WO2023198170A1 - 一种开关电源高压供电电路及装置 - Google Patents

一种开关电源高压供电电路及装置 Download PDF

Info

Publication number
WO2023198170A1
WO2023198170A1 PCT/CN2023/088273 CN2023088273W WO2023198170A1 WO 2023198170 A1 WO2023198170 A1 WO 2023198170A1 CN 2023088273 W CN2023088273 W CN 2023088273W WO 2023198170 A1 WO2023198170 A1 WO 2023198170A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistor
diode
voltage
pin
circuit
Prior art date
Application number
PCT/CN2023/088273
Other languages
English (en)
French (fr)
Inventor
杨晨涛
陈伟
Original Assignee
深圳英集芯科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳英集芯科技股份有限公司 filed Critical 深圳英集芯科技股份有限公司
Publication of WO2023198170A1 publication Critical patent/WO2023198170A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/26Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes without control electrode or semiconductor devices without control electrode to produce the intermediate ac
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present application relates to the field of electronic technology, and in particular to a switching power supply high-voltage power supply circuit and device.
  • USB Universal Serial Bus technology
  • USB chargers are based on switching power supply technology to convert commercial power into the charging voltage required by electronic devices.
  • the circuit topology usually used is a flyback converter.
  • the control chip on the primary side requires a certain operating voltage to maintain normal operation, and this operating voltage is generally provided by the primary high voltage or the auxiliary winding on the transformer.
  • the high-voltage power supply method requires series resistors, and long-term power supply will increase the overall loss; on the other hand, as the power demand increases, that is, the output voltage increases, the voltage on the auxiliary winding will also increase. , it is difficult to meet the chip pin voltage withstand requirements at high output voltages when powered by the auxiliary winding.
  • This application provides a switching power supply high-voltage power supply circuit and device, which can reduce power loss during high-voltage power supply and reduce the cost of circuit design.
  • inventions of the present application provide a switching power supply high-voltage power supply circuit.
  • the circuit includes a rectifier circuit, a first diode, a second diode, a chip, and a first resistor R HV .
  • the chip includes a power supply circuit.
  • the anode of the second diode is connected, the cathodes of the first diode and the second diode are connected to one end of the first resistor R HV , and the other end of the first resistor R HV Connected to the HV pin, the HV pin is connected to the first pole of the switch tube, and the second pole of the switch tube is connected to the VDD pin.
  • the voltage value of the supply voltage input VDD pin is detected to drive the chip and the entire switching power supply to work, and the voltage value of the high-voltage input HV pin is compared with a constant boundary value to turn on or off
  • the switching tube realizes high-voltage power supply from the switching power supply with stable voltage, while reducing the power loss during high-voltage power supply.
  • the circuit further includes a first capacitor C VDD , wherein the VDD pin is connected to one end of the first capacitor C VDD , and the other end of the first capacitor C VDD is connected to ground.
  • the circuit also includes a second resistor R a1 , a third resistor R a2 and an auxiliary winding AUX.
  • the chip also includes a detection VS pin and a ground GND pin, where the VS The pin is connected to one end of the second resistor R a1 and one end of the third resistor R a2 , and the other end of the second resistor R a1 is connected to the auxiliary winding AUX. The same end is connected, the opposite end of the auxiliary winding AUX is connected to ground, the other end of the third resistor R a2 is connected to ground, and the GND pin is connected to ground.
  • the circuit also includes a fourth resistor R cs , a switch, a transformer, a second capacitor C in , a third diode D 1 , and a third capacitor C out .
  • the chip also includes a sampling signal CS pin and power tube GATE pin, wherein the output end of the rectifier circuit is connected to one end of the second capacitor C in and the primary synonymous end of the transformer, and the primary synonymous end of the transformer is connected to the The first pole of the switch is connected to the GATE pin, the second pole of the switch is connected to the CS pin and one end of the fourth resistor R cs, and the third pole of the switch is connected to the CS pin and one end of the fourth resistor R cs .
  • the other end of the four resistors R cs is connected to the ground, the other end of the second capacitor C in is connected to the ground, the secondary terminal of the transformer is connected to the anode of the third diode D 1 , and the third diode
  • the negative electrode of D 1 is connected to one end of the third capacitor C out and the output voltage U out , and the secondary terminal of the transformer is connected to the other end of the third capacitor C out to ground.
  • the rectifier circuit includes a fourth diode, a fifth diode, a sixth diode and a seventh diode, wherein the first input end of the rectifier circuit and the The anode of the fourth diode and the cathode of the fifth diode are connected, and the second input terminal of the rectifier circuit is connected with the anode of the sixth diode and the cathode of the seventh diode.
  • the cathode of the fourth diode and the cathode of the sixth diode are connected to the output end of the rectifier circuit, and the anode of the fifth diode and the anode of the seventh diode are grounded.
  • the first input end of the rectifier circuit is connected to the input end of the AC circuit, and the unidirectional conductivity of the diode is used to cause the current in the circuit to flow in only one direction.
  • the unidirectional conductivity of the diode is used to cause the current in the circuit to flow in only one direction.
  • Only two diodes are working at the same time, so that the output end of the rectifier circuit receives direct current.
  • the circuit further includes a fifth resistor C FB and a photosensitive transistor
  • the chip further includes a current feedback input FB pin
  • the FB pin is connected to one end of the fifth resistor C FB and The collector of the phototransistor is connected, and the other end of the fifth resistor C FB and the emitter end of the phototransistor are grounded.
  • the circuit also includes a sixth resistor R H , a seventh resistor R b1 , an eighth resistor R b2 , a photosensitive diode, a ninth resistor R 1 , a fourth capacitor C 1 , and a tenth resistor R L and a voltage reference chip, wherein one end of the seventh resistor R b1 is connected to one end of the sixth resistor R H and one end of the third capacitor C out , and the other end of the seventh resistor R b1 is connected to The anode of the photodiode and one end of the eighth resistor R b2 are connected, and the cathode of the photodiode and the other end of the eighth resistor R b2 are connected to the cathode of the voltage reference chip and the ninth resistor R One end of the ninth resistor R 1 is connected to one end of the fourth capacitor C 1 , and the other end of the fourth capacitor C 1 is connected to the reference end of the voltage reference chip and the reference end of the voltage
  • the switch tube is a high withstand voltage switch tube.
  • an embodiment of the present application provides a power supply device, which includes the switching power supply high-voltage power supply circuit provided in the first aspect.
  • Figure 1 is a schematic structural diagram of a switching power supply high-voltage power supply circuit provided by an embodiment of the present application
  • Figure 2 is a schematic structural diagram of a switching power supply high-voltage power supply circuit provided by an embodiment of the present application
  • Figure 3 is a schematic structural diagram of a switching power supply high-voltage power supply circuit provided by an embodiment of the present application
  • Figure 4 is a schematic structural diagram of a switching power supply high-voltage power supply circuit provided by an embodiment of the present application
  • Figure 5 is a schematic diagram of a voltage waveform provided by an embodiment of the present application.
