WO2023202192A1 - 一种铌酸锂单面抛光片的清洗方法 - Google Patents

一种铌酸锂单面抛光片的清洗方法 Download PDF

Info

Publication number
WO2023202192A1
WO2023202192A1 PCT/CN2023/075803 CN2023075803W WO2023202192A1 WO 2023202192 A1 WO2023202192 A1 WO 2023202192A1 CN 2023075803 W CN2023075803 W CN 2023075803W WO 2023202192 A1 WO2023202192 A1 WO 2023202192A1
Authority
WO
WIPO (PCT)
Prior art keywords
wafer
brush
cleaning
sided
lithium niobate
Prior art date
Application number
PCT/CN2023/075803
Other languages
English (en)
French (fr)
Inventor
徐秋峰
曹焕
沈浩
张忠伟
钱煜
张伟明
濮思麒
Original Assignee
天通控股股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天通控股股份有限公司 filed Critical 天通控股股份有限公司
Publication of WO2023202192A1 publication Critical patent/WO2023202192A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/08Cleaning involving contact with liquid the liquid having chemical or dissolving effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B1/00Cleaning by methods involving the use of tools
    • B08B1/10Cleaning by methods involving the use of tools characterised by the type of cleaning tool
    • B08B1/12Brushes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B1/00Cleaning by methods involving the use of tools
    • B08B1/30Cleaning by methods involving the use of tools by movement of cleaning members over a surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B1/00Cleaning by methods involving the use of tools
    • B08B1/30Cleaning by methods involving the use of tools by movement of cleaning members over a surface
    • B08B1/32Cleaning by methods involving the use of tools by movement of cleaning members over a surface using rotary cleaning members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/10Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration
    • B08B3/12Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration by sonic or ultrasonic vibrations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • H01L21/67046Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing using mainly scrubbing means, e.g. brushes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present disclosure belongs to the field of semiconductor material cleaning, and specifically relates to a cleaning method for single-sided polished wafers of semiconductor material lithium niobate.
  • Lithium niobate is a multifunctional material that integrates piezoelectric, ferroelectric, pyroelectric, nonlinear, photoelectric, photoelastic, photorefractive and other functions. Lithium niobate has received more and more attention due to its excellent physical properties and is widely used in aviation, aerospace, civilian optoelectronic products and other fields. Polished lithium niobate substrates are widely used in sensors, acousto-optical devices, optical gyroscopes, etc. Unlike silicon wafers and sapphire wafers, it is characterized by extremely low fracture toughness, which makes lithium niobate wafers easily broken during the cleaning process, resulting in high production costs for enterprises.
  • lithium niobate wafers have strong electrostatic adsorption capabilities, making it difficult to handle particles on the surface of the wafer.
  • Lithium niobate wafers Particle contamination on the surface of the wafer will have a direct impact on subsequent processes such as glue coating and coating, leading to defective wafers. Therefore, it is not only necessary to carry out clean protection in the packaging and transportation links, but also to achieve high cleanliness and good quality from the source of the product, so that the lithium niobate wafer can maintain high surface cleanliness requirements.
  • the wafer cleaning process plays a vital role in maintaining high cleanliness on the surface of lithium niobate wafers.
  • lithium niobate wafers are easily fragmented during the cleaning process, which causes great difficulties in subsequent processing of the wafers. Therefore, it is urgent to develop a cleaning method with high cleanliness and low fragmentation rate.
  • the invention patent with announcement number CN101661869B discloses a cleaning method for gallium arsenide wafers after polishing, using concentrated sulfuric acid and high-temperature cleaning to remove dirt on the wafer surface.
  • high-temperature cleaning with concentrated sulfuric acid can easily cause strong acid corrosion and chipping of the wafers, and the acid is easily volatile during processing, posing potential safety hazards to the environment and human body.
  • the traditional cleaning method of sulfuric acid immersion and cleaning agent has poor cleaning effect on particle contamination on the wafer surface.
  • the invention patent with announcement number CN102479669B discloses a wafer brush cleaning device and a wafer brush cleaning method. Use double-sided brush scrubbing to remove chip particles.
  • the cleaning ability is not strong only by brushing and moving with two-sided brushes. It can only scrub away large particles on the surface of the wafer, which cannot meet the high cleanliness requirements.
  • the present disclosure provides a method for cleaning single-sided polished lithium niobate wafers to solve the defects of the prior art.
  • the cleaning process of this method is stable, and the obtained wafer surface has high cleanliness and low cleaning debris rate.
  • the technical solution adopted by this disclosure to solve the problem is: a cleaning method for single-sided polished lithium niobate wafers.
  • the wafer cleaning method includes the following steps:
