WO2023202199A1 - 一种加帽组合物及其制备方法和体外转录反应体系 - Google Patents

一种加帽组合物及其制备方法和体外转录反应体系 Download PDF

Info

Publication number
WO2023202199A1
WO2023202199A1 PCT/CN2023/076711 CN2023076711W WO2023202199A1 WO 2023202199 A1 WO2023202199 A1 WO 2023202199A1 CN 2023076711 W CN2023076711 W CN 2023076711W WO 2023202199 A1 WO2023202199 A1 WO 2023202199A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
capping
unsubstituted
salt
composition
Prior art date
Application number
PCT/CN2023/076711
Other languages
English (en)
French (fr)
Inventor
黄磊
童坤
肖潇
Original Assignee
江苏申基生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏申基生物科技有限公司 filed Critical 江苏申基生物科技有限公司
Publication of WO2023202199A1 publication Critical patent/WO2023202199A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/26Preparation of nitrogen-containing carbohydrates
    • C12P19/28N-glycosides
    • C12P19/30Nucleotides
    • C12P19/34Polynucleotides, e.g. nucleic acids, oligoribonucleotides

Definitions

  • the invention relates to the fields of chemical and biological engineering, and in particular to a capping composition, its preparation method and an in vitro transcription reaction system.
  • Synthesis of mRNA through in vitro transcription has become an important tool for introducing exogenous genetic diseases to express proteins, and is widely used in the treatment and prevention of diseases.
  • the process of in vitro transcription and synthesis of mRNA the process of chemical capping of mRNA is an extremely critical step.
  • the system applied to mRNA capping is relatively complex.
  • the recognition efficiency of capping enzymes is poor, resulting in low capping efficiency; there are also some mRNA sequences that have more secondary structures, which will lead to greater steric hindrance during capping, and ultimately This will result in lower capping efficiency.
  • One of the purposes of the present invention is to provide a capping composition.
  • the application of TRIS in the capping composition can significantly improve the capping efficiency of mRNA.
  • the second object of the present invention is to provide a method for preparing a capping composition, which realizes the preparation of the capping composition, is easy to operate, and has stable performance of the prepared composition.
  • the third object of the present invention is to provide an in vitro transcription reaction system containing the above-mentioned capping composition.
  • the mRNA synthesized through the transcription reaction has high capping efficiency and high yield; and compared with the control group of other types of capping compositions, Generally speaking, the expression of cellular proteins has been significantly improved.
  • this application provides a capping composition, adopting the following technical solution:
  • a capping composition which is mainly composed of a salt solution compounded with a capping analogue and TRIS at a molar ratio of 1:(3 ⁇ 7).
  • the inventor of the present application applied TRIS in a biological enzyme catalytic system. Specifically, the capped analogue and TRIS were compounded at a molar ratio of 1: (3 ⁇ 7) to form a salt solution to obtain a capped composition. , because TRIS has relatively good biocompatibility, when transcribing some special mRNA sequences, TRIS has better biocompatibility with mRNA, which is beneficial to improving the yield of mRNA transcription and significantly improving the capping of mRNA. efficiency.
  • the structural formula of the capped analog is:
  • the structural formula of the TRIS is:
  • B1 and B2 are natural or modified bases respectively;
  • R 1 is H, OH, alkyl, O-alkyl or halogen
  • R 2 is H, OH, alkyl, O-alkyl or halogen
  • R 3 is hydrogen, hydroxyl, or substituted or unsubstituted O-alkyl, substituted or unsubstituted S-alkyl, substituted or unsubstituted NH-alkyl, substituted or unsubstituted N-dialkyl, substituted Or unsubstituted O-aryl, substituted or unsubstituted S-aryl, substituted or unsubstituted NH-aryl, substituted or unsubstituted O-aralkyl, substituted or unsubstituted S-aralkyl , substituted or unsubstituted NH-aralkyl;
  • R 4 is H, OH, substituted or unsubstituted O-alkyl, substituted or unsubstituted S-alkyl, substituted or unsubstituted NH-alkyl, substituted or unsubstituted N-dialkyl, substituted or unsubstituted Substituted O-aryl, substituted or unsubstituted S-aryl, substituted or unsubstituted NH-aryl, substituted or unsubstituted O-aralkyl, substituted or unsubstituted S-aralkyl, substituted or unsubstituted NH-aralkyl;
  • X 1 , X 2 and X 3 are O, CH 2 or NH respectively;
  • Y 1 , Y 2 and Y 3 are O, S, Se or BH 3 respectively.
  • the capping efficiency of the capping composition reaches more than 98%.
  • the capping efficiency of the capping composition obtained by using the formula and preparation method of the present application can reach more than 98%; through experiments, it was found that the compounding of TRIS and capping analogues to form a salt solution has a higher For sodium salt capping compositions or ammonium salt capping compositions, the capping efficiency is significantly improved, beyond the inventor's expectation.
  • the yield is increased by more than 45%.
  • the yield is increased by more than 45%, and the yield is increased.
  • the yield of synthetic mRNA reaches 72 ⁇ g using tris compounded salt solution, while the yield of synthetic mRNA is less than 50 ⁇ g using sodium salt capping composition or ammonium salt capping composition.
  • the intracellular mRNA protein translation efficiency is increased by more than 1.25 times.
  • the intracellular mRNA protein translation efficiency is increased by more than 1.25 times compared with the sodium salt capping composition or the ammonium salt capping composition, and the intracellular protein expression is better. Transcription and translation effects are even better.
  • this application provides a method for preparing a capping composition, adopting the following technical solution:
  • a method for preparing a capping composition including the following steps:
  • the TRIS solution is added dropwise to the cap analogue in free acid form, stirred evenly, and then concentrated to obtain a capped composition.
  • the concentration of the TRIS salt solution is 0.3 ⁇ 0.7 mol/L.
  • the concentration of the TRIS salt solution when the concentration of the TRIS salt solution is greater than 0.7 mol/L, a large amount of salt will remain in the final product capping composition, which will inhibit the activity of biological enzymes, reduce the in vitro transcription yield and the capping efficiency of mRNA ;
  • the concentration of the TRIS salt solution is less than 0.3 mol/L, the capping composition cannot be formed due to the low concentration of the TRIS salt solution.
  • the TRIS salt solution is added dropwise to the capped analogue in free acid form, the TRIS salt solution is added dropwise until the pH of the TRIS salt solution reaches 3 to 7.
  • this application provides an in vitro transcription reaction system, adopting the following technical solution:
  • An in vitro transcription reaction system which contains RNA polymerase, nucleoside triphosphates and the above-mentioned capping composition.