  • Figure 1 is a schematic structural diagram of a switching power supply high-voltage power supply circuit provided by an embodiment of the present application.
  • the circuit includes: a rectifier circuit, a first capacitor C in , a first resistor R HV1 , and a second resistor R HV2 And a chip, the chip includes a supply voltage input VDD pin and a high voltage input HV pin, wherein the output end of the rectifier circuit is connected to one end of the first capacitor C in and one end of the first resistor R HV1 , so The other end of the first capacitor C in is connected to ground, the other end of the first resistor R HV1 is connected to one end of the second resistor R HV2 , and the other end of the second resistor R HV2 is connected to the HV pin , the HV pin is connected to the VDD pin.
  • the switching power supply high-voltage power supply circuit also includes a second capacitor C VDD , a first diode D 2 , a third resistor R a1 , a fourth resistor R a2 , and an auxiliary winding AUX.
  • the chip also includes a detection VS lead.
  • VDD pin is connected to one end of the second capacitor C VDD and the cathode of the first diode D 2 , the other end of the second capacitor C VDD is grounded, and the first two The anode of the diode D 2 is connected to the same terminal of the auxiliary winding AUX and one end of the third resistor R a1 , and the other end of the third resistor R a1 is connected to the VS pin and the fourth resistor R One end of a2 is connected, and the other end of the fourth resistor R a2 is connected to the opposite end of the auxiliary winding AUX.
  • the power supply for the chip in this circuit mainly includes the following two power supply lines: one is the rectified circuit, The high-voltage power supply line of the primary side voltage (the input side of the transformer), the first resistor R HV1 , the second resistor R HV2 , the high-voltage input HV pin, and the supply voltage input VDD pin is directly connected to the alternating current and the mains power. Converted to the power supply voltage for chip operation; the other is a power supply line from the auxiliary winding AUX, the first diode D 2 to the second capacitor C VDD . This line is powered by the voltage on the auxiliary winding AUX for the chip operation.
  • the high-voltage power supply line is connected, and after the alternating current is converted into direct current through the rectifier circuit, when it passes through the first resistor R HV1 and the second resistor R HV2 in series, due to the limitation of the starting speed, The resistance value cannot be too large, as extra power will be generated on the first resistor R HV1 and the second resistor R HV2 , causing power loss in the entire high-voltage power supply process.
  • the switching power supply high-voltage power supply circuit also includes a transformer, a switch, a fifth resistor R cs , a second diode D 1 , and a third capacitor C out .
  • the chip also includes a sampling signal CS pin and a power tube GATE.
  • the GATE pin drives the switch.
  • the coil on the primary side of the circuit is the primary side coil of the transformer and the coil of the auxiliary winding AUX
  • the secondary side coil of the circuit is the secondary side coil of the transformer.
  • Figure 2 is a schematic structural diagram of a switching power supply high-voltage power supply circuit provided by an embodiment of the present application.
  • the circuit includes: a rectifier circuit, a first diode, a second diode, a chip, and a first resistor.
  • the chip includes a supply voltage input VDD pin, a high voltage input HV pin, a switch tube, a second resistor R HV2 , and a third diode D 3 , wherein the first input end of the rectifier circuit is connected to the The anode of the first diode is connected, the second input terminal of the rectifier circuit is connected with the anode of the second diode, the cathode of the first diode and the cathode of the second diode One end of the first resistor R HV1 is connected, the other end of the first resistor R HV1 is connected to the HV pin, the HV pin is connected to the first pole of the switch tube, and the switch tube
  • the second electrode is connected to the anode of the third diode D 3 , the cathode of the third diode D 3 is connected to one end of the second resistor R HV2 , and the other end of the second resistor R HV2 One end is connected to the VDD pin.
  • the switching power supply high-voltage power supply circuit also includes a first capacitor C VDD , a fourth diode D 2 , a third resistor R a1 , a fourth resistor R a2 , and an auxiliary winding AUX.
  • the chip also includes a detection VS lead.
  • the VDD pin is connected to one end of the first capacitor C VDD and the cathode of the fourth diode D 2 , the other end of the first capacitor C VDD is grounded, and the fourth second The anode of the diode D 2 is connected to the same terminal of the auxiliary winding AUX and one end of the third resistor R a1 , and the other end of the third resistor R a1 is connected to the VS pin and the fourth resistor R One end of a2 is connected, and the other end of the fourth resistor R a2 is connected to the opposite end of the auxiliary winding AUX.
  • a first diode and a second diode are added to the circuit, and the two diodes are connected as rectifiers respectively.
  • the first input terminal and the second input terminal of the rectifier circuit that is, the first input terminal and the second input terminal of the input AC power supply
  • the second resistor R HV2 the third diode D 3 and the switch tube are connected between the high-voltage input HV pin and the supply voltage input VDD pin inside the chip, where the switch The tube is a high voltage switching tube.
  • the power supply for the chip in this circuit mainly includes the following two power supply lines: one is through the rectifier tube (the first diode and the second diode), the first resistor R HV1 , the high-voltage input HV pin, the switch tube, and the third
  • the high-voltage power supply line of the diode D 3 , the second resistor R HV2 , and the supply voltage input VDD pin is directly connected to the alternating current and converts the mains power into the supply voltage for chip operation;
  • the other is composed of the auxiliary winding AUX and the third The power supply line from the four diodes D 2 to the first capacitor C VDD . This line is powered by the voltage on the auxiliary winding AUX for chip operation.
  • high-voltage power supply is the main power supply method for chip power supply, and the high-voltage power supply line is controlled by the switch tube. connection and disconnection.
  • the switch tube when the high-voltage power supply is provided, the switch tube is in a connected state, and the alternating current passes through the high-voltage power supply line to the VDD pin.
  • the voltage U VDD at the VDD pin reaches the voltage preset value, and the startup chip and the entire switching power supply begin to work normally; normal operation
  • the alternating current reaches the HV pin through the rectifier (first diode and second diode) and the first resistor R HV1 in the high-voltage power supply line.
  • the voltage U HV on the HV pin is detected.
  • the voltage U HV is less than
  • the voltage U VDD reaches the boundary value, it is judged to be the valley interval of the voltage U HV .
  • the switch tube is connected for high-voltage charging; when the voltage U HV is greater than the voltage U VDD boundary value, the switch tube is disconnected to stop power supply.
  • the high-voltage power supply line can be turned off and only the auxiliary winding AUX is powered.
  • embodiments of the present application provide a switching power supply high-voltage power supply circuit and device, which can reduce the additional power loss caused by high-voltage power supply and the risk of overvoltage in the auxiliary winding power supply, and at the same time reduce The design cost caused by additional components and logic decision circuits is eliminated.
  • Figure 3 is a schematic structural diagram of a switching power supply high-voltage power supply circuit provided by an embodiment of the present application.
  • the circuit includes: a rectifier circuit, a first diode, a second diode, a chip, and a first resistor.
  • the chip includes a supply voltage input VDD pin, a high voltage input HV pin and a switch tube, wherein the first input end of the rectifier circuit is connected to the anode of the first diode, and the rectifier circuit
