WO2023195421A1 - フッ素含有窒素化合物の保管方法 - Google Patents

フッ素含有窒素化合物の保管方法 Download PDF

Info

Publication number
WO2023195421A1
WO2023195421A1 PCT/JP2023/013517 JP2023013517W WO2023195421A1 WO 2023195421 A1 WO2023195421 A1 WO 2023195421A1 JP 2023013517 W JP2023013517 W JP 2023013517W WO 2023195421 A1 WO2023195421 A1 WO 2023195421A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorine
containing nitrogen
nitrogen compound
gas
manganese
Prior art date
Application number
PCT/JP2023/013517
Other languages
English (en)
French (fr)
Inventor
淳平 岩崎
Original Assignee
株式会社レゾナック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社レゾナック filed Critical 株式会社レゾナック
Publication of WO2023195421A1 publication Critical patent/WO2023195421A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/082Compounds containing nitrogen and non-metals and optionally metals
    • C01B21/083Compounds containing nitrogen and non-metals and optionally metals containing one or more halogen atoms
    • C01B21/084Compounds containing nitrogen and non-metals and optionally metals containing one or more halogen atoms containing also one or more oxygen atoms, e.g. nitrosyl halides

Definitions

  • the present invention relates to a method for storing a fluorine-containing nitrogen compound that is at least one of nitrosyl fluoride (NOF), nitroyl fluoride (FNO 2 ), and trifluoroamine-N-oxide (F 3 NO).
  • a fluorine-containing nitrogen compound that is at least one of nitrosyl fluoride (NOF), nitroyl fluoride (FNO 2 ), and trifluoroamine-N-oxide (F 3 NO).
  • fluorine-containing nitrogen compounds disclosed in Patent Documents 1 and 2 are sometimes used as an etching gas for dry etching.
  • An object of the present invention is to provide a method for storing a fluorine-containing nitrogen compound in which decomposition of the fluorine-containing nitrogen compound does not easily progress during storage.
  • a method for storing a fluorine-containing nitrogen compound that is at least one of nitrosyl fluoride, nitroyl fluoride, and trifluoroamine-N-oxide comprising:
  • the fluorine-containing nitrogen compound contains or does not contain at least one of manganese, cobalt, nickel, and silicon as a metal impurity, and when it contains, the sum of the concentrations of manganese, cobalt, nickel, and silicon is 1000 mass
  • the fluorine-containing nitrogen compound further contains at least one of sodium, potassium, magnesium, and calcium as the metal impurity, or does not contain manganese, cobalt, nickel, and silicon, and , the method for storing a fluorine-containing nitrogen compound according to [1], wherein the fluorine-containing nitrogen compound is stored in a container with a total concentration of sodium, potassium, magnesium, and calcium at 2000 mass ppb or less.
  • decomposition of fluorine-containing nitrogen compounds does not easily progress during storage.
  • the method for storing a fluorine-containing nitrogen compound is a method for storing a fluorine-containing nitrogen compound that is at least one of nitrosyl fluoride, nitroyl fluoride, and trifluoroamine-N-oxide,
  • the nitrogen compound contains or does not contain at least one of manganese (Mn), cobalt (Co), nickel (Ni), and silicon (Si) as a metal impurity, and when the nitrogen compound contains manganese, cobalt, and nickel,
  • Mn manganese
  • Co cobalt
  • Ni nickel
  • Si silicon
  • the fluorine-containing nitrogen compound contains at least one of manganese, cobalt, nickel, and silicon as a metal impurity
  • the decomposition reaction of the fluorine-containing nitrogen compound is promoted by the catalytic action of the metal impurity. Therefore, a fluorine-containing nitrogen compound containing metal impurities may progress to decomposition during storage, resulting in a decrease in purity.
  • the fluorine-containing nitrogen compound stored by the fluorine-containing nitrogen compound storage method according to the present embodiment does not contain metal impurities, or even if it does contain them, the content is small, so they decompose even during long-term storage. is difficult to proceed, and a decrease in purity is unlikely to occur. Therefore, the fluorine-containing nitrogen compound can be stored stably for a long period of time.
  • the fluorine-containing nitrogen compound is at least one of nitrosyl fluoride, nitroyl fluoride, and trifluoroamine-N-oxide, as described above. That is, the fluorine-containing nitrogen compound may be any one of nitrosyl fluoride, nitroyl fluoride, and trifluoroamine-N-oxide, a mixture of two of them, or a mixture of three of them. It may be a mixture.
  • the content of the main component which is the component with the highest content, is It is preferably 99 mol% or more, more preferably 99.9 mol% or more, and even more preferably 99.99 mol% or more. Further, the total content of components other than the main component is preferably 0.1 mol% or less, more preferably 0.01 mol% or less, and even more preferably 0.001 mol% or less. .
  • a gas consisting only of the fluorine-containing nitrogen compound may be stored in the container, or a mixed gas containing the fluorine-containing nitrogen compound and a diluent gas may be stored in the container. good.
  • part or all of the fluorine-containing nitrogen compound may be liquefied and stored in a container.
  • the diluent gas at least one selected from nitrogen gas (N 2 ), helium (He), neon (Ne), argon (Ar), krypton (Kr), and xenon (Xe) can be used.
  • the content of the diluent gas is preferably 90% by volume or less, more preferably 50% by volume or less, based on the total amount of gas stored in the container.
  • Containers for storing fluorine-containing nitrogen compounds are not particularly limited in shape, size, material, etc., as long as they can contain and seal the fluorine-containing nitrogen compounds; It is preferable to have corrosion resistance.
  • Examples of the material of the container include manganese steel, stainless steel, nickel, Hastelloy (registered trademark), Inconel (registered trademark), Monel (registered trademark), etc. from the viewpoint of corrosion resistance.
  • the fluorine-containing nitrogen compound in the method for storing a fluorine-containing nitrogen compound according to the present embodiment contains or does not contain at least one of manganese, cobalt, nickel, and silicon as a metal impurity. Since the sum of the concentrations of cobalt, nickel, and silicon is kept at 1000 mass ppb or less and stored in a container, the decomposition reaction of fluorine-containing nitrogen compounds is difficult to accelerate as described above, and as a result, fluorine-containing nitrogen compounds are decomposition is difficult to proceed.
  • the term "not contained” means that it cannot be quantified using an inductively coupled plasma mass spectrometer (ICP-MS).
  • the sum of the concentrations of manganese, cobalt, nickel, and silicon contained in the fluorine-containing nitrogen compound needs to be 1000 mass ppb or less, It is preferably 500 mass ppb or less, and more preferably 100 mass ppb or less.
