WO2023193217A1 - 连续复合料带的标记处理方法、装置和计算机设备 - Google Patents

连续复合料带的标记处理方法、装置和计算机设备 Download PDF

Info

Publication number
WO2023193217A1
WO2023193217A1 PCT/CN2022/085713 CN2022085713W WO2023193217A1 WO 2023193217 A1 WO2023193217 A1 WO 2023193217A1 CN 2022085713 W CN2022085713 W CN 2022085713W WO 2023193217 A1 WO2023193217 A1 WO 2023193217A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
pole piece
composite material
continuous composite
edge
Prior art date
Application number
PCT/CN2022/085713
Other languages
English (en)
French (fr)
Inventor
赵柏全
谢险峰
李红圆
胡军
冯仕平
吴倩
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to KR1020247007208A priority Critical patent/KR20240036113A/ko
Priority to PCT/CN2022/085713 priority patent/WO2023193217A1/zh
Priority to CN202280032987.8A priority patent/CN117280514A/zh
Publication of WO2023193217A1 publication Critical patent/WO2023193217A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/004Measuring arrangements characterised by the use of electric or magnetic techniques for measuring coordinates of points
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/90Details of database functions independent of the retrieved data types
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/40Data acquisition and logging
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/04Manufacturing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0404Machines for assembling batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • H01M50/595Tapes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2301/00Handling processes for sheets or webs
    • B65H2301/50Auxiliary process performed during handling process
    • B65H2301/51Modifying a characteristic of handled material
    • B65H2301/511Processing surface of handled material upon transport or guiding thereof, e.g. cleaning
    • B65H2301/5111Printing; Marking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2553/00Sensing or detecting means
    • B65H2553/40Sensing or detecting means using optical, e.g. photographic, elements
    • B65H2553/42Cameras
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/10Handled articles or webs
    • B65H2701/19Specific article or web
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present application relates to the technical field of lithium batteries, and in particular to a marking processing method, device, computer equipment, storage medium and computer program product for a continuous composite material strip.
  • lithium batteries are widely used.
  • lithium batteries are used in new energy vehicles, mobile phones, laptops, etc. Therefore, the quality of batteries is of vital importance, and how to efficiently and accurately check battery quality during the production process has become an urgent problem for battery manufacturers.
  • the quality of the basic pole pieces is tested during the production process.
  • accurate segmentation of the pole pieces affects the quality of the pole pieces to a certain extent.
  • the traditional segmentation method is based on the winding process, and the existing method cannot perform segmentation marking processing on the continuous composite tape.
  • the present application provides a marking processing method for a continuous composite material strip.
  • the methods include:
  • the position of the second pole piece edge in the acquisition sequence in the continuous composite material strip is marked as the polar piece position of the continuous composite material strip.
  • a first image sequence is obtained by collecting images of a continuous composite material strip, and multiple images in the first image sequence are spliced according to the acquisition order to obtain an image to be detected including at least one pole piece structure. If the to-be-detected image is identified, If the detection image includes two pole piece edges, then the position of the second pole piece edge in the acquisition sequence in the continuous composite material belt is marked as the position of the dividing pole piece of the continuous composite material belt.
  • image recognition technology according to the continuous composite material belt Distribution characteristics of the pole pieces in the material belt, identify the pole piece edges in the continuous composite material belt, determine the position of the pole pieces, obtain the specific position information of the pole pieces, and accurately mark the continuous composite material belt into pieces.
  • the marking processing method of the continuous composite material belt further includes:
  • the image to be detected is spliced with the next frame image adjacent to the image to be detected in the first image sequence, and the image to be detected is updated. Detect images.
  • a new image to be detected is obtained by splicing the image to be detected and the next frame image adjacent to the image to be detected; for the obtained new image
  • the image to be detected is re-identified on the edge of the pole piece to improve the accuracy of segmentation marking processing of continuous composite material belts.
  • the marking processing method of the continuous composite material strip also includes: using the image where the edge of the second pole piece is located as the first frame image for splicing the next image to be detected, and returning to splicing the image sequence in the order of acquisition.
  • the step of obtaining an image to be detected including at least one pole piece structure from a plurality of images.
  • the image at the edge of the second pole piece corresponding to the position of the previous pole piece is used as the first frame image for splicing the next image to be detected.
  • the first image sequence is acquired from the first side of the continuous composite strip, and the method further includes:
  • Collect a second image sequence of the continuous composite material belt during transportation to the lamination process is obtained by collecting the second side of the continuous composite material belt; the first side and the second The surface is the opposite surface of the continuous composite material belt;
  • the second image sequence For the second image sequence, splice multiple images in the second image sequence in the order of acquisition to obtain an image to be detected that includes at least one pole piece structure; if it is recognized that the image to be detected includes two pole pieces edge, then the position of the edge of the second pole piece in the collection sequence in the continuous composite material belt is marked as the position of the dividing pole piece of the continuous composite material belt, and the dividing line of the continuous composite material belt on the second surface is obtained. pole piece position;
  • the position of the polarizing piece of the continuous composite material strip on the first side and the position of the polarizing piece on the second side are the same, the position of the polarizing piece of the continuous composite strip is determined.
  • an image to be detected including at least one pole piece structure is obtained; if the image to be detected is identified includes two pole piece edges, then the position of the second pole piece edge in the collection sequence in the continuous composite material belt is marked as the position of the dividing pole piece of the continuous composite material belt; the positions of the continuous composite material belt on the first side and the The position of the pole piece on the second side; determine the final pole piece position of the continuous composite belt by judging whether the pole piece positions on the first and second sides are the same pole piece position.
  • the marking processing method of the continuous composite material belt further includes:
  • the image to be detected is output, and abnormality detection is performed on the continuous composite material strip.
  • the edge of the pole piece is not recognized in the image to be detected, and the image to be detected is output.
  • the abnormal position on the continuous composite material belt is determined; based on the determined abnormal position, the abnormal part of the continuous composite material belt can be quickly and accurately determined and abnormal detection is performed to ensure Quality of continuous composite strips with polarizers.
  • the marking processing method of the continuous composite material belt further includes:
  • the image between the edge of the first pole piece and the edge of the second pole piece is extracted, and the pole piece unit image is output.
  • the edge spacing between the edge of the first pole piece and the edge of the second pole piece in the collection sequence is determined according to the position of the pole pieces.
  • the pole piece unit image between the edge of the first pole piece and the edge of the second pole piece in the collection sequence is output; the pole piece on the continuous composite material belt is obtained.
  • the pole piece unit image of the unit; the pole piece unit image can be used to detect the continuous composite material belt and locate the specific detection position of the continuous composite material belt.
  • determining the edge spacing between the first pole piece edge and the second pole piece edge includes:
  • the edge spacing between the first pole piece edge and the second pole piece edge is obtained according to the position coordinates.
  • the first pole piece edge and the second pole piece edge are calculated based on the position coordinates under the same image coordinates.
  • the edge spacing between them improves the accuracy and reliability of edge spacing.
  • the method also includes:
  • the battery core segmentation conditions are met, it is determined whether the cumulative length of multiple continuous pole piece units in the continuous composite material belt meets the battery core length requirements; wherein, one battery core includes a preset number of pole piece units;
  • the pole piece unit image is output.
  • the battery core to which each pole piece unit belongs can be determined.
  • the data of the continuous composite material strip in each process can be specifically bound to the corresponding pole piece unit.
  • the battery cells corresponding to the chip unit and the pole piece unit can realize the data traceability of the continuous composite material strip.
  • detecting whether the pole piece unit image satisfies the cell segmentation condition based on the image features includes:
  • the tail mark can be used to initially and accurately determine whether the battery cell segmentation conditions are met.
  • the marking of the cutting position of the cell includes:
  • the position of the battery core tail mark in the image feature in the continuous composite material strip is marked as the cutting position of the battery core.
  • the position of the cell tail mark in the image feature in the continuous composite material strip is marked as the cutting position of the cell, ensuring the integrity of the cell.
  • the method before marking the cutting position of the battery core, the method further includes:
  • the tail marking in the conditions is required; by obtaining the image acquisition pulse value of the continuous composite material belt during transportation to the lamination process, the error of the cutting position of the battery core is corrected, and the accuracy of marking the cutting position of the battery core is improved. sex.
  • this application also provides a marking processing device for a continuous composite material belt.
  • the device includes:
  • the image acquisition module is used to acquire the first image sequence of the continuous composite material belt during transportation to the lamination process
  • An image to be detected determination module configured to splice multiple images in the first image sequence in a collection order to obtain an image to be detected including at least one pole piece structure
  • a pole piece segmentation module used to mark the position of the second pole piece edge in the collection sequence in the continuous composite material belt as a continuous composite material if it is recognized that the image to be detected includes two pole piece edges.
  • the position of the polarizing piece of the belt is not limited to the position of the polarizing piece of the belt.
  • this application also provides a computer device.
  • the computer device includes a memory and a processor, the memory stores a computer program, and the processor implements the following steps when executing the computer program:
  • the position of the second pole piece edge in the acquisition sequence in the continuous composite material strip is marked as the polar piece position of the continuous composite material strip.
  • the present application also provides a marking processing system for a continuous composite material belt.
  • the processing system includes an image acquisition component, an encoder, a memory and a computer device as described above.
  • the image acquisition component supports the continuous composite material belt, and the continuous composite material belt drives the encoder to work during the operation of the material belt.
  • the computer device includes a memory and a processor, the memory stores a computer program, and the processor implements the following steps when executing the computer program:
  • the position of the second pole piece edge in the acquisition sequence in the continuous composite material strip is marked as the polar piece position of the continuous composite material strip.
  • this application also provides a computer-readable storage medium.
  • the computer readable storage medium has a computer program stored thereon, and when the computer program is executed by the processor, the following steps are implemented:
  • the position of the second pole piece edge in the acquisition sequence in the continuous composite material strip is marked as the polar piece position of the continuous composite material strip.
  • this application also provides a computer program product.
  • the computer program product includes a computer program that implements the following steps when executed by a processor:
  • the position of the second pole piece edge in the acquisition sequence in the continuous composite material strip is marked as the polar piece position of the continuous composite material strip.
  • Figure 1 is an application environment diagram of the marking processing method for continuous composite material belts in one embodiment
  • Figure 2 is a schematic flow chart of a marking processing method for a continuous composite material belt in one embodiment
  • Figure 3a is a distribution diagram of continuous composite material belts in one embodiment
  • Figure 3b is an imaging schematic diagram of a laminated composite material strip at a non-first position in one embodiment
  • Figure 4 is a schematic diagram of image acquisition and buffering of a continuous composite material belt in one embodiment
  • Figure 5 is a schematic flow chart of a marking processing method for a continuous composite material belt in another embodiment
  • Figure 6 is a schematic diagram of the imaging of the anode continuous laminated composite strip from beginning to end and a schematic diagram of the image of the pole piece unit in one embodiment
  • Figure 7a is a schematic diagram of the imaging of the first side of the continuous composite material belt including the tail piece and the schematic diagram of the image of the pole piece unit in one embodiment
  • Figure 7b is a schematic diagram of the imaging of the tail piece and the pole piece unit image of the second side of the continuous composite strip in one embodiment
  • Figure 8 is a schematic diagram of image splicing of continuous composite material strips in one embodiment
  • Figure 9 is a schematic flowchart of a method for processing separate battery cells in one embodiment
  • FIG. 10 is a schematic flowchart of a battery cell processing method in another embodiment
  • Figure 11 is a schematic diagram of an image of a pole piece unit in one embodiment
  • Figure 12 is a schematic flow chart of a marking processing method for a continuous composite material belt in another embodiment
  • Figure 13 is a structural block diagram of a marking processing device for a continuous composite material belt in one embodiment
  • Figure 14 is an internal structure diagram of a computer device in one embodiment
  • Figure 15 is a structural block diagram of a marking processing system for a continuous composite material belt in one embodiment
  • Figure 16 is a schematic diagram of the hardware layout corresponding to the marking processing system of the continuous composite material belt in one embodiment.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment can be included in at least one embodiment of the present application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Those skilled in the art understand, both explicitly and implicitly, that the embodiments described herein may be combined with other embodiments.
  • multiple refers to more than two (including two).
  • multiple groups refers to two or more groups (including two groups), and “multiple pieces” refers to It is more than two pieces (including two pieces).
  • the battery core plays an important role in the power battery.
  • the battery core determines the quality and quality of the battery product, and is also related to the battery life and capacity.
  • the current power battery is formed by winding.
  • picture information is obtained through a line array camera, and offline training is performed to obtain the pole piece defect feature library.
  • the pictures are obtained in a loop, and Combined with the pole piece defect feature library, defects are detected on the obtained pictures until the entire battery pole piece is inspected and the defects are automatically marked.
  • the defect location is marked and recorded through the encoder signal and PLC. This method only involves defect recording and physical marking based on the current roll length position, and does not involve how to differentiate the pole pieces of the composite strip after the anode and cathode are continuously laminated.
  • the current production and forming of power batteries usually adopts the winding process.
  • the winding process is different from the lamination process.
  • the lamination process refers to cutting the positive and negative electrodes into small pieces and then laminating them with the isolation film to form a small cell unit.
  • the winding process refers to obtaining power batteries through stirring, coating, cold pressing, cutting and slitting, welding, winding, top sealing, liquid injection, formation and forming.
  • the two processes are different.
  • the detection method of the winding-formed power battery cannot accurately distinguish the pole pieces of the composite strip after the anode and cathode are continuously laminated, and it cannot mark the pole pieces in the continuous composite strip. It is also impossible to locate the defect location during defect detection.
  • a first image sequence is obtained by collecting images of a continuous composite material strip; multiple images in the first image sequence are spliced in the order of acquisition to obtain an image to be detected including at least one pole piece structure; if the image to be detected is identified If the image includes two pole piece edges, the position of the second pole piece edge in the acquisition sequence in the continuous composite material belt is marked as the position of the dividing pole piece of the continuous composite material belt; by identifying the pole piece in the continuous composite material belt The edge determines the position of the pole piece, obtains the specific position information of the pole piece, and accurately marks the continuous composite material belt into pieces.
  • the edges of the pole pieces in the continuous composite material belt are identified to determine the position of the pole pieces, so that the composite material belt after the anode continuous stacked cathode and anode compound can be accurately polarized.
