WO2023201639A1 - 无人飞行器 - Google Patents

无人飞行器 Download PDF

Info

Publication number
WO2023201639A1
WO2023201639A1 PCT/CN2022/088245 CN2022088245W WO2023201639A1 WO 2023201639 A1 WO2023201639 A1 WO 2023201639A1 CN 2022088245 W CN2022088245 W CN 2022088245W WO 2023201639 A1 WO2023201639 A1 WO 2023201639A1
Authority
WO
WIPO (PCT)
Prior art keywords
unmanned aerial
aerial vehicle
obstacle avoidance
state
arm
Prior art date
Application number
PCT/CN2022/088245
Other languages
English (en)
French (fr)
Inventor
肖翔
何乾坤
刘铨垒
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2022/088245 priority Critical patent/WO2023201639A1/zh
Priority to CN202280063758.2A priority patent/CN117980229A/zh
Publication of WO2023201639A1 publication Critical patent/WO2023201639A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/04Helicopters
    • B64C27/08Helicopters with two or more rotors

Definitions

  • This application relates to the technical field of aircraft, and in particular to an unmanned aircraft.
  • unmanned aerial vehicles As users pursue the ultimate user experience, users have increasingly higher performance requirements for unmanned aerial vehicles. For example, in order to enhance the safety of unmanned aerial vehicles, more and more unmanned aerial vehicles have applied visual obstacle avoidance technology; in order to facilitate carrying, transportation and storage, more and more unmanned aerial vehicles have applied arm folding technology; To achieve aerial photography, more and more unmanned aerial vehicles have applied gimbal camera aerial photography technology.
  • an embodiment of the present application provides an unmanned aerial vehicle.
  • an unmanned aerial vehicle which includes:
  • fuselage including a nose and a tail opposite said nose
  • a plurality of rotor devices are respectively installed on the fuselage, and the rotor devices are used to provide flight power;
  • a rear obstacle avoidance sensor installed on the top of the fuselage for detecting obstacles toward the tail direction of the unmanned aerial vehicle
  • the state of the unmanned aerial vehicle includes a backward flight state of flying toward the tail direction and a hovering state of stably hovering in a windless environment
  • the fuselage In the hovering state, the fuselage is tilted in the length direction compared to the horizontal direction, so that the height of the nose is greater than the height of the tail;
  • the inclination angle of the sensing direction of the rear obstacle avoidance sensor relative to the horizontal direction when the unmanned aerial vehicle is in a hovering state is greater than the inclination angle relative to the horizontal direction when the unmanned aerial vehicle is in a backward flying state.
  • the fuselage of the UAV since in the hovering state, the fuselage is tilted in the length direction compared to the horizontal direction, so that the height of the nose is greater than the height of the tail, the fuselage of the UAV is relatively horizontal.
  • the direction can be tilted back at a certain angle to reduce the resistance experienced by the unmanned aerial vehicle, thereby improving the flight efficiency of the unmanned aerial vehicle.
  • the inclination angle of the sensing direction of the rear obstacle avoidance sensor compared to the horizontal direction when the UAV is in the hovering state is greater than when the UAV is in the hovering state.
  • the position of the rear obstacle avoidance sensor can be combined with the flight and hovering attitude of the fuselage to obtain a larger obstacle avoidance perspective or a better direction angle. Therefore, it is beneficial to improve the overall obstacle avoidance function of the unmanned aerial vehicle and improve the flying experience of the unmanned aerial vehicle.
  • the embodiment of the present application also discloses an unmanned aerial vehicle.
  • the unmanned aerial vehicle includes:
  • the fuselage includes a central body and an arm mechanically coupled with the central body;
  • a plurality of rotor devices are respectively installed on the arms, and the rotor devices are used to provide flight power;
  • the machine arm includes a front machine arm and a rear machine arm
  • the center body includes a first mounting part located at the front end and a second mounting part located at the rear end
  • the front machine arm is rotationally connected to the first mounting part
  • the rear arm is rotatably connected to the second mounting part, and the height of the second mounting part is higher than the height of the first mounting part
  • the state of the unmanned aerial vehicle includes a hovering state in which it hovers stably in a windless environment and a stowed state that is easy to carry.
  • a hovering state in which it hovers stably in a windless environment
  • a stowed state that is easy to carry.
  • the height of the front arm is greater than the height of the rear arm; when the UAV is in the stowed state, the height of the front arm is greater than the height of the rear arm.
  • the front machine arm is located below the rear machine arm.
  • the height of the front arm is greater than the height of the rear arm; when the UAV aircraft is in the stowed state At this time, the front arm is located below the rear arm, and the active state of the arm 1 is related to the attitude of the UAV, which facilitates the flight and storage of the UAV.
  • the embodiment of the present application also discloses an unmanned aerial vehicle.
  • the unmanned aerial vehicle includes:
  • the fuselage including the nose and the tail opposite the nose;
  • a pan/tilt installed at the front end of the aircraft head, the pan/tilt including a pitch axis mechanism
  • a front obstacle avoidance sensor is installed at the front end of the machine head and located above the gimbal;
  • a camera is connected to the head of the fuselage through the pan/tilt, and the camera can change its pitch angle through a pitch axis mechanism so that the camera can shoot upward or downward of the fuselage;
  • the machine head is provided with an avoidance part above the camera, the avoidance part has a depression corresponding to the camera, and the front obstacle avoidance sensor is located on the avoidance part;
  • the state of the unmanned aerial vehicle includes a hovering state of stably hovering in a windless environment; in the hovering state, the fuselage is tilted in the length direction relative to the horizontal direction, so that the height of the nose is greater than the height of the aircraft head. Depending on the height of the tail, the camera can take pictures through the depression of the avoidance part.
  • the camera since the camera is connected to the head of the fuselage through a pan/tilt, the camera can change its pitch angle through the pitch axis mechanism, and the head is provided with an avoidance portion above the camera.
  • the fuselage In the hovering state, the fuselage is tilted in the length direction compared to the horizontal direction, so that the height of the nose is greater than the height of the tail.
  • the camera can shoot through the depression of the avoidance part, increasing the pitch of the camera. Shooting range.
  • the shooting range of the camera's pitch angle can be easily expanded, thereby helping the camera obtain better aerial photography effects.
  • Figure 1 schematically shows a schematic structural diagram of an unmanned aerial vehicle in a flying state according to an embodiment of the present application
  • Figure 2 schematically shows a top structural view of the unmanned aerial vehicle described in Figure 1;
  • Figure 3 schematically shows a front structural view of the unmanned aerial vehicle shown in Figure 1;
  • Figure 4 schematically shows a schematic rear structural view of the unmanned aerial vehicle described in Figure 1;
  • Figure 5 schematically shows a schematic structural view from below of the unmanned aerial vehicle shown in Figure 1;
  • Figure 6 schematically shows the structure of the unmanned aerial vehicle shown in Figure 1 in a hovering state
  • Figure 7 schematically shows the structural diagram of the unmanned aerial vehicle described in Figure 1 in a backward flight state
  • Figure 8 schematically shows a structural diagram of the unmanned aerial vehicle shown in Figure 1 in a forward flight state
  • Figure 9 schematically shows one of the structural schematic diagrams of the unmanned aerial vehicle shown in Figure 1 in a folded state
  • Figure 10 schematically shows the second structural schematic diagram of the unmanned aerial vehicle shown in Figure 1 in a folded state.
  • first and second features in the description and claims of this application may include one or more of these features, either explicitly or implicitly.
  • plural means two or more.
  • and/or in the description and claims indicates at least one of the connected objects, and the character “/” generally indicates that the related objects are in an “or” relationship.
  • connection should be understood in a broad sense.
  • connection or integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two components.
  • connection or integral connection
  • connection or integral connection
  • connection can be a mechanical connection or an electrical connection
  • it can be a direct connection or an indirect connection through an intermediate medium
  • it can be an internal connection between two components.
  • specific meanings of the above terms in this application can be understood on a case-by-case basis.
  • the embodiment of the present application provides an unmanned aerial vehicle.
  • the unmanned aerial vehicle can be an unmanned aerial vehicle that needs to be folded for various purposes, such as aerial photography drones, agricultural plant protection drones, surveying and mapping drones, etc. .
  • the unmanned aerial vehicle is an agricultural plant protection unmanned aerial vehicle as an example for description.
  • FIG. 1 a schematic structural diagram of an unmanned aerial vehicle in a flying state according to an embodiment of the present application is shown.
  • FIG 2 a schematic structural diagram of a top view of the unmanned aerial vehicle described in Figure 1 is shown.
  • Figure 3 A schematic front structural view of the unmanned aerial vehicle shown in Fig. 1 is shown.
  • Fig. 4 a schematic rear structural view of the unmanned aerial vehicle shown in Fig. 1 is shown.
  • Fig. 5 a schematic structural view of the unmanned aerial vehicle shown in Fig. 1 is shown.
  • Figure 6 which shows a structural schematic diagram of the unmanned aircraft shown in Figure 1 in a hovering state.
  • FIG. 7 shows a diagram of the unmanned aircraft shown in Figure 1 in a backward flying state.
  • Figure 8 a schematic structural diagram of the unmanned aerial vehicle shown in Figure 1 is shown in a forward flying state.
  • Figure 9 a schematic structural diagram of the unmanned aerial vehicle shown in Figure 1 is shown in a folded state.
  • Figure 10 which shows the second structural schematic diagram of the unmanned aerial vehicle shown in Figure 1 in a folded state.
  • the unmanned aerial vehicle may include: a fuselage 10, which specifically includes a nose F and a tail B opposite to the nose F; a plurality of rotor devices 11, and the plurality of rotor devices 11 are respectively installed on the machine.
  • the fuselage 10, the rotor device 11 can be used to provide flight power; and the rear obstacle avoidance sensor 12, the rear obstacle avoidance sensor 12 is installed on the top of the fuselage 10, used to detect obstacles toward the tail B direction of the unmanned aerial vehicle; wherein,
  • the state of the UAV may include a backward flying state (as shown in Figure 7) flying in the direction of tail B (the direction pointed by the wide arrow in Figure 7) and a hovering state of stably hovering in a windless environment.
  • the fuselage 10 in the hovering state, is tilted in the length direction L compared to the horizontal direction H, so that the height of the nose F is greater than the height of the tail B; the rear obstacle avoidance sensor 12
  • the inclination angle of the sensing direction relative to the horizontal direction H when the unmanned aerial vehicle is in a hovering state is greater than the inclination angle relative to the horizontal direction H when the unmanned aerial vehicle is in a backward flight state.
  • the unmanned aerial vehicle since in the hovering state, the fuselage 10 is tilted in the length direction L compared to the horizontal direction H, so that the height of the nose F is greater than the height of the tail B, the unmanned aerial vehicle is The body 10 can be tilted back at a certain angle relative to the horizontal direction H to reduce the resistance experienced by the UAV, thereby improving the flight efficiency of the UAV.
  • the rear obstacle avoidance sensor 12 on the top of the fuselage 10, the inclination angle of the sensing direction of the rear obstacle avoidance sensor 12 relative to the horizontal direction H when the UAV is in the hovering state is greater than when the UAV is in the hovering state.
  • the position of the rear obstacle avoidance sensor 12 can be combined with the flight and hovering attitude of the fuselage 10 to obtain a larger obstacle avoidance viewing angle or a better direction angle. Therefore, it is beneficial to improve the overall obstacle avoidance function of the unmanned aerial vehicle and improve the flying experience of the unmanned aerial vehicle.
  • the rear obstacle avoidance sensor 12 is installed on the top of the fuselage 10, when the unmanned aerial vehicle is in the hovering state, due to the length direction L of the fuselage 10 of the unmanned aerial vehicle It can be tilted back at a certain angle relative to the horizontal direction H. In this way, the rear obstacle avoidance sensor 12 on the top of the fuselage 10 can better detect obstacles in the direction B of the tail B of the UAV, thereby obtaining a larger obstacle avoidance viewing angle or a better direction angle.
  • the rear obstacle avoidance sensor 12 can better detect obstacles in the forward direction of the UAV, obtain a larger obstacle avoidance viewing angle or a better direction angle, and improve the obstacle avoidance function of the UAV.
  • the posture of the fuselage 10 is related to the sensing direction of the rear obstacle avoidance sensor 12 and the angle between the length direction L of the fuselage 10 and the horizontal direction H. Therefore, by setting the posture of the fuselage 10, especially the inclination angle of the length direction L of the fuselage 10 compared to the horizontal direction H, the inclination angle of the sensing direction of the rear obstacle avoidance sensor 12 and the horizontal direction H can be set, so that the rear obstacle avoidance sensor 12 can be tilted.
  • the inclination angle of the sensing direction of the obstacle avoidance sensor 12 relative to the horizontal direction H when the UAV is in a hovering state is greater than the inclination angle relative to the horizontal direction H when the UAV is in a backward flight state.
  • the inclination angle of the length direction L of the fuselage 10 relative to the horizontal direction H may be the first inclination angle a.
  • the inclination angle of the length direction L of the fuselage 10 relative to the horizontal direction H may be the second inclination angle b.
  • the length direction L of the fuselage 10 may be the connection direction connecting the nose F and the tail B of the UAV respectively.
  • the horizontal direction H may be a direction parallel to the horizon.
  • the sensing direction of the rear obstacle avoidance sensor 12 is inclined toward the rear and upper side of the fuselage 10 relative to the horizontal direction H. Therefore, the rear obstacle avoidance sensor 12 on the top of the fuselage 10 can better see the horizontal direct rear of the fuselage 10 without being blocked by the fuselage 10 . Moreover, since the rear obstacle avoidance sensor 12 is disposed on the top of the fuselage 10, and in the hovering state, the sensing direction of the rear obstacle avoidance sensor 12 is inclined toward the rear and upper direction of the fuselage 10 relative to the horizontal direction H, so that The rear obstacle avoidance sensor 12 can detect obstacles above and behind the fuselage 10 .
  • the sensing range of the rear obstacle avoidance sensor 12 can be overall higher than the propeller plane of the rotor device 11 located in the direction B of the tail, completely solving the problem that the oblique upper view of the rear obstacle avoidance sensor 12 is blocked by the rotor device 11 and forming a blind spot.
  • the problem is to increase the detection range of the rear obstacle avoidance sensor 12 and improve the overall obstacle avoidance capability of the unmanned aerial vehicle.
  • the UAV may also include: a front obstacle avoidance sensor 13.
  • the front obstacle avoidance sensor 13 is installed on the nose F of the center body 101 and is used to detect obstacles toward the nose F of the UAV. ;
  • the sensing direction of the front obstacle avoidance sensor 13 is tilted toward the front and upper side of the fuselage 10 relative to the horizontal direction H to detect obstacles in the front and upper side of the fuselage 10 .
  • the front obstacle avoidance sensor 13 can only detect obstacles directly ahead.
  • the layout of the front obstacle avoidance sensor 13 described in this application can further increase the detection range of the UAV for obstacles, thereby improving the overall obstacle avoidance capability of the UAV.
  • the unmanned aerial vehicle may also include: a lower obstacle avoidance sensor 14, which is installed at the bottom of the central body 101 and used to detect obstacles toward the bottom of the unmanned aerial vehicle; In the hovering state, the sensing direction of the lower obstacle avoidance sensor 14 is tilted toward the front and downwards relative to the horizontal direction H to detect obstacles in the horizontal direction H toward the front and downwards.
  • a lower obstacle avoidance sensor 14 In the hovering state, the sensing direction of the lower obstacle avoidance sensor 14 is tilted toward the front and downwards relative to the horizontal direction H to detect obstacles in the horizontal direction H toward the front and downwards.