  • the second input terminal is connected to the anode of the second diode, the cathode of the first diode and the cathode of the second diode are connected to one end of the first resistor R HV , and the The other end of the first resistor R HV is connected to the HV pin, the HV pin is connected to the first pole of the switch tube, and the second pole of the switch tube is connected to the VDD pin.
  • the power supply voltage input VDD pin and the high voltage input HV pin in the chip are connected through a switch tube, where the switch tube can be a high withstand voltage switch tube, the first diode and the third diode.
  • the two diodes may be rectifier diodes, and the rectifier tubes formed by the diodes are respectively connected to the first input terminal and the second input terminal of the rectifier circuit to convert AC power into DC power.
  • the chip power supply circuit in this circuit is mainly a high-voltage power supply circuit through the rectifier (first diode and second diode), the first resistor R HV , the HV pin, the switch tube, and the VDD pin.
  • the rectifier The input terminal (the anode of the first diode and the anode of the second diode) is connected to the AC power input terminal of the switching power supply, and the output terminal of the rectifier (the cathode of the first diode and the cathode of the second diode)
  • the negative pole is connected to one end of the first resistor R HV , and the other end of the first resistor R HV is connected to the HV pin of the chip.
  • the drain (first pole) of the high-voltage switch tube inside the chip is connected to the HV pin, and the source (Second pole) is connected to the VDD pin.
  • Figure 4 is a schematic structural diagram of a switching power supply high-voltage power supply circuit provided by an embodiment of the present application.
  • the circuit described in Figure 4 also includes a first capacitor C VDD , wherein the VDD pin is connected to the first capacitor C VDD.
  • One end of the first capacitor C VDD is connected, and the other end of the first capacitor C VDD is connected to ground.
  • the power supply method of the switching power supply high-voltage power supply circuit includes but is not limited to the following two processes:
  • the high-voltage switch tube inside the chip remains on, and the current continues to flow to the first capacitor C VDD through the high-voltage power supply line.
  • the voltage U VDD at the VDD pin continues to rise, and the voltage U VDD value is detected.
  • the voltage U VDD value is less than the preset boundary value U boundary (the boundary value U boundary is constant)
  • the boundary value U boundary is constant
  • other parts of the chip do not work, and there is no driving voltage output at the GATE pin of the chip's power tube; when the voltage U VDD value is greater than or equal to the preset
  • the boundary value U boundary is set, the chip and the entire switching power supply start to work normally.
  • the deviation between the voltage U rec value and the voltage U HV value (voltage U VDD value) is small, and then the voltage U rec value will quickly drop to the bottom (0V) , making the charging time too short, so the charging during the decreasing stage of the voltage U rec value can be ignored.
  • the first capacitor C VDD will not discharge reversely to the AC power supply.
  • the voltage U rec value begins to rise and reaches the voltage U HV value (voltage U VDD value). Since the resistance of the first resistor R HV is not large, the voltage U HV value (voltage U VDD value) will rapidly increase with the voltage U rec value. Rise to the preset boundary value U boundary to complete high-voltage charging.
  • the circuit also includes a second resistor R a1 , a third resistor R a2 and an auxiliary winding AUX.
  • the chip also includes a detection VS pin and a ground GND pin, where the VS pin is connected to the One end of the second resistor R a1 is connected to one end of the third resistor R a2 , the other end of the second resistor R a1 is connected to the same-name end of the auxiliary winding AUX, and the different-name end of the auxiliary winding AUX
  • the other end of the third resistor R a2 is connected to the ground, and the GND pin is connected to the ground.
  • the circuit also includes a fourth resistor R cs , a switch, a transformer, a second capacitor C in , a third diode D 1 , and a third capacitor C out .
  • the chip also includes a sampling signal CS pin, The GATE pin of the power tube, wherein the output end of the rectifier circuit is connected to one end of the second capacitor C in and the primary end of the transformer, and the primary end of the transformer is connected to the first end of the switch.
  • the second pole of the switch is connected to the GATE pin
  • the third pole of the switch is connected to the CS pin and one end of the fourth resistor R cs
  • the fourth resistor R cs The other end of the second capacitor C in is grounded, the other end of the second capacitor C in is grounded, the secondary terminal of the transformer is connected to the anode of the third diode D 1 , and the cathode of the third diode D 1 It is connected to one end of the third capacitor C out and the output voltage U out , and the secondary terminal of the transformer is grounded to the other end of the third capacitor C out .
  • the rectifier circuit includes a fourth diode, a fifth diode, a sixth diode and a seventh diode, wherein the first input terminal of the rectifier circuit is connected to the fourth second diode.
  • the anode of the diode is connected to the cathode of the fifth diode
  • the second input terminal of the rectifier circuit is connected to the anode of the sixth diode and the cathode of the seventh diode
  • the cathodes of the four diodes and the sixth diode are connected to the output end of the rectifier circuit
  • the anodes of the fifth diode and the anode of the seventh diode are connected to ground.
  • the circuit also includes a fifth resistor C FB and a phototransistor.
  • the chip also includes a current feedback input FB pin.
  • the FB pin is connected to one end of the fifth resistor C FB and the phototransistor.
  • the collector is connected, the other end of the fifth resistor C FB and the emitter end of the phototransistor are grounded.
  • the circuit also includes a sixth resistor R H , a seventh resistor R b1 , an eighth resistor R b2 , a photosensitive diode, a ninth resistor R 1 , a fourth capacitor C 1 , a tenth resistor R L and a voltage reference.
  • one end of the seventh resistor R b1 is connected to one end of the sixth resistor R H and one end of the third capacitor C out , and the other end of the seventh resistor R b1 is connected to the photosensitive diode
  • the anode of the photodiode is connected to one end of the eighth resistor R b2
  • the cathode of the photodiode and the other end of the eighth resistor R b2 are connected to the cathode of the voltage reference chip and one end of the ninth resistor R 1
  • the other end of the ninth resistor R 1 is connected to one end of the fourth capacitor C 1
  • the other end of the fourth capacitor C 1 is connected to the reference end of the voltage reference chip and the tenth resistor R respectively.
  • One end of L is connected to the other end of the sixth resistor R H
  • the other end of the tenth resistor R L is connected to the positive electrode of the voltage reference chip.
  • the switch tube is a high withstand voltage switch tube.
  • the charging in each cycle ends when the voltage U HV value (voltage U VDD value) rises to the preset boundary value U boundary , that is, the charging in each cycle can ensure that the voltage U The VDD value reaches the required voltage value (U boundary ). Therefore, during normal operation, the voltage U VDD value can always be stable below the preset boundary value U boundary and maintain smooth fluctuations.
  • An embodiment of the present application also provides a power supply device, which includes a switching power supply high-voltage power supply circuit as described in any one of the above-mentioned Figures 1-3.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本申请实施例提供一种开关电源高压供电电路及装置,包括:整流电路、第一二极管、第二二极管、芯片、第一电阻RHV,芯片包括VDD引脚、HV引脚以及开关管,整流电路的第一输入端与第一二极管的正极连接,整流电路的第二输入端与第二二极管的正极连接,第一二极管的负极、第二二极管的负极与第一电阻RHV的一端连接,第一电阻RHV的另一端与HV引脚连接,HV引脚与开关管的第一极连接,开关管的第二极与VDD引脚连接。当电压UHV小于等于预设的边界值时,开关管导通,电路进行高压供电;当电压UHV大于所述预设的边界值时,开关管断开,电路停止高压供电。本方案能够避免高输出电压时的引脚过压风险,降低电路设计的成本。