  • the pieces are distinguished to obtain the specific position information of the pole pieces, and the continuous composite material belt is segmented and marked according to the specific position information of the pole pieces.
  • the length of the continuous composite material strip of the battery core in the battery and the number of layers of the battery core are known, the number of layers of the battery core where the pole piece in the continuous composite material strip is located can also be obtained based on the length of the pole piece.
  • the marking processing method for continuous composite material strips provided by the embodiments of the present application is exemplified by applying this method to a terminal. It can be understood that this method can also be applied to a server, and can also be applied to a system including a terminal and a server, and Achieved through the interaction between the terminal and the server.
  • the image acquisition unit in the pulse trigger terminal collects images of the continuous composite material belt in the direction of the belt to obtain a first image sequence of the continuous composite material belt; splice multiple images in the first image sequence according to the acquisition order to obtain at least An image to be detected of a pole piece structure; if it is recognized that the image to be detected includes two pole piece edges, the position of the second pole piece edge in the acquisition sequence in the continuous composite material belt is marked as the segment of the continuous composite material belt. pole piece position.
  • the continuous composite material belt may be, but is not limited to, a continuous composite material belt with continuous anodes.
  • the terminal can be, but is not limited to, various personal computers, laptops, smartphones, tablets, and Internet of Things devices; it can also be process equipment for continuous composite material belts.
  • the marking processing method for continuous composite material strips provided by the embodiments of the present application can also be applied to the application environment as shown in Figure 1 .
  • the application environment includes station 1, station 2, ......... and station n.
  • the marking processing method of the continuous composite material belt corresponds to the target stations in station 1, station 2, ......... and station n.
  • the image acquisition device (including different types of cameras, such as line scan cameras) acquires images of the continuous composite material belt at the target station, and the image acquisition device and the terminal communicate through the network.
  • the image acquisition equipment is triggered by the encoder to collect the first image sequence of the continuous composite material belt, and the collected first image sequence is cached in the equipment buffer area; the terminal obtains the first image sequence from the equipment buffer area, and splices the first image sequence in the acquisition order.
  • Multiple images in an image sequence are used to obtain an image to be detected that includes at least one pole piece structure; if it is recognized that the image to be detected includes two pole piece edges, the second pole piece edge in the acquisition sequence is in the continuous composite material
  • the positions in the belt are marked as the positions of the polarizers of the continuous composite belt.
  • a marking processing method for continuous composite material strips is provided.
  • the application of this method to a terminal is used as an example to illustrate, including the following steps:
  • Step 202 Collect a first image sequence of the continuous composite material strip.
  • the continuous composite material belt includes a base belt and a layer structure compounded on the base belt.
  • the layer structure and its corresponding base belt together form a pole piece structure.
  • the continuous composite material belt can include one or more pole piece structures arranged in sequence.
  • the basebands in the pole piece structure are the same baseband, that is, from the perspective of each pole piece structure, the entire baseband is continuous.
  • the continuous composite material belt is an anode-continuous continuous composite material belt as an example for explanation.
  • the composition of the base tape includes a separator and anode material tape
  • the layer structure includes a cathode sheet, cathode tabs and anode tabs. That is, the anode continuous composite material belt consists of a separator, anode material belt, cathode sheet, cathode tab and anode tab.
  • the first image sequence of the continuous composite strip may also include: determining a preset length of the anode strip, cutting the anode strip according to the preset length, and obtaining at least one anode strip score. segments; cover each anode material belt segment with a separator to obtain a base belt; set layer structures on the upper and lower layers of the base belt in sequence to obtain a continuous composite material belt.
  • the preset length is set in advance; setting the layer structure includes sequentially arranging cathode pole pieces, cathode tabs and anode tabs on the upper and lower layers of the baseband.
  • the anode tape is cut according to the preset length, the upper and lower layers of the anode tape are covered with separators, and the cathode sheets are alternately attached to the upper and lower layers.
  • a continuous laminated composite strip of anode is obtained.
  • the continuous composite material belt is a continuous laminated composite material belt for the anode.
  • the specific laminated composite material belt distribution diagram is shown in Figure 3a.
  • a complete laminated composite material belt mainly consists of two upper and lower layers of separators 111 and 112 wrapping the anode material.
  • the belt 110 is composed of an upper cathode sheet 108 and a lower cathode sheet 109 alternately combined; the cathode tabs and anode tabs cannot be shown in Figure 3a.
  • Figure 3b it is a schematic imaging diagram of the laminated composite material strip at non-head and tail positions in one embodiment, including cathode sheet 101, cathode tab 102, anode tab 103 (anode is not visible), diaphragm area 104 (cathode Invisible on the reverse side, the same cathode tab as 102 is exposed), the pole piece edge 105 and the pole piece edge 106, the pole piece edge 105 and the pole piece edge 106 are the pole piece edges of different cathode pieces.
  • the anode continuous laminated composite material belt includes both front and back sides.
  • the first image sequence collected here can be an image sequence of any side of the anode continuous laminated composite material belt, or it can be the front and back of the anode continuous laminated composite material belt. Sequence of acquired images from both sides.
  • the first image sequence is an image sequence of one side of the anode-continuous laminated composite material strip as an example for explanation.
  • the battery is obtained by passing the continuous laminated composite material strip of the anode through the laminated forming process.
  • the anode's continuous laminated composite material belt needs to be transported to the battery production process according to the preset belt taking direction. After the lamination process, the battery core is obtained.
  • the first sequence of images collected here of the continuous laminated composite material strip of the anode is not limited to a certain process in the battery production process.
  • the first image sequence acquired may be an image sequence of a continuous laminated composite strip of anode during transportation to the lamination process.
  • the terminal collects images of the laminated composite material belt in the direction of the strip of the anode continuous laminated composite material belt according to the preset acquisition frequency, and obtains the center image of the front and back sides of the anode continuous laminated composite material belt.
  • the first image sequence of any side splicing each image in the collected first image sequence in the order of collection and caching into the picture buffer area.
  • Figure 4 it is a schematic diagram of image acquisition and buffering of laminated composite material strips in one embodiment.
  • the image acquisition is assumed to be triggered according to the preset acquisition frequency, and the images are spliced into the image cache in order according to the first-come, first-served principle.
  • the image acquisition sequence and image acquisition cache sequence in Figure 4 are 401->402->403->404->...->n; then the splicing sequence and detection image acquisition sequence must also be 401->402- >403->404->...->n.
  • Step 204 Splice multiple images in the first image sequence in the order of collection to obtain an image to be detected including at least one pole piece structure.
  • multiple images in the first image sequence are spliced in the acquisition sequence as shown in Figure 4 to obtain at least one image to be detected including a pole piece structure.
  • multiple images in the first image sequence are spliced according to the collection order to obtain a fixed height image to be detected; wherein the fixed height is used to ensure that the obtained image to be detected including at least one pole piece structure.
  • Step 206 If it is recognized that the image to be detected includes two pole piece edges, mark the position of the second pole piece edge in the acquisition sequence in the continuous composite material strip as the polar piece position of the continuous composite material strip.
  • the two pole piece edges refer to the pole piece edges of two consecutive different cathode pole pieces on the same surface of the continuous anode laminated composite material. It can be understood that the edge of the pole piece here is the edge of the pole piece at the same position relative to the corresponding cathode pole piece.
  • the cathode electrode piece includes an upper electrode piece edge and a lower electrode piece edge.
  • the two identified electrode piece edges may be, but are not limited to, the upper electrode piece edges of two consecutive different cathode electrode pieces.
  • the two pole piece edges include the first pole piece edge and the second pole piece edge; the first pole piece edge and the second pole piece edge are determined according to the order of identifying the image to be detected, and the order of identifying the image to be detected and the image
  • the collection order is the same.
  • the terminal obtains the tape running direction of the anode continuous laminated composite material tape (that is, the transmission direction of the anode continuous laminated composite material tape). Based on the tape running direction, an edge-finding algorithm is used to perform image recognition on the image to be detected, and determines the image to be detected. Detect the target area in the image and identify whether there are two pole piece edges in the image corresponding to the target area. If it is recognized that the image to be detected includes two pole piece edges, then the position of the second pole piece edge in the acquisition sequence in the laminated composite material strip is marked as the polar piece position of the laminated composite material strip, and is obtained separately. The position coordinates of the two pole piece edges in the image to be detected are obtained to obtain the position information of the two pole piece edges.
  • a first image sequence is obtained by collecting images of the continuous composite material strip; multiple images in the first image sequence are spliced in the order of acquisition to obtain a to-be-detected image including at least one pole piece structure. image; if it is recognized that the image to be detected includes two pole piece edges, the position of the second pole piece edge in the acquisition sequence in the continuous composite material belt is marked as the polar piece position of the continuous composite material belt; by identifying the continuous composite material belt The edge of the pole piece in the composite material belt determines the position of the pole piece, obtains the specific position information of the pole piece, and accurately marks the continuous composite material belt.
  • a marking processing method for a continuous composite material belt is provided. This method is applied to the terminal and the continuous composite material belt is a continuous composite material belt with an anode as an example. Includes the following steps:
  • Step 502 Collect a first image sequence of the continuous composite material strip.
  • Step 504 Splice multiple images in the first image sequence in the order of acquisition to obtain an image to be detected including at least one pole piece structure.
  • Step 506 Determine whether there is a pole piece edge; if so, execute step 510; otherwise, execute step 508.
  • step 510 if there is a pole piece edge, performs step 510; if there is no pole piece edge, perform step 508.
  • Step 508 Splice the image to be detected into the tile buffer area.
  • Step 510 Determine whether the image height in the current tile cache area exceeds the set maximum cache height. If so, perform step 512; otherwise, perform step 514.
  • Step 512 if the image height in the current fragmented cache area exceeds the set maximum cache height, output the image to be detected and perform anomaly detection on the continuous composite material strip.
  • Step 514 Splice the image to be detected with the next frame of the image adjacent to the image to be detected in the first image sequence, update the image to be detected, and return to step 506.
  • the image in the current tile cache area does not exceed the set maximum cache height
  • the image in the current tile cache area including the image to be detected, and the lower image in the first image sequence adjacent to the image to be detected will be One frame of image is spliced to obtain a spliced image, and multiple images in the spliced image are spliced according to the order of image collection to obtain an updated image to be detected, and return to step 506.
  • Step 516 Determine whether there are two pole piece edges. If so, execute step 518; otherwise, execute step 508.
  • step 518 is executed; if it is recognized that there are two pole piece edges in the image to be detected, step 508 is executed.
  • Step 518 If it is recognized that the image to be detected includes two pole piece edges, mark the position of the second pole piece edge in the acquisition sequence in the continuous composite material strip as the polar piece position of the continuous composite material strip.
  • the image to be detected is identified according to the acquisition sequence. If the edge of the first pole piece and the edge of the second pole piece are identified on the image to be detected, then the edge of the second pole piece in the acquisition sequence is placed in the laminated composite material strip. The position marked is the position of the polarizing piece of the laminated composite strip.
  • the image to be detected is spliced with the next frame of the image adjacent to the image to be detected in the first image sequence, and the image to be detected is updated. Detect images.
  • the image to be detected will be spliced into the tile cache area in the order of collection. If the current image height in the tile cache area does not exceed the set maximum cache height, Splice the cached image to be detected with the next frame of the image adjacent to the image to be detected in the first image sequence, update the image to be detected, and re-perform pole piece edge recognition on the new image to be detected to improve the continuous composite material belt Accuracy of shard marking processing.
  • the image currently cached in the tile cache area is output, and the image data in the tile cache area is cleared; image exception prompt information is generated; the image The exception prompt information is used to prompt the user terminal to perform abnormal detection on the currently cached image in the fragment buffer area, determine the abnormal situation on the corresponding continuous composite material belt through abnormal detection, and determine the current abnormal position based on the previous position of the pole piece. information.
  • a first image sequence of the first side of the continuous composite material strip is collected; multiple images in the first image sequence are spliced in the order of acquisition to obtain an image to be detected including at least one pole piece structure; If it is recognized that the image to be detected includes two pole piece edges, the position of the second pole piece edge in the acquisition sequence in the continuous composite material strip is marked as the position of the polar piece on the first side of the continuous composite material strip.
  • the second image sequence is obtained by collecting the second side of the continuous composite material belt.
  • the first and second sides are the opposite sides of the continuous composite material belt.
  • multiple images in the second image sequence are spliced in the order of collection to obtain an image to be detected including at least one pole piece structure. If it is recognized that the image to be detected includes two pole piece edges, the position of the second pole piece edge in the acquisition sequence in the continuous composite material belt is marked as the position of the dividing pole piece of the continuous composite material belt, and a continuous composite material belt is obtained.
  • the position of the polarizing piece on the second side When the position of the polarizing piece of the continuous composite material belt on the first side and the position of the polarizing piece on the second side are the same, determine the position of the polarizing piece of the continuous composite material belt.
  • the position of the polarizing piece determined on the opposite surface of the continuous composite material belt is the same; by Determine whether the positions of the pole pieces on the first and second sides are the same pole piece position to determine the final pole piece position of the continuous composite material belt. On the basis of determining the specific position information of the pole pieces, the continuous composite material belt is further improved. Accuracy of segment marking processing for composite tapes.
  • Step 520 Determine the edge spacing between the edge of the first pole piece and the edge of the second pole piece in the collection sequence based on the position of the pole piece.
  • the position coordinates of the first pole piece edge and the second pole piece edge in the acquisition sequence in the image to be detected are determined, and the position coordinates of the two pole piece edges are obtained; according to the first pole piece
  • the position coordinates of the edge and the edge of the second pole piece determine the edge spacing between the edge of the first pole piece and the edge of the second pole piece.
  • Step 522 If the edge spacing meets the spacing requirements of the pole pieces of the continuous composite material belt, extract the image between the edge of the first pole piece and the edge of the second pole piece, and output the pole piece unit image.
  • the pole piece unit image includes a complete pole piece structure.
  • the continuous laminated composite strip of the anode includes the first and last pieces, and the first and last pieces (i.e., the first piece and the last piece) can be understood as the first pole piece and the last pole piece of the battery core; the laminated laminate composite at the position of the tail piece
  • the imaging schematic diagram of the material strip is different from the imaging schematic diagram of the laminated composite material strip at positions other than the first and last pieces.