  • step b) Preheat and soak the lithium niobate wafer processed in step a) in pure water at 55-65°C for 1-3 minutes, and then place the wafer in an organic solvent cleaning solution at 70-80°C for ultrasonic cleaning for 10 -20 minutes to remove organic contamination and heavy metal ion contamination on the wafer surface;
  • step b) Place the lithium niobate wafer processed in step b) into a deionized water rinse tank, perform spraying, water injection, overflowing, and quick discharge processing, repeat 4-6 times to remove the cleaning agent residue on the wafer surface;
  • step c) The lithium niobate wafer processed in step c) is first scrubbed with a double-sided brush in an alkaline cleaning solution, then scrubbed and sprayed with a double-sided brush in deionized water, and then dried;
  • step d) Adsorb the back side of the lithium niobate wafer processed in step d) on the vacuum platform, with the polished side facing up, and brush it with a single-sided brush. During brushing, spray two fluids at the same time, and then rinse and dry it with deionized water. , so that there are no more than 30 particles of no less than 0.3 ⁇ m on the surface of the wafer.
  • the ammonium bifluoride diluent is heated and soaked to remove the silicon dioxide polishing liquid residue on the surface of the polished wafer, which does not damage the polished surface but also prevents the stubborn pollution caused by the crystallization of the polishing liquid.
  • the mass fraction of ammonium bifluoride in step a) is 98%, and the ammonium bifluoride diluent is a mixture of pure water and ammonium bifluoride at a mass ratio of 10 to 15:1.
  • the organic solvent cleaning solution is mixed with pure water and organic solvent in a volume ratio of 5 to 10:1.
  • the mass ratio of each component of the organic solvent cleaning agent is isopropanolamine 15 to 20%, N -Methylpyrrolidone 30 ⁇ 40%, potassium hydroxide 3 ⁇ 10%, pure water 40 ⁇ 60%.
  • step c four steps of spraying, water filling, overflowing, and quick discharge are used to repeat the cleaning process to remove particulate impurities and cleaning liquid residues on the wafer surface.
  • step c) the spraying time is 50-70s, the water injection amount is to submerge the wafer, the overflow time is 20-30s, the quick discharge time is 10s, and the number of repetitions is 4-6 times.
  • double-sided brushing is used to remove large particles on the polished surface of the front side of the wafer, reducing the accumulation of particle dirt caused by single-sided brushing. It also removes large particles on the back side of the wafer, preventing post-process processing. And the granularity of the polished surface during operation is affected by the large particles on the back of the wafer.
  • Double-sided brushing is a double-sided transmission roller brush method. The brush rotates and drives the wafer to translate.
  • the double-sided brushing is a double-sided transmission roller brush.
  • the brush rotates and drives the wafer to translate.
  • the double-sided brush is a roller brush made of PVA, and the brush speed is 6-10 rpm.
  • the pressing distance of the upper and lower brushes is 1000-1300 ⁇ m, the brushing time is 3-5 minutes, the brush diameter is 2-3cm, the spray rinse is 10-20s, the wafer drying speed is 1200-1500rpm, and the drying time is 15-20s.
  • the alkaline cleaning solution is mixed with deionized water and an alkaline cleaning agent in a volume ratio of 30 to 50:1, and the mass ratio of the components of the alkaline cleaning agent is sodium hydroxide of 0.2 to 0.6. %, potassium hydroxide 1 to 3%, chelating agent 0.5 to 2%, nonionic surfactant 2 to 5%, deionized water 90 to 96%.
  • the polished surface of the lithium niobate wafer is brushed with a single-sided brush.
  • a two-fluid spray is performed at the same time, and then rinsed with deionized water and dried.
  • the brushing process will directly affect the surface of the wafer. Debris rate during scrubbing and cleanliness after scrubbing.
  • the single-sided brush in step e) is a gyroscopic brush made of PVA
  • the brush pressing distance is 900-1200 ⁇ m
  • the brush rotation speed is 1000-1500 rpm
  • the brush translation speed is 15-1500 rpm. 20mm/s
  • the wafer center pauses for 0.5-1s
  • the wafer brushing speed is 300-600rpm
  • deionized water rinses for 5-10s
  • the wafer drying speed is 3000- 4000rpm
  • the present disclosure has the following beneficial technical effects:
  • This cleaning method solves the problem of crystallization of the polishing liquid remaining on the surface of the wafer after the silicon dioxide polishing liquid polishes the lithium niobate wafer;
  • This cleaning method replaces the use of concentrated sulfuric acid and hydrogen peroxide mixed washing liquid for wafer cleaning, avoiding the strong acid corrosion and chipping problem caused by concentrated sulfuric acid washing liquid, and at the same time preventing the volatile acid liquid during the processing process, which is harmful to the environment and human body. hidden danger issues;
  • This cleaning method solves the problem of traditional acetone, absolute ethanol ultrasonic cleaning and RCA cleaning methods on the wafer surface.
  • Figure 1 is a process flow chart of the present disclosure
  • Figure 2 is a schematic diagram of the relationship between pure water preheating soaking and fragmentation rate in Examples 1, 2, and 3 of the present disclosure
  • Figure 3 is a schematic diagram of the relationship between the proportion of alkaline clear solutions and particle size in Examples 4, 5, and 6 of the present disclosure
