WO2023197596A1 - 利用供热背压汽轮发电机组进行海水淡化的系统及方法 - Google Patents

利用供热背压汽轮发电机组进行海水淡化的系统及方法 Download PDF

Info

Publication number
WO2023197596A1
WO2023197596A1 PCT/CN2022/131681 CN2022131681W WO2023197596A1 WO 2023197596 A1 WO2023197596 A1 WO 2023197596A1 CN 2022131681 W CN2022131681 W CN 2022131681W WO 2023197596 A1 WO2023197596 A1 WO 2023197596A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
seawater desalination
steam
inlet
pressure turbine
Prior art date
Application number
PCT/CN2022/131681
Other languages
English (en)
French (fr)
Inventor
李钊
安欣
张海龙
李继福
吴晋
唐伟
张开鹏
王邦行
曲广浩
何未雨
杨光锐
王勇刚
曹勇
Original Assignee
西安热工研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安热工研究院有限公司 filed Critical 西安热工研究院有限公司
Publication of WO2023197596A1 publication Critical patent/WO2023197596A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/16Treatment of water, waste water, or sewage by heating by distillation or evaporation using waste heat from other processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K17/00Using steam or condensate extracted or exhausted from steam engine plant
    • F01K17/06Returning energy of steam, in exchanged form, to process, e.g. use of exhaust steam for drying solid fuel or plant
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]