  • Figure 6 shows an imaging schematic diagram of the anode continuous laminated composite material with non-head and tail pieces and an image of the pole piece unit in one embodiment.
  • 101 is the cathode plate
  • 102 is the cathode tab
  • 103 is the anode tab (the anode is not visible)
  • 104 is the diaphragm area (the cathode is not visible on the reverse side, exposing the same cathode tab as 102)
  • 105 and 106 are respectively The upper edge of the cathode plate.
  • the continuous laminated composite material is The corresponding image to be detected is decomposed into a unit image 107, that is, a pole piece unit image.
  • the pole piece unit image only contains a visible cathode and a visible diaphragm area.
  • FIG. 7a it is an imaging schematic diagram of the first side of the continuous composite material strip including the tail piece and the image of the pole piece unit; wherein, 201 and 204 are the diaphragm areas, and 202 and 206 are the sub-cell identification. (ie, the blank area), 203 is the anode tab, and 205 is the blank area.
  • FIG. 7b shows an imaging schematic diagram of the second side of the continuous composite material strip including the tail piece and the image of the pole piece unit in one embodiment.
  • 301 and 304 are the diaphragm areas
  • 302 and 306 are the sub-cell identification (ie, the blank area)
  • 303 is the anode tab
  • 305 is the blank area. It can be understood that at non-head and tail positions, position 305 should be the cathode tab.
  • Figures 7a and 7b are schematic diagrams of the imaging of the front and back sides of the continuous composite material belt and the image of the pole piece unit after segmentation; the first side can be the front side or the back side, and the second side can be the front side or the back side.
  • the pole piece unit image is stored; by performing strip detection (such as strip appearance detection) on the pole piece unit image, the corresponding continuous composite is identified Whether there are any abnormalities in the material strip, and mark the continuous composite material strip corresponding to each pole piece unit image, and bind the production data in the production process with the pole piece unit image.
  • strip detection such as strip appearance detection
  • Step 524 Use the image where the edge of the second pole piece is located as the first frame image for splicing the next image to be detected, and return to step 504.
  • the image where the edge of the second pole piece is located is used as the first frame image for splicing the next image to be detected, and the process of splicing multiple images in the first image sequence according to the acquisition order is continued to obtain the to-be-detected image including at least one pole piece structure.
  • the laminated composite material belt is processed into pole pieces, the pole piece units on the laminated composite material belt are marked, and the marking information of each pole piece unit on the laminated composite material belt is obtained.
  • the images in the picture buffer area are sequentially spliced into pictures of a certain height in the order of 401->404->...N collection, as shown in Figure 8.
  • the picture 501 in Figure 8 is processed using an edge-finding algorithm.
  • the edge on the direction side is searched to determine whether the first pole piece edge 505 of 501 is found.
  • the coordinate information of the current position is recorded to determine whether there are already two Edges (505 and 506 in Figure 8); if there are two pole piece edges in the collection sequence, mark the position of the second pole piece edge in the collection sequence in the laminated composite material belt as the laminated composite material The position of the pole piece of the belt; according to the position of the pole piece, determine the edge spacing between the edge of the first pole piece and the edge of the second pole piece in the collection sequence; if the edge spacing meets the spacing requirements of the pole piece of the laminated composite belt , extract the image between the edge of the first pole piece and the edge of the second pole piece, and output the pole piece unit image.
  • the image where the edge of the second pole piece is located is used as the first frame image for splicing the next image to be detected, and the step of splicing multiple images in the first image sequence according to the acquisition order is continued to obtain an image to be detected including at least one pole piece structure. That is to say, extract the picture (can be called an image) between the two edges. As shown in Figure 8, you can clear the picture data above 506 and move the pictures below 506 to the shard cache area. The starting position, and the default starting position is used as the first edge position of the next pole piece.
  • edge spacing does not meet the spacing requirements of the polarizing pieces of the continuous composite material belt, manual intervention is performed to detect abnormalities in the continuous composite material belt.
  • the current detection pictures are sequenced (for example, the detection sequence is 501->502->503->504, then the splicing sequence is also sequential from top to bottom. (501->502->503->504) is spliced into the tile cache area, and then determines whether the height of the image in the current tile cache area exceeds the set maximum cache height. If so, output the image cached in the current cache area. images, clear the image data in the shard buffer area and perform manual intervention to detect anomalies in the laminated composite tapes. If not, the image to be detected is spliced with the next frame of the image adjacent to the image to be detected in the first image sequence, the image to be detected is updated, and the cycle continues to find edges.
  • the detection sequence is 501->502->503->504
  • the splicing sequence is also sequential from top to bottom. (501->502->503->504) is spliced into the tile cache area, and then determines whether the height of the image in the current tile cache area exceed
  • the marking processing method of the anode continuous laminated composite material strip by collecting a first image sequence of the anode continuous laminated composite material strip; and splicing multiple images in the first image sequence according to the acquisition order to obtain at least An image of a pole piece structure to be detected; by identifying the image to be detected, and based on the number of pole piece edges identified, the position of the pole pieces of the anode's continuous laminated composite material belt is accurately marked. According to the marked position of the pole piece, the edge spacing between the edge of the first pole piece and the edge of the second pole piece in the image acquisition sequence is obtained.
  • the laminated piece is obtained
  • the pole piece unit image of the pole piece unit on the composite tape can be used for tape inspection of the laminated composite tape.
  • the image at the edge of the second pole piece corresponding to the position of the previous pole piece is used as the first frame image for splicing the next image to be detected.
  • a method for processing battery cores is provided. This step is applied to the terminal and the continuous composite material strip is a continuous composite material strip with an anode as an example.
  • the method includes:
  • Step 902 Extract image features of the pole piece unit image.
  • the battery core is the core component of the power battery.
  • the number of battery core layers and the battery core length are known.
  • Image features include the number of cathode and anode tabs and the battery cell tail logo.
  • the battery cell tail mark is a mark of the battery cell. In the pole piece unit image, the battery cell tail mark is represented by the pixel value of the image being a specific value.
  • the position corresponding to the cell tail mark is the position where the anode material strip is cut, and is displayed as a blank area on the pole piece unit image (202 and 206 in Figure 7a, and 206 in Figure 7b 302 and 306).
  • the pole piece unit image includes the pole piece unit image of the anode continuous laminated composite material with the head and tail images and the pole piece unit image without the head and tail images.
  • the Blob algorithm is used to identify the pole piece unit image and determine the first target area, the second target area and the third target area in the pole piece unit image; Feature extraction is performed on the region to obtain the corresponding number of cathode tabs, number of anode tabs, and battery cell tail identification.
  • Step 904 Based on the image characteristics, detect whether the pole piece unit image meets the cell segmentation conditions.
  • the cell segmentation conditions include that the number of cathode tabs and the number of anode tabs are not equal, and there is a blank area in the image of the pole piece unit.
  • the Blob algorithm is used to detect whether the difference in the number of cathode and anode tabs in the image features meets the quantity difference requirements in the battery cell segmentation conditions; if the number difference requirements in the battery core segmentation conditions are met, the number difference in the image features is detected. Whether the tail mark of the battery cell meets the tail mark requirements in the battery cell segmentation conditions; if it meets the tail mark requirements in the battery cell segmentation conditions, it is determined that the battery cell segmentation conditions are met. Further, if the pole piece unit image satisfies the cell segmentation condition, the pole piece unit image is the pole piece unit image at the end of the anode continuous laminated composite material strip.
  • the difference in the number of cathode and anode tabs in the image features in the pole piece unit image meets the quantity difference requirements in the cell segmentation conditions, and the cell tail mark meets the tail mark requirements in the cell segmentation conditions (That is, the blank area), then the image corresponding to the pole piece unit image is the image of the tail in the continuous composite belt.
  • Step 906 If the battery cell segmentation conditions are met, determine whether the cumulative length of multiple continuous pole piece units in the continuous composite material belt meets the battery core length requirement; wherein, one battery core includes a preset number of pole piece units.
  • Step 908 If the battery core length requirements are met, mark the cutting position of the battery core.
  • the position of the battery core tail mark in the image feature in the continuous composite material strip is marked as the cutting position of the battery core.
  • the battery core to which each pole piece unit image belongs and the number of layers where the corresponding battery core is located are determined.
  • the production data of each process will be bound to each pole piece unit image, the cell to which each pole piece unit image belongs, and the layer number of the cell to which it belongs, to facilitate data storage and production data. traceability.
  • the faulty cell and the number of fault layers are determined based on the pole piece unit image where the defect is located, so as to accurately locate the fault and shorten the troubleshooting time of the fault location.
  • the pole piece unit image is output.
  • the conditions and battery length requirements are met, determine the cutting position of the battery core.
  • the continuous composite material strip By dividing the continuous composite material strip into pole pieces and battery cores, it is possible to determine the battery cell to which each pole piece unit belongs; and the data of the continuous composite material strip in each process is specifically bound to the corresponding pole piece unit and The battery core corresponding to the pole piece unit can realize data traceability and data storage of the continuous composite material belt.
  • a method for treating battery cores is provided. This method is applied to terminals and the continuous composite material strip is a continuous composite material strip with an anode as an example.
  • the method includes:
  • Step 1002 Extract image features of the pole piece unit image.
  • Step 1004 Obtain the difference in the number of cathode and anode tabs in the image feature.
  • the number of cathode tabs and the number of anode tabs in the image features are obtained, and the quantitative difference between the number of cathode tabs and the number of anode tabs is obtained.
  • Step 1006 Determine whether the quantity difference requirement in the cell segmentation condition is met. If so, execute step 1008; otherwise, end.
  • step 1008 it is determined whether the difference in number of cathode and anode tabs meets the quantity difference requirement in the cell segmentation condition. If so, step 1008 is executed; otherwise, the process ends.
  • Step 1008 Whether the tail identification requirements in the cell segmentation conditions are met; if so, execute step 1010; otherwise, end.
  • the quantity difference requirement in the battery cell segmentation condition is met, it is detected whether the battery cell tail mark in the image feature satisfies the tail mark requirement in the battery cell segmentation condition. If the battery cell tail mark in the battery cell segmentation condition is met, Requirements to ensure that the battery core cutting conditions are met.
  • Step 1010 determine whether the battery cell length requirement is met, and if so, execute step 1012; otherwise, end.
  • the battery core segmentation conditions are met, it is determined whether the cumulative length of multiple continuous pole piece units in the continuous composite material belt meets the battery core length requirements; wherein, one battery core includes a preset number of pole piece units;
  • Step 1012 Obtain the image acquisition pulse value of the continuous composite material belt during transportation to the lamination process.
  • the image acquisition pulse value refers to the number of pulses of the encoder from the last piece to the first piece in the continuous composite material belt.
  • Step 1014 Check whether the image acquisition pulse value meets the pulse requirements for cell segmentation.
  • the pulse requirement for cell segmentation refers to the image acquisition pulse value that meets the length of one cell.
  • Step 1016 If the pulse requirements are met, the position of the battery cell tail mark in the image feature in the continuous composite material strip is marked as the segmentation position of the battery core.
  • the position of the battery cell tail mark in the image feature in the laminated composite material strip is marked as the cutting position of the battery core; the virtual code of the current material strip is obtained through the PLC and the first and last poles of the current battery cell are All pole pieces between the pieces are bound to the virtual code in sequence.
  • the virtual code of the current material tape can be understood as the virtual code of the current battery cell; the virtual code refers to the identification used to mark different battery cells.
  • the virtual code can be numbers, letters, and a combination of numbers and letters, etc.
  • the obtained pole piece unit image is shown in Figure 11.
  • the Blob algorithm is used to detect the number of anode tabs in the area 602; and the number of cathode tabs in the detection area 603; it is judged whether the numbers of cathode and anode tabs are consistent. If If they are the same, defect detection will be performed. If they are different, the Blob algorithm will be used to determine whether the tail marking requirements in the cell segmentation conditions are met (that is, whether there is a blank area); if not, defect detection will be performed.
  • the image acquisition pulse value of the composite material strip during transportation to the lamination process is to calculate the pulse number of the encoder from the last piece to the first piece, and determine whether the image acquisition pulse value meets the pulse requirements for cell segmentation. If it meets According to the pulse requirement, the position of the battery cell tail mark in the image feature in the laminated composite material strip is marked as the segmentation position of the battery core.
  • the virtual code of the current material strip is obtained through the PLC and all the positions between the first and last pole pieces of the current battery cell are The pole pieces are bound to the virtual code in sequence; if the pulse requirements are not met, an abnormal alarm will be issued for manual intervention.
  • the difference in number of cathode and anode tabs satisfies the quantity difference requirement in the battery cell segmentation conditions, and the battery cell tail mark satisfies the battery cell segmentation conditions.
  • tail marking is required; by obtaining the image acquisition pulse value of the continuous composite material belt during transportation to the lamination process, the error of the cutting position of the battery core is corrected, which improves the accuracy of marking the cutting position of the battery core; at the same time
  • a marking processing method for a continuous composite material belt is provided. This step is applied to the terminal and the continuous composite material belt is a continuous composite material belt with an anode as an example.
  • Step 1202 Collect the first image sequence of the continuous composite material strip.
  • Step 1204 Splice multiple images in the first image sequence in the order of collection to obtain an image to be detected including at least one pole piece structure.
  • Step 1206 Recognize the image to be detected. If there is a pole piece edge, execute step 1216; if there is no pole piece edge, execute step 1208.
  • Step 1208 Splice the image to be detected into the tile cache area.
  • Step 1210 Determine whether the image height in the current tile cache area exceeds the set maximum cache height. If so, perform step 1212; otherwise, perform step 1214.
  • Step 1212 If the height of the image in the current fragment cache area exceeds the set maximum cache height, the image to be detected is output and abnormality detection is performed on the continuous composite material belt.
  • Step 1214 Splice the image to be detected with the next frame of the image adjacent to the image to be detected in the first image sequence, update the image to be detected, and return to step 1206.
  • Step 1216 Determine whether there are two pole piece edges. If so, execute step 1218; otherwise, execute step 1208.
  • Step 1218 if it is recognized that the image to be detected includes two pole piece edges, mark the position of the second pole piece edge in the acquisition sequence in the continuous composite material strip as the polar piece position of the continuous composite material strip.