  • Figure 4 is a schematic diagram showing the relationship between brush pressing distance, fragmentation rate and particle size in Examples 7, 8 and 9 of the present disclosure
  • Figure 5 is a schematic diagram showing the relationship between the brush stopping at the edge of the wafer and the particle size in Examples 8, 10, 11, and 12 of the present disclosure.
  • Embodiment 1-3 only includes the first two processes
  • Embodiment 4-6 includes the first four processes.
  • Examples 7-12 are complete cleaning processing procedures.
  • organic solvent cleaning agent Prepares an organic solvent cleaning agent according to the mass fraction of the following ingredients, namely isopropanolamine 18%, N-methylpyrrolidone 35%, potassium hydroxide 4%, pure water 43%, and clean according to the pure water and organic solvent Agent 8:1 volume ratio mixed into organic Solvent cleaning solution: preheat and soak the lithium niobate wafer in pure water at 75°C for 2 minutes, then place the wafer in an organic solvent cleaning solution at 75°C for 40kHZ ultrasonic cleaning for 15 minutes, put in 1412 pieces, and break 11 Pieces, fragmentation rate 0.78%;
  • an alkaline cleaning agent according to the mass fraction of the following ingredients, namely sodium hydroxide 0.4%, potassium hydroxide 2%, chelating agent 1.2%, nonionic surfactant 4%, deionized water 92.4%, according to the formula Ionized water and alkaline cleaning agent are mixed into an alkaline cleaning solution at a volume ratio of 25:1.
  • the lithium niobate wafer is first brushed with a double-sided brush in the alkaline cleaning solution, and then brushed and sprayed with a double-sided brush in deionized water.
  • an alkaline cleaning agent according to the mass fraction of the following ingredients, namely sodium hydroxide 0.4%, potassium hydroxide 2%, chelating agent 1.2%, nonionic surfactant 4%, deionized water 92.4%, according to the formula Mix ionized water and alkaline cleaning agent at a volume ratio of 40:1 to form an alkaline cleaning solution.
  • the lithium niobate wafer is first scrubbed with a double-sided brush using the alkaline cleaning solution, and then scrubbed and sprayed with deionized water using a double-sided brush.
  • an alkaline cleaning agent according to the mass fraction of the following ingredients, namely sodium hydroxide 0.4%, potassium hydroxide 2%, chelating agent 1.2%, nonionic surfactant 4%, deionized water 92.4%, according to the formula Mix ionized water and alkaline cleaning agent at a volume ratio of 60:1 to form an alkaline cleaning solution.
  • the lithium niobate wafer is first scrubbed with a double-sided brush using the alkaline cleaning solution, and then scrubbed and sprayed with deionized water using a double-sided brush.
  • the polished surface of the lithium niobate wafer is brushed with a single-sided brush.
  • a two-fluid spray is performed at the same time.
  • the pressing distance of the brush during brushing is 600 ⁇ m
  • the brush rotation speed is 1300 rpm
  • the brush translation speed is 17 mm/s.
  • the center of the wafer is paused for 1 second
  • the edge of the wafer is paused for 1 second
  • the wafer brushing speed is 400rpm
  • the brush is scrubbed back and forth 5 times, and then rinsed with deionized water for 8s
  • the wafer is dried
  • the drying speed is 3500rpm
  • the drying time is 26s. 922 pieces were put in, 0 pieces were broken, the fragmentation rate was 0%, 74 pieces were sampled, and the particles ⁇ 0.3 ⁇ m were ⁇ 97;
  • the polished surface of the lithium niobate wafer is brushed with a single-sided brush.
  • a two-fluid spray is performed at the same time.
  • the pressing distance of the brush during brushing is 1400 ⁇ m
  • the brush rotation speed is 1300 rpm
  • the brush translation speed is 17 mm/s.
  • the center of the wafer is paused for 1 second
  • the edge of the wafer is paused for 1 second
  • the wafer brushing speed is 400rpm
  • the brush is scrubbed back and forth 5 times, and then rinsed with deionized water for 8s, and then the wafer is dried
  • the drying speed is 3500rpm
  • the drying time is 26s. 1161 pieces were put in, 5 pieces were broken, the fragmentation rate was 0.58%, 93 pieces were sampled, ⁇ 0.3 ⁇ m particles ⁇ 39 pieces;
  • the polished surface of the lithium niobate wafer is brushed with a single-sided brush.
  • a two-fluid spray is performed at the same time.
  • the pressing distance of the brush during brushing is 1000 ⁇ m
  • the brush rotation speed is 1300 rpm
  • the brush translation speed is 17 mm/s.
  • the center of the wafer is paused for 1s
  • the edge of the wafer is paused for 3s
  • the wafer brushing speed is 400rpm
  • the brush is scrubbed back and forth 5 times, and then rinsed with deionized water for 8s
  • the wafer is dried
  • the drying speed is 3500rpm
  • the drying time is 26s.
  • the polished surface of the lithium niobate wafer is brushed with a single-sided brush.
  • a two-fluid spray is performed at the same time.
  • the pressing distance of the brush during brushing is 1000 ⁇ m
  • the brush rotation speed is 1300 rpm
  • the brush translation speed is 17 mm/s.
  • the center of the wafer is paused for 1s
  • the edge of the wafer is paused for 5s
  • the wafer brushing speed is 400rpm
  • the brush is scrubbed back and forth 5 times, and then rinsed with deionized water for 8s
  • the wafer is dried
  • the drying speed is 3500rpm
  • the drying time is 26s.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

