WO2023200305A1 - 음극 및 이를 포함하는 이차전지 - Google Patents

음극 및 이를 포함하는 이차전지 Download PDF

Info

Publication number
WO2023200305A1
WO2023200305A1 PCT/KR2023/005112 KR2023005112W WO2023200305A1 WO 2023200305 A1 WO2023200305 A1 WO 2023200305A1 KR 2023005112 W KR2023005112 W KR 2023005112W WO 2023200305 A1 WO2023200305 A1 WO 2023200305A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
active material
cathode
current collector
electrode active
Prior art date
Application number
PCT/KR2023/005112
Other languages
English (en)
French (fr)
Inventor
조미루
박성빈
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Publication of WO2023200305A1 publication Critical patent/WO2023200305A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode and a secondary battery including the same.
  • lithium-ion batteries In particular, as interest in solving environmental problems and realizing a sustainable, cyclical society grows, research on power storage devices such as lithium-ion batteries and electric double-layer capacitors is being conducted extensively. Among battery technologies, lithium secondary batteries are attracting attention as a battery system with theoretically the highest energy density.
  • the lithium secondary battery generally includes a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, an electrolyte, an organic solvent, etc. Additionally, the positive and negative electrodes may have an active material layer including a positive electrode active material or a negative electrode active material formed on the current collector.
  • the negative electrode active material layer is generally manufactured by applying, drying, and rolling a negative electrode slurry prepared by adding a negative electrode active material to a solvent for forming a negative electrode slurry onto a negative electrode current collector.
  • the end portion of the negative electrode active material layer may be inclined due to the fluid nature of the negative electrode slurry.
  • the adhesion between the negative electrode and the separator will decrease, and the inclined end portion will not be able to sufficiently accept lithium from the positive electrode facing it, resulting in lithium.
  • precipitation There is a problem with precipitation.
  • polarization of the electrolyte occurs due to the inclined end portion of the cathode, causing problems such as increased resistance and formation of overvoltage. This causes problems such as elution of transition metals from the cathode active material and acceleration of side reactions in the electrolyte, resulting in deterioration of cell performance. There is a problem that arises.
  • Korean Patent Publication No. 10-2021-0114376 discloses an electrode for a lithium battery, a lithium battery including the same, and a method of manufacturing the lithium battery, but fails to provide an alternative to the above-described problem.
  • One object of the present invention is to form a coating layer containing an N-type organic active material on the cathode slope, thereby improving the adhesion between the cathode and the separator and suppressing the formation of overvoltage at the cathode slope.
  • the goal is to provide a negative electrode that can effectively improve cell performance, specifically charge/discharge efficiency and life performance of the cell, by preventing lithium precipitation.
  • Another object of the present invention is to provide a secondary battery including the above-described negative electrode.
  • the present invention relates to a negative electrode current collector; a negative electrode active material layer disposed on at least one side of the negative electrode current collector and containing a negative electrode active material; and a coating layer containing an N-type organic active material, wherein the negative electrode active material layer includes an inclined portion defined on at least one side and a flat portion excluded from the inclined portion, and the inclined portion is a surface of the negative electrode current collector. has a slope toward, and the coating layer provides a cathode disposed on at least a portion of the slope.
  • the present invention includes the above-described cathode; an anode facing the cathode; a separator interposed between the cathode and the anode; It provides a lithium secondary battery including; and an electrolyte.
  • the negative electrode according to the present invention includes a negative electrode active material layer including an inclined portion inclined toward the surface of the negative electrode current collector and a coating layer disposed on at least a portion of the inclined portion, and the coating layer includes an N-type organic active material.
  • the N-type organic active material can provide radicals depending on its structural characteristics, and the presence of these radicals can enable insertion and desorption of lithium ions through oxidation and reduction reactions.
  • the coating layer Through the coating layer, overvoltage due to electrolyte concentration polarization caused by the slope of the cathode slope is prevented, resistance increases due to electrolyte side reactions, and lithium precipitation problems caused by insufficient acceptance of lithium from the anode facing the cathode slope are prevented. By suppressing this, the charge/discharge efficiency and lifespan characteristics of the negative electrode and the lithium secondary battery including the same can be improved.
  • FIG. 1 is a schematic side view for specifically explaining the cathode of the present invention.
  • Figure 2 is a schematic plan view to specifically explain the cathode of the present invention.
  • Figure 3 is a thickness profile graph using a rotary caliper for the cathodes of Example 1 and Comparative Example 1.
  • Figure 4 is a graph measuring cycle capacity maintenance rates of secondary batteries of Examples 1 to 3 and Comparative Example 1.
  • the average particle size (D 50 ) can be defined as the particle size corresponding to 50% of the volume accumulation in the particle size distribution curve.
  • the average particle diameter (D 50 ) can be measured using, for example, a laser diffraction method.
  • the laser diffraction method is generally capable of measuring particle diameters ranging from the submicron region to several millimeters, and can obtain results with high reproducibility and high resolution.
  • Figure 1 is a schematic side view for explaining the cathode of the present invention.
  • Figure 2 is a schematic plan view for explaining the cathode of the present invention.
  • the present invention provides a cathode (10).
  • the negative electrode 10 may be a negative electrode for a lithium secondary battery.
  • the negative electrode 10 includes a negative electrode current collector 100; a negative electrode active material layer 200 disposed on at least one side of the negative electrode current collector 100 and containing a negative electrode active material; and a coating layer (300a, 300b) containing an N-type organic active material, wherein the negative electrode active material layer (200) has inclined portions (210a, 210b) defined on at least one side and the inclined portions (210a, 210b). It includes a flat portion 220 divided except for, the inclined portions 210a and 210b have an inclination toward the surface of the negative electrode current collector 100, and the coating layers 300a and 300b have the inclined portion ( It is characterized in that it is arranged in at least part of 210a, 210b).
  • the negative electrode active material layer included in the negative electrode is generally manufactured by adding a negative electrode active material, etc. to a solvent for forming a negative electrode slurry, and applying the negative electrode slurry to the negative electrode current collector, drying, and rolling. At this time, since the negative electrode slurry has fluid properties, the formed negative electrode active material layer has an inclined portion or an end portion inclined toward the surface of the negative electrode current collector. Since the negative electrode active material layer is not sufficiently loaded into the inclined portion having such an inclination, lithium ions moved from the positive electrode facing it cannot be sufficiently inserted, causing a problem of lithium being precipitated to the outside.
  • the negative electrode according to the present invention includes a negative electrode active material layer including an inclined portion inclined toward the surface of the negative electrode current collector and a coating layer disposed on at least a portion of the inclined portion, and the coating layer is made of an N-type organic active material. It is characterized by including.
  • the N-type organic active material can provide radicals depending on its structural characteristics, and the presence of these radicals can enable insertion and desorption of lithium ions according to oxidation and reduction reactions.
  • This coating layer Through this coating layer, overvoltage due to electrolyte concentration polarization caused by the slope of the cathode slope is prevented, resistance increases due to electrolyte side reactions, and lithium precipitation problems caused by insufficient acceptance of lithium from the anode facing the cathode slope are prevented. By suppressing this, the charge/discharge efficiency and lifespan characteristics of the negative electrode and the lithium secondary battery including the same can be improved.
  • the negative electrode current collector 100 is not particularly limited as long as it has high conductivity without causing chemical changes in the battery.
  • the negative electrode current collector 100 may include at least one selected from the group consisting of copper, stainless steel, aluminum, nickel, titanium, fired carbon, and aluminum-cadmium alloy, and may specifically include copper. there is.
  • the negative electrode current collector 100 may typically have a thickness of 3 to 500 ⁇ m.
  • the negative electrode current collector 100 may form fine irregularities on the surface to strengthen the bonding force of the negative electrode active material.
  • the negative electrode current collector may be used in various forms such as films, sheets, foils, nets, porous materials, foams, and non-woven fabrics.
  • the negative electrode active material layer 200 is disposed on at least one side of the negative electrode current collector 100. Specifically, the negative electrode active material layer 200 may be disposed on one or both sides of the negative electrode current collector 100.
  • the anode active material layer may include inclined portions 210a and 210b defined on at least one side and a flat portion 220 excluding the inclined portions 210a and 210b.
  • the inclined portions 210a and 210b and the flat portion 220 may be abstractly divided to specify the formation positions of the coating layers 300a and 300b, which will be described later, as shown in FIG. 1.
  • the inclined portions 210a and 210b and the flat portion 220 may have the same composition or may be manufactured from the same cathode slurry.
  • “at least one side of the negative electrode active material layer” may mean at least one side of the width direction (for example, the direction of arrow W in FIGS. 1 and 2) of the negative electrode active material layer.
  • “width direction” may mean a direction perpendicular to the coating direction of the negative electrode active material layer.
  • the “width direction” can be understood as a concept opposite to the “longitudinal direction (eg, arrow L direction in FIG. 2),” which is the coating direction of the negative electrode active material layer.
  • the inclined portion may be defined on at least one side of the negative electrode active material layer. Specifically, the inclined portion may be partitioned on one side or on both sides of the negative electrode active material layer.
  • the inclined portions 210a and 210b are shown as being divided on both sides of the negative electrode active material layer, but this is not limited, and the negative electrode active material layer may be divided into one inclined portion and another flat portion.
  • the inclined portions 210a and 210b may be inclined toward the surface of the negative electrode current collector 100.
  • the inclined portions 210a and 210b may be continuously inclined toward the surface of the negative electrode current collector 100.
  • the inclination of the inclined portions 210a and 210b may be formed according to the fluid properties of the negative electrode slurry, for example, when applying the negative electrode slurry for manufacturing the negative electrode active material layer.
  • the inclination of this inclined portion may result in insufficient insertion of lithium ions moved from the positive electrode facing it, which may cause problems of lowering charge/discharge efficiency and lower lifespan characteristics.
  • coating layers 300a and 300b which will be described later, These problems can be prevented, and improvements in the capacity, charge/discharge efficiency, and lifespan characteristics of the cathode can be achieved.
  • the inclination angle, width, etc. of the inclined portions 210a and 210b may be determined by, for example, the viscosity of the anode slurry for producing the anode active material layer, application conditions, drying conditions, etc., and are not particularly limited.
  • the flat portion 200 may be an area defined by excluding the inclined portions 210a and 210b of the negative electrode active material layer. Specifically, the flat portion 200 may have substantially no slope or may form a substantially flat surface. The flat portion 200 is merely a concept to distinguish it from the inclined portions 210a and 210b that are inclined toward the surface of the negative electrode current collector 100, and may not have completely the same thickness or height as a whole.
  • the negative electrode active material layer 200 may include a negative electrode active material.
  • the negative electrode active material is a material capable of insertion/extraction of lithium, and may include at least one selected from carbon-based active materials and (semi-)metal-based active materials.
  • the carbon-based active material may include at least one member selected from the group consisting of artificial graphite, natural graphite, hard carbon, soft carbon, carbon black, graphene, and fibrous carbon.
  • the (semi-)metallic active materials include Li, Cu, Ni, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al, V At least one (semi-)metal selected from the group consisting of , Ti, and Sn; From the group consisting of Cu, Ni, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al, V, Ti, and Sn.
  • An alloy of lithium and at least one selected (semi-)metal From the group consisting of Cu, Ni, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al, V, Ti, and Sn.
  • a complex of at least one selected (meta) metal and carbon and Li, Cu, Ni, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al, V, Ti, and Sn. It may include at least one type selected from the group consisting of; an oxide of at least one type of (semi) metal selected from the group consisting of;
