of a compression mechanism according to a second embodiment of the present disclosure.
  • FIG. 7 is a top perspective view of a fixed scroll according to a third embodiment of the present disclosure.
  • FIG. 8a and 8b respectively show radial cross-sectional views of the compression mechanism according to the third embodiment of the present disclosure at time T1 just after the exhaust gas is started and at time T2 after the exhaust gas is started and rotated 180°;
  • FIG. 9 is a top perspective view of a fixed scroll according to a fourth embodiment of the present disclosure.
  • FIG. 10 is a top perspective view of a fixed scroll according to a fifth embodiment of the present disclosure.
  • Figure 11a is a top perspective view of a fixed scroll according to a sixth embodiment of the present disclosure.
  • Figure 11b is a radial cross-sectional view of the fixed scroll according to the sixth embodiment of the present disclosure.
  • a scroll compressor (hereinafter sometimes referred to as a compressor) includes a casing, a compression mechanism composed of a fixed scroll and an orbiting scroll, a main bearing seat, a drive shaft and a motor for driving the compression mechanism, and the like.
  • An eccentric crank pin is provided at one end of the drive shaft adjacent to the orbiting scroll. The eccentric crank pin is inserted into the hub of the orbiting scroll.
  • An unloading bushing can be provided between the eccentric crank pin and the hub to provide radial flexibility for the compression mechanism.
  • the unloading bushing and the hub of the orbiting scroll There are also drive bearings in between.
  • the drive The movable shaft makes the movable scroll rotate in translation relative to the fixed scroll through the eccentric crank pin, the unloading bushing and the drive bearing (that is, the central axis of the movable scroll moves around the central axis of the fixed scroll, but the movable scroll itself does not rotate around its own central axis) to achieve compression of the working fluid.
  • the above-mentioned orbiting motion is achieved through a cross slip ring.
  • the orbiting scroll includes an end plate, a hub formed on one side of the end plate, and a spiral scroll blade 90 formed on the other side of the end plate (see, for example, FIG. 3a ).
  • the fixed scroll 100 according to the first embodiment of the present disclosure includes an end plate 12 , a spiral scroll blade 10 formed on one side of the end plate 12 , and a spiral scroll blade 10 formed at a substantially central position of the end plate 12 .
  • Exhaust port 18 A series of chambers (hereinafter referred to as compression chambers) whose volumes gradually decrease from the radially outer side to the radially inner side are formed between the scroll blades 10 of the fixed scroll 100 and the scroll blades 90 of the orbiting scroll. ).
  • the fixed scroll 100 also includes an outer peripheral wall 14 provided around the scroll blade 10, and a suction window 16 is provided at the outer peripheral wall 14 and/or the end plate 12 (in FIG. 1a, the suction window 16 includes a suction window 16 formed at the outer peripheral wall 14). part and the part formed at the end plate 12 ), so that the working fluid enters the compression chamber through the suction window 16 , and is discharged through the exhaust port 18 after being compressed by the compression chamber.
  • the scroll blade 10 extends from the approximate center position of the end plate 12 along the spiral profile direction from the inside to the outside. That is to say, the innermost end 11 of the scroll blade 10 is located At approximately the center of the end plate 12 (near the exhaust port 18 ), the outermost end of the scroll blade 10 opposite to the innermost end 11 is located near the radially outer peripheral edge of the end plate 12 .
  • the scroll blade 10 includes a compression section 102 and an extension section 104 connected to each other. The compression section 102 is located inside the extension section 104 .
  • the compression section 102 refers to a section of a scroll vane adapted to configure a chamber for compression operation, ie the compression section 102 engages the scroll vanes 90 of the orbiting scroll to form a compression chamber.
  • the extension section 102 continues to extend outward along the profile direction from the outermost end of the compression section 102 in the profile direction. Therefore, the extension section 104 and a portion of the compression section 102 together constitute the scroll blade 10 The outermost blades.
  • the outer peripheral wall 14 surrounds the outermost blades of the scroll blades 10 .
  • the extension section 104 is not configured to extend the entire axial height of the compression section 102 but instead includes a material removal portion 107 .
  • the lower portion of the extension section 104 in the axial direction is removed of material to form the material removal portion 107
  • the upper portion 105 of the extension section 104 in the axial direction extends from the compression section 102 to the suction window. 16. That is, the extension section 104 has an axial step 103 in the axial direction.
  • the scroll blade 90 of the orbiting scroll meshes with the extension section 104 (ie, the upper side portion 105 of the extension section 104 ) to form a cavity
  • the cavity is connected to the extension section 107 by the material removal section 107 .
  • the suction window 16 remains open so that no compression of the working fluid occurs, and thus the extension section does not affect the displacement and pressure ratio of the compression mechanism (i.e., the displacement and pressure ratio of the compression mechanism are only associated with the compression section) , and no additional compression power consumption will be incurred.
  • the radial inner surface of the extension section 104 ie, the upper portion 105 of the extension section 104 is flush with the radial inner surface of the compression section 102 and maintains the same processing accuracy, thereby ensuring that the movable scroll is relatively
  • the fixed vortex orbits smoothly and ensures the radial support of the fixed vortex to the movable vortex.
  • the thickness of the extension section 104 in the radial direction (ie, the thickness of the upper portion 105 of the extension section 104 ) is smaller than the thickness of the compression section 102 in the radial direction, so that A profile direction step portion 13 is formed at the connection between the radial outer surface of the extension section 104 and the compression section 102 .
  • the extension section 104 can be disposed close to the radially inner surface of the outer peripheral wall 14 so that the radially inner surface of the extension section 104 (ie, the upper portion 105 of the extension section 104) is in contact with the blades of the orbiting scroll.
  • the radially outer surface of 90 provides radial support for the movable scroll when in contact.
  • 3a and 3b respectively show radial cross-sectional views of the compression mechanism according to the first embodiment of the present disclosure at time T1 just after the start of exhaust and at time T2 of 180° after the start of exhaust.
  • the scroll blade 90 and the scroll blade 10 of the fixed scroll 100 have four contact points as shown in the circles in the figure.
  • the total lateral contact force between the orbiting scroll and the fixed scroll 100 is jointly determined by these four contact points. supply.
  • the scroll blades 90 of the movable scroll and the scroll blades 10 of the fixed scroll 100 have shapes as shown in the circles in the figure.
  • the outermost contact point of the wrap blade 10 (shown as a circle X in Figure 3b) is located in the extended section 104 of the wrap blade 10 of the fixed scroll 100.
  • the scroll blade 90 of the orbiting scroll is in contact with the upper part 105 of the extended section 104 of the scroll blade 10 of the fixed scroll 100, through the upper part 105 and the outer peripheral wall 14 against which it is abutted. (which may also include an outer structure of the peripheral wall) provides sufficient radial support for the scroll blades 90 of the orbiting scroll.
  • the scroll component, especially the scroll blade 10 ′ of the fixed scroll 100 ′ is not provided with an extension section (that is, it only includes a compression portion). part).
  • the innermost contact points of the scroll blades 90' of the orbiting scroll and the scroll blades 10' of the fixed scroll 100' have just separated, and the orbiting scroll
  • the scroll blade 90' and the scroll blade 10' of the fixed scroll 100' have four contact points as shown in the circles in the figure.
  • the total lateral contact force between the movable scroll and the fixed scroll 100 is determined by this Four touchpoints are provided together.
  • the contact point between the scroll blade 90 of the orbiting scroll and the scroll blade 10 of the fixed scroll 100 according to the first embodiment of the present disclosure is increased by one compared to the comparative example, thereby reducing The radial load shared at a single contact point is increased, thereby improving the fatigue strength of the scroll blades and effectively avoiding the failure of the scroll components.
  • the fixed scroll according to the first embodiment of the present disclosure can effectively reduce the time when the radial contact points between the scroll blades of the movable scroll and the scroll blades of the fixed scroll are four. , using the outer peripheral wall of the fixed scroll to provide radial support for the moving scroll blades, thereby improving the fatigue strength of the scroll components and minimizing the risk of failure of the scroll components.
  • the fatigue resistance strength of the fixed scroll according to the first embodiment of the present disclosure is increased by 18%.
  • the extension section since the extension section includes a material removal portion connected to the suction window, the extension section will not affect the original displacement and pressure ratio of the compression mechanism, nor will it cause additional power consumption.
  • the extension section 104 is provided in a region with the greatest stiffness of the outer peripheral wall of the fixed scroll.
  • the area with the greatest stiffness of the outer peripheral wall of the fixed scroll refers to the outer circumferential wall of the fixed scroll.
  • the radial thickness of the outer peripheral wall is significantly greater than the radial thickness of the compression section 102 of the scroll blade of the fixed scroll, so that the contact point between the extension section 104 and the orbiting scroll blade can be compared
  • the other contact points between the compression section 102 and the orbiting scroll blades bear more lateral support force, thereby improving the fatigue resistance of the scroll components.
  • extension section 104 is shown in FIGS. 1 a and 1 b extending in the profile direction from the outermost end of the compression section 102 to the suction window 16 , the extension section 104 may also extend a predetermined distance in the profile direction. And is spaced apart from the suction window 16.
  • the angle at which the extension section 104 extends along the profile direction is greater than or equal to 20° and less than 120°, preferably greater than or equal to 24°, and more preferably greater than or equal to 60°, so that It is ensured that the moments when fatigue failure of the scroll blades is prone to occur (that is, the moments when there are four contact pairs between the scroll blades of the orbiting scroll and the scroll blades of the fixed scroll) are minimized.
  • the material removal portion of the extended section of the scroll blade may be located on the lower side of the extended section in the axial direction, or on the upper side of the extended section in the axial direction.
  • 5 and 6 respectively illustrate the fixed scroll 200 and the compression mechanism including the orbiting scroll and the fixed scroll 200 according to the second embodiment of the present disclosure.
  • the fixed scroll 200 includes an end plate 22 , a spiral scroll blade 20 formed on one side of the end plate 22 , and an outer peripheral wall 24 provided around the scroll blade 20 .
  • the scroll blade 20 extends from the approximate center of the end plate 22 along the spiral profile direction from the inside to the outside.
  • the scroll blade 20 includes a compression section 202 and an extension section connected to each other. 204.
  • the upper portion of the extension section 204 in the axial direction is removed of material to form the material removal portion 207 , and the lower portion 205 of the extension section 204 in the axial direction
  • a suction window extends from the compression section 202 to the peripheral wall 24 . That is, the extension section 204 has an axial step 203 in the axial direction.
  • the fixed scroll 200 due to the design of its extended section, increases the contact between the scroll blades of the fixed scroll and the scroll blades of the orbiting scroll through the lower part 205 on the one hand. , thereby providing more radial support to the scroll blades of the orbiting scroll and effectively reducing the risk of failure of the scroll components.
  • the material removal part 207 is connected to the suction window to avoid the extension section from affecting the original compression mechanism. The impact of displacement and pressure ratio also avoids additional power consumption. That is, the second embodiment according to the present disclosure has similar advantages and effects as the first embodiment.
  • the fixed scroll 200 extends to the suction window.
  • the innermost contact point A1 in the profile direction between the scroll blade of the scroll 200 and the scroll blade 90 of the orbiting scroll. A2 has not yet left the separation state, and their outermost contact point B along the profile line direction is already in contact. Therefore, during the orbiting motion of the orbiting scroll, more contact points can be generated between the scroll blades 20 of the fixed scroll 200 and the scroll blades 90 of the orbiting scroll, thereby further reducing the friction at a single contact point. Radial load improves the fatigue strength of scroll parts.
  • the fixed scroll 300 includes an end plate 32 , a spiral formed on one side of the end plate 32