一种铌酸锂单面抛光片的清洗方法,该方法包括:将铌酸锂晶片进行氟化氢铵浸泡清洗;将晶片进行有机溶剂清洗液超声清洗;将晶片进行去离子水冲洗;将晶片进行双面毛刷刷洗;将晶片进行单面毛刷刷洗,最终得到一种碎片率低、洁净度高的铌酸锂晶片。

Description

一种铌酸锂单面抛光片的清洗方法
相关申请的交叉引用
本公开要求于2022年04月19日提交中国专利局的申请号为CN202210407079.4、名称为“一种铌酸锂单面抛光片的清洗方法”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开属于半导体材料清洗领域,具体涉及一种半导体材料铌酸锂单面抛光晶片的清洗方法。
背景技术
铌酸锂是一种集压电、铁电、热释电、非线性、光电、光弹、光折变等功能于一体的多功能材料。铌酸锂因其卓越的物理特性,得到了越来越多的关注,在航空、航天,民用光电产品等领域得到广泛应用。经过抛光后的铌酸锂基片广泛应用于传感器、声光器件、光陀螺仪等。不同于硅晶片和蓝宝石晶片,它的特点是极低的断裂韧性,使得铌酸锂晶片在清洗过程中极易碎裂,导致企业生产成本高。
随着IC设计技术和制造技术的发展和进步,对铌酸锂晶片的表面洁净度要求不断提高,然而,铌酸锂晶片具有较强的静电吸附能力,使得晶片表面颗粒难以处理,铌酸锂晶片表面的颗粒污染会对涂胶、镀膜等后续工序造成直接影响,会导致晶片不良。因此,不仅需要在包装和运输环节上进行洁净保护,更需要从产品源头上做到高洁净度的良好品质,让铌酸锂晶片保持表面洁净度的高要求。晶片清洗环节作为去除晶片表面颗粒污染的主要工序,对保持铌酸锂晶片表面高洁净度起到了至关重要的作用。然而,铌酸锂晶片在清洗过程中极易碎裂,这对晶片的后续加工造成了较大的困难,故急需开发一种洁净度高且碎片率低的清洗方法。
公告号为CN101661869B的发明专利公开了一种砷化镓晶片抛光后的清洗方法,采用浓硫酸高温清洗方式达到去除晶片表面脏污的目的。但在清洗铌酸锂晶片时,浓硫酸高温清洗极易对晶片造成强酸腐蚀碎裂,且加工过程中酸液极易挥发,对环境和人体均存在安全隐患。另外,传统的硫酸浸泡配合清洗剂清洗的方式对晶片表面的颗粒沾污清洗效果差。
公告号为CN102479669B的发明专利公开了晶片毛刷清洗装置及晶片毛刷清洗方法, 采用两面毛刷刷洗方式达到去除晶片颗粒目的。但在实际中,仅依靠两面毛刷刷洗并平移的方式清洁能力不强,只能刷洗掉晶片表面的大颗粒,无法达到高洁净度的要求。
因此,现有技术中缺乏一种获得碎片率低、洁净度高的铌酸锂晶片的清洗方法。
发明内容
本公开提供了一种铌酸锂单面抛光片的清洗方法,以解决现有技术的缺陷,该方法清洗过程稳定,所获得的晶片表面洁净度高、清洗碎片率低。
本公开解决问题所采用的技术方案是:一种铌酸锂单面抛光片的清洗方法,所述的晶片清洗方法包括以下步骤:
a)将铌酸锂晶片置于30-40℃的氟化氢铵稀释液中浸泡10-30分钟,去除抛光后晶片表面的二氧化硅抛光液残留,然后将晶片置于30-40℃的纯水中漂洗3-5分钟;
b)将步骤a)处理后的铌酸锂晶片置于55-65℃的纯水中预热浸泡1-3分钟,然后将晶片置于70-80℃的有机溶剂清洗液中进行超声清洗10-20分钟,去除晶片表面有机沾污和重金属离子沾污等;
c)将步骤b)处理后的铌酸锂晶片置于去离子水冲洗槽,进行喷淋、注水、溢流、快排处理,重复4-6次,去除晶片表面清洗剂残留;
d)将步骤c)处理后的铌酸锂晶片先在碱性清洗溶液中用双面毛刷刷洗,后在去离子水中用双面毛刷刷洗和喷淋冲洗,然后进行甩干处理;
e)将步骤d)处理后的铌酸锂晶片背面吸附在真空平台上,抛光面朝上进行单面毛刷刷洗,刷洗时同时进行二流体喷淋,然后进行去离子水冲洗和甩干处理,使得晶片表面上不小于0.3μm的颗粒不超过30颗。
上述步骤a)中,采用氟化氢铵稀释液加温浸泡方式去除抛光后晶片表面的二氧化硅抛光液残留,在不破坏抛光表面的同时也防止了抛光液结晶造成顽固性污染。
可选地,所述步骤a)中氟化氢铵的质量分数为98%,氟化氢铵稀释液为纯水和氟化氢铵按照质量比10~15:1混合而成。
上述步骤b)中,采用有机溶剂清洗液加温超声清洗的方式,去除晶片表面有机沾污和重金属离子沾污等,替代了浓硫酸腐蚀的清洁方式,避免了强酸腐蚀造成的晶片碎裂问题,超声频率为40kHz。
可选地,步骤b)中有机溶剂清洗液由纯水和有机溶剂按体积比5~10:1混合而成,有机溶剂清洗剂的各成份质量比为异丙醇胺15~20%、N-甲基吡咯烷酮30~40%、氢氧化钾 3~10%、纯水40~60%。
上述步骤c)中,采用喷淋、注水、溢流、快排四个步骤重复清洁处理,去除晶片表面微粒杂质和清洗液残留。
可选地,步骤c)中喷淋时间为50-70s,注水量淹没晶片,溢流时间为20-30s,快排时间为10s,重复次数4-6次。
上述步骤d)中,采用双面毛刷刷洗处理,既去除晶片正面抛光面的大颗粒,减少了单面刷洗的颗粒脏污积累负担,又去除了晶片背面的大颗粒,防止了后工序加工和运转中抛光面颗粒度受晶片背面大颗粒的影响。双面刷洗为双面传动滚刷方式,毛刷转动并带动晶片平移。
