WO2023201590A1 - 用于有机发光器件的发光材料、发光器件和显示装置 - Google Patents

用于有机发光器件的发光材料、发光器件和显示装置 Download PDF

Info

Publication number
WO2023201590A1
WO2023201590A1 PCT/CN2022/088010 CN2022088010W WO2023201590A1 WO 2023201590 A1 WO2023201590 A1 WO 2023201590A1 CN 2022088010 W CN2022088010 W CN 2022088010W WO 2023201590 A1 WO2023201590 A1 WO 2023201590A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
unsubstituted
compound
group
light
Prior art date
Application number
PCT/CN2022/088010
Other languages
English (en)
French (fr)
Inventor
刘杨
陈雪芹
马坤
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2022/088010 priority Critical patent/WO2023201590A1/zh
Priority to CN202280000816.7A priority patent/CN117322167A/zh
Publication of WO2023201590A1 publication Critical patent/WO2023201590A1/zh

Links

Images

Definitions

  • Embodiments of the present disclosure relate to, but are not limited to, the field of display technology, and in particular, to a luminescent material for an organic light-emitting device, a luminescent device, and a display device.
  • OLED Organic Light Emitting Diode
  • red light devices are generally phosphorescent devices.
  • Red light host (Host) materials are premixed (Premix) materials, including hole-type host (P-type) materials and electron-type host (N-type) materials. P-type host materials and N-type host materials can form exciplexes.
  • the doping material (also called guest (Dopant) material) in the red light host material is a phosphorescent doping material. Under photoexcitation or electric excitation, excitons are formed on the host material. Through energy transfer, the excitons are transferred from the host material to the guest material, and then emit light through the radiative transition of the material.
  • Embodiments of the present disclosure provide a luminescent material for an organic light-emitting device, including a host material.
  • the host material includes a first compound, and the general structural formula of the first compound is:
  • L 1 to L 3 each independently include any one of a single bond, a phenylene group, a biphenylene group, a naphthylene group, a fluorenylene group, a dimethylfluorenyl group, or an alkylene group from C1 to C10. ;
  • Ar 1 to Ar 3 each independently include a substituted or unsubstituted phenyl group, a substituted or unsubstituted biphenyl group, a substituted or unsubstituted naphthyl group, a substituted or unsubstituted anthracenyl group, a substituted or unsubstituted phenanthryl group, Substituted or unsubstituted carbazolyl, substituted or unsubstituted dibenzofuranyl, substituted or unsubstituted dibenzothienyl, substituted or unsubstituted 9-hydrofluorenyl, substituted or unsubstituted 9,9 -Dimethylfluorenyl, substituted or unsubstituted 9,9 diphenylfluorenyl, substituted or unsubstituted spirofluorenyl, substituted or unsubstituted groups represented by formula II, substituted or unsubstituted formula III
  • X 1 includes any one of O, S, NR 1 and CR 2 R 3 ;
  • R 1 to R 3 each independently include hydrogen, C1 to C10 alkyl, phenyl, biphenyl, naphthyl, anthracenyl, phenanthrenyl, carbazolyl, dibenzofuranyl, dibenzothienyl, Any one of fluorenyl, dimethylfluorenyl, diphenylfluorenyl, and spirofluorenyl.
  • L 1 to L 3 may each independently include any one of a single bond and a phenylene group
  • Ar 1 to Ar 3 may each independently include phenyl, benzene-substituted phenyl, biphenyl-substituted phenyl, phenanthrene-substituted phenyl, carbazole-substituted phenyl, biphenyl, phenanthrenyl, carbazolyl, Any one of the dimethylfluorenyl group, the group represented by formula II, and the group represented by formula III, and in the group represented by formula II or the group represented by formula III, X 1 is O .
  • the first compound may include any one of the following compounds:
  • the luminescent material may further include a guest material, and the host material and the guest material may satisfy:
  • T1(H) is the lowest triplet energy of the host material
  • T1(D) is the lowest triplet energy of the guest material
  • the host material may further include a second compound, and the first compound and the second compound may satisfy:
  • T1(P) is the lowest triplet energy of the first compound
  • T1(N) is the lowest triplet energy of the second compound
  • the first compound, the second compound and the guest material may satisfy:
  • HOMO (P) is the highest occupied molecular orbital energy level of the first compound
  • LUMO (N) is the lowest unoccupied molecular orbital energy level of the second compound
  • HOMO (D) is the highest occupied molecular orbital energy level of the guest material. Occupied molecular orbital energy level
  • LUMO (D) is the lowest unoccupied molecular orbital energy level of the guest material.
  • the overlapping integrated area of the photoluminescence spectrum of the host material and the metal-to-ligand charge transfer absorption spectrum of the guest material may be no less than that of the photoluminescence spectrum of the host material. 20% of the integral area.
  • the general formula of the second compound may be:
  • L 4 to L 6 each independently include any one of a single bond, a phenylene group, a biphenylene group, a naphthylene group, a fluorenylene group, a dimethylfluorenyl group, or an alkylene group from C1 to C10. ;
  • Ar 4 to Ar 6 each independently include a substituted or unsubstituted phenyl group, a substituted or unsubstituted biphenyl group, a substituted or unsubstituted naphthyl group, a substituted or unsubstituted anthracenyl group, a substituted or unsubstituted phenanthryl group, Substituted or unsubstituted carbazolyl, substituted or unsubstituted dibenzofuranyl, substituted or unsubstituted dibenzothienyl, substituted or unsubstituted 9-hydrofluorenyl, substituted or unsubstituted 9,9 -Dimethylfluorenyl, substituted or unsubstituted 9,9 diphenylfluorenyl, substituted or unsubstituted spirofluorenyl, substituted or unsubstituted groups represented by formula V, substituted or unsubstituted formula VI
  • At least one of X 2 and X 3 is N, and the other is any one of N and -CH; X 4 is N;
  • X 5 and X 6 each independently include any one of N, C or CH, and when X 5 and X 6 are both C, X 5 and The group represented by V-2;
  • X 7 to X 9 each independently include any one of O, S, NR 4 and CR 5 R 6 ;
  • R 4 to R 6 each independently include hydrogen, C1 to C10 alkyl, phenyl, biphenyl, naphthyl, anthracenyl, phenanthrenyl, carbazolyl, dibenzofuranyl, dibenzothienyl, Any one of fluorenyl, dimethylfluorenyl, diphenylfluorenyl, and spirofluorenyl.
  • L 4 to L 6 may each independently include any one of a single bond and a naphthylene group
  • Ar 4 to Ar 6 each independently include phenyl, naphthyl, carbazolyl, carbazole-substituted naphthyl, any of them.
  • the second compound may include any one of the following compounds:
  • the first compound may be P1, and the second compound may be N1; or,
  • the first compound may be P3, and the second compound may be N2; or,
  • the first compound may be P5, and the second compound may be N3.
  • the first compound and the second compound may satisfy:
  • Tg(P) is the glass transition temperature of the first compound
  • Tg(N) is the glass transition temperature of the second compound
  • the molar ratio of the first compound to the second compound in the host material may be 3:7 to 7:3.
  • An embodiment of the present disclosure also provides a light-emitting device, including a light-emitting layer.
  • the material of the light-emitting layer includes the light-emitting material for an organic light-emitting device as described above.
  • the light-emitting device may further include an auxiliary light-emitting layer disposed on one side of the light-emitting layer, and the material of the auxiliary light-emitting layer and the first compound may satisfy:
  • the hole mobility (F) is the hole mobility of the material of the auxiliary light-emitting layer
  • the hole mobility (P) is the hole mobility of the first compound.
  • the material of the auxiliary light-emitting layer and the first compound may also satisfy:
  • HOMO (F) is the highest occupied molecular orbital energy level of the material of the auxiliary light-emitting layer.
  • the material of the auxiliary light-emitting layer and the first compound may also satisfy:
  • T1(F) is the lowest triplet energy of the material of the auxiliary light-emitting layer.
  • the general formula of the material of the auxiliary light-emitting layer may be:
  • L 7 to L 9 each independently include any one of a single bond, a phenylene group, a biphenylene group, a naphthylene group, a fluorenylene group, a dimethylfluorenyl group, or an alkylene group from C1 to C10;
  • Ar 7 to Ar 9 each independently include substituted or unsubstituted phenyl, substituted or unsubstituted biphenyl, substituted or unsubstituted naphthyl, substituted or unsubstituted dibenzofuranyl, substituted or unsubstituted Dibenzothienyl, substituted or unsubstituted 9-hydrofluorenyl, substituted or unsubstituted 9,9-dimethylfluorenyl, substituted or unsubstituted 9,9diphenylfluorenyl, substituted or unsubstituted spirofluorenyl, substituted or unsubstituted adamantyl, substituted or unsubstituted groups represented by formula VIII; here, substituted phenyl, substituted biphenyl, substituted naphthyl, substituted dibenzo Furyl, substituted dibenzothienyl, substituted 9-hydrofluorenyl, substituted 9,9-
  • R 7 to R 9 each independently include hydrogen, C1 to C10 alkyl, phenyl, biphenyl, naphthyl, anthracenyl, phenanthrenyl, carbazolyl, dibenzofuranyl, dibenzothienyl, Any one of fluorenyl, dimethylfluorenyl, diphenylfluorenyl, and spirofluorenyl.
  • L 7 to L 9 may each independently include any one of a single bond, a phenylene group, a biphenylene group, and a dimethylfluorenyl group;
  • Ar 7 to Ar 9 each independently include adamantane-substituted phenyl, adamantane-substituted biphenyl, adamantyl, dibenzofuranyl, dimethylfluorenyl, spirofluorenyl, benzene-substituted dimethyl Any one of the fluorenyl group and the group represented by formula VIII.
  • the material of the auxiliary light-emitting layer may include any one of the following compounds:
  • the first compound may be P2, and the material of the auxiliary light-emitting layer may be F1; or
  • the first compound may be P4, and the material of the auxiliary light-emitting layer may be F2; or
  • the first compound may be P6, and the material of the auxiliary light-emitting layer may be F3.
  • An embodiment of the present disclosure also provides a display device, including the light-emitting device as described above.
  • Figure 1 is a schematic diagram of the formation of the highest occupied molecular orbital energy level trap and the lowest unoccupied molecular orbital energy level trap;
  • Figure 2 is a schematic diagram of a device according to an exemplary embodiment of the present disclosure that improves the device turn-on voltage by adjusting hole mobility and energy level matching;
  • Figure 3 is a schematic structural diagram of a light-emitting device according to an exemplary embodiment of the present disclosure
  • Figure 4 shows the photoluminescence spectrum (PL) of the host material (RH) of the light-emitting layer and the MLCT3 absorption spectrum of the guest material of the devices according to exemplary embodiments and comparative examples of the present disclosure
  • FIG. 5 is a graph showing the efficiency of the light-emitting device according to the exemplary embodiment of the present disclosure and the current light-emitting device as a function of current density.
  • 10-highest occupied molecular orbital energy level trap 20-lowest unoccupied molecular orbital energy level trap; 100-anode; 200-hole injection layer; 300-hole transport layer; 400-auxiliary light-emitting layer; 500-light-emitting layer; 600-hole blocking layer; 700-electron transport layer; 800-electron injection layer; 900-cathode.
  • film and “layer” may be interchanged.
  • light-emitting layer may sometimes be replaced by “light-emitting film”.
  • Embodiments of the present disclosure provide a luminescent material for an organic light-emitting device.
  • the luminescent material includes a host material.
  • the host material includes a first compound.
  • the general structural formula of the first compound is:
  • L 1 to L 3 each independently include any one of a single bond, a phenylene group, a biphenylene group, a naphthylene group, a fluorenylene group, a dimethylfluorenyl group, or an alkylene group from C1 to C10. ;
  • Ar 1 to Ar 3 each independently include a substituted or unsubstituted phenyl group, a substituted or unsubstituted biphenyl group, a substituted or unsubstituted naphthyl group, a substituted or unsubstituted anthracenyl group, a substituted or unsubstituted phenanthryl group, Substituted or unsubstituted carbazolyl, substituted or unsubstituted dibenzofuranyl, substituted or unsubstituted dibenzothienyl, substituted or unsubstituted 9-hydrofluorenyl, substituted or unsubstituted 9,9 -Dimethylfluorenyl, substituted or unsubstituted 9,9 diphenylfluorenyl, substituted or unsubstituted spirofluorenyl, substituted or unsubstituted groups represented by formula II, substituted or unsubstituted formula III
  • X 1 includes any one of O, S, NR 1 and CR 2 R 3 ;
  • R 1 to R 3 each independently include hydrogen, C1 to C10 alkyl, phenyl, biphenyl, naphthyl, anthracenyl, phenanthrenyl, carbazolyl, dibenzofuranyl, dibenzothienyl, Any one of fluorenyl, dimethylfluorenyl, diphenylfluorenyl, and spirofluorenyl.
  • L 1 to L 3 may each independently include any one of a single bond and a phenylene group
  • Ar 1 to Ar 3 may each independently include phenyl, benzene-substituted phenyl, biphenyl-substituted phenyl, phenanthrene-substituted phenyl, carbazole-substituted phenyl, biphenyl, phenanthrenyl, carbazolyl, Any one of the dimethylfluorenyl group, the group represented by formula II, and the group represented by formula III, and in the group represented by formula II or the group represented by formula III, X 1 is O .