  • the (semi-)metal-based active material may include at least one silicon-based active material selected from SiO x (0 ⁇ x ⁇ 2) and a silicon-carbon composite. Since the silicon-based active material has excellent capacity, the above-described capacity improvement effect of the anode can be more preferably implemented.
  • the negative electrode active material layer may include 60% by weight or more of the negative electrode active material, specifically 60% to 99% by weight.
  • the negative electrode active material layer 200 may include at least one selected from a negative electrode binder, a negative electrode conductive material, and a focus agent along with the negative electrode active material.
  • the negative electrode binder is used to improve battery performance by improving adhesion between the negative electrode active material layer and the negative electrode current collector, for example, polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF-co) -HFP), polyvinylidenefluoride (PVDF), polyacrylonitrile, polymethylmethacrylate, polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, Regenerated cellulose, polyvinylpyrrolidone, polytetrafluoroethylene, polyethylene, polypropylene, polyacrylic acid, ethylene-propylene-diene monomer (EPDM), sulfonated EPDM, styrene butadiene rubber (SBR), fluoroelastomer, and their It may include at least one selected from the group consisting of substances in which hydrogen is replaced with Li, Na, or Ca, and may also include various copolymers thereof.
  • PVDF-co polyviny
  • the negative electrode binder may be included in the negative electrode active material layer in an amount of 0.5% to 20% by weight.
  • the anode conductive material is not particularly limited as long as it has conductivity without causing chemical changes in the battery.
  • graphite such as natural graphite or artificial graphite
  • Carbon black such as carbon black, acetylene black, Ketjen black, channel black, Paneth black, lamp black, and thermal black
  • Conductive fibers such as carbon fiber and metal fiber
  • Conductive tubes such as carbon nanotubes; fluorocarbon;
  • Metal powders such as aluminum and nickel powder;
  • Conductive whiskers such as zinc oxide and potassium titanate;
  • Conductive metal oxides such as titanium oxide;
  • Conductive materials such as polyphenylene derivatives may be used.
  • the anode conductive material may be included in the anode active material layer in an amount of 0.5% to 20% by weight.
  • any thickener used in conventional lithium secondary batteries can be used, and an example is carboxymethyl cellulose (CMC).
  • CMC carboxymethyl cellulose
  • the height or thickness of the negative electrode active material layer based on the surface of the negative electrode current collector may be 10 ⁇ m to 300 ⁇ m, preferably 50 ⁇ m to 150 ⁇ m.
  • the coating layers 300a and 300b may be disposed on at least a portion of the inclined portions 210a and 210b. Specifically, the coating layers 300a and 300b may be disposed on the inclined portions 210a and 210b along the inclined surfaces of the inclined portions 210a and 210b.
  • the coating layers 300a and 300b include an N-type organic active material (Negative-type organic electrode material).
  • an organic active material may be defined as an organic compound capable of reversible oxidation and reduction reactions.
  • the electrochemical activity of the organic active material can contribute to electron transport and charge stability, and can be added to the electrolyte solution by an electroactive bond, functional group, or conjugated structure.
  • the bond of the included lithium salt with the lithium cation or its counter anion may be formed reversibly.
  • the organic active material includes, depending on its role during oxidation and reduction reactions, an N-type organic active material capable of providing electrons (Negative-type organic electrode material); P-type organic electrode material capable of accepting electrons; Alternatively, it can be classified as a B-type organic electrode material that can donate or accept electrons.
  • the N-type organic active material may form radicals due to elements, functional groups, and/or resonance structures of the compound structure, and may provide these radicals to lithium ions (Li + ).
  • the N-type organic active material can provide radicals to lithium ions (Li + ) to perform oxidation and reduction reactions, and thus the lithium ions and the N-type organic active material can form a reversible bond structure.
  • the coating layer containing the N-type organic active material may be able to insert and desorb lithium ions according to oxidation and reduction reactions.
  • the coating layers 300a and 300b are disposed on at least a portion of the inclined portions 210a and 210b of the negative electrode active material layer 200, and contain an N-type organic active material, so that they face the inclined portions 210a and 210b.
  • Lithium ions can be easily accepted from the positive electrode. Accordingly, the cathode according to the present invention suppresses lithium precipitation problems that may occur due to the absence of a coating layer, electrolyte consumption, resistance increase, and overvoltage formation caused by the space between the inclined portions 210a and 210b and the anode facing them. As a result, the charge/discharge efficiency and lifespan performance of the cathode can be significantly improved.
  • the coating layers (300a, 300b) may be disposed on at least a portion of the inclined portions (210a, 210b) of the negative electrode active material layer 200, and specifically, the inclined portions (210a, 210b) of the negative electrode active material layer 200. It can be arranged to cover the entire area. Alternatively, the coating layers 300a and 300b may be arranged to cover the entire inclined portions 210a and 210b of the negative electrode active material layer 200 and at least a portion of the uncoated portions 110a and 110b of the negative electrode current collector 100. It may be possible.
  • the maximum height (H2) of the coating layers (300a, 300b) relative to the surface of the negative electrode current collector 100 may be less than or equal to the maximum height (H1) of the negative electrode active material layer.
  • the maximum height (H2) of the coating layer based on the surface of the negative electrode current collector may be equal to the maximum height (H1) of the negative electrode active material layer. That is, the maximum distance between the coating layers 300a and 300b formed or disposed on the inclined portions 210a and 210b and the surface of the negative electrode current collector 100 is the distance between the negative electrode active material layer 200 and the surface of the negative electrode current collector 100.
  • the maximum distance may not be exceeded, and thus the structural stability of the cathode can be improved by realizing the flatness of the overall cathode, and lithium insertion and desorption between the inclined portions 210a and 210b and the anode facing them can be smoothly performed. It can be done.
  • At least a portion of the coating layers 300a and 300b may have a flat surface with a height equal to the maximum height H1 of the negative electrode active material layer with respect to the surface of the negative electrode current collector 100.
  • the N-type organic active material may be an organic compound capable of providing radicals to lithium ions, or may be a metal salt of the organic compound.
  • the N-type organic active material may include at least one selected from the group consisting of carbonyl-based compounds, imine-based compounds, nitrile-based compounds, organic sulfur-based compounds, and azo-based compounds, and specifically includes carbonyl-based compounds. can do.
  • the N-type organic active material may be a metal salt of the above-mentioned compounds, and more specifically, a lithium salt of the above-mentioned compounds.
  • Functional groups such as carbonyl group, imine group, nitrile group, sulfur, and azo group contained in the above materials; Alternatively, radicals can be provided to lithium ions by the functional group and a conjugated structure connected thereto, so that insertion and detachment of lithium ions by the coating layer can be performed smoothly.
  • the N-type organic active material is p-benzoquinone, anthraquinone, dilithium terephthalate, and tetralithium salt of 2,5-dihydroxy terephthalate. salt of 2,5-dihydroxy terephthalate), 7,7,8,8-tetracyanoquinodimethane (TCNQ), Phenylazo benzoic acid lithium salt , PBALS), 1,4,5,8-Naphthalenetetracarboxylic dianhydride, polydopamine, phenazine and poly(1,6) -dihydropyrazino[2,3g]quinoxaline-2,3,8-triyl-7-(2H)-ylidene-7,8-dimethylidene) (PQL) and Poly[chalcogenoviologen-alt-triphenylamine] (chalcogen elements include tel It may include at least one member selected from the group consisting of tellurium.
  • the N-type organic active material may be included in the coating layers (300a, 300b) in an amount of 15% to 95% by weight, specifically 40% to 70% by weight, and more specifically 50% to 65% by weight, This is desirable in that it can prevent a decrease in electronic conductivity due to excessive inclusion of N-type organic active material while securing sufficient sites for oxidation and reduction reactions with lithium ions.
  • the coating layers 300a and 300b may further include a binder along with the N-type organic active material.
  • the binder can be used to improve the adhesion between the coating layer and the negative electrode active material layer or negative electrode current collector.
  • the binder is, for example, polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinylidenefluoride (PVDF), polyacrylonitrile, polymethyl methacryl.
  • Polymethylmethacrylate polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, polytetrafluoroethylene, polyethylene, polypropylene, polyacrylic acid, ethylene-propylene- It may include at least one selected from the group consisting of diene monomer (EPDM), sulfonated EPDM, styrene butadiene rubber (SBR), fluororubber, and materials in which hydrogen thereof is replaced with Li, Na, or Ca, etc. It may also include various copolymers thereof.
  • EPDM diene monomer
  • SBR styrene butadiene rubber
  • fluororubber materials in which hydrogen thereof is replaced with Li, Na, or Ca, etc. It may also include various copolymers thereof.
  • the binder may be included in the coating layers 300a and 300b in an amount of 1% to 10% by weight, specifically 3% to 10% by weight.
  • the coating layers 300a and 300b may further include a conductive material to improve conductivity.
  • the conductive material is not particularly limited as long as it has conductivity without causing chemical changes in the battery.
  • graphite such as natural graphite or artificial graphite
  • Carbon black such as carbon black, acetylene black, Ketjen black, channel black, Paneth black, lamp black, and thermal black
  • Conductive fibers such as carbon fiber and metal fiber
  • Conductive tubes such as carbon nanotubes; fluorocarbon;
  • Metal powders such as aluminum and nickel powder;
  • Conductive whiskers such as zinc oxide and potassium titanate;
  • Conductive metal oxides such as titanium oxide;
  • Conductive materials such as polyphenylene derivatives may be used.
  • the conductive material may be included in the coating layer in an amount of 3% to 80% by weight, specifically 25% to 55% by weight, and more specifically 30% to 45% by weight.
  • the weight ratio of the N-type organic active material to the weight of the conductive material may be 0.5 to 3.5, specifically 0.7 to 2.8, and more specifically 1.1 to 2.2, when it is within the above range. , it is desirable in that it is possible to implement a coating layer with improved conductivity while sufficiently securing oxidation and reduction reaction sites with lithium ions when it is within the above range.
  • the coating layer when the coating layer includes a binder and/conductive material together with the N-type organic active material, the coating layer contains the binder and/conductive material in a residual amount corresponding to the weight percentage with respect to the weight of the coating layer of the N-type organic active material. It may be included as a weight percentage (100% by weight - weight percentage relative to the weight of the coating layer of N-organic active material).
  • the negative electrode current collector may include uncoated portions 110a and 110b.
  • the uncoated portions 110a and 110b may refer to portions of the negative electrode current collector where the negative electrode active material layer is not disposed on the surface.
  • the coating layers 300a and 300b may be disposed on at least a portion of the surface of the uncoated portions 110a and 110b. Additionally, the anode active material layer and the coating layer may not be disposed on the surfaces of the uncoated regions 110a and 110b.
  • the negative electrode current collector is located on at least one side and includes uncoated portions 110a and 110b on which the negative electrode active material layer 200 is not disposed, and the inclined portion ( 210a and 210b may be adjacent to the uncoated portions 110a and 110b, and the flat portion 220 may be spaced apart from the uncoated portions 110a and 110b.
  • “at least one side of the negative electrode current collector” may mean at least one side of the width direction (for example, the direction of arrow W in FIG. 2) of the negative electrode current collector.
  • “width direction” may mean a direction perpendicular to the coating direction of the negative electrode active material layer.
  • the “width direction” can be understood as a concept opposite to the “longitudinal direction (eg, arrow L direction in FIG. 2),” which is the coating direction of the negative electrode active material layer.
  • the uncoated portion may be located on at least one side of the negative electrode current collector. Specifically, the uncoated portion may be partitioned on one side or located on both sides of the negative electrode current collector. 1 and 2, the uncoated portions 110a and 110b are shown as being located on both sides of the negative electrode current collector, but the present invention is not limited thereto and may be located on only one side of the negative electrode current collector.
  • the present invention provides a method for manufacturing the above-described cathode.
  • the method for manufacturing a negative electrode of the present invention includes the steps of applying a negative electrode slurry containing a negative electrode active material and a solvent for forming a negative electrode slurry on a negative electrode current collector; and forming a coating layer on the inclined portion of the applied cathode slurry.
  • the negative electrode slurry may further include at least one selected from a binder and a conductive material along with the negative electrode active material.
  • the solvent for forming the cathode slurry may include at least one selected from the group consisting of N-methylpyrrolidone (NMP), distilled water, ethanol, methanol, and isopropyl alcohol, preferably distilled water.
