WO2023202184A1 - 光模块及光通信设备 - Google Patents

光模块及光通信设备 Download PDF

Info

Publication number
WO2023202184A1
WO2023202184A1 PCT/CN2023/074911 CN2023074911W WO2023202184A1 WO 2023202184 A1 WO2023202184 A1 WO 2023202184A1 CN 2023074911 W CN2023074911 W CN 2023074911W WO 2023202184 A1 WO2023202184 A1 WO 2023202184A1
Authority
WO
WIPO (PCT)
Prior art keywords
housing
protrusion
optical module
mating surface
bottom wall
Prior art date
Application number
PCT/CN2023/074911
Other languages
English (en)
French (fr)
Inventor
周贤
施沙美
陈鹏
于登群
Original Assignee
苏州旭创科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州旭创科技有限公司 filed Critical 苏州旭创科技有限公司
Publication of WO2023202184A1 publication Critical patent/WO2023202184A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission

Definitions

  • the utility model relates to the field of optical communication technology, and in particular to an optical module and optical communication equipment.
  • optical modules are the carrier used for transmission between switches and equipment. Since they are more efficient and safer than copper cable transmission, optical modules play an important role in the optical fiber communication process. effect. However, during the communication process, the optical module will generate a large amount of heat. In order to ensure the normal operation of optical communication, the heat generated by the optical module needs to be dissipated in time.
  • a certain surface of the outer shell of the optical module is used as the main heat dissipation surface, and the heat inside the optical module is conducted through a radiator or fan assembly provided on the main heat dissipation surface.
  • the internal heat of the optical module is conducted to the main heat dissipation surface through the air, and the heat conduction efficiency is poor.
  • the surface temperature of the optical module away from the main heat dissipation surface continues to be high, and the heat concentrated on its surface is not easy to dissipate, resulting in the heat dissipation effect of the optical module. Poor, seriously affecting the service life of the optical module.
  • An optical module includes a first housing, a second housing, an optoelectronic component and a circuit board, the optoelectronic component and the circuit board are installed between the first housing and the second housing,
  • the optoelectronic element is thermally connected to the first housing or the second housing, and both the first housing and the second housing have bottom walls and side walls, wherein:
  • the first housing has a first protrusion on the bottom wall facing the side of the second housing, and the first protrusion has a first mating surface;
  • the bottom wall of the second housing has a second mating surface, and the first mating surface is thermally connected to the second mating surface.
  • the above-mentioned optical module is installed on an external switch with the first housing as the main heat dissipation surface, and has a first protrusion on the bottom wall of the first housing.
  • the photoelectric element The heat generated during operation can be conducted to the bottom wall of the first housing through the first protrusion, and the heat concentrated on the second housing can also be conducted to the bottom wall of the first housing through the first protrusion. on the bottom wall of the first housing and transmitted to the outside world through the bottom wall of the first housing.
  • the optical module is provided with a first protrusion at the internal gap, which rationally utilizes the internal space of the optical module without increasing the volume of the optical module.
  • the optical module enlarges the first shell.
  • the contact area with the second shell adopts solid thermal conduction method to accelerate the heat conduction rate, which can quickly dissipate the heat concentrated on the second shell and reduce the temperature gradient difference between the first shell and the second shell. , significantly improving the heat dissipation effect of the optical module.
  • first protrusions there are a plurality of first protrusions, and the plurality of first protrusions are distributed around the optoelectronic element.
  • the second housing has a second protrusion on the bottom wall, and the second mating surface is located on the second protrusion.
  • the first matching surface is a bevel or a sawtooth surface
  • the second matching surface is also a bevel or a sawtooth surface that matches the first matching surface
  • a thermally conductive adhesive is provided between the first mating surface and the second mating surface.
  • an optoelectronic chip is disposed on the circuit board, and a third protrusion is provided on the bottom wall of the side of the second housing facing the circuit board. The third protrusion is in contact with the optoelectronic chip. Chip thermal connection.
  • the first housing and the first protrusion are integrally formed.
  • the first protrusion penetrates the circuit board and is thermally connected to the second mating surface.
  • the optical module further includes a carrier board fixed on the circuit board, the carrier board is thermally connected to the first housing, and the optoelectronic element is a laser chip and is disposed on on the carrier board.
  • An optical communication device includes the optical module according to any one of the above technical solutions.