  • RNA polymerase, nucleoside triphosphate and capping composition constitute the in vitro transcription reaction system of the present application. After transcription by this in vitro transcription system, the yield of mRNA and the capping efficiency are significantly improved.
  • the nucleoside triphosphate may be a natural base nucleoside triphosphate, a modified nucleoside triphosphate or a non-natural nucleoside triphosphate.
  • the RNA polymerase is an RNA polymerase derived from bacteriophage.
  • the RNA polymerase is selected from T7, SP6 or T3.
  • RNA polymerase is selected from T7.
  • the capping analogue and TRIS are compounded into a salt solution to obtain a capping composition.
  • the biocompatibility of TRIS and mRNA is more excellent, which is beneficial to improving the efficiency of mRNA.
  • the yield during transcription and the capping efficiency of mRNA are significantly improved;
  • This application limits the concentration range of the added TRIS solution. If the concentration is exceeded by a large amount, a large amount of salt will remain in the final product capping composition, which will inhibit the activity of biological enzymes and reduce the capping efficiency; if the concentration is exceeded When the range is small, the capped composition cannot be formed due to the low concentration of the TRIS salt solution;
  • the inventor found through experiments that when TRIS is combined with a capping analogue, compared with a sodium salt capping composition or an ammonium salt capping composition, the capping efficiency is significantly improved during in vitro transcription and synthesis of mRNA, and the mRNA The output increased by more than 45%;
  • TRIS and capping analogues can increase intracellular protein expression by more than 1.25 times compared to sodium salt capping compositions or ammonium salt capping compositions.
  • Figure 1 is a schematic diagram showing the reaction structure formula containing 2 to 3 tris in Example 1.
  • Figure 2 is a schematic diagram showing the reaction structure formula containing 4 to 5 tris in Example 2.
  • Figure 3 is a schematic diagram showing the reaction structure formula containing 6 to 7 tris in Example 3.
  • Figure 4 is a schematic diagram showing the reaction structure formula of Comparative Example 1 containing 2 to 3 sodium ions.
  • Figure 5 is a schematic diagram showing the reaction structure formula of Comparative Example 2 containing 4 to 5 sodium ions.
  • Figure 6 is a schematic diagram showing the reaction structure formula of Comparative Example 3 containing 6 to 7 sodium ions.
  • Figure 7 is a schematic diagram showing the reaction structure formula of Comparative Example 4 containing 4 to 5 ammonium cations.
  • Figure 8 is a schematic diagram used to illustrate the intracellular mRNA protein translation effects of Example 1, Comparative Example 1 and Comparative Example 4.
  • a capping composition combined with Figure 1, is prepared by the following method:
  • a capping composition combined with Figure 2, is prepared by the following method:
  • a capping composition combined with Figure 3, is prepared by the following method:
  • a sodium salt capped composition is prepared using the following method in conjunction with Figure 4:
  • a sodium salt capped composition is prepared using the following method in conjunction with Figure 5:
  • a sodium salt capped composition is prepared using the following method in conjunction with Figure 6:
  • ammonium salt capping composition is prepared by the following method in conjunction with Figure 7:
  • Common templates are linearized plasmids, PCR amplification products or synthetic DNA fragments.
  • enzyme digestion or recombination methods are usually used to insert the target fragment into the multiple cloning site of the plasmid.
  • the plasmid generally has the initiation site of the corresponding RNA polymerase, such as T7, SP6 or T3, and then in Amplification is carried out in "biofactories" such as Escherichia coli, and the extracted and purified modified plasmid is cut and purified with restriction endonucleases and can be used as a DNA template for in vitro transcription of mRNA.
  • DNA polymerase For the preparation of PCR amplification products, DNA polymerase, specific primers and related buffers are usually used as a system to target DNA fragments.
  • the amplification products usually contain the initiation site of the corresponding RNA polymerase, such as T7, SP6 or T3, etc.
  • T7 RNA polymerase is used, and the amplified product can be used as a DNA template for in vitro transcription of mRNA after purification.
  • the capping compositions are: sodium salt capping composition, ammonium salt capping composition, and tris salt.
  • RNA purification first add sterile enzyme-free water to the system, then add 10X buffer, ATP, GTP, CTP, N1-Me-pUTP, and capping composition in sequence, mix and centrifuge gently, and then add nuclease Inhibitors, inorganic pyrophosphatase, T7 RNA polymerase, and DNA template were mixed thoroughly, centrifuged, and incubated at 37°C. After 2 hours, DNase I 1U was added, and incubation continued at 37°C for 30 minutes to remove the DNA template, followed by RNA purification.
  • the purified mRNA was dissolved in sterile, enzyme-free water, and then quantitatively detected using a UV spectrophotometer NanodropOne. The results are shown in Table 2.
  • LC-MS Liquid chromatography mass spectrometry
  • the eGFP coding sequence is used as the DNA template, and the capping compositions of Comparative Example 1, Comparative Example 4 and Example 1 are selected as the starting point for in vitro transcription.
  • the specific capping is: m 7 GpppA 2'O sodium of me pG Salt, ammonium salt, tris salt.
  • the different mRNA products obtained are then transfected into 293T cells. Specifically, 293T cells are plated at 0.5-1 ⁇ 10 5 cells (24-well plate). It is recommended to use cells within 50 generations for transfection experiments. The cells are required to be passaged again 24 hours before transfection. Adding antibiotics to the culture medium has no effect on the transfection effect. During transfection, the cell density is generally 60-80%.
  • Each well is transfected with 2 ⁇ g of mRNA.
  • the transfected cells were placed in a 37°C, CO 2 incubator and replaced with fresh complete culture medium 4-6 hours after transfection. After incubation for 24 hours in a CO 2 incubator at 37°C, the fluorescence intensity of GFP was observed under a fluorescence microscope.
  • Example 1 Comparative Example 1, Comparative Example 4 and Figure 8
  • the mRNA protein translation effect obtained by using the capping composition of the present application for in vitro transcription is better than that of the sodium salt capping composition. More than 1.5 times, which is more than 1.25 times that of the ammonium salt capping composition. It can be seen that when using the TRIS compound capping composition for in vitro transcription, the mRNA expression and translation effects in the cell are better.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Saccharide Compounds (AREA)