  • NMP N-methylpyrrolidone
  • the formation of the coating layer may be performed simultaneously with the application of the cathode slurry, or may be performed after the application of the cathode slurry.
  • the formation of the coating layer may be performed after application of the cathode slurry and before drying, or may be performed after application and drying of the cathode slurry.
  • Formation of the coating layer includes the N-type organic active material;
  • the N-type organic active material and the binder may be added to a solvent to prepare a coating layer composition, and the coating layer composition may be applied to an inclined portion of the applied negative electrode slurry and dried.
  • Solvents used in the coating layer composition include water and N-methylpyrrolidone (NMP), but are not limited thereto.
  • the coating layer composition may be spray coating, slot die coating, gravure coating, curtain coating, etc.
  • the coating layer composition may be formed by preparing a film in advance and then transferring the film to the inclined portion of the applied cathode slurry.
  • the present invention provides a secondary battery including the above-described negative electrode.
  • the secondary battery may be a lithium secondary battery.
  • the secondary battery includes the above-described negative electrode; an anode opposite the cathode; A separator interposed between the cathode and the anode; and electrolytes.
  • the positive electrode may include a positive electrode current collector and a positive electrode active material layer formed on the positive electrode current collector.
  • the positive electrode current collector is not particularly limited as long as it is conductive without causing chemical changes in the battery.
  • stainless steel, aluminum, nickel, titanium, calcined carbon, or carbon on the surface of aluminum or stainless steel. , surface treated with nickel, titanium, silver, etc. can be used.
  • the positive electrode current collector may generally have a thickness of 3 ⁇ m to 500 ⁇ m.
  • the positive electrode active material layer is formed on the positive electrode current collector and includes a positive electrode active material.
  • the positive electrode active material is a compound capable of reversible intercalation and deintercalation of lithium, and may specifically include a lithium composite metal oxide containing lithium and one or more metals such as cobalt, manganese, nickel, or aluminum. there is. More specifically, the lithium composite metal oxide is lithium-manganese-based oxide (for example, LiMnO 2 , LiMn 2 O 4 , etc.), lithium-cobalt-based oxide (for example, LiCoO 2, etc.), lithium-nickel-based oxide.
  • the lithium composite metal oxide is lithium-manganese-based oxide (for example, LiMnO 2 , LiMn 2 O 4 , etc.), lithium-cobalt-based oxide (for example, LiCoO 2, etc.), lithium-nickel-based oxide.
  • lithium-nickel-manganese oxide for example, LiNi 1-Y Mn Y O 2 (where 0 ⁇ Y ⁇ 1), LiMn 2-z Ni z O 4 ( Here, 0 ⁇ Z ⁇ 2), etc.
  • lithium-nickel-cobalt-based oxide for example, LiNi 1-Y1 Co Y1 O 2 (here, 0 ⁇ Y1 ⁇ 1), etc.
  • lithium-manganese-cobalt oxides e.g., LiCo 1-Y2 Mn Y2 O 2 (where 0 ⁇ Y2 ⁇ 1), LiMn 2-z1 Co z1 O 4 (where 0 ⁇ Z1 ⁇ 2), etc.
  • the lithium composite metal oxide is LiCoO 2 , LiMnO 2 , LiNiO 2 , lithium nickel manganese cobalt oxide (for example, Li(Ni 0.6 Mn 0.2 Co 0.2 )O 2 , Li(Ni 0.5 Mn 0.3 Co 0.2 )O 2 , or Li(Ni 0.8 Mn 0.1 Co 0.1 )O 2 etc.), or lithium nickel cobalt aluminum oxide (for example, Li(Ni 0.8 Co 0.15 Al 0.05 )O 2 etc.), etc.
  • the positive electrode active material may be included in an amount of 80% to 99% by weight based on the total weight of the positive electrode active material layer.
  • the positive electrode active material layer may optionally further include at least one additive selected from the group consisting of a binder and a conductive material.
  • the binder is a component that assists in the bonding of the active material and the conductive material and the bonding to the current collector, and is usually added in an amount of 1 to 30% by weight based on the total weight of the positive electrode active material layer.
  • binders include polyvinylidene fluoride, polyvinyl alcohol, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, and polytetrafluoroethylene. , polyethylene, polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene-butadiene rubber, fluorine rubber, and various copolymers.
  • the conductive material is not particularly limited as long as it has conductivity without causing chemical changes in the battery.
  • graphite Carbon-based materials such as carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black, and thermal black
  • Conductive fibers such as carbon fiber and metal fiber
  • Metal powders such as carbon fluoride, aluminum, and nickel powder
  • Conductive whiskeys such as zinc oxide and potassium titanate
  • Conductive metal oxides such as titanium oxide
  • Conductive materials such as polyphenylene derivatives may be used.
  • Specific examples of commercially available conductive materials include acetylene black products (Chevron Chemical Company, Denka Singapore Private Limited, Gulf Oil Company, etc.), Ketjenblack, EC. series (from Armak Company), Vulcan XC-72 (from Cabot Company), and Super P (from Timcal).
  • the conductive material may be included in an amount of 1 to 30% by weight based on the total weight of the positive electrode active material layer.
  • the positive electrode active material layer may be prepared by adding a positive electrode active material and optionally an additive containing a binder and/or a conductive material to a solvent to prepare a positive electrode slurry, and then applying, rolling, and drying the positive electrode current collector.
  • the solvent may include an organic solvent such as NMP (N-methyl-2-pyrrolidone), and may be used in an amount that provides a desirable viscosity when including the positive electrode active material, and optionally a binder and a conductive material.
  • NMP N-methyl-2-pyrrolidone
  • the solid concentration including the positive electrode active material, and optionally the binder and the conductive material may be included such that the concentration is 50% by weight to 95% by weight, preferably 70% by weight to 90% by weight.
  • the separator separates the negative electrode and the positive electrode and provides a passage for lithium ions to move. It can be used without any particular restrictions as long as it is normally used as a separator in a lithium secondary battery, and in particular, it has low resistance to ion movement in the electrolyte. It is desirable to have excellent resistance and electrolyte moisturizing ability.
  • porous polymer films for example, porous polymer films made of polyolefin polymers such as ethylene homopolymer, propylene homopolymer, ethylene/butene copolymer, ethylene/hexene copolymer, and ethylene/methacrylate copolymer, or these. A laminated structure of two or more layers may be used.
  • porous non-woven fabrics for example, non-woven fabrics made of high melting point glass fibers, polyethylene terephthalate fibers, etc.
  • a coated separator containing ceramic components or polymer materials may be used to ensure heat resistance or mechanical strength, and may optionally be used in a single-layer or multi-layer structure.
  • electrolytes used in the present invention include organic liquid electrolytes, inorganic liquid electrolytes, solid polymer electrolytes, gel-type polymer electrolytes, solid inorganic electrolytes, and molten inorganic electrolytes that can be used in the production of lithium secondary batteries, and are limited to these. It doesn't work.
  • the electrolyte may include an organic solvent and a lithium salt.
  • the organic solvent may be used without particular limitation as long as it can serve as a medium through which ions involved in the electrochemical reaction of the battery can move.
  • the organic solvent includes ester solvents such as methyl acetate, ethyl acetate, gamma-butyrolactone, and ⁇ -caprolactone; Ether-based solvents such as dibutyl ether or tetrahydrofuran; Ketone-based solvents such as cyclohexanone; Aromatic hydrocarbon-based solvents such as benzene and fluorobenzene; Carbonate-based solvents such as dimethyl carbonate (DMC), diethyl carbonate (DEC), ethylmethyl carbonate (EMC), ethylene carbonate (EC), and propylene carbonate (PC); Alcohol-based solvents such as ethyl alcohol and isopropyl alcohol; nitriles such as R-CN (R is a C2 to C20 straight-chain, branched or ring-structured hydrocarbon
  • carbonate-based solvents are preferable, and cyclic carbonates (e.g., ethylene carbonate or propylene carbonate, etc.) with high ionic conductivity and high dielectric constant that can improve the charge/discharge performance of the battery, and low-viscosity linear carbonate-based compounds ( For example, ethylmethyl carbonate, dimethyl carbonate, diethyl carbonate, etc.) are more preferable.
  • cyclic carbonates e.g., ethylene carbonate or propylene carbonate, etc.
  • low-viscosity linear carbonate-based compounds For example, ethylmethyl carbonate, dimethyl carbonate, diethyl carbonate, etc.
  • excellent electrolyte performance can be obtained by mixing cyclic carbonate and chain carbonate in a volume ratio of about 1:1 to about 1:9.
  • the lithium salt can be used without particular restrictions as long as it is a compound that can provide lithium ions used in lithium secondary batteries.
  • the lithium salt is LiPF 6 , LiClO 4 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAlO 4 , LiAlCl 4 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN( C 2 F 5 SO 3 ) 2 , LiN(C 2 F 5 SO 2 ) 2 , LiN(CF 3 SO 2 ) 2 , LiCl, LiI, or LiB(C 2 O 4 ) 2 , etc. may be used.
  • the concentration of the lithium salt is preferably used within the range of 0.1 to 2.0M. When the concentration of lithium salt is within the above range, the electrolyte has appropriate conductivity and viscosity, so excellent electrolyte performance can be achieved and lithium ions can move effectively.
  • the secondary battery according to the present invention is useful in the field of portable devices such as mobile phones, laptop computers, digital cameras, etc., and electric vehicles such as hybrid electric vehicles (HEV), and is especially used as a component of medium to large battery modules. It can be preferably used as. Accordingly, the present invention also provides a medium to large-sized battery module including the above secondary battery as a unit cell.
  • HEV hybrid electric vehicles
  • medium-to-large battery modules can be preferably applied to power sources that require high output and large capacity, such as electric vehicles, hybrid electric vehicles, and power storage devices.
  • a coating layer was formed on the inclined portion of the negative electrode active material layer.
  • the coating layer was prepared by adding p-benzoquinone as an N-type organic active material, acetylene black as a conductive material, and PVdF as a binder to NMP as a solvent at a weight ratio of 60:35:5 to prepare a coating layer composition, and then the coating layer composition was prepared as above. It was manufactured by applying it to the slope of the negative electrode active material layer and drying it.
  • the cross-sectional coating height (thickness) of the negative electrode active material layer based on the surface of the negative electrode current collector was 62 ⁇ m. Additionally, the coating layer was manufactured so as not to exceed the height of the negative electrode active material layer relative to the surface of the negative electrode current collector.
  • Example 2 In the same manner as Example 1, except that a coating layer composition prepared by adding p-benzoquinone as an N-type organic active material, acetylene black as a conductive material, and PVdF as a binder to NMP at a weight ratio of 40:55:5 was used. A cathode was prepared.
  • Example 2 In the same manner as Example 1, except that a coating layer composition prepared by adding p-benzoquinone as an N-type organic active material, acetylene black as a conductive material, and PVdF as a binder to NMP at a weight ratio of 70:25:5 was used. A cathode was prepared.
  • a negative electrode was manufactured in the same manner as Example 1, except that a coating layer was not formed on the inclined portion of the negative electrode active material layer.
  • the thickness profile of the negative electrode prepared in Example 1 and Comparative Example 1 was evaluated using a rotary caliper. Specifically, the thickness profile of the cathode was evaluated by placing the cathode between rollers of a rotary caliper in the transverse direction and measuring the thickness through contact. The results are shown in Figure 3.
  • LiCoO 2 as a positive electrode active material As a positive electrode active material; Acetylene black as a conductive material; And PVdF as a binder was added to NMP as a solvent at a weight ratio of 96.5:1.5:2.0 in an N-methylpyrrolidone solvent to prepare a positive electrode slurry, which was applied to an aluminum current collector (thickness: 10 ⁇ m) and dried. and rolling to form a positive electrode active material layer (thickness: 105 ⁇ m), which was used as a positive electrode.
  • An electrode assembly including a cathode according to Example 1, an anode opposing the cathode, and a separator between the anode and the cathode was manufactured, stored in a battery case, and the electrolyte was injected and sealed to produce secondary A battery was manufactured.
  • the electrolyte used at this time was an organic solvent mixed with ethylene carbonate, propylene carbonate, ethyl propionate, and propyl propionate in a weight ratio of 20:10:25:45, and LiPF 6 was added at a molar concentration of 1.2M. did.
  • Example 2 Secondary batteries of Example 2, Example 3, and Comparative Example 1 were manufactured in the same manner as Example 1, except that the negative electrodes of Example 2, Example 3, and Comparative Example 1 were used, respectively.
  • the secondary batteries of the Examples and Comparative Examples prepared above were charged and discharged for 500 cycles at 25°C under the following conditions to evaluate the capacity retention rate.
  • a graph of capacity retention rate according to cycle is shown in FIG. 4, and capacity retention rate at 500 cycles is shown in Table 1 below.
  • the negative electrodes and secondary batteries of Examples 1 to 3 in which a coating layer containing an N-type organic active material was formed on the inclined portion of the negative electrode active material layer were significantly different from the negative electrode and secondary battery in Comparative Example 1 in which the coating layer containing the N-type organic active material was not formed. It can be confirmed that it has an excellent level of life performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 음극 집전체; 상기 음극 집전체의 적어도 일면에 배치되고, 음극 활물질을 포함하는 음극 활물질층; 및 N-형 유기 활물질을 포함하는 코팅층;을 포함하고, 상기 음극 활물질층은 적어도 일 측에 구획된 경사부 및 상기 경사부를 제외하여 구획되는 평탄부를 포함하고, 상기 경사부는 상기 음극 집전체의 표면을 향하여 경사를 가지고, 상기 코팅층은 상기 경사부의 적어도 일부에 배치되는 음극을 제공한다.