  • the scroll blades 30 are shaped like scroll blades 30 and the outer peripheral wall 34 is provided around the scroll blades 30.
  • the outer peripheral wall 34 and/or the end plate 32 are provided with suction windows.
  • the scroll blade 30 extends from the approximate center of the end plate 32 along the spiral profile direction from the inside to the outside. In the extension direction of the profile line, the scroll blade 30 includes a compression section 302 and an extension section connected to each other. 304.
  • the thickness of the extension section 304 in the radial direction is smaller than the thickness of the compression section 302 , so that a profile direction step portion 33 is formed at the connection between the extension section 304 and the radial outer surface of the compression section 302 .
  • the extension section 304 may be disposed against the radially inner surface of the peripheral wall 34 to provide radial support when the extension section 304 comes into contact with the vanes 90 of the orbiting scroll.
  • the extension section 304 is configured to extend in the entire height direction of the compression section 302 , that is, the extension section 304 is flush with the compression section 302 and has the same axial dimensions.
  • the radially inner surface of the section 304 and the radially inner surface of the compression section 302 have the same processing accuracy, and together they form a smooth surface extending along the profile direction.
  • the extension section 304 includes one or more apertures 306 extending through the entire extension section 304 in the direction of its thickness, for example shown in FIG. 7 as three apertures 306 arranged along the extension direction of the profile. . These apertures 304 constitute the material removal of the extension section 304 .
  • the aperture 306 is aligned with and communicates with a through hole formed in the peripheral wall 34 .
  • the hole is directly connected to the low-pressure environment outside the compression mechanism.
  • the aperture 306 at the extension section 304 and the through hole formed at the peripheral wall 34 together form a communication channel that connects the chamber configured by the extension section 304 with the external environment of the compression mechanism. Therefore, the chamber constructed by the extension section 304 will not compress the working fluid, thereby not affecting the displacement and pressure ratio of the compression mechanism (that is, the displacement and pressure ratio of the compression mechanism are only associated with the compression section) , and no additional compression power consumption will be incurred.
  • FIG. 8a and 8b respectively illustrate the compression mechanism according to the third embodiment of the present disclosure when it is just opened.
  • contact occurs between the scroll blades 90 of the orbiting scroll and the scroll blades 30 of the fixed scroll 300.
  • the number and position of the contact points between the two changes with the The motion of the movable vortex is constantly changing, and the number of contact points between the two is usually in the range of 4 to 6.
  • the innermost contact points of the scroll blades 90 of the orbiting scroll and the scroll blades 30 of the fixed scroll 300 have just separated, and the scroll blades of the orbiting scroll have just separated.
  • the scroll blade 90 and the scroll blade 30 of the fixed scroll 300 have four contact points as shown by the circles in the figure.
  • the total lateral contact force between the orbiting scroll and the fixed scroll 300 is jointly determined by these four contact points. supply.
  • the scroll blades 90 of the movable scroll and the scroll blades 30 of the fixed scroll 300 have shapes as shown in the circles in the figure.
  • the four contact points near the inner side of the scroll blades 90 of the orbiting scroll and the scroll blades 30 of the fixed scroll 300 occur between the scroll blades 90 of the orbiting scroll and the fixed scroll 300 between the compression sections 302 of the scroll blades 30, and the outermost contact point (shown as a circle In the extended section 304 of the scroll blade 30 of the spiral 300 . That is, at this moment, the scroll blade 90 of the orbiting scroll is in contact with the radially inner surface of the extended section 304 of the scroll blade 30 of the fixed scroll 300, and the extended section 304 and the extended section 304 are abutted.
  • the outer peripheral wall 34 provides sufficient radial support for the scroll vanes 90 of the orbiting scroll.
  • the cavity formed between the extension section 304 of the fixed scroll and the scroll blade 90 of the orbiting scroll is passed through the hole 306 across the extension section 304 along the thickness direction of the extension section 304 and the holes 306 on the outer peripheral wall 34
  • the through hole communicates with the external low-pressure environment of the compression mechanism, thereby preventing additional compression of the working fluid by this chamber.
  • the fixed scroll according to the third embodiment of the present disclosure can effectively reduce the time when the contact points between the movable scroll and the fixed scroll are four, utilizing the outer peripheral wall and outer side of the fixed scroll.
  • the structure provides radial support for the orbiting scroll blades, thereby improving the fatigue strength of the scroll components and minimizing the risk of scroll component failure.
  • the extension section since the extension section includes a material removal portion that is directly connected to the external environment of the compression mechanism, the extension section does not affect the original displacement and pressure ratio of the compression mechanism.
  • the extension section extends in the entire height direction of the compression section, the contact area between the scroll blades of the orbiting scroll and the scroll blades of the fixed scroll is increased in the extension section, thereby providing More adequate radial support for the scroll blades of the orbiting scroll.
  • the contact point located on the extension section is capable of sharing 40% of the total lateral support force.
  • the extension section 304 of the fixed scroll 300 does not extend to the suction window but is spaced a certain distance from the suction window.
  • the angle at which the extension section 304 extends along the profile direction is greater than or equal to 20° and less than 120°.
  • the angle at which the extension section 304 extends along the profile direction is smaller than in the first embodiment of the present disclosure.
  • the angle at which the extension section 104 extends along the profile direction is, for example, greater than or equal to 24° and less than 60°, thereby minimizing the time when fatigue failure of the scroll blade is prone to occur while minimizing additional power consumption caused by the extension section.
  • the material removal portion of the extension section 304 is shown in FIG. 7 as three circular openings 306 distributed along the profile direction, those skilled in the art can understand that the number and distribution positions of the openings And the shape can be designed as needed.
  • FIG. 9 shows a fixed scroll 400 according to a fourth embodiment of the present disclosure.
  • the fixed scroll 400 includes an end plate 42 and a spiral formed on one side of the end plate 42 .
  • shaped scroll blades 40 and an outer peripheral wall 44 provided around the scroll blades 40 .
  • the scroll blade 40 extends from the approximate center position of the end plate 42 along the spiral profile direction from the inside to the outside.
  • the scroll blade 40 includes a compression section 402 and an extension section connected to each other. 404.
  • the three apertures 406 configured as material removal portions in the extension section 404 are arranged along the axial direction.
  • FIG. 10 shows a fixed scroll 500 according to the fifth embodiment of the present disclosure.
  • the fixed scroll 500 includes an end plate 52 , a scroll formed on one side of the end plate 52
  • the spiral scroll blade 50 and the outer peripheral wall 54 provided around the scroll blade 50 .
  • the scroll blade 50 extends from the approximate center of the end plate 52 along the spiral profile direction from the inside to the outside.
  • the scroll blade 50 includes a compression section 502 and an extension section connected to each other. 504.
  • the aperture configured as a material removal portion in the extension section 504 is formed as an elongated slot 506 .
  • the elongated slot 506 extends through the entire extension section 504 in the thickness direction of the extension section 504 .
  • the elongated groove 506 can be disposed in the middle area of the extension section 504 in the axial direction, and starts from the connection point between the compression section 502 and the extension section 504 (ie, the step portion 53 in the profile direction) along the profile.
  • the line direction extends outward.
  • the through holes on the outer peripheral wall 54 aligned with the elongated groove 506 can also be configured in a groove shape.
  • the elongated slot 506 and its aligned peripheral wall 54 The flow cross-section of the communication channel formed by the through hole on the fixed scroll for connecting the cavity formed between the extended section 504 of the fixed scroll and the scroll blade 90 of the orbiting scroll and the external low-pressure environment of the compression mechanism is larger, This is particularly advantageous in order to avoid additional compression of the working fluid by this chamber.
  • the length of the elongated groove 506 shown in FIG. 10 extending along the profile direction does not reach the total extension length of the extension section 504, that is, the outer end of the elongated groove 506 does not reach the extension in the profile direction.
  • the outer end of the section 504 but those skilled in the art will understand that the elongated groove can also extend to the outer end of the extension section or even beyond the outer end of the extension section.
  • the fixed scroll 600 according to the sixth embodiment of the present disclosure shown in FIG. 11 a is similar to the fifth embodiment according to the present disclosure.
  • the fixed scroll 600 includes an end plate 62 and a spiral formed on one side of the end plate 62 .
  • the spiral blades 60 are shaped like scroll blades 60 and the outer peripheral wall 64 is provided around the scroll blades 60 .
  • the scroll blade 60 extends from the approximate center position of the end plate 62 along the spiral profile direction from the inside to the outside. In the extension direction of the profile line, the scroll blade 60 includes a compression section 602 and an extension section connected to each other. 604.
  • the extension section 604 includes an elongated groove 606 configured as a material removal portion that extends through the entire extension section 604 in the thickness direction of the extension section 604 . 604.
  • the elongated groove 606 can be disposed in the middle area of the extension section 604 in the axial direction, and starts from the connection point between the compression section 602 and the extension section 604 (ie, the step portion 63 in the profile direction) along the profile.
  • the line direction extends to the outer end of the extension section 604 . That is, the outer end of the extension section 604 is configured in a non-closed open form to form the outer end of the elongated slot 602 .
  • the outer peripheral wall 64 may be formed with a slot-like through hole aligned with the elongated slot 602 and substantially the same shape as in the fifth embodiment according to the present disclosure, thereby connecting the extended section 604 of the fixed scroll with the movable scroll.
  • the chamber formed between the swirling scroll blades 90 is directly connected to the external low-pressure environment of the compression mechanism to avoid additional compression of the working fluid by the chamber.
  • the outer peripheral wall 64 may also be formed with a communication groove 646 extending from an outer end of the elongated groove 602 Start extending outward along the direction of the molding line.
  • the elongated groove 602 communicates with the communication groove 646 at its outer end.
  • the communication groove 646 may be formed as a through hole penetrating the outer peripheral wall 64 along the thickness direction of the outer peripheral wall 64, so that the elongated groove 602 communicates with the external environment of the compression mechanism through the communication groove 646, as shown in FIG. 11b.
  • the communication groove 646 may also be formed in the form of a half groove that is recessed from the radially inner surface of the outer peripheral wall 64 without penetrating the outer peripheral wall 64 in the thickness direction, so that the elongated groove 602 passes through the communication groove 646 It is connected to the suction window and communicates with the external environment of the compression mechanism via the suction window.
  • the extension section increases the contact between the scroll blades of the fixed scroll and the scroll blades of the orbiting scroll, This provides more radial support for the scroll blades of the orbiting scroll and effectively reduces the risk of failure of the scroll components.
  • the elongated groove 606 is always connected to the external low-pressure environment of the compression mechanism, which not only avoids the extension part It has no influence on the original displacement and pressure ratio of the compression mechanism, and does not generate additional power consumption. It is simple to process and easy to manufacture.
  • the material removal part can be constructed in the form of a combination of holes and grooves, and its shape can also be designed as needed.
  • the scroll member is implemented as a fixed scroll, those skilled in the art will understand that the scroll member may also be implemented as an orbiting scroll, especially for the material removal portion configured as an extension portion. The case where the upper section or the underside part of the segment in the axial direction is removed of material and the case where the material removal part is configured as an elongated groove extending as far as the outer end of the extension section.