Abstract

提供了一种加帽组合物及其制备方法和体外转录反应体系。所述组合物主要由加帽类似物与TRIS按照摩尔比为1:(3-7)复配的盐溶液构成,因为TRIS有比较好的生物相容性,针对一些特殊的mRNA序列进行转录时,TRIS与mRNA的生物相容性更加优异,有利于提高mRNA体外转录的效率并且可以明显提高了mRNA的加帽效率。

Description

一种加帽组合物及其制备方法和体外转录反应体系 技术领域
本发明涉及化学及生物工程领域,尤其是涉及一种加帽组合物及其制备方法和体外转录反应体系。
背景技术
通过体外转录合成mRNA已经成为引入外源基因病进行表达蛋白的重要工具,并广泛应用于疾病的治疗和预防中。在体外转录合成mRNA的过程中,mRNA化学法加帽的工艺是极其关键的步骤。
但应用于mRNA加帽的体系比较复杂。比如针对一些特殊的mRNA序列,加帽酶的识别效率较差,导致加帽效率较低;也有一些mRNA序列有比较多的二级结构,会导致加帽时有比较大的位阻,最终也会导致加帽效率较低。
因此,本领域迫切需要开发一类新的加帽类似物组合,从而使体外转录合成的mRNA能够获得更高的加帽效率。
发明内容
本发明的目的之一是提供一种加帽组合物,将TRIS应用在加帽组合物中,能够明显提高mRNA的加帽效率。
本发明的目的之二是提供一种加帽组合物的制备方法,实现了加帽组合物的制备,操作简便,所制备的组合物性能稳定。
本发明的目的之三是提供一种含有上述加帽组合物的体外转录反应体系,经转录反应合成的mRNA的加帽效率高、产量高;且相比于其他类型加帽组合物的对照组来说,在细胞蛋白表达方面提升明显。
第一方面,本申请提供一种加帽组合物,采用如下的技术方案:
一种加帽组合物,所述组合物主要由加帽类似物与TRIS按照摩尔比为1:(3~7)复配的盐溶液构成。
本申请发明人是将TRIS应用在生物酶催化体系中,具体的,是将加帽类似物与TRIS按照摩尔比为1:(3~7)的比例复配形成盐溶液,得到加帽组合物,因为TRIS有比较好的生物相容性,针对一些特殊的mRNA序列进行转录时,TRIS与mRNA的生物相容性更加优异,有利于提高mRNA转录时的产率以及明显提高了mRNA的加帽效率。
优选的,所述加帽类似物的结构式为:
 ;
所述TRIS的结构式为:
其中,B1和B2分别为天然的或修饰的碱基;
R 1为H、OH、烷基、O-烷基或卤素;
R 2为H、OH、烷基、O-烷基或卤素;
R 3为氢、羟基、或为取代或未取代的O-烷基、取代或未取代的S-烷基、取代或未取代的NH-烷基、取代或未取代的N-二烃基、取代或未取代的O-芳香基、取代或未取代的S-芳香基、取代或未取代的NH-芳香基、取代或未取代的O-芳烷基、取代或未取代的S-芳烷基、取代或未取代的NH-芳烷基;
R 4为H、OH、取代或未取代的O-烷基、取代或未取代的S-烷基、取代或未取代的NH-烷基、取代或未取代的N-二烃基、取代或未取代的O-芳香基、取代或未取代的S-芳香基、取代或未取代的NH-芳香基、取代或未取代的O-芳烷基、取代或未取代的S-芳烷基、取代或未取代的NH-芳烷基;
X 1、X 2和X 3分别为O、CH 2或NH;
Y 1、Y 2和Y 3分别为O、S、Se或BH 3
优选的,所述加帽组合物的加帽效率达到98%以上。
通过采用上述技术方案,采用本申请的配方以及制备方法得到的加帽组合物,加帽效率可达98%以上;通过实验发现,采用TRIS与加帽类似物复配形成盐溶液,相比于钠盐加帽组合物或者铵盐加帽组合物来说,加帽效率明显提高,超出发明人的预料范围。
优选的,所述加帽组合物在体外转录mRNA时,和钠盐加帽组合物、铵盐加帽组合物相比,产量提升45%以上。
通过采用上述技术方案,采用加帽类似物与tris复配的盐溶液进行体外转录合成mRNA时,和钠盐加帽组合物、铵盐加帽组合物相比,产量提升45%以上,产量提高显著。在本申请的一些实施方式中,采用tris复配的盐溶液,合成mRNA的产量达到72μg,而采用钠盐加帽组合物或者铵盐加帽组合物,合成mRNA的产量不到50μg。
优选的,所述加帽组合物经体外转录后,和钠盐加帽组合物、铵盐加帽组合物相比,细胞内mRNA蛋白翻译效率提升1.25倍以上。
采用本申请的加帽组合物,经体外转录后,细胞内mRNA蛋白翻译效率,和钠盐加帽组合物或者铵盐加帽组合物相比,提升1.25倍以上,细胞内蛋白表达更佳,转录翻译效果更加优异。
第二方面,本申请提供一种加帽组合物的制备方法,采用如下的技术方案:
一种加帽组合物的制备方法,包括如下步骤:
将m7GDP咪唑盐溶解在含有MnCl 2的DMF溶液中,并添加到5'-磷酸化二核苷酸的DMF溶液中,在室温下搅拌反应,再经浓缩得到帽类似物的三乙胺盐形式;
将三乙胺盐形式的帽类似物通过阳离子交换树脂转换成自由酸形式的帽类似物;
向自由酸形式的帽类似物中滴加TRIS溶液,搅拌均匀,再经浓缩,得到加帽组合物。
利用m7GDP咪唑盐与5'-磷酸化二核苷酸制备帽类似物的三乙胺盐形式,再将三乙胺盐形式的帽类似物通过阳离子交换树脂转换为自由酸形式的加帽类似物,再向自由酸形式的加帽类似物中滴加TRIS溶液复配,搅拌均匀,TRIS溶液中的氨基与核苷酸中带负电荷的磷酸根进行正负电荷的配对,再经浓缩工艺,制成本申请的加帽组合物,工艺简单,在原有加帽类似物的制备工艺中添加与TRIS溶液的配对工艺,制得的终产品加帽效率高,细胞内的蛋白表达以及转录翻译效果优异。