Description

음극 및 이를 포함하는 이차전지
관련출원과의 상호인용
본 출원은 2022년 4월 15일 자 한국 특허 출원 제10-2022-0046986호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 음극 및 이를 포함하는 이차전지에 관한 것이다.
최근 정보사회의 발달로 인한 개인 IT 디바이스와 전산망이 발달되고 이에 수반하여 전반적인 사회의 전기에너지에 대한 의존도가 높아지면서, 전기 에너지를 효율적으로 저장하고 활용하기 위한 전지 기술 개발이 요구되고 있다.
특히, 환경 문제의 해결, 지속 가능한 순환형 사회의 실현에 대한 관심이 대두되면서, 리튬 이온 전지로 및 전기 이중층 커패시터 등의 축전 디바이스의 연구가 광범위하게 행해지고 있다. 이중, 리튬 이차전지는 전지 기술 중에서도 이론적으로 에너지 밀도가 가장 높은 전지 시스템으로 각광을 받고 있다.
상기 리튬 이차전지로는 일반적으로 양극, 음극, 상기 양극 및 음극 사이에 개재되는 분리막, 전해질, 유기 용매 등을 포함한다. 또한, 양극 및 음극은 집전체 상에 양극 활물질 또는 음극 활물질을 포함하는 활물질층이 형성될 수 있다.
이중에서도 상기 음극 활물질층은 음극 활물질 등을 음극 슬러리 형성용 용매에 첨가하여 제조된 음극 슬러리를 음극 집전체에 도포, 건조 및 압연하여 제조되는 것이 일반적이다. 이때 음극 활물질층은 음극 슬러리의 유체 특성 상 말단부가 경사를 형성하게 될 우려가 있고, 이 경우 음극과 분리막의 접착력 저하를 야기하고, 경사진 말단부가 이에 대면하는 양극으로부터 충분히 리튬을 받아들이지 못하여 리튬이 석출되는 문제가 있다. 또한, 이러한 음극의 경사진 말단부에 의해 전해액의 분극 현상이 발생하여 저항이 증가하고 과전압이 형성되는 문제가 발생하며, 이는 양극 활물질의 전이금속 용출, 전해액 부반응의 가속화 문제를 발생시켜 셀 성능 저하를 발생시키는 문제가 있다.
한국공개특허 제10-2021-0114376호는 리튬 전지용 전극, 이를 포함하는 리튬 전지, 및 상기 리튬 전지의 제조방법에 대해 개시하지만, 전술한 문제에 대한 대안을 제시하지 못하였다.
[선행기술문헌]
[특허문헌]
한국공개특허 제10-2021-0114376호
본 발명의 일 과제는 음극 경사부에 N-형 유기 활물질(Negative-type organic active material)을 포함하는 코팅층을 형성함으로써, 음극과 분리막 사이의 접착력을 향상시키며, 음극 경사부의 과전압 형성을 억제할 수 있고, 리튬 석출을 방지하여 셀 성능, 구체적으로 셀의 충방전 효율 및 수명 성능을 효과적으로 향상시킬 수 있는 음극을 제공하는 것이다.
또한, 본 발명의 다른 과제는 전술한 음극을 포함하는 이차전지를 제공하는 것이다.
본 발명은 음극 집전체; 상기 음극 집전체의 적어도 일면에 배치되고, 음극 활물질을 포함하는 음극 활물질층; 및 N-형 유기 활물질을 포함하는 코팅층;을 포함하고, 상기 음극 활물질층은 적어도 일 측에 구획된 경사부 및 상기 경사부를 제외하여 구획되는 평탄부를 포함하고, 상기 경사부는 상기 음극 집전체의 표면을 향하여 경사를 가지고, 상기 코팅층은 상기 경사부의 적어도 일부에 배치되는 음극을 제공한다.
또한, 본 발명은 전술한 음극; 상기 음극에 대면하는 양극; 상기 음극 및 상기 양극 사이에 개재된 분리막; 및 전해질;을 포함하는 리튬 이차전지를 제공한다.
본 발명에 따른 음극은 음극 집전체 표면을 향하여 경사진 경사부를 포함하는 음극 활물질층 및 상기 경사부의 적어도 일부에 배치되는 코팅층을 포함하며, 상기 코팅층이 N-형 유기 활물질을 포함하는 것을 특징으로 한다. 상기 N-형 유기 활물질은 이의 구조적 특성에 따라 라디칼을 제공할 수 있으며, 이러한 라디칼 존재로 인해 산화 및 환원 반응을 통한 리튬 이온의 삽입 및 탈리를 가능케 할 수 있다. 상기 코팅층을 통해, 음극 경사부의 경사짐으로 인해 발생되는 전해액 농도 분극에 의한 과전압을 방지하고, 전해액 부반응에 따른 저항증가, 음극 경사부에 대면하는 양극의 리튬을 충분히 받아들이지 못해 발생되는 리튬 석출 문제를 억제함으로써, 음극 및 이를 포함하는 리튬 이차전지의 충방전 효율 및 수명 특성이 향상될 수 있다.
도 1은 본 발명의 음극을 구체적으로 설명하기 위한 개략적인 측면도이다.
도 2는 본 발명의 음극을 구체적으로 설명하기 위한 개략적인 평면도이다.
도 3는 실시예 1 및 비교예 1의 음극에 있어서, 로타리 캘리퍼를 이용한 두께 프로파일 그래프이다.
도 4은 실시예 1 내지 3 및 비교예 1의 이차전지의 사이클 용량 유지율 측정 그래프이다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
또한, 본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
본 명세서에서 평균 입경(D50)은 입자의 입경 분포 곡선에 있어서, 체적 누적량의 50%에 해당하는 입경으로 정의할 수 있다. 상기 평균 입경(D50)은 예를 들어, 레이저 회절법(laser diffraction method)을 이용하여 측정할 수 있다. 상기 레이저 회절법은 일반적으로 서브미크론(submicron) 영역에서부터 수 mm 정도의 입경의 측정이 가능하며, 고 재현성 및 고 분해성의 결과를 얻을 수 있다.
이하, 도면을 참조하여 본 발명을 상세히 설명한다. 구체적으로, 도 1은 본 발명의 음극을 설명하기 위한 개략적인 측면도이다. 또, 도 2는 본 발명의 음극을 설명하기 위한 개략적인 평면도이다. 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략할 수 있다.
음극
본 발명은 음극(10)을 제공한다. 구체적으로 상기 음극(10)은 리튬 이차전지용 음극일 수 있다.
본 발명에 따른 음극(10)은 음극 집전체(100); 상기 음극 집전체(100)의 적어도 일면에 배치되고, 음극 활물질을 포함하는 음극 활물질층(200); 및 N-형 유기 활물질을 포함하는 코팅층(300a, 300b);을 포함하고, 상기 음극 활물질층(200)은 적어도 일 측에 구획된 경사부(210a, 210b) 및 상기 경사부(210a, 210b)를 제외하여 구획되는 평탄부(220)를 포함하고, 상기 경사부(210a, 210b)는 상기 음극 집전체(100)의 표면을 향하여 경사를 가지고, 상기 코팅층(300a, 300b)은 상기 경사부(210a, 210b)의 적어도 일부에 배치되는 것을 특징으로 한다.
일반적으로, 음극에 포함되는 음극 활물질층은 음극 활물질 등을 음극 슬러리 형성용 용매에 첨가하여 제조된 음극 슬러리를 음극 집전체에 도포, 건조 및 압연하여 제조하는 것이 일반적이다. 이때, 상기 음극 슬러리는 유체의 특성을 가지므로, 형성된 음극 활물질층은 경사부 또는 말단부가 음극 집전체의 표면을 향하여 경사를 형성하게 된다. 이러한 경사를 갖는 경사부에는 음극 활물질층이 충분히 로딩된 것이 아니므로 이에 대면하는 양극으로부터 이동된 리튬 이온이 충분히 삽입될 수 없어 리튬이 외부로 석출되는 문제를 발생시킨다. 또한, 이러한 음극의 경사진 말단부에 의해 전해액의 분극 현상이 발생하여 저항이 증가하고 과전압이 형성되는 문제가 발생하며, 이는 양극 활물질의 전이금속 용출, 전해액 부반응의 가속화 문제를 발생시켜 셀 성능 저하를 발생시키는 문제가 있다
이러한 문제를 해결하기 위하여, 본 발명에 따른 음극은 음극 집전체 표면을 향하여 경사진 경사부를 포함하는 음극 활물질층 및 상기 경사부의 적어도 일부에 배치되는 코팅층을 포함하며, 상기 코팅층이 N-형 유기 활물질을 포함하는 것을 특징으로 한다. 상기 N-형 유기 활물질은 이의 구조적 특성에 따라 라디칼을 제공할 수 있으며, 이러한 라디칼 존재로 인해 산화 및 환원 반응에 따른 리튬 이온의 삽입 및 탈리를 가능케 할 수 있다. 이러한 코팅층을 통해, 음극 경사부의 경사짐으로 인해 발생되는 전해액 농도 분극에 의한 과전압을 방지하고, 전해액 부반응에 따른 저항증가, 음극 경사부에 대면하는 양극의 리튬을 충분히 받아들이지 못해 발생되는 리튬 석출 문제를 억제함으로써, 음극 및 이를 포함하는 리튬 이차전지의 충방전 효율 및 수명 특성이 향상될 수 있다.
상기 음극 집전체(100)는 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되지 않는다. 구체적으로 상기 음극 집전체(100)는 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 및 알루미늄-카드뮴 합금으로 이루어진 군에서 선택된 적어도 1종을 포함할 수 있으며, 구체적으로 구리를 포함할 수 있다.
상기 음극 집전체(100)는 통상적으로 3 내지 500㎛의 두께를 가질 수 있다.
상기 음극 집전체(100)는 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있다. 예를 들어, 상기 음극 집전체는 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 음극 활물질층(200)은 상기 음극 집전체(100)의 적어도 일면에 배치된다. 구체적으로, 상기 음극 활물질층(200)은 상기 음극 집전체(100)의 일면 또는 양면에 배치될 수 있다.
상기 음극 활물질층은 적어도 일 측에 구획된 경사부(210a, 210b) 및 상기 경사부(210a, 210b)를 제외하여 구획되는 평탄부(220)을 포함할 수 있다. 본 명세서에서, 상기 경사부(210a, 210b) 및 상기 평탄부(220)는 도 1에 도시된 바와 같이 후술하는 코팅층(300a, 300b)의 형성 위치를 특정하기 위해 추상적으로 구획된 것일 수 있다. 예를 들면, 상기 경사부(210a, 210b) 및 상기 평탄부(220)는 동일한 조성을 가질 수 있거나, 동일한 음극 슬러리로 제조된 것일 수 있다.
본 명세서에서, “상기 음극 활물질층의 적어도 일측”이란 상기 음극 활물질층의 폭 방향(예를 들어, 도 1 및 도 2의 화살표 W 방향)의 적어도 일 측을 의미하는 것일 수 있다. 이때, “폭 방향”은 상기 음극 활물질층의 코팅 방향과 직각을 이루는 방향을 의미하는 것일 수 있다. 상기 “폭 방향”은 상기 음극 활물질층의 코팅 방향인 “길이 방향(예를 들어, 도 2의 화살표 L 방향)”과 반대되는 개념으로 이해할 수 있다.
상기 경사부는 상기 음극 활물질층의 적어도 일 측에 구획될 수 있다. 구체적으로, 상기 경사부는 상기 음극 활물질층의 일 측에 구획되거나 양 측에 구획될 수 있다. 도 1 및 도 2에서, 상기 경사부(210a, 210b)가 음극 활물질층의 양 측에 구획된 것으로 도시되었으나, 이에 제한되지 않으며, 음극 활물질층이 하나의 경사부와 그 외의 평탄부로 구획될 수도 있다.도 1에 도시된 바와 같이, 상기 경사부(210a, 210b)는 상기 음극 집전체(100)의 표면을 향하여 경사를 가지는 것일 수 있다. 구체적으로, 상기 경사부(210a, 210b)는 상기 음극 집전체(100)의 표면을 향하여 연속적으로 경사를 가지는 것일 수 있다. 이러한 상기 경사부(210a, 210b)의 경사짐은 예를 들면, 음극 활물질층의 제조를 위한 음극 슬러리의 도포 시, 음극 슬러리의 유체 특성에 따라 형성된 것일 수 있다. 이러한 경사부의 경사짐은 이에 대면하는 양극으로부터 이동된 리튬 이온의 불충분한 삽입을 초래하여 충방전 효율 저하 및 수명 특성 저하 문제를 발생시킬 우려가 있지만, 후술하는 코팅층(300a, 300b)의 존재로 인해 이러한 문제가 방지되고 음극의 용량, 충방전 효율 및 수명 특성의 향상 효과를 달성할 수 있다.