Description

一种开关电源高压供电电路及装置
本申请要求于2022年04月14日提交中国专利局、申请号为202210387070.1、申请名称为“一种开关电源高压供电电路及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子技术领域,尤其涉及一种开关电源高压供电电路及装置。
背景技术
通用串行总线技术(Universal Serial Bus,USB)是当今生活中应用最广泛的通信接口之一。除了快速的数据传输功能之外,USB还能够为其适配的设备提供可靠的电源连接。目前多数电子设备都能够使用USB充电器为其充电,且伴随着技术的进步,充电速度也越来越快。USB充电器基于开关电源技术将市电转换为电子设备所需的充电电压,通常采用的电路拓扑为反激变换器。其一次侧的控制芯片需要一定的工作电压来保持正常工作,而该工作电压一般由一次侧高压或者变压器上的辅助绕组提供。
但是,一方面,高压供电的方式需要串接电阻,长久地供电会提升整体损耗;另一方面,随着功率需求的提升,即输出电压的提高,辅助绕组上的电压也会随之变大,由辅助绕组供电难以满足高输出电压时的芯片引脚耐压要求。
发明内容
本申请提供了一种开关电源高压供电电路及装置,能够减少高压供电时的功率损耗,降低电路设计的成本。
第一方面,本申请实施例提供了一种开关电源高压供电电路,所述电路包括整流电路、第一二极管、第二二极管、芯片、第一电阻RHV,所述芯片包括供电电压输入VDD引脚、高压输入HV引脚以及开关管,其中,所述整流电路的第一输入端与所述第一二极管的正极连接,所述整流电路的第二输入端与所述第二二极管的正极连接,所述第一二极管的负极、所述第二二极管的负极与所述第一电阻RHV的一端连接,所述第一电阻RHV的另一端与所述HV引脚连接,所述HV引脚与所述开关管的第一极连接,所述开关管的第二极与所述VDD引脚连接。
在本申请实施例中,通过检测供电电压输入VDD引脚的电压值,从而驱动芯片以及整个开关电源工作,通过比较高压输入HV引脚的电压值与一恒定边界值,从而导通或断开开关管,实现电压稳定的开关电源高压供电,同时减少高压供电时的功率损耗。
在一种可能的设计中,所述电路还包括第一电容CVDD,其中,所述VDD引脚与所述第一电容CVDD的一端连接,所述第一电容CVDD的另一端接地。
在一种可能的设计中,所述电路还包括第二电阻Ra1、第三电阻Ra2以及辅助绕组AUX,所述芯片还包括检测VS引脚、地线GND引脚,其中,所述VS引脚与所述第二电阻Ra1的一端以及所述第三电阻Ra2的一端连接,所述第二电阻Ra1的另一端与所述辅助绕组AUX的 同名端连接,所述辅助绕组AUX的异名端接地,所述第三电阻Ra2的另一端接地,所述GND引脚接地。
在一种可能的设计中,所述电路还包括第四电阻Rcs、开关、变压器、第二电容Cin、第三二极管D1,第三电容Cout,所述芯片还包括采样信号CS引脚、功率管GATE引脚,其中,所述整流电路的输出端与所述第二电容Cin的一端以及所述变压器的初级异名端连接,所述变压器的初级同名端与所述开关的第一极连接,所述开关的第二极与所述GATE引脚连接,所述开关的第三极与所述CS引脚以及所述第四电阻Rcs的一端连接,所述第四电阻Rcs的另一端接地,所述第二电容Cin的另一端接地,所述变压器的次级同名端与所述第三二极管D1的正极连接,所述第三二极管D1的负极与所述第三电容Cout的一端以及输出电压Uout连接,所述变压器的次级异名端与所述第三电容Cout的另一端接地。
在一种可能的设计中,所述整流电路包括第四二极管、第五二极管、第六二极管以及第七二极管,其中,所述整流电路的第一输入端与所述第四二极管的正极以及所述第五二极管的负极连接,所述整流电路的第二输入端与所述第六二极管的正极以及所述第七二极管的负极连接,所述第四二极管的负极、所述第六二极管的负极与所述整流电路的输出端连接,所述第五二极管的正极与所述第七二极管的正极接地。
在本申请实施例中,整流电路的第一输入端接入交流电路的输入端,利用二极管的单向导通性使电路中的电流只按单向流动,在整流电路的每个工作周期内,同一时间只有两个二极管(第四二极管和第七二极管,或,第五二极管和第六二极管)进行工作,从而使整流电路的输出端得到直流电。
在一种可能的设计中,所述电路还包括第五电阻CFB和光敏三极管,所述芯片还包括电流反馈输入FB引脚,所述FB引脚与所述第五电阻CFB的一端以及所述光敏三极管的集电极连接,所述第五电阻CFB的另一端和所述光敏三极管的发射端接地。
在一种可能的设计中,所述电路还包括第六电阻RH、第七电阻Rb1、第八电阻Rb2、光敏二极管、第九电阻R1、第四电容C1、第十电阻RL以及电压基准芯片,其中,所述第七电阻Rb1的一端与所述第六电阻RH的一端以及所述第三电容Cout的一端连接,所述第七电阻Rb1的另一端与所述光敏二极管的正极以及所述第八电阻Rb2的一端连接,所述光敏二极管的负极以及所述第八电阻Rb2的另一端与所述电压基准芯片的负极、所述第九电阻R1的一端连接,所述第九电阻R1的另一端与所述第四电容C1的一端连接,所述第四电容C1的另一端分别与所述电压基准芯片的参考端、所述第十电阻RL的一端以及所述第六电阻RH的另一端连接,所述第十电阻RL的另一端与所述电压基准芯片的正极接地。
在一种可能的设计中,所述开关管为高耐压开关管。
第二方面,本申请实施例提供了一种电源装置,该装置包括第一方面提供的开关电源高压供电电路。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1是本申请实施例提供的一种开关电源高压供电电路的结构示意图;
图2是本申请实施例提供的一种开关电源高压供电电路的结构示意图;
图3是本申请实施例提供的一种开关电源高压供电电路的结构示意图;
图4是本申请实施例提供的一种开关电源高压供电电路的结构示意图;
图5是本申请实施例提供的一种电压波形示意图。
具体实施方式
下面结合本申请实施例中的附图对本申请实施例进行描述。