优选的,所述TRIS盐的溶液的浓度为0.3~0.7mol/L。
通过采用上述技术方案,当TRIS盐溶液的浓度大于0.7mol/L时,会在终产品加帽组合物中残留大量的盐,会抑制生物酶的活性,降低体外转录产量以及mRNA的加帽效率;当TRIS盐溶液的浓度小于0.3mol/L时,则因TRIS盐溶液的浓度较低,导致加帽组合物无法成型。
优选的,向自由酸形式的加帽类似物中滴加TRIS盐溶液时,滴加至TRIS盐溶液达到pH为3~7。
通过采用上述技术方案,在滴加TRIS溶液时,当含有加帽组合物的溶液pH在3~7之间时,即可停止滴定,此时均可制得性能稳定的加帽组合物;如果pH>7或者pH<3时,磷酸苷上的结构点位易分解,容易造成加帽组合物性能不够稳定,不利于mRNA转录时加帽酶的活性。
第三方面,本申请提供一种体外转录反应体系,采用如下的技术方案:
一种体外转录反应体系,所述体外转录反应体系中含有RNA聚合酶、核苷三磷酸和上述的加帽组合物。
通过采用上述技术方案,RNA聚合酶、核苷三磷酸与加帽组合物构成了本申请的体外转录反应体系,经该体外转录体系转录后,mRNA的产量以及加帽效率均显著提高。
优选的,所述核苷三磷酸可以是天然碱基的核苷三磷酸、也可以是修饰性的核苷三磷酸或非天然的核苷三磷酸。
优选的,所述RNA聚合酶为来源于噬菌体的RNA聚合酶。
进一步优选的,所述RNA聚合酶选自T7、SP6或T3。
更进一步优选的,所述RNA聚合酶选自T7。
综上所述,本申请至少具有以下技术效果:
1、本申请是将加帽类似物与TRIS复配制成盐溶液,即得到加帽组合物,针对一些特殊的mRNA序列进行转录时,TRIS与mRNA的生物相容性更加优异,有利于提高mRNA转录时的产量以及显著提高了mRNA的加帽效率;
2、本申请限定了添加的TRIS溶液的浓度范围,如果超出浓度较大时,会在终产品加帽组合物中残留大量的盐,会抑制生物酶的活性,降低加帽效率;如果超出浓度范围较小时,则因TRIS盐溶液的浓度较低,导致加帽组合物无法成型;
3、发明人通过实验发现,采用TRIS与加帽类似物复配,相比于钠盐加帽组合物或者铵盐加帽组合物,在体外转录合成mRNA时,加帽效率明显提高,且mRNA的产量提升45%以上;
4、发明人通过实验发现,采用TRIS与加帽类似物复配,相比于钠盐加帽组合物或者铵盐加帽组合物,细胞内蛋白表达提高1.25倍以上。
附图说明
图1是用于体现实施例1含2~3个tris的反应结构式示意图。
图2是用于体现实施例2含4~5个tris的反应结构式示意图。
图3是用于体现实施例3含6~7个tris的反应结构式示意图。
图4是用于体现对比例1含2~3个钠离子的反应结构式示意图。
图5是用于体现对比例2含4~5个钠离子的反应结构式示意图。
图6是用于体现对比例3含6~7个钠离子的反应结构式示意图。
图7是用于体现对比例4含4~5个铵根阳离子的反应结构式示意图。
图8是用于体现实施例1、对比例1和对比例4的细胞内mRNA蛋白翻译效果示意图。
实施方式
以下结合图1~7和实施例对本申请作进一步详细说明。本申请实施例、对比例涉及的所有原料成分均为市售购买可得。
实施例1:
一种加帽组合物,结合图1,采用如下方法制备:
I:将化合物m7GDP咪唑盐(2mmol)溶解在含有MnCl 2(2mmol)的DMF溶液中,并添加到5’-磷酸化二核苷酸(1mmol;三乙铵盐)的DMF溶液中。在室温下搅拌反应。24小时后,用10mL的0.25M EDTA溶液终止反应。将混合物装载到DEAESephadex柱(3×50cm)上。将产物使用0-1.0M的TEAB洗脱液线性梯度洗脱。收集HPLC纯度>97%的洗脱产物,经浓缩得到120mM浓度的帽类似物的三乙胺盐形式(c);
II:将帽类似物的三乙胺盐形式通过阳离子交换树脂转换成同浓度的自由酸形式的产物;
III:向产物溶液中滴加0.2 M TRIS base至PH=3~3.6,再经浓缩、定容获得终产物,此时形态为2~3个tris抗衡离子体系。
实施例2:
一种加帽组合物,结合图2,采用如下方法制备:
I:将化合物m7GDP咪唑盐(2mmol)溶解在含有MnCl 2(2mmol)的DMF溶液中,并添加到5’-磷酸化二核苷酸(1mmol;三乙铵盐)的DMF溶液中。在室温下搅拌反应。24小时后,用10mL的0.25M EDTA溶液终止反应。将混合物装载到DEAESephadex柱(3×50cm)上。将产物使用0-1.0M的TEAB洗脱液线性梯度洗脱。收集HPLC纯度>97%的洗脱产物,经浓缩得到120mM 浓度的帽类似物的三乙胺盐形式;
II:将帽类似物的三乙胺盐形式通过阳离子交换树脂转换成同浓度自由酸形式的产物;
III:向产物溶液中滴加0.2M TRIS base至PH=5~5.8,再经浓缩、定容获得终产物此时形态为4~5个tris抗衡离子体系。
实施例3:
一种加帽组合物,结合图3,采用如下方法制备:
I:将化合物m7GDP咪唑盐(2mmol)溶解在含有MnCl 2(2mmol)的DMF溶液中,并添加到5’-磷酸化二核苷酸(1mmol;三乙铵盐)的DMF溶液中。在室温下搅拌反应。24小时后,用10mL的0.25M EDTA溶液终止反应。将混合物装载到DEAESephadex柱(3×50cm)上。将产物使用0-1.0M的TEAB洗脱液线性梯度洗脱。收集HPLC纯度>97%的洗脱产物,经浓缩得到120mM 浓度的帽类似物的三乙胺盐形式;