  • the first compound may include any one of the following compounds:
  • the luminescent material may further include a guest material, and the host material and the guest material may satisfy:
  • T1(H) is the lowest triplet energy of the host material
  • T1(D) is the lowest triplet energy of the guest material
  • the T1 of the red light host material (RH) is higher than the T1 of the red light guest material (RD), the better. This can prevent the triplet excitons on the guest material from being transferred back to the host material.
  • T1 of the red light host material (RH) and the T1 of the red light guest material (RD) are too large, it will cause excitons to transfer from the red light host material (RH) to the red light guest material (RD). The energy loss of the triplet state is too large, which leads to excessive efficiency roll off at high current density.
  • the host material may further include a second compound, and the first compound and the second compound may satisfy:
  • T1(P) is the lowest triplet energy of the first compound
  • T1(N) is the lowest triplet energy of the second compound
  • the first compound, the second compound and the guest material may satisfy:
  • HOMO (P) is the highest occupied molecular orbital energy level of the first compound
  • LUMO (N) is the lowest unoccupied molecular orbital energy level of the second compound
  • HOMO (D) is the highest occupied molecular orbital energy level of the guest material. Occupied molecular orbital energy level
  • LUMO (D) is the lowest unoccupied molecular orbital energy level of the guest material.
  • the red guest material (RD) doped into the red host material (RH) will form a Highest Occupied Molecular Orbit trap (HOMO trap)10 with the P-type host material, and with the N-type host material Forming the lowest unoccupied molecular orbital energy level trap (Lowest Unoccupied Molecular Orbital trap, LUMO trap) 20.
  • Figure 1 is a schematic diagram of the formation of the highest occupied molecular orbital energy level trap and the lowest unoccupied molecular orbital energy level trap. Therefore, polarons will be formed after the red light guest material (RD) captures charges, and there are triplet excitons transferred from the red light host material (RH) on the red light guest material (RD).
  • the overlapping integral area of the photoluminescence spectrum of the host material and the metal-to-ligand charge transfer (MLCT3) absorption spectrum of the guest material may be no less than 20% of the spectral integrated area of the photoluminescence spectrum of the host material.
  • the overlapping integrated area of the photoluminescence spectrum of the host material and the MLCT3 absorption spectrum of the guest material may be approximately 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%.
  • the host material Good energy transfer from e.g. RH) to guest material (e.g. RD).
  • the guest material may include any one or more of iridium metal complexes and platinum metal complex guest luminescent materials.
  • it may include tris[1-phenylisoquinoline- C2,N]iridium(III)(Ir(piq) 3 ), Ir(piq) 2 (acac), (MPEP)2lr(acac), (PEQ)2Ir(acac), (CzPPiQ)Pt(acac), ( Any one or more of CzPPiQ)Pt(dpm) and (DPQ)Pt(acac).
  • the doping ratio of the guest material in the light-emitting material may be 1% to 20%, for example, it may be 1%, 2%, 5%, 8%, 10%, 12%, 15% , 18%, 20%.
  • the host material in the luminescent material can effectively transfer exciton energy to the guest material in the luminescent material to stimulate the guest material to emit light.
  • the host material in the luminescent material has a negative impact on the luminescent material.
  • the guest material is "diluted", which effectively improves the fluorescence quenching caused by the collision between the guest material molecules and the energy collision, and improves the luminous efficiency and device life.
  • the doping ratio refers to the ratio of the mass of the guest material to the mass of the luminescent material, that is, mass percentage.
  • the general formula of the second compound may be:
  • L 4 to L 6 each independently include any one of a single bond, a phenylene group, a biphenylene group, a naphthylene group, a fluorenylene group, a dimethylfluorenyl group, or an alkylene group from C1 to C10. ;
  • Ar 4 to Ar 6 each independently include a substituted or unsubstituted phenyl group, a substituted or unsubstituted biphenyl group, a substituted or unsubstituted naphthyl group, a substituted or unsubstituted anthracenyl group, a substituted or unsubstituted phenanthryl group, Substituted or unsubstituted carbazolyl, substituted or unsubstituted dibenzofuranyl, substituted or unsubstituted dibenzothienyl, substituted or unsubstituted 9-hydrofluorenyl, substituted or unsubstituted 9,9 -Dimethylfluorenyl, substituted or unsubstituted 9,9 diphenylfluorenyl, substituted or unsubstituted spirofluorenyl, substituted or unsubstituted groups represented by formula V, substituted or unsubstituted formula VI
  • At least one of X 2 and X 3 is N, and the other is any one of N and -CH; X 4 is N;
  • X 5 and X 6 each independently include any one of N, C or CH, and when X 5 and X 6 are both C, X 5 and The group represented by V-2;
  • X 7 to X 9 each independently include any one of O, S, NR 4 and CR 5 R 6 ;
  • R 4 to R 6 each independently include hydrogen, C1 to C10 alkyl, phenyl, biphenyl, naphthyl, anthracenyl, phenanthrenyl, carbazolyl, dibenzofuranyl, dibenzothienyl, Any one of fluorenyl, dimethylfluorenyl, diphenylfluorenyl, and spirofluorenyl.
  • L 4 to L 6 may each independently include any one of a single bond and a naphthylene group
  • Ar 4 to Ar 6 may each independently include phenyl, naphthyl, carbazolyl, carbazole-substituted naphthyl, any of them.
  • the second compound may include any one of the following compounds:
  • the first compound may be P1, and the second compound may be N1; or,
  • the first compound may be P3, and the second compound may be N2; or,
  • the first compound may be P5, and the second compound may be N3.
  • the first compound and the second compound can simultaneously satisfy: 2.1eV ⁇ T1(H) ⁇ 2.7eV; 2.2eV ⁇ T1( P) ⁇ 2.8eV; 2.2eV ⁇ T1 (N) ⁇ 2.8eV; which is beneficial to reducing efficiency roll-off under high current density.
  • the first compound and the second compound may satisfy:
  • Tg(P) is the glass transition temperature of the first compound
  • Tg(N) is the glass transition temperature of the second compound
  • the first compound and the second compound satisfy 80°C ⁇ Tg(P) ⁇ 140°C, 80°C ⁇ Tg(N) ⁇ 140°C,
  • evaporating the first compound and the second compound they are usually blended together and the same heating source is used for evaporation.
  • the molar ratio of the first compound to the second compound may be 3:7 to 7:3.
  • the molar ratio of the first compound to the second compound may be 3:7 to 7:3.
  • the molar ratio of the compounds can be 3:7, 3:8, 3:9, 3:10, 3:20, 3:30, 3:3, 4:3, 5:3, 6:3, 7:3.
  • the first compound may serve as a P-type host material in the host material
  • the second compound may serve as an N-type host material in the host material
  • Embodiments of the present disclosure also provide a light-emitting device, which includes a light-emitting layer.
  • the material of the light-emitting layer may include the light-emitting materials used in organic light-emitting devices as described above.
  • the efficiency roll-off of the light-emitting device under large current density can be significantly reduced.
  • the light-emitting device may further include an auxiliary light-emitting layer disposed on one side of the light-emitting layer, and the material of the auxiliary light-emitting layer and the first compound may satisfy:
  • the hole mobility (F) is the hole mobility of the material of the auxiliary light-emitting layer
  • the hole mobility (P) is the hole mobility of the first compound.
  • the hole injection layer of current devices generally has a P-type doping structure. P-type doping will reduce the lateral resistance of the hole injection layer, causing holes to drift laterally. And since red light has less energy than green light and blue light, and the turn-on voltage of red light devices is smaller than that of green light devices and blue light devices, horizontally drifting charges can easily cause undesirably lit red pixels to be lights up, causing crosstalk.
  • the thickness of the red auxiliary light-emitting layer is about 2 to 8 times that of the green auxiliary light-emitting layer and the blue auxiliary light-emitting layer. Therefore, the mobility of the red auxiliary light-emitting layer is closely related to the turn-on voltage of the red light device.
  • the material of the auxiliary light-emitting layer and the first compound satisfy 1/100 ⁇ hole mobility (F)/hole mobility (P) ⁇ 1, which is beneficial to reducing the number of holes.
  • the injection of holes into the light-emitting layer delays the recombination of holes and electrons, which is beneficial to increasing the device turn-on voltage.
  • the material of the auxiliary light-emitting layer and the first compound may also satisfy:
  • HOMO (F) is the highest occupied molecular orbital energy level of the material of the auxiliary light-emitting layer.
  • the highest occupied molecular orbital energy gap (HOMO gap) of the red auxiliary light-emitting layer material and the red P-type host material will also affect the injection of holes from the red auxiliary light-emitting layer material into the light-emitting layer.
  • HOMO gap When the material of the auxiliary light-emitting layer and the first compound satisfy 0.1eV ⁇
  • Figure 2 is a schematic diagram of a device according to an exemplary embodiment of the present disclosure improving the device turn-on voltage by adjusting hole mobility and energy level matching.
  • the upper figure represents a current red light device, and the lower figure represents a red light device according to an exemplary embodiment of the present disclosure.
  • RF represents the auxiliary light-emitting layer material
  • RH-P represents the P-type host material of the light-emitting layer
  • RH-N represents the N-type host material of the light-emitting layer
  • RD represents the guest material of the light-emitting layer.
  • the material of the auxiliary light-emitting layer and the first compound may also satisfy:
  • T1(F) is the lowest triplet energy of the material of the auxiliary light-emitting layer.
  • triplet excitons can be prevented from leaking to the auxiliary light-emitting layer, and the auxiliary light-emitting layer can be fully exerted.
  • the layer blocks triplet excitons.
  • the general formula of the material of the auxiliary light-emitting layer may be:
  • L 7 to L 9 each independently include any one of a single bond, a phenylene group, a biphenylene group, a naphthylene group, a fluorenylene group, a dimethylfluorenyl group, or an alkylene group from C1 to C10;
  • Ar 7 to Ar 9 each independently include substituted or unsubstituted phenyl, substituted or unsubstituted biphenyl, substituted or unsubstituted naphthyl, substituted or unsubstituted dibenzofuranyl, substituted or unsubstituted Dibenzothienyl, substituted or unsubstituted 9-hydrofluorenyl, substituted or unsubstituted 9,9-dimethylfluorenyl, substituted or unsubstituted 9,9diphenylfluorenyl, substituted or unsubstituted spirofluorenyl, substituted or unsubstituted adamantyl, substituted or unsubstituted groups represented by formula VIII; here, substituted phenyl, substituted biphenyl, substituted naphthyl, substituted dibenzo Furyl, substituted dibenzothienyl, substituted 9-hydrofluorenyl, substituted 9,9-
  • R 7 to R 9 each independently include hydrogen, C1 to C10 alkyl, phenyl, biphenyl, naphthyl, anthracenyl, phenanthrenyl, carbazolyl, dibenzofuranyl, dibenzothienyl, Any one of fluorenyl, dimethylfluorenyl, diphenylfluorenyl, and spirofluorenyl.
  • L 7 to L 9 may each independently include any one of a single bond, a phenylene group, a biphenylene group, and a dimethylfluorenyl group;
  • Ar 7 to Ar 9 may each independently include adamantane-substituted phenyl, adamantane-substituted biphenyl, adamantyl, dibenzofuranyl, dimethylfluorenyl, spirofluorenyl, benzene-substituted dimethyl Any one of the fluorenyl group and the group represented by formula VIII.
  • the material of the auxiliary light-emitting layer may include any one of the following compounds:
  • the first compound may be P2, and the material of the auxiliary light-emitting layer may be F1; or
  • the first compound may be P4, and the material of the auxiliary light-emitting layer may be F2; or
  • the first compound may be P6, and the material of the auxiliary light-emitting layer may be F3.
  • the material of the auxiliary light-emitting layer and the first compound can simultaneously satisfy: 1/100 ⁇ hole mobility (F)/holes Mobility (P) ⁇ 1, 0.1eV ⁇
  • the light-emitting device may include an anode, a cathode, and an organic light-emitting layer disposed between the anode and the cathode, where the organic light-emitting layer includes an emitting layer (EML).
  • EML emitting layer
  • the organic light-emitting layer may also include any one or more of the following layers: hole injection layer (Hole Injection Layer, HIL), hole transport layer (Hole Transport Layer, HTL), electron blocking layer (Electron Block Layer, EBL), auxiliary light-emitting layer, light-emitting layer (EML), hole blocking layer (Hole Block Layer, HBL), electron transport layer (Electron Transport Layer, ETL), electron injection layer (Electron Injection) Layer, EIL).
  • HIL hole injection layer
  • HTL hole transport layer
  • EBL Electrode Block Layer
  • EML auxiliary light-emitting layer
  • EML hole blocking layer
  • HBL hole blocking layer
  • ETL electron transport layer
  • ETL electron injection layer
  • EIL Electrode Injection Layer