  • the concentrations of manganese, cobalt, nickel, and silicon contained in the fluorine-containing nitrogen compound are each preferably 300 mass ppb or less, More preferably, it is 100 mass ppb or less.
  • the sum of the concentrations of manganese, cobalt, nickel, and silicon may be 1 mass ppb or more.
  • concentration of metal impurities such as manganese, cobalt, nickel, and silicon in a fluorine-containing nitrogen compound can be determined using an inductively coupled plasma mass spectrometer (ICP-MS).
  • metals such as manganese, cobalt, nickel, silicon, sodium, potassium, magnesium, and calcium include metal atoms and metal ions.
  • the fluorine-containing nitrogen compound contains or does not contain at least one of manganese, cobalt, nickel, and silicon as a metal impurity, and when the fluorine-containing nitrogen compound contains at least one of manganese, cobalt, nickel, and silicon, the sum of the concentrations of manganese, cobalt, nickel, and silicon is In addition to 1000 mass ppb or less, at least one of sodium, potassium, magnesium, and calcium may or may not be further contained as the metal impurity, and if the metal impurity is contained, manganese, cobalt, nickel, and silicon. , and the total concentration of sodium, potassium, magnesium, and calcium is preferably 2000 mass ppb or less to store the fluorine-containing nitrogen compound. More preferably, the sum of the concentrations of sodium, potassium, magnesium, and calcium is 1000 mass ppb or less.
  • the total concentration of manganese, cobalt, nickel, and silicon, as well as sodium, potassium, magnesium, and calcium in the case of containing the above, is more preferably 1000 mass ppb or less, and more preferably 500 mass ppb or less. preferable. Note that the total concentration of manganese, cobalt, nickel, and silicon, as well as sodium, potassium, magnesium, and calcium may be 2 mass ppb or more.
  • the concentrations of copper (Cu), zinc (Zn), and aluminum (Al) are low.
  • the fluorine-containing nitrogen compound contains at least one of manganese, cobalt, nickel, and silicon and at least one of sodium, potassium, magnesium, and calcium as metal impurities, and also contains copper, zinc, and aluminum as metal impurities.
  • the fluorine-containing nitrogen compound it is preferable to store the fluorine-containing nitrogen compound so that the sum of the concentrations of all these metal impurities is 3000 mass ppb or less.
  • the sum of the concentrations of all these metal impurities contained is more preferably 1500 mass ppb or less, and even more preferably 1000 mass ppb or less.
  • the above-mentioned metal impurities may be contained in the fluorine-containing nitrogen compound as an elemental metal, a metal compound, a metal halide, or a metal complex.
  • Examples of the form of metal impurities in the fluorine-containing nitrogen compound include fine particles, droplets, and gas. Note that manganese, cobalt, nickel, and silicon are thought to be mixed into the fluorine-containing nitrogen compound from raw materials, reaction catalysts, reactors, purification equipment, etc. used when synthesizing the fluorine-containing nitrogen compound.
  • the method for producing a fluorine-containing nitrogen compound with a low concentration of metal impurities is not particularly limited, but includes, for example, a method of removing metal impurities from a fluorine-containing nitrogen compound with a high concentration of metal impurities.
  • the method for removing metal impurities from the fluorine-containing nitrogen compound is not particularly limited, and any known method can be employed. Examples include methods using filters, methods using adsorbents, and distillation.
  • the material of the filter that selectively passes the fluorine-containing nitrogen compound gas is preferably a resin, and particularly preferably polytetrafluoroethylene, in order to avoid mixing of metal components into the fluorine-containing nitrogen compound.
  • the average pore diameter of the filter is preferably 0.01 ⁇ m or more and 30 ⁇ m or less, more preferably 0.1 ⁇ m or more and 10 ⁇ m or less. If the average pore diameter is within the above range, it is possible to sufficiently remove metal impurities and to ensure a sufficient flow rate of the fluorine-containing nitrogen compound gas to achieve high productivity.
  • the flow rate of the fluorine-containing nitrogen compound gas passing through the filter is preferably 3 mL/min or more and 300 mL/min or less, more preferably 10 mL/min or more and 50 mL/min or less, per 1 cm 2 of filter area. If the flow rate of the fluorine-containing nitrogen compound gas is within the above range, high pressure of the fluorine-containing nitrogen compound gas is suppressed, the risk of leakage of the fluorine-containing nitrogen compound gas is reduced, and high productivity can be achieved.
  • the pressure conditions during storage in the method for storing a fluorine-containing nitrogen compound according to the present embodiment are not particularly limited as long as the fluorine-containing nitrogen compound can be stored tightly in a container, but 0.05 MPa or more and 5 MPa or less The pressure is preferably 0.1 MPa or more and 3 MPa or less. If the pressure conditions are within the above range, the fluorine-containing nitrogen compound can be circulated without heating when the container is connected to a dry etching device.
  • the temperature conditions during storage in the method for storing fluorine-containing nitrogen compounds according to the present embodiment are not particularly limited, but are preferably -20°C or more and 50°C or less, and preferably 0°C or more and 40°C or less. is more preferable. If the temperature during storage is ⁇ 20° C. or higher, the container is less likely to deform, so there is a low possibility that the container will lose its airtightness and that oxygen, water, etc. will enter the container. If oxygen, water, etc. are mixed, there is a possibility that the decomposition reaction of the fluorine-containing nitrogen compound will be accelerated. On the other hand, if the storage temperature is 50° C. or lower, the decomposition reaction of the fluorine-containing nitrogen compound is suppressed.
  • the fluorine-containing nitrogen compound stored by the fluorine-containing nitrogen compound storage method according to the present embodiment can be used as an etching gas.
  • the etching gas containing the fluorine-containing nitrogen compound stored in the fluorine-containing nitrogen compound storage method according to the present embodiment can be used for both plasma etching using plasma and plasma-less etching that does not use plasma. can.
  • plasma etching examples include reactive ion etching (RIE), inductively coupled plasma (ICP) etching, and capacitively coupled plasma (CCP) etching.
  • RIE reactive ion etching
  • ICP inductively coupled plasma
  • CCP capacitively coupled plasma
  • ECR electron cyclotron resonance