II:将帽类似物的三乙胺盐形式(c)通过阳离子交换树脂转换成同浓度自由酸形式的产物;
III:向产物溶液中滴加0.2M TRIS base至PH=6~7.2,再经浓缩、定容获得终产物,此时形态为6~7个tris抗衡离子体系。
对比例1:
一种钠盐加帽组合物,结合图4,采用如下方法制备:
I:将化合物m7GDP咪唑盐(2mmol)溶解在含有MnCl 2(2mmol)的DMF溶液中,并添加到5’-磷酸化二核苷酸(1mmol;三乙铵盐)的DMF溶液中。在室温下搅拌反应;36小时后,用10mL的0.25M EDTA溶液终止反应;将混合物装载到DEAESephadex柱(3×50cm)上;将产物使用0-1.0M TEAB洗脱液线性梯度洗脱。收集HPLC纯度>97%的洗脱产物,经浓缩、脱盐得到帽类似物的三乙胺盐形式;
II:将帽类似物的三乙胺盐形式通过阳离子交换树脂转换成同浓度的自由酸形式的产物;
III:向产物溶液中滴加0.1 M 的NaOH溶液调节至PH=3~3.6,再经浓缩、定容获得100mM含有2~3个钠离子抗衡离子的终产物。
对比例2:
一种钠盐加帽组合物,结合图5,采用如下方法制备:
I:将化合物m7GDP咪唑盐(2mmol)溶解在含有MnCl 2(2mmol)的DMF溶液中,并添加到5’-磷酸化二核苷酸(1mmol;三乙铵盐)的DMF溶液中。在室温下搅拌反应;36小时后,用10mL的0.25M EDTA溶液终止反应;将混合物装载到DEAESephadex柱(3×50cm)上;将产物使用0-1.0M TEAB洗脱液线性梯度洗脱。收集HPLC纯度>97%的洗脱产物,经浓缩、脱盐得到帽类似物的三乙胺盐形式;
II:将帽类似物的三乙胺盐形式通过阳离子交换树脂转换成同浓度的自由酸形式的产物;
III:向产物溶液中滴加0.1M的NaOH溶液调节PH=5~5.8,再经浓缩、定容获得100mM含有4~5个钠离子抗衡离子的终产物。
对比例3:
一种钠盐加帽组合物,结合图6,采用如下方法制备:
I:将化合物m7GDP咪唑盐(2mmol)溶解在含有MnCl 2(2mmol)的DMF溶液中,并添加到5’-磷酸化二核苷酸(1mmol;三乙铵盐)的DMF溶液中。在室温下搅拌反应;36小时后,用10mL的0.25M EDTA溶液终止反应;将混合物装载到DEAESephadex柱(3×50cm)上;将产物使用0-1.0MTEAB洗脱液线性梯度洗脱。收集HPLC纯度>97%的洗脱产物,经浓缩、脱盐得到帽类似物的三乙胺盐形式;
II:将帽类似物的三乙胺盐形式通过阳离子交换树脂转换成同浓度的自由酸形式的产物;
III:向产物溶液中滴加0.1M的NaOH溶液调节PH=6~7.2,再经浓缩、定容获得100mM含有6~7个钠离子抗衡离子的终产物。
对比例4:
一种铵盐加帽组合物,结合图7,采用如下方法制备:
I:将化合物m7GDP咪唑盐(2mmol)溶解在含有MnCl 2(2mmol)的DMF溶液中,并添加到5’-磷酸化二核苷酸(1mmol;三乙铵盐)的DMF溶液中。在室温下搅拌反应;36小时后,用10mL的0.25M EDTA溶液终止反应;将混合物装载到DEAESephadex柱(3×50cm)上;将产物使用0-1.0M TEAB洗脱液线性梯度洗脱。收集HPLC纯度>97%的洗脱产物,经浓缩、脱盐得到帽类似物的三乙胺盐形式;
II:将帽类似物的三乙胺盐形式通过阳离子交换树脂转换成同浓度的自由酸形式的产物;
III:向产物溶液中滴加0.5M的氨水溶液调节PH=5.8~6.2,再经浓缩、定容获得100mM含有4~5个铵根阳离子抗衡离子的终产物。
对比例5:
一种加帽组合物,采用如下方法制备:
I:将化合物m7GDP咪唑盐(2mmol)溶解在含有MnCl 2(2mmol)的DMF溶液中,并添加到5’-磷酸化二核苷酸(1mmol;三乙铵盐)的DMF溶液中。在室温下搅拌反应。24小时后,用10mL的0.25M EDTA溶液终止反应。将混合物装载到DEAESephadex柱(3×50cm)上。将产物使用0-1.0M的TEAB洗脱液线性梯度洗脱。收集HPLC纯度>97%的洗脱产物,经浓缩得到120mM浓度的帽类似物的三乙胺盐形式;
II:将帽类似物的三乙胺盐形式通过阳离子交换树脂转换成同浓度的自由酸形式的产物;
III:向产物溶液中滴加0.2 M TRIS base至PH=2.3~2.8,再经浓缩、定容获得终产物,此时形态为1~2个tris抗衡离子体系。
对比例6:
一种加帽组合物,采用如下方法制备:
I:将化合物m7GDP咪唑盐(2mmol)溶解在含有MnCl 2(2mmol)的DMF溶液中,并添加到5’-磷酸化二核苷酸(1mmol;三乙铵盐)的DMF溶液中。在室温下搅拌反应。24小时后,用10mL的0.25M EDTA溶液终止反应。将混合物装载到DEAESephadex柱(3×50cm)上。将产物使用0-1.0M的TEAB洗脱液线性梯度洗脱。收集HPLC纯度>97%的洗脱产物,经浓缩得到120mM浓度的帽类似物的三乙胺盐形式;
II:将帽类似物的三乙胺盐形式通过阳离子交换树脂转换成同浓度的自由酸形式的产物;
III:向产物溶液中滴加0.2 M TRIS base至PH=7.5~8.2,再经浓缩、定容获得终产物,此时形态为7~8个tris抗衡离子体系。
对比钠盐加帽组合物,铵盐加帽组合物,加帽组合物三种帽类似物的IVT产率、加帽效率、细胞内目标蛋白表达等生物指标。
利用加帽组合物进行mRNA的体外合成