Abstract

一种压缩机构的涡旋部件,具有该涡旋部件的压缩机构以及涡旋压缩机。涡旋部件的涡卷叶片(10、20、30、40、50、60)包括彼此连接的压缩部段(102、202、302、402、502、602)和延伸部段(104、204、304、404、504、604),压缩部段在型线方向上位于延伸部段的内侧,延伸部段的径向厚度小于压缩部段的径向厚度,延伸部段形成有材料去除部(107、207、306、406、506、606),延伸部段所构造的腔室通过材料去除部与压缩机构外部的低压环境相连通,具有改善抗疲劳强度的效果。

Description

压缩机构的涡旋部件、压缩机构及涡旋压缩机
本申请要求以下中国专利申请的优先权:于2022年4月20日提交中国专利局的申请号为202210416181.0、发明创造名称为“涡旋部件、压缩机构及涡旋压缩机”的中国专利申请;于2022年4月20日提交中国专利局的申请号为202220922030.8、发明创造名称为“压缩机构的涡旋部件、压缩机构及涡旋压缩机”的中国专利申请。这些专利申请的全部内容通过引用结合在本申请中。
技术领域
本公开涉及一种涡旋部件,特别地,本公开涉及一种具有高抗疲劳强度的涡旋部件。另外,本公开还涉及包括该涡旋部件的压缩机构以及包括该压缩机构的涡旋压缩机。
背景技术
涡旋压缩机一般包括壳体、容纳在壳体中的驱动机构、由驱动机构驱动的压缩机构、支撑压缩机构的主轴承座等。压缩机构一般包括相互啮合的动涡旋和定涡旋,以在两者之间形成一系列用于压缩的压缩腔。当驱动机构的驱动轴旋转时,能够经由驱动轴的曲柄销驱动动涡旋,使得动涡旋相对于定涡旋进行平动转动。换句话说,动涡旋的轴线相对于定涡旋的轴线沿圆形轨道绕动,但是动涡旋和定涡旋二者本身不会绕它们各自的轴线旋转。
在动涡旋绕定涡旋做平动运动的过程中,在径向方向上动涡旋叶片与定涡旋叶片之间接触密封并且承受侧向接触力。在动涡旋平动一周的过程中,动涡旋叶片与定涡旋叶片之间的接触对数在4对至6对之间变化。因此,在总侧向接触力基本恒定的情况下,当动涡旋叶片与定涡旋叶片之间的接触对数为4对时,每个接触对处分担的侧向接触力最大,此时涡旋叶片容易在接触对处发生失效甚至涡旋叶片彻底断裂。尤其对于大变频压缩机而言,当转速超过例如6000RPM时,特别容易发生涡旋叶片断裂的情况。
因此,需要一种提高涡旋叶片的疲劳强度的设计,以解决涡旋压缩机、尤其是大变频涡旋压缩机的在转速较大时发生涡旋叶片失效的问题。
发明内容
在本部分中提供本公开的总体概要,而不是本公开完全范围或本公开所有特征的全面公开。
本公开的目的之一是提供一种涡旋部件、包括该涡旋部件的压缩机构以及包括该压缩机构的涡旋压缩机,该涡旋部件的涡卷叶片包括能够与其相互啮合的涡卷叶片产生接触的延伸部段,不仅能够增加相互啮合的两个涡卷叶片之间的接触对的数量,从而有效降低每个接触对处承受的径向载荷,以此提高涡旋部件的抗疲劳强度、降低涡旋部件的失效风险,同时基本不影响压缩机构的排量和压比。
本公开的另一目的是提供一种涡旋部件、包括该涡旋部件的压缩机构以及包括该压缩机构的涡旋压缩机,该涡旋部件的涡卷叶片不仅具有高抗疲劳强度,而且涡旋部件的功耗无明显增加。
本公开的又一目的是提供一种涡旋部件、包括该涡旋部件的压缩机构以及包括该压缩机构的涡旋压缩机,该涡旋部件结构简单、易于生产和加工、成本低廉。
根据本公开的一方面,提供了一种压缩机构的涡旋部件,包括:端板和涡卷叶片,涡卷叶片形成在端板的一侧,涡卷叶片从端板的大致中心位置沿螺旋形的型线方向由内侧向外侧延伸,其中,涡卷叶片包括彼此连接的压缩部段和延伸部段,压缩部段在型线方向上位于延伸部段的内侧,压缩部段适于构造用于压缩操作的腔室,延伸部段的径向厚度小于压缩部段的径向厚度,延伸部段形成有材料去除部,延伸部段所构造的腔室能够通过材料去除部与压缩机构外部的低压环境相连通。
可选地,涡旋部件为定涡旋,定涡旋还包括围绕涡卷叶片设置的外周壁,延伸部段设置成紧靠于外周壁的径向内侧表面。
可选地,延伸部段设置在外周壁的刚度最大的区域中。
可选地,外周壁上形成有用于允许工作流体进入压缩机构的吸气窗,延伸部段沿型线方向延伸至吸气窗,使得在压缩机构运行时涡卷叶片的沿型线方向的最内侧的接触点尚未脱离接触状态的情况下,涡卷叶片的沿型线方向的最外侧的接触点已经处于接触状态。
可选地,材料去除部构造为延伸部段的在轴向方向上的上侧部分或下侧部 分被去除材料的形式,使得涡卷叶片具有在轴向方向上的台阶形状。
可选地,延伸部段沿型线方向延伸的角度大于等于20°且小于120°。
可选地,材料去除部构造为一个或更多个孔口,孔口在延伸部段的厚度方向上贯穿延伸部段,孔口与形成在外周壁上的与压缩机构外部的低压环境直接连通的通孔对准并连通。
可选地,孔口沿型线方向布置或者沿轴向方向布置,孔口为多个圆孔或者孔口为单个长形槽。
可选地,材料去除部构造为长形槽,长形槽在延伸部段的厚度方向上贯穿延伸部段,长形槽沿型线方向延伸直至延伸部段的外侧末端。
可选地,长形槽与形成在外周壁上的连通凹槽连通,连通凹槽从长形槽的外侧末端向外侧延伸,外周壁上形成有用于允许工作流体进入压缩机构的吸气窗,连通凹槽构造为与压缩机构外部的低压环境直接连通的通孔或者构造为与吸气窗连通的从外周壁的径向内侧表面凹入的半槽。
根据本公开的另一方面,提供了一种压缩机构,压缩机构包括彼此啮合的定涡旋和动涡旋,以在定涡旋和动涡旋之间形成一系列压缩腔,其中,定涡旋或动涡旋构造为以上所述的涡旋部件。
可选地,定涡旋和动涡旋中的一者的涡卷叶片的延伸部段能够与定涡旋和动涡旋中的另一者形成接触,但延伸部段不用于形成压缩腔。
根据本公开的又一方面,提供了一种涡旋压缩机,其中,涡旋压缩机包括以上所述的压缩机构。
总体上,根据本公开的涡旋部件、包括该涡旋部件的压缩机构以及包括该压缩机构的涡旋压缩机至少带来以下有益效果之一:由于涡旋部件的涡卷叶片构造有延伸部段,该延伸部段能够使涡卷叶片和与其相啮合的涡卷叶片之间的接触点增加,从而提高涡旋部件的抗疲劳强度,特别适用于转速超过例如6000RPM的大变频压缩机;涡卷叶片的延伸部段具有材料去除部,从而避免延伸部段参与压缩,尽可能减小对压缩机构的排量和压比的影响;涡卷叶片的延伸部段通过材料去除部(例如孔或槽)与压缩机构的外部低压环境直接连通,以此避免增加压缩功耗、进一步保证压缩机的效率;具有延伸部段的涡旋部件结构简单、容易加工制造,生产成本低廉、适用范围广。
附图说明
通过以下参照附图的描述,本公开的一个或多个实施方式的特征和优点将变得更加容易理解。这里所提供的附图仅是出于说明目的而并非意图以任何方式限制本公开的范围。附图并非按比例绘制,而是可以放大或缩小一些特征以显示特定部件的细节。在附图中:
图1a是根据本公开的第一实施方式的定涡旋的俯视立体图;
图1b是根据本公开的第一实施方式的定涡旋的另一角度的俯视立体图;
图2是根据本公开的第一实施方式的定涡旋的纵向截面图;
图3a和图3b分别示出了根据本公开的第一实施方式的压缩机构的在刚开始排气后的时刻T1以及开始排气后绕动180°的时刻T2的径向剖视图;
图4a和图4b分别示出了对比示例中的压缩机构的在刚开始排气后的时刻T1以及开始排气后绕动180°的时刻T2的径向剖视图;