  • plasma etching plasma may be generated in a chamber in which the member to be etched is installed, or the plasma generation chamber and the chamber in which the member to be etched is installed may be separated (i.e., using remote plasma). ).
  • Fluorine-containing nitrogen compounds containing metal impurities at various concentrations were prepared.
  • An example of preparing a fluorine-containing nitrogen compound will be explained below.
  • (Preparation example 1) One cylinder made of manganese steel with a capacity of 10 L and four sealable cylinders made of manganese steel with a capacity of 1 L were prepared. These cylinders are called cylinder A, cylinder B, cylinder C, and cylinder D in order.
  • the cylinder was filled with 5000 g of nitrosyl fluoride (boiling point at normal pressure: -59.9°C) and liquefied by cooling to -78°C, forming a liquid phase and a gas phase at approximately 100 kPa. I let it happen. Cylinders A, B, C, and D were cooled to -78°C after the internal pressure was reduced to 1 kPa or less using a vacuum pump.
  • 500 g of nitrosyl fluoride gas was extracted from the upper outlet of the cylinder where the gas phase was present, passed through a filter, and then liquefied at -78°C in cylinder A under reduced pressure and collected.
  • the filter is a PTFE filter manufactured by Flon Kogyo Co., Ltd., and has an outer diameter of 50 mm, a thickness of 80 ⁇ m, and an average pore diameter of 0.3 ⁇ m.
  • the flow rate of gas when passing through the filter was controlled to 500 mL/min by a mass flow controller.
  • the amount of nitrosyl fluoride collected in cylinder A was 498 g.
  • the nitrosyl fluoride collected in cylinder A is referred to as sample 1-1.
  • the nitrosyl fluoride collected in cylinder A consists of a gas phase and a liquid phase.
  • the gas phase was extracted from the upper outlet, and the concentration of various metal impurities was measured using an inductively coupled plasma mass spectrometer.
  • the results are shown in Table 1.
  • the details of the method for measuring the concentration of various metal impurities using an inductively coupled plasma mass spectrometer are as follows.
  • the nitrosyl fluoride gas was extracted from the gas phase and passed through 100 g of a nitric acid aqueous solution with a concentration of 1 mol/L at a flow rate of 100 mL/min, and was bubbled. I let it happen. This bubbling brought the nitrosyl fluoride into contact with the nitric acid aqueous solution, causing the nitric acid aqueous solution to absorb metal impurities.
  • the mass of the nitric acid aqueous solution after bubbling was 96 g (M1). Furthermore, the difference in mass between cylinder A before and after bubbling was reduced by 14 g (M2).
  • cylinder A is controlled at about -50°C to form a liquid phase and a gas phase, and 100 g of nitrosyl fluoride gas is extracted from the upper outlet of cylinder A where the gas phase exists, and the pressure is reduced. It was transferred to Cylinder B and collected. Further, 10 g of nitrosyl fluoride gas was extracted from the cylinder, transferred to cylinder B under reduced pressure, and collected. Then, the cylinder B was heated to room temperature in a closed state and left for 24 hours. The nitrosyl fluoride after standing is designated as sample 1-2.
  • Nitrosyl fluoride gas was extracted from the upper outlet where the gas phase of cylinder B was left to stand, and the concentrations of various metal impurities were measured using an inductively coupled plasma mass spectrometer in the same manner as above. The results are shown in Table 1.
  • nitrosyl fluoride gas was extracted from the upper outlet of cylinder A where the gas phase existed, transferred to cylinder C under reduced pressure, and collected. Further, 100 g of nitrosyl fluoride gas was extracted from the cylinder, transferred to cylinder C under reduced pressure, and collected. Then, the temperature of the cylinder C was raised to room temperature in a closed state, and the temperature was left standing for 24 hours. The nitrosyl fluoride after standing is designated as sample 1-3. Nitrosyl fluoride gas was extracted from the upper outlet where the gas phase of cylinder C was left to stand, and the concentrations of various metal impurities were measured using an inductively coupled plasma mass spectrometer in the same manner as above. The results are shown in Table 1.
  • nitrosyl fluoride gas was extracted from the upper outlet of cylinder A where the gas phase existed, transferred to cylinder D under reduced pressure, and collected. Further, 200 g of nitrosyl fluoride gas was extracted from the cylinder, transferred to cylinder D under reduced pressure, and collected. Then, the cylinder D was heated to room temperature and left standing for 24 hours. The nitrosyl fluoride after standing is designated as sample 1-4. Nitrosyl fluoride gas was extracted from the upper outlet where the gas phase of cylinder D was left to stand, and the concentration of various metal impurities was measured using an inductively coupled plasma mass spectrometer in the same manner as above. The results are shown in Table 1.
  • Preparation example 2 Samples 2-1 to 2-4 were prepared in the same manner as in Preparation Example 1, except that nitroyl fluoride was used as the fluorine-containing nitrogen compound. Then, in the same manner as in Preparation Example 1, the concentration of various metal impurities in each sample was measured using an inductively coupled plasma mass spectrometer. The results are shown in Table 2.
  • Example 1 First, standard gases (standard nitrogen monoxide gas and standard nitrogen dioxide gas) were analyzed using gas chromatography. The peak area of the standard nitrogen monoxide gas and the peak area of the standard nitrogen dioxide gas obtained by the analysis of this standard gas, and the peak area of the nitrogen monoxide gas and the peak area of the standard nitrogen dioxide gas obtained by the analysis of the gas extracted from the gas phase of the cylinder. Nitric oxide and nitrogen dioxide can be quantified by comparing the peak areas of nitrogen.
  • the gas of nitrosyl fluoride was extracted from the gas phase of the cylinder A, and analyzed by gas chromatography.
  • the concentration of the decomposition product (nitric oxide) of nitrosyl chloride was determined.
  • the concentration of nitrogen monoxide was 320 mass ppm.
  • Examples 2 to 9 and Comparative Examples 1 to 3 The analysis targets and analysis results in Examples 2 to 9 and Comparative Examples 1 to 3 are shown in Table 4 in comparison with Example 1. That is, except for the items shown in Table 4, the analysis was performed in the same manner as in Example 1. Note that the decomposition product of nitroyl fluoride is nitrogen dioxide, and the decomposition product of trifluoroamine-N-oxide is nitrogen monoxide.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Packging For Living Organisms, Food Or Medicinal Products That Are Sensitive To Environmental Conditiond (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