상기 경사부(210a, 210b)의 경사 각도, 폭 등은 예를 들면, 음극 활물질층 제조를 위한 음극 슬러리의 점도, 도포 조건, 건조 조건 등에 의해 정하여 질 수 있고, 특별히 제한되지 않는다.
상기 평탄부(200)은 음극 활물질층의 상기 경사부(210a, 210b)를 제외하여 구획된 영역일 수 있다. 구체적으로, 상기 평탄부(200)은 실질적으로 경사를 가지지 않거나, 실질적으로 평탄면을 형성할 수 있다. 상기 평탄부(200)는 상기 음극 집전체(100)의 표면을 향하여 경사를 갖는 경사부(210a, 210b)와 구별하기 위한 개념일 뿐이고, 전체적으로 완전히 동일한 두께 또는 높이를 갖는 것은 아닐 수 있다.
상기 음극 활물질층(200)은 음극 활물질을 포함할 수 있다.
상기 음극 활물질은 리튬의 삽입/탈리가 가능한 물질로서, 탄소계 활물질, 및 (준)금속계 활물질 중에서 선택된 적어도 1종을 포함할 수 있다.
상기 탄소계 활물질은 인조 흑연, 천연 흑연, 하드카본, 소프트카본, 카본 블랙, 그래핀 및 섬유상 탄소로 이루어진 군으로부터 선택되는 적어도 1종을 포함할 수 있다.
상기 (준)금속계 활물질은 Li, Cu, Ni, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al, V, Ti, 및 Sn으로 이루어진 군에서 선택된 적어도 1종의 (준)금속; Cu, Ni, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al, V, Ti, 및 Sn으로 이루어진 군에서 선택된 적어도 1종의 (준)금속과 리튬의 합금; Cu, Ni, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al, V, Ti, 및 Sn으로 이루어진 군에서 선택된 적어도 1종의 (준)금속과 탄소의 복합체; 및 Li, Cu, Ni, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al, V, Ti, 및 Sn으로 이루어진 군에서 선택된 적어도 1종의 (준)금속의 산화물;으로 이루어진 군에서 선택된 적어도 1종을 포함할 수 있다.
보다 구체적으로 상기 (준)금속계 활물질은 SiOx(0≤x<2) 및 실리콘-탄소 복합체 중에서 선택된 적어도 1종의 실리콘계 활물질을 포함할 수 있다. 상기 실리콘계 활물질은 우수한 용량을 가지므로, 전술한 음극의 용량 향상 효과를 더욱 바람직하게 구현할 수 있다.
상기 음극 활물질층은 상기 음극 활물질을 60중량% 이상, 구체적으로 60중량% 내지 99중량%로 포함할 수 있다.
상기 음극 활물질층(200)은 상기 음극 활물질과 함께, 음극 바인더, 음극 도전재 및 중점제 중에서 선택된 적어도 1종을 포함할 수 있다.
상기 음극 바인더는 상기 음극 활물질층 및 상기 음극 집전체와의 접착력을 향상시켜 전지의 성능을 향상시키기 위하여 사용되는 것으로서, 예를 들어, 폴리비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐리덴플루오라이드(polyvinylidenefluoride, PVDF), 폴리아크릴로니트릴(polyacrylonitrile), 폴리메틸메타크릴레이트(polymethylmethacrylate), 폴리비닐알코올, 카르복시메틸셀룰로오스(CMC), 전분, 히드록시프로필셀룰로오스, 재생 셀룰로오스, 폴리비닐피롤리돈, 폴리테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 폴리아크릴산, 에틸렌-프로필렌-디엔 모노머(EPDM), 술폰화 EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 및 이들의 수소를 Li, Na 또는 Ca 등으로 치환된 물질로 이루어진 군에서 선택되는 적어도 어느 하나를 포함할 수 있으며, 또한 이들의 다양한 공중합체를 포함할 수 있다.
상기 음극 바인더는 상기 음극 활물질층에 0.5중량% 내지 20중량%으로 포함될 수 있다.
상기 음극 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 파네스 블랙, 램프 블랙, 서멀 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 탄소 나노 튜브 등의 도전성 튜브; 플루오로카본; 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스커; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
상기 음극 도전재는 상기 음극 활물질층에 0.5중량% 내지 20중량%으로 포함될 수 있다.
상기 증점제로는 종래 리튬 이차전지에 사용되는 모든 증점제가 사용될 수 있으며, 한 예로는 카르복시메틸셀룰로오즈(CMC) 등이 있다.
상기 음극 집전체의 표면을 기준으로 하는 상기 음극 활물질층의 높이 또는 두께는 10㎛ 내지 300㎛, 바람직하게는 50㎛ 내지 150㎛일 수 있다.
상기 코팅층(300a, 300b)은 상기 경사부(210a, 210b)의 적어도 일부에 배치될 수 있다. 구체적으로, 상기 코팅층(300a, 300b)은 상기 경사부(210a, 210b)의 경사면을 따라, 상기 경사부(210a, 210b) 상에 배치될 수 있다.
상기 코팅층(300a, 300b)은 N-형 유기 활물질(Negative-type organic electrode material)을 포함한다.
본 명세서에서, 유기 활물질(Organic electrode material)은 유기 화합물로서 가역적인 산화 및 환원 반응이 가능한 물질로 정의될 수 있다. 이때, 유기 활물질의 전기화학적인 활성(electrochemical activity)는 전자 수송 및 전하 안정에 기여할 수 있으며, 전기활성을 갖는 결합(bond), 관능기(functional group) 또는 공액 구조(conjugated structure)에 의해, 전해액에 포함된 리튬 염의 리튬 양이온 또는 이의 반대 음이온과의 결합이 가역적으로 형성될 수 있다. 한편, 유기 활물질은 산화 및 환원 반응 시의 역할에 따라, 전자를 제공할 수 있는 N-형 유기 활물질(Negative-type organic electrode material); 전자를 받아들일 수 있는 P-형 유기 활물질(Positive-type organic electrode material); 또는 전자를 제공하거나 받아들일 수 있는 B-형 유기 활물질(Bipolar-type organic electrode material)로 분류될 수 있다.
이때, 상기 N-형 유기 활물질은 화합물 구조 내의 원소, 관능기 및/또는 화합물 구조의 공명 구조(resonance structure)에 의해 라디칼이 형성될 수 있으며, 이러한 라디칼을 리튬 이온(Li+)에 제공할 수 있다. 상기 N-형 유기 활물질은 라디칼을 리튬 이온(Li+)에 제공하여 산화 및 환원 반응을 수행할 수 있으며, 이에 따라 리튬 이온과 N-형 유기 활물질은 가역적인 결합 구조를 형성할 수 있다. 이를 통해 상기 N-형 유기 활물질을 포함하는 코팅층은 산화 및 환원 반응에 따라 리튬 이온의 삽입 및 탈리가 가능할 수 있다.
상기 코팅층(300a, 300b)은 상기 음극 활물질층(200)의 경사부(210a, 210b)의 적어도 일부에 배치되며, N-형 유기 활물질을 포함하므로, 상기 경사부(210a, 210b)에 대면하는 양극으로부터 리튬 이온을 용이하게 받아들일 수 있다. 이에 따라, 본 발명에 따른 음극은 코팅층 부존재에 의해 발생될 수 있는 리튬 석출 문제, 경사부(210a, 210b)와 이에 대면하는 양극 사이의 공간에 의해 발생되는 전해액 소모, 저항 증가 및 과전압 형성을 억제하여, 음극의 충방전 효율 및 수명 성능이 현저한 수준으로 향상될 수 있다.
상기 코팅층(300a, 300b)은 상기 음극 활물질층(200)의 경사부(210a, 210b)의 적어도 일부에 배치될 수 있고, 구체적으로 상기 음극 활물질층(200)의 경사부(210a, 210b)의 전체를 덮도록 배치될 수 있다. 또는 상기 코팅층(300a, 300b)은 상기 음극 활물질층(200)의 경사부(210a, 210b)의 전체와 상기 음극 집전체(100)의 무지부(110a, 110b)의 적어도 일부를 덮도록 배치될 수도 있다.
본 발명에 있어서, 상기 음극 집전체(100) 표면을 기준으로 상기 코팅층(300a, 300b)의 최대 높이(H2)는 상기 음극 활물질층의 최대 높이(H1) 이하일 수 있다. 구체적으로 상기 음극 집전체 표면을 기준으로 상기 코팅층의 최대 높이(H2)는 상기 음극 활물질층의 최대 높이(H1)와 같을 수 있다. 즉, 상기 경사부(210a, 210b) 상에 형성 또는 배치된 코팅층(300a, 300b)과 음극 집전체(100) 표면과의 최대 거리가 음극 활물질층(200)과 음극 집전체(100) 표면과의 최대 거리를 초과하지 않을 수 있으며, 이에 따라 전체적인 음극의 평탄성을 구현하여 음극의 구조적 안정성이 향상될 수 있고, 경사부(210a, 210b)와 이에 대면하는 양극 사이의 리튬 삽입 및 탈리가 원활하게 이루어질 수 있다.
상기 코팅층(300a, 300b)의 적어도 일부는 상기 음극 집전체(100) 표면을 기준으로 상기 음극 활물질층의 최대 높이(H1)와 동일한 높이를 갖는 평탄면을 가질 수 있다.
본 명세서에서, 상기 N-형 유기 활물질은 라디칼을 리튬 이온에 제공할 수 있는 유기 화합물이거나, 상기 유기 화합물의 금속 염일 수 있다.
구체적으로, 상기 N-형 유기 활물질은 카보닐계 화합물, 이민계 화합물, 니트릴계 화합물, 유기 황계 화합물, 아조계 화합물로 이루어진 군에서 선택된 적어도 1종을 포함할 수 있고, 구체적으로 카보닐계 화합물을 포함할 수 있다. 상기 N-형 유기 활물질은 전술한 화합물들의 금속 염, 보다 구체적으로 전술한 화합물들의 리튬 염일 수도 있다. 상기 물질들에 포함되는 카보닐기, 이민기, 니트릴기, 황, 아조기 등의 관능기; 또는 상기 관능기와 이에 연결된 공액 구조(conjugated structure);에 의해 라디칼을 리튬 이온에 제공할 수 있으므로, 코팅층에 의한 리튬 이온의 삽입 및 탈리가 원활하게 이루어질 수 있다.
구체적으로, 상기 N-형 유기 활물질은 p-벤조퀴논(p-benzoquinone), 안트라퀴논(anthraquinone), 디리튬 테레프탈레이트(dilithium terephthalate), 2,5-디하이드록시 테레프탈레이트의 테트라 리튬 염(tetralithium salt of 2,5-dihydroxy terephthalate), 7,7,8,8-테트라시아노퀴노디메탄(7,7,8,8-tetracyanoquinodimethane, TCNQ), 페닐아조 벤조산의 리튬 염(Phenylazo benzoic acid lithium salt, PBALS), 1,4,5,8-나프탈렌테트라카르복실릭 디안하이드라이드(1,4,5,8-Naphthalenetetracarboxylic dianhydride), 폴리도파민(polydopamine), 페나진(phenazine) 및 poly(1,6-dihydropyrazino[2,3g]quinoxaline-2,3,8-triyl-7-(2H)-ylidene-7,8-dimethylidene) (PQL) 및 Poly[chalcogenoviologen-alt-triphenylamine](칼코겐 원소로는 텔루륨(Tellurium)일 수 있음)로 이루어진 군에서 선택된 적어도 1종을 포함할 수 있다.