  • the front obstacle avoidance sensor 13, the rear obstacle avoidance sensor 12 and the lower obstacle avoidance sensor 14 can all be binocular vision modules.
  • the binocular vision module can observe the target through at least two cameras, and determine the relative distance between the target and the camera through the principle of triangulation, thereby realizing the detection of obstacle targets, that is, Environmental awareness.
  • ranging from any target requires at least two cameras to observe simultaneously to achieve triangulation positioning.
  • at least three sets of binocular vision modules can be arranged so that the detection range of the triangular positioning of the binocular vision modules covers multiple directions. The detection range of the unmanned aerial vehicle for detecting obstacles is increased, and the obstacle avoidance capability of the unmanned aerial vehicle is improved, thereby improving the flight safety of the unmanned aerial vehicle.
  • the front obstacle avoidance sensor 13 , the rear obstacle avoidance sensor 12 and the lower obstacle avoidance sensor 14 can also be sensors capable of detecting obstacles such as laser radar.
  • the front obstacle avoidance sensor 13 and the rear obstacle avoidance sensor 14 The specific contents of the sensor 12 and the lower obstacle avoidance sensor 14 are not limited.
  • the embodiment of the present application also provides an unmanned aerial vehicle.
  • the unmanned aerial vehicle may specifically include: a fuselage 10.
  • the fuselage 10 may include a central body 101 and an arm 102 mechanically coupled with the central body 101; a plurality of rotor devices. 11.
  • a plurality of rotor devices 11 are respectively installed on the machine arms 102.
  • the rotor devices 11 can be used to provide flight power.
  • the machine arms 102 may specifically include a front arm 1021 and a rear arm 1022.
  • the central body 101 may specifically include a The first mounting part 1011 at the front end and the second mounting part 1012 at the rear end.
  • the front arm 1021 is rotatably connected to the first mounting part 1011.
  • the rear arm 1022 is rotatably connected to the second mounting part 1012.
  • the height of the second mounting part 1012 Higher than the height of the first mounting part 1011; the state of the UAV may include a hovering state in which it hovers stably in a windless environment (as shown in Figure 6) and a stowed state that is easy to carry (as shown in Figures 9 and 10 shown), when the UAV is in the hovering state, the front arm 1021 and the rear arm 1022 are in an unfolded state relative to the central body 101; when the UAV is in the stowed state, the front arm 1021 and the rear arm 1022 are in the unfolded state.
  • the machine arm 1021 and the rear machine arm 1022 are in a folded state relative to the center body 101; when the UAV aircraft is in the hovering state, the height of the front machine arm 1021 is greater than the height of the rear machine arm 1022; When the UAV is in the stowed state, the front arm 1021 is located below the rear arm 1022 .
  • the height of the front arm 1021 is greater than the height of the rear arm 1022; when the UAV aircraft is in the hovering state, In the stowed state, the front arm 1021 is located below the rear arm 1022, and the active state of the arm 102 is related to the attitude of the UAV, which facilitates the flight and stowage of the UAV.
  • the height of the front arm 1021 is greater than the height of the rear arm 1022, so that the height of the rotor device 11 connected to the front arm 1021 can be Correspondingly, it is greater than the height of the rotor device 11 connected to the rear arm 1022. In this way, it is beneficial to reduce the resistance experienced by the unmanned aerial vehicle, thereby improving the flight efficiency of the unmanned aerial vehicle.
  • the height of the second mounting portion 1012 for mounting the rear arm 1022 is higher than the height of the first mounting portion 1011 for mounting the front arm 1021, when the UAV is in the stowed state, The front arm 1021 may be located below the rear arm 1022 . In this way, the arms 102 can be folded and stored in a staggered position, thereby reducing the storage volume of the UAV and facilitating the carrying and transportation of the UAV.
  • the height may specifically be the height along the height direction of the unmanned aerial vehicle.
  • the rear arm 1022 and the front arm 1021 are both attached to the side ends of the center body 101, and the blades 111 on the rotor device 11 are attached to the center body 101 to further reduce the The volume of the unmanned aerial vehicle in the stowed state facilitates the carrying and transportation of the unmanned aerial vehicle.
  • the embodiment of the present application also provides an unmanned aerial vehicle.
  • the unmanned aerial vehicle may specifically include: a fuselage 10 including a nose F and a tail B opposite to the nose F; a cloud platform 15 installed on the nose F At the front end, the pan/tilt 15 may specifically include a pitch axis mechanism; a front obstacle avoidance sensor 13.
  • the front obstacle avoidance sensor 13 is installed at the front end of the machine head F and is located above the pan/tilt 15.
  • the front obstacle avoidance sensor 13 may be used to face the The unmanned aerial vehicle detects obstacles in the direction of the nose F; and the camera 16 is connected to the nose F of the fuselage 10 through the pan/tilt 15, and the camera 16 can change its pitch angle through the pitch axis mechanism, so that the camera 16 can Shooting toward the top or bottom of the fuselage 10; wherein, the machine head F is provided with an avoidance part 1013 above the camera 16, the avoidance part 1013 has a depression corresponding to the camera 16, and the front obstacle avoidance sensor 13 is located on the avoidance part 1013;
  • the state of the human aircraft may include a hovering state of stable hovering in a windless environment; in the hovering state, the fuselage 10 is tilted in the length direction L relative to the horizontal direction H, so that the height of the nose F is greater than the tail B At such a height, the camera 16 can take pictures through the recess of the avoidance portion 1013 .
  • the camera 16 since the camera 16 is connected to the head F of the fuselage 10 through the pan/tilt 15, the camera 16 can change its pitch angle through the pitch axis mechanism.
  • the head F is provided with an avoidance portion above the camera 16. 1013.
  • the fuselage 10 In the hovering state, the fuselage 10 is tilted in the length direction L compared to the horizontal direction H, so that the height of the nose F is greater than the height of the tail B.
  • the camera 16 can pass through the avoidance part 1013
  • the recessed shooting improves the tilt shooting range of the camera 16. In this way, by matching the setting method of the pan/tilt 15 with the state of the unmanned aerial vehicle, the shooting range of the pitch angle of the camera 16 can be easily expanded, thereby helping the camera 16 to obtain better aerial photography effects.
  • the pitch axis mechanism of the gimbal 15 can drive the camera 16 to change its pitch angle and shoot toward the top or bottom of the fuselage 10 .
  • the head F of the fuselage 10 is provided with an escape portion 1013 above the camera 16 . Due to the existence of the escape portion 1013 , damage caused by the fuselage 10 to the camera 16 can be avoided. Occlusion expands the pitch shooting range of the camera 16, which is beneficial to obtaining better aerial photography effects.
  • the flight state may also include a forward flight state of flying toward the direction of the nose F.
  • the length direction L of the fuselage 10 is substantially parallel to the horizontal direction H to reduce the size of the fuselage. 10 of the windward area, thereby reducing the resistance experienced by the fuselage 10 in the forward flight state and improving the flight efficiency of the unmanned aerial vehicle.
  • the forward flight state is the main use state of the unmanned aerial vehicle
  • the unmanned aerial vehicle can be greatly reduced.
  • the energy consumption of the unmanned aerial vehicle improves the flight efficiency of the unmanned aerial vehicle, thereby improving the user's experience of using the unmanned aerial vehicle.
  • the unmanned aerial vehicle in the forward flight state, flies basically at the target flight speed; in the hovering state, the length direction L of the fuselage 10 is compared to the first inclination angle a of the horizontal direction H. Relevant to the target flight speed.
  • the first inclination angle a of the length direction L of the fuselage 10 compared to the horizontal direction H in the hovering state can be set according to the target flight speed, so that the UAV can fly with the target
  • flying forward at a flying speed the windward area of the fuselage 10 is the smallest, and the resistance experienced by the fuselage 10 is the lowest. Since the unmanned aerial vehicle basically flies forward at the target flight speed, the forward flight resistance of the unmanned aerial vehicle can be greatly increased and the energy consumption of the forward flight of the unmanned aerial vehicle can be reduced.
  • the target flight speed can be set according to actual conditions.
  • the target flight speed may be 10 meters per second, 12 seconds per second, or 15 meters per second, etc.
  • the embodiment of the present application does not limit the specific value of the target flight speed.
  • the first tilt angle a is related to a target coefficient
  • the target coefficient is related to the size and shape of the fuselage 10 . That is, the value of the first tilt angle a also needs to consider the shape and size of the fuselage 10 , and determine the target coefficient according to the shape and size of the fuselage 10 .
  • the target coefficient can be used to evaluate the influence of the shape and size of the fuselage 10 on the first tilt angle a.
  • the first The setting of the tilt angle a is more objective and scientific. In this way, the energy consumption of the unmanned aerial vehicle can be further reduced and the flight efficiency of the unmanned aerial vehicle can be improved.
  • the first tilt angle a is positively related to the target coefficient and the target flight speed respectively. That is, the greater the target flight speed, the greater the first inclination angle a, and the greater the target coefficient, the greater the first inclination angle a, which is beneficial to the calculation of the first inclination angle a.
  • the following provides a calculation formula for calculating the first tilt angle a:
  • a represents the first tilt angle a
  • k represents the target coefficient, which is related to the shape and size of the fuselage 10
  • v represents the target flight of the UAV when it is in the forward flight state. speed.
  • the inclination angle of the length direction L of the fuselage 10 relative to the horizontal direction H is between 5 degrees and 25 degrees, which is beneficial to the unmanned aerial vehicle when it is in the hovering state. Hover stability.
  • the first tilt angle a can be set according to the actual situation.
  • the first tilt angle a can be 10 degrees, 15 degrees, or 18 degrees, etc.
  • the specific value of the first tilt angle a may not be specified in the embodiment of the present application. Make limitations.
  • the flight state may also include a forward flight state of flying in the direction F of the aircraft nose, and a backward flight state of flying in the direction of the tail B of the aircraft.
  • the first optical axis D1 of the front obstacle avoidance sensor 13 can be tilted forward and downward with respect to the horizontal direction H to detect obstacles forward and downward in the horizontal direction H;
  • the second optical axis D2 of the obstacle avoidance sensor 14 can be inclined toward the rear and lower direction relative to the horizontal direction H to detect obstacles toward the rear and upper direction of the horizontal direction H.
  • the third optical axis D3 of the rear obstacle avoidance sensor 12 can be inclined relative to the horizontal direction H.
  • the direction H is tilted toward the rear and upper direction to detect obstacles in the rear and upper direction of the horizontal direction H.
  • the unmanned aerial vehicle can achieve all-round obstacle avoidance in the forward flying state, improving the efficiency of the unmanned aerial vehicle. obstacle avoidance function.
  • the first optical axis D1 of the front obstacle avoidance sensor 13 can be tilted toward the front and upper direction relative to the horizontal direction H, so as to detect obstacles toward the front and upper direction of the horizontal direction H;
  • the second optical axis D2 of the obstacle avoidance sensor 14 can be tilted toward the front and lower direction relative to the horizontal direction H to detect obstacles in the front and lower direction of the horizontal direction H;
  • the third optical axis D3 of the rear obstacle avoidance sensor 12 can be tilted relative to the horizontal direction H.
  • the direction H is toward the rear, and obstacles are detected toward the rear in the horizontal direction H.
  • the unmanned aerial vehicle can achieve all-round obstacle avoidance in the backward flying state, improving the efficiency of the unmanned aerial vehicle. obstacle avoidance function.
  • the third optical axis D3 of the rear obstacle avoidance sensor 12 can be substantially parallel to the horizontal direction H.
  • the angle between the sensing direction of the rear obstacle avoidance sensor 12 and the horizontal direction H is small.
  • the rear obstacle avoidance sensor 12 can better detect obstacles in the forward direction of the UAV, obtain a larger obstacle avoidance viewing angle or a better direction angle, and improve the obstacle avoidance function of the UAV.
  • the front obstacle avoidance sensor 13 has a first sensing coverage area S1
  • the lower obstacle avoidance sensor 14 has a second sensing coverage area S2
  • the rear obstacle avoidance sensor 12 has a third sensing coverage area S3;
  • the two optical axes D2 are inclined forward and downward relative to the longitudinal direction L of the central body 101, so that the second sensing coverage area S2 and the first sensing coverage area S1 at least partially overlap.
  • the obstacle avoidance detection blind area of the unmanned aerial vehicle can be reduced, and all-round obstacle avoidance detection can be achieved, which is conducive to improving all aspects of obstacle avoidance detection. Describe the obstacle avoidance function of unmanned aerial vehicles.
  • the first sensing coverage area S1 has a first upper boundary S11 and a first lower boundary S12.
  • the second sensing coverage area S2 has a first front boundary S21 and a first rear boundary S22.
  • the first lower boundary S12 and The first front boundary S21 at least partially overlaps to avoid the blind zone of obstacle avoidance detection between the front obstacle avoidance sensor 13 and the lower obstacle avoidance sensor 14 as much as possible to achieve all-round obstacle avoidance detection, which is conducive to improving the performance of the unmanned aerial vehicle. Obstacle avoidance function.
  • the overlapping angle of the first lower boundary S12 and the first front boundary S21 is less than or equal to 5 degrees.
  • the obstacle avoidance detection blind area between the front obstacle avoidance sensor 13 and the lower obstacle avoidance sensor 14 can be reduced, and the impact of the overlap of the first lower boundary S12 and the first front boundary S21 on the detection angle of the entire unmanned aerial vehicle can be reduced.
  • the impact is conducive to improving the overall obstacle avoidance capability of the unmanned aerial vehicle.
  • the third optical axis D3 of the rear obstacle avoidance sensor 12 is tilted upward relative to the length direction L of the central body 101, so that the rear obstacle avoidance sensor 12 on the top of the fuselage 10 can better see the horizontal direction of the fuselage 10. rear without being blocked by the fuselage 10.
  • the sensing range of the rear obstacle avoidance sensor 12 can be overall higher than the propeller plane of the rotor device 11 located in the direction B of the tail, completely solving the problem of the rear obstacle avoidance sensor.
  • the oblique upper view of the UAV 12 is blocked by the rotor device 11 to form a blind spot. This increases the detection range of the rear obstacle avoidance sensor 12 and improves the overall obstacle avoidance capability of the unmanned aerial vehicle.
  • the angle of the third optical axis D3 tilting upward relative to the horizontal direction H is less than or equal to 30 degrees, so that when the unmanned aerial vehicle is in any attitude, the sensing direction of the rear obstacle avoidance sensor 12 can be directed toward the unmanned aerial vehicle.
  • the upward tilt angle of the third optical axis D3 relative to the horizontal direction H can be set according to the actual situation, for example, 5 degrees, 7 degrees or 10 degrees, etc.
  • the embodiment of the present application is for the third optical axis D3
  • the angle at which the three-optical axis D3 tilts upward relative to the horizontal direction H is not specifically limited.
  • the first optical axis D1 of the front obstacle avoidance sensor 13 is substantially parallel to the length direction L of the central body 101, and the front obstacle avoidance sensor 13 can always detect obstacles toward the direction of the nose F of the UAV.
  • the front obstacle avoidance sensor 13 can be installed with the horizontal direction H as a reference to improve the performance of the front obstacle avoidance sensor 13. The installation accuracy and installation efficiency of the front obstacle avoidance sensor 13.
  • the rear obstacle avoidance sensor 12 may be disposed close to the front obstacle avoidance sensor 13 .
  • the front obstacle avoidance sensor 13 is installed on the nose F of the fuselage 10