Definitions

  • the disclosure belongs to the fields of new energy-saving technologies for thermal power plants and seawater desalination technology, and relates to a system and method for seawater desalination using a heating back-pressure turbine generator unit.
  • the extraction steam passes through the heating back-pressure turbine generator unit and then enters the heating network heater to provide hot water for residents and at the same time supply the heating back-pressure steam turbine.
  • the generator set generates electric energy to supplement the power consumption of the unit plant, effectively reducing the power consumption rate of the unit plant.
  • the heating backpressure turbine generator set is inactive.
  • a system for desalinating seawater using a heating back-pressure turbine-generator unit including:
  • a heating back-pressure turbine-generator unit, the exhaust steam of the heating back-pressure turbine-generator unit is respectively connected to the inlet of the heating network heater and the steam inlet of the desuperheater;
  • a seawater desalination device the inlet of the seawater desalination device is connected to the outlet of the desuperheater;
  • the desuperheating water inlet of the desuperheater is connected to the desuperheating jellyfish tube; a control unit is provided between the desuperheating water inlet and the desuperheating jellyfish tube; the steam inlet and outlet of the desuperheater are on the pipes A signal acquisition and processing unit is provided.
  • control unit includes a desuperheated water quick-closing valve and a desuperheated water regulating valve arranged in sequence.
  • the signal acquisition and processing unit includes a first temperature measurement device and a second temperature measurement device.
  • the first temperature measurement device is provided on the pipe of the desuperheater steam inlet, and the second temperature measurement device is provided on the pipe at the outlet of the desuperheater.
  • the signal output end of the first temperature measurement device is connected to a first signal processor, and the control end of the first signal processor is connected to the desuperheating water quick-closing valve.
  • the signal output end of the second temperature measurement device is connected to a second signal processor, and the control end of the second signal processor is connected to the desuperheating water regulating valve.
  • the outlet of the heat network heater is connected to a condenser.
  • the seawater inlet of the seawater desalination device is connected to feed seawater, the freshwater outlet outputs fresh water, and the wastewater outlet discharges wastewater.
  • a method for desalinating seawater using a heating back-pressure turbine-generator unit including the following steps:
  • the heating extraction steam generates low-temperature steam through the heating back-pressure turbine generator unit.
  • the low-temperature steam enters the desuperheater and mixes with the desuperheating water provided from the desuperheating jellyfish tube in the desuperheater to reduce the steam temperature. Then it enters the seawater desalination device to desalinize seawater to obtain fresh water and discharge wastewater at the same time;
  • the outlet of the heating back-pressure turbine generator unit is connected to the entrance of the heating network heater to ensure the unit's heat supply;
  • the low-temperature steam at the outlet of the heating back-pressure turbine generator unit is higher than the threshold, through the cooperation of the control unit and the signal acquisition and processing unit, the low-temperature steam is controlled to mix with the desuperheating water in the desuperheating jellyfish tube, and the steam temperature is reduced to meet the Desalination plant operating requirements.
  • the step of controlling the mixing of low-temperature steam with the desuperheated water of the desuperheated jellyfish tube includes:
  • the inlet temperature signal of the hydrophobic heater is measured according to the first temperature measuring device.
  • the inlet temperature signal enters the first signal processor for processing.
  • the valve switch signal is obtained and transmitted to the desuperheating water heater.
  • Closing the valve controls the valve switch; according to the second temperature measuring device, the outlet temperature signal of the hydrophobic heater is measured, and the outlet temperature signal enters the second signal processor for processing, and the valve opening signal is obtained, and is transmitted to the desuperheating water regulating valve to adjust the desuperheating water regulator.
  • the thermometer outlet temperature forms a closed loop control.
  • the existing heating back-pressure turbine-generator unit cannot operate during the non-heating period, and cannot fully utilize the benefits of the heat-supply pressurized turbine-generator unit in reducing the average annual power consumption rate of the unit.
  • This disclosure utilizes low-temperature multi-effect distillation seawater desalination technology, and uses the exhaust steam energy of the heating back-pressure turbine generator unit to desalinize seawater during the non-heating period, ensuring that the heating back-pressure turbine generator unit can operate throughout the year, further reducing the cost of the unit plant.
  • the electricity consumption rate improves the economic efficiency of the unit.
  • Figure 1 is a schematic diagram of a system and method for seawater desalination using a heat supply back pressure steam turbine generator unit used in a coal-fired power plant according to an embodiment of the present disclosure.