可选地,步骤d)中,双面刷洗为双面传动滚刷方式,毛刷转动并带动晶片平移,双面刷洗的毛刷为PVA材质的滚轮毛刷,毛刷转速为6-10rpm,上下毛刷按压距离为1000-1300μm,刷洗时间为3-5分钟,毛刷直径为2-3cm,喷淋冲洗10-20s,晶片甩干转速为1200-1500rpm,甩干时间15-20s。
可选地,步骤d)中碱性清洗溶液由去离子水和碱性清洗剂按体积比30~50:1混合而成,组成碱性清洗剂的各成份质量比为氢氧化钠0.2~0.6%、氢氧化钾1~3%、螯合剂0.5~2%、非离子表面活性剂2~5%、去离子水90~96%。
上述步骤e)中,铌酸锂晶片抛光面进行单面毛刷刷洗处理,刷洗时同时进行二流体喷淋,然后进行去离子水冲洗和甩干处理,其中刷洗的工艺会直接影响着晶片在刷洗时的碎片率和刷洗后的洁净度。
可选地,所述步骤e)中单面刷洗的毛刷为PVA材质的陀螺式毛刷,毛刷下压距离为900-1200μm,毛刷转速为1000-1500rpm,毛刷平移速度为15-20mm/s,晶片中心停顿0.5-1s,晶片边缘停顿3-5s,晶片刷洗转速为300-600rpm,毛刷刷洗往返3-5次,去离子水冲洗5-10s,晶片甩干转速为3000-4000rpm,甩干时间25-30s。
与现有技术相比,本公开具有以下有益的技术效果:
通过此清洗方法解决了二氧化硅抛光液在对铌酸锂晶片抛光处理后,残留在晶片表面的抛光液结晶问题;
通过此清洗方法替代用浓硫酸双氧水混合洗液进行晶片清洗的方式,避免了浓硫酸洗液造成的强酸腐蚀碎裂问题,同时防止了加工过程中酸液易挥发对环境和人体均存在的安全隐患问题;
通过此清洗方法解决了传统的丙酮、无水乙醇超声清洗与RCA清洗方式对晶片表面的 颗粒沾污清洗效果差的问题。
附图说明
图1为本公开加工流程图;
图2为本公开实施例1、2、3纯水预热浸泡与碎片率关系示意图;
图3为本公开实施例4、5、6碱性清溶液配比与颗粒度关系示意图;
图4为本公开实施例7、8、9毛刷下压距离与碎片率、颗粒度关系示意图;
图5为本公开实施例8、10、11、12毛刷在晶片边缘停顿与颗粒度关系示意图。
具体实施方式
下面结合实施例对本公开作进一步说明,但不应以此限制本公开的保护范围。实施例的加工流程如图1所示,其中实施例1-3仅包含前两个流程,实施例4-6包含前四个流程,
实施例7-12是完整的清洗加工流程。
实施例1:
a)按照纯水和氟化氢铵12:1的质量比混合成氟化氢铵稀释液。将铌酸锂晶片置于35℃的氟化氢铵稀释液中浸泡15分钟,然后将晶片置于35℃的纯水中漂洗3分钟;
b)按照下述各成份的质量分数配制有机溶剂清洗剂,即异丙醇胺18%、N-甲基吡咯烷酮35%、氢氧化钾4%、纯水43%,按照纯水和有机溶剂清洗剂8:1的体积比混合成有机溶剂清洗液,晶片不进行纯水预热,将铌酸锂晶片置于75℃的有机溶剂清洗液中进行40kHZ超声清洗15分钟,投入1273片,碎裂12片,碎片率1.02%;
实施例2:
a)同实施例1;
b)按照下述各成份的质量分数配制有机溶剂清洗剂,即异丙醇胺18%、N-甲基吡咯烷酮35%、氢氧化钾4%、纯水43%,按照纯水和有机溶剂清洗剂8:1的体积比混合成有机溶剂清洗液,将铌酸锂晶片置于60℃的纯水中预热浸泡2分钟,然后将晶片置于75℃的有机溶剂清洗液中进行40kHZ超声清洗15分钟,投入1677片,碎裂4片,碎片率0.24%;
实施例3:
a)同实施例1;
b)按照下述各成份的质量分数配制有机溶剂清洗剂,即异丙醇胺18%、N-甲基吡咯烷酮35%、氢氧化钾4%、纯水43%,按照纯水和有机溶剂清洗剂8:1的体积比混合成有机 溶剂清洗液,将铌酸锂晶片置于75℃的纯水中预热浸泡2分钟,然后将晶片置于75℃的有机溶剂清洗液中进行40kHZ超声清洗15分钟,投入1412片,碎裂11片,碎片率0.78%;
对比实施例1、2、3,如表1和图2所示,在有机溶剂清洗液75℃高温超声清洗前,用60℃纯水预热浸泡2分钟,能有效降低热冲击造成的晶片碎片。
表1实施例1、2、3的晶片清洗碎片率
实施例4:
a)同实施例2;
b)同实施例2;
c)将铌酸锂晶片置于晶片置于去离子水冲洗槽,进行喷淋60s、注水淹没晶片、溢流30s、快排10s处理,重复5次;
d)按照下述各成份的质量分数配制碱性清洗剂,即氢氧化钠0.4%、氢氧化钾2%、螯合剂1.2%、非离子表面活性剂4%、去离子水92.4%,按照去离子水和碱性清洗剂25:1的体积比混合成碱性清洗溶液,将铌酸锂晶片先经过碱性清洗溶液双面毛刷刷洗,后经过去离子水双面毛刷刷洗和喷淋冲洗,刷洗时毛刷转速为6rpm,上下毛刷按压距离为1200μm,刷洗时间为3分钟,毛刷直径为2.2cm,喷淋冲洗14s,然后进行甩干处理,晶片甩干转速为1300rpm,甩干时间18s,投入764片,抽样62片,≥0.3μm颗粒≤314颗;
实施例5:
a)同实施例2;
b)同实施例2;
c)同实施例4;
d)按照下述各成份的质量分数配制碱性清洗剂,即氢氧化钠0.4%、氢氧化钾2%、螯合剂1.2%、非离子表面活性剂4%、去离子水92.4%,按照去离子水和碱性清洗剂40:1的体积比混合成碱性清洗溶液,将铌酸锂晶片先经过碱性清洗溶液双面毛刷刷洗,后经过去离子水双面毛刷刷洗和喷淋冲洗,刷洗时毛刷转速为6rpm,上下毛刷按压距离为1200μm,刷洗时间为3分钟,毛刷直径为2.2cm,喷淋冲洗14s,然后进行甩干处理,晶片甩干转速为1300rpm,甩干时间18s,投入827片,抽样67片,≥0.3μm颗粒≤169颗;