  • one or more of the hole injection layer, hole transport layer, electron blocking layer, hole blocking layer, electron transport layer and electron injection layer of all sub-pixels may be connected together Common layer, the light-emitting layers of adjacent sub-pixels may have a small amount of overlap, or may be isolated.
  • FIG. 3 is a schematic structural diagram of a light-emitting device according to an exemplary embodiment of the present disclosure.
  • the electroluminescent device may include: anode 100, hole injection layer 200, hole transport layer 300, auxiliary light emitting layer 400, light emitting layer 500, hole blocking layer 600, electron transport layer 700, Electron injection layer 800 and cathode 900.
  • the hole injection layer 200 is disposed on a surface on one side of the anode 100
  • the hole transport layer 300 is disposed on a surface of the hole injection layer 200 away from the anode 100.
  • the auxiliary The luminescent layer 400 is disposed on the surface of the hole transport layer 300 on the side away from the anode 100
  • the luminescent layer 500 is disposed on the surface of the auxiliary luminescent layer 400 on the side away from the anode 100
  • the hole blocking layer 600 is disposed on the surface of the light-emitting layer 500 on the side away from the anode 100
  • the electron transport layer 700 is disposed on the surface of the hole blocking layer 600 on the side away from the anode 100
  • the electron injection layer 800 is disposed on the surface of the electron transport layer 700 on the side away from the anode 100
  • the cathode 900 is disposed on the surface of the electron injection layer 800 on the side away from the anode 100 superior.
  • the organic light-emitting layer can be prepared using the following preparation method.
  • the hole injection layer, the hole transport layer and the electron blocking layer are sequentially formed using an open mask (OPM) evaporation process or an inkjet printing process to form a hole injection layer on the display substrate.
  • OPM open mask
  • the evaporation process of Fine Metal Mask (FMM) or the inkjet printing process is used to form a red luminescent layer, a green luminescent layer and a blue luminescent layer in the corresponding sub-pixels.
  • FMM Fine Metal Mask
  • the light-emitting layers of adjacent sub-pixels may have a small amount of overlap (for example, the overlapping portion accounts for less than 10% of the area of the respective light-emitting layer patterns), or may be isolated.
  • an open mask evaporation process or an inkjet printing process is used to sequentially form the hole blocking layer, the electron transport layer, and the electron injection layer, and the hole blocking layer, the electron transport layer, and the electron injection layer are formed on the display substrate. common layer.
  • the organic light-emitting layer may further include a microcavity adjustment layer, so that the thickness of the organic light-emitting layer between the cathode and the anode meets the design of the microcavity length.
  • a hole transport layer, an electron blocking layer, a hole blocking layer or an electron transport layer may be used as the microcavity adjustment layer, which is not limited in this disclosure.
  • the host material and the guest material of the light-emitting layer can be co-evaporated through a multi-source evaporation process, so that the host material and the guest material are evenly dispersed in the light-emitting layer.
  • the guest material can be controlled during the evaporation process.
  • the doping ratio can be controlled by controlling the evaporation rate, or by controlling the evaporation rate ratio of the host material and the guest material.
  • the thickness of the light emitting layer may be approximately 10 nm to 50 nm.
  • the hole injection layer may use inorganic oxides, such as molybdenum oxide, titanium oxide, vanadium oxide, rhenium oxide, ruthenium oxide, chromium oxide, zirconium oxide, and hafnium oxide. , tantalum oxide, silver oxide, tungsten oxide or manganese oxide, or dopants that can use p-type dopants of strong electron-withdrawing systems and hole transport materials, for example, 4,4'-cyclohexyldi [N,N-bis(4-methylphenyl)aniline](TAPC) and 2,3,6,7,10,11-hexacyano-1,4,5,8,9,12-hexazo Dopant of heterotriphenanthrene (HAT-CN).
  • the hole injection layer may have a thickness of approximately 5 nm to 20 nm.
  • the hole transport layer may use a material with higher hole mobility, such as an aromatic amine compound, and its substituent may be carbazole, methylfluorene, or spirofluene. , dibenzothiophene or furan, etc., such as TAPC, etc.
  • the hole transport layer may have a thickness of approximately 40 nm to 150 nm.
  • the hole blocking layer and the electron transport layer may use aromatic heterocyclic compounds, such as benzimidazole derivatives, imidazopyridine derivatives, benziimidazophenanthridine derivatives and other imidazole derivatives; pyrimidine Derivatives, triazine derivatives and other oxazine derivatives; quinoline derivatives, isoquinoline derivatives, phenanthroline derivatives and other compounds containing a nitrogen-containing six-membered ring structure (also including compounds with a phosphine oxide system on the heterocyclic ring) Substituent compounds), etc.
  • aromatic heterocyclic compounds such as benzimidazole derivatives, imidazopyridine derivatives, benziimidazophenanthridine derivatives and other imidazole derivatives; pyrimidine Derivatives, triazine derivatives and other oxazine derivatives; quinoline derivatives, isoquinoline derivatives, phenanthroline derivatives and other compounds containing a
  • the hole blocking layer material and the electron transport layer material may include 2-(4-biphenyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole (PBD), 1,3-bis[5-(p-tert-butylphenyl)-1,3,4-oxadiazol-2-yl]benzene (OXD-7), 3-(biphenyl-4- base)-5-(4-tert-butylphenyl)-4-phenyl-4H-1,2,4-triazole (TAZ), 3-(4-tert-butylphenyl)-4-(4 -Ethylphenyl)-5-(4-biphenyl)-1,2,4-triazole (p-EtTAZ), biphenanthroline (BPhen), 2,9-dimethyl-4,7 - Any one or more of diphenyl-1,10-phenanthroline (BCP) and 4,4'-bis(5-methylbenzoxazol
  • the hole blocking layer may have a thickness of approximately 5 nm to 15 nm, and the electron transport layer may have a thickness of approximately 20 nm to 50 nm.
  • the electron injection layer may use alkali metals or metals, such as lithium fluoride (LiF), ytterbium (Yb), magnesium (Mg) or calcium (Ca), or compounds of these alkali metals or metals. wait.
  • the thickness of the electron injection layer may be approximately 0.5 nm to 2 nm.
  • the cathode may be made of any one or more of magnesium (Mg), silver (Ag), aluminum (Al), copper (Cu), and lithium (Li), or any one of the above metals. made of one or more alloys.
  • the light-emitting device may be a red light device, such as a red OLED device.
  • An embodiment of the present disclosure also provides a display device, which may include the light-emitting device as described above.
  • the display device may be a mobile phone, a tablet computer, a television, a monitor, a laptop, a digital photo frame, a navigator, a car display, a smart watch, a smart bracelet, or any other product or component with a display function.
  • red light device as an example to illustrate the advantages of light-emitting devices according to some exemplary embodiments of the present disclosure in reducing efficiency roll-off.
  • the glass plate with ITO Indium Tin Oxide
  • ITO Indium Tin Oxide
  • the glass plate with ITO is ultrasonically treated in a cleaning agent, rinsed with deionized water, ultrasonically degreased in an acetone-ethanol mixed solvent, and baked at 100°C in a clean environment. Dry until moisture is completely removed;
  • a hole injection layer Place the above-mentioned cleaned and dried ITO glass in a vacuum evaporation equipment, and evaporate in sequence to form a hole injection layer, a hole transport layer, an auxiliary light-emitting layer, a light-emitting layer, a hole blocking layer, an electron transport layer, and an electron injection layer. layer, cathode.
  • the material of the hole injection layer is TAPC:HAT-CN (4% mass ratio is doped into TAPC), and the evaporation thickness is 10nm; the material of the hole transport layer is TAPC, and the evaporation thickness is 100nm; the auxiliary light-emitting layer The material is NPB, and the evaporation thickness is 80nm; the material of the light-emitting layer is P1:N1(4:6):Ir(piq) 3 (2% mass ratio is doped into P1:N1), and the evaporation thickness is 40nm;
  • the material of the hole blocking layer is BCP, and the evaporation thickness is 5nm; the material of the electron transport layer is TAZ:Liq (1:1), and the evaporation thickness is 30nm; the material of the electron injection layer is Liq, and the evaporation thickness is 1nm.
  • the P-type host material of the light-emitting layer is P1
  • the N-type host material is N1.
  • the P-type host material of the light-emitting layer is P3, and the N-type host material is N2. Others are the same as in Embodiment 1.
  • the P-type host material of the light-emitting layer is P5, and the N-type host material is N3. Others are the same as in Embodiment 1.
  • the P-type host material of the light-emitting layer is P1
  • the N-type host material is N1
  • the molar ratio of the P-type host material and the N-type host material is 5:5, and the others are the same as in Embodiment 1.
  • the P-type host material of the light-emitting layer is P1
  • the N-type host material is N1
  • the molar ratio of the P-type host material and the N-type host material is 6:4, and the others are the same as in Embodiment 1.
  • the P-type host material of the light-emitting layer is P7, and the N-type host material is N4. Others are the same as in Embodiment 1.
  • FIG. 4 shows the photoluminescence spectrum (RH-PL) of the host material of the emitting layer and the MLCT3 absorption spectrum (RD-MLCT3) of the guest material of the devices according to exemplary embodiments and comparative examples of the present disclosure. It can be seen from Figure 4 and Table 2 that the overlapping integrated area of the photoluminescence spectrum of the host material of the emitting layer of the device of the exemplary embodiment of the present disclosure and the MLCT3 absorption spectrum of the guest material is not less than the integrated area of the photoluminescence spectrum of the host material. 20%.
  • IVL current-voltage-brightness and lifetime equipment was used to test the performance of the devices of the above embodiments and comparative examples; wherein, voltage (V), efficiency, color coordinates (CIE x, CIE y) are at room temperature, 15mA/cm 2 Tested under conditions; efficiency roll-off is a comparison of the efficiency drop percentage of 0.01mA/cm 2 and 15mA/cm 2 ; device life is tested at 25°C, 0.6mA.
  • the performance of the device is based on the data of Comparative Example 1 as a reference, and its voltage, efficiency and lifetime data are set to 100%; the overlapping integral area ratio represents the photoluminescence spectrum of the host material of the emitting layer and the MLCT3 absorption of the guest material The proportion of the overlapping integrated area of the spectrum in the integrated area of the photoluminescence spectrum of the host material of the luminescent layer.
  • FIG. 5 is a curve showing the efficiency of the light-emitting device according to the exemplary embodiment of the present disclosure and the existing light-emitting devices as a function of current density. It can be seen that the efficiency roll-off of the light-emitting device according to the exemplary embodiment of the present disclosure is significantly lower at large current density.
  • red light device as an example to illustrate the advantages of light-emitting devices according to some exemplary embodiments of the present disclosure in reducing device turn-on voltage.
  • a hole injection layer Place the above-mentioned cleaned and dried ITO glass in a vacuum evaporation equipment, and evaporate in sequence to form a hole injection layer, a hole transport layer, an auxiliary light-emitting layer, a light-emitting layer, a hole blocking layer, an electron transport layer, and an electron injection layer. layer, cathode.
  • the material of the hole injection layer is TAPC:HAT-CN (4% mass ratio is doped into TAPC), and the evaporation thickness is 10nm; the material of the hole transport layer is TAPC, and the evaporation thickness is 100nm; the auxiliary light-emitting layer The material is F1, and the evaporation thickness is 80nm; the material of the light-emitting layer is P2:N1(4:6):Ir(piq) 3 (2% mass ratio is doped into P2:N1), and the evaporation thickness is 40nm;
  • the material of the hole blocking layer is BCP, and the evaporation thickness is 5nm; the material of the electron transport layer is TAZ:Liq (1:1), and the evaporation thickness is 30nm; the material of the electron injection layer is Liq, and the evaporation thickness is 1nm.
  • the auxiliary light-emitting layer material RF is F1
  • the P-type host material is P2.
  • the auxiliary light-emitting layer material RF is F2
  • the P-type host material is P4, and the others are the same as in Embodiment 6.
  • the auxiliary light-emitting layer material RF is F3
  • the P-type host material is P6, and the others are the same as in Embodiment 6.
  • the auxiliary light-emitting layer material RF is F4, the P-type host material is P7, and the others are the same as in Embodiment 6.
  • IVL current-voltage-brightness and lifetime
  • the performance of the device is based on the data of Comparative Example 2 as a reference, and its voltage, turn-on voltage and life data are set to 100%.
  • the auxiliary light-emitting layer material and the P-type host material in the light-emitting material selected for the device in the exemplary embodiment of the present disclosure can increase the turn-on voltage of the device to a certain extent, and thereby better match the performance of blue light devices and green light devices. Turn on the voltage for matching to improve crosstalk.