  • 1-Heating back pressure steam turbine generator set 2-Superheater; 3-Seawater desalination device; 4-Heating network heater; 5-Temperature reducing jellyfish tube; 6-First temperature measuring device; 7-No. 2. Temperature measuring device; 8 - desuperheating water quick-closing valve; 9 - desuperheating water regulating valve; 10 - first signal processor; 11 - second signal processor.
  • level does not mean that the component is required to be absolutely horizontal, but may be slightly tilted.
  • horizontal only means that its direction is more horizontal than “vertical”. It does not mean that the structure must be completely horizontal, but can be slightly tilted.
  • the disclosed system for desalinating seawater using a heating back-pressure turbine generator unit includes a heating back-pressure turbine generator unit 1, a desuperheater 2, a seawater desalination device 3, a heating network heater 4, and a desalination unit.
  • Warm jellyfish tube 5 The disclosed system for desalinating seawater using a heating back-pressure turbine generator unit includes a heating back-pressure turbine generator unit 1, a desuperheater 2, a seawater desalination device 3, a heating network heater 4, and a desalination unit.
  • the exhaust steam of the heating back-pressure turbine generator unit 1 is connected to the inlet of the heating network heater 4 and the steam inlet of the desuperheater 2 respectively.
  • the inlet of the seawater desalination device 3 is connected with the outlet of the desuperheater 2 .
  • the desuperheating water inlet of the desuperheater 2 is connected to the desuperheating jellyfish pipe 5; a control unit is provided between the desuperheating water inlet of the desuperheater 2 and the desuperheating jellyfish pipe 5; the steam inlet and outlet of the desuperheater 2 are provided on the pipes There is a signal acquisition and processing unit.
  • the control unit includes a desuperheating water quick-closing valve 8 and a desuperheating water regulating valve 9 arranged in sequence.
  • the signal acquisition and processing unit includes a first temperature measuring device 6 and a second temperature measuring device 7.
  • the first temperature measuring device 6 is arranged on the pipe of the steam inlet of the desuperheater 2, and the second temperature measuring device 7 is arranged on the desuperheater 2. on the outlet pipe.
  • the signal output end of the first temperature measuring device 6 is connected to the first signal processor 10 , and the control end of the first signal processor 10 is connected to the desuperheating water quick-closing valve 8 .
  • the signal output end of the second temperature measuring device 7 is connected to the second signal processor 11 , and the control end of the second signal processor 11 is connected to the desuperheating water regulating valve 9 .
  • the outlet of the heating network heater 4 is connected to the condenser.
  • the seawater inlet of the seawater desalination device 3 is connected to feed seawater, the freshwater outlet outputs fresh water, and the wastewater outlet discharges wastewater.
  • the heating extraction steam passes through the heating back-pressure turbine generator unit 1, and low-temperature steam is generated at the outlet.
  • the low-temperature steam enters the desuperheater 2, and is mixed with the desuperheating water provided from the desuperheating jellyfish pipe 5 in the desuperheater 2. Mix, lower the steam temperature, and then enter the seawater desalination device 3 for seawater desalination to obtain fresh water and discharge wastewater at the same time.
  • the outlet 1 of the heating back pressure steam turbine generator unit is connected to the inlet 4 of the heating network heater to ensure the unit's heating in winter.
  • the low-temperature steam at the outlet of the heating back-pressure turbine generator unit 1 has a high temperature, it can be mixed with the desuperheated water in the desuperheating jellyfish pipe 5 to meet the requirements of the seawater desalination device 3.
  • the steam inlet valve of the hydrophobic heater can be opened through automatic control, and the temperature closed-loop control can be used to ensure that the outlet temperature of desuperheater 2 is controlled between 65 and 70°C. , to meet the steam temperature requirements entering the seawater desalination device 3.
  • the temperature control logic of the desuperheater 2 is as follows: According to the first temperature measuring device 6, the inlet temperature signal S1 of the hydrophobic heater is measured, and the inlet temperature signal S1 enters the first signal processor 10 for processing. According to whether the hydrophobic temperature of the inlet heating network is low At 70°C, the valve switch signal D1 is obtained and transmitted to the desuperheating water quick-closing valve 8 to control the valve switch; according to the second temperature measuring device 7, the outlet temperature signal S2 of the hydrophobic heater is measured, and the outlet temperature signal S2 enters the second signal processing
  • the desuperheater 11 processes it to obtain the valve opening signal D2, which is transmitted to the desuperheater water regulating valve 9 to adjust the outlet temperature of the desuperheater 2 to form a closed-loop control.
  • a low-temperature distillation seawater desalination unit is used to utilize the exhaust steam energy of the heating back-pressure turbine-generator unit during the non-heating period, so that the heating-supply pressurized steam turbine-generator unit can operate throughout the year, further reducing the plant cost of the unit.
  • the electricity consumption rate improves the economic efficiency of the unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Abstract