  • the heat generated by the photoelectric element during operation can be conducted to the bottom wall of the first housing through the first protrusion, and the heat concentrated on the second housing can also be conducted to the bottom wall through the first protrusion. on the bottom wall of the first housing and transmitted to the outside through the bottom wall of the first housing.
  • the optical communication equipment is provided with a first protrusion at the internal gap, which rationally utilizes the internal space of the optical communication equipment without increasing the volume of the optical communication equipment. Compared with the traditional air heat conduction method, the first shell is enlarged.
  • the contact area with the second shell adopts solid thermal conduction method to accelerate the heat conduction rate, which can quickly dissipate the heat concentrated on the second shell and reduce the temperature gradient difference between the first shell and the second shell. , significantly improving the heat dissipation effect of optical communication equipment.
  • Figure 1 is an exploded schematic diagram of the optical module provided by the utility model
  • Figure 2 is a schematic diagram of the internal structure of the optical module provided by the present utility model
  • Figure 3 is a schematic diagram of the cooperation between the first protrusion and the second protrusion in one embodiment
  • FIG. 4 is a schematic diagram of the cooperation between the first protrusion and the second protrusion in another embodiment.
  • Second housing 120.
  • Second protrusion 122.
  • Second mating surface 123.
  • Third protrusion 122.
  • Circuit board 141. Optoelectronic chip
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise clearly and specifically limited.
  • connection In this utility model, unless otherwise expressly stipulated and limited, the terms “installation”, “connection”, “connection”, “fixing” and other terms should be understood in a broad sense. For example, it can be a fixed connection or a detachable connection. Connection, or integration; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two elements or an interaction between two elements, unless otherwise Clear limits.
  • connection or integration
  • connection can be a mechanical connection or an electrical connection
  • it can be a direct connection or an indirect connection through an intermediate medium
  • it can be an internal connection between two elements or an interaction between two elements, unless otherwise Clear limits.
  • specific meanings of the above terms in the present invention can be understood according to specific circumstances.
  • the first feature "on” or “below” the second feature may be that the first and second features are in direct contact, or the first and second features are in direct contact through an intermediate medium. indirect contact.
  • the terms “above”, “above” and “above” the first feature is above the second feature may mean that the first feature is directly above or diagonally above the second feature, or simply means that the first feature is higher in level than the second feature.
  • "Below”, “below” and “beneath” the first feature to the second feature may mean that the first feature is directly below or diagonally below the second feature, or simply means that the first feature has a smaller horizontal height than the second feature.
  • the present invention provides an optical module 100 for use with an external switch.
  • the optical module 100 includes a first housing 110, a second housing 120, an optoelectronic component 130 and a circuit board 140.
  • the optoelectronic component 130 is installed between the first housing 110 and the second housing 120 through snapping, adhesion, etc.
  • the circuit board 140 is also installed between the first housing 110 and the second housing 120 through snapping, bonding, etc., to realize the installation and fixation of the optoelectronic element 130 and the circuit board 140.
  • the first housing 110 has a bottom wall 150 and a side wall 160 , that is, the bottom wall 150 and the side wall 160 together form the first housing 110 .
  • the second housing 120 also has a bottom wall 150 and a side wall 160 , that is, the bottom wall 150 and the side wall 160 together form the second housing 120 .
  • the light emitting component of the optoelectronic element 130 first converts the electrical signal into an optical signal.
  • the light receiving component of the optoelectronic element 130 then converts the optical signal into an electrical signal, and outputs the electrical signal to the optical module 100 through the circuit board 140 external switch.
  • the photoelectric element 130 is thermally connected to the first housing 110, or the photoelectric element 130 is thermally connected to the second housing 120, so as to conduct the heat generated by the photoelectric element 130 during operation to the first housing 110 or the second housing. Body 120.
  • the first protrusion 111 is provided on the bottom wall 150 of the first housing 110 , and the first protrusion 111 has a first mating surface 112 .
  • the first protrusion 111 penetrates the circuit board 140 to provide the first protrusion 111 at an internal gap of the optical module 100 to fully utilize the internal space of the optical module 100 .
  • the first protrusion 111 and the first housing 110 are integrally formed by extrusion, casting, etc., so as to simplify the molding method of the first housing 110 and save the manufacturing cost of the first housing 110.