实施例6:
a)同实施例2;
b)同实施例2;
c)同实施例4;
d)按照下述各成份的质量分数配制碱性清洗剂,即氢氧化钠0.4%、氢氧化钾2%、螯合剂1.2%、非离子表面活性剂4%、去离子水92.4%,按照去离子水和碱性清洗剂60:1的体积比混合成碱性清洗溶液,将铌酸锂晶片先经过碱性清洗溶液双面毛刷刷洗,后经过去离子水双面毛刷刷洗和喷淋冲洗,刷洗时毛刷转速为6rpm,上下毛刷按压距离为1200μm,刷洗时间为3分钟,毛刷直径为2.2cm,喷淋冲洗14s,然后进行甩干处理,晶片甩干转速为1300rpm,甩干时间18s,投入883片,抽样71片,≥0.3μm颗粒≤204颗;
对比实施例4、5、6,如表2和图3所示,在按照去离子水和碱性清洗剂40:1的体积比混合成碱性清洗溶液时,双面毛刷刷洗的晶片洁净度高。
表2实施例4、5、6的单面刷洗晶片碎片率和颗粒度
实施例7:
a)同实施例2;
b)同实施例2;
c)同实施例4;
d)同实施例5;
e)将铌酸锂晶片抛光面进行单面毛刷刷洗处理,刷洗时同时进行二流体喷淋,刷洗时毛刷下压距离为600μm,毛刷转速为1300rpm,毛刷平移速度为17mm/s,晶片中心停顿1s,晶片边缘停顿1s,晶片刷洗转速为400rpm,毛刷刷洗往返5次,然后进行去离子水冲洗8s,再进行晶片甩干处理,甩干转速为3500rpm,甩干时间26s,投入922片,碎裂0片,碎片率0%,抽样74片,≥0.3μm颗粒≤97颗;
实施例8:
a)同实施例2;
b)同实施例2;
c)同实施例4;
d)同实施例5;
e)将铌酸锂晶片抛光面进行单面毛刷刷洗处理,刷洗时同时进行二流体喷淋,刷洗时毛刷下压距离为1000μm,毛刷转速为1300rpm,毛刷平移速度为17mm/s,晶片中心停顿 1s,晶片边缘停顿1s,晶片刷洗转速为400rpm,毛刷刷洗往返5次,然后进行去离子水冲洗8s,再进行晶片甩干处理,甩干转速为3500rpm,甩干时间26s,投入1002片,碎裂1片,碎片率0.10%,抽样81片,≥0.3μm颗粒≤47颗;
实施例9:
a)同实施例2;
b)同实施例2;
c)同实施例4;
d)同实施例5;
e)将铌酸锂晶片抛光面进行单面毛刷刷洗处理,刷洗时同时进行二流体喷淋,刷洗时毛刷下压距离为1400μm,毛刷转速为1300rpm,毛刷平移速度为17mm/s,晶片中心停顿1s,晶片边缘停顿1s,晶片刷洗转速为400rpm,毛刷刷洗往返5次,然后进行去离子水冲洗8s,再进行晶片甩干处理,甩干转速为3500rpm,甩干时间26s,投入1161片,碎裂5片,碎片率0.58%,抽样93片,≥0.3μm颗粒≤39颗;
对比实施例7、8、9,如表3和图4所示,在单面刷洗时毛刷下压距离越大刷洗后晶片的洁净度更高,但毛刷下压距离越大刷洗时碎片的比例就会上升,刷洗时毛刷下压距离为1000μm时,刷洗碎片率低,洁净度高。
表3实施例7、8、9的单面刷洗晶片碎片率和颗粒度
实施例10:
a)同实施例2;
b)同实施例2;
c)同实施例4;
d)同实施例5;
e)将铌酸锂晶片抛光面进行单面毛刷刷洗处理,刷洗时同时进行二流体喷淋,刷洗时毛刷下压距离为1000μm,毛刷转速为1300rpm,毛刷平移速度为17mm/s,晶片中心停顿1s,边缘不停顿,晶片刷洗转速为400rpm,毛刷刷洗往返5次,然后进行去离子水冲洗8s,再进行晶片甩干处理,甩干转速为3500rpm,甩干时间26s,投入768片,抽样62片,≥0.3μm颗粒≤113颗;
实施例11:
a)同实施例2;
b)同实施例2;
c)同实施例4;
d)同实施例5;
e)将铌酸锂晶片抛光面进行单面毛刷刷洗处理,刷洗时同时进行二流体喷淋,刷洗时毛刷下压距离为1000μm,毛刷转速为1300rpm,毛刷平移速度为17mm/s,晶片中心停顿1s,晶片边缘停顿3s,晶片刷洗转速为400rpm,毛刷刷洗往返5次,然后进行去离子水冲洗8s,再进行晶片甩干处理,甩干转速为3500rpm,甩干时间26s,投入960片,抽样77片,≥0.3μm颗粒≤27颗;
实施例12:
a)同实施例2;
b)同实施例2;
c)同实施例4;
d)同实施例5;
e)将铌酸锂晶片抛光面进行单面毛刷刷洗处理,刷洗时同时进行二流体喷淋,刷洗时毛刷下压距离为1000μm,毛刷转速为1300rpm,毛刷平移速度为17mm/s,晶片中心停顿1s,晶片边缘停顿5s,晶片刷洗转速为400rpm,毛刷刷洗往返5次,然后进行去离子水冲洗8s,再进行晶片甩干处理,甩干转速为3500rpm,甩干时间26s,投入944片,抽样76片,≥0.3μm颗粒≤26颗;
对比实施例8、10、11、12,如表4和图5所示,在刷洗时毛刷在晶片边缘停顿3s以上洁净度高,能有效的去除从晶片内部往外侧刷时颗粒堆积在晶片边缘的颗粒。
表4实施例8、10、11、12的单面刷洗晶片颗粒度
尽管已经示出和描述了本公开的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本公开的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本公开的范围由所附权利要求及其等同物限定。