(1)DNA模板的制备
通常的模板为线性化质粒、PCR扩增产物或合成的DNA片段。针对线性化质粒模板的制备,通常利用酶切或重组等方法将目的片段插入进质粒的多克隆位点,该质粒一般具有相应RNA聚合酶的启动位点,如T7、SP6或T3,随后在大肠杆菌等“生物工厂”中进行扩增,对提取纯化的改造质粒利用限制性内切酶进行切割纯化后即可作为mRNA体外转录的DNA模板。针对PCR扩增产物的制备,通常以DNA聚合酶、特异性引物及相关buffer为体系对目标DNA片段进行,扩增产物通常包含相应RNA聚合酶的启动位点,如T7、SP6或T3等,在本实施例中选用T7 RNA聚合酶,扩增产物经过纯化后即可作为mRNA体外转录的DNA模板。
(2)体外转录体系
表1 mRNA体外转录体系配置
 其中加帽组合物分别为:钠盐加帽组合物,铵盐加帽组合物,tris盐。
在实验过程中,首先在体系中加入无菌无酶水,随后依次加入10X buffer、ATP、GTP、CTP、N1-Me-pUTP、加帽组合物,混匀后轻轻离心,随后加入核酸酶抑制剂、无机焦磷酸酶、T7RNA聚合酶、DNA模板,充分混匀后离心,于37℃下孵育。2小时后加入DNase I 1U,37℃继续孵育30分钟以去除DNA模板,然后进行RNA纯化。
(3)mRNA的产量
纯化的mRNA用无菌无酶水进行溶解,随后利用紫外分光光度计NanodropOne进行定量检测,结果见表2。
表2 不同起始加帽组合物体外转录mRNA的产量
结合实施例1~3、对比例1~4以及表2的检测结果可知,采用本申请的加帽组合物进行体外转录合成mRNA时,mRNA的产量显著提高,可达72~74μg,而采用钠盐加帽组合物或者铵盐加帽组合物,mRNA产量显著降低,产量降至47~49μg,通过实验结果可知,采用本申请的组合物进行体外转录,合成mRNA的产量提升46.9%~57.4%,大大超出了实验预期。
结合实施例1~3、对比例5~6以及表2的检测结果可知,当加帽组合物的pH超出3~7范围时,即帽类似物与TRIS的摩尔比超出1:(3~7)范围时,mRNA的产量大幅度下降,这是因为磷酸苷上的结构点位易分解,造成了加帽组合物性能不够稳定,不利于mRNA转录时生物酶的活性。
(4)加帽效率对比
采用液相色谱质谱法(LC-MS)用来检测不同起始帽类似物的mRNA的IVT加帽效率。首先需要设计一段与转录产物mRNA起始碱基匹配的具有标记的DNA探针,通常的标记为biotin标记,将链霉亲和素标记的磁珠清洗后与合成的DNA探针、mRNA及10×RNase H reaction buffer室温孵育30分钟,边孵育边缓慢混匀,随后加入20ul RNase H(5U/ul)孵育 37 度3h,每半个小时混匀一次。孵育结束后对磁珠进行清洗,清洗完成后的磁珠加入100 μL加热到80 ℃的75%甲醇,混合物在加热板上加热到80 ℃,保持3分钟,然后放置磁力架上吸取上清,使用蒸发离心机在室温下干燥45分钟至10μl。然后将样品重新悬浮在 50μl的 100μM EDTA/1% MeOH中,即可用于 LC-MS 分析,确定转录反应中RNA的加帽情况。由于加帽与非加帽的碱基在分子量上有明显区别,利用分子质量差别即可判定不同帽类似物起始的mRNA转录的加帽效率。同一批次的实验具体结果见表3及质谱图。
表3不同起始加帽组合物体外转录mRNA的加帽效率
结合实施例1~3、对比例1~4、表3的检测结果可知,采用本申请的加帽组合物进行体外转录合成mRNA时,mRNA的加帽效率可达99.7%,而采用钠盐加帽组合物或者铵盐加帽组合物,加帽效率明显降低,降至95%以下,通过实验结果可知,采用本申请的组合物进行体外转录,mRNA的加帽效率得到了显著的提高,远远超出发明人的预期。
结合实施例1~3、对比例5~6以及表3的检测结果可知,当加帽组合物的pH超出3~7范围时,即加帽与TRIS的摩尔比超出1:(3~7)范围时,mRNA的加帽效率大幅度下降,这是因为磷酸苷上的结构点位易分解,造成了加帽组合物性能不够稳定,不利于mRNA转录时加帽酶的活性,影响了mRNA的加帽效率提升。
(5)细胞蛋白表达
本实例采用eGFP编码序列为DNA模板,选取对比例1、对比例4和实施例1的加帽组合物为起始进行体外转录,具体的加帽为: m 7GpppA 2’O m e pG的钠盐,铵盐,tris盐。随后将获得的不同的mRNA产物进行293T细胞的转染,具体的,293T细胞以0.5-1×10 5个细胞进行铺板(24孔板),推荐使用在50代以内的细胞进行转染实验。要求在转染前 24 小时对细胞再次传代,在培养基中加入抗生素对转染效果没有影响。转染时细胞密度一般60-80%为佳,每孔转染2μg mRNA,转染试剂选用Lipofectamine Messenger MAX Transfection Reagent (Invitrogen)并参考其使用方法进行操作。转染后的细胞放置在 37℃,CO 2孵育箱中,转染4-6小时后,更换为新鲜的完全培养基。在37℃的CO 2培养箱中孵育24小时以后,荧光显微镜观察其中GFP的荧光强度。
结合实施例1、对比例1、对比例4和图8显示的细胞内mRNA蛋白翻译效果可知,采用本申请的加帽组合物进行体外转录获得的mRNA蛋白翻译效果是钠盐加帽组合物的1.5倍以上,是铵盐加帽组合物的1.25倍以上,由此可见,采用TRIS复配的加帽组合物进行体外转录时,mRNA在细胞内表达效果以及翻译效果更优异。