  • Step 1220 Determine the edge spacing between the edge of the first pole piece and the edge of the second pole piece in the collection sequence according to the position of the pole piece.
  • Step 1222 if the edge spacing meets the spacing requirements of the pole pieces of the continuous composite material belt, extract the image between the edge of the first pole piece and the edge of the second pole piece, and output the pole piece unit image.
  • Step 1224 Extract image features of the pole piece unit image.
  • Step 1226 Check whether the pole piece unit image meets the cell segmentation conditions. If so, execute step 1228; otherwise, end.
  • the quantity difference requirement in the cell segmentation condition refers to the difference in the number of cathode and anode tabs. Not the default value (i.e. 0). If the quantity difference requirement in the cell segmentation condition is met, check whether the battery cell tail mark in the image feature meets the tail mark requirement in the battery cell segmentation condition; if it meets the tail mark requirement in the battery cell segmentation condition, determine Meet the conditions for cell segmentation.
  • Step 1228 determine whether the battery cell length requirement is met; if so, execute step 1230, otherwise, end.
  • the battery core cutting conditions are met. If the battery core cutting conditions are met, it is judged whether the cumulative length of multiple continuous pole piece units in the laminated composite material belt meets the battery core length requirements; wherein, one battery The core includes a preset number of pole piece units.
  • Step 1230 If the battery core length requirements are met, mark the cutting position of the battery core.
  • the position of the battery core tail mark in the image feature in the laminated composite material strip is marked as the cutting position of the battery core.
  • the current tape virtual code can be understood as the virtual code of the current cell.
  • the pole piece unit image is output. Through the image feature detection of the pole piece unit image, it is determined whether the battery core cutting conditions are met, and whether the cumulative length of multiple continuous pole piece units in the laminated composite material tape meets the battery core length requirements; if the battery core cutting conditions are met at the same time, According to the conditions and battery core length requirements, determine the cutting position of the battery core.
  • the anode's continuous laminated composite material strip By dividing the anode's continuous laminated composite material strip into pole pieces and battery cores, it is possible to determine the battery cell to which each pole piece unit belongs; and the data of the laminated composite material strip in each process is specifically bound to the corresponding The pole piece unit and the battery core corresponding to the pole piece unit can realize the data traceability and data storage of the laminated composite material strip.
  • embodiments of the present application also provide a marking processing device for a continuous composite material belt that is used to implement the above-mentioned marking processing method for a continuous composite material belt.
  • the solution to the problem provided by this device is similar to the solution recorded in the above method. Therefore, the specific limitations in the embodiments of the marking processing device for one or more continuous composite material strips provided below can be found in the above article for continuous composite material strips. The limitations of the marking processing method of composite material tapes will not be described again here.
  • a marking processing device for continuous composite material strips including: an image acquisition module 1302, an image to be detected determining module 1304 and a pole piece slicing module 1306, wherein:
  • the image acquisition module 1302 is used to acquire a first image sequence of the continuous composite material belt during transportation to the lamination process.
  • the image to be detected determining module 1304 is configured to splice multiple images in the first image sequence in the order of collection to obtain an image to be detected including at least one pole piece structure.
  • the pole piece segmentation module 1306 is used to mark the position of the second pole piece edge in the collection sequence in the continuous composite material belt as the segmentation of the continuous composite material belt if it is recognized that the image to be detected includes two pole piece edges. pole piece position.
  • a first image sequence is obtained by collecting images of a continuous composite material strip; multiple images in the first image sequence are spliced in the order of acquisition to obtain a to-be-detected image including at least one pole piece structure. image; if it is recognized that the image to be detected includes two pole piece edges, the position of the second pole piece edge in the acquisition sequence in the continuous composite material belt is marked as the polar piece position of the continuous composite material belt; by identifying the continuous composite material belt The edge of the pole piece in the composite material belt determines the position of the pole piece, obtains the specific position information of the pole piece, and accurately marks the continuous composite material belt.
  • the image to be detected determining module 1304 is also used to combine the image to be detected with the first image sequence when the identification result of the pole piece segmentation module 1306 is that the image to be detected only includes one pole piece edge.
  • the next frame of images adjacent to the image to be detected is spliced, and the image to be detected is updated.
  • the image to be detected determining module 1304 is also used to use the image at the edge of the second pole piece as the first frame image for splicing the next image to be detected after the pole piece segmentation module 1306 marks the position of the pole piece. Multiple images in the image sequence are re-spliced in the order of acquisition to obtain an image to be detected including at least one pole piece structure.
  • the image acquisition module 1302 is also used to acquire a second image sequence of the continuous composite material strip during transportation to the lamination process; the second image sequence is for the second side of the continuous composite material strip. Collected; the first side and the second side are the opposite sides of the continuous composite belt.
  • the image to be detected determining module 1304 is also configured to splice multiple images in the second image sequence in the order of acquisition for the second image sequence to obtain an image to be detected including at least one pole piece structure. ; If it is recognized that the image to be detected includes two pole piece edges, then the position of the second pole piece edge in the acquisition sequence in the continuous composite material belt is marked as the polar piece position of the continuous composite material belt, and the continuous composite material is obtained. Take the position of the polarizing piece on the second side.
  • the pole piece segmentation module 1306 is also used to determine the position of the pole piece of the continuous composite strip when the position of the pole piece on the first side of the continuous composite strip is the same as the position of the pole piece on the second side.
  • a marking processing device for continuous composite material strips.
  • an image acquisition module 1302 an image to be detected determination module 1304, and a pole piece segmentation module 1306, it may also include: an anomaly detection module, Edge spacing determination module, pole piece unit image output module, image feature module, battery cell detection module and segmentation position marking module, among which:
  • the anomaly detection module is used to output the image to be detected if the edge of the pole piece is not recognized in the image to be detected, and perform anomaly detection on the continuous composite material belt.
  • the edge spacing determination module is used to determine the edge spacing between the edge of the first pole piece and the edge of the second pole piece in the collection sequence according to the position of the pole piece.
  • the pole piece unit image output module is used to extract the image between the edge of the first pole piece and the edge of the second pole piece and output the pole piece unit image if the edge spacing meets the spacing requirements of the divided pole pieces of the continuous composite material belt.
  • the edge spacing determination module is also used to obtain the position coordinates of the first pole piece edge and the second pole piece edge respectively in the image to be detected; and obtain the edge spacing between the first pole piece edge and the second pole piece edge according to the position coordinates.
  • the image feature module is used to extract the image features of the pole piece unit image.
  • the battery core detection module is used to detect whether the pole piece unit image meets the battery core segmentation conditions based on the image characteristics. If the battery core segmentation conditions are met, it is used to determine the accumulation of multiple continuous pole piece units in the continuous composite material belt. Whether the length meets the battery core length requirements; one battery core includes a preset number of pole piece units.
  • the cutting position marking module is used to mark the cutting position of the battery core if it meets the battery core length requirements.
  • the battery core detection module is also used to detect whether the number difference of cathode and anode tabs in the image features meets the quantity difference requirements in the battery core segmentation conditions. If the quantity difference requirements in the battery core segmentation conditions are met, the image features are detected. Whether the tail mark of the battery cell in satisfies the tail mark requirements in the battery cell segmentation conditions. If it meets the tail mark requirements in the battery cell segmentation conditions, it is determined that the battery cell segmentation conditions are met.
  • the cutting position marking module is also used to mark the position of the cell tail mark in the image feature in the continuous composite material strip as the cutting position of the cell.
  • the battery core detection module is also used to obtain the image acquisition pulse value of the continuous composite material strip during transportation to the lamination process; to detect whether the image acquisition pulse value meets the pulse requirements for battery core segmentation.
  • Each module in the above-mentioned marking processing device for continuous composite material strips can be implemented in whole or in part by software, hardware and combinations thereof.
  • Each of the above modules may be embedded in or independent of the processor of the computer device in the form of hardware, or may be stored in the memory of the computer device in the form of software, so that the processor can call and execute the operations corresponding to the above modules.
  • a computer device including a memory and a processor.
  • a computer program is stored in the memory.
  • the processor executes the computer program, it implements the steps in the above method embodiments.
  • a computer device is provided.
  • the computer device may be a terminal, and its internal structure diagram may be as shown in Figure 14.
  • the computer device includes a processor, memory, communication interface, display screen and input device connected through a system bus.
  • the processor of the computer device is used to provide computing and control capabilities.
  • the memory of the computer device includes non-volatile storage media and internal memory.
  • the non-volatile storage medium stores operating systems and computer programs. This internal memory provides an environment for the execution of operating systems and computer programs in non-volatile storage media.
  • the communication interface of the computer device is used for wired or wireless communication with external terminals.
  • the wireless mode can be implemented through WIFI, mobile cellular network, NFC (Near Field Communication) or other technologies.
  • the computer program when executed by a processor, implements a method of marking a continuous composite web.
  • the display screen of the computer device may be a liquid crystal display or an electronic ink display.
  • the input device of the computer device may be a touch layer covered on the display screen, or may be a button, trackball or touch pad provided on the computer device shell. , it can also be an external keyboard, trackpad or mouse, etc.
  • Figure 14 is only a block diagram of a partial structure related to the solution of the present application, and does not constitute a limitation on the computer equipment to which the solution of the present application is applied. Specific computer equipment can May include more or fewer parts than shown, or combine certain parts, or have a different arrangement of parts.
  • embodiments of the present application also provide a marking processing system for a continuous composite material belt that is used to implement the above-mentioned marking processing method for a continuous composite material belt.
  • the solution to the problem provided by this system is similar to the solution recorded in the above method. Therefore, the specific limitations in the embodiments of the marking processing system for one or more continuous composite material strips provided below can be found in the above for continuous composite material belts. The limitations of the marking processing method of composite material tapes will not be described again here.
  • a marking processing system for continuous composite material strips includes an image acquisition component, an encoder, a memory and a computer device as described above.
  • the image acquisition component will continuously composite
  • the material belt is supported, and the continuous composite material belt drives the encoder to work and triggers the image acquisition component to collect images during the running process of the material belt.
  • the image acquisition component includes a photographing roller and a line array camera.
  • the photographing roller supports the continuous composite material belt.
  • a set of line array cameras are respectively set at the corresponding positions of the photographing roller.
  • the continuous composite material belt drives the encoder to work during the operation of the material belt. Trigger the line scan camera to collect images.
  • a set of linear array cameras and linear light sources can be set up at the corresponding positions of the photographing roller to capture images of the front and back sides of the material belt to improve the quality of the captured images.
  • Figure 16 is a schematic diagram of the hardware layout corresponding to the marking processing system of the continuous composite material belt
  • two camera rollers are respectively provided during the belt taking process, and the two camera rollers respectively move the material belt forward.
  • the back side is supported, and a set of line array cameras and linear light sources are respectively set up at the corresponding positions of the two photo-taking rollers to capture images of the front and back sides of the material belt.
  • the encoder is driven to work and trigger the line scan camera to capture images.
  • A101 is a line array camera for front detection of the material belt
  • A102 is a light source for front detection
  • A103 is a photo roller/encoding roller for front detection of the material belt
  • A104 is a line array camera for back detection of the material belt
  • A105 is a light source for back detection
  • A103 is the material belt The reverse side detects the photo roller/encoding roller.
  • a computer-readable storage medium on which a computer program is stored.
  • the computer program is executed by a processor, the steps in the above method embodiments are implemented.
  • a computer program product including a computer program that implements the steps in each of the above method embodiments when executed by a processor.
  • the computer program can be stored in a non-volatile computer-readable storage.
  • the computer program when executed, may include the processes of the above method embodiments.
  • Any reference to memory, database or other media used in the embodiments provided in this application may include at least one of non-volatile and volatile memory.
  • Non-volatile memory can include read-only memory (ROM), magnetic tape, floppy disk, flash memory, optical memory, high-density embedded non-volatile memory, resistive memory (ReRAM), magnetic variable memory (Magnetoresistive Random Access Memory (MRAM), ferroelectric memory (Ferroelectric Random Access Memory, FRAM), phase change memory (Phase Change Memory, PCM), graphene memory, etc.
  • Volatile memory may include random access memory (Random Access Memory, RAM) or external cache memory, etc.
  • RAM Random Access Memory
  • RAM random access memory
  • RAM Random Access Memory
  • the databases involved in the various embodiments provided in this application may include at least one of a relational database and a non-relational database.
  • Non-relational databases may include blockchain-based distributed databases, etc., but are not limited thereto.