  • the rear obstacle avoidance sensor 12 can be as close to the fuselage as possible. 10 of the aircraft nose F to minimize the obstruction of the rear obstacle avoidance sensor 12 by the rotor device 11 in the direction of the tail B, thereby increasing the detection range of the rear obstacle avoidance sensor 12.
  • the rear obstacle avoidance sensor 12 and the front obstacle avoidance sensor 13 are both connected to the top of the fuselage 10, and the distance between the rear obstacle avoidance sensor 12 and the front obstacle avoidance sensor 13 is less than the first threshold, so that the rear obstacle avoidance sensor 12 can The sensor 12 is as close as possible to the front obstacle avoidance sensor 13.
  • the specific value of the first threshold can be set according to actual conditions.
  • the first threshold may be 5 mm, 8 mm or 20 mm, etc.
  • the embodiment of the present application does not limit the specific value of the first threshold.
  • the fuselage 10 is also provided with a bracket 103, and the front obstacle avoidance sensor 13 and the rear obstacle avoidance sensor 12 are both installed on the bracket 103.
  • the front obstacle avoidance sensor 13 and the rear obstacle avoidance sensor 12 can share a bracket 103 to reduce the number of brackets 103 used to install the obstacle avoidance sensors in the unmanned aerial vehicle and reduce the number of brackets 103 on the fuselage 10 space occupied. Therefore, it is beneficial to the overall component layout on the fuselage 10 .
  • the cross-sectional shape of the blade 111 may be an arc shape, and the height of the side close to the forward direction of rotation is lower than the height of the side away from the forward direction of rotation,
  • the top of the side end of the center body 101 is provided with an arc portion 104; in the folded state, the blades 111 on the rear arm 1022 Fitting with the arc portion 104 so that the blades 111 on the rear arm 1022 fully fit the arc portion 104 of the center body 101 reduces the folded size of the UAV, which is beneficial to the unmanned aerial vehicle.
  • the front arm 1021 may specifically include a left front arm 10211 and a right front arm 10212.
  • the rotor device 11 installed on the left front arm 10211 is a left front rotor device 112, and the rotor device 11 installed on the right front arm 10212 is a right front rotor.
  • Device 113; the rear arm 1022 may specifically include a left rear arm 10221 and a right rear arm 10222.
  • the rotor device 11 installed on the left rear arm 10221 is a left rear rotor device 114, and the rotor device 114 installed on the right rear arm 10222.
  • the rotation directions of the left front rotor device 112 and the right rear rotor device 115 are both the first rotation direction, and the rotation directions of the right front rotor device 113 and the left rear rotor device 114 are both the second rotation direction,
  • the second rotation direction is opposite to the first rotation direction.
  • the rotation directions of the left front rotor device 112 and the right rear rotor device 115 are the same, the rotation directions of the right front rotor device 113 and the left rear rotor device 114 are the same, and the rotation directions of the left front rotor device 112 and the right front rotor device 113 are opposite.
  • the left front rotor device 112, the right rear rotor device 115, the right front rotor device 113 and the left rear rotor device 114 can jointly provide the lift of the unmanned aerial vehicle.
  • first rotation direction may be a clockwise direction
  • second rotation direction may be a counterclockwise direction
  • first rotation direction may be a counterclockwise direction
  • second rotation direction may be a clockwise direction.
  • the embodiments of the present application do not specifically limit the first rotation direction and the second rotation direction.
  • the blades 111 on the left rear rotor device 114 are in contact with the arcuate portion 104 on the left top of the center body 101
  • the blades 111 on the right rear rotor device 115 are in contact with the right side of the center body 101 .
  • the arc-shaped portions 104 on the side tops are fitted.
  • by fitting the blades 111 on the left rear rotor device 114 and the blades 111 on the right rear rotor device 115 to the arcuate portion 104 on the top left or right side of the center body 101 not only can the blades be made
  • the blades 111 fully fit with the central body 101, reducing the folded volume of the blades 111.
  • the rear arm 1022 and the front arm 1021 are folded up and down on the side of the central body 101, further reducing the folded volume of the UAV's arm 102, which is beneficial to the operation of the UAV. Collect, carry and store.
  • the first rotation direction is a clockwise direction, that is, the rotation direction of the right rear rotor device 115 is a clockwise direction. Therefore, along the clockwise direction, the cross-sectional shape of the blade 111 on the right rear rotor device 115 is An arc shape with a lower height on the side close to the forward direction. In this way, when the blades 111 on the right rear rotor device 115 are folded and stored at the top right side of the center body 101, the cross-sectional shape of the blades 111 on the right rear rotor device 115 can be consistent with the top right side of the center body 101.
  • the shape of the arcuate portion 104 is consistent, thereby helping to improve the degree of fit between the blade 111 on the right rear rotor device 115 and the arcuate portion 104 at the top right side of the center body 101, further reducing the need for folding and storage of the blade 111. volume of.
  • the second rotation direction is counterclockwise, that is, the rotation direction of the left rear rotor device 114 is counterclockwise. Therefore, along the counterclockwise direction, the cross-sectional shape of the blade 111 on the left rear rotor device 114 is close to The forward direction side has an arc shape with a lower height. In this way, when the blades 111 on the left rear rotor device 114 are folded and stored at the top left side of the center body 101, the cross-sectional shape of the blades 111 on the left rear rotor device 114 can be consistent with the left side of the center body 101.
  • the shape of the arcuate portion 104 on the top is consistent, which is beneficial to improving the fit between the blade 111 on the left rear rotor device 114 and the arcuate portion 104 on the left side of the center body 101, further reducing the folding of the blade 111 Volume after storage.
  • the "left” refers to the left side of the unmanned aerial vehicle facing the direction of the nose F.
  • the “right” refers to the direction facing the nose F, and the left side of the UAV
  • the rear arm 1022 is folded along the side of the center body 101 toward the direction of the machine head F, and the front arm 1021 is folded along the side of the center body 101 toward the machine head F.
  • the tail B direction is folded to further reduce the mutual interference between the front arm 1021 and the rear arm 1022 during the folding process.
  • the rear arm 1022 can be folded along the side of the center body 101 toward the direction of the nose F, and then the front arm 1021 can be folded along the side of the center body 101 toward the tail B to prevent the front arm 1021 from being folded.
  • the tripod affects the folding of the rear arm 1022.
  • the rear arm 1022 and the front arm 1021 can be folded up and down in an offset manner. Therefore, in practical applications, there is no need to consider the folding sequence of the front arm 1021 and the rear arm 1022, which greatly improves the folding flexibility of the arm 102.
  • the UAV may also include a tripod; the bottom of the central body 101 is provided with a tripod connection part 105, and the tripod connection part 105 specifically includes two front tripod connection parts 1051 and Two rear leg connection parts 1052; in the folded state, the blades 111 on the front arm 1021 can be folded between the two front leg connection parts 1051. In this way, on the one hand, the blades 111 on the front arm 1021 can be conveniently stored at the bottom of the center body 101, further reducing the volume of the blades 111 after being folded and stored.
  • the two front leg connection parts 1051 can also be used to limit the blades 111 on the front arm 1021 to prevent the blades 111 on the front arm 1021 from protruding from the bottom of the center body 101, so as to improve the stability of the blades 111. Storage reliability.
  • the rear leg connection part 1052 may be a rotor mounting part on the front arm 1021 to avoid providing a separate rear leg connection part 1052 at the bottom of the center body 101 .
  • the front arm 1021 is folded toward the tail B direction, and the front arm 1021 is located below the rear arm 1022, the front arm 1021 is used to install the rotor device 11
  • the rotor mounting part can be folded to the direction of the tail B, and is close to the bottom of the center body 101.
  • the rotor mounting portion on the front arm 1021 can be used as the rear footstand connection portion 1052 to avoid the additional operation of setting a separate rear footstand connection portion 1052 at the bottom of the center body 101, simplify the structure of the center body 101, and have It is beneficial to the device layout at the bottom of the central body 101.
  • the rear leg connection part 1052 can be a protrusion extending from the center body 101 to avoid the operation of setting an additional separate rear leg connection part 1052 at the bottom of the center body 101 and simplify the center body. 101 structure, and is conducive to device layout at the bottom of the central body 101.
  • a battery case 106 is also provided at the bottom of the central body 101 , and the protruding portion may be a part of the battery case 106 .
  • the UAV usually requires a battery to drive the rotor device 11 to rotate to provide flight power for the UAV.
  • a battery case 106 usually needs to be provided outside the battery. Since the battery has a large volume and usually needs to be disposed at the bottom of the central body 101 , the battery case 106 is usually disposed at the bottom of the central body 101 and protrudes from the bottom of the central body 101 .
  • the battery case 106 since the battery case 106 protrudes from the bottom of the central body 101, the battery case 106 can be used as the rear leg connection portion 1052 to avoid setting an additional separate rear leg connection portion 1052 at the bottom of the center body 101.
  • the operation simplifies the structure of the central body 101 and is beneficial to the device layout at the bottom of the central body 101.
  • the rotation axis 116 of the rotor device 11 is inclined relative to the height direction of the center body 101 .
  • the rotor device 11 when the rotor device 11 rotates, the rotor device 11 can generate an upward lift force F along the rotation axis 116 .
  • the lift force F can be decomposed into a horizontal component F1 and a vertical component F2.
  • the vertical component F2 can be used to provide the flight lift of the unmanned aerial vehicle
  • the horizontal component F1 can be used to provide the yaw force of the unmanned aerial vehicle to achieve a better yaw control effect.
  • the rotation axis 116 of the rotor device 11 is tilted outward relative to the height direction of the central body 101.
  • the horizontal component F1 can be directed in a direction away from the central body 101, thereby obtaining a sustained and stable yaw force, which is beneficial to The yaw control effect of the unmanned aerial vehicle is further improved.
  • the rotation axis 116 of the rotor device 11 tilting outward relative to the height direction of the center body 101 may specifically include: the rotation axis 116 tilting toward the nose F direction, toward the tail B direction, or toward the tail B direction relative to the height direction of the center body 101 .
  • the left and right sides are tilted.
  • the embodiment of the present application does not limit the tilt mode of the rotation axis 116 .
  • the top of the rotation axis 116 of the rotor device 11 may be inclined toward both sides of the center body 101 , that is, the rotation axes 116 of the left front rotor device 112 and the left rear rotor device 114 may be inclined toward the left side of the center body 101 , and the right front rotor device 116 may be inclined toward the left side of the center body 101 . 113 and the rotation axis 116 of the right rear rotor device 115 are inclined toward the right side of the center body 101 . As shown in Figure 3, when viewed from the front and back of the UAV, the direction of lift F of the blades 111 of the rotor device 11 is tilted toward the left and right sides away from the center body 101.
  • the horizontal component F1 is completely along the left and right sides. direction. In this way, the stability of the yaw force can be further improved and the influence of the tilt of the rotation axis 116 on the attitude of the unmanned aerial vehicle can be further improved. Therefore, while achieving yaw control, the stability of the unmanned aerial vehicle can be improved. Flight stability.
  • the inclination angle of the rotation axis 116 relative to the height direction of the central body 101 ranges from 5 degrees to 7 degrees, so as to obtain better yaw control moment while reducing the impact of the inclination of the rotation axis 116 on the vertical component F2. influence to take into account better yaw control effect and flight stability.
  • the camera 16 can be movably connected to the central body 101 through the pan/tilt 15.
  • the pan/tilt 15 can specifically include a pitch axis 151, a yaw axis and a roll axis.
  • the camera 16 can rotate around the pitch axis 151, the yaw axis 151 and the roll axis respectively. axis of motion as well as the roll axis.
  • the shooting range of the camera 16 can be adjusted and the aerial photography effect of the camera 16 can be improved.
  • both the pan-tilt 15 and the camera 16 are connected to the front end of the central body 101, and the avoidance portion 1013 is provided on the top of the central body 101 to at least partially avoid the pan-tilt 15 and the camera 16.
  • the pan-tilt 15 drives the camera 16 to When taking "head-up” shots, the camera 16 can take shots through the recess of the avoidance portion 1013, thereby increasing the tilt shooting range of the camera 16.
  • the front end of the central body 101 is also provided with two protrusions extending toward the direction of the nose F.
  • the two protrusions are spaced apart, and one end of the pitch axis 151 is suspended from one of the protrusions. part, the other end of the tilt axis 151 is suspended from another of the protruding parts, and the pan/tilt 15 and the camera 16 are both located between the two protruding parts.
  • the two ends of the pitch axis 151 can be connected to the center body 101 respectively, thereby improving the reliability of the connection between the pitch axis 151 and the center body 101 .
  • the tilt axis 151 can be connected to both sides of the camera 16 respectively, and the support reliability of the tilt axis 151 for the camera 16 can also be improved. Furthermore, the shooting stability during the tilt adjustment process of the camera 16 can be improved.
  • the pitch axis 151 may be a "U"-shaped pitch axis. Both ends of the "U"-shaped pitch axis are respectively suspended from the protrusions. The arc-shaped segments of the "U"-shaped pitch axis are used for A storage space for accommodating the camera 16 is formed.
  • the "U"-shaped pitch axis can better avoid the camera 16, so that the camera 16 can rotate within the accommodation space of the "U"-shaped pitch axis, and avoids interference between the camera 16 and the central body 101, thereby enabling the camera to be lifted. 16's of rotational flexibility.
  • the unmanned aerial vehicle described in the embodiments of this application can at least include the following advantages:
  • the UAV since in the hovering state, the fuselage is tilted in the length direction compared to the horizontal direction, so that the height of the nose is greater than the height of the tail, the UAV is The fuselage can be tilted back at a certain angle relative to the horizontal direction to reduce the resistance experienced by the unmanned aerial vehicle, thereby improving the flight efficiency of the unmanned aerial vehicle.
  • the position of the rear obstacle avoidance sensor can be combined with the flight and hovering attitude of the fuselage to obtain a larger obstacle avoidance perspective or better direction angle. Therefore, it is beneficial to improve the overall obstacle avoidance function of the unmanned aerial vehicle and improve the flying experience of the unmanned aerial vehicle.
  • the device embodiments described above are only illustrative.
  • the units described as separate components may or may not be physically separated.
  • the components shown as units may or may not be physical units, that is, they may be located in One location, or it can be distributed across multiple network units. Some or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment. Persons of ordinary skill in the art can understand and implement the method without any creative effort.
  • any reference signs placed between parentheses shall not be construed as limiting the claim.
  • the word “comprising” does not exclude the presence of elements or steps not listed in a claim.
  • the word “a” or “an” preceding an element does not exclude the presence of a plurality of such elements.
  • the application may be implemented by means of hardware comprising several different elements and by means of a suitably programmed computer. In the element claim enumerating several means, several of these means may be embodied by the same item of hardware.
  • the use of the words first, second, third, etc. does not indicate any order. These words can be interpreted as names.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种无人飞行器,包括:机身(10),包括机头F和与机头相对的机尾B;多个旋翼装置(11),分别安装于机身(10);以及后避障传感器(12),安装于机身(10)的顶部,其中,无人飞行器的状态包括朝向机尾B方向飞行的后飞状态和在无风环境下稳定悬停的悬停状态,在悬停状态下,机身(10)在长度方向相较于水平方向H倾斜,使得机头F的高度大于机尾B的高度;后避障传感器(12)的感测方向在无人飞行器处于悬停状态时相较于水平方向H的倾角,大于在无人飞行器处于后飞状态时相较于水平方向H的倾角。可以提高无人飞行器的飞行效率,提升无人飞行器的整体避障功能,并提高无人飞行器的飞行体验。