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

一种用于有机发光器件的发光材料、发光器件和显示装置,所述发光材料包括主体材料,所述主体材料包括第一化合物,所述第一化合物的结构通式为式I;其中,各个基团和取代基的含义与说明书中相同。

Description

用于有机发光器件的发光材料、发光器件和显示装置 技术领域
本公开实施例涉及但不限于显示技术领域,尤其涉及一种用于有机发光器件的发光材料、发光器件和显示装置。
背景技术
有机发光二极管(Organic Light Emitting Diode,简称OLED)为主动发光显示器件,具有自发光、发光亮度与效率高、分辨率高、色域与视角宽、响应速度快、低能耗以及可柔性化等特点,成为目前市场上炙手可热的主流显示产品。
当今量产的OLED器件,红光器件一般为磷光器件。红光主体(Host)材料为预混(Premix)材料,包括空穴型主体(P型)材料和电子型主体(N型)材料,P型主体材料和N型主体材料可以形成激基复合物。红光主体材料中的掺杂材料(又叫客体(Dopant)材料)为磷光掺杂材料。光致激发或者电致激发下,在主体材料上形成激子,通过能量传递,激子从主体材料传递到客体材料上,然后再通过材料辐射跃迁发光。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制本申请的保护范围。
本公开实施例提供一种用于有机发光器件的发光材料,包括主体材料,所述主体材料包括第一化合物,所述第一化合物的结构通式为:
Figure PCTCN2022088010-appb-000001
其中,L 1至L 3各自独立地包括单键、亚苯基、亚联苯基、亚萘基、亚芴基、亚二甲基芴基、C1至C10的亚烷基中的任意一种;
Ar 1至Ar 3各自独立地包括取代或未取代的苯基、取代或未取代的联苯基、取代或未取代的萘基、取代或未取代的蒽基、取代或未取代的菲基、取代或未取代的咔唑基、取代或未取代的二苯并呋喃基、取代或未取代的二苯并噻吩基、取代或未取代的9-氢芴基、取代或未取代的9,9-二甲基芴基、取代或未取代的9,9二苯基芴基、取代或未取代的螺芴基、取代或未取代的式II所示的基团、取代或未取代的式III所示的基团中的任意一种;这里,取代的苯基、取代的联苯基、取代的萘基、取代的蒽基、取代的菲基、取代的咔唑基、取代的二苯并呋喃基、取代的二苯并噻吩基、取代的9-氢芴基、取代的9,9-二甲基芴基、取代的9,9-二苯基芴基、取代的螺芴基、取代的式II所示的基团、取代的式III所示的基团是指被一个或多个如下基团所取代:苯基、联苯基、萘基、蒽基、菲基、咔唑基、二苯并呋喃基、二苯并噻吩基、9-氢芴基、9,9-二甲基芴基、9,9-二苯基芴基、螺芴基、C1至C10的烷基、式II所示的基团、式III所示的基团;
Figure PCTCN2022088010-appb-000002
X 1包括O、S、NR 1和CR 2R 3中的任意一种;
R 1至R 3各自独立的包括氢、C1至C10的烷基、苯基、联苯基、萘基、蒽基、菲基、咔唑基、二苯并呋喃基、二苯并噻吩基、芴基、二甲基芴基、二苯基芴基、螺芴基中的任意一种。
在示例性实施例中,L 1至L 3可以各自独立地包括单键、亚苯基中的任意一种;
Ar 1至Ar 3可以各自独立地包括苯基、苯取代的苯基、联苯取代的苯基、菲取代的苯基、咔唑取代的苯基、联苯基、菲基、咔唑基、二甲基芴基、式II所示的基团、式III所示的基团中的任意一种,并且在式II所示的基团、式III所示的基团中,X 1为O。
在示例性实施例中,所述第一化合物可以包括如下化合物中的任意一种:
Figure PCTCN2022088010-appb-000003
Figure PCTCN2022088010-appb-000004
在示例性实施例中,所述发光材料还可以包括客体材料,并且所述主体材料和所述客体材料可以满足:
0.1eV≤T1(H)-T1(D)≤0.5eV;
2.1eV≤T1(H)≤2.7eV;
2.0eV≤T1(D)≤2.2eV;
其中,T1(H)为所述主体材料的最低三重态能量;T1(D)为所述客体材料的最低三重态能量。
在示例性实施例中,所述主体材料还可以包括第二化合物,所述第一化合物和所述第二化合物可以满足:
2.2eV≤T1(P)≤2.8eV;
2.2eV≤T1(N)≤2.8eV;
其中,T1(P)为所述第一化合物的最低三重态能量;T1(N)为所述第二化合物的最低三重态能量。
在示例性实施例中,所述第一化合物、所述第二化合物和所述客体材料可以满足:
0.1eV≤|HOMO(P)-HOMO(D)|≤0.4eV;
0.1eV≤|LUMO(N)-LUMO(D)|≤0.5eV;
其中,HOMO(P)为所述第一化合物的最高占据分子轨道能级;LUMO(N)为所述第二化合物的最低未占分子轨道能级;HOMO(D)为所述客体 材料的最高占据分子轨道能级;LUMO(D)为所述客体材料的最低未占分子轨道能级。
在示例性实施例中,所述主体材料的光致发光光谱与所述客体材料的金属到配体的电荷转移吸收光谱的重叠积分面积可以不低于所述主体材料的光致发光光谱的光谱积分面积的20%。
在示例性实施例中,所述第二化合物的通式可以为:
Figure PCTCN2022088010-appb-000005
其中,L 4至L 6各自独立地包括单键、亚苯基、亚联苯基、亚萘基、亚芴基、亚二甲基芴基、C1至C10的亚烷基中的任意一种;
Ar 4至Ar 6各自独立地包括取代或未取代的苯基、取代或未取代的联苯基、取代或未取代的萘基、取代或未取代的蒽基、取代或未取代的菲基、取代或未取代的咔唑基、取代或未取代的二苯并呋喃基、取代或未取代的二苯并噻吩基、取代或未取代的9-氢芴基、取代或未取代的9,9-二甲基芴基、取代或未取代的9,9二苯基芴基、取代或未取代的螺芴基、取代或未取代的式V所示的基团、取代或未取代的式VI所示的基团中的任意一种;这里,取代的苯基、取代的联苯基、取代的萘基、取代的蒽基、取代的菲基、取代的咔唑基、取代的二苯并呋喃基、取代的二苯并噻吩基、取代的9-氢芴基、取代的9,9-二甲基芴基、取代的9,9-二苯基芴基、取代的螺芴基、取代的式V所示的基团、取代的式VI所示的基团是指被一个或多个如下基团所取代:苯基、联苯基、萘基、蒽基、菲基、咔唑基、二苯并呋喃基、二苯并噻吩基、9-氢芴基、9,9-二甲基芴基、9,9-二苯基芴基、螺芴基、C1至C10的烷基、式V所示的基团、式VI所示的基团;
Figure PCTCN2022088010-appb-000006
X 2和X 3中至少有一个为N,另一个为N和-CH中的任意一种;X 4为N;
X 5和X 6各自独立地包括N、C或CH中的任意一种,并且当X 5和X 6均为C时,X 5和X 6成环,成环后形成式V-1或式V-2所示的基团;
Figure PCTCN2022088010-appb-000007
X 7至X 9各自独立的包括O、S、NR 4和CR 5R 6中的任意一种;
R 4至R 6各自独立的包括氢、C1至C10的烷基、苯基、联苯基、萘基、蒽基、菲基、咔唑基、二苯并呋喃基、二苯并噻吩基、芴基、二甲基芴基、二苯基芴基、螺芴基中的任意一种。
在示例性实施例中,L 4至L 6可以各自独立地包括单键、亚萘基中的任意一种;
Ar 4至Ar 6各自独立地包括苯基、萘基、咔唑基、咔唑取代的萘基、
Figure PCTCN2022088010-appb-000008
中的任意一种。
在示例性实施例中,所述第二化合物可以包括如下化合物中的任意一种:
Figure PCTCN2022088010-appb-000009
在示例性实施例中,
所述第一化合物可以为P1,所述第二化合物可以为N1;或者,
所述第一化合物可以为P3,所述第二化合物可以为N2;或者,
所述第一化合物可以为P5,所述第二化合物可以为N3。
在示例性实施例中,所述第一化合物和所述第二化合物可以满足:
80℃≤Tg(P)≤140℃;
80℃≤Tg(N)≤140℃;
|Tg(P)-Tg(N)|≤20℃;
其中,Tg(P)为所述第一化合物的玻璃化转变温度,Tg(N)为所述第二化合物的玻璃化转变温度。
在示例性实施例中,在所述主体材料中,所述第一化合物与所述第二化合物的摩尔比可以为3:7至7:3。
本公开实施例还提供一种发光器件,包括发光层,所述发光层的材料包括如上所述的用于有机发光器件的发光材料。
在示例性实施例中,所述发光器件还可以包括设置在所述发光层一侧的辅助发光层,所述辅助发光层的材料与所述第一化合物可以满足:
1/100≤空穴迁移率(F)/空穴迁移率(P)≤1;
其中,空穴迁移率(F)为所述辅助发光层的材料的空穴迁移率,空穴迁移率(P)为所述第一化合物的空穴迁移率。
在示例性实施例中,所述辅助发光层的材料与所述第一化合物还可以满足:
0.1eV≤|HOMO(F)-HOMO(P)|≤0.5eV;
|HOMO(F)|>|HOMO(P)|;
其中,HOMO(F)为所述辅助发光层的材料的最高占据分子轨道能级。
在示例性实施例中,所述辅助发光层的材料与所述第一化合物还可以满足:
0eV≤T1(F)-T1(P)≤0.4eV;
其中,T1(F)为所述辅助发光层的材料的最低三重态能量。
在示例性实施例中,所述辅助发光层的材料的通式可以为:
Figure PCTCN2022088010-appb-000010
L 7至L 9各自独立地包括单键、亚苯基、亚联苯基、亚萘基、亚芴基、亚二甲基芴基、C1至C10的亚烷基中的任意一种;
Ar 7至Ar 9各自独立地包括取代或未取代的苯基、取代或未取代的联苯基、取代或未取代的萘基、取代或未取代的二苯并呋喃基、取代或未取代的二苯并噻吩基、取代或未取代的9-氢芴基、取代或未取代的9,9-二甲基芴基、取代或未取代的9,9二苯基芴基、取代或未取代的螺芴基、取代或未取代的金刚烷基、取代或未取代的式VIII所示的基团;这里,取代的苯基、取代的联苯基、取代的萘基、取代的二苯并呋喃基、取代的二苯并噻吩基、取代的9-氢芴基、取代的9,9-二甲基芴基、取代的9,9-二苯基芴基、取代的螺芴基、取代的金刚烷基、取代的式VIII所示的基团是指被一个或多个如下基团所取代:苯基、联苯基、萘基、二苯并呋喃基、二苯并噻吩基、9-氢芴基、9,9-二甲基芴基、9,9-二苯基芴基、螺芴基、C1至C10的烷基、金刚烷基、式VIII所示的基团;
Figure PCTCN2022088010-appb-000011
R 7至R 9各自独立的包括氢、C1至C10的烷基、苯基、联苯基、萘基、蒽基、菲基、咔唑基、二苯并呋喃基、二苯并噻吩基、芴基、二甲基芴基、二苯基芴基、螺芴基中的任意一种。
在示例性实施例中,L 7至L 9可以各自独立地包括单键、亚苯基、亚联苯基、亚二甲基芴基中的任意一种;
Ar 7至Ar 9各自独立地包括金刚烷取代的苯基、金刚烷取代的联苯基、金刚烷基、二苯并呋喃基、二甲基芴基、螺芴基、苯取代的二甲基芴基、式VIII所示的基团中的任意一种。
在示例性实施例中,所述辅助发光层的材料可以包括如下化合物中的任意一种:
Figure PCTCN2022088010-appb-000012
在示例性实施例中,
所述第一化合物可以为P2,所述辅助发光层的材料可以为F1;或者
所述第一化合物可以为P4,所述辅助发光层的材料可以为F2;或者
所述第一化合物可以为P6,所述辅助发光层的材料可以为F3。
本公开实施例还提供一种显示装置,包括如上所述的发光器件。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图说明
附图用来提供对本公开技术方案的理解,并且构成说明书的一部分,与本公开的实施例一起用于解释本公开的技术方案,并不构成对本公开技术方 案的限制。
图1为最高占据分子轨道能级陷阱和最低未占分子轨道能级陷阱的形成示意图;
图2为本公开示例性实施例的器件通过调节空穴迁移率和能级搭配提高器件开启电压的示意图;
图3为本公开示例性实施例的发光器件的结构示意图;
图4为本公开示例性实施例和对比例的器件的发光层主体材料(RH)的光致发光光谱(PL)与客体材料的MLCT3吸收光谱;
图5为本公开示例性实施例的发光器件与目前的发光器件的效率随电流密度的变化曲线。
附图中的标记符号的含义为:
10-最高占据分子轨道能级陷阱;20-最低未占分子轨道能级陷阱;100-阳极;200-空穴注入层;300-空穴传输层;400-辅助发光层;500-发光层;600-空穴阻挡层;700-电子传输层;800-电子注入层;900-阴极。
具体实施方式
本文中的实施方式可以以多个不同形式来实施。所属技术领域的普通技术人员可以很容易地理解一个事实,就是实现方式和内容可以在不脱离本公开的宗旨及其范围的条件下被变换为各种各样的形式。因此,本公开不应该被解释为仅限定在下面的实施方式所记载的内容中。在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互任意组合。
在附图中,有时为了明确起见,可能夸大表示了构成要素的大小、层的厚度或区域。因此,本公开的任意一个实现方式并不一定限定于图中所示尺寸,附图中部件的形状和大小不反映真实比例。此外,附图示意性地示出了理想的例子,本公开的任意一个实现方式不局限于附图所示的形状或数值等。
在本公开的描述中,“第一”、“第二”等序数词是为了避免构成要素的混同而设置,而不是为了在数量方面上进行限定的。
在本说明书中,“膜”和“层”可以相互调换。例如,有时可以将“发光层” 换成为“发光膜”。
本公开实施例提供一种用于有机发光器件的发光材料,所述发光材料包括主体材料,所述主体材料包括第一化合物,所述第一化合物的结构通式为:
Figure PCTCN2022088010-appb-000013
其中,L 1至L 3各自独立地包括单键、亚苯基、亚联苯基、亚萘基、亚芴基、亚二甲基芴基、C1至C10的亚烷基中的任意一种;
