WO2023246860A1 - 一种起始加帽寡核苷酸引物及其制备方法和应用 - Google Patents

一种起始加帽寡核苷酸引物及其制备方法和应用 Download PDF

Info

Publication number
WO2023246860A1
WO2023246860A1 PCT/CN2023/101657 CN2023101657W WO2023246860A1 WO 2023246860 A1 WO2023246860 A1 WO 2023246860A1 CN 2023101657 W CN2023101657 W CN 2023101657W WO 2023246860 A1 WO2023246860 A1 WO 2023246860A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
unsubstituted
alkyl
reaction
oligonucleotide primer
Prior art date
Application number
PCT/CN2023/101657
Other languages
English (en)
French (fr)
Inventor
黄磊
赵万年
沈奇
肖潇
缪佳颖
Original Assignee
江苏申基生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210716120.6A external-priority patent/CN115057903B/zh
Priority claimed from CN202210716077.3A external-priority patent/CN115109110A/zh
Priority claimed from CN202210732340.8A external-priority patent/CN114853836B/zh
Application filed by 江苏申基生物科技有限公司 filed Critical 江苏申基生物科技有限公司
Publication of WO2023246860A1 publication Critical patent/WO2023246860A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H1/00Processes for the preparation of sugar derivatives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H1/00Processes for the preparation of sugar derivatives
    • C07H1/06Separation; Purification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/16Purine radicals
    • C07H19/20Purine radicals with the saccharide radical esterified by phosphoric or polyphosphoric acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/16Purine radicals
    • C07H19/20Purine radicals with the saccharide radical esterified by phosphoric or polyphosphoric acids
    • C07H19/207Purine radicals with the saccharide radical esterified by phosphoric or polyphosphoric acids the phosphoric or polyphosphoric acids being esterified by a further hydroxylic compound, e.g. flavine adenine dinucleotide or nicotinamide-adenine dinucleotide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • C07H21/02Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids with ribosyl as saccharide radical
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/26Preparation of nitrogen-containing carbohydrates
    • C12P19/28N-glycosides
    • C12P19/30Nucleotides
    • C12P19/34Polynucleotides, e.g. nucleic acids, oligoribonucleotides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6806Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay

Definitions

  • the present invention relates to the technical fields of chemical and biological engineering, and in particular to an initial capped oligonucleotide primer and its preparation method and application.
  • mRNAs messenger RNAs
  • capped consisting of a 5'-5' triplet between two nucleoside moieties. Phosphate bonding and the 7-methyl group on the distal guanine ring, capping of the mRNA promotes its normal function in the cell. Synthesis of mRNA through in vitro transcription has become an important tool for introducing foreign genes and expressing proteins, and is widely used in the treatment and prevention of diseases. Synthesis of mRNA through in vitro transcription allows workers to prepare RNA that performs appropriately in various biological applications. molecular.
  • Such applications include research applications and commercial production of polypeptides, for example, the production of polypeptides containing "unnatural" amino acids at specific sites in cell-free translation systems, or the production in cultured cells of polypeptides required for their activity or stability. Post-translationally modified peptides. In the latter system, synthesis takes significantly longer and therefore more protein is produced.
  • the in vitro transcription yield of mRNA and the 5' capped analog are key processes in the preparation of mRNA.
  • the system currently used for chemical capping of mRNA cannot achieve high efficiency.
  • Patent CN201680067458.6 reports compositions and methods for synthesizing 5'-capped RNA.
  • the starting capped oligonucleotide primer has the general form m 7 Gppp[N 2'OMe ] n [N] m , where m 7 G is N 7 -methylated guanosine or any guanosine analogue, N is any natural, modified or non-natural nucleoside, "n” can be any integer from 0 to 4 and "m” can be an integer from 1 to 9.
  • Cleancap belongs to Cap1. Unlike ARCA, which uses a dimer (m 7 GpppG) to initiate T7 transcription, CleanCap uses a trimer (m 7 GpppAmG) to initiate T7 transcription. The yield of this method is relatively high. 4 mg of capped RNA is prepared per milliliter of transcription reaction system. The capping efficiency can reach 90%. The immunogenicity of its transcription products is lower than ARCA.
  • the 5'-position capped analog is a key structure to reduce the immunogenicity of mRNA.
  • By optimizing the cap analog Structure can reduce the immunogenicity of mRNA. Therefore, it is necessary to continuously optimize the structure of cap analogs and discover new cap analogs with lower immunogenicity and lower expression levels of cellular inflammatory factors than the existing Cleancap.
  • this application provides an initial capped oligonucleotide primer containing a six-membered sugar ring structure and a preparation method thereof.
  • the initial capped oligonucleotide primer structure containing a six-membered sugar ring structure contains a cap analogue of a hexitol nucleic acid (HNA) structure.
  • HNA hexitol nucleic acid
  • the cap analogue of a non-natural structure has the ability to resist the degradation of endogenous endonucleases and exonucleases, improving the stability of RNA. , extend the half-life of the drug and significantly improve the stability of mRNA; and the cap analogue of the hexitol nucleic acid structure can improve the expression efficiency of target mRNA in cells.
  • X 1 , X 2 and X 3 are independently O, CH 2 or NH respectively; optionally, X 1 , X 2 and X 3 are all O;
  • Y 1 , Y 2 and Y 3 are independently O, S, Se or BH 3 respectively; optionally, Y 1 , Y 2 and Y 3 are all O;
  • R a is Rb is And when Ra is When, Rb is
  • R 1 , R 2 and R 3 , R 6 , R 7 , R 8 are independently hydrogen, hydroxyl, substituted or unsubstituted O-alkyl, substituted or unsubstituted S-alkyl, substituted or unsubstituted NH -Alkyl, substituted or unsubstituted N-dialkyl, substituted or unsubstituted O-aryl, substituted or unsubstituted S-aryl, substituted or unsubstituted NH-aryl, substituted or unsubstituted O -Aralkyl, substituted or unsubstituted S-aralkyl, substituted or unsubstituted NH-aralkyl; optional, R 1 , R 2 and R 3 are independently hydrogen or hydroxyl; optional, R 6 , R 7 , and R 8 are independently hydrogen, substituted or unsubstituted O-C1 ⁇ C6 alkyl; optionally, R 6 , R 7 , and R
  • R 4 and R 5 are independently H, OH, alkyl, O-alkyl, halogen; optionally, R 4 and R 5 are independently H or OH;
  • B 1 and B 2 are independently natural, modified, or non-natural nucleoside bases; optionally, B 1 and B 2 are independently the following structures:
  • the initial capped oligonucleotide primer containing a six-membered sugar ring structure has any of the following structures:
  • the preparation method of an initial capped oligonucleotide primer containing a six-membered sugar ring structure includes the following steps: (1) Synthesis of intermediate K: Compound A is synthesized starting from sorbitol, and is carried out sequentially on the basis of compound A. Glycosidation, phosphorylation, imidazolization of monophosphate, diphosphorylation, methylation of N7, imidazolization of polyphosphate and other reactions to synthesize intermediate K; (2) Preparation of dinucleotides linked by phosphate bonds: The phosphoramidite monomer and the disubstituted nucleoside monomer are coupled under the action of tetrazole to form the first phosphate ester bond.
  • R 9 is H, OH, alkyl, O-alkyl, halogen; optionally, R 9 is H, substituted or unsubstituted O-C1 ⁇ C6 alkyl; optionally, R 9 is H, Substituted or unsubstituted O-C1 ⁇ C3 alkyl; optionally, R 9 is H, substituted or unsubstituted methoxy, ethoxy, n-propoxy or isopropoxy; R 10 is hydrogen, Hydroxy, substituted or unsubstituted O-alkyl, substituted or unsubstituted S-alkyl, substituted or unsubstituted NH-alkyl, substituted or unsubstituted N-dialkyl, substituted or unsubstituted O-aromatic group, substituted or unsubstituted S-aryl group, substituted or unsubstituted NH-aryl group, substituted or unsubstituted O-aralkyl group, substitute
  • B 3 and B 4 are independently natural, modified, or non-natural nucleoside bases.
  • B 3 and B 4 independently have the following structure:
  • the above-mentioned disubstituted nucleoside monomer is selected from any of them.
  • the preparation method of the initial capped oligonucleotide primer containing a six-membered sugar ring structure specifically includes the following steps:
  • the initial capping oligonucleotide primer containing a six-membered sugar ring structure is used for capping mRNA under the T7 RNA polymerase system.
  • T7 RNA polymerase is a DNA-dependent RNA polymerase with high specificity for the bacteriophage T7 promoter sequence. This enzyme synthesizes large amounts of RNA from the DNA downstream of the T7 promoter inserted into the transcription vector.
  • the IVT reaction system catalyzed by T7 RNA polymerase is currently the most mature mRNA preparation system.
  • IVT in vitro transcription
  • the invention provides an initial capped oligonucleotide primer containing a six-membered sugar ring structure.
  • the initial capped oligonucleotide primer containing a six-membered sugar ring structure is suitable for use of in vitro coagulation using a DNA sequence as a template.
  • the DNA sequence of the mRNA produced by the transcription method can be derived from or modified from viruses, animals, plants and other species. At the same time, the mRNA produced has higher protein translation efficiency and better stability.
  • the present invention has the following advantages:
  • the mRNA produced by the initial capped oligonucleotide primer containing a six-membered sugar ring structure of the present invention has higher protein translation efficiency and better stability.
  • this application provides an initial capped oligonucleotide containing a morpholine ring structure Primers and their preparation methods and applications.
  • the initial capped oligonucleotide primer structure containing a morpholine ring structure contains a morpholine ring structure to replace the original five-membered sugar ring structure.
  • the morpholine ring structure After the replacement, the morpholine ring structure is
  • the loop has good resistance to degradation by endogenous endonucleases and exonucleases, can improve the stability of RNA, extend the half-life of drugs, and significantly improve the stability of mRNA.
  • the mRNA synthesized by the cap analogue of the morpholine ring structure has a lower binding ability to RIG-I and shows lower immunogenicity.
  • X 1 , X 2 and X 3 are independently O, CH 2 or NH respectively; optionally, X 1 , X 2 and X 3 are all O;
  • Y 1 , Y 2 and Y 3 are independently O, S, Se or BH 3 respectively; optionally, Y 1 , Y 2 and Y 3 are all O;
  • R a is Rb is And when Ra is When, Rb is
  • R 1 is hydrogen, hydroxyl, substituted or unsubstituted O-alkyl, substituted or unsubstituted S-alkyl, substituted or unsubstituted NH-alkyl, substituted or unsubstituted N-dialkyl, substituted or unsubstituted Substituted O-aryl, substituted or unsubstituted S-aryl, substituted or unsubstituted NH-aryl, substituted or unsubstituted O-aralkyl, substituted or unsubstituted S-aralkyl, substituted Or unsubstituted NH-aralkyl; optionally, R 1 is hydrogen, hydroxyl, substituted or unsubstituted O-C1 ⁇ C6 alkyl; optionally, R 1 is hydrogen, hydroxyl, substituted or unsubstituted O-C1 ⁇ C3 alkyl; optional, R 1 is hydrogen, hydroxyl, substituted or unsubstituted methoxy
  • R 2 and R 3 are independently H, OH, alkyl, O-alkyl, halogen; optionally, R 2 and R 3 are independently H or OH.
  • B 1 and B 2 are independently natural, modified, or non-natural nucleobases.
  • B 1 and B 2 independently have the following structure:
  • the initial capped oligonucleotide primer containing a morpholine ring structure has any of the following structures:
  • the present invention can reduce the binding ability of mRNA to RIG-I and significantly reduce the immunogenicity of mRNA.
  • a method for preparing an initial capped oligonucleotide primer containing a morpholine ring structure including the following steps: (1) Synthesis of intermediate F: Compound A is synthesized starting from guanosine, and diphosphates are sequentially performed on the basis of compound A.
  • R 4 is H, OH, alkyl, O-alkyl, halogen; optionally, R 4 is hydrogen, hydroxyl, substituted or unsubstituted O-C1 ⁇ C6 alkyl; optionally, R 4 is Hydrogen, hydroxyl, substituted or unsubstituted O-C1 ⁇ C3 alkyl; optionally, R 4 is hydrogen, hydroxyl, substituted or unsubstituted methoxy, ethoxy, n-propoxy or isopropoxy .
  • B 3 and B 4 are independently natural, modified, or non-natural nucleoside bases.
  • B 3 and B 4 independently have the following structure:
  • the above-mentioned disubstituted nucleoside monomer is selected from any of them.
  • the preparation method of the initial capped oligonucleotide primer containing a morpholino ring structure specifically includes the following steps:
  • the initial capping oligonucleotide primer containing a morpholino ring structure is used for capping mRNA under the T7 RNase system.
  • T7 RNA polymerase is a DNA-dependent RNA polymerase with high specificity for the bacteriophage T7 promoter sequence. This enzyme synthesizes large amounts of RNA from the DNA downstream of the T7 promoter inserted into the transcription vector.
  • the IVT (in vitro transcription) reaction system catalyzed by T7 RNA polymerase is currently the most mature mRNA preparation system.
  • the invention provides an initial capped oligonucleotide primer containing a morpholino ring structure.
  • the initial capped oligonucleotide primer containing a morpholino ring structure is suitable for using a DNA sequence as a template using an in vitro co-transcription method.
  • the DNA sequence of the produced mRNA can be derived from or modified from viruses, animals, plants and other species. At the same time, the produced mRNA has lower immunogenicity, higher protein translation efficiency, and better stability.
  • the present invention has the following advantages:
  • the mRNA produced by the initial capped oligonucleotide primer containing a morpholine ring structure of the present invention has lower immunogenicity, higher protein translation efficiency, and better stability.
  • the present application provides an initial capped oligonucleotide primer containing a GNA structure and its preparation method and application.
  • the structure of the initial capped oligonucleotide primer containing a GNA structure contains a GNA structure to replace the original five
  • GNA can reduce the expression of induced inflammatory factors due to its weak binding ability to proteins related to the inflammatory pathway.
  • the mRNA synthesized by the cap analogue of the GNA structure can significantly reduce the expression level of cellular inflammatory factors and have lower immunogenicity.
  • X 1 , X 2 and X 3 are independently O, CH 2 or NH respectively; optionally, X 1 , X 2 and X 3 are all O;
  • Y 1 , Y 2 and Y 3 are independently O, S, Se or BH 3 respectively; optionally, Y 1 , Y 2 and Y 3 are all O;
  • Ra is R b is And when Ra is When, Rb is When Ra is When, Rb is
  • R 1 , R 2 , and R 3 are independently H, OH, alkyl, O-alkyl, and halogen; optionally, R 1 , R 2 , and R 3 are independently H or OH;
  • R 4 is hydrogen, hydroxyl, substituted or unsubstituted O-alkyl, substituted or unsubstituted S-alkyl, substituted or unsubstituted NH-alkyl, substituted or unsubstituted N-dialkyl, substituted or unsubstituted Substituted O-aryl, substituted or unsubstituted S-aryl, substituted or unsubstituted NH-aryl, substituted or unsubstituted O-aralkyl, substituted or unsubstituted S-aralkyl, substituted Or unsubstituted NH-aralkyl; optionally, R 4 is hydrogen, hydroxyl, substituted or unsubstituted O-C1 ⁇ C6 alkyl; optionally, R 4 is hydrogen, hydroxyl, substituted or unsubstituted O-C1 ⁇ C3 alkyl; optionally, R 4 is hydrogen, hydroxyl, substituted or unsubstituted meth
  • B 1 , B 2 and B 3 are independently natural, modified or non-natural nucleoside bases.
  • B 1 and B 2 independently have the following structure:
  • B 3 has the following structure:
  • the initial capped oligonucleotide primer containing a GNA structure has any of the following structures:
  • the preparation method of initial capped oligonucleotide primers containing GNA structure includes the following steps: (1) Synthesis of imidazole diphosphate intermediate (compound 21): starting from N2-isobutyrylguanine (compound 14) Starting raw materials, glycosidation, diphosphorylation, methylation of N7, imidazolization of polyphosphate and other reactions are carried out in sequence to synthesize imidazole diphosphate intermediates; (2) Preparation of dinucleotides linked by phosphate bonds: through The phosphoramide monomer and the disubstituted nucleoside monomer are coupled under the action of tetrazole to form the first phosphate ester bond.
  • R 5 is H, OH, alkyl, O-alkyl, halogen; optionally, R 5 is hydrogen, hydroxyl, substituted or unsubstituted O-C1 ⁇ C6 alkyl; optionally, R 5 is Hydrogen, hydroxyl, substituted or unsubstituted O-C1 ⁇ C3 alkyl; optional, R 5 is hydrogen, hydroxyl, substituted or unsubstituted methoxy, ethoxy, n-propoxy or isopropoxy.
  • B 4 is a natural, modified, or non-natural nucleobase.
  • B 4 has the following structure:
  • the above-mentioned disubstituted nucleoside monomer is selected from any of them.
  • the preparation method of the initial capped oligonucleotide primer containing a GNA structure specifically includes the following steps:
  • Compound 21 was dissolved in a DMF solution containing MnCl 2 (0.2 mol) and added to the DMF solution of phosphate-linked dinucleotides. The reaction was stirred at room temperature. After 24 hours, the reaction was stopped with 0.25M EDTA solution. The mixture was loaded onto a DEAE Sephadex column (30 x 500 cm). The product was eluted using a linear gradient of TEAB eluent from 0 to 1.0 M. Collect the eluted products with HPLC purity >97%, concentrate the above separation liquid, and then load it into a strong anionic resin. Use 0-1.0M sodium acetate eluent for linear gradient elution, and collect the eluted products with HPLC purity >98.5%. , combine the high-purity eluates, remove the residual sodium acetate solution through nanofiltration equipment and concentrate to obtain the target product, the initial capped oligonucleotide primer containing GNA structure.
  • the initial capping oligonucleotide primer containing a GNA structure is used for capping mRNA under the T7 RNA polymerase system.
  • T7 RNA polymerase is a DNA-dependent RNA polymerase with high specificity for the bacteriophage T7 promoter sequence. This enzyme synthesizes large amounts of RNA from the DNA downstream of the T7 promoter inserted into the transcription vector.
  • the IVT (in vitro transcription) reaction system catalyzed by T7 RNA polymerase is currently the most mature mRNA preparation system.
  • IVT reaction system contains 50U of T7 RNA polymerase, and combined with 1ul of cap analog (100mM) can achieve the best transcription yield and capping efficiency.
  • the invention provides an initial capped oligonucleotide primer containing a GNA structure and its preparation method and application.
  • the initial capped oligonucleotide primer containing a GNA structure is suitable for use of in vitro coagulation using a DNA sequence as a template.
  • the DNA sequence of the mRNA produced by the transcription method can be derived from or modified from viruses, animals, plants and other species. At the same time, the mRNA produced has lower immunogenicity, higher protein translation efficiency, and better stability.
  • the present invention has the following advantages:
  • the mRNA produced by the initial capped oligonucleotide primer containing a GNA structure of the present invention has significantly lower expression levels of cellular inflammatory factors and lower immunogenicity.
  • Figure 1 is a cell phenotype diagram of Example 1-3 and Comparative Example 1-2;
  • Figure 2 is a graph of fluorescence statistical results of Example 1-3 and Comparative Example 1-2;
  • Figure 3 is a cell phenotype diagram of Examples 4-6 and Comparative Example 3;
  • Figure 4 is a graph showing fluorescence statistical results of Examples 4-6 and Comparative Example 3.
  • the synthesis route of AGP used in Synthesis Example 1 is: weigh 5kg of 2'OMe-rA phosphoramidite monomer in a one-neck bottle, dissolve it with 50L of dichloromethane, and then add 2.73kg of 2', 3'acetyl Guanosine, cool down to 25 ⁇ 2°C, add 880g tetrazole under nitrogen blowing, raise the temperature to 25 ⁇ 2°C for reaction. After the monitoring reaction is completed, add 1.2eq of iodopyridine solution to the reaction solution. After the monitoring reaction is completed, spin it dry. Dissolve the concentrated ointment in 4L of methylene chloride. Add 1.1eq of trifluoroacetic acid.
  • the synthesis method of the six-membered sugar ring-substituted AGP used in Synthesis Example 2 refers to the AGP synthesis method in Example 1.
  • the reaction route of the six-membered sugar ring-substituted AGP is as follows: Equation (3):
  • Example 1 Synthesis method of initial capped oligonucleotide primer containing six-membered sugar ring structure using intermediates K and A-G-P as raw materials
  • Example 2 Synthesis method of initial capped oligonucleotide primer containing six-membered sugar ring structure using intermediate K and six-membered sugar ring-substituted A-G-P as raw materials
  • Example 3 Synthesis method of initial capped oligonucleotide primer containing six-membered sugar ring structure using intermediate N and six-membered sugar ring-substituted A-G-P as raw materials
  • intermediate N is obtained through the following steps: 1) Weigh 5g of guanosine, disperse it in 50mL of DMF, keep the internal temperature of the reaction solution below 10°C in an ice bath, add 1.2eq of TBSCl in two batches, and monitor by HPLC React until the raw material is ⁇ 5%.
  • the obtained compound f is mixed with 1eq of triphenylphosphine, 2eq of dithiodipyridine, 4eq
  • the imidazole is fully reacted, the reaction solution is added to a 4M sodium perchlorate acetone solution to precipitate, and the filter cake is fully washed with acetone to obtain the target compound g;
  • the synthesis route of intermediate L is as follows: Take 5g of intermediate F, dissolve it in 50.0mL of pyridine, and add acetic anhydride (3.5eq) dropwise into the reaction solution. Stir at room temperature for 5 hours, and monitor the reaction with TLC until complete. After concentration to remove pyridine, crude intermediate M was obtained. Intermediate M was suspended in 70% acetic acid aqueous solution and heated to 60 degrees Celsius for 6 hours. The reaction was monitored by TLC until complete. The solvent was concentrated to remove, and intermediate n was obtained by column chromatography.
  • the method of synthesizing intermediate L from intermediate n refers to the AGP synthesis method and reaction route flowchart in Example 1, as shown in the following equation (10)
  • Test Example 1 Determination of mRNA in vitro transcription yield and capping efficiency
  • the initial capped oligonucleotide primer containing a six-membered sugar ring substitution structure for in vitro synthesis of mRNA: first use NotI to linearize the plasmid and digest it overnight at 4°C; DNA template extraction; in vitro transcription and synthesis of mRNA, each using The initial capped oligonucleotide primers containing the six-membered sugar ring substitution structure of Examples 1-3 and Comparative Examples 1-2 serve as the cap structure.
  • LC-MS Liquid chromatography mass spectrometry
  • RNA capping during the transcription reaction 100 ⁇ L of 75% methanol heated to 80°C is added to the magnetic beads. The mixture is heated to 80°C on the hot plate and kept for 3 minutes. Then it is placed on a magnetic stand to absorb the supernatant. Evaporate in a centrifuge and dry at room temperature for 45 min to 10 ⁇ l. The sample was then resuspended in 50 ⁇ l of 100 ⁇ M EDTA/1% MeOH and ready for LC-MS analysis to determine RNA capping during the transcription reaction. Since there is a significant difference in molecular weight between capped and uncapped bases, the difference in molecular mass can be used to determine the capping rate of mRNA transcription initiated by different cap analogues. See Table 4 for specific results.
  • the initial capping oligonucleotide primer containing a six-membered sugar ring substitution structure of the present application has the same level of mRNA in vitro transcription yield and capping efficiency as compared with the comparative example.
  • replacing the five-membered sugar ring of the third nucleotide with a six-membered sugar ring in Comparative Example 2 significantly reduced the in vitro transcription yield and capping efficiency of mRNA.
  • Test example 2 Cell protein expression test
  • the eGFP coding sequence was used as a DNA template, and the cap analogue in the Example was used as a starting point for in vitro transcription.
  • the reaction system is shown in Table 5.
  • RNA purification usually using magnetic bead purification method.
  • the different mRNA products obtained were then transfected into 293T cells.
  • 293T cells are plated at (0.5-1) ⁇ 105 cells (24-well plate). It is recommended to use cells within 50 generations for transfection experiments. The cells are required to be passaged again 24 hours before transfection. Adding antibiotics to the culture medium has no effect on the transfection effect. During transfection, the cell density is generally 60-80%.
  • Each well is transfected with 2 ⁇ g of mRNA.
  • the transfected cells were placed in a 37°C, CO 2 incubator and replaced with fresh complete culture medium 4-6 hours after transfection. After incubation for 24 hours in a CO 2 incubator at 37°C, the fluorescence intensity of GFP was observed under a fluorescence microscope.
  • the cap analogue of the hexitol nucleic acid structure contained in the initial capped oligonucleotide primer structure containing a six-membered sugar ring structure has a spatial structure advantage compared to a five-membered sugar ring and can better Binds to the transcription factor protein (elF4E) related to mRNA translation; at the same time, the cap analogue with a non-natural structure has the ability to resist the degradation of endogenous endonucleases and exonucleases, improve the stability of RNA, extend the half-life of the drug, and significantly improve mRNA stability.
  • the six-membered sugar ring structural cap analog can have better protein translation effects.
  • the synthesis route of AGP used in Synthesis Example 4 is: weigh 5kg of 2'OMe-rA phosphoramidite monomer in a one-neck bottle, dissolve it with 50L of dichloromethane, and then add 2.73kg of 2', 3'acetyl guanosine, lower the temperature to 25 ⁇ 2°C, add 880g tetrazole under nitrogen blowing, and raise the temperature to 25 ⁇ 2°C for reaction. After the monitoring reaction is completed, add 1.2eq of iodopyridine solution to the reaction solution. After the monitoring reaction is completed, spin it dry. Dissolve the concentrated ointment in 4L dichloromethane. Add 1.1eq of trifluoroacetic acid.
  • the synthesis method of morpholine-substituted AGP used in Synthesis Example 5 refers to the AGP synthesis method in Example 4.
  • the reaction route of morpholine-substituted AGP is as follows: Equation (13):
  • the preparation of C1 includes the following steps: 1) Suspend 10g of A1 and DMAP (0.1eq.) in 10 times the volume of pyridine, add TBDPSCl (1.1eq.) dropwise into the reaction solution at room temperature, and react at room temperature until complete. The reaction solution was concentrated to remove pyridine, and the crude product was recrystallized with methanol to obtain A1; 2) For the synthesis of B1, refer to the synthesis steps of intermediate A; 3) Dissolve 5 g of B1 in a mixed solvent of dichloromethane and acetonitrile.
  • Example 4 Synthesis method of initial capped oligonucleotide primer containing morpholine ring structure using intermediates F and A-G-P as raw materials
  • Example 5 Synthesis method of initial capped oligonucleotide primer containing morpholine ring structure using intermediate F and morpholine-substituted A-G-P as raw materials
  • Example 6 Synthesis method of initial capped oligonucleotide primer containing morpholine ring structure using intermediate N and morpholine-substituted AGP as raw materials
  • intermediate N is obtained through the following steps: 1) Weigh 5g of guanosine, disperse it in 50mL of DMF, keep the internal temperature of the reaction solution below 10°C in an ice bath, add 1.2eq of TBSCl in two batches, and monitor by HPLC React until the raw material is ⁇ 5%.
  • the obtained compound f is mixed with 1eq of triphenylphosphine, 2eq of dithiodipyridine, 4eq
  • the imidazole is fully reacted, the reaction solution is added to a 4M sodium perchlorate acetone solution to precipitate, and the filter cake is fully washed with acetone to obtain the target compound g;
  • Test Example 3 Determination of mRNA in vitro transcription yield and capping efficiency
  • LC-MS Liquid chromatography mass spectrometry
  • the initial capped oligonucleotide primer containing a morpholine ring structure of the present application has the same level of mRNA in vitro transcription yield and capping efficiency as compared with the comparative example.
  • Test Example 4 Determination of the binding ability of mRNA to RIG-I
  • RIG-I mainly includes two repeated caspase activation and recruitment domains (CARD) at the N-terminus, a helicase structure and a C-terminal RNA domain in the middle.
  • CARD caspase activation and recruitment domains
  • the overexpression domain of the N-terminal CARD domain of RIG-I can promote cells to secrete type I interferon (IFN) even in the absence of viral infection. Therefore, this domain is mainly responsible for transmitting signals downstream.
  • IFN interferon
  • Example 4-6 the initial capped oligonucleotide primer containing a morpholino ring structure in Example 4-6 and the cap analogue in Comparative Example 3 were used to transfect 293T cells with eGFP mRNA for in vitro transcription. After 24 hours Collect cells, use RNA co-immunoprecipitation method to co-immunoprecipitate intracellular protein RIG-I and its bound RNA, and finally perform reverse transcription and real-time quantitative PCR on these mRNAs.
  • the specific cell culture conditions are the same as above. Collect cells 24 hours after transfection. First add fixative and incubate. After 10 minutes, add glycine solution of appropriate concentration to terminate the reaction and collect cells. Use lysis solution to lyse the collected cells, centrifuge at 12,000 rpm and 4°C for 10 min, take the supernatant and incubate with RIG-I or IgG antibodies on a shaker at 4 degrees overnight. Then add 20 ⁇ l Protein A/G magnetic beads, incubate at 4°C for 4 hours, and wash on a magnetic stand. After washing, RNA is extracted and used for subsequent RT-qPCR to verify the expression results.
  • the results of the binding ability of different cap analog nucleotide mRNAs to RIG-1 are as follows in Table 10:
  • Test Example 5 Detection of intracellular translation effect of mRNA
  • 293T cells are plated at (0.5-1) ⁇ 105 cells (24-well plate). It is recommended to use cells within 50 generations for transfection experiments. It is required to pass the cells again 24 hours before transfection and add antibiotics to the culture medium to prevent transfection. The dyeing effect is not affected. During transfection, the cell density is generally 60-80%. Each well is transfected with 2 ⁇ g of mRNA.
  • Use Lipofectamine MessengerMAX Transfection Reagent (Invitrogen) as the transfection reagent and refer to its usage instructions for operation. The transfected cells were placed in a 37°C, CO 2 incubator and replaced with fresh complete culture medium 4-6 hours after transfection.
  • Example 4 of the present application has higher expression efficiency; that is, the initial capped oligonucleotide primer containing a morpholino ring nucleoside structure in the present invention
  • the effective protein translation efficiency is significantly higher than the protein translation efficiency of the Cleancap (Comparative Example 3) cap structure.
  • Example 7 Synthesis method of initial capped oligonucleotide primer containing GNA structure using compound 9 and compound N as raw materials
  • compound 9 was prepared by the following steps:
  • compound N was obtained through the following steps: 1) Weigh 5g of guanosine, disperse it in 50mL of DMF, keep the internal temperature of the reaction solution below 10°C in an ice bath, add 1.2eq of TBSCl in two batches, and monitor the reaction with HPLC until the raw material is ⁇ 5%. After the reaction, add 100mL of water to precipitate the product, filter and wash the filter cake; dissolve 2g of the filter cake in 10ml of trimethylphosphate, cool the reaction solution to 0°C, and slowly add 1.2eq of trimethylphosphate dropwise.
  • Phosphorus oxychloride after reacting at low temperature for 4 hours, add 2M ammonium acetate solution to quench the reaction, reverse phase Purify by chromatography to obtain the target compound f.
  • the obtained compound f fully reacts with 1eq of triphenylphosphine, 2eq of dithiodipyridine, and 4eq of imidazole.
  • the reaction solution is added to a 4M sodium perchlorate acetone solution to precipitate.
  • the filter cake is precipitated with acetone. After thorough washing, the target compound g is obtained;
  • Example 8 Synthesis method of initial capped oligonucleotide primer containing GNA structure using compound 21 and A-G-P as raw materials
  • the preparation of compound 21 includes the following steps: 1) Synthesis of compound 15 with reference to compound 2 Synthetic steps; 2) Synthesis of compound 16 refer to the synthetic steps of compound 3; 3) Dissolve 10g of compound 16 in pyridine (100mL), add TsCl (1.2eq.) to the reaction solution in batches under ice bath, and then Warm up to room temperature for reaction. The reaction was monitored by TLC until complete. The reaction solution was concentrated, and the crude product was purified by column chromatography to obtain compound 17; 4) Dissolve 5g of compound 17 in DMF (50 mL), and add tris(tetrabutyl)ammonium pyrophosphate (2.0 eq.) to the reaction solution. Then react at room temperature for 20 hours.
  • the synthesis route of AGP is: weigh 5kg of 2'OMe-rA phosphoramidite monomer in a single-neck bottle, dissolve it in 50L of dichloromethane, and then add 2.73kg of 2',3'acetylguanosine. Lower the temperature to 25 ⁇ 2°C, add 880g of tetrazole under nitrogen blowing, and raise the temperature to 25 ⁇ 2°C for reaction. After the monitoring reaction is completed, add 1.2eq of iodopyridine solution to the reaction solution. After the monitoring reaction is completed, spin it dry. Dissolve the concentrated ointment in 4L dichloromethane. Add 1.1eq of trifluoroacetic acid.
  • Example 9 Synthesis method of initial capped oligonucleotide primer containing GNA structure using compound 9 and compound 21 as raw materials
  • the initial capped oligonucleotide primers containing the GNA structure obtained in each example and those obtained in the comparative examples The structures of the capped analogues obtained are shown in Table 11 below.
  • Test Example 6 Determination of mRNA in vitro transcription yield and capping efficiency
  • Example 9 The capping efficiency has been significantly reduced. This may be due to the large gap between its structure and cap analogues, which is not conducive to the catalytic reaction of T7 RNA polymerase, resulting in a reduction in capping efficiency.
  • Test Example 7 mRNA stimulates the expression of inflammatory factors in cells
  • HeLa cells were plated in a 6-well plate at a density of 4 ⁇ 10 5 /well, and transfection was performed when the cell density was approximately 80%. 2ug of mRNA was transfected into each well, and the transfection reagent was Lipofectamine MessengerMAX Transfection Reagent (Invitrogen). The transfection steps were performed according to the instructions. After 24 hours, cells were collected, RNA was extracted using TRIzol, and RNA was reverse transcribed into cDNA. Finally, real-time quantitative fluorescence PCR was used to detect the expression of intracellular inflammatory factors, and the internal reference gene was ⁇ -ACTIN. The detection of each gene needs to be repeated three times, and the expression results of each gene are relative values relative to the results of the 4-cap analogue in Comparative Example. Data are expressed as mean ⁇ standard deviation, and the results are shown in Table 13 below:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Plant Pathology (AREA)
  • Immunology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Saccharide Compounds (AREA)