一种利用供热背压汽轮发电机组(1)在进行海水淡化的系统,包括供热背压汽轮发电机组(1)、热网系统、海水淡化系统。在非供热期,供热抽汽在供热背压汽轮发电机组(1)做功后变成低温蒸汽,进入减温器(2),利用温度闭环控制保证海水淡化装置入口减温水母管(5)出口蒸汽温度在65℃~70℃,再进入海水淡化装置,蒸汽在海水淡化装置内进行海水淡化,得到淡水,同时排出废水。还公开了一种利用供热背压汽轮发电机组(1)在进行海水淡化的方法。

Description

利用供热背压汽轮发电机组进行海水淡化的系统及方法
相关申请的交叉引用
本申请基于申请号为202210384804.0、申请日为2022年4月13日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本公开属于火电厂节能新技术及海水淡化技术领域,涉及一种利用供热背压汽轮发电机组进行海水淡化的系统及方法。
背景技术
目前大部分电厂均采用抽汽供热方式进行冬季集中供热,抽汽经过供热背压汽轮发电机组后进入热网加热器,提供居民供热用热水,同时供热背压汽轮发电机组产生电能,补充机组厂用电,有效降低机组厂用电率。但在非供热期,由于供热背压机排汽无法利用,供热背压汽轮发电机组处于停用状态。
部分地区拥有广阔的海岸线,因此海水淡化已经成为各地寻求突破缺水困扰的重要技术。区域内火电厂已经投运海水淡化设备,其中部分低温多效蒸馏技术,要求进口蒸汽温度65~70℃蒸汽。
现有供热背压汽轮发电机组在非供热期大部分都处于停运状态,不能充分降低厂用电率的效果。采用低温多效蒸馏海水淡化技术,可以使得供热背压汽轮发电机组能够全年长时间运行,进一步降低机组厂用电率,提高机组运行经济性。
发明内容
在第一方面,提供了一种利用供热背压汽轮发电机组进行海水淡化的系统,包括:
供热背压汽轮发电机组,所述供热背压汽轮发电机组的排汽分别连接热网加热器的入口和减温器的蒸汽入口;
海水淡化装置,所述海水淡化装置的进口与减温器的出口相连;
减温器,所述减温器的减温水入口连接减温水母管;减温器的减温水入口与减温水母管之间设置有控制单元;减温器的蒸汽入口和出口出的管道上设置有信号采集及处理单元。
在一些实施例中,所述控制单元包括依次设置的减温水快关阀和减温水调节阀。
在一些实施例中,所述信号采集及处理单元包括第一温度测量装置和第二温度测量装置,所述第一温度测量装置设置于减温器蒸汽入口的管道上,第二温度测量装置设置于减温器出口的管道上。
在一些实施例中,所述第一温度测量装置的信号输出端连接第一信号处理器,所述第一信号处理器的控制端连接减温水快关阀。
在一些实施例中,所述第二温度测量装置的信号输出端连接第二信号处理器,所述第二信号处理器的控制端连接减温水调节阀。
在一些实施例中,所述热网加热器的出口连接凝汽器。
在一些实施例中,所述海水淡化装置的海水进口连接进料海水,淡水出口输出淡水,废水出口排出废水。
在第二方面,提供了一种利用供热背压汽轮发电机组进行海水淡化的方法,包括以下步骤:
在非供热期,供热抽汽通过供热背压汽轮发电机组产生低温蒸汽,低温蒸汽进入减温器,在减温器与从减温水母管提供的减温水混合,降低蒸汽温度,再进入海水淡化装置进行海水淡化,得到淡水,同时排出废水;
在供热期,在供热背压汽轮发电机组出口接入到热网加热器入口,确保机组供热;
当供热背压汽轮发电机组出口的低温蒸汽温度高于阈值时,通过控制单元和信号采集及处理单元的配合,控制低温蒸汽与减温水母管的减温水进行混合,降低蒸汽温度至满足海水淡化装置的工作要求。
在一些实施例中,所述控制低温蒸汽与减温水母管的减温水进行混合的步骤包括:
根据第一温度测量装置测量得到疏水加热器入口温度信号,入口温度信号进入第一信号处理器进行处理,根据入口热网疏水温度是否低于70℃,得到阀门开关信号,并传输到减温水快关阀控制阀门开关;根据第二温度测量装置,测量得到疏水加热器出口温度信号,出口温度信号进入第二信号处理器进行处理,得到阀门开度信号,并传输给减温水调节阀,调整减温器出口温度,形成闭环回路控制。
现有的供热背压汽轮发电机组在非供热期不能运行,不能充分发挥供热被压汽轮发电机组降低机组年平均厂用电率的效益。本公开利用低温多效蒸馏海水淡化技术,在非供热期利用供热背压汽轮发电机组排汽能量进行海水淡化,保证供热背压汽轮发电机组能够全年运行,进一步降低机组厂用电率,提高机组的经济性。
附图说明