保管中にフッ素含有窒素化合物の分解が進行しにくいフッ素含有窒素化合物の保管方法を提供する。フッ化ニトロシル、フッ化ニトロイル、及びトリフルオロアミン-N-オキシドのうちの少なくとも一種であるフッ素含有窒素化合物は、マンガン、コバルト、ニッケル、及びケイ素のうち少なくとも一種を金属不純物として含有するか又は含有しない。このフッ素含有窒素化合物を、前記含有する場合のマンガン、コバルト、ニッケル、及びケイ素の濃度の和を1000質量ppb以下として、容器内に保管する。

Description

フッ素含有窒素化合物の保管方法
 本発明は、フッ化ニトロシル(NOF)、フッ化ニトロイル(FNO2)、及びトリフルオロアミン-N-オキシド(F3NO)のうちの少なくとも一種であるフッ素含有窒素化合物の保管方法に関する。
 例えば特許文献1、2等に開示のフッ素含有窒素化合物は、ドライエッチングのエッチングガスとして使用される場合がある。
日本国特許公表公報 2021年第509538号 米国特許出願公開第2020/0203127号明細書
 しかしながら、フッ素含有窒素化合物は、長期間にわたる保管中に分解が進行して純度が低下するおそれがあった。
 本発明は、保管中にフッ素含有窒素化合物の分解が進行しにくいフッ素含有窒素化合物の保管方法を提供することを課題とする。
 前記課題を解決するため、本発明の一態様は以下の[1]~[4]の通りである。
[1] フッ化ニトロシル、フッ化ニトロイル、及びトリフルオロアミン-N-オキシドのうちの少なくとも一種であるフッ素含有窒素化合物の保管方法であって、
 前記フッ素含有窒素化合物がマンガン、コバルト、ニッケル、及びケイ素のうち少なくとも一種を金属不純物として含有するか又は含有せず、前記含有する場合のマンガン、コバルト、ニッケル、及びケイ素の濃度の和を1000質量ppb以下として前記フッ素含有窒素化合物を容器内に保管するフッ素含有窒素化合物の保管方法。
[2] 前記フッ素含有窒素化合物がナトリウム、カリウム、マグネシウム、及びカルシウムのうち少なくとも一種を前記金属不純物としてさらに含有するか又は含有せず、前記含有する場合のマンガン、コバルト、ニッケル、及びケイ素、並びに、ナトリウム、カリウム、マグネシウム、及びカルシウムの濃度の総和を2000質量ppb以下として前記フッ素含有窒素化合物を容器内に保管する[1]に記載のフッ素含有窒素化合物の保管方法。
[3] -20℃以上50℃以下の温度で保管する[1]又は[2]に記載のフッ素含有窒素化合物の保管方法。
[4] 前記容器の材質がマンガン鋼である[1]~[3]のいずれか一項に記載のフッ素含有窒素化合物の保管方法。
 本発明によれば、保管中にフッ素含有窒素化合物の分解が進行しにくい。
 本発明の一実施形態について以下に説明する。なお、本実施形態は本発明の一例を示したものであって、本発明は本実施形態に限定されるものではない。また、本実施形態には種々の変更又は改良を加えることが可能であり、その様な変更又は改良を加えた形態も本発明に含まれ得る。
 本実施形態に係るフッ素含有窒素化合物の保管方法は、フッ化ニトロシル、フッ化ニトロイル、及びトリフルオロアミン-N-オキシドのうちの少なくとも一種であるフッ素含有窒素化合物の保管方法であって、フッ素含有窒素化合物がマンガン(Mn)、コバルト(Co)、ニッケル(Ni)、及びケイ素(Si)のうち少なくとも一種を金属不純物として含有するか又は含有せず、前記含有する場合のマンガン、コバルト、ニッケル、及びケイ素の濃度の和を1000質量ppb以下としてフッ素含有窒素化合物を容器内に保管する方法である。
 フッ素含有窒素化合物が、マンガン、コバルト、ニッケル、及びケイ素のうち少なくとも一種を金属不純物として含有していると、金属不純物の触媒作用によって、フッ素含有窒素化合物の分解反応が促進される。そのため、金属不純物を含有するフッ素含有窒素化合物は、保管中に分解が進行し、純度が低下するおそれがある。
 フッ化ニトロシル、フッ化ニトロイル、及びトリフルオロアミン-N-オキシドが金属Mの作用によって分解する反応の反応式の例を、それぞれ下記に示す。
   nNOF + M → MFn + nNO
   nFNO2 + M → MFn + nNO2
   nF3NO + 3M → 3MFn + nNO
 本実施形態に係るフッ素含有窒素化合物の保管方法によって保管されたフッ素含有窒素化合物は、金属不純物を含有していないか又は含有していてもその含有量が少ないため、長期間にわたる保管においても分解が進行しにくく、純度の低下が起こりにくい。よって、フッ素含有窒素化合物を長期間にわたって安定して保管することができる。
 特許文献1、2に開示の技術においては、フッ素含有窒素化合物中の金属不純物の濃度が考慮されていない。そのため、特許文献1、2に開示の技術によりフッ素含有窒素化合物を保管した場合には、フッ素含有窒素化合物の分解反応が金属不純物によって促進される場合があった。その結果、保管中にフッ素含有窒素化合物の分解が進行し、純度が低下する場合があった。
 以下、本実施形態に係るフッ素含有窒素化合物の保管方法について、さらに詳細に説明する。
〔フッ素含有窒素化合物〕
 フッ素含有窒素化合物は、上記のように、フッ化ニトロシル、フッ化ニトロイル、及びトリフルオロアミン-N-オキシドのうちの少なくとも一種である。すなわち、フッ素含有窒素化合物は、フッ化ニトロシル、フッ化ニトロイル、及びトリフルオロアミン-N-オキシドのうちのいずれか一種であってもよいし、二種の混合物であってもよいし、三種の混合物であってもよい。