Abstract

提供了一种起始加帽寡核苷酸引物及其制备方法和应用,具体涉及含六元糖环、吗啉环或GNA结构的起始加帽寡核苷酸引物,其中,所述含六元糖环或吗啉环结构的起始加帽寡核苷酸引物合成的mRNA具有更低的免疫原性和更高的蛋白翻译效率、更高的稳定性;所述含GNA结构的起始加帽寡核苷酸引物合成的mRNA具有显著降低细胞炎症因子表达水平以及更低的免疫原性。

Description

一种起始加帽寡核苷酸引物及其制备方法和应用
本申请要求于2022年06月22日提交中国专利局、申请号为202210716077.3、发明名称为“一种含六元糖环结构的起始加帽寡核苷酸引物及其制备方法和应用”,以及于2022年06月22日提交中国专利局、申请号为202210716120.6、发明名称为“一种含吗啉环结构结构的起始加帽寡核苷酸引物及其制备方法和应用”,以及于2022年06月24日提交中国专利局、申请号为202210732340.8、发明名称为“一种含GNA结构的起始加帽寡核苷酸引物及其制备方法和应用”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及化学及生物工程技术领域,特别是涉及一种起始加帽寡核苷酸引物及其制备方法和应用。
背景技术
在真核细胞中,大多数信使RNA(mRNA)的5'末端被封闭,或“帽化(加帽)”,所述帽包含有在两个核苷部分之间的5'-5'三磷酸键合和远端鸟嘌呤环上的7-甲基,mRNA的帽化促进其在细胞中的正常功能。通过体外转录合成mRNA已经成为引入外源基因并进行表达蛋白的重要工具,并广泛应用于疾病的治疗和预防中,体外转录合成mRNA使得工作人员能够制备在各种生物学应用中表现适当的RNA分子。此类应用包括多肽的研究应用和商业生产,例如,在无细胞翻译体系中产生在特定位点包含“非天然”氨基酸的多肽,或在培养的细胞中产生就其活性或稳定性而言需要翻译后修饰的多肽。在后者体系中,合成进行显著更长的时间,并因此产生更多的蛋白质。mRNA的体外转录产率以及5’位加帽类似物是mRNA制备过程的关键工艺。目前应用于mRNA化学法加帽的体系,无法获得较高的效率。
专利CN201680067458.6报道了用于合成5’-加帽RNA的组合物和方法。其中起始加帽寡核苷酸引物具有通式形式m7Gppp[N2’OMe]n[N]m,其中m7G为N7-甲基化的鸟苷或任何鸟苷类似物,N为任何天然的、修饰的或非天然的核苷,“n”可以是从0至4的任何整数且“m”可以是从1至9的整数。Cleancap属于Cap1,与ARCA使用二聚体(m7GpppG)启动T7转录不同,CleanCap使用三聚体(m7GpppAmG)启动T7转录。该方法的产量比较高,每毫升转录反应体系制备4mg加帽的RNA,加帽效率可达90%,其转录产物的免疫原性低于ARCA。
5’位加帽类似物是降低mRNA免疫原性的关键结构,通过优化帽类似物的 结构可以降低mRNA的免疫原性。因此,需要不断优化帽类似物的结构,发现比目前已有的Cleancap免疫原性更低、细胞炎症因子表达水平更低的新型帽类似物。
发明内容
为了进一步提高目标mRNA在细胞内的表达效率、延长药物半衰期、明显提高mRNA的稳定性,本申请提供了一种含六元糖环结构的起始加帽寡核苷酸引物及其制备方法和应用,该含六元糖环结构的起始加帽寡核苷酸引物结构中含有的己糖醇核酸(hexitol nucleic acid,HNA)结构的帽类似物,相比于五元糖环,具有空间结构优势,可以更好地与mRNA翻译相关的转录因子蛋白(elF4E)结合;同时,非天然结构的帽类似物,抵抗内源性内切酶和外切酶降解的能力,提高RNA的稳定性,延长药物半衰期,明显提高mRNA的稳定性;且己糖醇核酸结构的帽类似物可以提高目标mRNA在细胞内的表达效率。
一种含六元糖环结构的起始加帽寡核苷酸引物,其包含以下式Ⅰ所示结构:
式Ⅰ中,X1、X2和X3分别独立的为O、CH2或NH;可选的,X1、X2和X3均为O;
Y1、Y2和Y3分别独立的为O、S、Se或BH3;可选的,Y1、Y2和Y3均为O;
RaRb为且当Ra为时,Rb为
R1、R2和R3、R6、R7、R8独立的为氢、羟基、取代或未取代的O-烷基、取代或未取代的S-烷基、取代或未取代的NH-烷基、取代或未取代的N-二烃基、取代或未取代的O-芳香基、取代或未取代的S-芳香基、取代或未取代的NH-芳香基、取代或未取代的O-芳烷基、取代或未取代的S-芳烷基、取代或未取代的NH-芳烷基;可选的,R1、R2和R3独立的为氢或羟基;可选的,R6、R7、R8独立的为氢、取代或未取代的O-C1~C6烷基;可选的,R6、R7、R8独立的为氢、取代或未取代的O-C1~C3烷基;可选的,R6、R7、R8独立的为氢、取代或未取代的甲氧基、乙氧基、正丙氧基或异丙氧基;
R4和R5独立的为H、OH、烷基、O-烷基、卤素;可选的,R4和R5独立的为H或OH;
B1和B2独立的为天然的、或修饰的、或非天然的核苷碱基;可选的,B1和B2独立的为以下结构:
可选的,含六元糖环结构的起始加帽寡核苷酸引物具有以下任一结构:

含六元糖环结构的起始加帽寡核苷酸引物的制备方法,包括以下步骤:(1)中间体K的合成:从山梨糖醇出发合成化合物A,在化合物A的基础上依次进行糖苷化、磷酸化、单磷酸咪唑化,二磷酸化、N7的甲基化、多磷酸的咪唑化等反应,合成中间体K;(2)磷酸酯键连接的二核苷酸的制备:通过亚磷酰胺单体与双取代核苷单体,在四氮唑的作用下偶联形成第一个磷酸酯键,通过酸作用,脱除保护基,然后引入第二个磷酸,最终水解得到磷酸酯键连接的二核苷酸;(3)含六元糖环结构的起始加帽寡核苷酸引物的合成:中间体K与磷酸酯键连接的二核苷酸反应制备含六元糖环结构的起始加帽寡核苷酸引物;
上述亚磷酰胺单体结构式为:
其中,R9为H、OH、烷基、O-烷基、卤素;可选的,R9为H、取代或未取代的O-C1~C6烷基;可选的,R9为H、取代或未取代的O-C1~C3烷基;可选的,R9为H、取代或未取代的甲氧基、乙氧基、正丙氧基或异丙氧基;R10为氢、羟基、取代或未取代的O-烷基、取代或未取代的S-烷基、取代或未取代的NH-烷基、取代或未取代的N-二烃基、取代或未取代的O-芳香基、取代或未取代的S-芳香基、取代或未取代的NH-芳香基、取代或未取代的O-芳烷基、取代或未取代的S-芳烷基、取代或未取代的NH-芳烷基;可选的,R10为H、取代或未取代的O-C1~C6烷基;可选的,R10为H、取代 或未取代的O-C1~C3烷基;可选的,R10为H、取代或未取代的甲氧基、乙氧基、正丙氧基或异丙氧基;
B3和B4独立的为天然的、或修饰的、或非天然的核苷碱基。可选的,B3和B4独立的为以下结构:
上述双取代核苷单体选自中的任一种。
该含六元糖环结构的起始加帽寡核苷酸引物的制备方法,具体包括以下步骤:
(1)中间体F的合成:
S1.称取1,5-酐-D-山梨糖醇,溶解在DMF中,将苯甲醛二甲缩醛和对甲苯磺酸在室温下加入到反应液中,反应液升温至60±5℃搅拌10小时。TLC监控反应至完全,反应结束后加入饱和NaHCO3水溶液猝灭反应,适量的乙酸乙酯萃取三次后合并有机相,有机相用饱和食盐水洗涤后用无水硫酸钠干燥,用正己烷结晶得目标化合物A;
S2.称取化合物A溶解在无水吡啶中,冰浴下将对甲苯磺酰氯滴加到反应液中,室温反应7天。TLC监控反应至完全,产物用丙酮重结晶得到目标化合物B。
S3.称取化合物B溶解在二氯甲烷中,冰浴下将3M甲醇钠甲醇溶液滴加到反应液中,滴加完毕后升温至室温反应20小时。TLC监控反应至完全,反应结束后加入水,反应液用二氯甲烷萃取2次后合并有机相,有机相用饱和食盐水洗涤后用无水硫酸钠干燥,用正庚烷结晶得目标化合物C;
S4.称取化合物C,2-氨基-6-氯嘌呤,aliquat 336和碳酸钾均匀分散在六甲基磷酰三胺中,反应液在氮气氛围下升温至90±5℃搅拌3小时。TLC监控反应至完全,将反应液冷却后倒入冰水中,随后室温搅拌1小时,抽滤。滤饼用硅胶柱纯化得到目标化合物D。
S5.称取化合物D和DABCO混悬在1M NaOH中,升温至90±5℃搅拌2小时。TLC监控反应至完全,将反应液冷却后用1M HCl水溶液调节pH至中性,抽滤,水洗,干燥后得到目标化合物E。
S6.称取化合物均匀分散在醋酸(80%水溶液)中,将反应液升温至80±5℃搅拌2小时。TLC监控反应至完全,浓缩除去醋酸后将粗品用硅胶柱纯化得到目标化合物F。
S7.将化合物F溶解在磷酸三甲酯中,反应液冷却至0±5℃,缓慢滴加三氯氧磷,低温反应4小时后,加入2M的醋酸铵溶液猝灭反应,反相色谱纯化得目标化合物G。
S8.取化合物G与三苯基膦,二硫二吡啶,咪唑,TEA悬浮在DMF中,室温反应8小时,HPLC监控反应至原料≤1%,反应液加入4M的高氯酸钠丙酮溶液,抽滤,滤饼用丙酮充分洗涤得目标化合物H;
S9.称取目标化合物H悬浮在DMF中,加入磷酸三丁胺和氯化锰,室温搅拌得6小时,HPLC监控反应至原料≤1%,将反应液倒入水中得到化合物I的粗品水溶液。缓慢滴加硫酸二甲酯,过程中用2M的氢氧化钠调节pH不超过5,HPLC监测反应,反应结束后离子色谱纯化得目标化合物J;
S10.取化合物J与三苯基膦,二硫二吡啶,咪唑,TEA悬浮在DMF中,室温反应8小时,HPLC监控反应至原料≤1%,反应液加入4M的高氯酸钠丙酮溶液,抽滤,滤饼用丙酮充分洗涤得目标化合物K;
(2)磷酸酯键连接的二核苷酸的制备:
称取2’OMe-rA亚磷酰胺单体于单口瓶中,用二氯甲烷溶解,再加入2’,3’乙酰基鸟苷,降温至25±2℃,氮气鼓吹下加入四氮唑,升温至25±2℃反应。监测反应结束后,将碘吡啶溶液加入到反应液中,监测反应结束后旋干,浓缩后的油膏溶解在二氯甲烷中,加入三氟乙酸,监测反应结束后,旋干,石油醚/二氯甲烷按一定比例打浆,过滤得中间体G1;将G1溶解在乙腈中,加入膦试剂、四氮唑充分搅拌反应,监测反应结束后,再加入碘吡啶溶液加入到反应 液中,监测反应结束后旋干,在旋瓶中加入甲醇和浓氨水,室温反应4h,监测反应,反应结束后旋干,加入超纯水,进入反向离子渗透设备,洗涤浓缩,冻干得磷酸酯键连接的二核苷酸;
(3)含六元糖环结构的起始加帽寡核苷酸引物的合成:
将中间体K溶解在含有MnCl2的DMF溶液中,并添加到A-G-P的DMF溶液中。在室温下搅拌反应。24小时后,用0.25M EDTA溶液终止反应。将混合物装载到DEAESephadex柱(30×500cm)上。将产物使用0-1.0M的TEAB洗脱液线性梯度洗脱。收集HPLC纯度>97%的洗脱产物,浓缩完以上分离液,再装载到强阴离子树脂,使用0-1.0M的醋酸钠洗脱液线性梯度洗脱,收集HPLC纯度>98.5%的洗脱产物,合并高纯度洗脱液,通过纳滤设备去除残留的醋酸钠溶液并浓缩得目标产物含六元糖环结构的起始加帽寡核苷酸引物。
该含六元糖环结构的起始加帽寡核苷酸引物用于T7 RNA聚合酶体系下的mRNA加帽。T7 RNA聚合酶是一种依赖DNA的RNA聚合酶,其对噬菌体T7启动子序列有高特异性。该酶从T7启动子插入到转录载体下游的DNA上合成大量RNA。T7 RNA聚合酶催化的IVT反应体系是目前最成熟的mRNA制备体系。
通常20ul的IVT(体外转录)反应体系中含有50U的T7 RNA聚合酶,同时搭配1ul的帽类似物(100mM)可以获得最佳的转录产量以及加帽效率。
本发明提供了一种含六元糖环结构的起始加帽寡核苷酸引物,该含六元糖环结构的起始加帽寡核苷酸引物适用于以DNA序列为模板利用体外共转录方法生产的mRNA,该DNA序列可以来源或改造自病毒、动物、植物等物种,同时其生产的mRNA具有更高的蛋白翻译效率、更好的稳定性。
本发明相比现有技术具有以下优点:
与现有帽结构类似物Cleancap相比,本发明的含六元糖环结构的起始加帽寡核苷酸引物其生产的mRNA具有更高的蛋白翻译效率、更好的稳定性。
为了进一步提高RNA的稳定性、延长药物半衰期、明显提高mRNA的稳定性,降低mRNA与RIG-I结合能力较低,本申请提供了一种含吗啉环结构的起始加帽寡核苷酸引物及其制备方法和应用,该含吗啉环结构的起始加帽寡核苷酸引物结构中含有吗啉环结构替换原有的五元糖环结构,替换后由于吗啉 环具有较好的抵抗内源性内切酶和外切酶降解的能力,可提高RNA的稳定性,延长药物半衰期,明显提高mRNA的稳定性。同时吗啉环结构的帽类似物合成的mRNA与RIG-I结合能力较低,表现出更低的免疫原性。
一种含吗啉环结构的起始加帽寡核苷酸引物,其包含以下式Ⅱ所示结构:
式Ⅱ中,X1、X2和X3分别独立的为O、CH2或NH;可选的,X1、X2和X3均为O;
Y1、Y2和Y3分别独立的为O、S、Se或BH3;可选的,Y1、Y2和Y3均为O;
RaRb为且当Ra为时,Rb为
R1为氢、羟基、取代或未取代的O-烷基、取代或未取代的S-烷基、取代或未取代的NH-烷基、取代或未取代的N-二烃基、取代或未取代的O-芳香基、取代或未取代的S-芳香基、取代或未取代的NH-芳香基、取代或未取代的O-芳烷基、取代或未取代的S-芳烷基、取代或未取代的NH-芳烷基;可选的,R1为氢、羟基、取代或未取代的O-C1~C6烷基;可选的,R1为氢、羟基、取代或未取代的O-C1~C3烷基;可选的,R1为氢、羟基、取代或未取代的甲氧 基、乙氧基、正丙氧基或异丙氧基。
R2和R3独立的为H、OH、烷基、O-烷基、卤素;可选的,R2和R3独立的为H或OH。
B1和B2独立的为天然的、或修饰的、或非天然的核苷碱基。可选的,B1和B2独立的为以下结构:
可选的,所述含吗啉环结构的起始加帽寡核苷酸引物具有以下任一结构:
本发明通过在帽类似物结构中用吗啉环结构替代五元糖环,可以降低mRNA与RIG-I结合能力,显著降低mRNA的免疫原性。
含吗啉环结构的起始加帽寡核苷酸引物的制备方法,包括以下步骤:(1)中间体F的合成:从鸟苷出发合成化合物A,在化合物A的基础上依次进行二磷酸化、N7的甲基化、多磷酸的咪唑化反应,合成中间体F;(2)磷酸酯键连接的二核苷酸的制备:通过(亚)磷酰胺单体与双取代核苷单体,在四氮唑的作用下偶联形成第一个磷酸酯键,通过酸作用,脱除保护基,然后引入第二个磷酸,最终水解得到磷酸酯键连接的二核苷酸;(3)含吗啉环结构的起始加帽寡核苷酸引物的合成:中间体F与磷酸酯键连接的二核苷酸反应制备含吗啉环结构的起始加帽寡核苷酸引物;
(亚)磷酰胺单体结构式为:
其中,R4为H、OH、烷基、O-烷基、卤素;可选的,R4为氢、羟基、取代或未取代的O-C1~C6烷基;可选的,R4为氢、羟基、取代或未取代的O-C1~C3烷基;可选的,R4为氢、羟基、取代或未取代的甲氧基、乙氧基、正丙氧基或异丙氧基。B3和B4独立的为天然的、或修饰的、或非天然的核苷碱基。可选的,B3和B4独立的为以下结构:
上述双取代核苷单体选自中的任一种。
该含吗啉环结构的起始加帽寡核苷酸引物的制备方法,具体包括以下步骤:
(1)中间体F的合成:
(1-1)取鸟苷悬浮于乙醇中,将NaIO4溶解在40±5℃水中,剧烈搅拌下滴加到腺苷的悬浮液中。15min后,加入(NH4)2B4O7.4H2O。通过滴加三乙胺保持反应体系pH=8.5~9.0,室温下反应1.5h后,HPLC监控反应至腺苷≤1%。抽滤,并用乙醇洗涤滤饼。冰浴下向滤液中分批次加入NaBH3CN,室温下搅拌1h后,用TFA调pH=3~4,继续反应2h,HPCL监控反应完全。减压蒸馏除去残留的TFA。粗产物反相制备纯化,冻干,得到化合物A;
(1-2)将化合物A溶解在磷酸三甲酯中,反应液冷却至0±5℃,缓慢滴加三氯氧磷,室温反应4h后,加入2M的醋酸铵溶液猝灭反应,反相制备纯化, 冻干得目标化合物B;
(1-3)取化合物B与三苯基膦,二硫二吡啶,咪唑,TEA悬浮DMF中,室温反应8h,HPLC监控反应至原料≤1%,反应液加入4M的高氯酸钠丙酮溶液,抽滤,滤饼用丙酮充分洗涤得目标化合物C;
(1-4)称取目标化合物C悬浮在DMF中,加入磷酸三乙胺和氯化锰,室温搅拌得8h,HPLC监控反应至原料≤1%,将反应液倒入水中得到化合物D的粗品水溶液。缓慢滴加硫酸二甲酯,过程中用2M的氢氧化钠调节pH不超过5,HPLC监测反应,反应结束后离子色谱纯化、冻干得目标化合物E;
(1-5)取化合物E与三苯基膦,二硫二吡啶,咪唑,TEA悬浮在DMF中,室温反应8h,HPLC监控反应至原料≤1%,反应液加入4M的高氯酸钠丙酮溶液,抽滤,滤饼用丙酮充分洗涤得目标化合物F;
(2)磷酸酯键连接的二核苷酸的制备:
称取2’OMe-rA亚磷酰胺单体于单口瓶中,用二氯甲烷溶解,再加入2’,3’乙酰基鸟苷,降温至25±2℃,氮气鼓吹下加入四氮唑,升温至25±2℃反应。监测反应结束后,将碘吡啶溶液加入到反应液中,监测反应结束后旋干,浓缩后的油膏溶解在二氯甲烷中,加入三氟乙酸,监测反应结束后,旋干,石油醚/二氯甲烷按一定比例打浆,过滤得中间体G1;将G1溶解在乙腈中,加入膦试剂、四氮唑充分搅拌反应,监测反应结束后,再加入碘吡啶溶液加入到反应液中,监测反应结束后旋干,在旋瓶中加入甲醇和浓氨水,室温反应4h,监测反应,反应结束后旋干,加入超纯水,进入反向离子渗透设备,洗涤浓缩,冻干得磷酸酯键连接的二核苷酸;
(3)含吗啉环结构的起始加帽寡核苷酸引物的合成:
将m7UrGDP-Im溶解在含有MnCl2的DMF溶液中,并添加到得到的磷酸酯键连接的二核苷酸的DMF溶液中,将步骤(1)得到的中间体F溶解在含有MnCl2的DMF溶液中,并添加到步骤(2)得到的A-G-P的DMF溶液中。在室温下搅拌反应。24h后,用0.25M EDTA溶液终止反应。将混合物装载到DEAESephadex柱(30×500cm)上。将产物使用0-1.0M的TEAB洗脱液线性梯度洗脱。收集HPLC纯度>97%的洗脱产物,浓缩完以上分离液,再装载到强阴离子树脂,使用0-1.0M的醋酸钠洗脱液线性梯度洗脱,收集HPLC纯度>98.5%的洗脱产物,合并高纯度洗脱液,通过纳滤设备去除残留的醋酸钠溶液 并浓缩得目标产物含吗啉环结构的起始加帽寡核苷酸引物。
该含吗啉环结构的起始加帽寡核苷酸引物用于T7 RNA酶体系下的mRNA加帽。T7 RNA聚合酶是一种依赖DNA的RNA聚合酶,其对噬菌体T7启动子序列有高特异性。该酶从T7启动子插入到转录载体下游的DNA上合成大量RNA。T7 RNA聚合酶催化的IVT(体外转录)反应体系是目前最成熟的mRNA制备体系。
本发明提供了一种含吗啉环结构的起始加帽寡核苷酸引物,该含吗啉环结构的起始加帽寡核苷酸引物适用于以DNA序列为模板利用体外共转录方法生产的mRNA,该DNA序列可以来源或改造自病毒、动物、植物等物种,同时其生产的mRNA具有更低的免疫原性、更高的蛋白翻译效率、更好的稳定性。
本发明相比现有技术具有以下优点:
与现有帽结构类似物Cleancap相比,本发明的含吗啉环结构的起始加帽寡核苷酸引物其生产的mRNA具有更低的免疫原性、更高的蛋白翻译效率、更好的稳定性。
本申请提供了一种含GNA结构的起始加帽寡核苷酸引物及其制备方法和应用,该含GNA结构的起始加帽寡核苷酸引物结构中含有GNA结构替换原有的五元糖环结构,替换后由于GNA与炎症通路相关的蛋白结合能力弱,可以降低诱导的炎症因子表达。同时GNA结构的帽类似物合成的mRNA具有显著降低细胞炎症因子表达水平,更低的免疫原性。
一种含GNA结构的起始加帽寡核苷酸引物,其包含以下式Ⅲ所示结构:
式Ⅲ中,X1、X2和X3分别独立的为O、CH2或NH;可选的,X1、X2和X3均为O;
Y1、Y2和Y3分别独立的为O、S、Se或BH3;可选的,Y1、Y2和Y3均为O;
Ra为Rb且当Ra为时,Rb为当Ra为时,Rb为
R1、R2、R3独立的为H、OH、烷基、O-烷基、卤素;可选的,R1、R2、R3独立的为H或OH;
R4为氢、羟基、取代或未取代的O-烷基、取代或未取代的S-烷基、取代或未取代的NH-烷基、取代或未取代的N-二烃基、取代或未取代的O-芳香基、取代或未取代的S-芳香基、取代或未取代的NH-芳香基、取代或未取代的O-芳烷基、取代或未取代的S-芳烷基、取代或未取代的NH-芳烷基;可选的,R4为氢、羟基、取代或未取代的O-C1~C6烷基;可选的,R4为氢、羟基、取代或未取代的O-C1~C3烷基;可选的,R4为氢、羟基、取代或未取代的甲氧基、乙氧基、正丙氧基或异丙氧基。
B1、B2和B3独立的为天然的、或修饰的、或非天然的核苷碱基。可选的,B1和B2独立的为以下结构:
B3为以下结构:
可选的,所述含GNA结构的起始加帽寡核苷酸引物具有以下任一结构:
含GNA结构的起始加帽寡核苷酸引物的制备方法,包括以下步骤:(1)二磷酸咪唑中间体(化合物21)的合成:以N2-异丁酰鸟嘌呤(化合物14)为起始原料,依次进行糖苷化、二磷酸化、N7的甲基化、多磷酸的咪唑化等反应,合成二磷酸咪唑中间体;(2)磷酸酯键连接的二核苷酸的制备:通过亚磷酰胺单体与双取代核苷单体,在四氮唑的作用下偶联形成第一个磷酸酯键,通过酸作用,脱除保护基,然后引入第二个磷酸,最终水解得到磷酸酯键连接的二核苷酸;(3)含GNA结构的起始加帽寡核苷酸引物的合成:二磷酸咪唑中间体与磷酸酯键连接的二核苷酸反应制备含GNA结构的起始加帽寡核苷酸引物;
上述亚磷酰胺单体结构式为:
其中,R5为H、OH、烷基、O-烷基、卤素;可选的,R5为氢、羟基、取代或未取代的O-C1~C6烷基;可选的,R5为氢、羟基、取代或未取代的O-C1~C3烷基;可选的,R5为氢、羟基、取代 或未取代的甲氧基、乙氧基、正丙氧基或异丙氧基。B4为天然的、或修饰的、或非天然的核苷碱基。可选的,B4具有以下结构:
上述双取代核苷单体选自中的任一种。
该含GNA结构的起始加帽寡核苷酸引物的制备方法,具体包括以下步骤:
(1)化合物21的合成:
(1-1)称取N2-异丁酰鸟嘌呤(化合物14)溶解在乙腈中,搅拌均匀澄清后加入双乙酰化保护的甘油类似物,充分混合后,加入BSA和四氯化锡,室温反应5h后HPLC监控反应,反应结束后,加入饱和氯化铵溶液猝灭反应,并用乙酸乙酯萃取反应体系三次,乙酸乙酯相干燥旋干后柱分离得产物15;
(1-2)称取化合物15,溶解在甲醇中,加入氨水,反应结束后旋干体系,并用2体积的乙腈带水,水分小于100ppm后,再加入乙腈,吡啶,冰浴至反应体系温度小于4℃,缓慢滴加三甲基氯硅烷,滴加结束后加入苯甲酰氯,室温反应5h后,浓缩的目标化合物16;
(1-3)取化合物16溶解在吡啶中,冰浴下分批将TsCl加入到反应液中,随后升温至室温反应。TLC监测反应至完全。将反应液浓缩,粗品用柱层析纯化得到化合物17;
(1-4)取化合物17溶解在DMF中,将三(四丁基)焦磷酸铵加入到反应液中,随后室温反应20小时。HPLC监控反应完全。减压浓缩除去大部分溶剂后得到化合物18粗品。将化合物18粗品溶解在浓氨水继续室温搅拌2小时。HPLC监控反应完全。浓缩除去氨水后用去离子水稀释。将混合物用DEAE Sephadex,流动相用0-1.0M的TEAB洗脱液线性梯度洗脱得到化合物 19;
(1-5)称取化合物19溶解在水溶液,反应液冷却至4℃,缓慢滴加硫酸二甲酯,过程中用2M的氢氧化钠调节PH不超过5,HPLC监测反应,反应结束后离子色谱纯化得化合物20;
(1-6)将化合物20溶解在DMF中,与三苯基膦,二硫二吡啶,咪唑充分反应,反应液加入4M的高氯酸钠丙酮溶液中析出,滤饼用丙酮充分洗涤得目标化合物21。
(2)磷酸酯键连接的二核苷酸的制备:
称取亚磷酰胺单体于单口瓶中,用二氯甲烷溶解,再加入双取代核苷单体,降温至25±2℃,氮气鼓吹下加入四氮唑,升温至25±2℃反应。监测反应结束后,将碘吡啶溶液加入到反应液中,监测反应结束后旋干,浓缩后的油膏溶解在二氯甲烷中,加入三氟乙酸,监测反应结束后,旋干,石油醚/二氯甲烷按一定比例打浆,过滤得中间体;将中间体溶解在磷酸三甲酯中,加入三氯氧磷充分搅拌反应,监测反应结束后,在旋瓶中加入甲醇和浓氨水,室温反应4小时,监测反应,反应结束后旋干,加入超纯水,进入反向离子渗透设备,洗涤浓缩,冻干得目标化合物;
(3)含GNA结构的起始加帽寡核苷酸引物的合成:
将化合物21溶解在含有MnCl2(0.2mol)的DMF溶液中,并添加到磷酸酯键连接的二核苷酸的DMF溶液中。在室温下搅拌反应。24小时后,用0.25M EDTA溶液终止反应。将混合物装载到DEAESephadex柱(30×500cm)上。将产物使用0-1.0M的TEAB洗脱液线性梯度洗脱。收集HPLC纯度>97%的洗脱产物,浓缩完以上分离液,再装载到强阴离子树脂,使用0-1.0M的醋酸钠洗脱液线性梯度洗脱,收集HPLC纯度>98.5%的洗脱产物,合并高纯度洗脱液,通过纳滤设备去除残留的醋酸钠溶液并浓缩得目标产物含GNA结构的起始加帽寡核苷酸引物。
该含GNA结构的起始加帽寡核苷酸引物用于T7 RNA聚合酶体系下的mRNA加帽。T7 RNA聚合酶是一种依赖DNA的RNA聚合酶,其对噬菌体T7启动子序列有高特异性。该酶从T7启动子插入到转录载体下游的DNA上合成大量RNA。T7 RNA聚合酶催化的IVT(体外转录)反应体系是目前最成熟的mRNA制备体系。
通常20ul的IVT反应体系中含有50U的T7 RNA聚合酶,同时搭配1ul的帽类似物(100mM)可以获得最佳的转录产量以及加帽效率。
本发明提供了一种含GNA结构的起始加帽寡核苷酸引物及其制备方法和应用,该含GNA结构的起始加帽寡核苷酸引物适用于以DNA序列为模板利用体外共转录方法生产的mRNA,该DNA序列可以来源或改造自病毒、动物、植物等物种,同时其生产的mRNA具有更低的免疫原性、更高的蛋白翻译效率、更好的稳定性。
本发明相比现有技术具有以下优点:
与现有帽结构类似物Cleancap相比,本发明的含GNA结构的起始加帽寡核苷酸引物其生产的mRNA具有显著降低细胞炎症因子表达水平,更低的免疫原性。
附图说明
图1是实施例1-3及对比例1-2的细胞表型图;
图2是实施例1-3及对比例1-2的荧光统计结果图;
图3是实施例4-6及对比例3的细胞表型图;
图4是实施例4-6及对比例3的荧光统计结果图。
具体实施方式
下面将结合本发明实施例,对本发明的技术方案进行清楚、完整的描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
各实施例中所使用的原料名称及来源参见下表1:
表1