상기 N-형 유기 활물질은 상기 코팅층(300a, 300b)에 15중량% 내지 95중량%, 구체적으로 40중량% 내지 70중량%, 보다 더 구체적으로 50중량% 내지 65중량%로 포함될 수 있으며, 상기 범위에 있을 때 리튬 이온과의 산화, 환원 반응 사이트를 충분히 확보하면서, N-형 유기 활물질의 과량 함유에 따른 전자 전도도 저하를 방지할 수 있다는 측면에서 바람직하다
상기 코팅층(300a, 300b)은 상기 N-형 유기 활물질과 함께, 바인더를 더 포함할 수 있다. 상기 바인더는 코팅층과 음극 활물질층 또는 음극 집전체의 접착력 향상을 위해 사용될 수 있다.
상기 바인더는 예를 들어, 폴리비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐리덴플루오라이드(polyvinylidenefluoride, PVDF), 폴리아크릴로니트릴(polyacrylonitrile), 폴리메틸메타크릴레이트(polymethylmethacrylate), 폴리비닐알코올, 카르복시메틸셀룰로오스(CMC), 전분, 히드록시프로필셀룰로오스, 재생 셀룰로오스, 폴리비닐피롤리돈, 폴리테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 폴리아크릴산, 에틸렌-프로필렌-디엔 모노머(EPDM), 술폰화 EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 및 이들의 수소를 Li, Na 또는 Ca 등으로 치환된 물질로 이루어진 군에서 선택되는 적어도 어느 하나를 포함할 수 있으며, 또한 이들의 다양한 공중합체를 포함할 수 있다.
상기 바인더는 상기 코팅층(300a, 300b)에 1중량% 내지 10중량%, 구체적으로 3중량% 내지 10중량%로 포함될 수 있다.
상기 코팅층(300a, 300b)은 도전성의 향상을 위해 도전재를 더 포함할 수 있다.
상기 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 파네스 블랙, 램프 블랙, 서멀 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 탄소 나노 튜브 등의 도전성 튜브; 플루오로카본; 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스커; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
상기 도전재는 상기 코팅층에 3중량% 내지 80중량%, 구체적으로 25중량% 내지 55중량%, 보다 구체적으로 30중량% 내지 45중량%로 포함될 수 있다.
상기 코팅층에 도전재가 더 포함될 경우, 상기 도전재 중량에 대한 상기 N-형 유기 활물질의 중량 비율은 0.5 내지 3.5, 구체적으로 0.7 내지 2.8, 보다 구체적으로 1.1 내지 2.2일 수 있으며, 상기 범위에 있을 때, 상기 범위에 있을 때 리튬 이온과의 산화, 환원 반응 사이트를 충분히 확보하면서, 도전성이 향상된 코팅층의 구현이 가능하다는 측면에서 바람직하다.
한편, 상기 코팅층에 N-형 유기 활물질과 함께 바인더 및/도전재를 포함할 경우, 상기 코팅층은 상기 바인더 및/도전재를 상기 N-형 유기 활물질의 코팅층 중량에 대한 중량 백분율의 잔량에 해당하는 중량 백분율(100중량% - N-유기 활물질의 코팅층 중량에 대한 중량 백분율)로 포함될 수 있다.
본 발명에 있어서, 상기 음극 집전체는 무지부(110a, 110b)를 포함할 수 있다. 상기 무지부(110a, 110b)는 음극 집전체 중 표면에 음극 활물질층이 배치되지 않은 부분을 의미하는 것일 수 있다. 도 1 및 도 2에 도시된 바와 같이, 상기 무지부(110a, 110b) 표면의 적어도 일부에는 상기 코팅층(300a, 300b)이 배치될 수 있다. 또, 상기 무지부(110a, 110b)의 표면에는 상기 음극 활물질층 및 상기 코팅층이 배치되지 않을 수도 있다.
구체적으로, 도 1 및 도 2에 도시된 바와 같이 상기 음극 집전체는 적어도 일 측에 위치하며 상기 음극 활물질층(200)이 배치되지 않은 무지부(110a, 110b)를 포함하고, 상기 경사부(210a, 210b)는 상기 무지부(110a, 110b)와 인접하고, 상기 평탄부(220)는 상기 무지부(110a, 110b)와 이격될 수 있다.
본 명세서에서, “상기 음극 집전체의 적어도 일 측”이란 상기 음극 집전체의 폭 방향(예를 들어, 도 2의 화살표 W 방향)의 적어도 일 측을 의미하는 것일 수 있다. 이때, “폭 방향”은 상기 음극 활물질층의 코팅 방향과 직각을 이루는 방향을 의미하는 것일 수 있다. 상기 “폭 방향”은 상기 음극 활물질층의 코팅 방향인 “길이 방향(예를 들어, 도 2의 화살표 L 방향)”과 반대되는 개념으로 이해할 수 있다.
상기 무지부는 상기 음극 집전체의 적어도 일 측에 위치할 수 있다. 구체적으로, 상기 무지부는 상기 음극 집전체의 일 측에 구획되거나 양 측에 위치할 수 있다. 도 1 및 도 2에서, 상기 무지부(110a, 110b)가 음극 집전체의 양 측에 위치하는 것으로 도시되었으나, 이에 제한되지 않으며 음극 집전체의 일 측에만 위치할 수도 있다.
또한, 본 발명은 전술한 음극의 제조방법을 제공한다.
구체적으로, 본 발명의 음극의 제조방법은 음극 집전체 상에 음극 활물질 및 음극 슬러리 형성용 용매를 포함하는 음극 슬러리를 도포하는 단계; 및 상기 도포된 음극 슬러리의 경사부에 코팅층을 형성하는 단계;를 포함할 수 있다.
상기 음극 슬러리는 음극 활물질과 함께, 바인더 및 도전재 중에서 선택된 적어도 1종을 더 포함할 수 있다.
상기 음극 슬러리 형성용 용매는 N-메틸피롤리돈(NMP), 증류수, 에탄올, 메탄올 및 이소프로필 알코올로 이루어진 군에서 선택된 적어도 1종, 바람직하게는 증류수를 포함할 수 있다.
상기 코팅층의 형성은 상기 음극 슬러리의 도포와 동시에 수행되거나, 상기 음극 슬러리의 도포 후 수행될 수 있다.
상기 코팅층의 형성이 상기 음극 슬러리의 도포 후 수행될 경우, 상기 코팅층의 형성은 상기 음극 슬러리의 도포 후 건조 전 수행되거나, 상기 음극 슬러리의 도포 및 건조 후 수행될 수 있다.
상기 코팅층의 형성은 상기 N-형 유기 활물질; 또는 상기 N-형 유기 활물질 및 상기 바인더;를 용매에 첨가하여 코팅층 조성물을 제조하고, 상기 코팅층 조성물을 상기 도포된 음극 슬러리의 경사부에 도포하고 건조함에 의할 수 있다.
상기 코팅층 조성물에 사용되는 용매로는 물, N-메틸피롤리돈(NMP) 등을 들 수 있으나, 이에 제한되는 것은 아니다.
상기 코팅층 조성물의 도포는 그 방법에 특별한 제한이 없으며, 스프레이 코팅(Spray coating), 슬롯 다이 코팅(Slot die coating), 그라비아 코팅(Gravure coating), 커튼 코팅(Curtain coating) 등일 수 있다. 한편, 코팅층 조성물은 미리 필름으로 제조된 뒤, 도포된 음극 슬러리의 경사부에 상기 필름을 전사시키는 방법으로 형성될 수도 있다.
이차전지
또한, 본 발명은 전술한 음극을 포함하는 이차전지를 제공한다. 상기 이차전지는 리튬 이차전지일 수 있다.
구체적으로, 상기 이차전지는 전술한 음극; 상기 음극에 대향하는 양극; 상기 음극 및 양극 사이에 개재되는 분리막; 및 전해질;을 포함한다.
상기 양극은 양극 집전체, 및 상기 양극 집전체 상에 형성되는 양극 활물질층을 포함할 수 있다.
상기 양극 집전체는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다.
상기 양극 집전체는 일반적으로 3㎛ 내지 500㎛의 두께를 가질 수 있다.
상기 양극 활물질층은 상기 양극 집전체 상에 형성되고, 양극 활물질을 포함한다.
상기 양극 활물질은 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물로서, 구체적으로는 코발트, 망간, 니켈 또는 알루미늄과 같은 1종 이상의 금속과 리튬을 포함하는 리튬 복합금속 산화물을 포함할 수 있다. 보다 구체적으로, 상기 리튬 복합금속 산화물은 리튬-망간계 산화물(예를 들면, LiMnO2, LiMn2O4 등), 리튬-코발트계 산화물(예를 들면, LiCoO2 등), 리튬-니켈계 산화물(예를 들면, LiNiO2 등), 리튬-니켈-망간계 산화물(예를 들면, LiNi1-YMnYO2(여기에서, 0<Y<1), LiMn2-zNizO4(여기에서, 0<Z<2) 등), 리튬-니켈-코발트계 산화물(예를 들면, LiNi1-Y1CoY1O2(여기에서, 0<Y1<1) 등), 리튬-망간-코발트계 산화물(예를 들면, LiCo1-Y2MnY2O2(여기에서, 0<Y2<1), LiMn2-z1Coz1O4(여기에서, 0<Z1<2) 등), 리튬-니켈-망간-코발트계 산화물(예를 들면, Li(NipCoqMnr1)O2(여기에서, 0<p<1, 0<q<1, 0<r1<1, p+q+r1=1) 또는 Li(Nip1Coq1Mnr2)O4(여기에서, 0<p1<2, 0<q1<2, 0<r2<2, p1+q1+r2=2) 등), 또는 리튬-니켈-코발트-전이금속(M) 산화물 (예를 들면, Li(Nip2Coq2Mnr3MS2)O2(여기에서, M은 Al, Fe, V, Cr, Ti, Ta, Mg 및 Mo로 이루어지는 군으로부터 선택되고, p2, q2, r3 및 s2는 각각 독립적인 원소들의 원자분율로서, 0<p2<1, 0<q2<1, 0<r3<1, 0<s2<1, p2+q2+r3+s2=1이다) 등) 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 화합물이 포함될 수 있다. 이중에서도 전지의 용량 특성 및 안정성을 높일 수 있다는 점에서 상기 리튬 복합금속 산화물은 LiCoO2, LiMnO2, LiNiO2, 리튬 니켈망간코발트 산화물(예를 들면, Li(Ni0.6Mn0.2Co0.2)O2, Li(Ni0.5Mn0.3Co0.2)O2, 또는 Li(Ni0.8Mn0.1Co0.1)O2 등), 또는 리튬 니켈코발트알루미늄 산화물(예를 들면, Li(Ni0.8Co0.15Al0.05)O2 등) 등일 수 있다.
상기 양극 활물질은 양극 활물질층 전체 중량을 기준으로 80 중량% 내지 99중량%로 포함될 수 있다.
상기 양극 활물질층은 전술한 양극 활물질 외에, 선택적으로 바인더 및 도전재로 이루어진 군에서 선택된 적어도 1종의 첨가제를 더 포함할 수 있다.
상기 바인더는 활물질과 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 양극 활물질층의 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리비닐리덴플루오라이드, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 폴리테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 폴리머(EPDM), 술폰화 EPDM, 스티렌-부타디엔 고무, 불소 고무, 다양한 공중합체 등을 들 수 있다.