  • the first housing 110 can also be formed with the first protrusion 111 by welding or other methods. The present invention does not limit the specific forming method of the first housing 110 and the first protrusion 111 .
  • the bottom wall 150 of the second housing 120 has a second mating surface 122.
  • the first mating surface 112 and the second mating surface 122 are thermally connected together, so that the first protrusion 111 and the second housing 120 can cooperate with each other.
  • the first mating surface 112 is in contact with the second mating surface 122 through bonding, snapping, etc., and a thermal conductive medium is provided between the first mating surface 112 and the second mating surface 122 to connect the first mating surface 112 to the second mating surface 122 .
  • the first mating surface 112 and the second mating surface 122 are thermally connected together.
  • the above-mentioned optical module 100 is installed on an external switch with the bottom wall 150 of the first housing 110 as the main heat dissipation surface.
  • the heat generated by the photoelectric element 130 during operation can be conducted to the first housing 110 through the first protrusion 111 .
  • the heat concentrated on the bottom wall 150 and concentrated on the second housing 120 can also be conducted to the bottom wall 150 of the first housing 110 through the first protrusion 111 and conducted to the bottom wall 150 of the first housing 110 through the bottom wall 150 of the first housing 110 . outside world.
  • the optical module 100 is provided with a first protrusion 111 at an internal gap, which rationally utilizes the internal space of the optical module 100 without increasing the volume of the optical module 100 .
  • the optical module 100 increases the contact area between the first housing 110 and the second housing 120, and uses a solid heat conduction method to speed up the heat conduction rate. Since the second housing 120 is far away from On the main heat dissipation surface, the heat dissipation effect of the second housing 120 is poor.
  • the first protrusion 111 can quickly dissipate the heat concentrated on the second housing 120 and reduce the heat dissipation between the first housing 110 and the second housing 120. The difference in temperature gradient significantly improves the heat dissipation effect of the optical module 100.
  • the plurality of first protrusions 111 are distributed around the optoelectronic element 130.
  • the plurality of first protrusions 111 are distributed at intervals in the gaps of the first housing 110, which can reasonably utilize the internal space of the optical module 100 without increasing the volume of the optical module 100.
  • the plurality of first protrusions 111 can promptly take away the heat generated by the photoelectric element 130 during operation, further increasing the thermal conductivity rate inside the optical module 100, thereby improving the heat dissipation effect of the optical module 100.
  • the second mating surface 122 is located on the second protrusion 121. That is, when the first mating surface 112 and the second mating surface 122 are thermally connected, the second mating surface 122 is thermally connected.
  • One protrusion 111 and the second protrusion 121 are connected together.
  • the heat concentrated on the second housing 120 can be conducted to the first projection 111 through the second protrusion 121, and then conducted to the bottom wall 150 of the first housing 110 through the first protrusion 111, and passed through the first housing.
  • the body 110 is quickly transmitted to the outside world, reducing the temperature gradient difference between the first housing 110 and the second housing 120, and significantly improving the heat dissipation effect of the optical module 100.
  • the plurality of second protrusions 121 and the second housing 120 are integrally formed by extrusion, casting, etc., to simplify the molding method of the second housing 120 and save the manufacturing cost of the second housing 120.
  • the second housing 120 can also be formed with a plurality of second protrusions 121 by welding or other methods. The present invention does not limit the specific forming method of the second housing 120 and the second protrusions 121 .
  • the first mating surface 112 is a special-shaped surface, specifically, it can be one of a bevel or a sawtooth surface
  • the second matching surface 122 is also a special-shaped surface. Specifically, it can also be one of a beveled surface or a sawtooth surface.
  • the first mating surface 112 is a bevel
  • the second mating surface 122 is also a bevel
  • Surface 122 is also a serrated surface.
  • first mating surface 112 and the second mating surface 122 have a unique joining direction.
  • the first mating surface 112 and the second mating surface 122 are mated so that when the first housing 110 and the second housing 120 are connected, the first mating surface 112 and the second mating surface 122 are connected.
  • the first mating surface 112 and the second mating surface 122 can be used as guide surfaces to improve the mating accuracy and mating efficiency of the first housing 110 and the second housing 120 . Since the special-shaped surface has a larger contact area within the same unit volume, by setting both the first mating surface 112 and the second matching surface 122 as special-shaped surfaces, the first housing 110 and the second housing can be further enlarged.
  • the contact area between the optical module 100 and the optical module 100 accelerates the heat conduction efficiency and further improves the heat dissipation effect of the optical module 100 .