 フッ素含有窒素化合物が、フッ化ニトロシル、フッ化ニトロイル、及びトリフルオロアミン-N-オキシドのうちの二種又は三種の混合物である場合は、最も含有量が多い成分である主成分の含有量は99モル%以上であることが好ましく、99.9モル%以上であることがより好ましく、99.99モル%以上であることがさらに好ましい。また、主成分以外の成分の合計の含有量は0.1モル%以下であることが好ましく、0.01モル%以下であることがより好ましく、0.001モル%以下であることがさらに好ましい。
 フッ素含有窒素化合物を容器に保管する際には、フッ素含有窒素化合物のみからなるガスを容器に保管してもよいし、フッ素含有窒素化合物と希釈ガスを含有する混合ガスを容器に保管してもよい。また、フッ素含有窒素化合物の一部又は全部を液化させて容器に保管してもよい。希釈ガスとしては、窒素ガス(N2)、ヘリウム(He)、ネオン(Ne)、アルゴン(Ar)、クリプトン(Kr)、及びキセノン(Xe)から選ばれる少なくとも一種を用いることができる。希釈ガスの含有量は、容器に保管するガスの総量に対して90体積%以下であることが好ましく、50体積%以下であることがより好ましい。
〔容器〕
 フッ素含有窒素化合物を保管する容器については、フッ素含有窒素化合物を収容し密封することができるならば、形状、大きさ、材質等は特に限定されるものではないが、フッ素含有窒素化合物に対して耐食性を有することが好ましい。容器の材質の例としては、耐食性の観点から、マンガン鋼、ステンレス鋼、ニッケル、ハステロイ(登録商標)、インコネル(登録商標)、モネル(登録商標)等が挙げられる。
〔金属不純物〕
 本実施形態に係るフッ素含有窒素化合物の保管方法におけるフッ素含有窒素化合物は、マンガン、コバルト、ニッケル、及びケイ素のうち少なくとも一種を金属不純物として含有するか又は含有しないが、前記含有する場合のマンガン、コバルト、ニッケル、及びケイ素の濃度の和を1000質量ppb以下として容器内に保管されるため、前述したようにフッ素含有窒素化合物の分解反応が促進されにくく、その結果、保管中にフッ素含有窒素化合物の分解が進行しにくい。ここで、前記含有しないとは、誘導結合プラズマ質量分析計(ICP-MS)で定量することができない場合を意味する。
 保管中にフッ素含有窒素化合物の分解を進行しにくくするためには、フッ素含有窒素化合物が含有するマンガン、コバルト、ニッケル、及びケイ素の濃度の和は、1000質量ppb以下である必要があるが、500質量ppb以下であることが好ましく、100質量ppb以下であることがより好ましい。
 保管中のフッ素含有窒素化合物の分解の進行をより抑制するためには、フッ素含有窒素化合物が含有するマンガン、コバルト、ニッケル、及びケイ素の濃度は、それぞれ、300質量ppb以下であることが好ましく、100質量ppb以下であることがより好ましい。
 なお、マンガン、コバルト、ニッケル、及びケイ素の濃度の和は、1質量ppb以上であってもよい。
 フッ素含有窒素化合物中のマンガン、コバルト、ニッケル、ケイ素等の金属不純物の濃度は、誘導結合プラズマ質量分析計(ICP-MS)で定量することができる。
 保管中のフッ素含有窒素化合物の分解の進行をより抑制するためには、フッ素含有窒素化合物中のマンガン、コバルト、ニッケル、及びケイ素の濃度とともに、ナトリウム(Na)、カリウム(K)、マグネシウム(Mg)、及びカルシウム(Ca)の濃度も低濃度とすることが好ましい。なお、本発明においては、マンガン、コバルト、ニッケル、ケイ素、ナトリウム、カリウム、マグネシウム、及びカルシウム等の金属には、金属原子と金属イオンが包含される。
 すなわち、フッ素含有窒素化合物が、マンガン、コバルト、ニッケル、及びケイ素のうち少なくとも一種を金属不純物として含有するか又は含有せず、前記含有する場合のマンガン、コバルト、ニッケル、及びケイ素の濃度の和を1000質量ppb以下とすることに加えて、ナトリウム、カリウム、マグネシウム、及びカルシウムのうち少なくとも一種を前記金属不純物としてさらに含有するか又は含有せず、前記含有する場合のマンガン、コバルト、ニッケル、及びケイ素、並びに、ナトリウム、カリウム、マグネシウム、及びカルシウムの濃度の総和を2000質量ppb以下としてフッ素含有窒素化合物を保管することが好ましい。ナトリウム、カリウム、マグネシウム、及びカルシウムの濃度の和は、1000質量ppb以下であることがさらに好ましい。
 前記含有する場合のマンガン、コバルト、ニッケル、及びケイ素、並びに、ナトリウム、カリウム、マグネシウム、及びカルシウムの濃度の総和は、1000質量ppb以下とすることがより好ましく、500質量ppb以下とすることがさらに好ましい。
 なお、マンガン、コバルト、ニッケル、及びケイ素、並びに、ナトリウム、カリウム、マグネシウム、及びカルシウムの濃度の総和は、2質量ppb以上であってもよい。
 さらに、保管中のフッ素含有窒素化合物の分解の進行をさらに抑制するためには、フッ素含有窒素化合物中のマンガン、コバルト、ニッケル、及びケイ素の濃度並びにナトリウム、カリウム、マグネシウム、及びカルシウムの濃度とともに、銅(Cu)、亜鉛(Zn)、及びアルミニウム(Al)の濃度も低濃度とすることが好ましい。
 すなわち、フッ素含有窒素化合物が、マンガン、コバルト、ニッケル、及びケイ素のうち少なくとも一種と、ナトリウム、カリウム、マグネシウム、及びカルシウムのうち少なくとも一種とを金属不純物として含有するとともに、銅、亜鉛、及びアルミニウムのうち少なくとも一種を金属不純物としてさらに含有する場合には、含有するこれら全ての金属不純物の濃度の和を3000質量ppb以下としてフッ素含有窒素化合物を保管することが好ましい。含有するこれら全ての金属不純物の濃度の和は、1500質量ppb以下とすることがより好ましく、1000質量ppb以下とすることがさらに好ましい。