请参见图1,图1是本申请实施例提供的一种开关电源高压供电电路的结构示意图,所述电路包括:整流电路、第一电容Cin、第一电阻RHV1、第二电阻RHV2以及芯片,所述芯片包括供电电压输入VDD引脚、高压输入HV引脚,其中,所述整流电路的输出端与所述第一电容Cin的一端以及第一电阻RHV1的一端连接,所述第一电容Cin的另一端接地,所述第一电阻RHV1的另一端与所述第二电阻RHV2的一端连接,所述第二电阻RHV2的另一端与所述HV引脚连接,所述HV引脚与所述VDD引脚连接。
进一步的,所述开关电源高压供电电路还包括第二电容CVDD、第一二极管D2、第三电阻Ra1、第四电阻Ra2、辅助绕组AUX,所述芯片还包括检测VS引脚,其中,所述VDD引脚与所述第二电容CVDD的一端以及所述第一二极管D2的负极连接,所述第二电容CVDD的另一端接地,所述第一二极管D2的正极与所述辅助绕组AUX的同名端以及所述第三电阻Ra1的一端连接,所述第三电阻Ra1的另一端与所述VS引脚以及所述第四电阻Ra2的一端连接,所述第四电阻Ra2的另一端与所述辅助绕组AUX的异名端接地。
在如图1所示的电路结构中,芯片中的供电电压输入VDD引脚和高压输入HV引脚通过导线连通,该电路中为芯片供电主要包括以下两条供电线路:一条为经整流电路、一次侧电压(变压器的输入端侧)、第一电阻RHV1、第二电阻RHV2、高压输入HV引脚、供电电压输入VDD引脚的高压供电线路,该线路直接连接交流电,并将市电转换为芯片工作的供电电压;另一条为由辅助绕组AUX、第一二极管D2至第二电容CVDD的供电线路,该线路由辅助绕组AUX上的电压为芯片工作供电。
具体地,在启动或其它启用高压供电方式时,高压供电线路连通,交流电经过整流电路转换为直流电后,经过串联的第一电阻RHV1和第二电阻RHV2时,因为受启动速度的限制,阻值不能过大,在第一电阻RHV1和第二电阻RHV2上会产生额外的功率,造成整个高压供电过程中的功率损耗。
进一步的,所述开关电源高压供电电路还包括变压器、开关、第五电阻Rcs、第二二极管D1、第三电容Cout,所述芯片还包括采样信号CS引脚、功率管GATE引脚,其中,所述第一电阻RHV1的一端与所述变压器的初级异名端连接,所述变压器的初级同名端与所述开关的第一极连接,所述开关的第二极与所述GATE引脚连接,所述开关的第三极与所述CS引脚以及所述第五电阻Rcs的一端连接,所述第五电阻Rcs的另一端接地,所述变压器的次级同名端与所述第二二极管D1的正极连接,所述第二二极管D1的负极与所述第三电容Cout的一端以及输出电压Uout连接,所述变压器的次级异名端与所述第三电容Cout的另一端接地。
具体地,在正常工作时,GATE引脚驱动开关动作,此时,电路初级侧的线圈为变压器初级侧线圈和辅助绕组AUX的线圈,电路次级侧线圈为变压器次级侧线圈,当开关关断时,辅助绕组AUX上的电压UAUX与输出电压Uout呈现倍数关系,使得在高输出电压的情况下,芯片的供电电压输入VDD引脚上的电压UVDD值也过高,容易超过引脚标准的耐受电压值,从而导致芯片损坏。
请参见图2,图2是本申请实施例提供的一种开关电源高压供电电路的结构示意图,所述电路包括:整流电路、第一二极管、第二二极管、芯片、第一电阻RHV1,所述芯片包括供电电压输入VDD引脚、高压输入HV引脚、开关管、第二电阻RHV2、第三二极管D3,其中,所述整流电路的第一输入端与所述第一二极管的正极连接,所述整流电路的第二输入端与所述第二二极管的正极连接,所述第一二极管的负极、所述第二二极管的负极与所述第一电阻RHV1的一端连接,所述第一电阻RHV1的另一端与所述HV引脚连接,所述HV引脚与所述开关管的第一极连接,所述开关管的第二极与所述第三二极管D3的正极连接,所述第三二极管D3的负极与所述第二电阻RHV2的一端连接,所述第二电阻RHV2的另一端与所述VDD引脚连接。
进一步的,所述开关电源高压供电电路还包括第一电容CVDD、第四二极管D2、第三电阻Ra1、第四电阻Ra2、辅助绕组AUX,所述芯片还包括检测VS引脚,其中,所述VDD引脚与所述第一电容CVDD的一端以及所述第四二极管D2的负极连接,所述第一电容CVDD的另一端接地,所述第四二极管D2的正极与所述辅助绕组AUX的同名端以及所述第三电阻Ra1的一端连接,所述第三电阻Ra1的另一端与所述VS引脚以及所述第四电阻Ra2的一端连接,所述第四电阻Ra2的另一端与所述辅助绕组AUX的异名端接地。
在如图2所示的电路结构中,与图1所述的电路结构相比较,该电路中增加了第一二极管和第二二极管,并将两个二极管作为整流管分别接入到整流电路的第一输入端和第二输入端(即输入交流电源的第一输入端和第二输入端),将串联的第一电阻RHV1和第二电阻RHV2改为仅第一电阻RHV1接入HV引脚,并将第二电阻RHV2、第三二极管D3以及开关管接入到芯片内部的高压输入HV引脚、供电电压输入VDD引脚之间,其中,开关管为高耐压开关管。该电路中为芯片供电主要包括以下两条供电线路:一条为经整流管(第一二极管和第二二极管)、第一电阻RHV1、高压输入HV引脚、开关管、第三二极管D3、第二电阻RHV2、供电电压输入VDD引脚的高压供电线路,该线路直接连接交流电,并将市电转换为芯片工作的供电电压;另一条为由辅助绕组AUX、第四二极管D2至第一电容CVDD的供电线路,该线路由辅助绕组AUX上的电压为芯片工作供电,其中,高压供电为芯片供电的主要供电方式,并由开关管控制高压供电线路的连通和断开。
具体地,在高压供电时,开关管处于连通状态,交流电经高压供电线路直至VDD引脚,VDD引脚处的电压UVDD达到电压预设值,启动芯片和整个开关电源开始正常工作;正常工作时,交流电经高压供电线路中的整流管(第一二极管和第二二极管)、第一电阻RHV1到达HV引脚,检测HV引脚上的电压UHV,当电压UHV小于电压UVDD边界值时,判断为电压UHV的谷底区间,此时,连通开关管进行高压充电;当电压UHV大于电压UVDD边界值时,断开开关管停止供电。此外,当辅助绕组上的电压UAUX大于电压UVDD时,可关闭高压供电线路,仅由辅助绕组AUX供电。