Ar 1至Ar 3各自独立地包括取代或未取代的苯基、取代或未取代的联苯基、取代或未取代的萘基、取代或未取代的蒽基、取代或未取代的菲基、取代或未取代的咔唑基、取代或未取代的二苯并呋喃基、取代或未取代的二苯并噻吩基、取代或未取代的9-氢芴基、取代或未取代的9,9-二甲基芴基、取代或未取代的9,9二苯基芴基、取代或未取代的螺芴基、取代或未取代的式II所示的基团、取代或未取代的式III所示的基团中的任意一种;这里,取代的苯基、取代的联苯基、取代的萘基、取代的蒽基、取代的菲基、取代的咔唑基、取代的二苯并呋喃基、取代的二苯并噻吩基、取代的9-氢芴基、取代的9,9-二甲基芴基、取代的9,9-二苯基芴基、取代的螺芴基、取代的式II所示的基团、取代的式III所示的基团是指被一个或多个如下基团所取代:苯基、联苯基、萘基、蒽基、菲基、咔唑基、二苯并呋喃基、二苯并噻吩基、9-氢芴基、9,9-二甲基芴基、9,9-二苯基芴基、螺芴基、C1至C10的烷基、式II所示的基团、式III所示的基团;
Figure PCTCN2022088010-appb-000014
X 1包括O、S、NR 1和CR 2R 3中的任意一种;
R 1至R 3各自独立的包括氢、C1至C10的烷基、苯基、联苯基、萘基、蒽基、菲基、咔唑基、二苯并呋喃基、二苯并噻吩基、芴基、二甲基芴基、二苯基芴基、螺芴基中的任意一种。
在示例性实施例中,L 1至L 3可以各自独立地包括单键、亚苯基中的任意一种;
Ar 1至Ar 3可以各自独立地包括苯基、苯取代的苯基、联苯取代的苯基、菲取代的苯基、咔唑取代的苯基、联苯基、菲基、咔唑基、二甲基芴基、式II所示的基团、式III所示的基团中的任意一种,并且在式II所示的基团、式III所示的基团中,X 1为O。
在示例性实施例中,所述第一化合物可以包括如下化合物中的任意一种:
Figure PCTCN2022088010-appb-000015
Figure PCTCN2022088010-appb-000016
在示例性实施例中,所述发光材料还可以包括客体材料,并且所述主体材料和所述客体材料可以满足:
0.1eV≤T1(H)-T1(D)≤0.5eV;
2.1eV≤T1(H)≤2.7eV;
2.0eV≤T1(D)≤2.2eV;
其中,T1(H)为所述主体材料的最低三重态能量;T1(D)为所述客体材料的最低三重态能量。
以往认为红光主体材料(RH)的T1比红光客体材料(RD)的T1越高越好,这样可以防止客体材料上的三线态激子逆向传递到主体材料上。但是我们发现红光主体材料(RH)的T1和红光客体材料(RD)的T1差值过大时,会导致激子从红光主体材料(RH)向红光客体材料(RD)传递时的三 线态能量损失过大,进而导致高电流密度下效率滚降(roll off)过大。当所述主体材料和所述客体材料满足0.1eV≤T1(H)-T1(D)≤0.5eV、2.1eV≤T1(H)≤2.7eV、2.0eV≤T1(D)≤2.2eV时,不但可以防止客体材料上的三线态激子逆向传递到主体材料上,而且可以避免激子从红光主体材料(RH)向红光客体材料(RD)传递时的三线态能量损失过大,降低高电流密度下的效率滚降。
在示例性实施例中,所述主体材料还可以包括第二化合物,所述第一化合物和所述第二化合物可以满足:
2.2eV≤T1(P)≤2.8eV;
2.2eV≤T1(N)≤2.8eV;
其中,T1(P)为所述第一化合物的最低三重态能量;T1(N)为所述第二化合物的最低三重态能量。
当所述第一化合物和所述第二化合物满足2.2eV≤T1(P)≤2.8eV、2.2eV≤T1(N)≤2.8eV时,可以使得2.1eV≤T1(H)≤2.7eV。
在示例性实施例中,所述第一化合物、所述第二化合物和所述客体材料可以满足:
0.1eV≤|HOMO(P)-HOMO(D)|≤0.4eV;
0.1eV≤|LUMO(N)-LUMO(D)|≤0.5eV;
其中,HOMO(P)为所述第一化合物的最高占据分子轨道能级;LUMO(N)为所述第二化合物的最低未占分子轨道能级;HOMO(D)为所述客体材料的最高占据分子轨道能级;LUMO(D)为所述客体材料的最低未占分子轨道能级。
掺杂到红光主体材料(RH)中的红光客体材料(RD)会与P型主体材料形成最高占据分子轨道能级陷阱(Highest Occupied Molecular Orbit trap,HOMO trap)10,与N型主体材料形成最低未占分子轨道能级陷阱(Lowest Unoccupied Molecular Orbital trap,LUMO trap)20。图1为最高占据分子轨道能级陷阱和最低未占分子轨道能级陷阱的形成示意图。所以红光客体材料(RD)捕获电荷后会形成极化子,而且红光客体材料(RD)上还有从红光 主体材料(RH)上传递过来的三线态激子,因此在大电流密度下容易产生三线态激子-极化子湮灭(Triplet Exciton-Polaron Quenching,TPQ),导致效率滚降。当所述第一化合物、所述第二化合物和所述客体材料满足0.1eV≤|HOMO(P)-HOMO(D)|≤0.4eV、0.1eV≤|LUMO(N)-LUMO(D)|≤0.5eV时,可以降低客体材料对于空穴和电子的陷阱效应,进而降低大电流密度下的三线态激子-极化子湮灭,降低效率滚降。
在示例性实施例中,所述主体材料的光致发光光谱与所述客体材料的金属到配体的电荷转移(Metal-to-Ligand Charge Transfer,MLCT3)吸收光谱的重叠积分面积可以不低于所述主体材料的光致发光光谱的光谱积分面积的20%。例如,所述主体材料的光致发光光谱与所述客体材料的MLCT3吸收光谱的重叠积分面积可以约为所述主体材料的光致发光光谱的光谱积分面积的20%、25%、30%、35%、40%、45%、50%、55%、60%。
当所述主体材料的光致发光光谱与所述客体材料的MLCT3吸收光谱的重叠积分面积可以不低于所述主体材料的光致发光光谱的光谱积分面积的20%时,可以实现主体材料(例如RH)向客体材料(例如RD)的良好能量传递。
在示例性实施例中,所述客体材料可以包括铱金属配合物类、铂金属配合物类客体发光材料中的任意一种或多种,例如,可以包括三[1-苯基异喹啉-C2,N]铱(III)(Ir(piq) 3)、Ir(piq) 2(acac)、(MPEP)2lr(acac)、(PEQ)2Ir(acac)、(CzPPiQ)Pt(acac)、(CzPPiQ)Pt(dpm)和(DPQ)Pt(acac)中的任意一种或多种。
在示例性实施例中,所述发光材料中的客体材料的掺杂比例可以为1%至20%,例如可以为1%、2%、5%、8%、10%、12%、15%、18%、20%。在该掺杂比例范围内,一方面发光材料中的主体材料可将激子能量有效转移给发光材料中的客体材料来激发客体材料发光,另一方面发光材料中的主体材料对发光材料中的客体材料进行了“稀释”,有效改善了客体材料分子间相互碰撞、以及能量间相互碰撞引起的荧光淬灭,提高了发光效率和器件寿命。在示例性实施例中,掺杂比例是指客体材料的质量与发光材料的质量之比,即质量百分比。
在示例性实施例中,所述第二化合物的通式可以为:
Figure PCTCN2022088010-appb-000017
其中,L 4至L 6各自独立地包括单键、亚苯基、亚联苯基、亚萘基、亚芴基、亚二甲基芴基、C1至C10的亚烷基中的任意一种;
Ar 4至Ar 6各自独立地包括取代或未取代的苯基、取代或未取代的联苯基、取代或未取代的萘基、取代或未取代的蒽基、取代或未取代的菲基、取代或未取代的咔唑基、取代或未取代的二苯并呋喃基、取代或未取代的二苯并噻吩基、取代或未取代的9-氢芴基、取代或未取代的9,9-二甲基芴基、取代或未取代的9,9二苯基芴基、取代或未取代的螺芴基、取代或未取代的式V所示的基团、取代或未取代的式VI所示的基团中的任意一种;这里,取代的苯基、取代的联苯基、取代的萘基、取代的蒽基、取代的菲基、取代的咔唑基、取代的二苯并呋喃基、取代的二苯并噻吩基、取代的9-氢芴基、取代的9,9-二甲基芴基、取代的9,9-二苯基芴基、取代的螺芴基、取代的式V所示的基团、取代的式VI所示的基团是指被一个或多个如下基团所取代:苯基、联苯基、萘基、蒽基、菲基、咔唑基、二苯并呋喃基、二苯并噻吩基、9-氢芴基、9,9-二甲基芴基、9,9-二苯基芴基、螺芴基、C1至C10的烷基、式V所示的基团、式VI所示的基团;
Figure PCTCN2022088010-appb-000018
X 2和X 3中至少有一个为N,另一个为N和-CH中的任意一种;X 4为N;
X 5和X 6各自独立地包括N、C或CH中的任意一种,并且当X 5和X 6均为C时,X 5和X 6成环,成环后形成式V-1或式V-2所示的基团;
Figure PCTCN2022088010-appb-000019
X 7至X 9各自独立的包括O、S、NR 4和CR 5R 6中的任意一种;
R 4至R 6各自独立的包括氢、C1至C10的烷基、苯基、联苯基、萘基、蒽基、菲基、咔唑基、二苯并呋喃基、二苯并噻吩基、芴基、二甲基芴基、二苯基芴基、螺芴基中的任意一种。
在示例性实施例中,L 4至L 6可以各自独立地包括单键、亚萘基中的任意一种;
Ar 4至Ar 6可以各自独立地包括苯基、萘基、咔唑基、咔唑取代的萘基、
Figure PCTCN2022088010-appb-000020
中的任意一种。
在示例性实施例中,所述第二化合物可以包括如下化合物中的任意一种:
Figure PCTCN2022088010-appb-000021
在示例性实施例中,
所述第一化合物可以为P1,所述第二化合物可以为N1;或者,
所述第一化合物可以为P3,所述第二化合物可以为N2;或者,
所述第一化合物可以为P5,所述第二化合物可以为N3。
当所述第一化合物和所述第二化合物选择上述组合时,所述第一化合物和所述第二化合物所述可以同时满足:2.1eV≤T1(H)≤2.7eV;2.2eV≤T1(P)≤2.8eV;2.2eV≤T1(N)≤2.8eV;有利于降低高电流密度下的效率滚降。
在示例性实施例中,所述第一化合物和所述第二化合物可以满足:
80℃≤Tg(P)≤140℃;
80℃≤Tg(N)≤140℃;
|Tg(P)-Tg(N)|≤20℃;
其中,Tg(P)为所述第一化合物的玻璃化转变温度,Tg(N)为所述第二化合物的玻璃化转变温度。
当所述第一化合物和所述第二化合物满足80℃≤Tg(P)≤140℃、80℃≤Tg(N)≤140℃、|Tg(P)-Tg(N)|≤20℃时,一方面可以保证所述第一化合物和所述第二化合物具有良好的热稳定性,从而保证在长时间蒸镀所述第一化合物和所述第二化合物过程中它们不容易发生裂解;另一方面,在蒸镀所述第一化合物和所述第二化合物时通常是将它们共混在一起,使用同一个加热源进行蒸镀的,当所述第一化合物和所述第二化合物满足80℃≤Tg(P)≤140℃、80℃≤Tg(N)≤140℃、|Tg(P)-Tg(N)|≤20℃时,可以保证长时间蒸镀过程中两种材料的比例保持不变。
在示例性实施例中,在所述主体材料中,所述第一化合物与所述第二化合物的摩尔比可以为3:7至7:3,例如,所述第一化合物与所述第二化合物的摩尔比可以为3:7、3:8、3:9、3:10、3:20、3:30、3:3、4:3、5:3、6:3、7:3。
在示例性实施例中,所述第一化合物可以作为所述主体材料中的P型主体材料,所述第二化合物可以作为所述主体材料中的N型主体材料。
本公开实施例还提供一种发光器件,所述发光器件包括发光层,所述发光层的材料可以包括如上所述的用于有机发光器件的发光材料。
当采用本公开实施例提供的用于有机发光器件的发光材料制备发光器件的发光层时,可以明显降低发光器件在大电流密度下的效率滚降。
在示例性实施例中,所述发光器件还可以包括设置在所述发光层一侧的辅助发光层,所述辅助发光层的材料与所述第一化合物可以满足:
1/100≤空穴迁移率(F)/空穴迁移率(P)≤1;
其中,空穴迁移率(F)为所述辅助发光层的材料的空穴迁移率,空穴迁移率(P)为所述第一化合物的空穴迁移率。
目前器件的空穴注入层一般是P型掺杂结构,P型掺杂后会降低空穴注入层的横向电阻,导致空穴横向漂移。又由于红光相比绿光以及蓝光的能量小,且红光器件的开启电压相比绿光器件和蓝光器件的开启电压小,因此横 向漂移的电荷很容易导致不期望点亮的红色像素被点亮,导致串扰现象。
目前量产的OLED器件中,红色辅助发光层的厚度是绿色辅助发光层以及蓝色辅助发光层的2至8倍左右。所以红色辅助发光层的迁移率和红光器件的开启电压关联很大。本公开示例性实施例的发光器件使所述辅助发光层的材料与所述第一化合物满足1/100≤空穴迁移率(F)/空穴迁移率(P)≤1,有利于降低空穴向发光层的注入,延缓空穴和电子的复合,有利于器件开启电压提高。
在示例性实施例中,所述辅助发光层的材料与所述第一化合物还可以满足:
0.1eV≤|HOMO(F)-HOMO(P)|≤0.5eV;
|HOMO(F)|>|HOMO(P)|;
其中,HOMO(F)为所述辅助发光层的材料的最高占据分子轨道能级。
红色辅助发光层材料和红色P型主体材料的最高占据分子轨道能级能隙(HOMO gap)也会影响空穴从红色辅助发光层材料向发光层的注入。当所述辅助发光层的材料与所述第一化合物满足0.1eV≤|HOMO(F)-HOMO(P)|≤0.5eV、|HOMO(F)|>|HOMO(P)|时,有利于降低空穴向发光层的注入,延缓空穴和电子的复合,有利于器件开启电压提高。
图2为本公开示例性实施例的器件通过调节空穴迁移率和能级搭配提高器件开启电压的示意图,上图表示目前的红光器件,下图表示本公开示例性实施例的红光器件,RF表示辅助发光层材料,RH-P表示发光层的P型主体材料,RH-N表示发光层的N型主体材料,RD表示发光层的客体材料。
在示例性实施例中,所述辅助发光层的材料与所述第一化合物还可以满足:
0eV≤T1(F)-T1(P)≤0.4eV;
其中,T1(F)为所述辅助发光层的材料的最低三重态能量。
当所述辅助发光层的材料与所述第一化合物满足0eV≤T1(F)-T1(P)≤0.4eV时,可以防止三线态激子外泄到辅助发光层,充分发挥所述辅助发光层的阻挡三线态激子作用。
在示例性实施例中,所述辅助发光层的材料的通式可以为:
Figure PCTCN2022088010-appb-000022
L 7至L 9各自独立地包括单键、亚苯基、亚联苯基、亚萘基、亚芴基、亚二甲基芴基、C1至C10的亚烷基中的任意一种;
Ar 7至Ar 9各自独立地包括取代或未取代的苯基、取代或未取代的联苯基、取代或未取代的萘基、取代或未取代的二苯并呋喃基、取代或未取代的二苯并噻吩基、取代或未取代的9-氢芴基、取代或未取代的9,9-二甲基芴基、取代或未取代的9,9二苯基芴基、取代或未取代的螺芴基、取代或未取代的金刚烷基、取代或未取代的式VIII所示的基团;这里,取代的苯基、取代的联苯基、取代的萘基、取代的二苯并呋喃基、取代的二苯并噻吩基、取代的9-氢芴基、取代的9,9-二甲基芴基、取代的9,9-二苯基芴基、取代的螺芴基、取代的金刚烷基、取代的式VIII所示的基团是指被一个或多个如下基团所取代:苯基、联苯基、萘基、二苯并呋喃基、二苯并噻吩基、9-氢芴基、9,9-二甲基芴基、9,9-二苯基芴基、螺芴基、C1至C10的烷基、金刚烷基、式VIII所示的基团;