  • first mating surface 112 and the second mating surface 122 are not limited to the bevel or sawtooth surfaces provided above, and may also be corrugated surfaces or other surfaces that can increase the gap between the first protrusion 111 and the second protrusion 121 .
  • the present invention does not limit the specific shapes of the first mating surface 112 and the second mating surface 122 .
  • a thermally conductive adhesive (not shown) is provided between the first mating surface 112 and the second mating surface 122.
  • the thermally conductive glue can realize the connection between the first protrusion 111 and the second protrusion 121, and the thermally conductive glue can conduct heat and help dissipate the internal heat of the optical module 100.
  • the circuit board 140 also includes an optoelectronic chip 141
  • the bottom wall 150 of the second housing 120 has a third protrusion 123
  • a third The protrusion 123 is located on the side of the second housing 120 facing the circuit board 140
  • the third protrusion 123 is thermally connected to the optoelectronic chip 141 .
  • the heat of the photovoltaic chip 141 can be conducted to the second housing 120 through the third protrusion 123, and through the second protrusion 121, the first The protrusion 111 is conducted to the bottom wall 150 of the first housing 110.
  • the solid heat conduction method of the third protrusion 123, the second protrusion 121, and the first protrusion 111 has better thermal conductivity. , can speed up the heat dissipation of the optoelectronic chip 141, and can further improve the heat dissipation effect of the optical module 100.
  • the optoelectronic chip 141 can be one of an optical chip or an electrical chip. The type of optoelectronic chip 141 can be selected according to the user's needs.
  • the optical module 100 also includes a carrier board 170 , and the circuit board 140 is fixed on the carrier board 170 by screwing or welding. , to realize the installation and fixation of the circuit board 140.
  • the optoelectronic element 130 is a laser chip, and the optoelectronic element 130 is disposed on the carrier board 170 through screwing, welding, etc., to realize the installation and fixation of the optoelectronic element 130.
  • the carrier board 170 is thermally connected to the first housing 110 to transfer the heat generated by the optoelectronic element 130 and the circuit board 140 during operation to the carrier board 170 in a timely manner and to the first housing 110 through the carrier board 170. The heat is then transmitted to the outside through the first housing 110 to further quickly dissipate the heat generated during the operation of the optical module 100 .
  • the first protrusion 111 is made of aluminum material or copper material.
  • the second protrusion 121 and the third protrusion 123 are also made of aluminum material or copper material. Prepared from one of the copper materials.
  • both aluminum and copper have good thermal conductivity, which ensures that the heat generated by the optical module 100 can be quickly conducted to the outside through the first protrusion 111, the second protrusion 121 and the third protrusion 123, accelerating the process inside the optical module 100. This generates heat dissipation and improves the heat dissipation effect of the optical module 100 .
  • the cost of aluminum and copper is low, which can save the manufacturing cost of the optical module 100 .
  • first protrusion 111, the second protrusion 121 and the third protrusion 123 are not limited to being made of the above-mentioned aluminum material or copper material. They can also be made of silver material, gold material or other materials with good thermal conductivity. Become. The utility model does not impose any restrictions on the specific materials of the first protrusion 111, the second protrusion 121 and the third protrusion 123, and can be selected according to actual needs, as long as the first protrusion 111, the second protrusion 121 are satisfied. And the thermal conductivity of the third protrusion 123 is good.
  • the present invention also provides an optical communication device.
  • the optical communication device includes the optical module 100 according to any one of the above technical solutions.
  • the heat generated by the photoelectric element 130 during operation can be conducted to the bottom wall 150 of the first housing 110 through the first protrusion 111, and the heat concentrated on the second housing 120 can also be conducted through the first protrusion 111.
  • a protrusion 111 is transmitted to the bottom wall 150 of the first housing 110 and transmitted to the outside through the bottom wall 150 of the first housing 110 .
  • the optical communication equipment is provided with a first protrusion 111 at the internal gap, which rationally utilizes the internal space of the optical communication equipment without increasing the volume of the optical communication equipment. Compared with the traditional air heat conduction method, the first shell is enlarged.
  • the contact area between the body 110 and the second shell 120 adopts a solid thermal conduction method to accelerate the heat conduction rate, which can quickly dissipate the heat concentrated on the second shell 120 and reduce the friction between the first shell 110 and the second shell 120.
  • the temperature gradient difference between them significantly improves the heat dissipation effect of optical communication equipment.