在电压UHV的谷底区间进行充电时,电压UVDD随着电压UHV的增大呈波动式上升,由于每个周期的充电量不确定,因此需要设定电压UVDD的上、下边界值(Utop、Ubottom),使电压UVDD处于上、下边界值中间,避免电压UVDD超出正常的工作电压范围。此外,为保证每个周期的充电量充足,需要根据芯片工作时电压UVDD的动态值调整上、下边界值,但电压UVDD的上、下边界值及其相应的逻辑判定电路的设计和动态调整都增加了芯片设计的复杂度和成本。
因此,基于以上现有技术中存在的问题,本申请实施例提供一种开关电源高压供电电路及装置,能够减少高压供电时带来的额外功率损耗以及辅助绕组供电的过压风险,同时降低 了额外器件以及逻辑判定电路带来的设计成本。
请参见图3,图3是本申请实施例提供的一种开关电源高压供电电路的结构示意图,所述电路包括:整流电路、第一二极管、第二二极管、芯片、第一电阻RHV,所述芯片包括供电电压输入VDD引脚、高压输入HV引脚以及开关管,其中,所述整流电路的第一输入端与所述第一二极管的正极连接,所述整流电路的第二输入端与所述第二二极管的正极连接,所述第一二极管的负极、所述第二二极管的负极与所述第一电阻RHV的一端连接,所述第一电阻RHV的另一端与所述HV引脚连接,所述HV引脚与所述开关管的第一极连接,所述开关管的第二极与所述VDD引脚连接。
在如图3所示的电路结构中,芯片中的供电电压输入VDD引脚和高压输入HV引脚通过开关管连通,其中,开关管可以为高耐压开关管,第一二极管和第二二极管可以为整流二极管,其组成的整流管分别接入到整流电路的第一输入端和第二输入端,将交流电源转换为直流电源。该电路中芯片供电线路主要为经整流管(第一二极管和第二二极管)、第一电阻RHV、HV引脚、开关管、VDD引脚的高压供电线路,其中,整流管的输入端(第一二极管的正极和第二二极管的正极)连接至开关电源的交流电源输入端,整流管的输出端(第一二极管的负极和第二二极管的负极)连接第一电阻RHV的一端,第一电阻RHV的另一端连接芯片的HV引脚,在芯片内部高耐压开关管的漏极(第一极)与HV引脚相连,源极(第二极)与VDD引脚相连。
进一步的,请参见图4,图4是本申请实施例提供的一种开关电源高压供电电路的结构示意图,图4所述电路还包括第一电容CVDD,其中,所述VDD引脚与所述第一电容CVDD的一端连接,所述第一电容CVDD的另一端接地。
应理解,该开关电源高压供电电路的供电方法包括但不限于以下两个过程:
1、电路通电时,芯片内部的高耐压开关管保持导通,电流经高压供电线路持续流向第一电容CVDD,VDD引脚处的电压UVDD持续上升,检测电压UVDD值,当电压UVDD值小于预设的边界值Uboundary(边界值Uboundary恒定)时,芯片中的其他部分不工作,芯片的功率管GATE引脚处无驱动电压输出;当电压UVDD值大于或等于预设的边界值Uboundary时,芯片以及整个开关电源开始正常工作。
2、正常工作时,检测芯片HV引脚处的电压UHV值,判断是否导通高耐压开关管进行高压充电。假设初始时,高耐压开关管处于断开状态,此时,经整流管输出端的电压Urec值与HV引脚处的电压UHV值相同,当电压UHV值小于预设的边界值Uboundary时,芯片驱动高耐压开关管导通,进行高压充电,当高耐压开关管导通后,因芯片的HV引脚与VDD引脚直接相连,HV引脚处的电压UHV值会迅速降至与VDD引脚处的电压UVDD值相等,此时电压Urec值和电压UHV值(电压UVDD值)偏差较小,且随后电压Urec值会迅速降至谷底(0V),使得充电时间过短,因此电压Urec值下降阶段的充电可忽略不计,同时因整流管的限制,第一电容CVDD并不会向交流电源处反向放电。
接着,电压Urec值开始上升并达到电压UHV值(电压UVDD值),因第一电阻RHV阻值不大,电压UHV值(电压UVDD值)会随着电压Urec值迅速上升至预设的边界值Uboundary,完成高压充电。
当电压UHV值大于预设的边界值Uboundary时,芯片驱动高耐压开关管断开,停止高压供电,此时,电压UHV值和电压UVDD值不再同步变化,电压UHV值将继续随着电压Urec值变化,电压UVDD值因维持芯片工作缓慢下降。具体过程如图5所示,图5是本申请实施例提供 的一种电压波形示意图,主要充电过程发生在电压Urec值上升阶段t1-t2时间段内。
可选的,所述电路还包括第二电阻Ra1、第三电阻Ra2以及辅助绕组AUX,所述芯片还包括检测VS引脚、地线GND引脚,其中,所述VS引脚与所述第二电阻Ra1的一端以及所述第三电阻Ra2的一端连接,所述第二电阻Ra1的另一端与所述辅助绕组AUX的同名端连接,所述辅助绕组AUX的异名端接地,所述第三电阻Ra2的另一端接地,所述GND引脚接地。
可选的,所述电路还包括第四电阻Rcs、开关、变压器、第二电容Cin、第三二极管D1,第三电容Cout,所述芯片还包括采样信号CS引脚、功率管GATE引脚,其中,所述整流电路的输出端与所述第二电容Cin的一端以及所述变压器的初级异名端连接,所述变压器的初级同名端与所述开关的第一极连接,所述开关的第二极与所述GATE引脚连接,所述开关的第三极与所述CS引脚以及所述第四电阻Rcs的一端连接,所述第四电阻Rcs的另一端接地,所述第二电容Cin的另一端接地,所述变压器的次级同名端与所述第三二极管D1的正极连接,所述第三二极管D1的负极与所述第三电容Cout的一端以及输出电压Uout连接,所述变压器的次级异名端与所述第三电容Cout的另一端接地。
可选的,所述整流电路包括第四二极管、第五二极管、第六二极管以及第七二极管,其中,所述整流电路的第一输入端与所述第四二极管的正极以及所述第五二极管的负极连接,所述整流电路的第二输入端与所述第六二极管的正极以及所述第七二极管的负极连接,所述第四二极管的负极、所述第六二极管的负极与所述整流电路的输出端连接,所述第五二极管的正极与所述第七二极管的正极接地。
可选的,所述电路还包括第五电阻CFB和光敏三极管,所述芯片还包括电流反馈输入FB引脚,所述FB引脚与所述第五电阻CFB的一端以及所述光敏三极管的集电极连接,所述第五电阻CFB的另一端和所述光敏三极管的发射端接地。