Claims (10)

  1. 一种加帽组合物,其特征在于:所述组合物主要由加帽类似物与TRIS按照摩尔比为1:(3~7)复配的盐溶液构成。
  2.  根据权利要求1所述的一种加帽组合物,其特征在于:所述加帽类似物的结构式为: 
    所述TRIS的结构式为:
    其中,B 1和B 2分别为天然的或修饰的碱基;
    R 1为H、OH、烷基、O-烷基或卤素;
    R 2为H、OH、烷基、O-烷基或卤素;
    R 3为氢、羟基、或为取代或未取代的O-烷基、取代或未取代的S-烷基、取代或未取代的NH-烷基、取代或未取代的N-二烃基、取代或未取代的O-芳香基、取代或未取代的S-芳香基、取代或未取代的NH-芳香基、取代或未取代的O-芳烷基、取代或未取代的S-芳烷基、取代或未取代的NH-芳烷基;
    R 4为H、OH、取代或未取代的O-烷基、取代或未取代的S-烷基、取代或未取代的NH-烷基、取代或未取代的N-二烃基、取代或未取代的O-芳香基、取代或未取代的S-芳香基、取代或未取代的NH-芳香基、取代或未取代的O-芳烷基、取代或未取代的S-芳烷基、取代或未取代的NH-芳烷基;
    X 1、X 2和X 3分别为O、CH 2或NH;
    Y 1、Y 2和Y 3分别为O、S、Se或BH 3
  3.  根据权利要求2所述的一种加帽组合物,其特征在于:所述加帽组合物的加帽效率达到98%以上。
  4.  根据权利要求2所述的一种加帽组合物,其特征在于:所述加帽组合物在体外转录mRNA时,和钠盐加帽组合物、铵盐加帽组合物相比,产量提升45%以上。
  5.  根据权利要求2所述的一种加帽组合物,其特征在于:所述加帽组合物经体外转录后,和钠盐加帽组合物、铵盐加帽组合物相比,mRNA细胞内蛋白翻译效率提高1.25倍以上。
  6.  权利要求1~5任意一项所述的一种加帽组合物的制备方法,其特征在于,包括如下步骤:
    将m7GDP咪唑盐溶解在含有MnCl 2的DMF溶液中,并添加到5'-磷酸化二核苷酸的DMF溶液中,在室温下搅拌反应,再经浓缩得到帽类似物的三乙胺盐形式;
    将三乙胺盐形式的帽类似物通过阳离子交换树脂转换成自由酸形式的帽类似物;
    向自由酸形式的帽类似物中滴加TRIS溶液,搅拌均匀,再经浓缩,得到加帽组合物。
  7.  根据权利要求6所述的一种加帽组合物的制备方法,其特征在于:所述TRIS溶液的浓度为0.3~0.7mol/L。
  8.  根据权利要求6所述的一种加帽组合物的制备方法,其特征在于:向自由酸形式的帽类似物中滴加TRIS溶液时,滴加至复配盐溶液的pH为3~7。
  9.  一种体外转录反应体系,其特征在于:所述体外转录反应体系中含有RNA聚合酶、核苷三磷酸和权利要求1~5任意一项所述的加帽组合物。
  10.  根据权利要求9所述的一种体外转录反应体系,其特征在于:所述核苷三磷酸选自天然碱基的核苷三磷酸、修饰性的核苷三磷酸或非天然的核苷三磷酸;所述RNA聚合酶选自T7、SP6或T3。
PCT/CN2023/076711 2022-04-23 2023-02-17 一种加帽组合物及其制备方法和体外转录反应体系 WO2023202199A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210430616.7A CN114540444B (zh) 2022-04-23 2022-04-23 一种加帽组合物及其制备方法和体外转录反应体系
CN202210430616.7 2022-04-23

Publications (1)

Publication Number Publication Date
WO2023202199A1 true WO2023202199A1 (zh) 2023-10-26

Family

ID=81667589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/076711 WO2023202199A1 (zh) 2022-04-23 2023-02-17 一种加帽组合物及其制备方法和体外转录反应体系

Country Status (2)