상기 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 그라파이트; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼니스 블랙, 램프 블랙, 서멀 블랙 등의 탄소계 물질; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다. 시판되고 있는 도전재의 구체적인 예로는 아세틸렌 블랙 계열인 쉐브론 케미칼 컴퍼니(Chevron Chemical Company)나 덴카 블랙(Denka Singapore Private Limited), 걸프 오일 컴퍼니(Gulf Oil Company) 제품 등), 케트젠블랙(Ketjenblack), EC 계열(아르막 컴퍼니(Armak Company) 제품), 불칸(Vulcan) XC-72(캐보트 컴퍼니(Cabot Company) 제품) 및 수퍼(Super) P(Timcal 사 제품) 등이 있다.
상기 도전재는 양극 활물질층의 전체 중량을 기준으로 1 내지 30 중량%로 포함될 수 있다.
상기 양극 활물질층은 양극 활물질 및 선택적으로 바인더 및/또는 도전재를 포함하는 첨가제를 용매에 첨가하여 양극 슬러리를 제조한 후, 상기 양극 집전체 상에 도포, 압연, 건조하여 제조될 수 있다.
상기 용매는 NMP(N-methyl-2-pyrrolidone) 등의 유기용매를 포함할 수 있으며, 상기 양극 활물질, 및 선택적으로 바인더 및 도전재 등을 포함할 때 바람직한 점도가 되는 양으로 사용될 수 있다. 예를 들면, 양극 활물질, 및 선택적으로 바인더 및 도전재를 포함하는 고형분의 농도가 50 중량% 내지 95 중량%, 바람직하게 70 중량% 내지 90 중량%가 되도록 포함될 수 있다.
상기 리튬 이차전지에 있어서, 분리막은 음극과 양극을 분리하고 리튬 이온의 이동 통로를 제공하는 것으로, 통상 리튬 이차전지에서 분리막으로 사용되는 것이라면 특별한 제한 없이 사용 가능하며, 특히 전해질의 이온 이동에 대하여 저저항이면서 전해액 함습 능력이 우수한 것이 바람직하다. 구체적으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름 또는 이들의 2층 이상의 적층 구조체가 사용될 수 있다. 또 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포가 사용될 수도 있다. 또, 내열성 또는 기계적 강도 확보를 위해 세라믹 성분 또는 고분자 물질이 포함된 코팅된 분리막이 사용될 수도 있으며, 선택적으로 단층 또는 다층 구조로 사용될 수 있다.
또, 본 발명에서 사용되는 전해질로는 리튬 이차전지 제조 시 사용 가능한 유기계 액체 전해질, 무기계 액체 전해질, 고체 고분자 전해질, 겔형 고분자 전해질, 고체 무기 전해질, 용융형 무기 전해질 등을 들 수 있으며, 이들로 한정되는 것은 아니다.
구체적으로, 상기 전해질은 유기 용매 및 리튬염을 포함할 수 있다.
상기 유기 용매로는 전지의 전기 화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 할 수 있는 것이라면 특별한 제한 없이 사용될 수 있다. 구체적으로 상기 유기 용매로는, 메틸 아세테이트, 에틸 아세테이트, 감마-부티로락톤, ε-카프로락톤 등의 에스테르계 용매; 디부틸 에테르 또는 테트라히드로퓨란 등의 에테르계 용매; 시클로헥사논 등의 케톤계 용매; 벤젠, 플루오로벤젠 등의 방향족 탄화수소계 용매; 디메틸카보네이트(DMC), 디에틸카보네이트(DEC), 에틸메틸카보네이트(EMC), 에틸렌카보네이트(EC), 프로필렌카보네이트(PC) 등의 카보네이트계 용매; 에틸알코올, 이소프로필 알코올 등의 알코올계 용매; R-CN(R은 C2 내지 C20의 직쇄상, 분지상 또는 환 구조의 탄화수소기이며, 이중결합 방향 환 또는 에테르 결합을 포함할 수 있다) 등의 니트릴류; 디메틸포름아미드 등의 아미드류; 1,3-디옥솔란 등의 디옥솔란류; 또는 설포란(sulfolane)류 등이 사용될 수 있다. 이중에서도 카보네이트계 용매가 바람직하고, 전지의 충방전 성능을 높일 수 있는 높은 이온전도도 및 고유전율을 갖는 환형 카보네이트(예를 들면, 에틸렌카보네이트 또는 프로필렌카보네이트 등)와, 저점도의 선형 카보네이트계 화합물(예를 들면, 에틸메틸카보네이트, 디메틸카보네이트 또는 디에틸카보네이트 등)의 혼합물이 보다 바람직하다. 이 경우 환형 카보네이트와 사슬형 카보네이트는 약 1:1 내지 약 1:9의 부피비로 혼합하여 사용하는 것이 전해액의 성능이 우수하게 나타날 수 있다.
상기 리튬염은 리튬 이차전지에서 사용되는 리튬 이온을 제공할 수 있는 화합물이라면 특별한 제한없이 사용될 수 있다. 구체적으로 상기 리튬염은, LiPF6, LiClO4, LiAsF6, LiBF4, LiSbF6, LiAlO4, LiAlCl4, LiCF3SO3, LiC4F9SO3, LiN(C2F5SO3)2, LiN(C2F5SO2)2, LiN(CF3SO2)2, LiCl, LiI, 또는 LiB(C2O4)2 등이 사용될 수 있다. 상기 리튬염의 농도는 0.1 내지 2.0M 범위 내에서 사용하는 것이 좋다. 리튬염의 농도가 상기 범위에 포함되면, 전해질이 적절한 전도도 및 점도를 가지므로 우수한 전해질 성능을 나타낼 수 있고, 리튬 이온이 효과적으로 이동할 수 있다.
상기와 같이 본 발명에 따른 이차전지는 휴대전화, 노트북 컴퓨터, 디지털 카메라 등의 휴대용 기기, 및 하이브리드 전기자동차(hybrid electric vehicle, HEV) 등의 전기 자동차 분야 등에 유용하며, 특히 중대형 전지모듈의 구성 전지로서 바람직하게 사용될 수 있다. 따라서, 본 발명은 또한 상기와 같은 이차전지를 단위 전지로 포함하는 중대형 전지모듈을 제공한다.
이러한 중대형 전지모듈은 전기자동차, 하이브리드 전기자동차, 전력저장장치 등과 같이 고출력, 대용량이 요구되는 동력원에 바람직하게 적용될 수 있다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
실시예 및 비교예
실시예 1: 음극의 제조
음극 활물질로서 인조흑연, 도전재로서 아세틸렌 블랙, 바인더로서 스티렌 부타디엔 고무(SBR) 및 증점제로서 카르복시메틸셀룰로오스(CMC)를 용매(물) 중에 95.35:0.50:3.00:1.15의 중량비로 혼합하여 음극 슬러리를 제조하고, 이를 구리 집전체(두께: 8㎛)의 양면에 도포하고, 건조 및 압연하여 음극 활물질층을 형성하였다. 상기 음극 활물질층에는 음극 슬러리의 유체 특성에 따라 말단에 경사진 경사부가 형성되었다.
이후, 상기 음극 활물질층의 경사부에 코팅층을 형성하였다. 상기 코팅층은 N-형 유기 활물질로서 p-벤조퀴논, 도전재로서 아세틸렌 블랙 및 바인더로서 PVdF를 60:35:5의 중량비로 용매인 NMP에 첨가하여 코팅층 조성물을 제조한 후, 상기 코팅층 조성물을 상기 음극 활물질층의 경사부에 도포하고 건조함으로써 제조되었다.
상기 음극 집전체의 표면을 기준으로 한 음극 활물질층의 단면 코팅 높이(두께)는 62㎛이었다. 또한, 코팅층은 상기 음극 집전체의 표면 기준 음극 활물질층의 높이를 초과하지 않도록 제조되었다.
실시예 2: 음극의 제조
N-형 유기 활물질로서 p-벤조퀴논, 도전재로서 아세틸렌 블랙 및 바인더로서 PVdF를 40:55:5의 중량비로 NMP에 첨가하여 제조된 코팅층 조성물을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 음극을 제조하였다.
실시예 3: 음극의 제조
N-형 유기 활물질로서 p-벤조퀴논, 도전재로서 아세틸렌 블랙 및 바인더로서 PVdF를 70:25:5의 중량비로 NMP에 첨가하여 제조된 코팅층 조성물을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 음극을 제조하였다.
비교예 1: 음극의 제조
음극 활물질층의 경사부에 코팅층을 형성하지 않은 것을 제외하고는 실시예 1과 동일한 방법으로 음극을 제조하였다.
실험예 1: 로타리 캘리퍼를 이용한 두께 프로파일 평가
실시예 1 및 비교예 1에서 제조된 음극의 두께 프로파일을 로타리 캘리퍼를 이용해 평가하였다. 구체적으로, 음극의 횡방향(Transverse direction)으로 로타리 캘리퍼의 롤러 사이에 넣어 접촉식으로 두께를 측정하는 방법에 의해, 음극의 두께 프로파일을 평가했다. 그 결과를 도 3에 나타내었다.
도 3에 도시된 바와 같이, 실시예 1의 음극의 경우 비교예 1의 음극과 비교할 때, 음극 말단에 추가적인 코팅이 확인되며, 이를 통해 음극 활물질층 경사부에 코팅층이 형성된 것을 확인할 수 있다.
실험예 2: 수명 성능 평가
<이차전지의 제조>
양극 활물질로서 LiCoO2; 도전재로서 아세틸렌 블랙; 및 바인더로서 PVdF;를 N-메틸피롤리돈 용매 중에 96.5:1.5:2.0의 중량비로 용매인 NMP에 첨가하여 양극 슬러리를 제조하고, 이를 알루미늄 집전체(두께: 10㎛)에 도포한 후, 건조 및 압연하여 양극 활물질층(두께: 105㎛)을 형성하였고, 이를 양극으로 하였다.
실시예 1에 따른 음극, 및 상기 음극에 대향하는 양극, 및 상기 양극 및 상기 음극에 개재되는 분리막을 포함하는 전극 조립체를 제조하고, 이를 전지 케이스에 수납한 후, 상기 전해질을 주입하고 밀봉하여 이차전지를 제조하였다.
이때 사용된 전해질로는 에틸렌카보네이트, 프로필렌카보네이트, 에틸 프로피오네이트 및 프로필 프로피오네이트를 20:10:25:45의 중량비로 혼합한 유기 용매에 LiPF6를 1.2M의 몰 농도로 첨가한 것을 사용하였다.
실시예 2, 실시예 3 및 비교예 1의 음극을 각각 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 실시예 2, 실시예 3 및 비교예 1의 이차전지를 각각 제조하였다.
<사이클 용량 유지율 평가>
상기에서 제조된 실시예 및 비교예들의 이차전지를 25℃에서 아래 조건으로 500 사이클 충전 및 방전하여, 용량 유지율을 평가하였다. 사이클에 따른 용량 유지율 그래프를 도 4에 나타내고, 500 사이클에서의 용량 유지율을 하기 표 1에 나타내었다.
※ 충전 및 방전 조건
충전: CC/CV 모드; 2.0C; 4.48V, 0.025C cut-off
방전: CC 모드; 1.0C; 3.0V cut-off
용량 유지율(%)@500사이클
실시예 1 96.73
실시예 2 93.75
실시예 3 87.27
비교예 1 72.24
상기 표 1을 참조하면, N-형 유기 활물질을 포함하는 코팅층을 음극 활물질층의 경사부에 형성한 실시예 1 내지 3의 음극 및 이차전지는 그렇지 않은 비교예 1의 음극 및 이차전지에 비해 현저히 우수한 수준의 수명 성능을 갖는 것을 확인할 수 있다.
[부호의 설명]
10: 음극; 100: 음극 집전체; 110a, 110b: 무지부; 200: 음극 활물질층; 210a, 210b: 경사부; 220: 평탄부; 300a, 300b: 코팅층; H1: 음극 집전체 표면을 기준으로 하는 음극 활물질층의 최대 높이; H2: 음극 집전체 표면을 기준으로 하는 코팅층의 최대 높이; W: 폭 방향; L: 길이 방향