可选的,所述电路还包括第六电阻RH、第七电阻Rb1、第八电阻Rb2、光敏二极管、第九电阻R1、第四电容C1、第十电阻RL以及电压基准芯片,其中,所述第七电阻Rb1的一端与所述第六电阻RH的一端以及所述第三电容Cout的一端连接,所述第七电阻Rb1的另一端与所述光敏二极管的正极以及所述第八电阻Rb2的一端连接,所述光敏二极管的负极以及所述第八电阻Rb2的另一端与所述电压基准芯片的负极、所述第九电阻R1的一端连接,所述第九电阻R1的另一端与所述第四电容C1的一端连接,所述第四电容C1的另一端分别与所述电压基准芯片的参考端、所述第十电阻RL的一端以及所述第六电阻RH的另一端连接,所述第十电阻RL的另一端与所述电压基准芯片的正极接地。
可选的,所述开关管为高耐压开关管。
在本申请实施例中,每个周期内的充电都是在电压UHV值(电压UVDD值)上升至预设的边界值Uboundary时结束,即每个周期内的充电都能确保电压UVDD值达到所需的电压值(Uboundary),因此,在正常工作时,电压UVDD值始终能够稳定在预设的边界值Uboundary下方,维持平稳的波动。
本申请实施例还提供了一种电源装置,所述装置包括如上述图1-图3中任一所述的开关电源高压供电电路。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种开关电源高压供电电路,其特征在于,所述电路包括整流电路、第一二极管、第二二极管、芯片、第一电阻RHV,所述芯片包括供电电压输入VDD引脚、高压输入HV引脚以及开关管,其中,所述整流电路的第一输入端与所述第一二极管的正极连接,所述整流电路的第二输入端与所述第二二极管的正极连接,所述第一二极管的负极、所述第二二极管的负极与所述第一电阻RHV的一端连接,所述第一电阻RHV的另一端与所述HV引脚连接,所述HV引脚与所述开关管的第一极连接,所述开关管的第二极与所述VDD引脚连接;
    当所述芯片的HV引脚处的电压UHV小于等于预设的边界值时,所述开关管导通,所述电路进行高压供电;和/或
    当所述芯片的HV引脚处的电压UHV大于所述预设的边界值时,所述开关管断开,所述电路停止高压供电。
  2. 根据权利要求1所述的电路,其特征在于,上电时,当所述芯片的VDD引脚处的电压UVDD大于等于所述预设的边界值时,则所述芯片启动工作。
  3. 根据权利要求1所述的电路,其特征在于,所述电路还包括第一电容CVDD,其中,所述VDD引脚与所述第一电容CVDD的一端连接,所述第一电容CVDD的另一端接地。
  4. 根据权利要求1所述的电路,其特征在于,所述电路还包括第二电阻Ra1、第三电阻Ra2以及辅助绕组AUX,所述芯片还包括检测VS引脚、地线GND引脚,其中,所述VS引脚与所述第二电阻Ra1的一端以及所述第三电阻Ra2的一端连接,所述第二电阻Ra1的另一端与所述辅助绕组AUX的同名端连接,所述辅助绕组AUX的异名端接地,所述第三电阻Ra2的另一端接地,所述GND引脚接地。
  5. 根据权利要求1所述的电路,其特征在于,所述电路还包括第四电阻Rcs、开关、变压器、第二电容Cin、第三二极管D1,第三电容Cout,所述芯片还包括采样信号CS引脚、功率管GATE引脚,其中,所述整流电路的输出端与所述第二电容Cin的一端以及所述变压器的初级异名端连接,所述变压器的初级同名端与所述开关的第一极连接,所述开关的第二极与所述GATE引脚连接,所述开关的第三极与所述CS引脚以及所述第四电阻Rcs的一端连接,所述第四电阻Rcs的另一端接地,所述第二电容Cin的另一端接地,所述变压器的次级同名端与所述第三二极管D1的正极连接,所述第三二极管D1的负极与所述第三电容Cout的一端以及输出电压Uout连接,所述变压器的次级异名端与所述第三电容Cout的另一端接地。
  6. 根据权利要求1所述的方法,其特征在于,所述整流电路包括第四二极管、第五二极管、第六二极管以及第七二极管,其中,所述整流电路的第一输入端与所述第四二极管的正极以及所述第五二极管的负极连接,所述整流电路的第二输入端与所述第六二极管的正极以及所述第七二极管的负极连接,所述第四二极管的负极、所述第六二极管的负极与所述整流电路的输出端连接,所述第五二极管的正极与所述第七二极管的正极接地。
  7. 根据权利要求1所述的电路,其特征在于,所述电路还包括第五电阻CFB和光敏三极管, 所述芯片还包括电流反馈输入FB引脚,所述FB引脚与所述第五电阻CFB的一端以及所述光敏三极管的集电极连接,所述第五电阻CFB的另一端和所述光敏三极管的发射端接地。
  8. 根据权利要求6所述的电路,其特征在于,所述电路还包括第六电阻RH、第七电阻Rb1、第八电阻Rb2、光敏二极管、第九电阻R1、第四电容C1、第十电阻RL以及电压基准芯片,其中,所述第七电阻Rb1的一端与所述第六电阻RH的一端以及所述第三电容Cout的一端连接,所述第七电阻Rb1的另一端与所述光敏二极管的正极以及所述第八电阻Rb2的一端连接,所述光敏二极管的负极以及所述第八电阻Rb2的另一端与所述电压基准芯片的负极、所述第九电阻R1的一端连接,所述第九电阻R1的另一端与所述第四电容C1的一端连接,所述第四电容C1的另一端分别与所述电压基准芯片的参考端、所述第十电阻RL的一端以及所述第六电阻RH的另一端连接,所述第十电阻RL的另一端与所述电压基准芯片的正极接地。
  9. 根据权利要求1-8所述的电路,其特征在于,所述开关管为高耐压开关管。
  10. 一种电源装置,其特征在于,所述装置包括如权利要求1-9任一项所述的电路。
PCT/CN2023/088273 2022-04-14 2023-04-14 一种开关电源高压供电电路及装置 WO2023198170A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210387070.1 2022-04-14
CN202210387070.1A CN114977812A (zh) 2022-04-14 2022-04-14 一种开关电源高压供电电路及装置