Description

无人飞行器 技术领域
本申请涉及飞行器技术领域,特别涉及一种无人飞行器。
背景技术
随着用户对于使用体验的极致追求,用户对于无人飞行器的性能要求也越来越高。例如,为了增强无人飞行器的安全性,越来越多的无人飞行器应用了视觉避障技术;为了便于携带、运输和存放,越来越多的无人飞行器应用了机臂折叠技术;为了实现航拍,越来越多的无人飞行器应用了云台相机航拍技术。
现有的视觉避障技术中,通常使用双目相机的三角定位功能来探测障碍物,实现环境感知,然而,现有的双目相机的探测范围有限,而且,双目相机的视野很容易被机臂或者桨叶遮挡,影响了视觉避障效果。现有的无人飞行器,尤其是无人飞行器,在将机臂折叠后体积仍然较大,影响了无人飞行器的携带、运输和存放的便利性。现有的无人飞行器的航拍场景中,一般要求其云台相机可拍摄的范围尽可能地大,以满足各种航拍需求。
申请内容
为了解决现有的技术中现有的无人飞行器视觉避障效果受限,机臂折叠后体积仍然较大,以及航拍效果受限的问题,本申请实施例提供了一种无人飞行器。
第一方面,本申请实施例提供了一种无人飞行器,所述无人飞行器包括:
机身,包括机头和与所述机头相对的机尾;
多个旋翼装置,分别安装于所述机身,所述旋翼装置用于提供飞行动力;以及
后避障传感器,安装于所述机身的顶部,用于朝向所述无人飞行器的机尾方向探测障碍物,
其中,所述无人飞行器的状态包括朝向所述机尾方向飞行的后飞状态和在无风环境下稳定悬停的悬停状态,
在所述悬停状态下,所述机身在长度方向相较于水平方向倾斜,使得所述机头的高度大于所述机尾的高度;
所述后避障传感器的感测方向在所述无人飞行器处于悬停状态时相较于水平方向的倾角,大于在所述无人飞行器处于后飞状态时相较于水平方向的倾角。
本申请实施例中,由于在所述悬停状态下,所述机身在长度方向相较于水平方向倾斜,使得机头的高度大于机尾的高度,所述无人飞行器的机身相对水平方向可以后仰一定的角度,以减小所述无人飞行器所受的阻力,从而,可以提高所述无人飞行器的飞行效率。而且,通过将后避障传感器安装于机身的顶部,并使得后避障传感器的感测方向在所述无人飞行器处于悬停状态时相较于水平方向的倾角,大于在所述无人飞行器处于后飞状态时相对于水平方向的倾角。可以将后避障传感器的位置与机身的飞行、悬停姿态结合,获得更大避障视角或更好的方向角。从而,有利于提升所述无人飞行器的整体避障功能,提高所述无人飞行器的飞行体验。
第二方面,本申请实施例还公开了一种无人飞行器,所述无人飞行器包括:
机身,包括中心体、以及与所述中心体机械耦合的机臂;
多个旋翼装置,分别安装在所述机臂上,所述旋翼装置用于提供飞行动力;
其中,所述机臂包括前机臂以及后机臂,所述中心体包括位于前端的第一安装部以及位于后端的第二安装部,所述前机臂转动连接于所述第一安装部,所述后机臂转动连接于所述第二安装部,所述第二安装部的高度高于所述第一安装部的高度;
所述无人飞行器的状态包括在无风环境稳定悬停的悬停状态和便于携带的收纳状态,在所述无人飞行器处于所述悬停状态时,所述前机臂和所述后机臂相对于所述中心体处于展开状态;在所述无人飞行器处于所述收纳状态时,所述前机臂和所述后机臂相对于所述中心体处于折叠状态;
在所述无人机飞行器处于所述悬停状态时,所述前机臂所处的高度大于所述后机臂所处的高度;在所述无人机飞行器处于所述收纳状态时,所述前机臂位于所述后机臂的下方。
本申请实施例中,由于在所述无人机飞行器处于所述悬停状态时,前机臂所处的高度大于后机臂所处的高度;在所述无人机飞行器处于所述收纳状态时,前机臂位于后机臂的下方,机臂1的活动状态与所述无人飞行器的姿态相关联,便于无人飞行器的飞行与收纳。
第三方面,本申请实施例还公开了一种无人飞行器,所述无人飞行器包括:
机身,包括机头与机头相对的机尾;
云台,安装在所述机头的前端,所述云台包括俯仰轴机构;
前避障传感器,安装在所述机头的前端,并且位于所述云台的上方;以及
相机,通过所述云台连接于所述机身的机头,并且所述相机能够通过俯仰轴机构改变自身的俯仰角,使得相机能够朝向所述机身的上方或下方拍摄;
其中,所述机头在所述相机的上方设置有避让部,所述避让部具有对应相机的凹陷,所述前避障传感器位于所述避让部上;
所述无人飞行器的状态包括在无风环境稳定悬停的悬停状态;在所述悬停状态,所述机身在长度方向相较于水平方向倾斜,使得所述机头的高度大于所述机尾的高度,所述相机能够通过所述避让部的凹陷拍摄。
本申请实施例中,由于相机通过云台连接于机身的机头,相机能够通过所述俯仰轴机构改变自身的俯仰角,机头在相机的上方设置有避让部。在所述悬停状态,机身在长度方向相较于水平方向倾斜,使得机头的高度大于机尾的高度,在云台的带动下,相机能够通过避让部的凹陷拍摄,提高相机的俯仰拍摄范围。这样,通过将云台的设置方式与所述无人飞行器的状态配合,可以便于扩大相机的俯仰角的拍摄范围,从而,有利于相机获得更好的航拍效果。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申 请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示意性地示出了本申请实施例所述的一种无人飞行器处于飞行状态的结构示意图;
图2示意性地示出了图1所述的无人飞行器的俯视结构示意图;
图3示意性地示出了图1所示无人飞行器的前视结构示意图;
图4示意性地示出了图1所述的无人飞行器的后视结构示意图;
图5示意性地示出了图1所示的无人飞行器的仰视结构示意图;
图6示意性地示出了图1所示的无人飞行器处于悬停状态的结构示意图;
图7示意性地示出了图1所述的无人飞行器处于后飞状态图的结构示意图;
图8示意性地示出了图1所示的无人飞行器处于前飞状态的结构示意图;
图9示意性地示出了图1所示的无人飞行器处于折叠状态的结构示意图之一;
图10示意性地示出了图1所示的无人飞行器处于折叠状态的结构示意图之二。
附图标记说明:10-机身,101-中心体,1011-第一安装部,1012-第二安装部,1013-避让部,102-机臂,1021-前机臂,10211-左前机臂,10212-右前机臂,1022-后机臂,10221-左后机臂,10222-右后机臂,103-支架,104-弧形部,105-脚架连接部,1051-前脚架连接部,1052-后脚架连接部,106-电池壳,11-旋翼装置,111-桨叶,112-左前旋翼装置,113-右前旋翼装置,114-左后旋翼装置,115-右后旋翼装置,116-旋转轴,12-后避障传感器,13-前避障传感器,14-下避障传感器,15-云台,151-俯仰轴,16-相机,L-长度方向,H-水平方向,a-第一倾斜角度,b-第二倾斜角度,F-机头,B-机尾,D1-第一光轴,D2-第二光轴,D3-第三光轴,S1-第一感知覆盖区域,S11-第一上边界,S12-第一下边界,S2-第二感知覆盖区域,S21-第一前边界,S22-第一后边界,S3-第三感知覆盖区域,c-交叠角度。
具体实施例
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能 理解为对本申请的限制。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
本申请实施例提供了一种无人飞行器,所述无人飞行器可以为用于各种需要进行折叠的无人飞行机,例如,航拍无人机、农业植保无人机、测绘无人机等。本申请实施例中,仅以所述无人飞行器为农业植保无人机为例进行说明。
参照图1,示出了本申请实施例所述的一种无人飞行器处于飞行状态的结构示意图,参照图2,示出了图1所述的无人飞行器的俯视结构示意图,参照图3,示出了图1所示无人飞行器的前视结构示意图,参照图4,示出了图1所述的无人飞行器的后视结构示意图,参照图5,示出了图1所示的无人飞行器的仰视结构示意图,参照图6,示出了图1所示的无人飞行器处于悬停状态的结构示意图,参照图7,示出了图1所述的无人飞行器处于后飞状态图的结构示意图,参照图8,示出了图1所示的无人飞行器处于前飞状态的结构示意图,参照图9,示出了图1所示的无人飞行器处于折叠状态的结构示意图之一,参照图10,示出了图1所示的无人飞行器处于折叠状态的结构示意图之二。
具体的,所述无人飞行器具体可以包括:机身10,机身10具体包括机头F和与机头F相对的机尾B;多个旋翼装置11,多个旋翼装置11分别安装于机身10,旋翼装置11可以用于提供飞行动力;以及后避障传感器12,后避障传感器12安装于机身10的顶部,用于朝向无人飞行器的机尾B方向探测障碍物;其中,所述无人飞行器的状态可以包括朝向机尾B方向飞行(如图7中宽箭头所指方向)的后飞状态(如图7所示)和在无风环境下稳定悬停的悬停状态(如图6所示),在所述悬停状态下,机身10在长度方向L相较于水平方向H倾斜,使得机头F的高度大于机尾B的高度;后避障传感器12的感测方向在所述无人飞行器处于悬停状态时相较于水平方向H的倾角,大于在所述无人飞行器处于后飞状态时相对于水平方向H的倾角。
本申请实施例中,由于在所述悬停状态下,机身10在长度方向L相较于水平方向H倾斜,使得机头F的高度大于机尾B的高度,所述无人飞行器的机身10相对水平方向H可以后仰一定的角度,以减小所述无人飞行器所受的阻力,从而,可以提高所述无人飞行器的飞行效率。而且,通过将后避障传感器12安装于机身10的顶部,并使得后避障传感器12的感测方向在所述无人飞行器处于悬停状态时相较于水平方向H的倾角,大于在所述无人飞行器处于后飞状态时相对于水平方向H的倾角。可以将后避障传感器12的位置与机身10的飞行、悬停姿态结合,获得更大避障视角或更好的方向角。从而,有利于提升所述无人飞行器的整体避障功能,提高所述无人飞行器的飞行体验。
如图6所示,由于后避障传感器12安装于机身10的顶部,在所述无人飞行器处于所述悬停状态的情况下,由于所述无人飞行器的机身10的长度方向L相对水平方向H可以后仰一定的角度。这样,就可以使得机身10顶部的后避障传感器12可以较好的探测所述无人飞行器机尾B方向的障碍物,获得更大避障视角或更好的方向角。
如图7所示,在所述无人飞行器处于所述后飞状态的情况下,由于避障传感器12的感测方向相较于水平方向H的倾角,小于所述无人飞行器处于悬停状态时后避障传感器12的感测方向相较于水平方向H的倾角。也即,在所述无人飞行器处于所述后飞状态的情况下,后避障传感器12的感测方向与水平方向H之间的夹角较小。这样,有利于后避障传感器12较好的探测所述无人飞行器前进方向的障碍物,获得更大避障视角或更好的方向角,提升所述无人飞行器的避障功能。
在实际应用中,机身10的姿态与后避障传感器12的感测方向与机身10的长度方向L相较于水平方向H的角度相关。因此,通过设置机身10的姿态,尤其是机身10的长度方向L相较于水平方向H的倾斜角度,可以设置后避障传感器12的感测方向与水平方向H的倾角,以使得后避障传感器12的感测方向在所述无人飞行器处于悬停状态时相较于水平方向H的倾角,大于在所述无人飞行器处于后飞状态时相较于水平方向H的倾角。
示例的,如图7所示,在所述无人飞行器处于所述悬停状态时,机身10的长度方向L相较于水平方向H的倾斜角度可以为第一倾斜角度a。在所述无人飞行器处于所述后飞状态时,机身10的长度方向L相较于水平方向H的倾斜角度可以为第二倾斜角度b。通过将第一倾斜角度a设置得小于第二倾斜角度b,可以使得所述悬停状态下,后避障传感器12的感测方向相较于水平方向H的倾角,大于在所述无人飞行器处于后飞状态时相较于水平方向H的倾角。
需要说明的是,本申请实施例中,机身10的长度方向L可以为,分别连接所述无人飞行器的机头F和机尾B的连接方向。水平方向H可以为平行于地平线的方向。
可选地,在所述悬停状态下,后避障传感器12的感测方向相对于水平方向H朝向机身10的后上方倾斜。以使得机身10顶部的后避障传感器12可以较好的看到机身10的水平正后方,而不会被机身10遮挡。并且,由于后避障传感器12设置于机身10的顶部,且在所述悬停状态下,后避障传感器12的感测方向相对于水平方向H朝向机身10的后上方倾斜,以使得后避障传感器12可以探测机身10后上方的障碍物进行探测。这样,就可以使得后避障传感器12的感测范围可以整体高于位于机尾B方向的旋翼装置11的桨平面,彻底解决后避障传感器12的斜上方视野被旋翼装置11遮挡形成盲区的问题,增大后避障传感器12的探测范围,提升所述无人飞行器的整体避障能力。
可选地,所述无人飞行器还可以包括:前避障传感器13,前避障传感器13安装于中心体101的机头F,用于朝向所述无人飞行器的机头F方向探测障碍物;在所述悬停状态下,前避障传感器13的感测方向相对于水平方向H朝向机身10的前上方倾斜,以对机身10前上方的障碍物进行探测。相较于传统的技术中,在所述悬停状态下前避障传感器13仅能探测正前方的障碍物来说。本申请所述的前避障传感器13的布局方式,可以进一步增大所述无人飞行器对于障碍物的探测范围,从而,提升所述无人飞行器的整体避障能力。