Figure PCTCN2022088010-appb-000023
R 7至R 9各自独立的包括氢、C1至C10的烷基、苯基、联苯基、萘基、蒽基、菲基、咔唑基、二苯并呋喃基、二苯并噻吩基、芴基、二甲基芴基、二苯基芴基、螺芴基中的任意一种。
在示例性实施例中,L 7至L 9可以各自独立地包括单键、亚苯基、亚联苯基、亚二甲基芴基中的任意一种;
Ar 7至Ar 9可以各自独立地包括金刚烷取代的苯基、金刚烷取代的联苯基、金刚烷基、二苯并呋喃基、二甲基芴基、螺芴基、苯取代的二甲基芴基、式VIII所示的基团中的任意一种。
在示例性实施例中,所述辅助发光层的材料可以包括如下化合物中的任意一种:
Figure PCTCN2022088010-appb-000024
在示例性实施例中,
所述第一化合物可以为P2,所述辅助发光层的材料可以为F1;或者
所述第一化合物可以为P4,所述辅助发光层的材料可以为F2;或者
所述第一化合物可以为P6,所述辅助发光层的材料可以为F3。
当所述第一化合物和所述辅助发光层的材料选择上述组合时,所述辅助发光层的材料与所述第一化合物可以同时满足:1/100≤空穴迁移率(F)/空穴迁移率(P)≤1、0.1eV≤|HOMO(F)-HOMO(P)|≤0.5eV、|HOMO(F)|>|HOMO(P)|,因此可以降低空穴向发光层的注入,延缓空穴和电子的复合,提高器件的开启电压。
在示例性实施例中,所述发光器件可以包括阳极、阴极和设置在所述阳极和所述阴极之间的有机发光层,所述有机发光层包括发光层(Emitting Layer,EML)。
在示例性实施例中,所述有机发光层还可以包括如下任意一层或多层:空穴注入层(Hole Injection Layer,HIL)、空穴传输层(Hole Transport Layer,HTL)、电子阻挡层(Electron Block Layer,EBL)、辅助发光层、发光层(Emitting Layer,EML)、空穴阻挡层(Hole Block Layer,HBL)、电子传输层(Electron Transport Layer,ETL)、电子注入层(Electron Injection Layer,EIL)。在示例性实施例中,所有子像素的空穴注入层、空穴传输层、电子阻挡层、空穴阻挡层、电子传输层和电子注入层中的一层或多层可以是连接在一起的共通层,相邻子像素的发光层可以有少量的交叠,或者可以是隔离的。
图3为本公开示例性实施例的发光器件的结构示意图。如图3所示,所述电致发光器件可以包括:阳极100、空穴注入层200、空穴传输层300、辅助发光层400、发光层500、空穴阻挡层600、电子传输层700、电子注入层800和阴极900。所述空穴注入层200设置在所述阳极100一侧的表面上,所述空穴传输层300设置在所述空穴注入层200的远离所述阳极100一侧的表面上,所述辅助发光层400设置在所述空穴传输层300的远离所述阳极100一侧的表面上,所述发光层500设置在所述辅助发光层400的远离所述阳极100一侧的表面上,所述空穴阻挡层600设置在所述发光层500的远离所述阳极100一侧的表面上,所述电子传输层700设置在所述空穴阻挡层600的远离所述阳极100一侧的表面上,所述电子注入层800设置在所述电子传输层700的远离所述阳极100一侧的表面上,所述阴极900设置在所述电子注入层800的远离所述阳极100一侧的表面上。
在示例性实施例中,可以采用如下制备方法制备所述有机发光层。首先,采用开放式掩膜版(Open Mask,简称OPM)的蒸镀工艺或者采用喷墨打印工艺依次形成空穴注入层、空穴传输层和电子阻挡层,在显示基板上形成空穴注入层、空穴传输层和电子阻挡层的共通层。随后,采用精细金属掩模版(Fine Metal Mask,简称FMM)的蒸镀工艺或者采用喷墨打印工艺,在相应子像素中分别形成红色发光层、绿色发光层和蓝色发光层。相邻子像素的发光层可以有少量的交叠(例如,交叠部分占各自发光层图案的面积小于10%),或者可以是隔离的。随后,采用开放式掩膜版的蒸镀工艺或者采用喷墨打印工艺依次形成空穴阻挡层、电子传输层和电子注入层,在显示基板上形成空穴阻挡层、电子传输层和电子注入层的共通层。
在示例性实施例中,所述有机发光层还可以包括微腔调节层,使得阴极和阳极之间有机发光层的厚度满足微腔长度的设计。在示例性实施例中,可以采用空穴传输层、电子阻挡层、空穴阻挡层或电子传输层作为微腔调节层,本公开在此不做限定。
在示例性实施例中,可以通过多源蒸镀工艺共同蒸镀发光层的主体材料和客体材料,使主体材料和客体材料均匀分散在发光层中,可以在蒸镀过程中通过控制客体材料的蒸镀速率来调控掺杂比例,或者通过控制主体材料和客体材料的蒸镀速率比来调控掺杂比例。在示例性实施例中,发光层的厚度可以约为10nm至50nm。
在示例性实施例中,空穴注入层可以采用无机的氧化物,如钼氧化物、钛氧化物、钒氧化物、铼氧化物、钌氧化物、铬氧化物、锆氧化物、铪氧化物、钽氧化物、银氧化物、钨氧化物或锰氧化物,或者可以采用强吸电子体系的p型掺杂剂和空穴传输材料的掺杂物,例如,4,4’-环己基二[N,N-二(4-甲基苯基)苯胺](TAPC)与2,3,6,7,10,11-六氰基-1,4,5,8,9,12-六氮杂苯并菲(HAT-CN)的掺杂物。在示例性实施例中,空穴注入层的厚度可以约为5nm至20nm。
在示例性实施例中,在示例性实施例中,空穴传输层可以采用空穴迁移率较高的材料,如芳胺类化合物,其取代基团可以是咔唑、甲基芴、螺芴、二苯并噻吩或呋喃等,例如TAPC等。在示例性实施例中,空穴传输层的厚 度可以约为40nm至150nm。
在示例性实施例中,空穴阻挡层和电子传输层可以采用芳族杂环化合物,例如苯并咪唑衍生物、咪唑并吡啶衍生物、苯并咪唑并菲啶衍生物等咪唑衍生物;嘧啶衍生物、三嗪衍生物等嗪衍生物;喹啉衍生物、异喹啉衍生物、菲咯啉衍生物等包含含氮六元环结构的化合物(也包括在杂环上具有氧化膦系的取代基的化合物)等。再例如,所述空穴阻挡层材料和所述电子传输层材料可以包括2-(4-联苯基)-5-(4-叔丁基苯基)-1,3,4-噁二唑(PBD)、1,3-双[5-(对叔丁基苯基)-1,3,4-噁二唑-2-基]苯(OXD-7)、3-(联苯-4-基)-5-(4-叔丁基苯基)-4-苯基-4H-1,2,4-三唑(TAZ)、3-(4-叔丁基苯基)-4-(4-乙基苯基)-5-(4-联苯基)-1,2,4-三唑(p-EtTAZ)、红菲咯啉(BPhen)、2,9-二甲基-4,7-二苯基-1,10-菲啰啉(BCP)、4,4’-双(5-甲基苯并噁唑-2-基)芪(BzOs)中的任意一种或多种。另外,所述电子传输层的材料还可以包括8-羟基喹啉-锂(Liq)等。
在示例性实施例中,空穴阻挡层的厚度可以约为5nm至15nm,电子传输层的厚度可以约为20nm至50nm。
在示例性实施例中,电子注入层可以采用碱金属或者金属,例如氟化锂(LiF)、镱(Yb)、镁(Mg)或钙(Ca)等材料,或者这些碱金属或者金属的化合物等。在示例性实施例中,电子注入层的厚度可以约为0.5nm至2nm。
在示例性实施例中,阴极可以采用镁(Mg)、银(Ag)、铝(Al)、铜(Cu)和锂(Li)中的任意一种或多种,或采用上述金属中任意一种或多种制成的合金。
在示例性实施例中,所述发光器件可以为红光器件,例如红光OLED器件。
本公开实施例还提供了一种显示装置,所述显示装置可以包括如上所述的发光器件。
所述显示装置可以为手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪、车载显示器、智能手表、智能手环等任何具有显示功能的产品或部件。
下面以红光器件为例说明本公开的一些示例性实施例的发光器件在降低效率降滚方面优势。
所涉及材料的物理性能如表1所示。
表1
Figure PCTCN2022088010-appb-000025
实施例1
将带有ITO(氧化铟锡,Indium Tin Oxide)的玻璃板在清洗剂中超声处理,再用去离子水冲洗,在丙酮-乙醇混合溶剂中超声除油,在洁净环境中在100℃下烘干至完全除去水分;
将上述清洗并烘干后的ITO玻璃置于真空蒸镀设备中,依次蒸镀形成空穴注入层、空穴传输层、辅助发光层、发光层、空穴阻挡层、电子传输层、电子注入层、阴极。
其中,空穴注入层的材料为TAPC:HAT-CN(4%质量比掺杂到TAPC中),蒸镀厚度为10nm;空穴传输层的材料为TAPC,蒸镀厚度为100nm;辅助发 光层的材料为NPB,蒸镀厚度为80nm;发光层的材料为P1:N1(4:6):Ir(piq) 3(2%质量比掺杂到P1:N1中),蒸镀厚度为40nm;空穴阻挡层的材料为BCP,蒸镀厚度为5nm;电子传输层的材料为TAZ:Liq(1:1),蒸镀厚度为30nm;电子注入层的材料为Liq,蒸镀厚度为1nm。
其中,发光层P型主体材料为P1,N型主体材料为N1。
Figure PCTCN2022088010-appb-000026
实施例2
发光层P型主体材料为P3,N型主体材料为N2,其他与实施例1相同。
Figure PCTCN2022088010-appb-000027
实施例3
发光层P型主体材料为P5,N型主体材料为N3,其他与实施例1相同。
Figure PCTCN2022088010-appb-000028
实施例4
发光层P型主体材料为P1,N型主体材料为N1,P型主体材料和N型主体材料的摩尔比为5:5,其他与实施例1相同。
实施例5
发光层P型主体材料为P1,N型主体材料为N1,P型主体材料和N型主体材料的摩尔比为6:4,其他与实施例1相同。
对比例1
发光层P型主体材料为P7,N型主体材料为N4,其他与实施例1相同。
Figure PCTCN2022088010-appb-000029
图4为本公开示例性实施例和对比例的器件的发光层主体材料的光致发光光谱(RH-PL)与客体材料的MLCT3吸收光谱(RD-MLCT3)。从图4和表2可以看出,本公开示例实施例器件的发光层主体材料的光致发光光谱与客体材料的MLCT3吸收光谱的重叠积分面积不低于主体材料的光致发光光谱积分面积的20%。
采用IVL(电流-电压-亮度和寿命)设备测试上述实施例和对比例的器件的性能;其中,电压(V)、效率、色坐标(CIE x、CIE y)是在室温、15mA/cm 2 条件下测试的;效率滚降是比较的0.01mA/cm 2和15mA/cm 2效率下降百分比;器件寿命是在25℃、0.6mA条件下测试的。
测试结果如表2所示。
表2
Figure PCTCN2022088010-appb-000030
注:器件的性能是以对比例1的数据作为参比,设定其电压、效率和寿命数据为100%;重叠积分面积占比表示发光层主体材料的光致发光光谱与客体材料的MLCT3吸收光谱的重叠积分面积在发光层主体材料的光致发光光谱积分面积中的占比。
可以看出,本公开示例性实施例的器件的寿命和效率滚降明显低于对比例的器件。
图5为本公开示例性实施例的发光器件与目前已有发光器件的效率随电流密度的变化曲线。可以看出,本公开示例性实施例的发光器件在大电流密度下的效率滚降明显更低。
下面以红光器件为例说明本公开的一些示例性实施例的发光器件在降低器件开启电压方面优势。
所涉及材料的物理性能如表3所示。
表3
Figure PCTCN2022088010-appb-000031
Figure PCTCN2022088010-appb-000032
实施例6
将带有ITO的玻璃板在清洗剂中超声处理,再用去离子水冲洗,在丙酮-乙醇混合溶剂中超声除油,在洁净环境中在100℃下烘干至完全除去水分;
将上述清洗并烘干后的ITO玻璃置于真空蒸镀设备中,依次蒸镀形成空穴注入层、空穴传输层、辅助发光层、发光层、空穴阻挡层、电子传输层、电子注入层、阴极。
其中,空穴注入层的材料为TAPC:HAT-CN(4%质量比掺杂到TAPC中),蒸镀厚度为10nm;空穴传输层的材料为TAPC,蒸镀厚度为100nm;辅助发光层的材料为F1,蒸镀厚度为80nm;发光层的材料为P2:N1(4:6):Ir(piq) 3(2%质量比掺杂到P2:N1中),蒸镀厚度为40nm;空穴阻挡层的材料为BCP,蒸镀厚度为5nm;电子传输层的材料为TAZ:Liq(1:1),蒸镀厚度为30nm;电子注入层的材料为Liq,蒸镀厚度为1nm。
其中,辅助发光层材料RF为F1,P型主体材料为P2。
Figure PCTCN2022088010-appb-000033
实施例7
辅助发光层材料RF为F2,P型主体材料为P4,其他与实施例6相同。
Figure PCTCN2022088010-appb-000034
实施例8
辅助发光层材料RF为F3,P型主体材料为P6,其他与实施例6相同。
Figure PCTCN2022088010-appb-000035
对比例2
辅助发光层材料RF为F4,P型主体材料为P7,其他与实施例6相同。
Figure PCTCN2022088010-appb-000036
采用IVL(电流-电压-亮度和寿命)设备测试上述实施例和对比例的器件的性能;其中,电压(V)、开启电压、色坐标(CIE x、CIE y)是在室温、15mA/cm 2条件下测试的;器件寿命是在25℃、0.6mA条件下测试的。
测试结果如表4所示。
表4
Figure PCTCN2022088010-appb-000037
注:器件的性能是以对比例2的数据作为参比,设定其电压、开启电压和寿命数据为100%。
可以看出,本公开示例性实施例的器件选择的辅助发光层材料和发光材料中的P型主体材料,可以一定程度上提高器件的开启电压,进而更好得与蓝光器件和绿光器件的开启电压进行匹配,改善串扰现象。
虽然本公开所揭露的实施方式如上,但所述的内容仅为便于理解本公开而采用的实施方式,并非用以限定本公开。任何所属领域内的技术人员,在不脱离本公开所揭露的精神和范围的前提下,可以在实施的形式及细节上进行任何的修改与变化,但本申请的保护范围,仍须以所附的权利要求书所界定的范围为准。