图5是根据本公开的第二实施方式的定涡旋的俯视立体图;
图6是根据本公开的第二实施方式的压缩机构的径向剖视图;
图7是根据本公开的第三实施方式的定涡旋的俯视立体图;
图8a和图8b分别示出了根据本公开的第三实施方式的压缩机构的在刚开始排气后的时刻T1以及开始排气后绕动180°的时刻T2的径向剖视图;
图9是根据本公开的第四实施方式的定涡旋的俯视立体图;
图10是根据本公开的第五实施方式的定涡旋的俯视立体图;
图11a是根据本公开的第六实施方式的定涡旋的俯视立体图;以及
图11b是根据本公开的第六实施方式的定涡旋的径向剖视图。
具体实施方式
下面将参照附图对本公开的优选实施方式进行描述,该描述仅仅是示例性的,而不构成对本公开及其应用的限制。
通常,涡旋压缩机(下文中有时也会称为压缩机)包括壳体、由定涡旋和动涡旋构成的压缩机构、主轴承座和用于驱动压缩机构的驱动轴和马达等。驱动轴的邻近动涡旋的一端设置有偏心曲柄销。偏心曲柄销插入动涡旋的毂部中,在偏心曲柄销和毂部之间可以设置有卸载衬套而为压缩机构提供径向柔性,另外,在卸载衬套与动涡旋的毂部之间还设置有驱动轴承。通过马达的驱动,驱 动轴经由偏心曲柄销、卸载衬套以及驱动轴承使动涡旋相对于定涡旋进行平动绕动(即,动涡旋的中心轴线绕定涡旋的中心轴线运动,但是动涡旋本身不会绕本身的中心轴线旋转)以实现工作流体的压缩。上述绕动运动是通过十字滑环来实现的。
动涡旋包括端板、形成在端板一侧的毂部和形成在端板另一侧的螺旋状的涡卷叶片90(例如参见图3a)。参见图1a和图1b,根据本公开的第一实施方式的定涡旋100包括端板12、形成在端板12一侧的螺旋状的涡卷叶片10和形成在端板12的大致中央位置处的排气口18。在定涡旋100的涡卷叶片10和动涡旋的涡卷叶片90之间形成一系列体积从径向外侧向径向内侧逐渐减小的用于压缩操作的腔室(以下简称为压缩腔)。定涡旋100还包括围绕涡卷叶片10设置的外周壁14,外周壁14和/或端板12处设置有吸气窗16(在图1a中,吸气窗16包括形成在外周壁14处的部分以及形成在端板12处的部分),从而使得工作流体经由吸气窗16进入压缩腔内,并经过压缩腔的压缩后通过排气口18排出。
具体地,参见图1a和图1b,涡卷叶片10从端板12的大致中心位置沿螺旋形的型线方向由内侧朝向外侧延伸,也就是说,涡卷叶片10的最内侧端部11位于端板12的大致中心位置处(排气口18附近),涡卷叶片10的与最内侧端部11相反的最外侧端部位于端板12的径向外周缘附近。在其型线方向上,涡卷叶片10包括彼此连接的压缩部段102和延伸部段104,压缩部段102位于延伸部段104的内侧。在本文中,压缩部段102指适于构造用于压缩操作的腔室的涡卷叶片的部段,即压缩部段102与动涡旋的涡卷叶片90啮合以形成压缩腔。延伸部段102则从压缩部段102的在型线方向上的最外侧端部继续沿着型线方向向外侧延伸,因此,延伸部段104和一部分压缩部段102共同构成了涡卷叶片10的最外圈叶片。外周壁14包围涡卷叶片10的最外圈叶片。
如图2所示,延伸部段104并非构造成在压缩部段102整个轴向高度上延伸,而是包括材料去除部107。具体地,延伸部段104在轴向方向上的下侧部分被去除材料从而形成材料去除部107,延伸部段104在轴向方向上的上侧部分105从压缩部段102延伸至吸气窗16。也就是说,延伸部段104在轴向方向上具有轴向台阶部103。在动涡旋的涡卷叶片90与延伸部段104(即延伸部段104的上侧部分105)啮合而形成腔室时,该腔室由于通过材料去除部107而与 吸气窗16保持连通,从而不会对工作流体形成压缩,由此延伸部段不会影响压缩机构的排量和压比(即压缩机构的排量和压比仅与压缩部段相关联),也不会产生额外的压缩功耗。优选地,延伸部段104(即延伸部段104的上侧部分105)的径向内表面与压缩部段102的径向内表面齐平并保持相同的加工精度,从而保证动涡旋相对于定涡旋的平滑绕动并且保证定涡旋对动涡旋的径向支撑。
如图1a和图1b所示,延伸部段104的在径向方向上的厚度(即延伸部段104的上侧部分105的厚度)小于压缩部段102的在径向方向上的厚度,从而在延伸部段104和压缩部段102的径向外表面的连接处形成有型线方向台阶部13。由此,延伸部段104可以设置成紧靠外周壁14的径向内表面,以在延伸部段104(即延伸部段104的上侧部分105)的径向内侧表面与动涡旋的叶片90的径向外侧表面产生接触时提供对动涡旋的径向支撑。
下面参照图3a、图3b并结合图4a、图4b所示的对比示例的压缩机构对根据本公开的第一实施方式的压缩机构的运行状况和优点进行说明。
图3a和图3b分别示出了根据本公开的第一实施方式的压缩机构的在刚开始排气后的时刻T1以及开始排气后绕动180°的时刻T2的径向剖视图。在动涡旋绕定涡旋的平动转动过程中,动涡旋的涡卷叶片90与定涡旋100的涡卷叶片10之间发生接触,两者之间的接触点个数以及位置随着动涡旋的运动不断变化,两者之间的接触点个数通常在4至6个的范围内。显然地,在压缩机构的工况不变的情况下,动涡旋的涡卷叶片90与定涡旋100的涡卷叶片10之间的总侧向支撑力基本不变,那么接触点个数越小,单个接触点处分担的径向载荷就越大。当两者之间的接触点个数为4个时,单个接触点处分担的径向载荷最大,涡旋部件最易在此刻发生失效。如在图3a所示的压缩机构刚开始排气后的时刻T1处,动涡旋的涡卷叶片90与定涡旋100的涡卷叶片10的最内侧接触点刚刚分离,动涡旋的涡卷叶片90与定涡旋100的涡卷叶片10具有如图中圆圈部分所示的四个接触点,动涡旋与定涡旋100之间的总侧向接触力由这四个接触点共同提供。又如图3b所示的压缩机构开始排气后动涡旋绕动180°的时刻T2处,动涡旋的涡卷叶片90与定涡旋100的涡卷叶片10具有如图中圆圈部分所示的五个接触点,其中,动涡旋的涡卷叶片90与定涡旋100的涡卷叶片10之间的靠近内侧的四个接触点发生在动涡旋的涡卷叶片90与定涡旋100的涡卷叶片10的压缩部段102之间,而动涡旋的涡卷叶片90与定涡旋100的涡 卷叶片10的最外侧接触点(如图3b中的圆圈X所示)位于定涡旋100的涡卷叶片10的延伸部段104中。即,在此刻,动涡旋的涡卷叶片90与定涡旋100的涡卷叶片10的延伸部段104的上侧部分105接触,通过该上侧部分105以及其所抵靠的外周壁14(还可以包括外周壁的外侧结构)提供对动涡旋的涡卷叶片90的充分的径向支撑。
与之相比,在如图4a和图4b所示的对比示例的压缩机构中,涡旋部件、尤其是定涡旋100'的涡卷叶片10'未设置延伸部段(即仅包括压缩部段)。在图4a所示的压缩机构刚开始排气后的时刻T1处,动涡旋的涡卷叶片90'与定涡旋100'的涡卷叶片10'的最内侧接触点刚刚分离,动涡旋的涡卷叶片90'与定涡旋100'的涡卷叶片10'具有如图中圆圈部分所示的四个接触点,动涡旋与定涡旋100之间的总侧向接触力由这四个接触点共同提供。此时与图3a所示的本公开的压缩机构径向载荷的分布状况无明显不同。但在如图4b所示的压缩机构开始排气后动涡旋绕动180°的时刻T2处,动涡旋的涡卷叶片90与定涡旋100'的涡卷叶片10'仅具有如图中实线圆圈部分所示的四个接触点,其中,由于定涡旋100'的涡卷叶片10'不包括延伸部段,动涡旋的涡卷叶片90的最外圈叶片与定涡旋100的涡卷叶片10之间不发生接触,即在如图3b所示的根据本公开的压缩机构中能够发生接触的位置处(如图4b中虚线圆圈X'所示)不发生接触。因此,针对该时刻T2,根据本公开的第一实施方式动涡旋的涡卷叶片90与定涡旋100的涡卷叶片10之间的接触点相较于对比示例增加了一个,从而减小了单个接触点处分担的径向载荷,由此提高了涡卷叶片的疲劳强度,有效避免涡旋部件的失效。