Country Link
CN (1) CN114540444B (zh)
WO (1) WO2023202199A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11001868B2 (en) * 2017-08-11 2021-05-11 Global Life Sciences Solutions Operations UK Ltd Cell-free protein expression using double-stranded concatameric DNA
CN114540444B (zh) * 2022-04-23 2022-08-09 江苏申基生物科技有限公司 一种加帽组合物及其制备方法和体外转录反应体系
CN114685588B (zh) * 2022-05-05 2024-03-29 江苏申基生物科技有限公司 一种含开环核苷结构的起始加帽寡核苷酸引物
CN116768950B (zh) * 2023-08-16 2023-11-03 江苏申基生物科技有限公司 一种起始加帽寡核苷酸引物及其应用
CN116836974B (zh) * 2023-09-01 2024-02-20 苏州近岸蛋白质科技股份有限公司 一种体外合成加帽mRNA的方法
CN116987137B (zh) * 2023-09-26 2024-01-02 江苏申基生物科技有限公司 一种加帽化合物及其在mRNA加帽中的应用
CN117567528B (zh) * 2024-01-15 2024-04-05 天津全和诚科技有限责任公司 帽类似物及其合成方法和mRNA

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113166737A (zh) * 2018-10-04 2021-07-23 新英格兰生物实验室公司 提高转录的rna的加帽效率的方法和组合物
US20210261897A1 (en) * 2018-06-28 2021-08-26 Curevac Ag Bioreactor for rna in vitro transcription
CN113308504A (zh) * 2020-08-20 2021-08-27 深圳市瑞吉生物科技有限公司 一种Cap2结构5`帽子类似物及其制备方法和应用
CN113603739A (zh) * 2021-08-27 2021-11-05 上海兆维科技发展有限公司 一种加帽类似物及其应用
CN114540444A (zh) * 2022-04-23 2022-05-27 江苏申基生物科技有限公司 一种加帽组合物及其制备方法和体外转录反应体系

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6852531B2 (en) * 2000-09-19 2005-02-08 University Of Medicine & Dentistry Of Nj Compositions and methods for reproducing and modulating mammalian messenger RNA decapping

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210261897A1 (en) * 2018-06-28 2021-08-26 Curevac Ag Bioreactor for rna in vitro transcription
CN113166737A (zh) * 2018-10-04 2021-07-23 新英格兰生物实验室公司 提高转录的rna的加帽效率的方法和组合物
CN113308504A (zh) * 2020-08-20 2021-08-27 深圳市瑞吉生物科技有限公司 一种Cap2结构5`帽子类似物及其制备方法和应用
CN113355381A (zh) * 2020-08-20 2021-09-07 深圳市瑞吉生物科技有限公司 一种Cap2结构5′帽子类似物及其制备方法和应用
CN113603739A (zh) * 2021-08-27 2021-11-05 上海兆维科技发展有限公司 一种加帽类似物及其应用
CN114540444A (zh) * 2022-04-23 2022-05-27 江苏申基生物科技有限公司 一种加帽组合物及其制备方法和体外转录反应体系

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHANMUGASUNDARAM MUTHIAN, SENTHILVELAN ANNAMALAI, KORE ANILKUMAR R.: "Recent Advances in Modified Cap Analogs: Synthesis, Biochemical Properties, and mRNA Based Vaccines", CHEMICAL RECORD, JOHN WILEY, NEW YORK, NY, US, vol. 22, no. 8, 1 August 2022 (2022-08-01), US , pages e202200005, XP093100618, ISSN: 1527-8999, DOI: 10.1002/tcr.202200005 *

Also Published As

Publication number Publication date
CN114540444B (zh) 2022-08-09
CN114540444A (zh) 2022-05-27

Similar Documents

Publication Publication Date Title
WO2023202199A1 (zh) 一种加帽组合物及其制备方法和体外转录反应体系
EP3556860A1 (en) Type i-b crispr-cas system gene cas3-based gene editing method
US20190345501A1 (en) Methods and compositions for rna-guided genetic circuits
CN114853836B (zh) 一种含gna结构的起始加帽寡核苷酸引物及其制备方法和应用
AU2012362113A1 (en) Making and using in vitro-synthesized ssRNA for introducing into mammalian cells to induce a biological or biochemical effect
WO2023213237A1 (zh) 一种含开环核苷结构的起始加帽寡核苷酸引物
WO2019096054A1 (zh) 一种筛选谷氨酰胺合成酶缺陷型hek293细胞株的方法
CN107893260B (zh) 高效去除核糖体rna的构建转录组测序文库的方法及试剂盒
JPS63233798A (ja) 5′−グアニル酸の製造法
US9206433B2 (en) Methods, compositions and kits for a one-step DNA cloning system
CN115057903B (zh) 一种含吗啉环结构的起始加帽寡核苷酸引物及其制备方法和应用
CN117510565A (zh) 一种核糖环修饰的mRNA帽类似物及其制备方法和应用
Kore et al. Synthesis and application of a new 2′, 3′-isopropylidene guanosine substituted cap analog
CN113278635A (zh) 一种促进环状rna成环的序列组合及其应用
CN116497019A (zh) 一种可提高体外合成rna产量的转录缓冲液及转录反应体系
CN116143855B (zh) 一种乙烯基膦酸修饰的mRNA帽类似物及其制备方法和应用
CN114317684B (zh) 一种基于tna分子的细胞内镁离子成像的方法
CN113817778B (zh) 一种利用核仁素增强mRNA稳定表达的方法
US20210389303A1 (en) Transient reporters and methods for base editing enrichment
JP2022547949A (ja) シーケンシングのためのrna試料を調製する方法およびそのキット
Nainytė et al. Synthesis of an acp 3 U phosphoramidite and incorporation of the hypermodified base into RNA
WO2015182941A1 (ko) 신규 카탈라아제 신호서열 및 이를 이용한 카탈라아제 발현방법
WO2023246860A1 (zh) 一种起始加帽寡核苷酸引物及其制备方法和应用
CN112342248A (zh) 一种基因敲除改变体外蛋白合成能力的方法及其应用
Chang et al. A programmable system to methylate and demethylate m6A on specific mRNAs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23790862

Country of ref document: EP

Kind code of ref document: A1