可选地,所述无人飞行器还可以包括:下避障传感器14,下避障传感器14安装于中心体101的底部,用于朝向所述无人飞行器的底部下方探测障碍物;在所述悬停状态,下避障传感器14的感测方向相对于水平方向H朝向前下方倾斜,以对水平方向H朝向前下方的障碍物进行探测。这样,就有利于下避障传感器14的探测范围与前避障传感器 13的探测范围在水平方向H的前下方交叠,减少探测盲区,增大所述无人飞行器对于障碍物的探测范围,提升所述无人飞行器的整体避障能力。
可选地,前避障传感器13、后避障传感器12以及下避障传感器14可以皆为双目视觉模组。在具体的应用中,所述双目视觉模组可以通过至少两个相机对目标进行观测,通过三角定位的原理来确定目标与相机之间的相对距离,从而实现对障碍物目标的探测,即环境感知。一般地,对任意目标的测距至少需要两个摄像头进行同时观测才能实现三角定位。本申请实施例所述的无人飞行器中,为了实现尽可能大范围的环境感知,可以布置至少三组双目视觉模组,使得双目视觉模组的三角定位的探测范围覆盖多个方向,增大所述无人飞行器探测障碍物的探测范围,提升所述无人飞行器的避障能力,从而,可以提升所述无人飞行器的飞行安全。
需要说明的是,前避障传感器13、后避障传感器12以及下避障传感器14还可以为激光雷达等能够实现障碍物探测的传感器,本申请实施例对于前避障传感器13、后避障传感器12以及下避障传感器14的具体内容可以不做限定。
本申请实施例还提供一种无人飞行器,所述无人飞行器具体可以包括:机身10,机身10可以包括中心体101、以及与中心体101机械耦合的机臂102;多个旋翼装置11,多个旋翼装置11分别安装在机臂102上,旋翼装置11可以用于提供飞行动力,其中,机臂102具体可以包括前机臂1021以及后机臂1022,中心体101具体可以包括位于前端的第一安装部1011以及位于后端的第二安装部1012,前机臂1021转动连接于第一安装部1011,后机臂1022转动连接于第二安装部1012,第二安装部1012的高度高于第一安装部1011的高度;所述无人飞行器的状态可以包括在无风环境稳定悬停的悬停状态(如图6所示)和便于携带的收纳状态(如图9和图10所示),在所述无人飞行器处于所述悬停状态时,前机臂1021和后机臂1022相对于中心体101处于展开状态;在所述无人飞行器处于所述收纳状态时,前机臂1021和后机臂1022相对于中心体101处于折叠状态;在所述无人机飞行器处于所述悬停状态时,前机臂1021所处的高度大于后机臂1022所处的高度;在所述无人机飞行器处于所述收纳状态时,前机臂1021位于后机臂1022的下方。
本申请实施例中,由于在所述无人机飞行器处于所述悬停状态时,前机臂1021所处的高度大于后机臂1022所处的高度;在所述无人机飞行器处于所述收纳状态时,前机臂1021位于后机臂1022的下方,机臂102的活动状态与所述无人飞行器的姿态相关联,便于无人飞行器的飞行与收纳。
具体的,由于所述无人飞行器处于所述悬停状态时,前机臂1021所处的高度大于后机臂1022所处的高度,就可以使得前机臂1021上连接的旋翼装置11的高度相应大于后机臂1022上连接的旋翼装置11的高度,这样,就有利于减小所述无人飞行器所受的阻力,从而,提高所述无人飞行器的飞行效率。
而且,由于用于安装后机臂1022的第二安装部1012的高度高于用于安装前机臂1021的第一安装部1011的高度,在所述无人机飞行器处于所述收纳状态时,前机臂1021可以位于所述后机臂1022的下方。这样,就可以实现机臂102的错位折叠收纳,减少所述无人飞行器的收纳体积,便于所述无人飞行器的携带和转运。而且,在进行前机臂1021和后机臂1022的折叠过程中,由于前机臂1021和后机臂1022在高度方向错位设置,且 折叠后的上下顺序也未发生改变,因此,折叠过程中可以无需考虑前机臂1021和后机臂1022的折叠顺序,以提高所述无人飞行器的机臂102折叠效率和折叠灵活性。
需要说明的是,本申请实施例中,所述高度具体可以沿所述无人飞行器的高度方向的高度。
可选地,在所述折叠状态,后机臂1022和前机臂1021皆贴合于中心体101的侧端,旋翼装置11上的桨叶111与中心体101贴合,以进一步减少所述无人飞行器处于所述收纳状态时的体积,便于实现所述无人飞行器的携带和转运。
本申请实施例还提供了一种无人飞行器,所述无人飞行器具体可以包括:机身10,包括机头F与机头F相对的机尾B;云台15,安装在机头F的前端,云台15具体可以包括俯仰轴机构;前避障传感器13,前避障传感器13安装在机头F的前端,并且位于云台15的上方,前避障传感器13可以用于朝向所述无人飞行器的机头F方向探测障碍物;以及相机16,相机16通过云台15连接于机身10的机头F,并且相机16能够通过俯仰轴机构改变自身的俯仰角,使得相机16能够朝向机身10的上方或下方拍摄;其中,机头F在相机16的上方设置有避让部1013,避让部1013具有对应相机16的凹陷,前避障传感器13位于避让部1013上;所述无人飞行器的状态可以包括在无风环境稳定悬停的悬停状态;在所述悬停状态,机身10在长度方向L相较于水平方向H倾斜,使得机头F的高度大于机尾B的高度,相机16能够通过避让部1013的凹陷拍摄。
本申请实施例中,由于相机16通过云台15连接于机身10的机头F,相机16能够通过所述俯仰轴机构改变自身的俯仰角,机头F在相机16的上方设置有避让部1013。在所述悬停状态,机身10在长度方向L相较于水平方向H倾斜,使得机头F的高度大于机尾B的高度,在云台15的带动下,相机16能够通过避让部1013的凹陷拍摄,提高相机16的俯仰拍摄范围。这样,通过将云台15的设置方式与所述无人飞行器的状态配合,可以便于扩大相机16的俯仰角的拍摄范围,从而,有利于相机16获得更好的航拍效果。
具体的,在所述无人飞行器处于所述悬停状态的情况下,云台15的俯仰轴机构可以驱动相机16改变自身的俯仰角,朝向机身10的上方或者下方进行拍摄。在相机16朝向机身10的上方拍摄的情况下,由于机身10的机头F在相机16的上方设置有避让部1013,由于避让部1013的存在,可以避免机身10对相机16造成的遮挡,扩大相机16的俯仰拍摄范围,有利于获得更好的航拍效果。
如图9所示,所述飞行状态还可以包括朝向机头F方向飞行的前飞状态,在所述前飞状态,机身10的长度方向L基本平行于水平方向H,以减小机身10的迎风面积,从而,减小所述前飞状态下机身10所受到的阻力,提高所述无人飞行器的飞行效率。
在具体的应用中,由于所述前飞状态是所述无人飞行器的主要使用状态,因此,通过减小所述前飞状态下机身10所受到的阻力,可以极大的降低所述无人飞行器的能耗,提高所述无人飞行器的飞行效率,从而,提升用户对于所述无人飞行器的使用体验。
可选地,在所述前飞状态,所述无人飞行器基本以目标飞行速度进行飞行;在所述悬停状态,机身10的长度方向L相较于水平方向H的第一倾斜角度a与所述目标飞行速度相关。这样,就可以根据所述目标飞行速度设置所述悬停状态下,机身10的长度方向L相较于水平方向H的第一倾斜角度a,从而,使得所述无人飞行器以所述目标飞行 速度前飞时,机身10的迎风面积最小,机身10所受到阻力最低。由于所述无人飞行器基本以所述目标飞行速度进行前飞,这样,就可以极大的所述无人飞行器的前飞阻力,降低所述无人飞行器的前飞能耗。
需要说明的是,在具体的应用中,所述目标飞行速度可以根据实际情况进行设定。例如,所述目标飞行速度可以为10米每秒、12秒每秒或者15米每秒等,本申请实施例对于所述目标飞行速度的具体取值不做限定。
可选地,在所述悬停状态,第一倾斜角度a与目标系数相关,所述目标系数与机身10的尺寸和形状相关。也即,第一倾斜角度a的取值还需要考虑机身10的形状和尺寸,并根据机身10的形状和尺寸确定目标系数。所述目标系数可以用于评价机身10的形状和尺寸对于第一倾斜角度a的影响。
在实际应用中,由于第一倾斜角度a的设定充分的考虑到了所述目标飞行速度和所述目标系数,综合评价了所述无人飞行器的动力系统和整体构型的影响,因此,第一倾斜角度a的设定较为客观和科学。这样,就可以进一步降低所述无人飞行器的能耗,提高所述无人飞行器的飞行效率。
可选地,第一倾斜角度a分别与所述目标系数和所述目标飞行速度正相关。即所述目标飞行速度越大,第一倾斜角度a相应越大,所述目标系数越大,第一倾斜角度a相应越大,这样,就有利于第一倾斜角度a的计算。
示例的,以下提供一种用于计算第一倾斜角度a的计算公式:
a≈k*v(公式一)
其中,a代表第一倾斜角度a,k代表所述目标系数,所述目标系数与所述机身10的形状和尺寸相关,v代表所述无人飞行器处于所述前飞状态时的目标飞行速度。
可选地,在所述悬停状态,机身10的长度方向L相对于水平方向H的倾斜角度为5度至25度之间,有利于所述无人飞行器处于所述悬停状态时的悬停稳定性。
示例的,第一倾斜角度a可以根据实际情况进行设定,例如,第一倾斜角度a可以为10度、15度或者18度等,本申请实施例对于第一倾斜角度a的具体值可以不做限定。
本申请实施例中,所述飞行状态还可以包括朝向机头F方向飞行的前飞状态,以及朝向机尾B方向飞行的后飞状态。如图8所示,在所述前飞状态,前避障传感器13的第一光轴D1能够相对于水平方向H朝向前下方倾斜,以朝向水平方向H的前下方进行障碍物的探测;下避障传感器14的第二光轴D2能够相对于水平方向H朝向后下方倾斜,以朝向水平方向H的后上方进行障碍物的探测,后避障传感器12的第三光轴D3能够相对于水平方向H朝向后上方倾斜,以实现朝向水平方向H的后上方进行障碍物的探测。这样,通过前避障传感器13、下避障传感器14以及后避障传感器12的组合使用,可以实现所述无人飞行器在所述前飞状态下的全方位避障,提升所述无人飞行器的避障功能。
如图7所示,在所述后飞状态,前避障传感器13的第一光轴D1能够相对于水平方向H朝向前上方倾斜,以朝向水平方向H的前上方进行障碍物的探测;下避障传感器14的第二光轴D2能够相对于水平方向H朝向前下方倾斜,以朝向水平方向H的前下方进行障碍物的探测;后避障传感器12的第三光轴D3能够相对于水平方向H朝向后方,以朝向水平方向H的后方进行障碍物的探测。这样,通过前避障传感器13、下避障传感器14以及后避障传感器12的组合使用,可以实现所述无人飞行器在所述后飞状态下的全方 位避障,提升所述无人飞行器的避障功能。
可选地,在所述后飞状态,后避障传感器12的第三光轴D3能够与水平方向H基本平行。这样,在所述无人飞行器处于所述后飞状态的情况下,后避障传感器12的感测方向与水平方向H之间的夹角较小。这样,有利于后避障传感器12较好的探测所述无人飞行器前进方向的障碍物,获得更大避障视角或更好的方向角,提升所述无人飞行器的避障功能。
可选地,前避障传感器13具有第一感知覆盖区域S1,下避障传感器14具有第二感知覆盖区域S2,后避障传感器12具有第三感知覆盖区域S3;下避障传感器14的第二光轴D2相对中心体101的长度方向L朝前下方倾斜,以使第二感知覆盖区域S2与第一感知覆盖区域S1至少部分交叠。在具体的应用中,由于第二感知覆盖区域S2与第一感知覆盖区域S1至少部分交叠,可以减少所述无人飞行器的避障探测盲区,实现全方位的避障探测,有利于提升所述无人飞行器的避障功能。
如图7所示,第一感知覆盖区域S1具有第一上边界S11和第一下边界S12,第二感知覆盖区域S2具有第一前边界S21和第一后边界S22,第一下边界S12与第一前边界S21至少部分交叠,以尽可能避免前避障传感器13与下避障传感器14之间的避障探测盲区,实现全方位的避障探测,有利于提升所述无人飞行器的避障功能。
可选地,第一下边界S12和第一前边界S21的交叠角度小于或者等于5度。这样,既可以减少前避障传感器13与下避障传感器14之间的避障探测盲区,又可以减小第一下边界S12和第一前边界S21交叠对整个无人飞行器的探测视角的影响,有利于提升所述无人飞行器的整体避障能力。
可选地,后避障传感器12的第三光轴D3相对中心体101的长度方向L向上倾斜,以使得机身10顶部的后避障传感器12可以较好的看到机身10的水平正后方,而不会被机身10遮挡。并且,由于后避障传感器12设置于机身10的顶部,可以使得后避障传感器12的感测范围可以整体高于位于机尾B方向的旋翼装置11的桨平面,彻底解决后避障传感器12的斜上方视野被旋翼装置11遮挡形成盲区的问题,增大后避障传感器12的探测范围,提升所述无人飞行器的整体避障能力。
可选地,第三光轴D3相对水平方向H向上倾斜的角度小于或者等于30度,以使得所述无人飞行器处于任意姿态时,后避障传感器12的感测方向皆可以朝向无人飞行器的机尾B方向。
需要说明的是,在实际应用中,第三光轴D3相对于水平方向H向上倾斜的角度可以根据实际情况进行设定,例如,5度、7度或者10度等,本申请实施例对于第三光轴D3相对于水平方向H向上倾斜的角度不做具体限定。
可选地,前避障传感器13的第一光轴D1与中心体101的长度方向L基本平行,前避障传感器13可以始终朝向所述无人飞行器的机头F方向进行障碍物的探测。在具体的应用中,在前避障传感器13的第一光轴D1与中心体101的长度方向L基本平行的情况下,可以以水平方向H为参照进行前避障传感器13的安装,以提高前避障传感器13的安装精度和安装效率。