根据本公开的第一实施方式的定涡旋由于其延伸部段的设计,能够有效减少动涡旋的涡卷叶片与定涡旋的涡卷叶片之间的径向接触点为四个的时刻,利用定涡旋的外周壁对动涡旋叶片提供径向支撑,从而提高涡旋部件的疲劳强度,尽可能地减少涡旋部件的失效风险。经实验,根据本公开的第一实施方式的定涡旋的抗疲劳强度提高了18%。另一方面,由于延伸部段包括连通吸气窗的材料去除部,因此延伸部段不会影响压缩机构原本的排量和压比,也不会导致额外的功耗产生。
优选地,在根据本公开的第一实施方式中,延伸部段104设置在定涡旋的外周壁的刚度最大的区域中,例如,定涡旋的外周壁的刚度最大的区域是指外 周壁的径向厚度最大的区域。在该区域中,外周壁的径向厚度明显大于定涡旋的涡卷叶片的压缩部段102的径向厚度,从而使得位于延伸部段104与动涡旋叶片之间的接触点能够相较于其他的位于压缩部段102与动涡旋叶片之间的接触点承担更多的侧向支撑力,以此提高涡旋部件的抗疲劳强度。
尽管在图1a和图1b中示出为延伸部段104从压缩部段102的最外侧端部沿型线方向延伸直至吸气窗16,但延伸部段104也可以沿型线方向延伸预定距离而与吸气窗16间隔开。优选地,在根据本公开的第一实施方式中,延伸部段104沿型线方向延伸的角度大于等于20°且小于120°,优选地大于等于24°,更优选地大于等于60°,从而保证易发生涡卷叶片疲劳失效的时刻(即动涡旋的涡卷叶片与定涡旋的涡卷叶片之间的接触对为4个的时刻)最少化。
涡卷叶片的延伸部段的材料去除部可以位于延伸部段沿轴向方向的下侧,也可以位于延伸部段沿轴向方向的上侧。图5和图6分别示出了根据本公开的第二实施方式的定涡旋200和包括动涡旋及定涡旋200的压缩机构。其中,与根据本公开的第一实施方式类似,定涡旋200包括端板22、形成在端板22一侧的螺旋状的涡卷叶片20以及围绕涡卷叶片20设置的外周壁24。涡卷叶片20从端板22的大致中心位置沿螺旋形的型线方向由内侧朝向外侧延伸,在其型线的延伸方向上,涡卷叶片20包括彼此连接的压缩部段202和延伸部段204。与根据本公开的第一实施方式不同的是,延伸部段204在轴向方向上的上侧部分被去除材料从而形成材料去除部207,延伸部段204在轴向方向上的下侧部分205从压缩部段202延伸至外周壁24处的吸气窗。也就是说,延伸部段204在轴向方向上具有轴向台阶部203。
在根据本公开的第二实施方式中,定涡旋200由于其延伸部段的设计,一方面通过下侧部分205增加定涡旋的涡卷叶片与动涡旋的涡卷叶片之间的接触,从而对动涡旋的涡卷叶片提供更多的径向支撑、有效降低涡旋部件的失效风险,另一方面通过材料去除部207与吸气窗连通,避免延伸部段对压缩机构原本的排量和压比的影响,也避免产生额外的功耗。也就是说,根据本公开的第二实施方式具有与第一实施方式类似的优点和效果。
另外,优选地,参见图6,在定涡旋200的延伸部段204从压缩部段202的最外侧端部沿型线方向延伸较长距离、尤其是延伸直至吸气窗的情况下,定涡旋200的涡卷叶片与动涡旋的涡卷叶片90的沿型线方向的最内侧接触点A1、 A2尚未脱离分离状态,两者的沿型线方向上的最外侧接触点B已经处于接触状态。由此,在动涡旋的绕动运动过程中,定涡旋200的涡卷叶片20与动涡旋的涡卷叶片90之间能够产生更多的接触点,从而进一步降低单个接触点处的径向载荷,提高涡旋部件的疲劳强度。
图7示出了根据本公开的第三实施方式的定涡旋300,其中,与根据本公开的第一实施方式类似,定涡旋300包括端板32、形成在端板32一侧的螺旋状的涡卷叶片30以及围绕涡卷叶片30设置的外周壁34,外周壁34和/或端板32处设置有吸气窗。涡卷叶片30从端板32的大致中心位置沿螺旋形的型线方向由内侧朝向外侧延伸,在其型线的延伸方向上,涡卷叶片30包括彼此连接的压缩部段302和延伸部段304。延伸部段304的在径向方向上的厚度小于压缩部段302的厚度,从而在延伸部段304和压缩部段302的径向外表面的连接处形成有型线方向台阶部33。由此,延伸部段304可以设置成紧靠外周壁34的径向内表面,以在延伸部段304与动涡旋的叶片90产生接触时提供径向支撑。
与根据本公开的第一实施方式不同的是,延伸部段304构造成在压缩部段302的整个高度方向上延伸,即延伸部段304与压缩部段302齐平并且轴向尺寸相同,延伸部段304的径向内侧表面与压缩部段302的径向内侧表面具有相同的加工精度,两者共同构成沿型线方向延伸的平滑表面。延伸部段304包括在其厚度方向上延伸穿过整个延伸部段304的一个或更多个孔口306,例如在图7中示出为沿着型线的延伸方向布置的三个孔口306。这些孔口304构成延伸部段304的材料去除部。孔口306与形成在外周壁34上的通孔对准并连通。在动涡旋的涡卷叶片90与延伸部段304啮合而形成腔室时(例如参见图8a),该腔室由于通过延伸部段304处的孔口306以及形成在外周壁34处的通孔而压缩机构外部的低压环境直接连通。换句话说,延伸部段304处的孔口306以及形成在外周壁34处的通孔共同形成了连通延伸部段304所构造的腔室与压缩机构的外部环境的连通通道。由此,延伸部段304所构造的腔室不会对工作流体进行压缩,从而不会影响压缩机构的排量和压比(即压缩机构的排量和压比仅与压缩部段相关联),也不会产生额外的压缩功耗。
下面参照图8a、图8b对根据本公开的第三实施方式的压缩机构的运行状况和优点进行说明。
图8a和图8b分别示出了根据本公开的第三实施方式的压缩机构的在刚开 始排气后的时刻T1以及开始排气后绕动180°的时刻T2的径向剖视图。在动涡旋绕定涡旋的平动转动过程中,动涡旋的涡卷叶片90与定涡旋300的涡卷叶片30之间发生接触,两者之间的接触点个数以及位置随着动涡旋的运动不断变化,两者之间的接触点个数通常在4至6个的范围内。如在图8a所示的压缩机构刚开始排气后的时刻T1处,动涡旋的涡卷叶片90与定涡旋300的涡卷叶片30的最内侧接触点刚刚分离,动涡旋的涡卷叶片90与定涡旋300的涡卷叶片30具有如图中圆圈部分所示的四个接触点,动涡旋与定涡旋300之间的总侧向接触力由这四个接触点共同提供。又如图8b所示的压缩机构开始排气后动涡旋绕动180°的时刻T2处,动涡旋的涡卷叶片90与定涡旋300的涡卷叶片30具有如图中圆圈部分所示的五个接触点,其中,动涡旋的涡卷叶片90与定涡旋300的涡卷叶片30的靠近内侧的四个接触点发生在动涡旋的涡卷叶片90与定涡旋300的涡卷叶片30的压缩部段302之间,而动涡旋的涡卷叶片90与定涡旋300的涡卷叶片30的最外侧接触点(如图8b中的圆圈X所示)位于定涡旋300的涡卷叶片30的延伸部段304中。即,在此刻,动涡旋的涡卷叶片90与定涡旋300的涡卷叶片30的延伸部段304的径向内侧表面接触,通过该延伸部段304以及该延伸部段304所抵靠的外周壁34提供对动涡旋的涡卷叶片90的充分的径向支撑。同时,定涡旋的延伸部段304与动涡旋的涡卷叶片90之间形成的腔室通过沿延伸部段304的厚度方向横穿延伸部段304的孔口306以及外周壁34上的通孔与压缩机构的外部低压环境连通,从而避免该腔室对工作流体进行额外的压缩。