以下各实施例中所使用的中间体K均通过以下步骤制备得到:
S1.称取5g的1,5-酐-D-山梨糖醇,溶解在50mL的DMF中,将苯甲醛二甲缩醛(2.0eq.)和对甲苯磺酸(0.2eq.)在室温下加入到反应液中,反应液升温至60℃搅拌10小时。TLC监控反应至完全,反应结束后加入200mL的饱和NaHCO3水溶液猝灭反应,适量的乙酸乙酯萃取三次后合并有机相,有机相用饱和食盐水洗涤后用无水硫酸钠干燥,用正己烷结晶得目标化合物A;
S2.称取5g的化合物A溶解在60mL的无水吡啶中,冰浴下将对甲苯磺酰氯(5.5eq.)滴加到反应液中,室温反应7天。TLC监控反应至完全,产物用丙酮重结晶得到目标化合物B。
S3.称取2.8g的化合物B溶解在50mL的二氯甲烷中,冰浴下将20mL的3M甲醇钠甲醇溶液滴加到反应液中,滴加完毕后升温至室温反应20小时。TLC监控反应至完全,反应结束后加入50mL的水,反应液用二氯甲烷萃取2 次后合并有机相,有机相用饱和食盐水洗涤后用无水硫酸钠干燥,用正庚烷结晶得目标化合物C;
S4.称取2.1g的化合物C,2-氨基-6-氯嘌呤(2.1eq.),aliquat 336(1.0eq.)和碳酸钾(2.0eq.)均匀分散在35mL六甲基磷酰三胺中,反应液在氮气氛围下升温至90℃搅拌3小时。TLC监控反应至完全,将反应液冷却后倒入350mL的冰水中,随后室温搅拌1小时,抽滤。滤饼用硅胶柱纯化得到目标化合物D。
S5.称取1.2g的化合物D和DABCO(2.9eq.)混悬在1M NaOH(50mL)中,升温至90℃搅拌2小时。TLC监控反应至完全,将反应液冷却后用1M HCl水溶液调节pH至中性,抽滤,水洗,干燥后得到目标化合物E。
S6.称取1.2g的化合物均匀分散在20mL的醋酸(80%水溶液)中,将反应液升温至80℃搅拌2小时。TLC监控反应至完全,浓缩除去醋酸后将粗品用硅胶柱纯化得到目标化合物F。
S7.将2g化合物F溶解在20ml的磷酸三甲酯中,反应液冷却至0℃,缓慢滴加1.5eq三氯氧磷,低温反应4小时后,加入2M的醋酸铵溶液猝灭反应,反相色谱纯化得目标化合物G。
S8.取2g化合物G与2eq的三苯基膦,2eq的二硫二吡啶,8eq的咪唑,1eq的TEA悬浮在20mL的DMF中,室温反应8小时,HPLC监控反应至原料≤1%,反应液加入4M的高氯酸钠丙酮溶液,抽滤,滤饼用丙酮充分洗涤得目标化合物H;
S9.称取2g目标化合物H悬浮在20mL DMF中,加入3eq的磷酸三丁胺和8eq的氯化锰,室温搅拌得6小时,HPLC监控反应至原料≤1%,将反应液倒入200mL水中得到化合物I的粗品水溶液。缓慢滴加8eq的硫酸二甲酯,过程中用2M的氢氧化钠调节pH不超过5,HPLC监测反应,反应结束后离子色谱纯化得目标化合物J;
S10.取1g化合物J与2eq的三苯基膦,2eq的二硫二吡啶,8eq的咪唑,1eq的TEA悬浮在10mL的DMF中,室温反应8小时,HPLC监控反应至原料≤1%,反应液加入4M的高氯酸钠丙酮溶液,抽滤,滤饼用丙酮充分洗涤得目标化合物K;
中间体K具体的反应路线流程,如下方程式(1):
合成例1中所使用A-G-P的合成路线为:称取5kg的2’OMe-rA亚磷酰胺单体于单口瓶中,用50L的二氯甲烷溶解,再加入2.73kg的2’,3’乙酰基鸟苷,降温至25±2℃,氮气鼓吹下加入880g四氮唑,升温至25±2℃反应。监测反应结束后,将1.2eq的碘吡啶溶液加入到反应液中,监测反应结束后旋干,浓缩后的油膏溶解在4L二氯甲烷中,加入1.1eq的三氟乙酸,监测反应结束后,旋干,石油醚/二氯甲烷按一定比例打浆,过滤得中间体G1;将G1溶解在4L乙腈中,加入1.2eq的膦试剂、1.2eq的四氮唑充分搅拌反应,监测反应结束后,再加入1.2eq的碘吡啶溶液加入到反应液中,监测反应结束后旋干,在旋瓶中加入3L甲醇和3L浓氨水,室温反应4小时,监测反应,反应结束后旋干,加入20L超纯水,进入反向离子渗透设备,洗涤浓缩,冻干得目标化合物A-G-P,反应路线流程,如下方程式(2):
合成例2中所使用的六元糖环取代的A-G-P的合成方法参考实施例1中A-G-P合成方法,六元糖环取代的A-G-P的反应路线流程,如下方程式(3):
实施例1:以中间体K和A-G-P为原料的含六元糖环结构的起始加帽寡核苷酸引物的合成方法
将中间体K(2mol)溶解在含有MnCl2(20mol)的DMF溶液中,并添加到A-G-P(1.8mol)的DMF溶液中。在室温下搅拌反应。24小时后,用10L的0.25M EDTA溶液终止反应。将混合物装载到DEAESephadex柱(30×500cm)上。将产物使用0-1.0M的TEAB洗脱液线性梯度洗脱。收集HPLC纯度>97%的洗脱产物,浓缩完以上分离液,再装载到强阴离子树脂,使用0-1.0M的醋酸钠洗脱液线性梯度洗脱,收集HPLC纯度>98.5%的洗脱产物,合并高纯度洗脱液,通过纳滤设备去除残留的醋酸钠溶液并浓缩得目标产物,反应路线流程,如下方程式(4):
实施例2:以中间体K和六元糖环取代的A-G-P为原料的含六元糖环结构的起始加帽寡核苷酸引物的合成方法
以中间体K和六元糖环取代的A-G-P为原料,参考实施例1目标产物的合成方法得到实施例2的起始加帽寡核苷酸引物。反应路线流程,如下方程式(5):
实施例3:以中间体N和六元糖环取代的A-G-P为原料的含六元糖环结构的起始加帽寡核苷酸引物的合成方法
以中间体N和六元糖环取代的A-G-P为原料,参考实施例1目标产物的合成方法得到实施3的起始加帽寡核苷酸引物。反应路线流程,如下方程式(6):
其中,中间体N通过以下步骤得到:1)称取5g鸟苷,分散在50mL的DMF中,冰浴使反应液内温低于10℃,分两个批次加入1.2eq的TBSCl,HPLC监控反应至原料≤5%,反应结束后加入100mL的水将产物析出,过滤并洗涤滤饼;将2g滤饼溶解在10ml的磷酸三甲酯中,反应液冷却至0℃,缓慢滴加1.2eq三氯氧磷,低温反应4小时后,加入2M的醋酸铵溶液猝灭反应,反相色谱纯化得目标化合物f,得到的化合物f与1eq的三苯基膦,2eq的二硫二吡啶,4eq的咪唑充分反应,反应液加入4M的高氯酸钠丙酮溶液中析出,滤饼用丙酮充分洗涤得目标化合物g;
2)称取2g目标化合物g溶解DMF中,加入3eq的磷酸三丁胺,充分搅拌得目标化合物h,向反应液中加入20eq的水溶液,反应液冷却至4℃,缓慢滴加硫酸二甲酯,过程中用2M的氢氧化钠调节Ph不超过5,HPLC监测反应,反应结束后离子色谱纯化得目标化合物i;
3)将4g化合物i溶解在50mL DMF中,与1eq的三苯基膦,2eq的二硫二吡啶,4eq的咪唑充分反应,反应液加入4M的高氯酸钠丙酮溶液中析出,滤饼用丙酮充分洗涤得目标化合物N;反应路线流程,如下方程式(7):
对比例1:m7GpppA2’OMepG
m7GpppA2’OMepG的合成方法参考上述实施例的合成方法,反应路线流程,如下方程式(8):
对比例2:仅有Rb为开环结构的加帽类似物,合成方法参考上述实施例的合成方法,反应路线流程,如下方程式(9):
其中,中间体L的合成路线流程,如下方程式:取5g中间体F,溶解在50.0mL的吡啶中,将乙酸酐(3.5eq)滴加到反应液中。室温搅拌5小时,TLC监测反应至完全。浓缩除去吡啶后得到中间体M粗品。将中间体M悬浮在70%的醋酸水溶液中加热至60摄氏度反应6小时。TLC监测反应至完全。浓缩除去溶剂,经柱层析得到中间体n。由中间体n合成中间体L的方法参考实施例1中A-G-P合成方法,反应路线流程,如下方程式(10)
各实施例所得到的含六元糖环结构的起始加帽寡核苷酸引物以及对比例所得到的加帽类似物结构如下表2所示,
表2