  • the processors involved in the various embodiments provided in this application may be general-purpose processors, central processing units, graphics processors, digital signal processors, programmable logic devices, quantum computing-based data processing logic devices, etc., and are not limited to this.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Databases & Information Systems (AREA)
  • Business, Economics & Management (AREA)
  • Data Mining & Analysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Strategic Management (AREA)
  • Marketing (AREA)
  • General Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Primary Health Care (AREA)
  • Economics (AREA)
  • Tourism & Hospitality (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Image Analysis (AREA)

Abstract

本申请公开了一种连续复合料带的标记处理方法和装置。所述方法包括:采集连续复合料带的第一图像序列;按采集顺序拼接第一图像序列中的多个图像,得到包括至少一个极片结构的待检测图像;若识别到待检测图像中包括两个极片边缘,则将采集顺序上的第二极片边缘在连续复合料带中的位置标记为连续复合料带的分极片位置。本方法通过识别连续复合料带中的极片边缘确定分极片位置,得到极片的具体位置信息,准确对连续复合料带进行分片标记处理。

Description

连续复合料带的标记处理方法、装置和计算机设备 技术领域
本申请涉及锂电池技术领域,特别是涉及一种连续复合料带的标记处理方法、装置、计算机设备、存储介质和计算机程序产品。
背景技术
随着新能源技术的发展和环保要求,锂电池被广泛地应用,例如,锂电池被应用在新能源汽车、手机、笔记本电脑等。因此,电池的质量至关重要,而生产过程中如何高效且准确地对电池质量进行把关成为电池生产商亟需解决的问题。
在对电池质量评估中,采用的是在生产过程中对基础的极片的质量进行检测。对于叠片工艺来说,准确的分割极片一定程度上影响极片的质量。传统的分割方法是对卷绕工艺,现有的方法不能对连续复合料带进行分片标记处理。
发明内容
基于此,有必要针对上述技术问题,提供一种能够实现连续复合料带进行分片标记处理的连续复合料带的标记处理方法、装置、计算机设备、计算机可读存储介质和计算机程序产品。
第一方面,本申请提供了一种连续复合料带的标记处理方法。所述方法包括:
采集连续复合料带的第一图像序列;
按采集顺序拼接所述第一图像序列中的多个图像,得到包括至少一个极片结构的待检测图像;
若识别到所述待检测图像中包括两个极片边缘,则将采集顺序上的第二极片边缘在所述连续复合料带中的位置标记为连续复合料带的分极片位置。
上述实施例中,通过采集连续复合料带的图像,得到第一图像序列,按采 集顺序拼接第一图像序列中的多个图像,得到包括至少一个极片结构的待检测图像,若识别到待检测图像中包括两个极片边缘,则将采集顺序上的第二极片边缘在连续复合料带中的位置标记为连续复合料带的分极片位置,通过利用图像识别技术,根据连续复合料带中极片分布特征,识别连续复合料带中的极片边缘确定分极片位置,得到极片的具体位置信息,准确对连续复合料带进行分片标记处理。
在其中一个实施例中,连续复合料带的标记处理方法还包括:
若识别到所述待检测图像中只包括一个极片边缘,则将所述待检测图像与所述第一图像序列中与所述待检测图像相邻的下一帧图像拼接,更新所述待检测图像。
上述实施例中,在待检测图像中只识别到一个极片边缘时,通过将待检测图像与待检测图像相邻的下一帧图像拼接,得到一个新的待检测图像;对得到的新的待检测图像重新进行极片边缘识别,提高连续复合料带进行分片标记处理的准确性。
在其中一个实施例中,连续复合料带的标记处理方法还包括:将所述第二极片边缘所在的图像作为拼接下一个待检测图像的首帧图像,返回按采集顺序拼接所述图像序列中的多个图像,得到包括至少一个极片结构的待检测图像的步骤。
上述实施例中,在确定连续复合料带中上一个分极片位置的情况下,将上一个分极片位置对应的第二极片边缘所在的图像作为拼接下一个待检测图像的首帧图像;返回按采集顺序拼接所述图像序列中的多个图像,得到包括至少一个极片结构的待检测图像的步骤,依次得到连续复合料带中的所有分极片位置,完成对连续复合料带的分片标记处理,确保连续复合料带的打标信息的完整性。
在其中一个实施例中,所述第一图像序列是对所述连续复合料带的第一面采集得到,所述方法还包括:
采集连续复合料带在运输至叠片工序过程中的第二图像序列;所述第二图像序列是对所述连续复合料带的第二面采集得到;所述第一面和所述第二面为所述连续复合料带的相对面;
对所述第二图像序列,按采集顺序拼接所述第二图像序列中的多个图像,得到包括至少一个极片结构的待检测图像;若识别到所述待检测图像中包括两个极片边缘,则将采集顺序上的第二极片边缘在所述连续复合料带中的位置标记为连续复合料带的分极片位置,得到所述连续复合料带在所述第二面的分极片位置;
当所述连续复合料带在所述第一面的分极片位置和所述第二面的分极片位置相同时,确定所述连续复合料带的分极片位置。
上述实施例中,通过采集连续复合料带两个相对面的图像序列,分别按采集顺序拼接图像序列中的多个图像,得到包括至少一个极片结构的待检测图像;若识别到待检测图像中包括两个极片边缘,则将采集顺序上的第二极片边缘在连续复合料带中的位置标记为连续复合料带的分极片位置;分别得到连续复合料带在第一面和第二面的分极片位置;通过判断第一面和第二面的分极片位置是否为同一个分极片位置来确定连续复合料带最终的分极片位置,在确定极片的具体位置信息的基础上,进一步提高了连续复合料带进行分片标记处理的准确性。
在其中一个实施例中,连续复合料带的标记处理方法还包括:
若在所述待检测图像中未识别到极片边缘,输出所述待检测图像,对所述连续复合料带进行异常检测。
上述实施例中,在标记连续复合料带的分极片位置的过程中,通过图像识别,在待检测图像中未识别到极片边缘,输出待检测图像。根据输出的待检测图像以及在此之前确定的分极片位置,确定连续复合料带上的异常位置;根据确定异常位置可以快速、准确地确定连续复合料带的异常部分并进行异常检测,确保连续复合料带分极片的质量。
在其中一个实施例中,连续复合料带的标记处理方法还包括:
根据所述分极片位置,确定采集顺序上的第一极片边缘和所述第二极片边缘之间的边缘间距;
若所述边缘间距满足连续复合料带分极片的间距要求,提取所述第一极片边缘和第二极片边缘之间的图像,输出极片单元图像。
上述实施例中,在确定连续复合料带的分极片位置的基础上,根据分极片位置确定采集顺序上的第一极片边缘和所述第二极片边缘之间的边缘间距。通过检测边缘间距是否满足连续复合料带分极片的间距要求,输出采集顺序上第一极片边缘和所述第二极片边缘之间的极片单元图像;得到连续复合料带上极片单元的极片单元图像;极片单元图像可用于对连续复合料带进行料带检测以及定位连续复合料带的具体检测位置。
在其中一个实施例中,所述确定所述第一极片边缘和第二极片边缘之间的边缘间距,包括:
获取所述第一极片边缘和所述第二极片边缘分别在所述待检测图像中的位置坐标;
根据所述位置坐标得到所述第一极片边缘和所述第二极片边缘之间的边缘间距。
上述实施例中,通过获取第一极片边缘和第二极片边缘分别在待检测图像中的位置坐标,基于同一个图像坐标下的位置坐标计算出第一极片边缘和第二极片边缘之间的边缘间距,提高了边缘间距的精确度以及可靠性。
在其中一个实施例中,在所述若所述边缘间距满足连续复合料带分极片的间距要求,提取所述第一极片边缘和第二极片边缘之间的图像,输出极片单元图像之后,所述方法还包括:
提取所述极片单元图像的图像特征;
根据所述图像特征,检测所述极片单元图像是否满足电芯切分条件;
若满足所述电芯切分条件,则判断连续的多个极片单元在连续复合料带中的累积长度是否符合电芯长度要求;其中,一个电芯包括预设数量的极片单元;
若符合电芯长度要求,标记电芯的切分位置。
上述实施例中,在标记连续复合料带的分极片位置,以及根据分极片位置确定采集顺序上的第一极片边缘和所述第二极片边缘之间的边缘间距满足连续复合料带分极片的间距要求的情况下,输出极片单元图像。通过对极片单元图像进行图像特征检测判断是否满足电芯切分条件,以及连续的多个极片单元在连续复合料带中的累积长度是否符合电芯长度要求;若同时满足电芯切分条件 和电芯长度要求,确定电芯的切分位置。通过对连续复合料带进行分极片和分电芯处理,可以确定每个极片单元所属电芯,进一步地,可以将连续复合料带在每个工艺中的数据具体绑定到对应的极片单元以及极片单元对应的电芯,能够实现对连续复合料带的数据追溯。
在其中一个实施例中,所述根据所述图像特征,检测所述极片单元图像是否满足电芯切分条件,包括:
检测所述图像特征中的阴阳极耳数量差值是否满足电芯切分条件中的数量差值要求;
若满足电芯切分条件中的数量差值要求,检测所述图像特征中的电芯尾部标识是否满足电芯切分条件中的尾部标识要求;
若满足所述电芯切分条件中的尾部标识要求,确定满足电芯切分条件。
上述实施例中,根据检测极片单元图像中的图像特征中的阴阳极耳数量差值是否满足电芯切分条件中的数量差值要求,以及电芯尾部标识是否满足电芯切分条件中的尾部标识,初步准确判断是否满足电芯切分条件。
在其中一个实施例中,所述标记电芯的切分位置,包括:
将所述图像特征中的电芯尾部标识在所述连续复合料带中的位置标记为电芯的切分位置。
上述实施例中,将所述图像特征中的电芯尾部标识在所述连续复合料带中的位置标记为电芯的切分位置,确保了电芯完整性。
在其中一个实施例中,在所述标记电芯的切分位置之前,所述方法还包括:
获取所述连续复合料带在运输至叠片工序过程中的图像采集脉冲值;
检测所述图像采集脉冲值是否符合电芯切分的脉冲要求。
上述实施例中,在根据检测极片单元图像中的图像特征中的阴阳极耳数量差值确定满足电芯切分条件中的数量差值要求,以及根据电芯尾部标识确定满足电芯切分条件中的尾部标识要求时;通过获取连续复合料带在运输至叠片工序过程中的图像采集脉冲值,对电芯的切分位置进行纠错,提高了标记电芯的切分位置的准确性。
第二方面,本申请还提供了一种连续复合料带的标记处理装置。所述装置 包括:
图像采集模块,用于采集连续复合料带在运输至叠片工序过程中的第一图像序列;
待检测图像确定模块,用于按采集顺序拼接所述第一图像序列中的多个图像,得到包括至少一个极片结构的待检测图像;
极片分片模块,用于若识别到所述待检测图像中包括两个极片边缘,则将采集顺序上的第二极片边缘在所述连续复合料带中的位置标记为连续复合料带的分极片位置。
第三方面,本申请还提供了一种计算机设备。所述计算机设备包括存储器和处理器,所述存储器存储有计算机程序,所述处理器执行所述计算机程序时实现以下步骤:
采集连续复合料带的第一图像序列;
按采集顺序拼接所述第一图像序列中的多个图像,得到包括至少一个极片结构的待检测图像;
若识别到所述待检测图像中包括两个极片边缘,则将采集顺序上的第二极片边缘在所述连续复合料带中的位置标记为连续复合料带的分极片位置。
第四方面,本申请还提供了一种连续复合料带的标记处理系统。所述处理系统包括图像采集组件、编码器、存储器和如上所述的计算机设备,所述图像采集组件将连续复合料带支撑起来,连续复合料带在料带运行过程中带动所述编码器工作触发所述图像采集组件采集图像;所述计算机设备包括存储器和处理器,所述存储器存储有计算机程序,所述处理器执行所述计算机程序时实现以下步骤:
采集连续复合料带的第一图像序列;
按采集顺序拼接所述第一图像序列中的多个图像,得到包括至少一个极片结构的待检测图像;
若识别到所述待检测图像中包括两个极片边缘,则将采集顺序上的第二极片边缘在所述连续复合料带中的位置标记为连续复合料带的分极片位置。
第四方面,本申请还提供了一种计算机可读存储介质。所述计算机可读存 储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现以下步骤:
采集连续复合料带的第一图像序列;
按采集顺序拼接所述第一图像序列中的多个图像,得到包括至少一个极片结构的待检测图像;
若识别到所述待检测图像中包括两个极片边缘,则将采集顺序上的第二极片边缘在所述连续复合料带中的位置标记为连续复合料带的分极片位置。
第五方面,本申请还提供了一种计算机程序产品。所述计算机程序产品,包括计算机程序,该计算机程序被处理器执行时实现以下步骤:
采集连续复合料带的第一图像序列;
按采集顺序拼接所述第一图像序列中的多个图像,得到包括至少一个极片结构的待检测图像;
若识别到所述待检测图像中包括两个极片边缘,则将采集顺序上的第二极片边缘在所述连续复合料带中的位置标记为连续复合料带的分极片位置。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为一个实施例中连续复合料带的标记处理方法的应用环境图;
图2为一个实施例中连续复合料带的标记处理方法的流程示意图;
图3a为一个实施例中连续复合料带分布图;
图3b为一个实施例中非首位置处的叠片复合料带的成像示意图;
图4为一个实施例中连续复合料带的图像采集缓存示意图;
图5为另一个实施例中连续复合料带的标记处理方法的流程示意图;
图6为一个实施例中阳极连续的叠片复合料带非首尾的成像示意图和极片单元图像的示意图;
图7a为一个实施例中连续复合料带的第一面包含尾片的成像示意图和极片单元图像的示意图;
图7b为一个实施例中连续复合料带的第二面包含尾片的成像示意图和极片单元图像的示意图;
图8为一个实施例中连续复合料带的图像拼接示意图;
图9为一个实施例中分电芯处理方法的流程示意图;
图10为另一个实施例中分电芯处理方法的流程示意图;
图11为一个实施例中极片单元图像的示意图;