根据本公开的第三实施方式的定涡旋由于其延伸部段的设计,能够有效减少动涡旋与定涡旋之间的接触点为四个的时刻,利用定涡旋的外周壁和外侧结构对动涡旋叶片提供径向支撑,从而提高涡旋部件的疲劳强度,尽可能地减少涡旋部件的失效风险。另一方面,由于延伸部段包括与压缩机构的外部环境直接连通的材料去除部,因此延伸部段不会影响压缩机构原本的排量和压比。另外,由于延伸部段在在压缩部段的整个高度方向上延伸,增大了在延伸部段中动涡旋的涡卷叶片与定涡旋的涡卷叶片之间的接触面积,从而提供了动涡旋的涡卷叶片的更加充分的径向支撑。在本公开的第三实施方式中,位于延伸部段的接触点能够分担总侧向支撑力的40%。经实验,根据本公开的第三实施方式的定涡旋的抗疲劳强度提高了20%。
优选地,在本公开的第三实施方式中,定涡旋300的延伸部段304未延伸至吸气窗而与吸气窗间隔一定距离。在该实施方式中,延伸部段304沿型线方向延伸的角度大于等于20°且小于120°,优选地,延伸部段304沿型线方向延伸的角度小于在本公开的第一实施方式中延伸部段104沿型线方向延伸的角度,例如大于等于24°且小于60°,从而在保证易发生涡卷叶片疲劳失效的时刻最少化的同时尽量减少延伸部段引起的额外功耗。
尽管在图7中示出延伸部段304的材料去除部构造为沿着型线方向分布的三个圆形的孔口306,但本领域技术人员可以理解的是,孔口的数量、分布位置以及形状均可以根据需要进行设计。
例如,图9示出了根据本公开的第四实施方式的定涡旋400,与根据本公开的第三实施方式类似,定涡旋400包括端板42、形成在端板42一侧的螺旋状的涡卷叶片40以及围绕涡卷叶片40设置的外周壁44。涡卷叶片40从端板42的大致中心位置沿螺旋形的型线方向由内侧朝向外侧延伸,在其型线的延伸方向上,涡卷叶片40包括彼此连接的压缩部段402和延伸部段404。与根据本公开的第三实施方式不同的是,延伸部段404中构造为材料去除部的三个孔口406沿着轴向方向布置。在这种情况下,除了布置有孔口40的较小区域,延伸部段404的大部分区域具有与压缩部段402相同的径向内侧表面,因此进一步增大了在延伸部段中动涡旋的涡卷叶片与定涡旋的涡卷叶片之间的接触面积,从而提供了动涡旋的涡卷叶片的更加充分的径向支撑。
又例如,图10示出了根据本公开的第五实施方式的定涡旋500,与根据本公开的第三实施方式类似,定涡旋500包括端板52、形成在端板52一侧的螺旋状的涡卷叶片50以及围绕涡卷叶片50设置的外周壁54。涡卷叶片50从端板52的大致中心位置沿螺旋形的型线方向由内侧朝向外侧延伸,在其型线的延伸方向上,涡卷叶片50包括彼此连接的压缩部段502和延伸部段504。与根据本公开的第三实施方式不同的是,延伸部段504中构造为材料去除部的孔口形成为长形槽506。该长形槽506在延伸部段504的厚度方向上延伸穿过整个延伸部段504。该长形槽506可以设置成在轴向方向上位于延伸部段504的中间区域,并从压缩部段502与延伸部段504的连接处(即型线方向台阶部53处)开始沿着型线方向向外侧延伸。相应地,外周壁54上的与长形槽506对准的通孔也可以构造为槽状。在这种情况下,长形槽506以及与其对准的外周壁54 上的通孔所构造的用于连通定涡旋的延伸部段504与动涡旋的涡卷叶片90之间形成的腔室与压缩机构的外部低压环境的连通通道的流通横截面更大,从而特别有利于避免该腔室对工作流体进行额外的压缩。
另外,尽管在图10中示出的长形槽506沿着型线方向延伸的长度未达到延伸部段504的总延伸长度,即在型线方向上,长形槽506的外侧末端未达到延伸部段504的外侧末端,但本领域技术人员可以理解,长形槽也可以延伸直至延伸部段的外侧末端甚至超过延伸部段的外侧末端。
在图11a中示出的根据本公开的第六实施方式的定涡旋600,与根据本公开的第五实施方式类似,定涡旋600包括端板62、形成在端板62一侧的螺旋状的涡卷叶片60以及围绕涡卷叶片60设置的外周壁64。涡卷叶片60从端板62的大致中心位置沿螺旋形的型线方向由内侧朝向外侧延伸,在其型线的延伸方向上,涡卷叶片60包括彼此连接的压缩部段602和延伸部段604。与根据本公开的第五实施方式不同的是,延伸部段604包括构造为材料去除部的长形槽606,该长形槽606在延伸部段604的厚度方向上延伸穿过整个延伸部段604。该长形槽606可以设置成在轴向方向上位于延伸部段604的中间区域,并从压缩部段602与延伸部段604的连接处(即型线方向台阶部63处)开始沿着型线方向延伸直至延伸部段604的外侧末端。也就是说,延伸部段604的外侧末端构造为非封闭的开口形式,以形成长形槽602的外侧末端。相应地,外周壁64可以与根据本公开的第五实施方式类似地形成有与长形槽602对准且形状基本相同的槽状通孔,从而将定涡旋的延伸部段604与动涡旋的涡卷叶片90之间形成的腔室与压缩机构的外部低压环境直接连通,以避免该腔室对工作流体进行额外的压缩。
替代性地,如图11a和图11b所示,与根据本公开的第五实施方式不同地,外周壁64还可以形成有连通凹槽646,该连通凹槽646从长形槽602的外侧末端开始沿着型线方向向外侧延伸。长形槽602在其外侧末端处与连通凹槽646连通。连通凹槽646可以形成为沿着外周壁64的厚度方向贯穿外周壁64的通孔,从而使得长形槽602通过连通凹槽646与压缩机构的外部环境连通,如图11b所示。替代性地,连通凹槽646也可以形成为从外周壁64的径向内侧表面凹入而未在厚度方向上穿透外周壁64的半槽形式,从而使得长形槽602通过连通凹槽646与吸气窗连通并经由吸气窗与压缩机构的外部环境连通。
在根据本公开的第五实施方式中,定涡旋600由于其延伸部段的设计,一方面通过延伸部段增加定涡旋的涡卷叶片与动涡旋的涡卷叶片之间的接触,从而对动涡旋的涡卷叶片提供更多的径向支撑、有效降低涡旋部件的失效风险,另一方面通过长形槽606与压缩机构的外部低压环境时刻保持连通,不仅能够避免延伸部段对压缩机构原本的排量和压比的影响,而且不会产生额外的功耗,加工简单、易于制造。
附图仅示出了在本公开的构思下的六种示例性实施方式。本领域技术人员可以理解的是,本公开并不局限于以上描述的示例性实施方式,还包括以上描述的各种示例的变形或组合。例如,材料去除部可以构造孔和槽结合的形式,其形状也可以根据需要进行设计。另外,虽然本公开的示例性实施方式中,涡旋部件实施为定涡旋,但是本领域技术人员可以理解,涡旋部件也可以实施为动涡旋,特别是针对材料去除部构造为延伸部段在轴向方向上的上侧部段或下侧部分被去除材料的情况以及材料去除部构造为延伸直至延伸部段的外侧末端的长形槽的情况。
尽管在此已详细描述本公开的各种实施方式,但是应该理解本公开并不局限于这里详细描述和示出的具体实施方式,在不偏离本公开的实质和范围的情况下可由本领域的技术人员实现其它的变型和变体。所有这些变型和变体都落入本公开的范围内。而且,所有在此描述的构件都可以由其他技术性上等同的构件来代替。