可选地,后避障传感器12可以靠近前避障传感器13设置。在实际应用中,由于前避障传感器13安装于机身10的机头F,通过将后避障传感器12靠近前避障传感器13 设置,可以使得后避障传感器12可以尽可能的靠近机身10的机头F,以尽可能的减小机尾B方向的旋翼装置11对后避障传感器12的遮挡,增大后避障传感器12的探测范围。
可选地,后避障传感器12和前避障传感器13皆连接于机身10的顶部,且后避障传感器12和前避障传感器13之间的距离小于第一阈值,以使得后避障传感器12尽可能的靠近前避障传感器13。
需要说明的是,在具体的应用中,所述第一阈值的具体值可以根据实际情况进行设定。例如,所述第一阈值可以为5毫米,8毫米或者20毫米等,本申请实施例对于所述第一阈值的具体值不做限定。
可选地,机身10还设置有支架103,前避障传感器13、后避障传感器12皆安装于支架103。这样,就可以使得前避障传感器13和后避障传感器12可以共用一个支架103,以减少所述无人飞行器中用于安装避障传感器的支架103的数量,减少支架103在机身10上所占用的空间。从而,有利于机身10上整体的零部件布局。
在本申请的一些可选实施例中,沿旋翼装置11的旋转方向,桨叶111的截面形状可以为弧形状,且靠近旋转前进方向一侧的高度低于远离旋转前进方向一侧的高度,以降低桨叶111在旋转过程中的风阻,提高旋翼装置11的旋转效率;中心体101的侧端的顶部设置有弧形部104;在所述折叠状态下,后机臂1022上的桨叶111与弧形部104贴合,以使得后机臂1022上的桨叶111充分的贴合于中心体101的弧形部104,减小所述无人飞行器折叠后的尺寸,有利于所述无人飞行器的携带和转运。
可选地,前机臂1021具体可以包括左前机臂10211和右前机臂10212,安装于左前机臂10211的旋翼装置11为左前旋翼装置112,安装于右前机臂10212的旋翼装置11为右前旋翼装置113;后机臂1022具体可以包括左后机臂10221和右后机臂10222,安装于左后机臂10221的旋翼装置11为左后旋翼装置114,安装于右后机臂10222的旋翼装置11为右后旋翼装置115;其中,左前旋翼装置112和右后旋翼装置115的旋转方向皆为第一旋转方向,右前旋翼装置113和左后旋翼装置114的旋转方向皆为第二旋转方向,所述第二旋转方向与所述第一旋转方向相反。
在实际应用中,在左前旋翼装置112和右后旋翼装置115的旋转方向相同,右前旋翼装置113和左后旋翼装置114的旋转方向相同,且左前旋翼装置112与右前旋翼装置113的旋转方向相反的情况下,可以使得左前旋翼装置112、右后旋翼装置115、右前旋翼装置113和左后旋翼装置114共同提供所述无人飞行器的升力。
需要说明的是,所述第一旋转方向可以为顺时针方向,所述第二旋转方向可以为逆时针方向。或者,所述第一旋转方向可以为逆时针方向,所述第二旋转方向可以为顺时针方向。本申请实施例对于所述第一旋转方向和所述第二旋转方向不做具体限定。
具体的,在所述折叠状态下,左后旋翼装置114上的桨叶111与中心体101左侧顶部的弧形部104贴合,右后旋翼装置115上的桨叶111与中心体101右侧顶部的弧形部104贴合。在实际应用中,通过将左后旋翼装置114上的桨叶111和右后旋翼装置115上的桨叶111贴合于中心体101左侧或者右侧顶部的弧形部104,不仅可以使得桨叶111充分与中心体101贴合,减小桨叶111折叠后的体积。而且,还有利于后机臂1022和前机臂1021在中心体101的侧面进行上下错位折叠,进一步减小所述无人飞行器的机臂102折叠后的体积,有利于所述无人飞行器的收纳、携带以及储运。
可选地,所述第一旋转方向为顺时针方向,即右后旋翼装置115的旋转方向为顺时针方向,因此,沿顺时针方向,右后旋翼装置115上的桨叶111的截面形状呈靠近所述前进方向一侧的高度较低的弧形状。这样,在右后旋翼装置115上的桨叶111折叠收纳于中心体101右侧顶部的情况下,可以使得右后旋翼装置115上的桨叶111的截面形状可以与中心体101右侧顶部的弧形部104的形状贴合,从而,有利于提升右后旋翼装置115上的桨叶111与中心体101右侧顶部的弧形部104的贴合程度,进一步减小桨叶111折叠收纳后的体积。
同理,所述第二旋转方向为逆时针方向,即左后旋翼装置114的旋转方向为逆时针方向,因此,沿逆时针方向,左后旋翼装置114上的桨叶111的截面形状呈靠近所述前进方向一侧的高度较低的弧形状。这样,在左后旋翼装置114上的桨叶111折叠收纳于所述中心体101左侧顶部的情况下,可以使得左后旋翼装置114上的桨叶111的截面形状可以与中心体101左侧顶部的弧形部104的形状贴合,从而,有利于提升左后旋翼装置114上的桨叶111与中心体101左侧顶部的弧形部104的贴合程度,进一步减小桨叶111折叠收纳后的体积。
需要说明的是,本申请实施例中,所述“左”指的是面向机头F方向,所述无人飞行器的左边。同理,所述“右”指的是面向机头F方向,所述无人飞行器的左边
本申请实施例中,在前机臂1021和后机臂1022折叠的过程中,后机臂1022沿中心体101的侧面向机头F方向折叠,前机臂1021沿中心体101的侧面向机尾B方向折叠,以进一步减少前机臂1021和后机臂1022在折叠过程中的互相干涉。在实际应用中,可以先将后机臂1022沿中心体101的侧面向机头F方向折叠,再将前机臂1021沿中心体101的侧面向机尾B方向折叠,以避免前机臂1021的脚架对后机臂1022的折叠造成影响。
需要说明的是,本申请实施例中,由于后机臂1022所处的高度要高于前机臂1021所处的高度,后机臂1022和前机臂1021可以实现上下错位折叠。因此,在实际应用中,也可以无需考虑前机臂1021和后机臂1022的折叠顺序,极大的提高了机臂102的折叠灵活性。
在本申请的一些可选实施例中,所述无人飞行器还可以包括脚架;中心体101的底部设置有脚架连接部105,脚架连接部105具体包括两个前脚架连接部1051和两个后脚架连接部1052;在所述折叠状态,前机臂1021上的桨叶111能够收拢于两个前脚架连接部1051之间。这样,一方面,可以方便将前机臂1021上的桨叶111收纳至中心体101的底部,进一步减小桨叶111折叠收纳后的体积。另一方面,还可以通过两个前脚架连接部1051限位前机臂1021上的桨叶111,避免前机臂1021上的桨叶111从中心体101的底部脱出,以提高桨叶111的收纳可靠性。
可选地,在所述折叠状态下,后脚架连接部1052可以为前机臂1021的上的旋翼安装部,以避免在中心体101的底部设置单独的后脚架连接部1052。在实际应用中,在所述折叠状态下,由于前机臂1021往机尾B方向折叠,且前机臂1021位于后机臂1022的下方,因此,前机臂1021上用于安装旋翼装置11的旋翼安装部相应可以折叠至机尾B方向,且靠近中心体101的底部。此时,前机臂1021上的旋翼安装部可以充当后脚架连接部1052使用,以避免额外在中心体101的底部设置单独的后脚架连接部1052的操作, 简化中心体101的结构,且有利于中心体101底部的器件布局。
同理,在所述展开状态下,后脚架连接部1052可以为从中心体101延伸出来的突起部,以避免额外在中心体101的底部设置单独的后脚架连接部1052的操作,简化中心体101的结构,且有利于中心体101底部的器件布局。
在本申请的一些可选实施例中,中心体101的底部还设置有电池壳106,所述凸起部可以为所述电池壳106的一部分。在实际应用中,所述无人飞行器通常需要电池来驱动旋翼装置11旋转,以提供所述无人飞行器的飞行动力,为了保护所述电池,通常需要在电池外面设置电池壳106。由于所述电池的体积较大,且通常需要设置在中心体101的底部,因此,电池壳106通常设置在中心体101的底部且从中心体101的底部凸起。
本申请实施例中,由于电池壳106从中心体101的底部凸起,因此,电池壳106可以充当后脚架连接部1052使用,以避免额外在中心体101的底部设置单独的后脚架连接部1052的操作,简化中心体101的结构,且有利于中心体101底部的器件布局。
可选地,在前机臂1021和后机臂1022处于展开状态下,旋翼装置11的旋转轴116相对中心体101的高度方向倾斜。在具体的应用中,在旋翼装置11旋转的情况下,旋翼装置11可以产生一个沿旋转轴116向上的升力F。由于旋转轴116相对于中心体101的高度方向倾斜,因此,升力F可以分解成水平分力F1和竖直分力F2。具体的,竖直分力F2可以用于提供所述无人飞行器的飞行升力,水平分力F1则可以用于提供所述无人飞行器的偏航力,实现较好的偏航控制效果。
可选地,旋翼装置11的旋转轴116相对中心体101的高度方向向外倾斜,这样,就可以使得水平分力F1相应指向远离中心体101的方向,获得持续稳定的偏航力,有利于进一步提升所述无人飞行器的偏航控制效果。
示例的,旋翼装置11的旋转轴116相对中心体101的高度方向向外倾斜具体可以包括:旋转轴116相对于中心体101的高度方向向机头F方向倾斜、向机尾B方向倾斜或者向左右两侧倾斜,本申请实施例对于旋转轴116的倾斜方式可以不做限定。
可选地,旋翼装置11的旋转轴116的顶部可以朝向中心体101的两侧倾斜,即左前旋翼装置112和左后旋翼装置114的旋转轴116朝向中心体101的左侧倾斜,右前旋翼装置113和右后旋翼装置115的旋转轴116朝向中心体101的右侧倾斜。如图3所示,从所述无人飞行器的前方向后看,旋翼装置11的桨叶111的升力F方向朝远离中心体101的左右两侧倾斜,此时,水平分力F1完全沿左右方向。这样,就可以进一步提升所述偏航力的稳定性,并减少旋转轴116倾斜对所述无人飞行器姿态的影响,从而,可以在获实现偏航控制的同时,提升所述无人飞行器的飞行稳定性。
可选地,旋转轴116相对中心体101高度方向的倾斜角度范围为5度至7度,以在获得较好的偏航控制力矩的同时,减小旋转轴116倾斜对于竖直分力F2的影响,以兼顾较好的偏航控制效果和飞行稳定性。
本申请实施例中,相机16可以通过云台15活动连接于中心体101,云台15具体可以包括俯仰轴151、偏航轴和横滚轴,相机16可分别绕俯仰轴151、所述偏航轴以及所述横滚轴运动。在具体的应用中,通过相机16分别绕俯仰轴151、所述偏航轴以及所述横滚轴的转动,可以调节相机16的拍摄范围,提升相机16的航拍效果。
可选地,云台15和相机16皆连接于中心体101的前端,避让部1013设置于中心体 101的顶部,以至少部分避让云台15和相机16,这样,云台15带动相机16往上“抬头”拍摄时,相机16能够通过避让部1013的凹陷拍摄,提高相机16的俯仰拍摄范围。
可选地,中心体101的前端还设置有两个朝机头F方向延伸的凸起部,两个所述凸起部之间间隔设置,俯仰轴151的一端悬挂于其中一个所述凸起部,俯仰轴151的另一端悬挂于其中另一个所述凸起部,云台15和相机16皆位于所述两个凸起部之间。这样,就可以便于俯仰轴151的两端分别连接于中心体101上,以提高俯仰轴151在中心体101上的连接性可靠性。俯仰轴151可以与相机16的两侧分别连接,还可以提高俯仰轴151对于相机16的支撑可靠性。进而,可以提升相机16的俯仰调节过程中的拍摄稳定性。
可选地,俯仰轴151可以为“U”型俯仰轴,所述“U”型俯仰轴的两端分别悬挂于所述凸起部,所述“U”型俯仰轴的弧形段用于形成容纳相机16的容纳空间。所述“U”型俯仰轴可以较好的避让相机16,以便于相机16在所述“U”型俯仰轴的容纳空间内转动,避免相机16与中心体101发生干涉,从而,可以提升相机16的转动灵活性。
综上,本申请实施例所述的无人飞行器至少可以包括以下优点:
本申请实施例中,由于在所述悬停状态下,所述机身在长度方向相较于水平方向倾斜,使得所述机头的高度大于所述机尾的高度,所述无人飞行器的机身相对水平方向可以后仰一定的角度,以减小所述无人飞行器所受的阻力,从而,提高所述无人飞行器的飞行效率。而且,通过将所述后避障传感器安装于所述机身的顶部,并使得所述后避障传感器的感测方向在所述无人飞行器处于悬停状态时相较于水平方向的倾角,大于在所述无人飞行器处于后飞状态时相对于水平方向的倾角,可以将所述后避障传感器的位置与机身的飞行、悬停姿态结合,获得更大避障视角或更好的方向角。从而,有利于提升所述无人飞行器的整体避障功能,并提高所述无人飞行器的飞行体验。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
本文中所称的“一个实施例”、“实施例”或者“一个或者多个实施例”意味着,结合实施例描述的特定特征、结构或者特性包括在本申请的至少一个实施例中。此外,请注意,这里“在一个实施例中”的词语例子不一定全指同一个实施例。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本申请的实施例可以在没有这些具体细节的情况下被实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。本申请可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (40)