Claims (22)

  1. 一种用于有机发光器件的发光材料,包括主体材料,所述主体材料包括第一化合物,所述第一化合物的结构通式为:
    Figure PCTCN2022088010-appb-100001
    其中,L 1至L 3各自独立地包括单键、亚苯基、亚联苯基、亚萘基、亚芴基、亚二甲基芴基、C1至C10的亚烷基中的任意一种;
    Ar 1至Ar 3各自独立地包括取代或未取代的苯基、取代或未取代的联苯基、取代或未取代的萘基、取代或未取代的蒽基、取代或未取代的菲基、取代或未取代的咔唑基、取代或未取代的二苯并呋喃基、取代或未取代的二苯并噻吩基、取代或未取代的9-氢芴基、取代或未取代的9,9-二甲基芴基、取代或未取代的9,9二苯基芴基、取代或未取代的螺芴基、取代或未取代的式II所示的基团、取代或未取代的式III所示的基团中的任意一种;这里,取代的苯基、取代的联苯基、取代的萘基、取代的蒽基、取代的菲基、取代的咔唑基、取代的二苯并呋喃基、取代的二苯并噻吩基、取代的9-氢芴基、取代的9,9-二甲基芴基、取代的9,9-二苯基芴基、取代的螺芴基、取代的式II所示的基团、取代的式III所示的基团是指被一个或多个如下基团所取代:苯基、联苯基、萘基、蒽基、菲基、咔唑基、二苯并呋喃基、二苯并噻吩基、9-氢芴基、9,9-二甲基芴基、9,9-二苯基芴基、螺芴基、C1至C10的烷基、式II所示的基团、式III所示的基团;
    Figure PCTCN2022088010-appb-100002
    X 1包括O、S、NR 1和CR 2R 3中的任意一种;
    R 1至R 3各自独立的包括氢、C1至C10的烷基、苯基、联苯基、萘基、蒽基、菲基、咔唑基、二苯并呋喃基、二苯并噻吩基、芴基、二甲基芴基、二苯基芴基、螺芴基中的任意一种。
  2. 根据权利要求1所述的用于有机发光器件的发光材料,其中,L 1至L 3各自独立地包括单键、亚苯基中的任意一种;
    Ar 1至Ar 3各自独立地包括苯基、苯取代的苯基、联苯取代的苯基、菲取代的苯基、咔唑取代的苯基、联苯基、菲基、咔唑基、二甲基芴基、式II所示的基团、式III所示的基团中的任意一种,并且在式II所示的基团、式III所示的基团中,X 1为O。
  3. 根据权利要求1所述的用于有机发光器件的发光材料,其中,所述第一化合物包括如下化合物中的任意一种:
    Figure PCTCN2022088010-appb-100003
    Figure PCTCN2022088010-appb-100004
  4. 根据权利要求1至3中任一项所述的用于有机发光器件的发光材料,还包括客体材料,并且所述主体材料和所述客体材料满足:
    0.1eV≤T1(H)-T1(D)≤0.5eV;
    2.1eV≤T1(H)≤2.7eV;
    2.0eV≤T1(D)≤2.2eV;
    其中,T1(H)为所述主体材料的最低三重态能量;T1(D)为所述客体材料的最低三重态能量。
  5. 根据权利要求4所述的用于有机发光器件的发光材料,其中,所述主体材料还包括第二化合物,所述第一化合物和所述第二化合物满足:
    2.2eV≤T1(P)≤2.8eV;
    2.2eV≤T1(N)≤2.8eV;
    其中,T1(P)为所述第一化合物的最低三重态能量;T1(N)为所述第二化合物的最低三重态能量。
  6. 根据权利要求5所述的用于有机发光器件的发光材料,其中,所述第一化合物、所述第二化合物和所述客体材料满足:
    0.1eV≤|HOMO(P)-HOMO(D)|≤0.4eV;
    0.1eV≤|LUMO(N)-LUMO(D)|≤0.5eV;
    其中,HOMO(P)为所述第一化合物的最高占据分子轨道能级;LUMO(N)为所述第二化合物的最低未占分子轨道能级;HOMO(D)为所述客体材料的最高占据分子轨道能级;LUMO(D)为所述客体材料的最低未占分子轨道能级。
  7. 根据权利要求4至6中任一项所述的用于有机发光器件的发光材料,其中,所述主体材料的光致发光光谱与所述客体材料的金属到配体的电荷转移吸收光谱的重叠积分面积不低于所述主体材料的光致发光光谱的光谱积分面积的20%。
  8. 根据权利要求5或6所述的用于有机发光器件的发光材料,其中,所述第二化合物的通式为:
    Figure PCTCN2022088010-appb-100005
    其中,L 4至L 6各自独立地包括单键、亚苯基、亚联苯基、亚萘基、亚芴基、亚二甲基芴基、C1至C10的亚烷基中的任意一种;
    Ar 4至Ar 6各自独立地包括取代或未取代的苯基、取代或未取代的联苯基、取代或未取代的萘基、取代或未取代的蒽基、取代或未取代的菲基、取代或未取代的咔唑基、取代或未取代的二苯并呋喃基、取代或未取代的二苯并噻 吩基、取代或未取代的9-氢芴基、取代或未取代的9,9-二甲基芴基、取代或未取代的9,9二苯基芴基、取代或未取代的螺芴基、取代或未取代的式V所示的基团、取代或未取代的式VI所示的基团中的任意一种;这里,取代的苯基、取代的联苯基、取代的萘基、取代的蒽基、取代的菲基、取代的咔唑基、取代的二苯并呋喃基、取代的二苯并噻吩基、取代的9-氢芴基、取代的9,9-二甲基芴基、取代的9,9-二苯基芴基、取代的螺芴基、取代的式V所示的基团、取代的式VI所示的基团是指被一个或多个如下基团所取代:苯基、联苯基、萘基、蒽基、菲基、咔唑基、二苯并呋喃基、二苯并噻吩基、9-氢芴基、9,9-二甲基芴基、9,9-二苯基芴基、螺芴基、C1至C10的烷基、式V所示的基团、式VI所示的基团;
    Figure PCTCN2022088010-appb-100006
    X 2和X 3中至少有一个为N,另一个为N和-CH中的任意一种;X 4为N;
    X 5和X 6各自独立地包括N、C或CH中的任意一种,并且当X 5和X 6均为C时,X 5和X 6成环,成环后形成式V-1或式V-2所示的基团;
    Figure PCTCN2022088010-appb-100007
    X 7至X 9各自独立的包括O、S、NR 4和CR 5R 6中的任意一种;
    R 4至R 6各自独立的包括氢、C1至C10的烷基、苯基、联苯基、萘基、蒽基、菲基、咔唑基、二苯并呋喃基、二苯并噻吩基、芴基、二甲基芴基、二苯基芴基、螺芴基中的任意一种。
  9. 根据权利要求8所述的用于有机发光器件的发光材料,其中,L 4至 L 6各自独立地包括单键、亚萘基中的任意一种;
    Ar 4至Ar 6各自独立地包括苯基、萘基、咔唑基、咔唑取代的萘基、
    Figure PCTCN2022088010-appb-100008
    中的任意一种。
  10. 根据权利要求8所述的用于有机发光器件的发光材料,其中,所述第二化合物包括如下化合物中的任意一种:
    Figure PCTCN2022088010-appb-100009
  11. 根据权利要求5、6、8或9所述的用于有机发光器件的发光材料, 其中,
    所述第一化合物为P1,所述第二化合物为N1;或者,
    所述第一化合物为P3,所述第二化合物为N2;或者,
    所述第一化合物为P5,所述第二化合物为N3。
  12. 根据权利要求5、6、8或9所述的用于有机发光器件的发光材料,其中,所述第一化合物和所述第二化合物满足:
    80℃≤Tg(P)≤140℃;
    80℃≤Tg(N)≤140℃;
    |Tg(P)-Tg(N)|≤20℃;
    其中,Tg(P)为所述第一化合物的玻璃化转变温度,Tg(N)为所述第二化合物的玻璃化转变温度。
  13. 根据权利要求5、6、8或9所述的用于有机发光器件的发光材料,其中,在所述主体材料中,所述第一化合物与所述第二化合物的摩尔比为3:7至7:3。
  14. 一种发光器件,包括发光层,所述发光层的材料包括根据权利要求1至13中任一项所述的用于有机发光器件的发光材料。
  15. 根据权利要求14所述的发光器件,还包括设置在所述发光层一侧的辅助发光层,所述辅助发光层的材料与所述第一化合物满足:
    1/100≤空穴迁移率(F)/空穴迁移率(P)≤1;
    其中,空穴迁移率(F)为所述辅助发光层的材料的空穴迁移率,空穴迁移率(P)为所述第一化合物的空穴迁移率。
  16. 根据权利要求15所述的发光器件,其中,所述辅助发光层的材料与所述第一化合物还满足:
    0.1eV≤|HOMO(F)-HOMO(P)|≤0.5eV;
    |HOMO(F)|>|HOMO(P)|;
    其中,HOMO(F)为所述辅助发光层的材料的最高占据分子轨道能级。
  17. 根据权利要求15或16所述的发光器件,其中,所述辅助发光层的 材料与所述第一化合物还满足:
    0eV≤T1(F)-T1(P)≤0.4eV;
    其中,T1(F)为所述辅助发光层的材料的最低三重态能量。
  18. 根据权利要求15至17中任一项所述的发光器件,其中,所述辅助发光层的材料的通式为:
    Figure PCTCN2022088010-appb-100010
    L 7至L 9各自独立地包括单键、亚苯基、亚联苯基、亚萘基、亚芴基、亚二甲基芴基、C1至C10的亚烷基中的任意一种;
    Ar 7至Ar 9各自独立地包括取代或未取代的苯基、取代或未取代的联苯基、取代或未取代的萘基、取代或未取代的二苯并呋喃基、取代或未取代的二苯并噻吩基、取代或未取代的9-氢芴基、取代或未取代的9,9-二甲基芴基、取代或未取代的9,9二苯基芴基、取代或未取代的螺芴基、取代或未取代的金刚烷基、取代或未取代的式VIII所示的基团;这里,取代的苯基、取代的联苯基、取代的萘基、取代的二苯并呋喃基、取代的二苯并噻吩基、取代的9-氢芴基、取代的9,9-二甲基芴基、取代的9,9-二苯基芴基、取代的螺芴基、取代的金刚烷基、取代的式VIII所示的基团是指被一个或多个如下基团所取代:苯基、联苯基、萘基、二苯并呋喃基、二苯并噻吩基、9-氢芴基、9,9-二甲基芴基、9,9-二苯基芴基、螺芴基、C1至C10的烷基、金刚烷基、式VIII所示的基团;
    Figure PCTCN2022088010-appb-100011
    R 7至R 9各自独立的包括氢、C1至C10的烷基、苯基、联苯基、萘基、蒽基、菲基、咔唑基、二苯并呋喃基、二苯并噻吩基、芴基、二甲基芴基、二苯基芴基、螺芴基中的任意一种。
  19. 根据权利要求18所述的发光器件,其中,L 7至L 9各自独立地包括单键、亚苯基、亚联苯基、亚二甲基芴基中的任意一种;
    Ar 7至Ar 9各自独立地包括金刚烷取代的苯基、金刚烷取代的联苯基、金刚烷基、二苯并呋喃基、二甲基芴基、螺芴基、苯取代的二甲基芴基、式VIII所示的基团中的任意一种。
  20. 根据权利要求18或19所述的发光器件,其中,所述辅助发光层的材料包括如下化合物中的任意一种:
    Figure PCTCN2022088010-appb-100012
    Figure PCTCN2022088010-appb-100013
  21. 根据权利要求20所述的发光器件,其中,
    所述第一化合物为P2,所述辅助发光层的材料为F1;或者
    所述第一化合物为P4,所述辅助发光层的材料为F2;或者
    所述第一化合物为P6,所述辅助发光层的材料为F3。
  22. 一种显示装置,包括根据权利要求14至21中任一项所述的发光器件。
PCT/CN2022/088010 2022-04-20 2022-04-20 用于有机发光器件的发光材料、发光器件和显示装置 WO2023201590A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/088010 WO2023201590A1 (zh) 2022-04-20 2022-04-20 用于有机发光器件的发光材料、发光器件和显示装置
CN202280000816.7A CN117322167A (zh) 2022-04-20 2022-04-20 用于有机发光器件的发光材料、发光器件和显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/088010 WO2023201590A1 (zh) 2022-04-20 2022-04-20 用于有机发光器件的发光材料、发光器件和显示装置