Claims (13)

  1. 一种压缩机构的涡旋部件,包括:
    端板(12、22、32、42、52、62);
    涡卷叶片(10、20、30、40、50、60),所述涡卷叶片形成在所述端板的一侧,所述涡卷叶片从所述端板的大致中心位置沿螺旋形的型线方向由内侧向外侧延伸,
    其特征在于,所述涡卷叶片包括彼此连接的压缩部段(102、202、302、402、502、602)和延伸部段(104、204、304、404、504),所述压缩部段在所述型线方向上位于所述延伸部段的内侧,所述压缩部段适于构造用于压缩操作的腔室,
    所述延伸部段的径向厚度小于所述压缩部段的径向厚度,所述延伸部段形成有材料去除部,所述延伸部段所构造的腔室能够通过所述材料去除部与所述压缩机构外部的低压环境相连通。
  2. 根据权利要求1所述的压缩机构的涡旋部件,其中,所述涡旋部件为定涡旋(100、200、300、400、500、600),所述定涡旋还包括围绕所述涡卷叶片设置的外周壁(14、24、34、44、54、64),所述延伸部段设置成紧靠于所述外周壁的径向内侧表面。
  3. 根据权利要求2所述的压缩机构的涡旋部件,其中,所述延伸部段设置在所述外周壁的刚度最大的区域中。
  4. 根据权利要求2所述的压缩机构的涡旋部件,其中,所述外周壁上形成有用于允许工作流体进入所述压缩机构的吸气窗,所述延伸部段沿所述型线方向延伸至所述吸气窗,使得在所述压缩机构运行时所述涡卷叶片的沿所述型线方向的最内侧的接触点尚未脱离接触状态的情况下,所述涡卷叶片的沿所述型线方向的最外侧的接触点已经处于接触状态。
  5. 根据权利要求1至4中的任一项所述的压缩机构的涡旋部件,其中, 所述材料去除部(107、207)构造为所述延伸部段(104、204)的在轴向方向上的上侧部分或下侧部分被去除材料的形式,使得所述涡卷叶片具有在所述轴向方向上的台阶形状。
  6. 根据权利要求1至4中的任一项所述的压缩机构的涡旋部件,其中,所述延伸部段(104、204)沿所述型线方向延伸的角度大于等于20°且小于120°。
  7. 根据权利要求2或3中所述的压缩机构的涡旋部件,其中,所述材料去除部构造为一个或更多个孔口(306、406、506),所述孔口在所述延伸部段(304、504、604)的厚度方向上贯穿所述延伸部段,所述孔口与形成在所述外周壁(34、44、54)上的与所述压缩机构外部的低压环境直接连通的通孔对准并连通。
  8. 根据权利要求7所述的压缩机构的涡旋部件,其中,所述孔口沿所述型线方向布置或者沿轴向方向布置,
    所述孔口为多个圆孔或者所述孔口为单个长形槽。
  9. 根据权利要求2至4中的任一项所述的压缩机构的涡旋部件,其中,所述材料去除部构造为长形槽(606),所述长形槽在所述延伸部段(604)的厚度方向上贯穿所述延伸部段,所述长形槽(606)沿所述型线方向延伸直至所述延伸部段(604)的外侧末端。
  10. 根据权利要求9所述的压缩机构的涡旋部件,其中,所述长形槽(606)与形成在所述外周壁(64)上的连通凹槽(646)连通,所述连通凹槽(646)从所述长形槽(606)的外侧末端向外侧延伸,所述外周壁上形成有用于允许工作流体进入所述压缩机构的吸气窗,所述连通凹槽(646)构造为与所述压缩机构外部的低压环境直接连通的通孔或者构造为与所述吸气窗连通的从所述外周壁的径向内侧表面凹入的半槽。
  11. 一种压缩机构,所述压缩机构包括彼此啮合的定涡旋和动涡旋,以在所述定涡旋和所述动涡旋之间形成一系列压缩腔,其特征在于,所述定涡旋或所述动涡旋构造为如权利要求1至10中任一项所述的涡旋部件。
  12. 根据权利要求11所述的压缩机构,其中,所述定涡旋和所述动涡旋中的一者的涡卷叶片的延伸部段能够与所述定涡旋和所述动涡旋中的另一者形成接触,但所述延伸部段不用于形成所述压缩腔。
  13. 一种涡旋压缩机,其特征在于,所述涡旋压缩机包括根据权利要求11或12所述的压缩机构。
PCT/CN2023/089235 2022-04-20 2023-04-19 压缩机构的涡旋部件、压缩机构及涡旋压缩机 WO2023202621A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210416181.0A CN116950894A (zh) 2022-04-20 2022-04-20 涡旋部件、压缩机构及涡旋压缩机
CN202210416181.0 2022-04-20
CN202220922030.8 2022-04-20
CN202220922030.8U CN217926287U (zh) 2022-04-20 2022-04-20 压缩机构的涡旋部件、压缩机构及涡旋压缩机