Abstract

一种光模块(100)及光通信设备。光模块(100)包括第一壳体(110)、第二壳体(120)、光电元件(130)与电路板(140)。光电元件(130)、电路板(140)均安装于第一壳体(110)与第二壳体(120)之间。第一壳体(110)在朝向第二壳体(120)一侧的底壁(150)上具有第一凸起(111),第一凸起(111)具有第一配合面(112);第二壳体(120)的底壁(150)上具有第二配合面(122),第一配合面(112)与第二配合面(122)导热连接。光电元件(130)在工作过程中产生的热量可通过第一凸起(111)传导至第一壳体(110),且集中于第二壳体(120)上的热量也可通过第一凸起(111)传导至第一壳体(110),并通过第一壳体(110)的底壁(150)传导至外界。相较于传统的空气导热方式,增大了第一壳体(110)与第二壳体(120)之间的接触面积,加快热量传导速率,可快速散去集中于第二壳体(120)上的热量,显著提高了光模块(100)的散热效果。

Description

光模块及光通信设备
本申请要求于2022年4月20日提交中国专利局、申请号为202220913573.3、发明名称为“光模块及光通信设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本实用新型涉及光通信技术领域,特别是涉及一种光模块及光通信设备。
背景技术
随着光通信技术的不断发展,光模块为用于交换机与设备之间传输的载体,由于其相比铜缆传输更具效率性、安全性,故光模块在光纤通信过程中起着重要的作用。但在通信的过程中,光模块会产生大量的热量,为了保证光通信的正常进行,则需要将光模块产生的热量及时散发。
现有技术中,为了对光模块进行散热,通常在安装过程中,以光模块的外壳某一表面为主散热面,通过主散热面上设置的散热器或风扇组件将光模块内部的热量传导至外界,光模块内部热量通过空气传导至主散热面,热传导效率不佳,且光模块远离主散热面的表面温度持续较高,集中于其表面上的热量不易散发,导致光模块的散热效果差,严重影响光模块的使用寿命。
技术问题
基于此,有必要针对现有光模块内部散热效果不佳的问题,提供一种光模块及光通信设备。
技术解决方案
一种光模块,包括第一壳体、第二壳体、光电元件与电路板,所述光电元件、所述电路板均安装于所述第一壳体与所述第二壳体之间,所述光电元件与所述第一壳体或所述第二壳体导热连接,所述第一壳体与所述第二壳体均具有底壁和侧壁,其中:
所述第一壳体在朝向所述第二壳体一侧的底壁上具有第一凸起,所述第一凸起具有第一配合面;
所述第二壳体的底壁上具有第二配合面,所述第一配合面与所述第二配合面导热连接。
上述光模块,以第一壳体作为主散热面安装于外部交换机上,在第一壳体的底壁上具有第一凸起,当第一配合面与第二配合面导热连接时,光电元件在工作过程中产生的热量可通过第一凸起传导至第一壳体的底壁上,且集中于第二壳体上的热量也可通过第一凸起传导至第一壳体的底壁上,并通过第一壳体的底壁传导至外界。该光模块在内部间隙处设置第一凸起,合理利用光模块的内部空间,不会增大光模块的体积,并且相较于传统的空气导热方式,该光模块增大了第一壳体与第二壳体之间的接触面积,采用固体导热方式加快热量传导速率,可快速散去集中于第二壳体上的热量,降低第一壳体与第二壳体之间的温度梯度差,显著提高了光模块的散热效果。
在其中一个实施例中,所述第一凸起为多个,且多个所述第一凸起分布于所述光电元件周围。
在其中一个实施例中,所述第二壳体的底壁上具有第二凸起,所述第二配合面位于所述第二凸起。
在其中一个实施例中,所述第一配合面为斜面或锯齿面,所述第二配合面也为与所述第一配合面相配合的斜面或锯齿面。
在其中一个实施例中,所述第一配合面与所述第二配合面之间设置有导热胶。
在其中一个实施例中,所述电路板上设置有光电芯片,所述第二壳体朝向所述电路板一侧的底壁上具有第三凸起,所述第三凸起与所述光电芯片导热连接。
在其中一个实施例中,所述第一壳体与所述第一凸起一体成型。
在其中一个实施例中,所述第一凸起贯穿所述电路板,且与所述第二配合面导热连接。
在其中一个实施例中,所述光模块还包括一个固定于所述电路板上的载板,所述载板与所述第一壳体导热连接,所述光电元件为激光器芯片,且设置于所述载板上。
一种光通信设备,包括如上述技术方案任一项所述的光模块。
有益效果
上述光通信设备,光电元件在工作过程中产生的热量可通过第一凸起传导至第一壳体的底壁上,且集中于第二壳体上的热量也可通过第一凸起传导至第一壳体的底壁上,并通过第一壳体的底壁传导至外界。该光通信设备在内部间隙处设置第一凸起,合理利用光通信设备的内部空间,不会增大光通信设备的体积,并且相较于传统的空气导热方式,增大了第一壳体与第二壳体之间的接触面积,采用固体导热方式加快热量传导速率,可快速散去集中于第二壳体上的热量,降低第一壳体与第二壳体之间的温度梯度差,显著提高了光通信设备的散热效果。
附图说明
图1为本实用新型提供的光模块的爆炸示意图;
图2为本实用新型提供的光模块的内部结构示意图;
图3为其中一种实施方式中第一凸起与第二凸起的配合方式示意图;
图4为另外一种实施方式中第一凸起与第二凸起的配合方式示意图。
附图标记:
100、光模块;
110、第一壳体;111、第一凸起;112、第一配合面;
120、第二壳体;121、第二凸起;122、第二配合面;123、第三凸起;
130、光电元件;
140、电路板;141、光电芯片;
150、底壁;
160、侧壁;
170、载板。
本发明的实施方式
为使本实用新型的上述目的、特征和优点能够更加明显易懂,下面结合附图对本实用新型的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本实用新型。但是本实用新型能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本实用新型内涵的情况下做类似改进,因此本实用新型不受下面公开的具体实施例的限制。