测试例1:mRNA体外转录产量及加帽效率的测定
利用含六元糖环取代结构的起始加帽寡核苷酸引物进行mRNA的体外合成:先用NotI线性化质粒,4℃酶切过夜;DNA模板抽提;体外转录合成mRNA,分别使用实施例1-3及对比例1-2的含六元糖环取代结构的起始加帽寡核苷酸引物作为帽结构。
反应体系如表3:
表3

备注:在实验过程中,首先计算好体系所需物料体积,然后进行加样。首先在体系中加入无菌无酶水,随后依次加入10X buffer、NTPs、帽类似物,混匀后轻轻离心,随后加入核酸酶抑制剂、无机焦磷酸酶、T7 RNA聚合酶、线性化DNA模板,充分混匀后轻轻离心,于37℃下孵育。2小时后加入DNase I 1U,37℃继续孵育30分钟以去除DNA模板,然后进行RNA纯化,通常使用磁珠纯化方法。纯化的mRNA用无菌无酶水进行溶解,随后利用Nanodrop One进行定量检测。
液相色谱质谱法(LC-MS)被用来检测不同起始帽类似物的mRNA的IVT加帽率;首先需要设计一段与转录产物mRNA起始碱基匹配的具有标记的DNA探针,通常的标记为biotin标记,将链霉亲和素标记的磁珠清洗后与合成的DNA探针、mRNA及10×RNase H reaction buffer室温室温孵育30分钟,边孵育边缓慢混匀,随后加入20ul RNase H(5U/ul)孵育37度3h,每半个小时混匀一次。孵育结束后对磁珠进行清洗,清洗完成后的磁珠加入100μL加热到80℃的75%甲醇,混合物在加热板上加热到80℃,保持3分钟,然后放置磁力架上吸取上清,使用蒸发离心机在室温下干燥45分钟至10μl。然后将样品重新悬浮在50μl的100μM EDTA/1%MeOH中,即可用于LC-MS分析,确定转录反应中RNA的加帽情况。由于加帽与非加帽的碱基在分子量上有明显区别,利用分子质量差别即可判定不同帽类似物起始的mRNA转录的加帽率。具体结果见表4。
表4

由实验结果可知,本申请的含六元糖环取代结构的起始加帽寡核苷酸引物与对比例相比具有相同水平的mRNA体外转录产量以及加帽效率。同时我们发现对比例2中第三个核苷酸的五元糖环被六元糖环取代后明显降低了mRNA体外转录产量以及加帽效率。
测试例2:细胞蛋白表达测试
采用eGFP编码序列为DNA模板,利用实施例中的帽类似物为起始进行体外转录。反应体系如表5。
表5

在实验过程中,首先计算好体系所需物料体积,然后进行加样。首先在体系中加入无菌无酶水,随后依次加入10X buffer、NTPs、帽类似物,混匀后轻轻离心,随后加入核酸酶抑制剂、无机焦磷酸酶、T7 RNA聚合酶、线性化DNA模板,充分混匀后轻轻离心,于37℃下孵育。2小时后加入DNase I 1U,37℃继续孵育30分钟以去除DNA模板,然后进行RNA纯化,通常使用磁珠纯化方法。
随后将获得的不同的mRNA产物进行293T细胞的转染。293T细胞以(0.5-1)×105个细胞进行铺板(24孔板),推荐使用在50代以内的细胞进行转染实验。要求在转染前24小时对细胞再次传代,在培养基中加入抗生素对转染效果没有影响。转染时细胞密度一般60-80%为佳,每孔转染2μg mRNA,转染试剂选用Lipofectamine MessengerMAX Transfection Reagent(Invitrogen)并参考其使用方法进行操作。转染后的细胞放置在37℃,CO2孵育箱中,转染4-6小时后,更换为新鲜的完全培养基。在37℃的CO2培养箱箱中孵育24小时以后,荧光显微镜观察其中GFP的荧光强度。
结果见图1和图2,结果中可以明显的看到本发明的mRNA的表达效率要明显高于对比例,同时两者均未引起明显的细胞死亡,这一结果表明本申请的加帽类似物具有更高的表达效率;即本发明中的含六元糖环结构的加帽类似物应用于mRNA合成有效蛋白翻译效率明显高于Cleancap(对比例1)帽结构的蛋白翻译效率。我们认为该含六元糖环结构的起始加帽寡核苷酸引物结构中含有的己糖醇核酸结构的帽类似物,相比于五元糖环,具有空间结构优势,可以更好地与mRNA翻译相关的转录因子蛋白(elF4E)结合;同时,非天然结构的帽类似物,抵抗内源性内切酶和外切酶降解的能力,提高RNA的稳定性,延长药物半衰期,明显提高mRNA的稳定性。最终可以实现六元糖环结构帽类似物有更好地蛋白翻译效果。
各实施例中所使用的原料名称及来源参见下表6:
表6


以下化合物A-F结构式如下方程式(11)所示
以下各实施例中所使用的中间体F均通过以下步骤制备得到:
(1-1)取5.0g鸟苷悬浮于100mL乙醇中,将1.2eq.的NaIO4溶解在150mL的40℃温水中,剧烈搅拌下滴加到腺苷的悬浮液中。15min后,加入(NH4)2B4O7.4H2O(1.2eq.)。通过滴加三乙胺(约5.0mL)保持反应体系pH=8.5~9.0,室温下反应1.5h后,HPLC监控反应至腺苷≤1%。抽滤,并用乙醇洗涤滤饼。冰浴下向滤液中分批次加入NaBH3CN(1.3eq.),室温下搅拌1h后,用TFA调pH=3~4,继续反应2h,HPCL监控反应完全。减压蒸馏除去残留的TFA。粗产物反相制备纯化,冻干,得到化合物A;
(1-2)将2g化合物A溶解在20ml的磷酸三甲酯中,反应液冷却至0℃,缓慢滴加2.0eq三氯氧磷,室温反应4小时后,加入2M的醋酸铵溶液猝灭反应,反相制备纯化,冻干得目标化合物B;
(1-3)取2g化合物B与2eq的三苯基膦,2eq的二硫二吡啶,8eq的咪唑,1eq的TEA悬浮在20mL的DMF中,室温反应8小时,HPLC监控反应至原料≤1%,反应液加入4M的高氯酸钠丙酮溶液,抽滤,滤饼用丙酮充分洗涤得目标化合物C;
(1-4)称取2g目标化合物C悬浮在20mL DMF中,加入3.5eq的磷酸三乙胺和8eq的氯化锰,室温搅拌得8小时,HPLC监控反应至原料≤1%,将反应液倒入200mL水中得到化合物D的粗品水溶液。缓慢滴加8eq的硫酸二甲酯,过程中用2M的氢氧化钠调节pH不超过5,HPLC监测反应,反应结束后离子色谱纯化、冻干得目标化合物E;
(1-5)取1g化合物E与2eq的三苯基膦,2eq的二硫二吡啶,8eq的咪唑,1eq的TEA悬浮在10mL的DMF中,室温反应8小时,HPLC监控反应至原料≤1%,反应液加入4M的高氯酸钠丙酮溶液,抽滤,滤饼用丙酮充分洗涤得目标化合物F;
中间体F具体的反应路线流程,如下方程式(11):
合成例4中所使用A-G-P的合成路线为:称取5kg的2’OMe-rA亚磷酰胺单体于单口瓶中,用50L的二氯甲烷溶解,再加入2.73kg的2’,3’乙酰基鸟苷,降温至25±2℃,氮气鼓吹下加入880g四氮唑,升温至25±2℃反应。监测反应结束后,将1.2eq的碘吡啶溶液加入到反应液中,监测反应结束后旋干,浓缩后的油膏溶解在4L二氯甲烷中,加入1.1eq的三氟乙酸,监测反应结束后, 旋干,石油醚/二氯甲烷按一定比例打浆,过滤得中间体G1;将G1溶解在4L乙腈中,加入1.2eq的膦试剂、1.2eq的四氮唑充分搅拌反应,监测反应结束后,再加入1.2eq的碘吡啶溶液加入到反应液中,监测反应结束后旋干,在旋瓶中加入3L甲醇和3L浓氨水,室温反应4小时,监测反应,反应结束后旋干,加入20L超纯水,进入反向离子渗透设备,洗涤浓缩,冻干得目标化合物A-G-P,反应路线流程,如下方程式(12):
合成例5中所使用的吗啉取代的A-G-P的合成方法参考实施例4中A-G-P合成方法,吗啉取代的A-G-P的反应路线流程,如下方程式(13):
其中C1的制备包括以下步骤:1)取10g A1和DMAP(0.1eq.)悬浮在10倍体积的吡啶中,室温下将TBDPSCl(1.1eq.)滴加到反应液中,室温反应至完全。将反应液浓缩除去吡啶,粗产物用甲醇重结晶得到A1;2)其中B1的合成参考中间体A的合成步骤;3)取5g B1溶解在二氯甲烷和乙腈的混合溶剂中 (1:1,40mL),0℃下将溴化锂(3.2eq.)的乙腈溶液(10mL)滴加到反应液中,搅拌2分钟后将DBU(3.2eq.)滴加进去,继续搅拌2分钟。将N,N-二甲基磷氨基二氯化物(1.6eq.)滴加到反应液中,随后室温反应1小时,TLC监测反应完全。反应液浓缩后通过柱层析纯化得到C1。
实施例4:以中间体F和A-G-P为原料的含吗啉环结构的起始加帽寡核苷酸引物的合成方法
将中间体F(2mol)溶解在含有MnCl2(20mol)的DMF溶液中,并添加到A-G-P(1.8mol)的DMF溶液中。在室温下搅拌反应。24小时后,用10L的0.25M EDTA溶液终止反应。将混合物装载到DEAESephadex柱(30×500cm)上。将产物使用0-1.0M的TEAB洗脱液线性梯度洗脱。收集HPLC纯度>97%的洗脱产物,浓缩完以上分离液,再装载到强阴离子树脂,使用0-1.0M的醋酸钠洗脱液线性梯度洗脱,收集HPLC纯度>98.5%的洗脱产物,合并高纯度洗脱液,通过纳滤设备去除残留的醋酸钠溶液并浓缩得目标产物,反应路线流程,如下方程式(14):
实施例5:以中间体F和吗啉取代的A-G-P为原料的含吗啉环结构的起始加帽寡核苷酸引物的合成方法
以中间体F和吗啉取代的A-G-P为原料,参考实施例4目标产物的合成方法得到实施例5的起始加帽寡核苷酸引物。反应路线流程,如下方程式(15):
实施例6:以中间体N和吗啉取代的A-G-P为原料的含吗啉环结构的起始加帽寡核苷酸引物的合成方法
以中间体N和吗啉取代的A-G-P为原料,参考实施例4目标产物的合成方法得到实施例6的起始加帽寡核苷酸引物。反应路线流程,如下方程式(16):
其中,中间体N通过以下步骤得到:1)称取5g鸟苷,分散在50mL的DMF中,冰浴使反应液内温低于10℃,分两个批次加入1.2eq的TBSCl,HPLC监控反应至原料≤5%,反应结束后加入100mL的水将产物析出,过滤并洗涤滤饼;将2g滤饼溶解在10ml的磷酸三甲酯中,反应液冷却至0℃,缓慢滴加1.2eq三氯氧磷,低温反应4小时后,加入2M的醋酸铵溶液猝灭反应,反相色谱纯化得目标化合物f,得到的化合物f与1eq的三苯基膦,2eq的二硫二吡啶,4eq的咪唑充分反应,反应液加入4M的高氯酸钠丙酮溶液中析出,滤饼用丙酮充分洗涤得目标化合物g;
2)称取2g目标化合物g溶解DMF中,加入3eq的磷酸三丁胺,充分搅拌得目标化合物h,向反应液中加入20eq的水溶液,反应液冷却至4℃,缓慢滴加硫酸二甲酯,过程中用2M的氢氧化钠调节Ph不超过5,HPLC监测反应,反应结束后离子色谱纯化得目标化合物i;
3)将4g化合物i溶解在50mL DMF中,与1eq的三苯基膦,2eq的二硫二吡啶,4eq的咪唑充分反应,反应液加入4M的高氯酸钠丙酮溶液中析出,滤饼用丙酮充分洗涤得目标化合物N;反应路线流程,如下方程式(17):
对比例3:m7GpppA2’OmepG
m7GpppA2’OmepG的合成方法参考上述实施例的合成方法,反应路线流程,如下方程式(18):
各实施例所得到的含吗啉环结构的起始加帽寡核苷酸引物以及对比例所得到的加帽类似物结构如下表7所示,
表7