图12为另一个实施例中连续复合料带的标记处理方法的流程示意图;
图13为一个实施例中连续复合料带的标记处理装置的结构框图;
图14为一个实施例中计算机设备的内部结构图;
图15为一个实施例中连续复合料带的标记处理系统的结构框图;
图16为一个实施例中连续复合料带的标记处理系统对应的硬件布局示意图。
具体实施方式
下面将结合附图对本申请技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本申请的技术方案,因此只作为示例,而不能以此来限制本申请的保护范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。
在本申请实施例的描述中,技术术语“第一”“第二”等仅用于区别不同 对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量、特定顺序或主次关系。在本申请实施例的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请实施例的描述中,术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请实施例的描述中,术语“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
在本申请实施例的描述中,技术术语“中心”“纵向”“横向”“长度”“宽度”“厚度”“上”“下”“前”“后”“左”“右”“竖直”“水平”“顶”“底”“内”“外”“顺时针”“逆时针”“轴向”“径向”“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。
在本申请实施例的描述中,除非另有明确的规定和限定,技术术语“安装”“相连”“连接”“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;也可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
目前,随着动力电池的应用越来越广泛,与之相关的新能源车的动力电源也得到迅速的发展,但是电池在生产中却存在不少的问题。电芯作为动力电池的核心部件,电芯在动力电池里面发挥着重大的作用,对于电池来说,电芯决定了电池产品的品质和质量,也关乎电池续航和容量。
为了提高电池产品的品质和质量,需要对电池的极片质量和品质进行检测。为了提高电池的极片质量和品质,可以通过对电池的料带缺陷进行检测的方式进行。目前的动力电池通过卷绕成形,在对卷绕成形的动力电池的料带缺陷进行检测时,通过线阵相机获取图片信息,并进行离线训练得到极片缺陷特征库后,循环获取图片,并结合极片缺陷特征库对获得的图片进行缺陷检测,直到整个电池极片检测完毕,自动对缺陷进行标记。检测过程中,通过编码器信号联合PLC对缺陷位置进行打标和记录。这种方式仅仅涉及根据当前料卷长度位置进行缺陷记录和物理打标,未涉及如何对阳极连续叠片阴阳极复合后的复合料带进行极片区分。
目前的动力电池的生产成形通常采用卷绕工艺,卷绕工艺是与叠片工艺不同的工艺,叠片工艺是指将正极、负极切成小片,然后与隔离膜叠合成小电芯单体。卷绕工艺指通过搅拌、涂布、冷压、裁片分条、焊接、卷绕、顶封、注液、化成和成形,得到动力电池。两者工艺不同,对卷绕成形的动力电池的检测方法不能准确对阳极连续叠片阴阳极复合后的复合料带进行极片区分,无法对连续复合料带中的极片进行标记处理,在进行缺陷检测时也无法定位缺陷位置。
基于以上考虑,通过采集连续复合料带的图像,得到第一图像序列;按采集顺序拼接第一图像序列中的多个图像,得到包括至少一个极片结构的待检测图像;若识别到待检测图像中包括两个极片边缘,则将采集顺序上的第二极片边缘在连续复合料带中的位置标记为连续复合料带的分极片位置;通过识别连续复合料带中的极片边缘确定分极片位置,得到极片的具体位置信息,准确对连续复合料带进行分片标记处理。
利用图像识别技术,根据连续复合料带中极片分布特征,识别连续复合料带中的极片边缘确定分极片位置,可以准确地对阳极连续叠片阴阳极复合后的 复合料带进行极片区分,得到极片的具体位置信息,并根据极片的具体位置信息对连续复合料带进行分片标记处理。进一步地,由于电池中电芯的连续复合料带的长度和电芯的层数是已知的,因而也可以根据极片的长度可以获得连续复合料带中极片所在电芯的层数。
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
本申请实施例提供的连续复合料带的标记处理方法,以该方法应用于终端进行举例说明,可以理解的是,该方法也可以应用于服务器,还可以应用于包括终端和服务器的系统,并通过终端和服务器的交互实现。
通过脉冲触发终端中的图像采集单元采集连续复合料带在料带走向上的图像,得到连续复合料带的第一图像序列;按采集顺序拼接第一图像序列中的多个图像,得到包括至少一个极片结构的待检测图像;若识别到待检测图像中包括两个极片边缘,则将采集顺序上的第二极片边缘在连续复合料带中的位置标记为连续复合料带的分极片位置。其中,连续复合料带可以但不仅限于是阳极连续的连续复合料带。终端可以但不限于是各种个人计算机、笔记本电脑、智能手机、平板电脑、物联网设备;还可以是用于连续复合料带的工艺设备。
可选地,本申请实施例提供的连续复合料带的标记处理方法还可以应用于如图1所示的应用环境中。该应用环境包括工位1、工位2、.........和工位n。连续复合料带的标记处理方法对应工位1、工位2、.........和工位n中目标工位。图像采集设备(包括不同类型的相机,例如线扫相机)采集目标工位处的连续复合料带的图像,图像采集设备和终端之间通过网络进行通讯。
通过编码器触发图像采集设备采集连续复合料带的第一图像序列,并将采集的第一图像序列缓存在设备缓存区中;终端从设备缓存区中获取第一图像序列,按采集顺序拼接第一图像序列中的多个图像,得到包括至少一个极片结构的待检测图像;若识别到待检测图像中包括两个极片边缘,则将采集顺序上的第二极片边缘在连续复合料带中的位置标记为连续复合料带的分极片位置。
在一个实施例中,如图2所示,提供了一种连续复合料带的标记处理方法,以该方法应用于终端为例进行说明,包括以下步骤:
步骤202,采集连续复合料带的第一图像序列。
其中,连续复合料带中包括基带及复合于基带上的层结构,层结构与其对应的基带共同构成一个极片结构,连续复合料带可包括一个或多个依次设置的极片结构,多个极片结构中的基带是同一基带,即从各极片结构来看,基带整体是连续的。本实施例中以连续复合料带为阳极连续的连续复合料带为例进行说明。基带的组成包括隔膜、阳极料带,层结构包括阴极片、阴极极耳和阳极极耳。即阳极连续的连续复合料带的组成包括隔膜、阳极料带、阴极片、阴极极耳和阳极极耳。
可选地,在采集连续复合料带的第一图像序列之前,还可以包括:确定阳极料带的预设长度,根据预设长度对阳极料带进行裁切处理,得到至少一个阳极料带分段;对每个阳极料带分段进行覆盖隔膜处理,得到基带;在基带的上下层依次设置层结构,得到连续复合料带。其中,预设长度是预先设定的;设置层结构包括在基带的上下层依次设置阴极极片、设置阴极极耳和阳极极耳。可以理解的是,阳极连续的叠片复合料带在生产过程中,通过对阳极料带按照预设长度进行裁切后,在阳极料带的上下层覆盖隔膜,在上下层交替贴阴极片,得到阳极连续的叠片复合料带。连续复合料带为阳极连续的叠片复合料带,其具体叠片复合料带分布图如图3a所示,一个完整的叠片复合料带主要由上下两层隔膜111、112包住阳极料带110,再交替复合上阴极片108、下阴极片109组成;阴极极耳和阳极极耳在图3a中不能显示出来。如图3b所示,为一个实施例中非首尾位置处的叠片复合料带的成像示意图,包括阴极片101,阴极极耳102,阳极极耳103(阳极不可见),隔膜区域104(阴极在反面不可见,露出与102一样的阴极极耳),极片边缘105和极片边缘106,极片边缘105和极片边缘106是不同阴极片的极片边缘。
阳极连续的叠片复合料带包括正反两面,这里采集的第一图像序列可以是阳极连续的叠片复合料带中任意一面的图像序列,也可以是阳极连续的叠片复合料带正反两面的采集的图像序列。本实施例中,以第一图像序列为阳极连续 的叠片复合料带中一面的图像序列为例进行说明。
可以理解的是,阳极连续的叠片复合料带通过叠片成形工艺,得到电池。阳极连续的叠片复合料带需按照预设的料带走带方向运输到电池生产工序,经过叠片工艺,得到电芯。这里采集阳极连续的叠片复合料带的第一图像序列不仅限于是电池生产工序中某一道工序。例如,采集的第一图像序列可以是阳极连续的叠片复合料带在运输至叠片工序中的图像序列。
具体地,终端按照预设的采集频率,对阳极连续的叠片复合料带的料带走带方向上的叠片复合料带进行图像采集,得到阳极连续的叠片复合料带正反两面中任意一面的第一图像序列;将采集得到的第一图像序列中各图像按照采集顺序拼接,缓存至图片缓存区。如图4所示,为一个实施例中,叠片复合料带的图像采集缓存示意图,图像采集假设按照预设采集频率触发进行采图,按先到先进的原则按顺序将图片拼接到图片缓存区中,如图4中的采图顺序和采图缓存顺序是401->402->403->404->…->n;那么拼接顺序以及检测取图顺序也必须是401->402->403->404->…->n。
步骤204,按采集顺序拼接第一图像序列中的多个图像,得到包括至少一个极片结构的待检测图像。
其中,按如图4所示采集顺序拼接第一图像序列中的多个图像,得到包括至少一个包括极片结构的待检测图像。
具体地,从图片缓存区中缓存的第一图像序列中,按照采集顺序拼接第一图像序列中的多个图像,得到固定高度的待检测图像;其中,固定高度用于确保得到的待检测图像中包括至少一个包括极片结构。
步骤206,若识别到待检测图像中包括两个极片边缘,则将采集顺序上的第二极片边缘在连续复合料带中的位置标记为连续复合料带的分极片位置。
其中,两个极片边缘是指阳极连续的叠片复合料同一面上连续两个不同阴极极片的极片边缘。可以理解的是,这里的极片边缘是相对对应阴极极片同一位置处的极片边缘。例如,阴极极片包括上极片边缘和下极片边缘,识别的两个极片边缘可以但不仅限于是连续两个不同阴极极片的上极片边缘。两个极片边缘中包括第一极片边缘和第二极片边缘;第一极片边缘和第二极片边缘是根 据识别待检测图像的顺序来确定的,识别待检测图像的顺序和图像采集顺序相同。
具体地,终端获取阳极连续的叠片复合料带的走带方向(即阳极连续的叠片复合料带的传输方向),基于走带方向,采用寻边算法对待检测图像进行图像识别,确定待检测图像中的目标区域,识别目标区域对应的图像中是否存在两个极片边缘。若识别到待检测图像中包括两个极片边缘,则将采集顺序上的第二极片边缘在叠片复合料带中的位置标记为叠片复合料带的分极片位置,并分别获取两个极片边缘在待检测图像中的位置坐标,得到两个极片边缘的位置信息。
上述连续复合料带的标记处理方法中,通过采集连续复合料带的图像,得到第一图像序列;按采集顺序拼接第一图像序列中的多个图像,得到包括至少一个极片结构的待检测图像;若识别到待检测图像中包括两个极片边缘,则将采集顺序上的第二极片边缘在连续复合料带中的位置标记为连续复合料带的分极片位置;通过识别连续复合料带中的极片边缘确定分极片位置,得到极片的具体位置信息,准确对连续复合料带进行分片标记处理。
在另一个实施例中,如图5所示,提供了一种连续复合料带的标记处理方法,以该方法应用于终端,连续复合料带为阳极连续的连续复合料带为例进行说明,包括以下步骤:
步骤502,采集连续复合料带的第一图像序列。
步骤504,按采集顺序拼接第一图像序列中的多个图像,得到包括至少一个极片结构的待检测图像。
步骤506,判断是否存在极片边缘;若是,执行步骤510;否则执行步骤508。
具体地,对待检测图像进行识别,若存在极片边缘,执行步骤510;若不存极片边缘,执行步骤508。
步骤508,将待检测图像拼接到分片缓存区中。
步骤510,判断当前分片缓存区中的图像高度是否超出设定最大缓存高度,若是,执行步骤512;否则,执行步骤514。
步骤512,若当前分片缓存区中的图像高度超出设定最大缓存高度,输出待 检测图像,对连续复合料带进行异常检测。
步骤514,将待检测图像与第一图像序列中与待检测图像相邻的下一帧图像拼接,更新待检测图像,返回步骤506。
具体地,若当前分片缓存区中的图像高度没有超出设定最大缓存高度,将包括待检测图像的当前分片缓存区中的图像,与第一图像序列中与待检测图像相邻的下一帧图像拼接,得到拼接图像,按照图像的采集顺序拼接该拼接图像中的多个图像,得到更新后的待检测图像,返回步骤506。
步骤516,判断是否存在两个极片边缘,若是,执行步骤518;否则,执行步骤508。
具体地,若识别到待检测图像中存在两个极片边缘,执行步骤518;若识别到待检测图像中只存在一个极片边缘,执行步骤508。
步骤518,若识别到待检测图像中包括两个极片边缘,则将采集顺序上的第二极片边缘在连续复合料带中的位置标记为连续复合料带的分极片位置。
具体地,按照采集顺序对待检测图像进行识别,若在待检测图像上识别到第一极片边缘和第二极片边缘,则将采集顺序上的第二极片边缘在叠片复合料带中的位置标记为叠片复合料带的分极片位置。
可选地,在一个实施例中,若识别到待检测图像中只包括一个极片边缘,则将待检测图像与第一图像序列中与待检测图像相邻的下一帧图像拼接,更新待检测图像。
具体地,若识别到待检测图像中只包括一个极片边缘,将待检测图像按照采集顺序拼接到分片缓存区中,若分片缓存区中当前的图像高度没有超出设定最大缓存高度,将缓存的待检测图像与第一图像序列中与待检测图像相邻的下一帧图像拼接,更新待检测图像,对得到的新的待检测图像重新进行极片边缘识别,提高连续复合料带进行分片标记处理的准确性。
进一步地,若分片缓存区中当前的图像高度超出设定最大缓存高度,则输出分片缓存区中当前缓存的图像,清除分片缓存区中的图像数据;生成图像异常提示信息;该图像异常提示信息用于提示用户终端对分片缓存区中当前缓存的图像进行异常检测,通过异常检测判断对应的连续复合料带上的异常情况, 根据在此之前的分极片位置确定当前异常位置信息。
可选地,在一个实施例中,采集连续复合料带第一面的第一图像序列;按采集顺序拼接第一图像序列中的多个图像,得到包括至少一个极片结构的待检测图像;若识别到待检测图像中包括两个极片边缘,则将采集顺序上的第二极片边缘在连续复合料带中的位置标记为连续复合料带在第一面的分极片位置。