为了更清楚的说明本公开实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本公开的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本公开实施例燃煤电厂采用的利用供热背压汽轮发电机组进行海水淡化的系统及方法示意图。
其中:1-供热背压汽轮发电机组;2-减温器;3-海水淡化装置;4-热网加热器;5-减温水母管;6-第一温度测量装置;7-第二温度测量装置;8-减温水快关阀;9-减温水调节阀;10-第一信号处理器;11-第二信号处理器。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本公开实施例的组件可以以各种不同的配置来布置和设计。
因此,以下对在附图中提供的本公开的实施例的详细描述并非旨在限制要求保护的本公开的范围,而是仅仅表示本公开的选定实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
在本公开实施例的描述中,需要说明的是,若出现术语“上”、“下”、“水平”、“内”等指示的方位或位置关系为基于附图所示的方位或位置关系,或者是该公开产品使用时惯常摆放的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。此外,术语“第一”、“第二”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
此外,若出现术语“水平”,并不表示要求部件绝对水平,而是可以稍微倾斜。如“水平”仅仅是指其方向相对“竖直”而言更加水平,并不是表示该结构一定要完全水平,而是可以稍微倾斜。
在本公开实施例的描述中,还需要说明的是,除非另有明确的规定和限定,若出现术语“设置”、“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。
下面结合附图对本公开做进一步详细描述:
参见图1,本公开的利用供热背压汽轮发电机组进行海水淡化的系统,包括供热背压汽轮发电机组1、减温器2、海水淡化装置3、热网加热器4、减温水母管5。
供热背压汽轮发电机组1的排汽分别连接热网加热器4的入口和减温器2的蒸汽入口。
海水淡化装置3的进口与减温器2的出口相连。
减温器2的减温水入口连接减温水母管5;减温器2的减温水入口与减温水母管5之间设置有控制单元;减温器2的蒸汽入口和出口出的管道上设置有信号采集及处理单元。
控制单元包括依次设置的减温水快关阀8和减温水调节阀9。
信号采集及处理单元包括第一温度测量装置6和第二温度测量装置7,第一温度测量装置6设置于减温器2蒸汽入口的管道上,第二温度测量装置7设置于减温器2出口的管道上。
第一温度测量装置6的信号输出端连接第一信号处理器10,第一信号处理器10的控制端连接减温水快关阀8。
第二温度测量装置7的信号输出端连接第二信号处理器11,第二信号处理器11的控制端连接减温水调节阀9。
热网加热器4的出口连接凝汽器。
海水淡化装置3的海水进口连接进料海水,淡水出口输出淡水,废水出口排出废水。
在非供热期,供热抽汽通过供热背压汽轮发电机组1,出口产生低温蒸汽,低温蒸汽进入减温器2,在减温器2与从减温水母管5提供的减温水混合,降低蒸汽温度,再进入海水淡化装置3进行海水淡化,得到淡水,同时排出废水。
在供热期,在供热背压汽轮发电机组1出口接入到热网加热器4入口,保证冬天机组供热。
当供热背压汽轮发电机组1出口的低温蒸汽温度较高,可与减温水母管5的减温水进行混合,满足海水淡化装置3的要求。
当热背压汽轮发电机组1出口的低温蒸汽温度高于70℃,可通过自动控制打开疏水加热器进汽阀门,通过温度闭环控制保证减温器2出口温度控制在65~70℃之间,满足进入海水淡化装置3的蒸汽温度要求。
减温器2的温度控制逻辑如下:根据第一温度测量装置6,测量得到疏水加热器入口温度信号S1,入口温度信号S1进入第一信号处理器10进行处理,根据入口热网疏水温度是否低于70℃,得到阀门开关信号D1,并传输到减温水快关阀8控制阀门开关;根据第二温度测量装置7,测量得到疏水加热器出口温度信号S2,出口温度信号S2进入第二信号处理器11进行处理,得到阀门开度信号D2,并传输给减温水调节阀9,调整减温器2出口温度,形成闭环回路控制。
本实施实例中,采用低温蒸馏海水淡化机组,利用非供热期的供热背压汽轮发电机组的排汽能量,使得供热被压汽轮发电机组能够全年运行,进一步降低机组的厂用电率,提高机组的经济性。
以上仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (9)