在本实用新型的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本实用新型和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本实用新型的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本实用新型的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本实用新型中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本实用新型中的具体含义。
在本实用新型中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“上”、“下”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
下面结合附图介绍本实用新型实施例提供的技术方案。
如图1与图2所示,本实用新型提供了一种光模块100,与外部交换机配套使用。光模块100包括第一壳体110、第二壳体120、光电元件130以及电路板140,光电元件130通过卡接、粘接等方式安装于第一壳体110与第二壳体120之间,且电路板140也通过卡接、粘接等方式安装于第一壳体110与第二壳体120之间,以实现光电元件130与电路板140的安装固定。第一壳体110具有底壁150与侧壁160,即底壁150与侧壁160共同围设成第一壳体110。同样地,第二壳体120也具有底壁150与侧壁160,即底壁150与侧壁160共同围设成第二壳体120。在工作过程中,光电元件130的光发射组件首先将电信号转换为光信号,光电元件130的光接收组件接着将光信号转换为电信号,并通过电路板140将电信号输出至光模块100外的交换机。并且,光电元件130与第一壳体110导热连接,或光电元件130与第二壳体120导热连接,以将光电元件130在工作过程中产生的热量传导至第一壳体110或第二壳体120。
具体地,第一壳体110的底壁150上具有第一凸起111,并且第一凸起111具有第一配合面112。第一凸起111贯穿电路板140,以在光模块100的内部间隙处设置第一凸起111,充分利用光模块100的内部空间。其中,第一凸起111与第一壳体110通过挤压、铸造等方式一体成型,以简化第一壳体110的成型方式,节省第一壳体110的制造成本。当然,第一壳体110还可以通过焊接等方式成型有第一凸起111,对于第一壳体110与第一凸起111的具体成型方式,本实用新型不做限制。
第二壳体120的底壁150上具有第二配合面122,第一配合面112与第二配合面122导热连接在一起,即可实现第一凸起111与第二壳体120的相互配合。需要说明的是,第一配合面112通过粘接、卡接等方式与第二配合面122相接触,并在第一配合面112与第二配合面122之间设置有导热介质,以将第一配合面112与第二配合面122导热连接在一起。
上述光模块100,以第一壳体110的底壁150作为主散热面安装于外部交换机上,光电元件130在工作过程中产生的热量可通过第一凸起111传导至第一壳体110的底壁150上,且集中于第二壳体120上的热量也可通过第一凸起111传导至第一壳体110的底壁150上,并通过第一壳体110的底壁150传导至外界。该光模块100在内部间隙处设置第一凸起111,合理利用光模块100的内部空间,不会增大光模块100的体积。并且相较于传统的空气导热方式,该光模块100增大了第一壳体110与第二壳体120之间的接触面积,采用固体导热方式加快热量传导速率,由于第二壳体120远离主散热面,第二壳体120的散热效果差,通过第一凸起111可快速散去集中于第二壳体120上的热量,降低第一壳体110与第二壳体120之间的温度梯度差,显著提高了光模块100的散热效果。
为了进一步提高光模块100的散热效果,如图1与图2所示,第一凸起111为多个,并且多个第一凸起111分布于光电元件130的周围。换言之,多个第一凸起111间隔分布于第一壳体110的间隙处,可合理利用光模块100的内部空间,不会增大光模块100的体积。并且多个第一凸起111能够及时带走光电元件130在工作过程中产生的热量,进一步提高光模块100内部的导热速率,进而提高光模块100的散热效果。
另外,第二壳体120的底壁150上具有第二凸起121,第二配合面122位于第二凸起121上,即当第一配合面112与第二配合面122导热连接时,第一凸起111与第二凸起121连接在一起。集中于第二壳体120上的热量可通过第二凸起121传导至第一凸起111,再经第一凸起111传导至第一壳体110的底壁150上,并通过第一壳体110快速传导至外界,降低第一壳体110与第二壳体120之间的温度梯度差,显著提高了光模块100的散热效果。
同样地,多个第二凸起121与第二壳体120通过挤压、铸造等方式一体成型,以简化第二壳体120的成型方式,节省第二壳体120的制造成本。当然,第二壳体120还可以通过焊接等方式成型有多个第二凸起121,对于第二壳体120与第二凸起121的具体成型方式,本实用新型不做限制。
为了进一步提高光模块100的散热效果,如图1与图2所示,第一配合面112为异形面,具体可为斜面或锯齿面中的一种,第二配合面122也为异形面,具体也可为斜面或锯齿面中的一种。需要说明的是,如图3所示,当第一配合面112为斜面时,第二配合面122也为斜面;如图4所示,当第一配合面112为锯齿面时,第二配合面122也为锯齿面。并且,第一配合面112与第二配合面122具有唯一的接合方向,第一配合面112与第二配合面122相配合,以在第一壳体110与第二壳体120连接时,第一配合面112与第二配合面122可作为导向面,提高第一壳体110与第二壳体120的配合精度与配合效率。由于在同样的单位体积内,异形面具有更大的接触面积,通过将第一配合面112与第二配合面122均设置为异形面,可进一步增大第一壳体110与第二壳体120之间的接触面积,加快热量传导效率,进一步提高光模块100的散热效果。
需要说明的是,第一配合面112与第二配合面122不局限于上述提供的斜面或锯齿面,还可以为波纹面或其他能够增大第一凸起111与第二凸起121之间接触面积的表面,对于第一配合面112与第二配合面122的具体形状,本实用新型不做限制。