Claims (8)

  1. 一种铌酸锂单面抛光片的清洗方法,其特征在于,包括下列具体步骤:
    a)将铌酸锂单面抛光片置于氟化氢铵稀释液中浸泡,去除抛光后晶片表面的二氧化硅抛光液残留,然后将晶片置于纯水中漂洗;
    b)将步骤a)处理后的晶片置于55-65℃的纯水中预热浸泡1-3分钟,然后将晶片置于70-80℃的有机溶剂清洗液中进行超声清洗10-20分钟,去除晶片表面沾污;
    c)采用去离子水将步骤b)处理后的晶片进行喷淋、注水、溢流、快排的重复处理,去除晶片表面微粒杂质和清洗液残留;
    d)将步骤c)处理后的晶片先在碱性清洗溶液中用双面毛刷刷洗,后在去离子水中用双面毛刷刷洗和喷淋冲洗,然后进行甩干处理,其中,碱性清洗溶液由去离子水和碱性清洗剂按体积比30~50:1混合而成;
    e)将步骤d)处理后的晶片背面吸附在真空平台上,抛光面朝上进行单面毛刷刷洗,毛刷下压距离为900-1200μm,毛刷在晶片表面旋转并平移,刷至晶片边缘时停顿3-5s,刷洗时同时进行二流体喷淋,然后进行去离子水冲洗和甩干处理,使得晶片表面上不小于0.3μm的颗粒不超过30颗。
  2. 根据权利要求1所述的一种铌酸锂单面抛光片的清洗方法,其特征在于,所述步骤a)中,铌酸锂单面抛光片在氟化氢铵稀释液中浸泡温度为30-40℃,浸泡时间为10-30分钟,晶片在30-40℃的纯水中漂洗3-5分钟。
  3. 根据权利要求1所述的一种铌酸锂单面抛光片的清洗方法,其特征在于,所述步骤a)中,氟化氢铵的质量分数为98%,氟化氢铵稀释液为纯水和氟化氢铵按照质量比10~15:1混合而成。
  4. 根据权利要求1所述的一种铌酸锂单面抛光片的清洗方法,其特征在于,所述步骤b)中,超声频率为40kHZ,有机溶剂清洗液由纯水和有机溶剂按体积比5~10:1混合而成,有机溶剂清洗剂的各成份质量比为异丙醇胺15~20%、N-甲基吡咯烷酮30~40%、氢氧化钾3~10%、纯水40~60%。
  5. 根据权利要求1所述的一种铌酸锂单面抛光片的清洗方法,其特征在于,所述步骤c)中,喷淋时间为50-70s,注水量淹没晶片,溢流时间为20-30s,快排时间为10s,重复进行喷淋、注水、溢流、快排处理4-6次。
  6. 根据权利要求1所述的一种铌酸锂单面抛光片的清洗方法,其特征在于,所述步骤d)中,双面刷洗为双面传动滚刷方式,毛刷转动并带动晶片平移,双面刷洗的毛刷为PVA 材质的滚轮毛刷,毛刷转速为6-10rpm,上下毛刷按压距离为1000-1300μm,刷洗时间为3-5分钟,毛刷直径为2-3cm,喷淋冲洗10-20s,晶片甩干转速为1200-1500rpm,甩干时间15-20s。
  7. 根据权利要求1所述的一种铌酸锂单面抛光片的清洗方法,其特征在于,所述步骤d)中,组成碱性清洗剂的各成份质量比为氢氧化钠0.2~0.6%、氢氧化钾1~3%、螯合剂0.5~2%、非离子表面活性剂2~5%、去离子水90~96%。
  8. 根据权利要求1所述的一种铌酸锂单面抛光片的清洗方法,其特征在于,所述步骤e)中,单面刷洗的毛刷为PVA材质的陀螺式毛刷,毛刷下压距离为900-1200μm,毛刷转速为1000-1500rpm,毛刷平移速度为15-20mm/s,晶片中心停顿0.5-1s,晶片边缘停顿3-5s,晶片刷洗转速为300-600rpm,毛刷刷洗往返3-5次,去离子水冲洗5-10s,晶片甩干转速为3000-4000rpm,甩干时间25-30s。
PCT/CN2023/075803 2022-04-19 2023-02-14 一种铌酸锂单面抛光片的清洗方法 WO2023202192A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210407079.4 2022-04-19
CN202210407079.4A CN114472341B (zh) 2022-04-19 2022-04-19 一种铌酸锂单面抛光片的清洗方法

Publications (1)

Publication Number Publication Date
WO2023202192A1 true WO2023202192A1 (zh) 2023-10-26

Family

ID=81489656

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/075803 WO2023202192A1 (zh) 2022-04-19 2023-02-14 一种铌酸锂单面抛光片的清洗方法

Country Status (2)