  1. 利用供热背压汽轮发电机组进行海水淡化的系统,包括:
    供热背压汽轮发电机组(1),所述供热背压汽轮发电机组(1)的排汽分别连接热网加热器(4)的入口和减温器(2)的蒸汽入口;
    海水淡化装置(3),所述海水淡化装置(3)的进口与减温器(2)的出口相连;
    减温器(2),所述减温器(2)的减温水入口连接减温水母管(5);减温器(2)的减温水入口与减温水母管(5)之间设置有控制单元;减温器(2)的蒸汽入口和出口出的管道上设置有信号采集及处理单元。
  2. 根据权利要求1所述的利用供热背压汽轮发电机组进行海水淡化的系统,其中,所述控制单元包括依次设置的减温水快关阀(8)和减温水调节阀(9)。
  3. 根据权利要求2所述的利用供热背压汽轮发电机组进行海水淡化的系统,其中,所述信号采集及处理单元包括第一温度测量装置(6)和第二温度测量装置(7),所述第一温度测量装置(6)设置于减温器(2)蒸汽入口的管道上,第二温度测量装置(7)设置于减温器(2)出口的管道上。
  4. 根据权利要求3所述的利用供热背压汽轮发电机组进行海水淡化的系统,其中,所述第一温度测量装置(6)的信号输出端连接第一信号处理器(10),所述第一信号处理器(10)的控制端连接减温水快关阀(8)。
  5. 根据权利要求3所述的利用供热背压汽轮发电机组进行海水淡化的系统,其中,所述第二温度测量装置(7)的信号输出端连接第二信号处理器(11),所述第二信号处理器(11)的控制端连接减温水调节阀(9)。
  6. 根据权利要求1至5中任一项所述的利用供热背压汽轮发电机组进行海水淡化的系统,其中,所述热网加热器(4)的出口连接凝汽器。
  7. 根据权利要求1至6中任一项所述的利用供热背压汽轮发电机组进行海水淡化的系统,其中,所述海水淡化装置(3)的海水进口连接进料海水,淡水出口输出淡水,废水出口排出废水。
  8. 一种采用权利要求1至7中任一项所述的系统的利用供热背压汽轮发电机组进行海水淡化的方法,其中,包括:
    在非供热期,供热抽汽通过供热背压汽轮发电机组(1)产生低温蒸汽,低温蒸汽进入减温器(2),在减温器(2)与从减温水母管(5)提供的减温水混合,降低蒸汽温度,再进入海水淡化装置(3)进行海水淡化,得到淡水,同时排出废水;
    在供热期,在供热背压汽轮发电机组(1)出口接入到热网加热器(4)入口,确保机组供热;
    当供热背压汽轮发电机组(1)出口的低温蒸汽温度高于阈值时,通过控制单元和信号采集及处理单元的配合,控制低温蒸汽与减温水母管(5)的减温水进行混合,降低蒸汽温度至满足海水淡化装置(3)的工作要求。
  9. 根据权利要求8所述的利用供热背压汽轮发电机组进行海水淡化的方法,其中, 所述控制低温蒸汽与减温水母管(5)的减温水进行混合的步骤包括:
    根据第一温度测量装置(6)测量得到疏水加热器入口温度信号(S1),入口温度信号(S1)进入第一信号处理器(10)进行处理,根据入口热网疏水温度是否低于70℃,得到阀门开关信号(D1),并传输到减温水快关阀(8)控制阀门开关;根据第二温度测量装置(7),测量得到疏水加热器出口温度信号(S2),出口温度信号(S2)进入第二信号处理器(11)进行处理,得到阀门开度信号(D2),并传输给减温水调节阀(9),调整减温器(2)出口温度,形成闭环回路控制。
PCT/CN2022/131681 2022-04-13 2022-11-14 利用供热背压汽轮发电机组进行海水淡化的系统及方法 WO2023197596A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210384804.0 2022-04-13
CN202210384804.0A CN114906898A (zh) 2022-04-13 2022-04-13 利用供热背压汽轮发电机组在进行海水淡化的系统及方法