Publications (1)

Publication Number Publication Date
WO2023198170A1 true WO2023198170A1 (zh) 2023-10-19

Family

ID=82977520

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/088273 WO2023198170A1 (zh) 2022-04-14 2023-04-14 一种开关电源高压供电电路及装置

Country Status (2)

Country Link
CN (1) CN114977812A (zh)
WO (1) WO2023198170A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114977812A (zh) * 2022-04-14 2022-08-30 深圳英集芯科技股份有限公司 一种开关电源高压供电电路及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180076716A1 (en) * 2016-09-09 2018-03-15 Fuji Electric Co., Ltd. Control circuit of switching power supply, insulated switching power supply
CN112054657A (zh) * 2020-09-04 2020-12-08 昂宝电子(上海)有限公司 脉冲宽度调制控制芯片和电源转换系统
CN214506884U (zh) * 2021-03-11 2021-10-26 佛山市南海赛威科技技术有限公司 功率变换器和电源控制芯片
CN114552957A (zh) * 2022-04-26 2022-05-27 深圳英集芯科技股份有限公司 开关电源的供电电路及其供电方法
CN114977812A (zh) * 2022-04-14 2022-08-30 深圳英集芯科技股份有限公司 一种开关电源高压供电电路及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180076716A1 (en) * 2016-09-09 2018-03-15 Fuji Electric Co., Ltd. Control circuit of switching power supply, insulated switching power supply
CN112054657A (zh) * 2020-09-04 2020-12-08 昂宝电子(上海)有限公司 脉冲宽度调制控制芯片和电源转换系统
CN214506884U (zh) * 2021-03-11 2021-10-26 佛山市南海赛威科技技术有限公司 功率变换器和电源控制芯片
CN114977812A (zh) * 2022-04-14 2022-08-30 深圳英集芯科技股份有限公司 一种开关电源高压供电电路及装置
CN114552957A (zh) * 2022-04-26 2022-05-27 深圳英集芯科技股份有限公司 开关电源的供电电路及其供电方法

Also Published As

Publication number Publication date
CN114977812A (zh) 2022-08-30

Similar Documents

Publication Publication Date Title
TWI577115B (zh) 開關電源及用於開關電源的母線電容電壓控制方法
WO2023198170A1 (zh) 一种开关电源高压供电电路及装置
CN104124878B (zh) 供电模块、开关电源芯片以及开关电源系统
WO2023207956A1 (zh) 开关电源的供电电路及其供电方法
WO2021104047A1 (zh) 一种正反激式开关电源电路及其控制方法
TW201728064A (zh) 電源供應器及電源供應方法
WO2021179900A1 (zh) 开关电源电路、用于开关电源电路的副边控制电路及方法
WO2022057762A1 (zh) 充电设备
TWI633426B (zh) 供電系統及供電方法
CN108347036B (zh) 一种带输入过欠压保护的开关电源电路和led驱动电路
TW201643583A (zh) 可從二次側循序傳遞數個指令位元至一次側的電源供應器以及相關之控制方法
CN114884356A (zh) 反激变换器及电源系统
CN102611316B (zh) 一种反激变换器控制恒流输出电路
WO2020087864A1 (zh) 一种led驱动电源的低功耗快速启动电路
CN102437724B (zh) 一种ac-dc芯片、系统及其高压启动控制电路
CN102185468A (zh) 高压启动开关和检测晶体管复用电路及应用该电路的开关电源
TWI721701B (zh) 動態多功能電源控制器
WO2024036800A1 (zh) 应用全桥同步整流启动防倒灌电路及电子设备
WO2023207442A1 (zh) 一种电源电路及电源适配器
WO2011054164A1 (zh) 用于等离子显示器的开关电源及其启动电路
CN114400620B (zh) 一种应用于电力行业的反激架构输入欠过压保护电路
CN104253535A (zh) 无高压电解电容器的电源供应器
CN216929890U (zh) 一种交直流共用变压器的辅助电源
CN215072160U (zh) 一种开关电源
CN219268735U (zh) 输入电压的调节电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23787812

Country of ref document: EP

Kind code of ref document: A1