Country Link
CN (1) CN114472341B (zh)
WO (1) WO2023202192A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114472341B (zh) * 2022-04-19 2022-07-08 天通控股股份有限公司 一种铌酸锂单面抛光片的清洗方法
CN114695643B (zh) * 2022-06-02 2022-09-06 天通控股股份有限公司 一种铌酸锂单面抛光片背面不良的返工方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5996594A (en) * 1994-11-30 1999-12-07 Texas Instruments Incorporated Post-chemical mechanical planarization clean-up process using post-polish scrubbing
US6248180B1 (en) * 1997-09-17 2001-06-19 Lsi Logic Corporation Method for removing particles from a semiconductor wafer
FR2816527A1 (fr) * 2000-11-14 2002-05-17 Lionel Girardie Procede de nettoyage par voie humide de tranches semiconducteurs comportant une structure damascene
CN103537453A (zh) * 2013-08-20 2014-01-29 曾锡强 一种蓝宝石衬底晶片抛光后的超声清洗方法
CN109821810A (zh) * 2018-12-28 2019-05-31 江苏澳洋顺昌集成电路股份有限公司 一种蓝宝石衬底片成品清洗工艺
CN110802052A (zh) * 2019-10-14 2020-02-18 江苏吉星新材料有限公司 一种蓝宝石衬底粗糙表面碳化硼的去除方法
CN111185432A (zh) * 2020-01-14 2020-05-22 江苏京晶光电科技有限公司 代替蓝宝石衬底晶片酸洗的清洗工艺
CN114472341A (zh) * 2022-04-19 2022-05-13 天通控股股份有限公司 一种铌酸锂单面抛光片的清洗方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2742114B2 (ja) * 1989-11-15 1998-04-22 株式会社荏原製作所 ウエハキャリヤの精密洗浄方法及び装置
US6526995B1 (en) * 1999-06-29 2003-03-04 Intersil Americas Inc. Brushless multipass silicon wafer cleaning process for post chemical mechanical polishing using immersion
CN101972754B (zh) * 2010-07-21 2012-09-05 河北工业大学 铌酸锂晶片碱性cmp后的表面洁净方法
CN104377119B (zh) * 2014-10-23 2017-05-24 中国电子科技集团公司第四十六研究所 一种锗单晶抛光片的清洗方法
CN105405746B (zh) * 2015-11-24 2020-09-11 北京华进创威电子有限公司 一种锑化镓单晶抛光片的清洗方法
CN208879181U (zh) * 2018-07-19 2019-05-21 北京世维通科技股份有限公司 一种铌酸锂调制器芯片的清洗系统
CN111230598B (zh) * 2019-10-30 2022-05-06 德清晶辉光电科技股份有限公司 一种8英寸铌酸锂晶片的制备方法
CN110744364B (zh) * 2019-11-06 2021-07-13 天通控股股份有限公司 一种大尺寸超薄铌酸锂基片的双面抛光方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5996594A (en) * 1994-11-30 1999-12-07 Texas Instruments Incorporated Post-chemical mechanical planarization clean-up process using post-polish scrubbing
US6248180B1 (en) * 1997-09-17 2001-06-19 Lsi Logic Corporation Method for removing particles from a semiconductor wafer
FR2816527A1 (fr) * 2000-11-14 2002-05-17 Lionel Girardie Procede de nettoyage par voie humide de tranches semiconducteurs comportant une structure damascene
CN103537453A (zh) * 2013-08-20 2014-01-29 曾锡强 一种蓝宝石衬底晶片抛光后的超声清洗方法
CN109821810A (zh) * 2018-12-28 2019-05-31 江苏澳洋顺昌集成电路股份有限公司 一种蓝宝石衬底片成品清洗工艺
CN110802052A (zh) * 2019-10-14 2020-02-18 江苏吉星新材料有限公司 一种蓝宝石衬底粗糙表面碳化硼的去除方法
CN111185432A (zh) * 2020-01-14 2020-05-22 江苏京晶光电科技有限公司 代替蓝宝石衬底晶片酸洗的清洗工艺
CN114472341A (zh) * 2022-04-19 2022-05-13 天通控股股份有限公司 一种铌酸锂单面抛光片的清洗方法

Also Published As

Publication number Publication date
CN114472341A (zh) 2022-05-13
CN114472341B (zh) 2022-07-08

Similar Documents

Publication Publication Date Title
WO2023202192A1 (zh) 一种铌酸锂单面抛光片的清洗方法
WO2021043167A1 (zh) 一种碳化硅单晶抛光片衬底的最终清洗方法
CN106000977B (zh) 一种砷化镓单晶片清洗的方法
CN109622503B (zh) 一种激光陀螺腔体光学加工后的无损清洗方法
JP2010109384A (ja) スクラバ中の金属を除去する方法
CN102825028B (zh) 一种ycob晶体抛光表面的清洗方法
CN104377119B (zh) 一种锗单晶抛光片的清洗方法
WO2012045216A1 (zh) 一种晶体硅rie制绒的表面损伤层清洗工艺
CN110931348A (zh) 一种大尺寸硅片碱腐清洗装置及清洗工艺
CN113675073A (zh) 一种晶片的清洗方法
WO2022242539A1 (zh) 陶瓷件清洗方法
TW200405447A (en) Post-CMP cleaning of semiconductor wafer surfaces using a combination of aqueous and CO2 based cryogenic cleaning techniques
CN103521474B (zh) 一种以抛代洗的蓝宝石衬底材料表面洁净方法
JP4843540B2 (ja) 粒子を含有するレジスト剥離液及びそれを用いた剥離方法
CN103878148A (zh) 一种对晶圆表面硅晶渣进行清洗的方法
CN103878145A (zh) 一种对硅酸镓镧晶片进行清洗的方法
CN210837672U (zh) 一种大尺寸硅片碱腐清洗装置
CN108630522A (zh) 芯片表面的清洗方法
CN116072518A (zh) 一种超薄钽酸锂晶片的保护膜及脱膜方法
JP2000315668A (ja) ウェーハの研磨方法、洗浄方法及び保護膜
CN104576319A (zh) 去除硅片背金工艺后粘结片表面粘结剂的清洗方法
WO2015157957A1 (zh) 一种对硅酸镓镧晶片进行清洗的方法
CN109755106B (zh) 一种晶圆清洗方法
Moumen et al. Removal of submicrometre alumina particles from silicon oxide substrates
KR101520098B1 (ko) 수계세정액 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23790855

Country of ref document: EP

Kind code of ref document: A1