  1. 一种无人飞行器,其特征在于,所述无人飞行器包括:
    机身,包括机头和与所述机头相对的机尾;
    多个旋翼装置,分别安装于所述机身,所述旋翼装置用于提供飞行动力;以及
    后避障传感器,安装于所述机身的顶部,用于朝向所述无人飞行器的机尾方向探测障碍物,
    其中,所述无人飞行器的状态包括朝向所述机尾方向飞行的后飞状态和在无风环境下稳定悬停的悬停状态,
    在所述悬停状态下,所述机身在长度方向相较于水平方向倾斜,使得所述机头的高度大于所述机尾的高度;
    所述后避障传感器的感测方向在所述无人飞行器处于悬停状态时相较于水平方向的倾角,大于在所述无人飞行器处于后飞状态时相较于水平方向的倾角。
  2. 一种无人飞行器,其特征在于,所述无人飞行器包括:
    机身,包括中心体、以及与所述中心体机械耦合的机臂;
    多个旋翼装置,分别安装在所述机臂上,所述旋翼装置用于提供飞行动力;
    其中,所述机臂包括前机臂以及后机臂,所述中心体包括位于前端的第一安装部以及位于后端的第二安装部,所述前机臂转动连接于所述第一安装部,所述后机臂转动连接于所述第二安装部,所述第二安装部的高度高于所述第一安装部的高度;
    所述无人飞行器的状态包括在无风环境稳定悬停的悬停状态和便于携带的收纳状态,在所述无人飞行器处于所述悬停状态时,所述前机臂和所述后机臂相对于所述中心体处于展开状态;在所述无人飞行器处于所述收纳状态时,所述前机臂和所述后机臂相对于所述中心体处于折叠状态;
    在所述无人机飞行器处于所述悬停状态时,所述前机臂所处的高度大于所述后机臂所处的高度;在所述无人机飞行器处于所述收纳状态时,所述前机臂位于所述后机臂的下方。
  3. 一种无人飞行器,其特征在于,所述无人飞行器包括:
    机身,包括机头与机头相对的机尾;
    云台,安装在所述机头的前端,所述云台包括俯仰轴机构;
    前避障传感器,安装在所述机头的前端,并且位于所述云台的上方;以及
    相机,通过所述云台连接于所述机身的机头,并且所述相机能够通过俯仰轴机构改变自身的俯仰角,使得相机能够朝向所述机身的上方或下方拍摄;
    其中,所述机头在所述相机的上方设置有避让部,所述避让部具有对应相机的凹陷,所述前避障传感器位于所述避让部上;
    所述无人飞行器的状态包括在无风环境稳定悬停的悬停状态;在所述悬停状态,所述机身在长度方向相较于水平方向倾斜,使得所述机头的高度大于所述机尾的高度,所述相机能够通过所述避让部的凹陷拍摄。
  4. 根据权利要求1所述的无人飞行器,其特征在于,在所述悬停状态下,所述 后避障传感器的感测方向相对于水平方向朝向所述机身的后上方倾斜。
  5. 根据权利要求1所述的无人飞行器,其特征在于,所述无人飞行器还包括:前避障传感器,所述前避障传感器安装于所述机身的机头,用于朝向所述无人飞行器的机头方向探测障碍物;
    在所述悬停状态下,所述前避障传感器的感测方向相对于水平方向朝向所述机身的前上方倾斜。
  6. 根据权利要求5所述的无人飞行器,其特征在于,所述无人飞行器还包括:下避障传感器,所述下避障传感器安装于所述机身的底部,用于朝向所述无人飞行器的底部下方探测障碍物;
    在所述悬停状态,所述下避障传感器的感测方向相对于水平方向朝向前下方倾斜。
  7. 根据权利要求2所述的无人飞行器,其特征在于,在所述折叠状态,所述后机臂和所述前机臂皆贴合于所述中心体的侧端,所述旋翼装置上的桨叶与所述中心体贴合。
  8. 根据权利要求1至7任一项所述的无人飞行器,其特征在于,所述前避障传感器、所述后避障传感器以及所述下避障传感器皆为双目视觉模组。
  9. 根据权利要求1至8任一项所述的无人飞行器,其特征在于,所述飞行状态包括朝向所述机头方向飞行的前飞状态,在所述前飞状态,所述机身的长度方向基本平行于所述水平方向。
  10. 根据权利要求9所述的无人飞行器,其特征在于,在所述前飞状态,所述无人飞行器基本以目标飞行速度进行飞行;
    在所述悬停状态,所述机身的长度方向相较于所述水平方向的第一倾斜角度与所述目标飞行速度相关。
  11. 根据权利要求10所述的无人飞行器,其特征在于,在所述悬停状态,所述预定第一倾斜角度与目标系数相关,所述目标系数与所述机身的尺寸和形状相关。
  12. 根据权利要求11所述的无人飞行器,其特征在于,所述第一倾斜角度分别与所述目标系数和所述目标飞行速度正相关。
  13. 根据权利要求10所述的无人飞行器,其特征在于,在所述悬停状态,所述机身的长度方向相对于所述水平方向的第一倾斜角度为5度至25度之间。
  14. 根据权利要求1至8任一项所述的无人飞行器,其特征在于,所述飞行状态包括朝向所述机头方向飞行的前飞状态,以及朝向所述机尾方向飞行的后飞状态;其中,
    在所述前飞状态,所述前避障传感器的第一光轴能够相对于水平方向朝向前下方倾斜,所述下避障传感器的第二光轴能够相对于水平方向朝向后下方倾斜,所述后避障传感器的第三光轴能够相对于水平方向朝向后上方倾斜;和/或
    在所述后飞状态,所述前避障传感器的第一光轴能够相对于所述水平方向朝向前上方倾斜,所述下避障传感器的第二光轴能够相对于所述水平方向朝向前下方倾斜,所述后避障传感器的第三光轴能够相对于所述水平方向朝向后方。
  15. 根据权利要求14所述的无人飞行器,其特征在于,在所述后飞状态,所述 后避障传感器的第三光轴能够与所述水平方向基本平行。
  16. 根据权利要求1至8任一项所述的无人飞行器,其特征在于,所述前避障传感器具有第一感知覆盖区域,所述下避障传感器具有第二感知覆盖区域;所述下避障传感器的第二光轴相对所述中心体的长度方向朝前下方倾斜,以使所述第二感知覆盖区域与所述第一感知覆盖区域至少部分交叠。
  17. 根据权利要求16所述的无人飞行器,其特征在于,所述第一感知覆盖区域具有第一上边界和第一下边界,所述第二感知覆盖区域具有第一前边界和第一后边界,所述第一下边界与所述第一前边界至少部分交叠。
  18. 根据权利要求17所述的无人飞行器,其特征在于,所述第一下边界和所述第一前边界的交叠角度小于或者等于5度。
  19. 根据权利要求1至8任一项所述的无人飞行器,其特征在于,所述后避障传感器的第三光轴相对所述中心体的长度方向向上倾斜。
  20. 根据权利要求19所述的无人飞行器,其特征在于,所述第三光轴相对所述水平方向向上倾斜的角度小于或者等于30度。
  21. 根据权利要求1至8任一项所述的无人飞行器,其特征在于,所述前避障传感器的第一光轴与所述机身的长度方向基本平行。
  22. 根据权利要求1至8任一项所述的无人飞行器,其特征在于,所述后避障传感器靠近所述前避障传感器设置。
  23. 根据权利要求22所述的无人飞行器,其特征在于,所述后避障传感器和所述前避障传感器皆连接于所述机身的顶部,且所述后避障传感器和所述前避障传感器之间的距离小于第一阈值。
  24. 根据权利要求1至8任一项所述的无人飞行器,其特征在于,所述机身还设置有支架,所述前避障传感器、所述后避障传感器皆安装于所述支架。
  25. 根据权利要求1至8任一项所述的无人飞行器,其特征在于,沿所述旋翼装置的旋转方向,所述桨叶的截面形状为弧形状,且靠近旋转前进方向一侧的高度低于远离旋转前进方向一侧的高度;
    所述中心体的侧端的顶部设置有弧形部;
    在所述折叠状态下,所述后机臂上的桨叶与所述弧形部贴合。
  26. 根据权利要求25所述的无人飞行器,其特征在于,所述前机臂包括左前机臂和右前机臂,安装于所述左前机臂的所述旋翼装置为左前旋翼装置,安装于所述右前机臂的旋翼装置为右前旋翼装置;
    所述后机臂包括左后机臂和右后机臂,安装于所述左后机臂的所述旋翼装置为左后旋翼装置,安装于所述右后机臂的所述旋翼装置为右后旋翼装置;
    其中,所述左前旋翼装置和所述右后旋翼装置的旋转方向皆为第一旋转方向,所述右前旋翼装置和所述左后旋翼装置的旋转方向皆为第二旋转方向,所述第二旋转方向与所述第一旋转方向相反。
  27. 根据权利要求26所述的无人飞行器,其特征在于,在所述折叠状态下,所述左后旋翼装置上的桨叶与所述中心体左侧顶部的所述弧形部贴合,所述右后旋翼装置上的桨叶与所述中心体右侧顶部的所述弧形部贴合。
  28. 根据权利要求26所述的无人飞行器,其特征在于,所述第一旋转方向为顺时针方向,所述第二旋转方向为逆时针方向。
  29. 根据权利要求25所述的无人飞行器,其特征在于,在所述前机臂和所述后机臂折叠的过程中,所述后机臂沿所述中心体的侧面向机头方向折叠,所述前机臂沿所述中心体的侧面向机尾方向折叠。
  30. 根据权利要求25所述的无人飞行器,其特征在于,所述无人飞行器还包括脚架;
    所述中心体的底部设置有脚架连接部,所述脚架连接部包括两个前脚架连接部和两个后脚架连接部;
    在所述折叠状态,所述前机臂的桨叶能够收拢于所述两个前脚架连接部之间。
  31. 根据权利要求30所述的无人飞行器,其特征在于,在所述折叠状态下,所述后脚架连接部为所述前机臂的上的旋翼安装部,在所述展开状态下,所述后脚架连接部为从中心体延伸出来的突起部。
  32. 根据权利要求31所述的无人飞行器,其特征在于,所述中心体的底部还设置有电池壳,所述凸起部为所述电池壳的一部分。
  33. 根据权利要求25所述的无人飞行器,其特征在于,在所述前机臂和所述后机臂处于展开状态下,所述旋翼装置的旋转轴相对所述中心体的高度方向倾斜。
  34. 根据权利要求33所述的无人飞行器,其特征在于,所述旋翼装置的旋转轴相对所述中心体的高度方向向外倾斜。
  35. 根据权利要求33所述的无人飞行器,其特征在于,所述旋翼装置的旋转轴的顶部朝向所述中心体的两侧倾斜。
  36. 根据权利要求33所述的无人飞行器,其特征在于,所述旋转轴相对所述中心体高度方向的倾斜角度范围为5度至7度。
  37. 根据权利要求1至8任一项所述的无人飞行器,其特征在于,所述相机通过云台活动连接于所述中心体,所述云台包括俯仰轴、偏航轴和横滚轴,所述相机可分别绕所述俯仰轴、所述偏航轴以及所述横滚轴运动。
  38. 根据权利要求37所述的无人飞行器,其特征在于,所述云台和所述相机皆连接于所述中心体的前端,所述避让部设置于所述中心体的顶部,以至少部分避让所述云台和所述相机。
  39. 根据权利要求38所述的无人飞行器,其特征在于,所述中心体的前端还设置有两个朝机头方向延伸的凸起部,两个所述凸起部之间间隔设置,所述俯仰轴的一端悬挂于其中一个所述凸起部,所述俯仰轴的另一端悬挂于其中另一个所述凸起部,所述云台和所述相机皆位于所述两个凸起部之间。
  40. 根据权利要求38所述的无人飞行器,其特征在于,所述俯仰轴为“U”型俯仰轴,所述“U”型俯仰轴的两端分别悬挂于所述凸起部,所述“U”型俯仰轴的弧形段用于形成容纳所述相机的容纳空间。
PCT/CN2022/088245 2022-04-21 2022-04-21 无人飞行器 WO2023201639A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/088245 WO2023201639A1 (zh) 2022-04-21 2022-04-21 无人飞行器
CN202280063758.2A CN117980229A (zh) 2022-04-21 2022-04-21 无人飞行器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/088245 WO2023201639A1 (zh) 2022-04-21 2022-04-21 无人飞行器