 上記した金属不純物は、金属単体、金属化合物、金属ハロゲン化物、金属錯体としてフッ素含有窒素化合物中に含有されている場合がある。フッ素含有窒素化合物中における金属不純物の形態としては、微粒子、液滴、気体等が挙げられる。なお、マンガン、コバルト、ニッケル、及びケイ素は、フッ素含有窒素化合物を合成する際に使用する原料、反応触媒、反応器、精製装置等に由来してフッ素含有窒素化合物に混入すると考えられる。
〔金属不純物の濃度が低いフッ素含有窒素化合物の製造方法〕
 金属不純物の濃度が低いフッ素含有窒素化合物を製造する方法は特に限定されるものではないが、例えば、金属不純物の濃度が高いフッ素含有窒素化合物から金属不純物を除去する方法が挙げられる。フッ素含有窒素化合物から金属不純物を除去する方法は特に限定されるものではなく、公知の方法を採用することができる。例えば、フィルターを用いる方法、吸着剤を用いる方法、蒸留が挙げられる。
 フッ素含有窒素化合物ガスを選択的に通過させるフィルターの材質は、フッ素含有窒素化合物への金属成分の混入を避けるためには、樹脂が好ましく、ポリテトラフルオロエチレンが特に好ましい。フィルターの平均孔径は0.01μm以上30μm以下が好ましく、0.1μm以上10μm以下がより好ましい。平均孔径が上記範囲内であれば、金属不純物を十分に除去すること可能であるとともに、フッ素含有窒素化合物ガスの十分な流量を確保して高い生産性を実現できる。
 フィルターを通過させるフッ素含有窒素化合物ガスの流量は、フィルター面積1cm2当たり、3mL/min以上300mL/min以下とすることが好ましく、10mL/min以上50mL/min以下とすることがより好ましい。フッ素含有窒素化合物ガスの流量が上記範囲内であれば、フッ素含有窒素化合物ガスが高圧となることが抑制されて、フッ素含有窒素化合物ガスの漏洩リスクが低くなるとともに、高い生産性を実現できる。
〔保管時の圧力条件〕
 本実施形態に係るフッ素含有窒素化合物の保管方法における保管時の圧力条件は、容器内にフッ素含有窒素化合物を密閉して保管できるならば特に限定されるものではないが、0.05MPa以上5MPa以下とすることが好ましく、0.1MPa以上3MPa以下とすることがより好ましい。圧力条件が上記の範囲内であれば、容器をドライエッチング装置に接続したときに、加温せずにフッ素含有窒素化合物を流通させることができる。
〔保管時の温度条件〕
 本実施形態に係るフッ素含有窒素化合物の保管方法における保管時の温度条件は特に限定されるものではないが、-20℃以上50℃以下とすることが好ましく、0℃以上40℃以下とすることがより好ましい。保管時の温度が-20℃以上であれば、容器の変形が生じにくいので、容器の気密性が失われて酸素、水等が容器内に混入する可能性が低い。酸素、水等が混入すると、フッ素含有窒素化合物の分解反応が促進されるおそれがある。一方、保管時の温度が50℃以下であれば、フッ素含有窒素化合物の分解反応が抑制される。
〔エッチング〕
 本実施形態に係るフッ素含有窒素化合物の保管方法で保管されるフッ素含有窒素化合物は、エッチングガスとして用いることが可能である。そして、本実施形態に係るフッ素含有窒素化合物の保管方法で保管されるフッ素含有窒素化合物を含有するエッチングガスは、プラズマを用いるプラズマエッチング、プラズマを用いないプラズマレスエッチングのいずれにも使用することができる。
 プラズマエッチングとしては、例えば、反応性イオンエッチング(RIE:Reactive Ion Etching)、誘導結合型プラズマ(ICP:Inductively Coupled Plasma)エッチング、容量結合型プラズマ(CCP:Capacitively Coupled Plasma)エッチング、電子サイクロトロン共鳴(ECR:Electron Cyclotron Resonance)プラズマエッチング、マイクロ波プラズマエッチングが挙げられる。
 また、プラズマエッチングにおいては、プラズマは被エッチング部材が設置されたチャンバー内で発生させてもよいし、プラズマ発生室と被エッチング部材を設置するチャンバーとを分けてもよい(すなわち、遠隔プラズマを用いてもよい)。
 以下に実施例及び比較例を示して、本発明をさらに具体的に説明する。金属不純物を種々の濃度で含有するフッ素含有窒素化合物を調製した。フッ素含有窒素化合物の調製例を以下に説明する。
(調製例1)
 マンガン鋼製の容量10Lのボンベ1個と、マンガン鋼製の密閉可能な容量1Lのシリンダー4個を用意した。それらシリンダーを順に、シリンダーA、シリンダーB、シリンダーC、シリンダーDと呼ぶ。ボンベにはフッ化ニトロシル(常圧下での沸点:-59.9℃)5000gを充填し、-78℃に冷却することにより液化させ、ほぼ100kPaの状態で液相部と気相部とを形成させた。シリンダーA、B、C、Dは、真空ポンプで内部を1kPa以下に減圧した後に-78℃に冷却した。
 ボンベの気相部が存在している上側出口からフッ化ニトロシルのガス500gを抜き出し、フィルターを通過させた後に、減圧状態のシリンダーAに-78℃で液化させて捕集した。前記フィルターは、フロン工業株式会社製のPTFEフィルターであり、その外径は50mm、厚さは80μm、平均孔径は0.3μmである。フィルターを通過させる際のガスの流量は、マスフローコントローラーにより500mL/minに制御した。シリンダーAに捕集されたフッ化ニトロシルの量は498gであった。
 シリンダーAに捕集したフッ化ニトロシルを、サンプル1-1とする。シリンダーAに捕集されたフッ化ニトロシルは気相と液相とからなる。その気相部を上側出口から抜き出し、誘導結合プラズマ質量分析計で各種金属不純物の濃度を測定した。結果を表1に示す。なお、誘導結合プラズマ質量分析計を用いた各種金属不純物の濃度の測定方法の詳細は、以下のとおりである。