Publications (1)

Publication Number Publication Date
WO2023201590A1 true WO2023201590A1 (zh) 2023-10-26

Family

ID=88418693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/088010 WO2023201590A1 (zh) 2022-04-20 2022-04-20 用于有机发光器件的发光材料、发光器件和显示装置

Country Status (2)

Country Link
CN (1) CN117322167A (zh)
WO (1) WO2023201590A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008147425A (ja) * 2006-12-11 2008-06-26 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子
JP2016127178A (ja) * 2015-01-06 2016-07-11 三星ディスプレイ株式會社Samsung Display Co.,Ltd. 有機エレクトロルミネッセンス素子
US20200161564A1 (en) * 2017-09-26 2020-05-21 Samsung Sdi Co., Ltd. Organic compound, composition, organic optoelectronic device, and display device
CN111341920A (zh) * 2018-12-18 2020-06-26 固安鼎材科技有限公司 一种有机电致发光器件
CN111883680A (zh) * 2020-08-06 2020-11-03 京东方科技集团股份有限公司 有机电致发光器件和显示装置
CN111933818A (zh) * 2020-08-12 2020-11-13 长春海谱润斯科技有限公司 一种有机发光器件
CN113519073A (zh) * 2019-11-11 2021-10-19 株式会社Lg化学 有机发光器件

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008147425A (ja) * 2006-12-11 2008-06-26 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子
JP2016127178A (ja) * 2015-01-06 2016-07-11 三星ディスプレイ株式會社Samsung Display Co.,Ltd. 有機エレクトロルミネッセンス素子
US20200161564A1 (en) * 2017-09-26 2020-05-21 Samsung Sdi Co., Ltd. Organic compound, composition, organic optoelectronic device, and display device
CN111341920A (zh) * 2018-12-18 2020-06-26 固安鼎材科技有限公司 一种有机电致发光器件
CN113519073A (zh) * 2019-11-11 2021-10-19 株式会社Lg化学 有机发光器件
CN111883680A (zh) * 2020-08-06 2020-11-03 京东方科技集团股份有限公司 有机电致发光器件和显示装置
CN111933818A (zh) * 2020-08-12 2020-11-13 长春海谱润斯科技有限公司 一种有机发光器件

Also Published As

Publication number Publication date
CN117322167A (zh) 2023-12-29

Similar Documents

Publication Publication Date Title
CN107925014B (zh) 用作有机发光二极管(oled)的hil的金属氨基化物
EP2976795B1 (en) White organic light-emitting device
EP2097938B1 (en) Long lifetime phosphorescent organic light emitting device (oled) structures
JP5163837B2 (ja) 有機電界発光素子用組成物、有機電界発光素子、表示装置及び照明装置
JP5810417B2 (ja) イリジウム錯体化合物、並びに該化合物を含む組成物、有機電界発光素子、表示装置及び照明装置
JPWO2018198844A1 (ja) 有機電界発光素子
JP6331393B2 (ja) 有機電界発光素子及び有機電界発光デバイス
WO2022017028A1 (zh) 有机发光二极管结构、显示装置
CN108336237B (zh) 一种有机电致发光器件
TW200822796A (en) Light emitting device containing phosphorescent complex
TW200908412A (en) Phosphorescent OLED having double exciton-blocking layers
KR20080028212A (ko) 유기발광소자 및 그 제조방법
JP2020500187A (ja) アクセプター基とドナー基を有する化合物
CN102097594A (zh) 有机发光装置
CN112689912A (zh) 有机发光器件
WO2011033978A1 (ja) 有機エレクトロルミネッセンス素子
CN108281557B (zh) 有机发光器件及其制备方法及显示装置
US8785002B1 (en) High-energy triplet host materials, luminescent layer comprising the same, and organic electroluminescent device comprising the luminescent layer
KR20100025664A (ko) 유기전기발광소자용 유기박막재료 및 이를 포함하는 유기전기발광소자
WO2023201590A1 (zh) 用于有机发光器件的发光材料、发光器件和显示装置
CN115769696A (zh) 有机电场发光元件
JP5456282B2 (ja) 有機電界発光素子
CN113555508B (zh) 一种荧光发光器件及其制备方法、显示面板、显示装置
KR102150128B1 (ko) 유기 전계 발광 소자
CN113969168B (zh) 红光有机电致发光组合物、红光有机电致发光器件及包含其的显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280000816.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18023000

Country of ref document: US