采集连续复合料带在运输至叠片工序过程中的第二图像序列,第二图像序列是对连续复合料带的第二面采集得到,第一面和第二面为连续复合料带的相对面,对第二图像序列按采集顺序拼接第二图像序列中的多个图像,得到包括至少一个极片结构的待检测图像。若识别到待检测图像中包括两个极片边缘,则将采集顺序上的第二极片边缘在连续复合料带中的位置标记为连续复合料带的分极片位置,得到连续复合料带在第二面的分极片位置。当连续复合料带在第一面的分极片位置和第二面的分极片位置相同时,确定连续复合料带的分极片位置。
可以理解的是,对于同一连续复合料带,在连续复合料带不存在异常的情况下,对于同一段连续复合料带,在连续复合料带相对面确定的分极片位置是相同的;通过判断第一面和第二面的分极片位置是否为同一个分极片位置来确定连续复合料带最终的分极片位置,在确定极片的具体位置信息的基础上,进一步提高了连续复合料带进行分片标记处理的准确性。
步骤520,根据分极片位置,确定采集顺序上的第一极片边缘和第二极片边缘之间的边缘间距。
具体地,根据分极片位置,确定采集顺序上的第一极片边缘和第二极片边缘分别在待检测图像中的位置坐标,得到两个极片边缘的位置坐标;根据第一极片边缘和第二极片边缘的位置坐标,确定第一极片边缘和第二极片边缘之间的边缘间距。
步骤522,若边缘间距满足连续复合料带分极片的间距要求,提取第一极片边缘和第二极片边缘之间的图像,输出极片单元图像。
其中,间距要求是预先设定的。极片单元图像中包括一个完整的极片结构。
进一步地,阳极连续的叠片复合料带包括首尾片,首尾片(即首片和尾片) 可以理解为电芯的第一个极片和最后一个极片;尾片位置处的叠片复合料带的成像示意图和非首尾片位置处的叠片复合料带的成像示意图是不相同的。如图6所示为一个实施例中,阳极连续的叠片复合料带非首尾片的成像示意图和极片单元图像。其中,101为阴极片,102为阴极极耳,103为阳极极耳(阳极不可见),104为隔膜区域(阴极在反面不可见,露出与102一样的阴极极耳),105和106分别为阴极极片的上极片边缘。采用上述阳极连续的叠片复合料带的标记处理方法,通过连续识别两个阴极极片上极片边缘105和106,并通过极耳数量,图片高度等参数进行判断,把连续的叠片复合料带对应的待检测图像分解为单位图像107,即极片单元图像,该极片单元图像仅含一片可见阴极和一片可见隔膜区域。
可以理解的是,对连续复合料带正反两面进行图像采集,若边缘间距满足连续复合料带分极片的间距要求,提取第一极片边缘和第二极片边缘之间的图像,输出连续复合料带正反两面的极片单元图像。如图7a所示,为一个实施例中,连续复合料带的第一面的包含尾片的成像示意图和极片单元图像;其中,201和204为隔膜区域、202和206为分电芯标识(即留白区域)、203为阳极极耳、205为空白区域。可以理解的是,在非首尾位置处,205处应为阴极极耳。图7b所示,为一个实施例中,连续复合料带的第二面的包含尾片的成像示意图和极片单元图像。其中,301和304为隔膜区域、302和306为分电芯标识(即留白区域)、303为阳极极耳、305为空白区域。可以理解的是,在非首尾位置处,305处应为阴极极耳。图7a和图7b为连续复合料带的正反面的成像示意图以及分片后的极片单元图像;其中,第一面可以正面,也可以是反面,第二面可以是正面也可以是反面。
可选地,在一个实施例中,在得到极片单元图像后,对极片单元图像进行存储;通过对极片单元图像进行料带检测(如,料带外观检测),识别对应的连续复合料带中是否存在异常,以及对每个极片单元图像对应的连续复合料带进行打标,将生产工序中的生产数据与极片单元图像进行数据绑定。
步骤524,将第二极片边缘所在的图像作为拼接下一个待检测图像的首帧图像,返回步骤504。
具体地,将第二极片边缘所在的图像作为拼接下一个待检测图像的首帧图像,继续执行按采集顺序拼接第一图像序列中的多个图像,得到包括至少一个极片结构的待检测图像步骤,对叠片复合料带完成分极片处理,实现叠片复合料带上的极片单元进行标记,得到叠片复合料带上各极片单元的标记信息。
在一个实施例中,将图片缓存区中图像按401->404->…N采集顺序依序拼接一定高度的图片如图8所示,对图8中的图片501通过寻边算法对走带方向侧的边缘进行寻边,判断是否有找到501的第一极片边缘505,如没有将图片放入分片缓存区,如果存在则将当前位置的坐标信息记录下来,判断是否已经存在两条边缘(如图8中的505和506);若在采集顺序上存在两条极片边缘,则将采集顺序上的第二极片边缘在叠片复合料带中的位置标记为叠片复合料带的分极片位置;根据分极片位置,确定采集顺序上的第一极片边缘和第二极片边缘之间的边缘间距;若边缘间距满足叠片复合料带分极片的间距要求,提取第一极片边缘和第二极片边缘之间的图像,输出极片单元图像。将第二极片边缘所在的图像作为拼接下一个待检测图像的首帧图像,继续执行按采集顺序拼接第一图像序列中的多个图像,得到包括至少一个极片结构的待检测图像步骤。也就是说,将两个边缘之间的图片(可以称之为图像)提取出来,结合图8所示,可以是将506以上的图片数据清除后将506以下的图片上移至分片缓存区起始位置,并默认起始位置作为下一个极片第一条边缘位置。
若边缘间距不满足连续复合料带分极片的间距要求,则进行人工干预,对连续复合料带进行异常检测。
其中,可以理解的是,在得到待检测图像不符合分片条件,则将当前检测图片按顺序(如检测顺序是501->502->503->504,那么拼接顺序从上到下也依次是501->502->503->504)拼接到分片缓存区中,然后判断当前分片缓存区内的图片高度是否超出设定最大缓存高度,如果是,则输出当前缓存区内缓存的图像,并清除分片缓存区中的图像数据以及进行人工干预,对叠片复合料带进行异常检测。如果否,则将待检测图像与第一图像序列中与待检测图像相邻的下一帧图像拼接,更新待检测图像,继续循环找边缘。
上述阳极连续的叠片复合料带的标记处理方法中,通过采集阳极连续的叠 片复合料带的第一图像序列;按采集顺序拼接所述第一图像序列中的多个图像,得到包括至少一个极片结构的待检测图像;通过识别待检测图像中,根据识别得到的极片边缘数量,对阳极连续的叠片复合料带的分极片位置进行准确标记。根据标记后的分极片位置,获取在图像采集顺序上的第一极片边缘和第二极片边缘的边缘间距,当边缘间距满足叠片复合料带分极片的间距要求,得到叠片复合料带上极片单元的极片单元图像,极片单元图像可用于对叠片复合料带进行料带检测。同时在确定阳极连续的叠片复合料带中上一个分极片位置的情况下,将上一个分极片位置对应的第二极片边缘所在的图像作为拼接下一个待检测图像的首帧图像;返回按采集顺序拼接所述图像序列中的多个图像,得到包括至少一个极片结构的待检测图像的步骤,依次得到阳极连续的叠片复合料带中的所有分极片位置,完成对阳极连续的叠片复合料带的分片标记处理,确保阳极连续的叠片复合料带的打标信息的完整性。
在一个实施例中,如图9所示,提供了一种分电芯处理方法,以该步骤应用于终端,连续复合料带为阳极连续的连续复合料带为例进行说明,包括:
步骤902,提取极片单元图像的图像特征。
其中,电芯作为动力电池的核心部件,对于一个特定动力电池,电池中的电芯层数以及电芯长度是已知的。对于由阳极连续的叠片复合料带叠片得到电池,其电芯的层数以及电芯长度也是已知的。图像特征包括阴阳极极耳数量和电芯尾部标识。电芯尾部标识为分电芯的一个标识,在极片单元图像中电芯尾部标识表现为图像的像素值为特定值。在阳极连续的叠片复合料带中,电芯尾部标识对应的位置为阳极料带裁切的位置,在极片单元图像上显示为留白区域(如图7a中202和206,图7b中的302和306)。极片单元图像包括阳极连续的叠片复合料带首尾图像的极片单元图像和非首尾图像的极片单元图像。
具体地,采用Blob算法对极片单元图像进行识别,确定极片单元图像中的第一目标区域、第二目标区域和第三目标区域;对第一目标区域、第二目标区域和第三目标区域进行特征提取,分别得到对应的阴极极耳数量、阳极极耳数量和电芯尾部标识。
步骤904,根据图像特征,检测极片单元图像是否满足电芯切分条件。
其中,电芯切分条件包括阴极极耳数量和阳极极耳数量不相等、极片单元图像中存在留白区域。
具体地,通过Blob算法检测图像特征中的阴阳极耳数量差值是否满足电芯切分条件中的数量差值要求;若满足电芯切分条件中的数量差值要求,检测图像特征中的电芯尾部标识是否满足电芯切分条件中的尾部标识要求;若满足电芯切分条件中的尾部标识要求,确定满足电芯切分条件。进一步地,若极片单元图像满足电芯切分条件,则极片单元图像为阳极连续的叠片复合料带中尾部的极片单元图像。可选地,极片单元图像中的图像特征中的阴阳极耳数量差值满足电芯切分条件中的数量差值要求,以及电芯尾部标识满足电芯切分条件中的尾部标识要求(即为留白区域),则极片单元图像对应的图像为连续复合料带中尾部图像。
步骤906,若满足电芯切分条件,则判断连续的多个极片单元在连续复合料带中的累积长度是否符合电芯长度要求;其中,一个电芯包括预设数量的极片单元。
步骤908,若符合电芯长度要求,标记电芯的切分位置。
具体地,若符合电芯长度要求,则将图像特征中的电芯尾部标识在连续复合料带中的位置标记为电芯的切分位置。进一步地,根据电芯长度要求,确定每个极片单元图像所属电芯以及所属电芯所在的层数。将后续的生产工序中,将每个工序的生产数据与每个极片单元图像、每个极片单元图像所属电芯以及所属电芯所在的层数进行绑定,方便数据的保存以及生产数据的追溯。
除此之外,对极片单元图像进行故障缺陷检测时,根据缺陷所在的极片单元图像,确定故障的电芯以及故障层数,实现故障的准确定位,缩短故障位置的排查时间。
上述实施例中,在标记连续复合料带的分极片位置,以及根据分极片位置确定采集顺序上的第一极片边缘和第二极片边缘之间的边缘间距满足连续复合料带分极片的间距要求的情况下,输出极片单元图像。通过对极片单元图像进行图像特征检测判断是否满足电芯切分条件,以及连续的多个极片单元在连续复合料带中的累积长度是否符合电芯长度要求;在同时满足电芯切分条件和电 芯长度要求时,确定电芯的切分位置。通过对连续复合料带进行分极片和分电芯处理,可以确定每个极片单元所属电芯;以及将连续复合料带在每个工艺中的数据具体绑定到对应的极片单元以及极片单元对应的电芯,能够实现对连续复合料带的数据追溯和数据的保存。
在另一个实施例中,如图10所示,提供了一种分电芯处理方法,以该方法应用于终端,连续复合料带为阳极连续的连续复合料带为例进行说明,包括:
步骤1002,提取极片单元图像的图像特征。
步骤1004,获取图像特征中的阴阳极耳数量差值。
具体地,获取图像特征中的阴极极耳数量和阳极极耳数量,得到阴极极耳数量和阳极极耳数量的数量差值。
步骤1006,判断是否满足电芯切分条件中的数量差值要求,若是,执行步骤1008;否则结束。
具体地,判断阴阳极耳数量差值是否满足电芯切分条件中的数量差值要求,若是,执行步骤1008;否则结束。
步骤1008,是否满足电芯切分条件中的尾部标识要求;若是,执行步骤1010;否则,结束。
具体地,若满足电芯切分条件中的数量差值要求,检测图像特征中的电芯尾部标识是否满足电芯切分条件中的尾部标识要求,若满足电芯切分条件中的尾部标识要求,确定满足电芯切分条件。
步骤1010,判断是否符合电芯长度要求,如是执行步骤1012;否则,结束。
具体地,若满足电芯切分条件,则判断连续的多个极片单元在连续复合料带中的累积长度是否符合电芯长度要求;其中,一个电芯包括预设数量的极片单元;
步骤1012,获取连续复合料带在运输至叠片工序过程中的图像采集脉冲值。
其中,图像采集脉冲值是指从计算连续复合料带中尾片到首片区间的编码器的脉冲数。
步骤1014,检测图像采集脉冲值是否符合电芯切分的脉冲要求。
其中,电芯切分的脉冲要求是指一个电芯长度满足的图像采集脉冲值。
步骤1016,若符合脉冲要求,将图像特征中的电芯尾部标识在连续复合料带中的位置标记为电芯的切分位置。
具体地,若符合脉冲要求,将图像特征中的电芯尾部标识在叠片复合料带中的位置标记为电芯的切分位置;通过PLC获取当前料带虚拟码将当前电芯首尾片极片之间的所有极片按顺序绑定到虚拟码内。当前料带虚拟码可以理解为当前电芯的虚拟码;虚拟码是指用于标记不同电芯的标识,虚拟码可以是数字、字母,以及数字和字母的组合等。
在一个实施例中,得到的极片单元图像如图11所示,通过Blob算法检测区域602的阳极极耳数量;以及检测区域603的阴极极耳数量;判断阴阳极极耳数量是否一致,如果一样,则进行缺陷检测,如果不一样,则通过Blob算法判断是否满足电芯切分条件中的尾部标识要求(即,是否存在留白区域);若不存在,则进行缺陷检测,若存在,判断是否符合电芯长度要求,即判断当前电芯累计的图片高度是否满足分电芯条件(即是否在一个电芯料带长度规格内);若不符合,则人工干预,若符合,获取叠片复合料带在运输至叠片工序过程中的图像采集脉冲值,即计算尾片到首片区间的编码器的脉冲数,判断图像采集脉冲值是否符合电芯切分的脉冲要求,若符合脉冲要求,将图像特征中的电芯尾部标识在叠片复合料带中的位置标记为电芯的切分位置,通过PLC获取当前料带虚拟码将当前电芯首尾片极片之间的所有极片按顺序绑定到虚拟码内;若不符合脉冲要求,则异常报警进行人工干预。
本实施例中,在根据检测极片单元图像中的图像特征中的阴阳极耳数量差值满足电芯切分条件中的数量差值要求,以及电芯尾部标识满足电芯切分条件中的尾部标识要求时;通过获取连续复合料带在运输至叠片工序过程中的图像采集脉冲值,对电芯的切分位置进行纠错,提高了标记电芯的切分位置的准确性;同时将连续复合料带在每个工艺中的数据具体绑定到对应的极片单元以及极片单元对应的电芯,能够实现对连续复合料带的数据保存和追溯。
在另一个实施例中,如图12所示,提供了一种连续复合料带的标记处理方法,以该步骤应用于终端,连续复合料带为阳极连续的连续复合料带为例进行说明,包括:
步骤1202,采集连续复合料带的第一图像序列。
步骤1204,按采集顺序拼接第一图像序列中的多个图像,得到包括至少一个极片结构的待检测图像。
步骤1206,对待检测图像进行识别,若存在极片边缘,执行步骤1216;若不存极片边缘,执行步骤1208。
步骤1208,将待检测图像拼接到分片缓存区中。
步骤1210,判断当前分片缓存区中的图像高度是否超出设定最大缓存高度,若是,执行步骤1212;否则,执行步骤1214。
步骤1212,若当前分片缓存区中的图像高度超出设定最大缓存高度,输出待检测图像,对连续复合料带进行异常检测。
步骤1214,将待检测图像与第一图像序列中与待检测图像相邻的下一帧图像拼接,更新待检测图像,返回步骤1206。
步骤1216,判断是否存在两个极片边缘,若是,执行步骤1218;否则,执行步骤1208。
步骤1218,若识别到待检测图像中包括两个极片边缘,则将采集顺序上的第二极片边缘在连续复合料带中的位置标记为连续复合料带的分极片位置。