为了实现第一配合面112与第二配合面122的导热连接,如图1与图2所示,第一配合面112与第二配合面122之间设置有导热胶(图示未示出)。导热胶可实现第一凸起111与第二凸起121的接合,并且导热胶能够传导热量,有助于光模块100内部热量的散发。
为了更进一步地提高光模块100的散热效果,如图1与图2所示,电路板140还包括光电芯片141,第二壳体120的底壁150上具有第三凸起123,并且第三凸起123位于第二壳体120朝向电路板140的一侧,第三凸起123与光电芯片141导热连接。由于电路板140在工作过程中,光电芯片141的发热尤为严重,此时光电芯片141的热量可通过第三凸起123传导至第二壳体120上,并通过第二凸起121、第一凸起111传导至第一壳体110的底壁150上,相较于传统的通过空气导热,第三凸起123、第二凸起121、第一凸起111的固体导热方式导热性能更好,可加快光电芯片141热量的散发,能够进一步地提高光模块100的散热效果。其中,光电芯片141可以为光芯片或电芯片中的一种,光电芯片141选择何种类型可根据用户需求具体选择。
为了进一步散去光模块100的在工作过程中产生的热量,如图1与图2所示,光模块100还包括载板170,电路板140通过螺接、焊接的形式固定于载板170上,以实现电路板140的安装固定。并且,光电元件130为激光器芯片,光电元件130通过螺接、焊接等形式设置于载板170上,以实现光电元件130的安装固定。载板170与第一壳体110导热连接,以将光电元件130与电路板140在工作过程中产生的热量及时传递至载板170上,并通过载板170传递至第一壳体110上,进而通过第一壳体110传导至外界,进一步快速散去光模块100的在工作过程中产生的热量。
并且,如图1与图2所示,第一凸起111为铝材料或铜材料中的其中一种制备而成,同样地,第二凸起121与第三凸起123也为铝材料或铜材料中的其中一种制备而成。一方面,铝和铜均具有较好的导热性,保证光模块100产生的热量可通过第一凸起111、第二凸起121以及第三凸起123快速传导至外界,加速光模块100内产生热量的散发,提高光模块100的散热效果。另一方面,铝和铜的成本较低,可节省光模块100的制造成本。
当然,第一凸起111、第二凸起121以及第三凸起123不局限于上述提供的铝材料或铜材料制备而成,还可以为银材料、金材料或其他导热性能好的材料制备而成。对于第一凸起111、第二凸起121以及第三凸起123的具体材料,本实用新型不做限制,可根据实际需求具体选择,只需满足第一凸起111、第二凸起121以及第三凸起123的导热性能较好即可。
另外,本实用新型还提供了一种光通信设备,光通信设备包括如上述技术方案任一项的光模块100。
上述光通信设备,光电元件130在工作过程中产生的热量可通过第一凸起111传导至第一壳体110的底壁150上,且集中于第二壳体120上的热量也可通过第一凸起111传导至第一壳体110的底壁150上,并通过第一壳体110的底壁150传导至外界。该光通信设备在内部间隙处设置第一凸起111,合理利用光通信设备的内部空间,不会增大光通信设备的体积,并且相较于传统的空气导热方式,增大了第一壳体110与第二壳体120之间的接触面积,采用固体导热方式加快热量传导速率,可快速散去集中于第二壳体120上的热量,降低第一壳体110与第二壳体120之间的温度梯度差,显著提高了光通信设备的散热效果。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本实用新型的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对实用新型专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本实用新型构思的前提下,还可以做出若干变形和改进,这些都属于本实用新型的保护范围。因此,本实用新型专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种光模块,其特征在于,包括第一壳体、第二壳体、光电元件与电路板,所述光电元件、所述电路板均安装于所述第一壳体与所述第二壳体之间,所述光电元件与所述第一壳体或所述第二壳体导热连接,所述第一壳体与所述第二壳体均具有底壁和侧壁,其中:
    所述第一壳体在朝向所述第二壳体一侧的底壁上具有第一凸起,所述第一凸起具有第一配合面;
    所述第二壳体的底壁上具有第二配合面,所述第一配合面与所述第二配合面导热连接。
  2. 根据权利要求1所述的光模块,其特征在于,所述第一凸起为多个,且多个所述第一凸起分布于所述光电元件周围。
  3. 根据权利要求1所述的光模块,其特征在于,所述第二壳体的底壁上具有第二凸起,所述第二配合面位于所述第二凸起。
  4. 根据权利要求1所述的光模块,其特征在于,所述第一配合面为斜面或锯齿面,所述第二配合面也为与所述第一配合面相配合的斜面或锯齿面。
  5. 根据权利要求1所述的光模块,其特征在于,所述第一配合面与所述第二配合面之间设置有导热胶。
  6. 根据权利要求1所述的光模块,其特征在于,所述电路板上设置有光电芯片,所述第二壳体朝向所述电路板一侧的底壁上具有第三凸起,所述第三凸起与所述光电芯片导热连接。
  7. 根据权利要求1所述的光模块,其特征在于,所述第一壳体与所述第一凸起一体成型。
  8. 根据权利要求1所述的光模块,其特征在于,所述第一凸起贯穿所述电路板,且与所述第二配合面导热连接。
  9. 根据权利要求1所述的光模块,其特征在于,所述光模块还包括一个固定于所述电路板上的载板,所述载板与所述第一壳体导热连接,所述光电元件为激光器芯片,且设置于所述载板上。
  10. 一种光通信设备,其特征在于,包括如权利要求1所述的光模块。
PCT/CN2023/074911 2022-04-20 2023-02-08 光模块及光通信设备 WO2023202184A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202220913573.3 2022-04-20
CN202220913573.3U CN217213253U (zh) 2022-04-20 2022-04-20 光模块及光通信设备