 シリンダーAの液相のフッ化ニトロシルを-50℃で気化させながら、その気相部からフッ化ニトロシルのガスを抜き出し、濃度1mol/Lの硝酸水溶液100gに100mL/minの流量で流通させ、バブリングさせた。このバブリングにより、フッ化ニトロシルと硝酸水溶液を接触させて、硝酸水溶液に金属不純物を吸収させた。バブリング後の硝酸水溶液の質量は96g(M1)であった。また、バブリング前後のシリンダーAの質量差は14g(M2)減少であった。
 バブリング後の硝酸水溶液10g(M3)を採取し、メスフラスコを用いて超純水で100mL(V)に希釈した。希釈した硝酸水溶液中の各種金属原子の濃度を誘導結合プラズマ質量分析計で測定し、その測定値(c1、単位:g/mL)と下記式によってフッ化ニトロシル中の各種金属原子の濃度(C、単位:g/g)を算出した。
       C={(c1×V)×(M1/M3)}/M2
Figure JPOXMLDOC01-appb-T000001
 次に、シリンダーAを約-50℃に制御して液相部と気相部とを形成させ、シリンダーAの気相部が存在している上側出口からフッ化ニトロシルのガス100gを抜き出し、減圧状態のシリンダーBへ移送し、捕集した。さらに、ボンベからフッ化ニトロシルのガス10gを抜き出し、減圧状態のシリンダーBへ移送し、捕集した。そして、シリンダーBを密閉状態で室温まで昇温して24時間静置した。静置後のフッ化ニトロシルを、サンプル1-2とする。静置後のシリンダーBの気相部が存在している上側出口からフッ化ニトロシルのガスを抜き出し、誘導結合プラズマ質量分析計を用いて、上記と同様にして各種金属不純物の濃度を測定した。結果を表1に示す。
 同様に、シリンダーAの気相部が存在している上側出口からフッ化ニトロシルのガス100gを抜き出し、減圧状態のシリンダーCへ移送し、捕集した。さらに、ボンベからフッ化ニトロシルのガス100gを抜き出し、減圧状態のシリンダーCへ移送し、捕集した。そして、シリンダーCを密閉状態で室温まで昇温して24時間静置した。静置後のフッ化ニトロシルを、サンプル1-3とする。静置後のシリンダーCの気相部が存在している上側出口からフッ化ニトロシルのガスを抜き出し、誘導結合プラズマ質量分析計を用いて、上記と同様にして各種金属不純物の濃度を測定した。結果を表1に示す。
 同様に、シリンダーAの気相部が存在している上側出口からフッ化ニトロシルのガス100gを抜き出し、減圧状態のシリンダーDへ移送し、捕集した。さらに、ボンベからフッ化ニトロシルのガス200gを抜き出し、減圧状態のシリンダーDへ移送し、捕集した。そして、シリンダーDを室温まで昇温して24時間静置した。静置後のフッ化ニトロシルを、サンプル1-4とする。静置後のシリンダーDの気相部が存在している上側出口からフッ化ニトロシルのガスを抜き出し、誘導結合プラズマ質量分析計を用いて、上記と同様にして各種金属不純物の濃度を測定した。結果を表1に示す。
(調製例2)
 フッ素含有窒素化合物としてフッ化ニトロイルを使用した点以外は、調製例1と同様の操作を行って、サンプル2-1~2-4を調製した。そして、調製例1と同様の方法で、それぞれのサンプルの各種金属不純物の濃度を誘導結合プラズマ質量分析計で測定した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
(調製例3)
 フッ素含有窒素化合物としてトリフルオロアミン-N-オキシドを使用した点以外は、調製例1と同様の操作を行って、サンプル3-1~3-4を調製した。そして、調製例1と同様の方法で、それぞれのサンプルの各種金属不純物の濃度を誘導結合プラズマ質量分析計で測定した。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
(実施例1)
 まず、ガスクロマトグラフィーを用いて標準ガス(標準一酸化窒素ガス及び標準二酸化窒素ガス)の分析を行った。この標準ガスの分析により得られた標準一酸化窒素ガスのピーク面積及び標準二酸化窒素ガスのピーク面積と、シリンダーの気相部から抜き出したガスの分析により得られた一酸化窒素のピーク面積及び二酸化窒素のピーク面積とを比較することによって、一酸化窒素及び二酸化窒素を定量することができる。
 次に、密閉したシリンダーAを20℃で30日間静置した後に、シリンダーAの気相部からフッ化ニトロシルのガスを抜き出し、ガスクロマトグラフィーにより分析して、サンプル1-1中に存在するフッ化ニトロシルの分解生成物(一酸化窒素)の濃度を定量した。その結果、一酸化窒素の濃度は320質量ppmであった。
 なお、ガスクロマトグラフィーの測定条件は、以下のとおりである。
   ガスクロマトグラフ:株式会社島津製作所製GC-2014
   カラム:信和化工株式会社製のShincarbon-ST
   インジェクションの温度:150℃
   カラムの温度:50℃
   検出器:TCD
   検出器の温度:200℃
   カレント電流:180mA
   キャリアガス:ヘリウム
   キャリアガスの流量:100mL/min
   検出限界:1質量ppm
(実施例2~9及び比較例1~3)
 実施例2~9及び比較例1~3における分析対象と分析結果を、実施例1との対比で、表4に示す。すなわち、表4に示した項目以外は、実施例1と同等の操作で分析を行った。なお、フッ化ニトロイルの分解生成物は二酸化窒素であり、トリフルオロアミン-N-オキシドの分解生成物は一酸化窒素である。
Figure JPOXMLDOC01-appb-T000004