Publications (1)

Publication Number Publication Date
WO2023197596A1 true WO2023197596A1 (zh) 2023-10-19

Family

ID=82764667

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/131681 WO2023197596A1 (zh) 2022-04-13 2022-11-14 利用供热背压汽轮发电机组进行海水淡化的系统及方法

Country Status (2)

Country Link
CN (1) CN114906898A (zh)
WO (1) WO2023197596A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114906898A (zh) * 2022-04-13 2022-08-16 西安热工研究院有限公司 利用供热背压汽轮发电机组在进行海水淡化的系统及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1481947A1 (en) * 2003-05-30 2004-12-01 General Electric Company Combined power generation and desalinization apparatus and related method
CN111197505A (zh) * 2020-02-27 2020-05-26 西安西热节能技术有限公司 一种适用于海水淡化和供热的宽背压汽轮机梯级利用系统
CN114906898A (zh) * 2022-04-13 2022-08-16 西安热工研究院有限公司 利用供热背压汽轮发电机组在进行海水淡化的系统及方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106640239B (zh) * 2016-12-19 2018-03-16 河南省电力勘测设计院 一种减温减压装置
JP7111525B2 (ja) * 2018-06-25 2022-08-02 三菱重工業株式会社 貫流式排熱回収ボイラおよび貫流式排熱回収ボイラの制御システム
CN108706668B (zh) * 2018-06-29 2023-07-18 华北电力大学 一种多模式加热汽源的海水淡化系统
CN111792687B (zh) * 2020-07-07 2024-01-19 西安热工研究院有限公司 基于海水淡化技术的火电厂热网疏水余热回收装置及方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1481947A1 (en) * 2003-05-30 2004-12-01 General Electric Company Combined power generation and desalinization apparatus and related method
CN111197505A (zh) * 2020-02-27 2020-05-26 西安西热节能技术有限公司 一种适用于海水淡化和供热的宽背压汽轮机梯级利用系统
CN114906898A (zh) * 2022-04-13 2022-08-16 西安热工研究院有限公司 利用供热背压汽轮发电机组在进行海水淡化的系统及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG, SHI: "Discussion on the Joint Mode of 300MW Back Pressure Turbo-Generator Unit and Seawater Desalination Device", NORTH CHINA ELECTRIC POWER, no. 10, 31 October 2010 (2010-10-31), pages 30 - 33, XP009549747, ISSN: 1003-9171 *

Also Published As

Publication number Publication date
CN114906898A (zh) 2022-08-16

Similar Documents

Publication Publication Date Title
CN205101052U (zh) 一种新型火电厂供热系统
WO2023197596A1 (zh) 利用供热背压汽轮发电机组进行海水淡化的系统及方法
CN110991877A (zh) 供热机组采用低压缸切缸灵活性改造后供热及调峰能力改善评估方法
CN109058966A (zh) 一种供电机组深度调峰系统及其调峰方法
CN201916008U (zh) 大流量、低参数、高背压膨胀动力节能系统
CN103673295A (zh) 直热式水箱加热水流路系统及其控制方法
CN209147060U (zh) 一种供电机组深度调峰系统
CN214370493U (zh) 一种智能调节乏汽提质热能梯级利用供暖系统
CN208184801U (zh) 一种深度利用供热蒸汽余压余热的热电联产系统
CN106762115A (zh) 一种具有补偿功能的热电联产系统
CN202792568U (zh) 直热式水箱加热水流路系统
CN207674551U (zh) 一种用于汽轮机凝抽背供热的冷却塔防冻系统
CN104633766B (zh) 一种降低供热系统回水温度的调控方法及装置
CN103726892B (zh) 一种汽轮机循环水余热利用装置
CN105910454A (zh) 间接空冷机组直接高背压供热系统
CN205642062U (zh) 间接空冷机组直接高背压供热系统
CN209469458U (zh) 一种背压式供热汽轮机节能调节系统
CN209083352U (zh) 一种火电厂开式循环水余压利用系统
CN203413718U (zh) 具有高温热水锅炉回水升温功能的锅炉供热系统
CN206831645U (zh) 一种高背压供热机组凝结水防超温冷却系统
CN112268273A (zh) 一种水媒暖风器系统及控制方法
CN104848332A (zh) 一种太阳能热水换热机组
CN206989732U (zh) 一种应用于间接空冷高背压供热机组的循环水系统
CN207686774U (zh) 一种电厂耦合吸收式热泵供热系统
CN208269248U (zh) 一种综合利用电厂乏汽、辅机冷却水余热、太阳能的梯级供热系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22937228

Country of ref document: EP

Kind code of ref document: A1