Publications (1)

Publication Number Publication Date
WO2023201639A1 true WO2023201639A1 (zh) 2023-10-26

Family

ID=88418752

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/088245 WO2023201639A1 (zh) 2022-04-21 2022-04-21 无人飞行器

Country Status (2)

Country Link
CN (1) CN117980229A (zh)
WO (1) WO2023201639A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117419885A (zh) * 2023-12-19 2024-01-19 中国空气动力研究与发展中心低速空气动力研究所 一种剪刀式尾桨风洞试验台

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203461110U (zh) * 2013-09-10 2014-03-05 姜学海 异形折叠三点降落式多轴无人飞行器
CN205837182U (zh) * 2016-06-15 2016-12-28 广州安云电子科技有限公司 一种飞行器旋翼结构及飞行器
CN206407103U (zh) * 2016-12-19 2017-08-15 昊翔电能运动科技(昆山)有限公司 可折叠式多旋翼无人机
CN206407117U (zh) * 2016-12-19 2017-08-15 昊翔电能运动科技(昆山)有限公司 可折叠式多旋翼无人机
CN206684581U (zh) * 2017-04-18 2017-11-28 深圳城际快机科技有限公司 自动避障无人机
CN206954489U (zh) * 2017-03-29 2018-02-02 深圳市科卫泰实业发展有限公司 便携式多旋翼无人飞行器
CN207403934U (zh) * 2017-11-17 2018-05-25 沈阳无距科技有限公司 多旋翼无人机
CN207644617U (zh) * 2017-11-30 2018-07-24 广州市华科尔科技股份有限公司 一种紧凑型多旋翼自拍无人机
CN208963300U (zh) * 2018-10-11 2019-06-11 深圳市智璟科技有限公司 一种机臂折叠装置以及折叠机臂式无人机
US20190233099A1 (en) * 2018-01-29 2019-08-01 Aerovironment, Inc. Methods and Systems for Energy-Efficient Take-Offs and Landings for Vertical Take-Off and Landing (VTOL) Aerial Vehicles
CN210162256U (zh) * 2018-12-18 2020-03-20 哈瓦国际航空技术(深圳)有限公司 一种具有避障功能的无人机
CN210310879U (zh) * 2019-05-21 2020-04-14 深圳市大疆创新科技有限公司 无人飞行器
CN213443082U (zh) * 2020-11-06 2021-06-15 深圳市大疆创新科技有限公司 多旋翼无人飞行器及套件
CN214824100U (zh) * 2020-12-31 2021-11-23 深圳市大疆创新科技有限公司 无人机

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203461110U (zh) * 2013-09-10 2014-03-05 姜学海 异形折叠三点降落式多轴无人飞行器
CN205837182U (zh) * 2016-06-15 2016-12-28 广州安云电子科技有限公司 一种飞行器旋翼结构及飞行器
CN206407103U (zh) * 2016-12-19 2017-08-15 昊翔电能运动科技(昆山)有限公司 可折叠式多旋翼无人机
CN206407117U (zh) * 2016-12-19 2017-08-15 昊翔电能运动科技(昆山)有限公司 可折叠式多旋翼无人机
CN206954489U (zh) * 2017-03-29 2018-02-02 深圳市科卫泰实业发展有限公司 便携式多旋翼无人飞行器
CN206684581U (zh) * 2017-04-18 2017-11-28 深圳城际快机科技有限公司 自动避障无人机
CN207403934U (zh) * 2017-11-17 2018-05-25 沈阳无距科技有限公司 多旋翼无人机
CN207644617U (zh) * 2017-11-30 2018-07-24 广州市华科尔科技股份有限公司 一种紧凑型多旋翼自拍无人机
US20190233099A1 (en) * 2018-01-29 2019-08-01 Aerovironment, Inc. Methods and Systems for Energy-Efficient Take-Offs and Landings for Vertical Take-Off and Landing (VTOL) Aerial Vehicles
CN208963300U (zh) * 2018-10-11 2019-06-11 深圳市智璟科技有限公司 一种机臂折叠装置以及折叠机臂式无人机
CN210162256U (zh) * 2018-12-18 2020-03-20 哈瓦国际航空技术(深圳)有限公司 一种具有避障功能的无人机
CN210310879U (zh) * 2019-05-21 2020-04-14 深圳市大疆创新科技有限公司 无人飞行器
CN213443082U (zh) * 2020-11-06 2021-06-15 深圳市大疆创新科技有限公司 多旋翼无人飞行器及套件
CN214824100U (zh) * 2020-12-31 2021-11-23 深圳市大疆创新科技有限公司 无人机

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117419885A (zh) * 2023-12-19 2024-01-19 中国空气动力研究与发展中心低速空气动力研究所 一种剪刀式尾桨风洞试验台
CN117419885B (zh) * 2023-12-19 2024-03-19 中国空气动力研究与发展中心低速空气动力研究所 一种剪刀式尾桨风洞试验台

Also Published As

Publication number Publication date
CN117980229A (zh) 2024-05-03

Similar Documents

Publication Publication Date Title
US8794566B2 (en) Vehicle capable of stabilizing a payload when in motion
JP6434644B2 (ja) 3方向のウィングの構成を有する無人空輸手段
US8794564B2 (en) Vehicle capable of in-air and on-ground mobility
JP2020152376A (ja) 重量移動式同軸回転翼ヘリコプタ
JP6774918B2 (ja) 重量移動式同軸回転翼ヘリコプタのための風力充電
US11167863B2 (en) Unmanned aerial vehicle
JP6745982B2 (ja) 航空機用光センサ構成
JP2017206237A6 (ja) 重量移動式同軸回転翼ヘリコプタ
CN110733624A (zh) 无人驾驶飞行系统和用于无人驾驶飞行系统的控制系统
JP2005280412A (ja) リング状の翼構造を有する航空機
EP3269641A1 (en) Unmanned aerial or marine vehicle
WO2023201639A1 (zh) 无人飞行器
WO2019119409A1 (zh) 无人机及无人机控制方法
US11760481B2 (en) Aerodynamic drone using airfoil-designed fuselages and associated parts
WO2022266807A1 (zh) 无人机
CN106240807A (zh) 一种集光电探测一体化的无人机
WO2023237076A1 (zh) 一种拍摄机构、无人机及无人机的控制方法
WO2021243705A1 (zh) 无人飞行器
CN218431710U (zh) 无人飞行器
CN213814412U (zh) 一种双云台无人机
US10890758B1 (en) Moisture deflection apparatus for aerial vehicle cameras
CN216660303U (zh) 多旋翼无人机及多旋翼无人机编队目标追踪系统
US20240132237A1 (en) Aerial vehicle
WO2022226933A1 (zh) 垂直起降固定翼无人飞行器
WO2024021135A1 (zh) 飞行器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22937876

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280063758.2

Country of ref document: CN