Publications (1)

Publication Number Publication Date
WO2023202621A1 true WO2023202621A1 (zh) 2023-10-26

Family

ID=88419246

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/089235 WO2023202621A1 (zh) 2022-04-20 2023-04-19 压缩机构的涡旋部件、压缩机构及涡旋压缩机

Country Status (1)

Country Link
WO (1) WO2023202621A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000170671A (ja) * 1998-09-29 2000-06-20 Tokico Ltd スクロ―ル式流体機械
JP2010048226A (ja) * 2008-08-25 2010-03-04 Sanden Corp スクロール型流体機械
CN103032323A (zh) * 2011-10-05 2013-04-10 Lg电子株式会社 具有十字滑环的涡旋式压缩机
CN210599396U (zh) * 2018-05-10 2020-05-22 Lg电子株式会社 涡旋式压缩机
US20210010473A1 (en) * 2019-07-11 2021-01-14 Lg Electronics Inc. Compressor
CN217926287U (zh) * 2022-04-20 2022-11-29 艾默生环境优化技术(苏州)有限公司 压缩机构的涡旋部件、压缩机构及涡旋压缩机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000170671A (ja) * 1998-09-29 2000-06-20 Tokico Ltd スクロ―ル式流体機械
JP2010048226A (ja) * 2008-08-25 2010-03-04 Sanden Corp スクロール型流体機械
CN103032323A (zh) * 2011-10-05 2013-04-10 Lg电子株式会社 具有十字滑环的涡旋式压缩机
CN210599396U (zh) * 2018-05-10 2020-05-22 Lg电子株式会社 涡旋式压缩机
US20210010473A1 (en) * 2019-07-11 2021-01-14 Lg Electronics Inc. Compressor
CN217926287U (zh) * 2022-04-20 2022-11-29 艾默生环境优化技术(苏州)有限公司 压缩机构的涡旋部件、压缩机构及涡旋压缩机

Similar Documents

Publication Publication Date Title
JP2003269346A (ja) スクロール型流体機械
JPH09158852A (ja) スクロール形流体機械
EP2464872B1 (en) Balanced pressure, variable displacement, dual lobe, single ring, vane pump
JP2010242513A (ja) ルーツ式流体機械
WO2018094891A1 (zh) 用于涡旋压缩机的涡旋盘、涡旋压缩机和制冷设备
JP6108967B2 (ja) 回転型圧縮機構
US9562530B2 (en) Rotor pump and rotary machinery comprising the same, the rotor pump including a pump body forming an accommodation cavity, a pump wheel rotating in the accommodation cavity and a sealing plate having an eccentric hole that is eccentric relative to a rotation axis of the pump wheel, where a shaft portion of the pump wheel is rotatably fitted in the eccentric hole
WO2023202621A1 (zh) 压缩机构的涡旋部件、压缩机构及涡旋压缩机
CN217926287U (zh) 压缩机构的涡旋部件、压缩机构及涡旋压缩机
JP3338886B2 (ja) 密閉型電動スクロール圧縮機
US20190010945A1 (en) Compressor having improved discharge structure
WO2021010099A1 (ja) スクロール圧縮機
EP3441614A1 (en) Stepped scroll compressor and design method therefor
CN112796999A (zh) 压缩机以及空调
CN110030191B (zh) 一种涡旋式压缩机涡旋型线齿头结构及其修正方法
JP2001304161A (ja) 改良真空ポンプ
US20200378399A1 (en) Variable stator vane and compressor
EP4328449A1 (en) Screw compressor
CN113544383B (zh) 涡旋压缩机
CN116950894A (zh) 涡旋部件、压缩机构及涡旋压缩机
JPS59168292A (ja) 回転圧縮機
JPS5965586A (ja) スクロ−ル式ポンプ
JP2000110749A (ja) スクロール圧縮機
JP6653732B2 (ja) 真空ポンプユニット
WO2023207934A1 (zh) 涡旋压缩机构和包括其的涡旋压缩机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23791276

Country of ref document: EP

Kind code of ref document: A1