Publications (1)

Publication Number Publication Date
WO2023202184A1 true WO2023202184A1 (zh) 2023-10-26

Family

ID=82773241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/074911 WO2023202184A1 (zh) 2022-04-20 2023-02-08 光模块及光通信设备

Country Status (2)

Country Link
CN (1) CN217213253U (zh)
WO (1) WO2023202184A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN217213253U (zh) * 2022-04-20 2022-08-16 苏州旭创科技有限公司 光模块及光通信设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101872042A (zh) * 2010-05-27 2010-10-27 华为技术有限公司 光模块和光通信系统
CN105009388A (zh) * 2013-02-28 2015-10-28 三菱电机株式会社 散热构造及光收发器
CN110062555A (zh) * 2018-01-18 2019-07-26 苏州旭创科技有限公司 散热模块及光模块
CN111061022A (zh) * 2020-01-08 2020-04-24 青岛海信宽带多媒体技术有限公司 一种光模块
CN210610200U (zh) * 2019-10-30 2020-05-22 苏州松翔电通科技有限公司 一种快速散热的光模块壳体
CN211236354U (zh) * 2019-12-09 2020-08-11 亨通洛克利科技有限公司 一种400g光模块的结构
CN217213253U (zh) * 2022-04-20 2022-08-16 苏州旭创科技有限公司 光模块及光通信设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101872042A (zh) * 2010-05-27 2010-10-27 华为技术有限公司 光模块和光通信系统
CN105009388A (zh) * 2013-02-28 2015-10-28 三菱电机株式会社 散热构造及光收发器
CN110062555A (zh) * 2018-01-18 2019-07-26 苏州旭创科技有限公司 散热模块及光模块
CN210610200U (zh) * 2019-10-30 2020-05-22 苏州松翔电通科技有限公司 一种快速散热的光模块壳体
CN211236354U (zh) * 2019-12-09 2020-08-11 亨通洛克利科技有限公司 一种400g光模块的结构
CN111061022A (zh) * 2020-01-08 2020-04-24 青岛海信宽带多媒体技术有限公司 一种光模块
CN217213253U (zh) * 2022-04-20 2022-08-16 苏州旭创科技有限公司 光模块及光通信设备

Also Published As

Publication number Publication date
CN217213253U (zh) 2022-08-16

Similar Documents

Publication Publication Date Title
US8509622B2 (en) Optical module and optical communication system
CN101603636B (zh) 光源装置
WO2023202184A1 (zh) 光模块及光通信设备
CN101408302A (zh) 具良好散热性能的光源模组
KR20210008810A (ko) 램프
CN201599769U (zh) 过流散热led路灯
CN211125696U (zh) 新型cob封装工艺led线路板
US20080044624A1 (en) Complex architecture for dispersing heat
CN202003064U (zh) 一种光收发一体的xfp光模块
CN102508341A (zh) 光模块
CN210534699U (zh) 服务器用散热模组结构
CN212009034U (zh) 一种5g承载网qsfp光模块石墨烯散热外壳
CN210465771U (zh) 一种高效散热的光模块
CN211152537U (zh) 服务器散热器
CN111726273A (zh) Can通讯协议互通板
CN208384179U (zh) 一种小型高速率光模块的散热装置
CN106641787B (zh) 一种led灯管
CN220984618U (zh) 一种电池包
CN219660240U (zh) 一种sfp光口散热结构
CN217064367U (zh) 一种增强石墨导热的复合结构
CN212846053U (zh) 一种光模块的桥接散热结构
CN211828824U (zh) 一种高效散热二极管
CN217037777U (zh) 一种改进型5g基站散热模组
CN108828733A (zh) 一种散热优良的ir4光模块
CN213069396U (zh) 一种高效散热大功率隔离器芯

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23790848

Country of ref document: EP

Kind code of ref document: A1