Claims (4)

  1.  フッ化ニトロシル、フッ化ニトロイル、及びトリフルオロアミン-N-オキシドのうちの少なくとも一種であるフッ素含有窒素化合物の保管方法であって、
     前記フッ素含有窒素化合物がマンガン、コバルト、ニッケル、及びケイ素のうち少なくとも一種を金属不純物として含有するか又は含有せず、前記含有する場合のマンガン、コバルト、ニッケル、及びケイ素の濃度の和を1000質量ppb以下として前記フッ素含有窒素化合物を容器内に保管するフッ素含有窒素化合物の保管方法。
  2.  前記フッ素含有窒素化合物がナトリウム、カリウム、マグネシウム、及びカルシウムのうち少なくとも一種を前記金属不純物としてさらに含有するか又は含有せず、前記含有する場合のマンガン、コバルト、ニッケル、及びケイ素、並びに、ナトリウム、カリウム、マグネシウム、及びカルシウムの濃度の総和を2000質量ppb以下として前記フッ素含有窒素化合物を容器内に保管する請求項1に記載のフッ素含有窒素化合物の保管方法。
  3.  -20℃以上50℃以下の温度で保管する請求項1又は請求項2に記載のフッ素含有窒素化合物の保管方法。
  4.  前記容器の材質がマンガン鋼である請求項1又は請求項2に記載のフッ素含有窒素化合物の保管方法。
PCT/JP2023/013517 2022-04-05 2023-03-31 フッ素含有窒素化合物の保管方法 WO2023195421A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-062962 2022-04-05
JP2022062962 2022-04-05

Publications (1)

Publication Number Publication Date
WO2023195421A1 true WO2023195421A1 (ja) 2023-10-12

Family

ID=88242984

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/013517 WO2023195421A1 (ja) 2022-04-05 2023-03-31 フッ素含有窒素化合物の保管方法

Country Status (2)

Country Link
TW (1) TW202400510A (ja)
WO (1) WO2023195421A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004270917A (ja) * 2002-08-05 2004-09-30 Mitsui Chemicals Inc ハロゲン系ガス充填容器およびこれに充填されたガス並びに充填容器の処理方法
JP2021509538A (ja) * 2017-12-29 2021-03-25 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード 3D NANDデバイスアプリケーションのための非プラズマ乾式処理によるSiO2に対するSiN選択的エッチング
JP2022515063A (ja) * 2018-12-20 2022-02-17 レール・リキード-ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード 半導体プロセス用のf3noを含まないfnoガス及びf3noを含まないfnoガス混合物の貯蔵及び供給のためのシステム及び方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004270917A (ja) * 2002-08-05 2004-09-30 Mitsui Chemicals Inc ハロゲン系ガス充填容器およびこれに充填されたガス並びに充填容器の処理方法
JP2021509538A (ja) * 2017-12-29 2021-03-25 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード 3D NANDデバイスアプリケーションのための非プラズマ乾式処理によるSiO2に対するSiN選択的エッチング
JP2022515063A (ja) * 2018-12-20 2022-02-17 レール・リキード-ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード 半導体プロセス用のf3noを含まないfnoガス及びf3noを含まないfnoガス混合物の貯蔵及び供給のためのシステム及び方法

Also Published As

Publication number Publication date
TW202400510A (zh) 2024-01-01

Similar Documents

Publication Publication Date Title
KR940001383B1 (ko) 삼불화 질소의 액화·농축 및 정제방법
JP6788176B2 (ja) ドライエッチングガスおよびドライエッチング方法
JP2017092357A (ja) ドライエッチングガスおよびドライエッチング方法
TWI798871B (zh) 氟丁烯之保管方法
WO2023195421A1 (ja) フッ素含有窒素化合物の保管方法
WO2023195422A1 (ja) フッ素含有窒素化合物の保管方法
TWI798873B (zh) 氟-2-丁烯之保管方法
WO2023176434A1 (ja) フルオロアルケンの保管方法
TWI817211B (zh) 氟丁烯之保管方法
WO2023176433A1 (ja) フルオロアルケンの保管方法
TWI798876B (zh) 氟-2-丁烯之保管方法
TWI802044B (zh) 氟-2-丁烯之保管方法
EP4231334A1 (en) Etching gas, method for producing same, etching method, and method for producing semiconductor element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23784708

Country of ref document: EP

Kind code of ref document: A1