Claims (15)

  1. 음극 집전체;
    상기 음극 집전체의 적어도 일면에 배치되고, 음극 활물질을 포함하는 음극 활물질층; 및
    N-형 유기 활물질을 포함하는 코팅층;을 포함하고,
    상기 음극 활물질층은 적어도 일 측에 구획된 경사부 및 상기 경사부를 제외하여 구획되는 평탄부를 포함하고,
    상기 경사부는 상기 음극 집전체의 표면을 향하여 경사를 가지고,
    상기 코팅층은 상기 경사부의 적어도 일부에 배치되는 음극.
  2. 청구항 1에 있어서,
    상기 음극 집전체 표면을 기준으로 상기 코팅층의 최대 높이는 상기 음극 활물질층의 최대 높이 이하인 음극.
  3. 청구항 1에 있어서,
    상기 경사부는 상기 음극 활물질층의 폭 방향의 양 측에 구획되는 음극.
  4. 청구항 1에 있어서,
    상기 N-형 유기 활물질은 카보닐계 화합물, 이민계 화합물, 니트릴계 화합물, 유기 황계 화합물 및 아조계 화합물로 이루어진 군에서 선택된 적어도 1종을 포함하는 음극.
  5. 청구항 1에 있어서,
    상기 N-형 유기 활물질은 p-벤조퀴논, 안트라퀴논, 디리튬 테레프탈레이트, 2,5-디하이드록시 테레프탈레이트의 테트라 리튬 염, 7,7,8,8-테트라시아노퀴노디메탄, 페닐아조 벤조산의 리튬 염, 1,4,5,8-나프탈렌테트라카르복실릭 디안하이드라이드, 폴리도파민, 페나진 및 poly(1,6-dihydropyrazino[2,3g]quinoxaline-2,3,8-triyl-7-(2H)-ylidene-7,8-dimethylidene) 및 Poly[chalcogenoviologen-alt-triphenylamine]으로 이루어진 군에서 선택된 적어도 1종을 포함하는 음극.
  6. 청구항 1에 있어서,
    상기 음극 활물질은 탄소계 활물질 및 (준)금속계 활물질 중에서 선택된 적어도 1종을 포함하는 음극.
  7. 청구항 6에 있어서, 상기 탄소계 활물질은 인조 흑연, 천연 흑연, 하드카본, 소프트카본, 카본 블랙, 그래핀 및 섬유상 탄소로 이루어진 군으로부터 선택되는 적어도 1종을 포함하는 음극.
  8. 청구항 6에 있어서, 상기 (준)금속계 활물질은 Li, Cu, Ni, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al, V, Ti, 및 Sn으로 이루어진 군에서 선택된 적어도 1종의 (준)금속; Cu, Ni, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al, V, Ti, 및 Sn으로 이루어진 군에서 선택된 적어도 1종의 (준)금속과 리튬의 합금; Cu, Ni, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al, V, Ti, 및 Sn으로 이루어진 군에서 선택된 적어도 1종의 (준)금속과 탄소의 복합체; 및 Li, Cu, Ni, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al, V, Ti, 및 Sn으로 이루어진 군에서 선택된 적어도 1종의 (준)금속의 산화물;으로 이루어진 군에서 선택된 적어도 1종을 포함하는 음극.
  9. 청구항 6에 있어서, 상기 (준)금속계 활물질은 SiOx(0≤x<2) 및 실리콘-탄소 복합체 중에서 선택된 적어도 1종의 실리콘계 활물질을 포함하는 음극.
  10. 청구항 1에 있어서, 상기 코팅층은 상기 N-형 유기 활물질을 15중량% 내지 95중량%로 포함하는 음극.
  11. 청구항 1에 있어서, 상기 코팅층은 바인더를 더 포함하는 음극.
  12. 청구항 1에 있어서, 상기 코팅층은 도전재를 더 포함하는 음극.
  13. 청구항 12에 있어서, 상기 도전재 중량에 대한 상기 N-형 유기 활물질의 중량 비율은 0.5 내지 3.5인 음극.
  14. 청구항 1에 있어서, 상기 음극 집전체는 적어도 일 측에 위치하며 상기 음극 활물질층이 배치되지 않은 무지부를 포함하고,
    상기 경사부는 상기 무지부와 인접하고, 상기 평탄부는 상기 무지부와 이격된 음극.
  15. 청구항 1에 따른 음극;
    상기 음극에 대면하는 양극;
    상기 음극 및 상기 양극 사이에 개재된 분리막; 및
    전해질;을 포함하는 이차전지.
PCT/KR2023/005112 2022-04-15 2023-04-14 음극 및 이를 포함하는 이차전지 WO2023200305A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20220046986 2022-04-15
KR10-2022-0046986 2022-04-15

Publications (1)

Publication Number Publication Date
WO2023200305A1 true WO2023200305A1 (ko) 2023-10-19

Family

ID=88330063

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/005112 WO2023200305A1 (ko) 2022-04-15 2023-04-14 음극 및 이를 포함하는 이차전지

Country Status (2)

Country Link
KR (1) KR20230148125A (ko)
WO (1) WO2023200305A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006140074A (ja) * 2004-11-15 2006-06-01 Gs Yuasa Corporation:Kk 鉛蓄電池用負極活物質及びそれを用いた鉛蓄電池
WO2015015663A1 (ja) * 2013-07-31 2015-02-05 Necエナジーデバイス株式会社 二次電池
JP2016103446A (ja) * 2014-11-28 2016-06-02 日立オートモティブシステムズ株式会社 リチウム二次電池
JP2017188283A (ja) * 2016-04-05 2017-10-12 東洋インキScホールディングス株式会社 蓄電デバイス電極形成用組成物、蓄電デバイス電極、及び蓄電デバイス
WO2018198282A1 (ja) * 2017-04-27 2018-11-01 テックワン株式会社 炭素-珪素複合材、負極、二次電池

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102570263B1 (ko) 2016-10-14 2023-08-24 삼성에스디아이 주식회사 리튬 전지용 전극, 이를 포함하는 리튬 전지, 및 상기 리튬 전지의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006140074A (ja) * 2004-11-15 2006-06-01 Gs Yuasa Corporation:Kk 鉛蓄電池用負極活物質及びそれを用いた鉛蓄電池
WO2015015663A1 (ja) * 2013-07-31 2015-02-05 Necエナジーデバイス株式会社 二次電池
JP2016103446A (ja) * 2014-11-28 2016-06-02 日立オートモティブシステムズ株式会社 リチウム二次電池
JP2017188283A (ja) * 2016-04-05 2017-10-12 東洋インキScホールディングス株式会社 蓄電デバイス電極形成用組成物、蓄電デバイス電極、及び蓄電デバイス
WO2018198282A1 (ja) * 2017-04-27 2018-11-01 テックワン株式会社 炭素-珪素複合材、負極、二次電池

Also Published As

Publication number Publication date
KR20230148125A (ko) 2023-10-24

Similar Documents

Publication Publication Date Title
KR102062689B1 (ko) 이차전지용 양극 및 이를 포함하는 리튬 이차전지
KR102459883B1 (ko) 리튬 이차전지용 양극 및 이를 포함하는 리튬 이차전지
WO2019103460A1 (ko) 이차전지용 양극재 및 이를 포함하는 리튬 이차전지
WO2019151834A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
KR102314626B1 (ko) 이차전지용 전극, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2019225969A1 (ko) 리튬 이차전지용 양극재, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2018217071A1 (ko) 이차전지용 양극의 제조방법, 이와 같이 제조된 이차전지용 양극 및 이를 포함하는 리튬 이차전지
WO2020185014A1 (ko) 음극 및 이를 포함하는 이차전지
WO2019164347A1 (ko) 리튬 이차전지용 음극 활물질, 이를 포함하는 리튬 이차전지용 음극 및 리튬 이차전지
WO2020111649A1 (ko) 리튬 이차전지용 양극 및 이를 포함하는 리튬 이차전지
WO2021107586A1 (ko) 인편상 흑연을 포함하는 이차전지용 양극 및 이를 포함하는 이차전지
WO2020162708A1 (ko) 음극 및 이를 포함하는 리튬 이차전지
WO2019221410A1 (ko) 전극 보호층을 포함하는 음극 및 이를 적용한 리튬 이차전지
WO2019177403A1 (ko) 리튬 이차전지용 음극활물질, 이를 포함하는 리튬 이차전지용 음극
WO2022055308A1 (ko) 음극재, 이를 포함하는 음극 및 이차전지
WO2021225316A1 (ko) 수분과의 반응성이 완화된 고-니켈 전극 시트 및 이의 제조방법
WO2021153936A1 (ko) 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2021133127A1 (ko) 수계 양극용 슬러리, 양극 조성물 및 이 양극 조성물을 포함하는 리튬 이온 이차전지, 그리고 이들의 제조 방법
WO2022045852A1 (ko) 음극 및 상기 음극을 포함하는 이차 전지
WO2021225396A1 (ko) 이차전지용 양극, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2021225303A1 (ko) 고-니켈 전극 시트 및 이의 제조방법
WO2023200305A1 (ko) 음극 및 이를 포함하는 이차전지
WO2021075830A1 (ko) 리튬 이차전지용 양극 활물질의 제조 방법 및 상기 방법에 의해 제조된 리튬 이차전지용 양극 활물질
WO2020159310A1 (ko) 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2022092710A1 (ko) 리튬 이차전지용 음극 활물질, 음극 및 리튬 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23788654

Country of ref document: EP

Kind code of ref document: A1