测试例3:mRNA体外转录产量及加帽效率的测定
利用含吗啉环结构的起始加帽寡核苷酸引物进行mRNA的体外合成:先用NotI线性化质粒,4℃酶切过夜;DNA模板抽提;体外转录合成mRNA,分别使用实施例4-6及对比例3的含吗啉环结构的起始加帽寡核苷酸引物作为帽结构。
反应体系如表8:
表8
备注:在实验过程中,首先计算好体系所需物料体积,然后进行加样。首先在体系中加入无菌无酶水,随后依次加入10X buffer、NTPs、帽类似物,混匀后轻轻离心,随后加入核酸酶抑制剂、无机焦磷酸酶、T7 RNA聚合酶、线性化DNA模板,充分混匀后轻轻离心,于37℃下孵育。2小时后加入DNase I 1U,37℃继续孵育30分钟以去除DNA模板,然后进行RNA纯化,通常使用磁珠纯化方法。纯化的mRNA用无菌无酶水进行溶解,随后利用Nanodrop One进行定量检测。
液相色谱质谱法(LC-MS)被用来检测不同起始帽类似物的mRNA的IVT加帽率;首先需要设计一段与转录产物mRNA起始碱基匹配的具有标记的DNA探针,通常的标记为biotin标记,将链霉亲和素标记的磁珠清洗后与合成的DNA探针、mRNA及10×RNase H reaction buffer室温室温孵育30分钟,边孵育边缓慢混匀,随后加入20ul RNase H(5U/ul)孵育37度3h,每半个小时混匀一次。孵育结束后对磁珠进行清洗,清洗完成后的磁珠加入100μL加热到80℃的75%甲醇,混合物在加热板上加热到80℃,保持3分钟,然后放置磁力架上吸取上清,使用蒸发离心机在室温下干燥45分钟至10μl。然后将样品重新悬浮在50μl的100μM EDTA/1%MeOH中,即可用于LC-MS分析,确定转录反应中RNA的加帽情况。由于加帽与非加帽的碱基在分子量上有明显区别,利用分子质量差别即可判定不同帽类似物起始的mRNA转录的加帽率。具体结果见表9。
表9
由实验结果可知,本申请的含吗啉环结构的起始加帽寡核苷酸引物与对比例相比具有相同水平的mRNA体外转录产量以及加帽效率。
测试例4:mRNA与RIG-I结合能力的测定
RIG-I主要包括N端两个重复的caspase活化和募集结构域(caspase activation and recruitment domain,CARD),位于中间的解螺旋酶结构和C端RNA结构域。RIG-I的N端CARD结构域即使在没有病毒感染的条件下,过表达结构域也能够促进细胞分泌I型干扰素(IFN),因此,该结构域主要负责向下游传递信号。
本研究将利用实施例4-6含吗啉环结构的起始加帽寡核苷酸引物及对比例3的帽类似物为起始进行体外转录的eGFP的mRNA转染293T细胞,24小时后收集细胞,利用RNA免疫共沉淀的方法将胞内蛋白RIG-I与其结合的RNA一起进行免疫共沉淀,最后对这些mRNA进行逆转录以及实时定量PCR。
具体的细胞的培养条件同上,转染24h后收集细胞,首先加入固定液孵育,10min后加入合适浓度的甘氨酸溶液终止反应,收集细胞。利用裂解液对收集的细胞进行裂解,12000rpm,4℃离心10min,取上清分别与的RIG-I或IgG抗体,4度摇床孵育过夜。随后向其中加入20μl Protein A/G磁珠,4℃孵育4h后,在磁力架上进行洗涤,洗涤完成后,提取RNA即可用于后续RT-qPCR验证表达结果。不同帽类似物核苷酸mRNA与RIG-1的结合能力结果如下表10:
表10
由上表10的实验数据可知,本发明中的含吗啉环结构的起始加帽寡核苷酸引物应用于mRNA合成细胞免疫原性明显低于对比例Cleancap。
测试例5:mRNA的细胞内翻译效果检测
将IVT获得的不同的mRNA产物进行293T细胞的转染。293T细胞以(0.5-1)×105个细胞进行铺板(24孔板),推荐使用在50代以内的细胞进行转染实验。要求在转染前24小时对细胞再次传代,在培养基中加入抗生素对转 染效果没有影响。转染时细胞密度一般60-80%为佳,每孔转染2μg mRNA,转染试剂选用Lipofectamine MessengerMAX Transfection Reagent(Invitrogen)并参考其使用方法进行操作。转染后的细胞放置在37℃,CO2孵育箱中,转染4-6小时后,更换为新鲜的完全培养基。在37℃的CO2培养箱箱中孵育24小时以后,荧光显微镜观察其中GFP的荧光强度。结果见图3和图4,结果中可以明显的看到本发明的mRNA的表达效率要明显高于对比例,同时两者均未引起明显的细胞死亡。
这一结果表明本申请的实施例4含吗啉环结构的起始加帽寡核苷酸引物具有更高的表达效率;即本发明中的含吗啉环核苷结构的起始加帽寡核苷酸引物应用于mRNA合成有效蛋白翻译效率明显高于Cleancap(对比例3)帽结构的蛋白翻译效率。
实施例7:以化合物9和化合物N为原料的含GNA结构的起始加帽寡核苷酸引物的合成方法
将化合物N溶解在含有MnCl2(0.2mol)的DMF溶液中,并添加到化合物9(1.8mol)的DMF溶液中。在室温下搅拌反应。24小时后,用10L的0.25M EDTA溶液终止反应。将混合物装载到DEAESephadex柱(30×500cm)上。将产物使用0-1.0M的TEAB洗脱液线性梯度洗脱。收集HPLC纯度>97%的洗脱产物,浓缩完以上分离液,再装载到强阴离子树脂,使用0-1.0M的醋酸钠洗脱液线性梯度洗脱,收集HPLC纯度>98.5%的洗脱产物,合并高纯度洗脱液,通过纳滤设备去除残留的醋酸钠溶液并浓缩得目标产物GNA-1,反应路线流程,如下方程式(19):
其中,化合物9通过以下步骤制备得到:
(1-1)称取50g化合物1溶解在200ml乙腈中,搅拌均匀澄清后加入1.2eq的双乙酰化保护的甘油类似物,充分混合后,加入1.2eq BSA和1.4eq的四氯化锡,室温反应5h后HPLC监控反应,反应结束后,加入300ml饱和氯化铵 溶液猝灭反应,并用乙酸乙酯萃取反应体系三次,乙酸乙酯相干燥旋干后柱分离得产物2;
(1-2)称取10g化合物2,溶解在20ml甲醇中,加入2eq的氨水,反应结束后旋干体系,并用2体积的乙腈带水,水分小于100ppm后,再加入2体积的乙腈,2eq的吡啶,冰浴至反应体系温度小于4℃,缓慢滴加2eq三甲基氯硅烷,滴加结束后加入1.2eq的苯甲酰氯,室温反应5h后,浓缩的目标化合物3,纯化后通过与四氮唑和膦试剂反应得到目标化合物4;
(1-3)称取50g 4亚磷酰胺单体于单口瓶中,用200mL的二氯甲烷溶解,再加入1.2eq 2’,3’乙酰基鸟苷,降温至25±2℃,氮气鼓吹下加入0.5eq四氮唑,升温至25±2℃反应。监测反应结束后,将1.2eq的碘吡啶溶液加入到反应液中,监测反应结束后旋干,浓缩后的油膏溶解在400mL二氯甲烷中,加入1.1eq的三氟乙酸,监测反应结束后,旋干,石油醚/二氯甲烷按一定比例打浆,过滤得化合物7;将化合物7溶解在400mL磷酸三甲酯中,加入1.2eq的三氯氧磷充分搅拌反应,监测反应结束后,在旋瓶中加入300mL甲醇和300mL浓氨水,室温反应4小时,监测反应,反应结束后旋干,加入20L超纯水,进入反向离子渗透设备,洗涤浓缩,冻干得目标化合物9;
化合物9具体的反应路线流程,如下方程式(20):
其中,化合物N通过以下步骤得到:1)称取5g鸟苷,分散在50mL的DMF中,冰浴使反应液内温低于10℃,分两个批次加入1.2eq的TBSCl,HPLC监控反应至原料≤5%,反应结束后加入100mL的水将产物析出,过滤并洗涤滤饼;将2g滤饼溶解在10ml的磷酸三甲酯中,反应液冷却至0℃,缓慢滴加1.2eq三氯氧磷,低温反应4小时后,加入2M的醋酸铵溶液猝灭反应,反相 色谱纯化得目标化合物f,得到的化合物f与1eq的三苯基膦,2eq的二硫二吡啶,4eq的咪唑充分反应,反应液加入4M的高氯酸钠丙酮溶液中析出,滤饼用丙酮充分洗涤得目标化合物g;
2)称取2g目标化合物g溶解DMF中,加入3eq的磷酸三丁胺,充分搅拌得目标化合物h,向反应液中加入20eq的水溶液,反应液冷却至4℃,缓慢滴加硫酸二甲酯,过程中用2M的氢氧化钠调节Ph不超过5,HPLC监测反应,反应结束后离子色谱纯化得目标化合物i;
3)将4g化合物i溶解在50mL DMF中,与1eq的三苯基膦,2eq的二硫二吡啶,4eq的咪唑充分反应,反应液加入4M的高氯酸钠丙酮溶液中析出,滤饼用丙酮充分洗涤得目标化合物N。
化合物N反应路线流程,如下方程式(21):
实施例8:以化合物21和A-G-P为原料的含GNA结构的起始加帽寡核苷酸引物的合成方法
以化合物21和A-G-P为原料,参考实施例7目标产物GNA-1的合成方法得到实施例8的起始加帽寡核苷酸引物GNA-2。反应路线流程,如下方程式(22):
其中,化合物21的制备包括以下步骤:1)化合物15的合成参考化合物2 的合成步骤;2)化合物16的合成参考化合物3的合成步骤;3)取10g化合物16溶解在吡啶(100mL)中,冰浴下分批将TsCl(1.2eq.)加入到反应液中,随后升温至室温反应。TLC监测反应至完全。将反应液浓缩,粗品用柱层析纯化得到化合物17;4)取5g化合物17溶解在DMF(50mL)中,将三(四丁基)焦磷酸铵(2.0eq.)加入到反应液中,随后室温反应20小时。HPLC监控反应完全。减压浓缩除去大部分溶剂后得到化合物18粗品。将化合物18粗品溶解在150mL浓氨水继续室温搅拌2小时。HPLC监控反应完全。浓缩除去氨水后用去离子水稀释。将混合物用DEAE Sephadex,流动相用0-1.0M的TEAB洗脱液线性梯度洗脱得到化合物19;5)化合物20的合成参考化合物11的合成步骤;6)化合物21的合成参考化合物12的合成步骤。
化合物21的反应路线流程,如下方程式(23):
其中,A-G-P的合成路线为:称取5kg的2’OMe-rA亚磷酰胺单体于单口瓶中,用50L的二氯甲烷溶解,再加入2.73kg的2’,3’乙酰基鸟苷,降温至25±2℃,氮气鼓吹下加入880g四氮唑,升温至25±2℃反应。监测反应结束后,将1.2eq的碘吡啶溶液加入到反应液中,监测反应结束后旋干,浓缩后的油膏溶解在4L二氯甲烷中,加入1.1eq的三氟乙酸,监测反应结束后,旋干,石油醚/二氯甲烷按一定比例打浆,过滤得化合物G1;将G1溶解在4L乙腈中,加入1.2eq的膦试剂、1.2eq的四氮唑充分搅拌反应,监测反应结束后,再加入1.2eq的碘吡啶溶液加入到反应液中,监测反应结束后旋干,在旋瓶中加入3L甲醇和3L浓氨水,室温反应4小时,监测反应,反应结束后旋干,加入20L超纯水,进入反向离子渗透设备,洗涤浓缩,冻干得目标化合物A-G-P, 反应路线流程,如下方程式(24):
实施例9:以化合物9和化合物21为原料的含GNA结构的起始加帽寡核苷酸引物的合成方法
以化合物9和化合物21为原料(化合物9参考实施例7中的制备方法得到,化合物21参考实施例8的制备方法得到),参考实施例7目标产物GNA-1的合成方法得到实施例9的起始加帽寡核苷酸引物GNA-3。反应路线流程,如下方程式(25):
对比例4:m7GpppA2’OmepG
m7GpppA2’OmepG的合成方法参考上述实施例的合成方法(所使用的原料参考各实施例中的制备方法),反应路线流程,如下方程式(26):
各实施例所得到的含GNA结构的起始加帽寡核苷酸引物以及对比例所得 到的加帽类似物结构如下表11所示,
表11
测试例6:mRNA体外转录产量及加帽效率的测定
利用含GNA结构的起始加帽寡核苷酸引物进行mRNA的体外合成:先用NotI线性化质粒,4℃酶切过夜;DNA模板抽提;体外转录合 成mRNA,分别使用实施例7-9及对比例4的含GNA结构的起始加帽寡核苷酸引物作为帽结构。
反应体系如表3。具体结果见表12。
表12
由实验结果可知,本申请的实施例7和实施例8含GNA结构的起始加帽寡核苷酸引物与对比例相比具有相同水平的mRNA体外转录产量以及加帽效率;但是实施例9的加帽效率有明显的降低,这可能它由于结构和帽类似物差距较大,不利于T7 RNA聚合酶的催化反应,导致加帽效率降低。
测试例7:mRNA在细胞内刺激炎症因子的表达
Hela细胞以4×105/孔的密度铺于6孔板,细胞密度大约为80%时进行转染。每孔转染2ug mRNA,转染试剂为Lipofectamine MessengerMAX Transfection Reagent(Invitrogen),转染步骤参照说明书进行。24小时后收集细胞,利用TRIzol抽取RNA,并将RNA逆转录为cDNA。最后利用实时定量荧光PCR检测细胞内炎症因子的表达,内参基因为β-ACTIN。每个基因的检测需要重复三次,每个基因的表达结果为相对于对比例4帽类似物结果的相对值。数据表示为平均值±标准差,所得结果见下表13:
表13

由上表13的实验数据可知,本申请的实施例7和实施例8含GNA结构的起始加帽寡核苷酸引物与对比例4相比具有显著降低细胞炎症因子表达水平,具有更低的免疫原性。但是实施例9的细胞炎症因子表达水平高于对比例4,这可能是由于加帽类似物加帽效率较低,产物中残留了未加帽的mRNA,导致免疫原性增强。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (15)

  1. 一种含六元糖环结构的起始加帽寡核苷酸引物,其特征在于,其包含以下式Ⅰ所示结构:
    式Ⅰ中,X1、X2和X3分别独立的为O、CH2或NH;
    Y1、Y2和Y3分别独立的为O、S、Se或BH3
    RaRb为且当Ra为时,Rb为
    R1、R2和R3、R6、R7、R8独立的为氢、羟基、取代或未取代的O-烷基、取代或未取代的S-烷基、取代或未取代的NH-烷基、取代或未取代的N-二烃基、取代或未取代的O-芳香基、取代或未取代的S-芳香基、取代或未取代的NH-芳香基、取代或未取代的O-芳烷基、取代或未取代的S-芳烷基、取代或未取代的NH-芳烷基;
    R4和R5独立的为H、OH、烷基、O-烷基、卤素;
    B1和B2独立的为天然的、或修饰的、或非天然的核苷碱基。
  2. 根据权利要求1所述的含六元糖环结构的起始加帽寡核苷酸引物,其特征在于,
    X1、X2和X3均为O;
    Y1、Y2和Y3均为O;
    R1、R2和R3独立的为氢或羟基;
    R6、R7、R8独立的为氢、取代或未取代的O-C1~C6烷基;
    R4和R5独立的为H或OH;
    B1和B2独立的为以下结构:
  3. 根据权利要求1所述的含六元糖环结构的起始加帽寡核苷酸引物,其特征在于,具有以下任一结构:
  4. 权利要求1~3任一项所述的含六元糖环结构的起始加帽寡核苷酸引物的制备方法,其特征在于,包括以下步骤:(1)中间体K的合成:从山梨糖醇出发合成化合物A,在化合物A的基础上依次进行糖苷化、磷酸化、单磷酸咪唑化,二磷酸化、N7的甲基化、多磷酸的咪唑化等反应,合成中间体K;(2)磷酸酯键连接的二核苷酸的制备:通过亚磷酰胺单体与双取代核苷单体, 在四氮唑的作用下偶联形成第一个磷酸酯键,通过酸作用,脱除保护基,然后引入第二个磷酸,最终水解得到磷酸酯键连接的二核苷酸;(3)含六元糖环结构的起始加帽寡核苷酸引物的合成:中间体K与磷酸酯键连接的二核苷酸反应制备含六元糖环结构的起始加帽寡核苷酸引物;
    所述亚磷酰胺单体结构式为:
    其中,R9为H、OH、烷基、O-烷基、卤素;R10为氢、羟基、取代或未取代的O-烷基、取代或未取代的S-烷基、取代或未取代的NH-烷基、取代或未取代的N-二烃基、取代或未取代的O-芳香基、取代或未取代的S-芳香基、取代或未取代的NH-芳香基、取代或未取代的O-芳烷基、取代或未取代的S-芳烷基、取代或未取代的NH-芳烷基;
    B3和B4独立的为天然的、或修饰的、或非天然的核苷碱基。
  5. 权利要求1~3任一项所述的含六元糖环结构的起始加帽寡核苷酸引物的应用,其特征在于:该含六元糖环结构的起始加帽寡核苷酸引物的mRNA加帽,使用T7 RNA聚合酶。
  6. 一种含吗啉环结构的起始加帽寡核苷酸引物,其特征在于,其包含以下式Ⅱ所示结构:
    式Ⅱ中,X1、X2和X3分别独立的为O、CH2或NH;
    Y1、Y2和Y3分别独立的为O、S、Se或BH3
    RaRb为且当Ra为时,Rb为
    R1为氢、羟基、取代或未取代的O-烷基、取代或未取代的S-烷基、取代或未取代的NH-烷基、取代或未取代的N-二烃基、取代或未取代的O-芳香基、取代或未取代的S-芳香基、取代或未取代的NH-芳香基、取代或未取代的O-芳烷基、取代或未取代的S-芳烷基、取代或未取代的NH-芳烷基;
    R2和R3独立的为H、OH、烷基、O-烷基、卤素;
    B1和B2独立的为天然的、或修饰的、或非天然的核苷碱基。
  7. 根据权利要求6所述的含吗啉环结构的起始加帽寡核苷酸引物,其特征在于,
    X1、X2和X3均为O;
    Y1、Y2和Y3均为O;
    R1为氢、羟基、取代或未取代的O-C1~C6烷基;
    R2和R3独立的为H或OH;
    B1和B2独立的为以下结构:
  8. 根据权利要求6所述的含吗啉环结构的起始加帽寡核苷酸引物,其特征在于,具有以下任一结构:
  9. 权利要求6~8任一项所述的含吗啉环结构的起始加帽寡核苷酸引物的制备方法,其特征在于,包括以下步骤:(1)中间体F的合成:从鸟苷出发合成化合物A,在化合物A的基础上依次进行二磷酸化、N7的甲基化、多磷酸的咪唑化反应,合成中间体F;(2)磷酸酯键连接的二核苷酸的制备:通过(亚)磷酰胺单体与双取代核苷单体,在四氮唑的作用下偶联形成第一个磷酸酯键,通过酸作用,脱除保护基,然后引入第二个磷酸,最终水解得到磷酸酯键连接的二核苷酸;(3)含吗啉环结构的起始加帽寡核苷酸引物的合成:中间体F与磷酸酯键连接的二核苷酸反应制备含吗啉环结构的起始加帽寡核苷酸引物;
    所述(亚)磷酰胺单体结构式为:
    其中,R4为H、OH、烷基、O-烷基、卤素;B3和B4独立的为天然的、或修饰的、或非天然的核苷碱基。
  10. 权利要求6~8任一项所述的含吗啉环结构的起始加帽寡核苷酸引物的应用,其特征在于:该含吗啉环结构的起始加帽寡核苷酸引物的mRNA加帽,使用T7 RNA聚合酶的IVT反应体系。
  11. 一种含GNA结构的起始加帽寡核苷酸引物,其特征在于,其包含以下式Ⅲ所示结构:
    其中,X1、X2和X3分别独立的为O、CH2或NH;
    Y1、Y2和Y3分别独立的为O、S、Se或BH3
    Ra为Rb且当Ra为时,Rb为当Ra为时,Rb为
    R1、R2、R3独立的为H、OH、烷基、O-烷基、卤素;
    R4为氢、羟基、取代或未取代的O-烷基、取代或未取代的S-烷基、取代或未取代的NH-烷基、取代或未取代的N-二烃基、取代或未取代的O-芳香基、取代或未取代的S-芳香基、取代或未取代的NH-芳香基、取代或未取代的O-芳烷基、取代或未取代的S-芳烷基、取代或未取代的NH-芳烷基;
    B1、B2和B3独立的为天然的、或修饰的、或非天然的核苷碱基。
  12. 根据权利要求11所述的含GNA结构的起始加帽寡核苷酸引物,其特征在于,
    X1、X2和X3均为O;
    Y1、Y2和Y3均为O;
    R1、R2、R3独立的为H或OH;
    R4为氢、羟基、取代或未取代的O-C1~C6烷基;
    B1和B2独立的为以下结构:
    B3为以下结构:
  13. 根据权利要求11所述的含GNA结构的起始加帽寡核苷酸引物,其特征在于,具有以下任一结构:
  14. 权利要求11~13任一项所述的含GNA结构的起始加帽寡核苷酸引物的制备方法,其特征在于,包括以下步骤:(1)二磷酸咪唑中间体的合成:以N2-异丁酰鸟嘌呤或鸟苷为起始原料,依次进行糖苷化、二磷酸化、N7的甲基化、多磷酸的咪唑化等反应,合成二磷酸咪唑中间体;(2)磷酸酯键连接的二 核苷酸的制备:通过亚磷酰胺单体与双取代核苷单体,在四氮唑的作用下偶联形成第一个磷酸酯键,通过酸作用,脱除保护基,然后引入第二个磷酸,最终水解得到磷酸酯键连接的二核苷酸;(3)含GNA结构的起始加帽寡核苷酸引物的合成:二磷酸咪唑中间体与磷酸酯键连接的二核苷酸反应制备含GNA结构的起始加帽寡核苷酸引物;
    所述亚磷酰胺单体结构式为:
    其中,R5为H、OH、烷基、O-
    烷基、卤素;B4为天然的、或修饰的、或非天然的核苷碱基。
  15. 权利要求11~13任一项所述的含GNA结构的起始加帽寡核苷酸引物的应用,其特征在于:该含GNA结构的起始加帽寡核苷酸引物的mRNA加帽,使用T7 RNA聚合酶。
PCT/CN2023/101657 2022-06-22 2023-06-21 一种起始加帽寡核苷酸引物及其制备方法和应用 WO2023246860A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202210716120.6A CN115057903B (zh) 2022-06-22 2022-06-22 一种含吗啉环结构的起始加帽寡核苷酸引物及其制备方法和应用
CN202210716077.3A CN115109110A (zh) 2022-06-22 2022-06-22 一种含六元糖环结构的起始加帽寡核苷酸引物及其制备方法和应用
CN202210716077.3 2022-06-22
CN202210716120.6 2022-06-22
CN202210732340.8A CN114853836B (zh) 2022-06-24 2022-06-24 一种含gna结构的起始加帽寡核苷酸引物及其制备方法和应用
CN202210732340.8 2022-06-24

Publications (1)

Publication Number Publication Date
WO2023246860A1 true WO2023246860A1 (zh) 2023-12-28

Family

ID=89379175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/101657 WO2023246860A1 (zh) 2022-06-22 2023-06-21 一种起始加帽寡核苷酸引物及其制备方法和应用

Country Status (1)

Country Link
WO (1) WO2023246860A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017066793A1 (en) * 2015-10-16 2017-04-20 Modernatx, Inc. Mrna cap analogs and methods of mrna capping
WO2017066797A1 (en) * 2015-10-16 2017-04-20 Modernatx, Inc. Trinucleotide mrna cap analogs
CN108366604A (zh) * 2015-09-21 2018-08-03 垂林克生物技术公司 用于合成5’-加帽rna的组合物和方法
CN114853836A (zh) * 2022-06-24 2022-08-05 江苏申基生物科技有限公司 一种含gna结构的起始加帽寡核苷酸引物及其制备方法和应用
CN115057903A (zh) * 2022-06-22 2022-09-16 江苏申基生物科技有限公司 一种含吗啉环结构的起始加帽寡核苷酸引物及其制备方法和应用
CN115109110A (zh) * 2022-06-22 2022-09-27 江苏申基生物科技有限公司 一种含六元糖环结构的起始加帽寡核苷酸引物及其制备方法和应用
WO2023007019A1 (en) * 2021-07-30 2023-02-02 CureVac SE Cap analogs having an acyclic linker to the guanine derivative nucleobase

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108366604A (zh) * 2015-09-21 2018-08-03 垂林克生物技术公司 用于合成5’-加帽rna的组合物和方法
WO2017066793A1 (en) * 2015-10-16 2017-04-20 Modernatx, Inc. Mrna cap analogs and methods of mrna capping
WO2017066797A1 (en) * 2015-10-16 2017-04-20 Modernatx, Inc. Trinucleotide mrna cap analogs
WO2023007019A1 (en) * 2021-07-30 2023-02-02 CureVac SE Cap analogs having an acyclic linker to the guanine derivative nucleobase
CN115057903A (zh) * 2022-06-22 2022-09-16 江苏申基生物科技有限公司 一种含吗啉环结构的起始加帽寡核苷酸引物及其制备方法和应用
CN115109110A (zh) * 2022-06-22 2022-09-27 江苏申基生物科技有限公司 一种含六元糖环结构的起始加帽寡核苷酸引物及其制备方法和应用
CN114853836A (zh) * 2022-06-24 2022-08-05 江苏申基生物科技有限公司 一种含gna结构的起始加帽寡核苷酸引物及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN114853836B (zh) 一种含gna结构的起始加帽寡核苷酸引物及其制备方法和应用
CN115109110A (zh) 一种含六元糖环结构的起始加帽寡核苷酸引物及其制备方法和应用
Altman et al. Tyrosine tRNA precursor molecule polynucleotide sequence
AU2023200136A1 (en) Polynucleotides containing a stabilizing tail region
WO2023213237A1 (zh) 一种含开环核苷结构的起始加帽寡核苷酸引物
JP6817493B2 (ja) 一本鎖rnaの製造方法
CN115057903B (zh) 一种含吗啉环结构的起始加帽寡核苷酸引物及其制备方法和应用
US20130046084A1 (en) Oligonucleotide ligation
US20010026918A1 (en) Reduction of nonspecific hybridization by using novel base-pairing schemes
US20020068708A1 (en) Oligonucleotide analogues
WO2023202199A1 (zh) 一种加帽组合物及其制备方法和体外转录反应体系
CN116143854A (zh) 一种核糖环修饰的mRNA帽类似物及其制备方法和应用
US20230250127A1 (en) MODIFIED mRNA 5'-CAP ANALOGS
Sisido et al. Four-base codon/anticodon strategy and non-enzymatic aminoacylation for protein engineering with non-natural amino acids
Ikehara et al. Synthesis of formycin triphosphate and its incorporation into ribopolynucleotide by DNA-dependent RNA polymerase
CN116143855B (zh) 一种乙烯基膦酸修饰的mRNA帽类似物及其制备方法和应用
CN116987137B (zh) 一种加帽化合物及其在mRNA加帽中的应用
WO2023246860A1 (zh) 一种起始加帽寡核苷酸引物及其制备方法和应用
CN116478226A (zh) 一种锁核苷帽类似物和应用
EP3309250A1 (en) Amino acid-modified nucleic acid and utilization thereof
CN116375781B (zh) 一种tna修饰的帽类似物及其制备方法和应用
CN116768950B (zh) 一种起始加帽寡核苷酸引物及其应用
Koyama et al. Base-resolution analysis of 5-hydroxymethylcytidine by selective oxidation and reverse transcription arrest
CN116554250A (zh) 一种pace结构修饰的帽类似物及其应用
JP6813374B2 (ja) タンパク質セット、タンパク質、遺伝子セット、遺伝子、発現ベクター、形質転換体、及びボトリオコッセンの合成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23826505

Country of ref document: EP

Kind code of ref document: A1