步骤1220,根据分极片位置,确定采集顺序上的第一极片边缘和第二极片边缘之间的边缘间距。
步骤1222,若边缘间距满足连续复合料带分极片的间距要求,提取第一极片边缘和第二极片边缘之间的图像,输出极片单元图像。
步骤1224,提取极片单元图像的图像特征。
步骤1226,检测极片单元图像是否满足电芯切分条件,若是,执行步骤1228,否则,结束。
具体地,检测图像特征中的阴阳极耳数量差值是否满足电芯切分条件中的数量差值要求;其中,电芯切分条件中的数量差值要求是指阴阳极耳数量的差值不为预设值(即0)。若满足电芯切分条件中的数量差值要求,检测图像特征中的电芯尾部标识是否满足电芯切分条件中的尾部标识要求;若满足电芯切分条件中的尾部标识要求,确定满足电芯切分条件。
步骤1228,判断是否符合电芯长度要求;若是,执行步骤1230,否则,结束。
具体地,判断是否满足电芯切分条件,若满足电芯切分条件,则判断连续的多个极片单元在叠片复合料带中的累积长度是否符合电芯长度要求;其中,一个电芯包括预设数量的极片单元。
步骤1230,若符合电芯长度要求,标记电芯的切分位置。
具体地,若符合电芯长度要求,将所述图像特征中的电芯尾部标识在所述叠片复合料带中的位置标记为电芯的切分位置。通过PLC获取当前料带虚拟码,将当前电芯首尾片极片之间的所有极片按顺序绑定到虚拟码内。当前料带虚拟码可以理解为当前电芯的虚拟码。
上述实施例中,在标记叠片复合料带的分极片位置,以及根据分极片位置确定采集顺序上的第一极片边缘和第二极片边缘之间的边缘间距满足叠片复合料带分极片的间距要求的情况下,输出极片单元图像。通过对极片单元图像进图像特征检测判断是否满足电芯切分条件,以及连续的多个极片单元在叠片复合料带中的累积长度是否符合电芯长度要求;若同时满足电芯切分条件和电芯长度要求,确定电芯的切分位置。通过对阳极连续的叠片复合料带进行分极片和分电芯处理,可以确定每个极片单元所属电芯;以及将叠片复合料带在每个工艺中的数据具体绑定到对应的极片单元以及极片单元对应的电芯,能够实现对叠片复合料带的数据追溯和数据的保存。
应该理解的是,虽然如上所述的各实施例所涉及的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,如上所述的各实施例所涉及的流程图中的至少一部分步骤可以包括多个步骤或者多个阶段,这些步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤中的步骤或者阶段的至少一部分轮流或者交替地执行。
基于同样的发明构思,本申请实施例还提供了一种用于实现上述所涉及的连续复合料带的标记处理方法的连续复合料带的标记处理装置。该装置所提供的解决问题的实现方案与上述方法中所记载的实现方案相似,故下面所提供的一个或多个连续复合料带的标记处理装置实施例中的具体限定可以参见上文中对于连续复合料带的标记处理方法的限定,在此不再赘述。
在一个实施例中,如图13所示,提供了一种连续复合料带的标记处理装置,包括:图像采集模块1302、待检测图像确定模块1304和极片分片模块1306,其中:
图像采集模块1302,用于采集连续复合料带在运输至叠片工序过程中的第一图像序列。
待检测图像确定模块1304,用于按采集顺序拼接第一图像序列中的多个图像,得到包括至少一个极片结构的待检测图像。
极片分片模块1306,用于若识别到待检测图像中包括两个极片边缘,则将采集顺序上的第二极片边缘在连续复合料带中的位置标记为连续复合料带的分极片位置。
上述连续复合料带的标记处理装置中,通过采集连续复合料带的图像,得到第一图像序列;按采集顺序拼接第一图像序列中的多个图像,得到包括至少一个极片结构的待检测图像;若识别到待检测图像中包括两个极片边缘,则将采集顺序上的第二极片边缘在连续复合料带中的位置标记为连续复合料带的分极片位置;通过识别连续复合料带中的极片边缘确定分极片位置,得到极片的具体位置信息,准确对连续复合料带进行分片标记处理。
一个实施例中,待检测图像确定模块1304,还用于在极片分片模块1306的识别结果为待检测图像中只包括一个极片边缘时,则将待检测图像与第一图像序列中与待检测图像相邻的下一帧图像拼接,更新待检测图像。
一个实施例中,待检测图像确定模块1304,还用于在极片分片模块1306标记分极片位置之后,将第二极片边缘所在的图像作为拼接下一个待检测图像的首帧图像,重新按采集顺序拼接图像序列中的多个图像,得到包括至少一个极片结构的待检测图像。
可选地,在一个实施例中,图像采集模块1302还用于采集连续复合料带在运输至叠片工序过程中的第二图像序列;第二图像序列是对连续复合料带的第二面采集得到;第一面和第二面为连续复合料带的相对面。
可选地,在一个实施例中,待检测图像确定模块1304还用于对第二图像序列,按采集顺序拼接第二图像序列中的多个图像,得到包括至少一个极片结构的待检测图像;若识别到待检测图像中包括两个极片边缘,则将采集顺序上的第二极片边缘在连续复合料带中的位置标记为连续复合料带的分极片位置,得到连续复合料带在第二面的分极片位置。
极片分片模块1306还用于当连续复合料带在第一面的分极片位置和第二面的分极片位置相同时,确定连续复合料带的分极片位置。
在一个实施例中,提供了一种连续复合料带的标记处理装置,除包括图像采集模块1302、待检测图像确定模块1304和极片分片模块1306之外,还可以包括:异常检测模块、边缘间距确定模块、极片单元图像输出模块、图像特征模块、分电芯检测模块和切分位置标记模块,其中:
异常检测模块,用于若在待检测图像中未识别到极片边缘,输出待检测图像,对连续复合料带进行异常检测。
边缘间距确定模块,用于根据分极片位置,确定采集顺序上的第一极片边缘和第二极片边缘之间的边缘间距。
极片单元图像输出模块,用于若边缘间距满足连续复合料带分极片的间距要求,提取第一极片边缘和第二极片边缘之间的图像,输出极片单元图像。
边缘间距确定模块还用于获取第一极片边缘和第二极片边缘分别在待检测图像中的位置坐标;根据位置坐标得到第一极片边缘和第二极片边缘之间的边缘间距。
图像特征模块,用于提取极片单元图像的图像特征。
分电芯检测模块,用于根据图像特征,检测极片单元图像是否满足电芯切分条件,若满足电芯切分条件,则判断连续的多个极片单元在连续复合料带中的累积长度是否符合电芯长度要求;其中,一个电芯包括预设数量的极片单元。
切分位置标记模块,用于若符合电芯长度要求,标记电芯的切分位置。
分电芯检测模块还用于检测图像特征中的阴阳极耳数量差值是否满足电芯切分条件中的数量差值要求,若满足电芯切分条件中的数量差值要求,检测图像特征中的电芯尾部标识是否满足电芯切分条件中的尾部标识要求,若满足电芯切分条件中的尾部标识要求,确定满足电芯切分条件。
切分位置标记模块还用于将图像特征中的电芯尾部标识在连续复合料带中的位置标记为电芯的切分位置。
分电芯检测模块还用于获取连续复合料带在运输至叠片工序过程中的图像采集脉冲值;检测图像采集脉冲值是否符合电芯切分的脉冲要求。
上述连续复合料带的标记处理装置中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于计算机设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。
在一个实施例中,还提供了一种计算机设备,包括存储器和处理器,存储器中存储有计算机程序,该处理器执行计算机程序时实现上述各方法实施例中的步骤。
在一个实施例中,提供了一种计算机设备,该计算机设备可以是终端,其内部结构图可以如图14所示。该计算机设备包括通过系统总线连接的处理器、存储器、通信接口、显示屏和输入装置。其中,该计算机设备的处理器用于提供计算和控制能力。该计算机设备的存储器包括非易失性存储介质、内存储器。该非易失性存储介质存储有操作系统和计算机程序。该内存储器为非易失性存储介质中的操作系统和计算机程序的运行提供环境。该计算机设备的通信接口用于与外部的终端进行有线或无线方式的通信,无线方式可通过WIFI、移动蜂窝网络、NFC(近场通信)或其他技术实现。该计算机程序被处理器执行时以实现一种连续复合料带的标记处理方法。该计算机设备的显示屏可以是液晶显示屏或者电子墨水显示屏,该计算机设备的输入装置可以是显示屏上覆盖的触摸层,也可以是计算机设备外壳上设置的按键、轨迹球或触控板,还可以是外接的键盘、触控板或鼠标等。本领域技术人员可以理解,图14中示出的结构,仅仅是与本申请方案相关的部分结构的框图,并不构成对本申请方案所应用于 其上的计算机设备的限定,具体的计算机设备可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。
基于同样的发明构思,本申请实施例还提供了一种用于实现上述所涉及的连续复合料带的标记处理方法的连续复合料带的标记处理系统。该系统所提供的解决问题的实现方案与上述方法中所记载的实现方案相似,故下面所提供的一个或多个连续复合料带的标记处理系统实施例中的具体限定可以参见上文中对于连续复合料带的标记处理方法的限定,在此不再赘述。
在一个实施例中,如图15所示,提供了一种连续复合料带的标记处理系统,处理系统包括图像采集组件、编码器、存储器和如上所述的计算机设备,图像采集组件将连续复合料带支撑起来,连续复合料带在料带运行过程中带动编码器工作触发图像采集组件采集图像。
其中,图像采集组件包括拍照辊、线阵相机,拍照辊将连续复合料带支撑起来,在拍照辊对应位置分别设置一组线阵相机,连续复合料带在料带运行过程中带动编码器工作触发线阵相机采集图像。可选地,在拍照辊对应位置可以分别设置一组线阵相机及线性光源分别对料带正反面进行采图,提高采集图像的质量。
在一个实施例中,如图16所示,为连续复合料带的标记处理系统对应的硬件布局示意图,在料带走带过程中分别设置两根拍照辊,两根拍照辊分别将料带正反面支撑起来,在两拍照辊对应位置分别设置一组线阵相机及线性光源分别对料带正反面进行采图,料带运行过程中带动编码器工作触发线扫相机采图。其中,A101为料带正面检测线阵相机,A102为正面检测光源,A103为料带正面检测拍照辊/编码辊,A104为料带反面检测线阵相机,A105为反面检测光源,A103为料带反面检测拍照辊/编码辊。
在一个实施例中,提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现上述各方法实施例中的步骤。
在一个实施例中,提供了一种计算机程序产品,包括计算机程序,该计算机程序被处理器执行时实现上述各方法实施例中的步骤。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、数据库或其它介质的任何引用,均可包括非易失性和易失性存储器中的至少一种。非易失性存储器可包括只读存储器(Read-Only Memory,ROM)、磁带、软盘、闪存、光存储器、高密度嵌入式非易失性存储器、阻变存储器(ReRAM)、磁变存储器(Magnetoresistive Random Access Memory,MRAM)、铁电存储器(Ferroelectric Random Access Memory,FRAM)、相变存储器(Phase Change Memory,PCM)、石墨烯存储器等。易失性存储器可包括随机存取存储器(Random Access Memory,RAM)或外部高速缓冲存储器等。作为说明而非局限,RAM可以是多种形式,比如静态随机存取存储器(Static Random Access Memory,SRAM)或动态随机存取存储器(Dynamic Random Access Memory,DRAM)等。本申请所提供的各实施例中所涉及的数据库可包括关系型数据库和非关系型数据库中至少一种。非关系型数据库可包括基于区块链的分布式数据库等,不限于此。本申请所提供的各实施例中所涉及的处理器可为通用处理器、中央处理器、图形处理器、数字信号处理器、可编程逻辑器、基于量子计算的数据处理逻辑器等,不限于此。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请的保护范围应以所附权利要求为准。

Claims (16)

  1. 一种连续复合料带的标记处理方法,其特征在于,所述方法包括:
    采集连续复合料带的第一图像序列;
    按采集顺序拼接所述第一图像序列中的多个图像,得到包括至少一个极片结构的待检测图像;
    若识别到所述待检测图像中包括两个极片边缘,则将采集顺序上的第二极片边缘在所述连续复合料带中的位置标记为连续复合料带的分极片位置。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    若识别到所述待检测图像中只包括一个极片边缘,则将所述待检测图像与所述第一图像序列中与所述待检测图像相邻的下一帧图像拼接,更新所述待检测图像。
  3. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    将所述第二极片边缘所在的图像作为拼接下一个待检测图像的首帧图像,返回按采集顺序拼接所述图像序列中的多个图像,得到包括至少一个极片结构的待检测图像的步骤。
  4. 根据权利要求1所述的方法,其特征在于,所述第一图像序列是对所述连续复合料带的第一面采集得到,所述方法还包括:
    采集连续复合料带在运输至叠片工序过程中的第二图像序列;所述第二图像序列是对所述连续复合料带的第二面采集得到;所述第一面和所述第二面为所述连续复合料带的相对面;
    对所述第二图像序列,按采集顺序拼接所述第二图像序列中的多个图像,得到包括至少一个极片结构的待检测图像;若识别到所述待检测图像中包括两个极片边缘,则将采集顺序上的第二极片边缘在所述连续复合料带中的位置标记为连续复合料带的分极片位置,得到所述连续复合料带在所述第二面的分极片位置;
    当所述连续复合料带在所述第一面的分极片位置和所述第二面的分极片位置相同时,确定所述连续复合料带的分极片位置。
  5. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    若在所述待检测图像中未识别到极片边缘,输出所述待检测图像,对所述连续复合料带进行异常检测。
  6. 根据权利要求1至5任意一项所述的方法,其特征在于,所述方法还包括:
    根据所述分极片位置,确定采集顺序上的第一极片边缘和所述第二极片边缘之间的边缘间距;
    若所述边缘间距满足连续复合料带分极片的间距要求,提取所述第一极片边缘和第二极片边缘之间的图像,输出极片单元图像。
  7. 根据权利要求6所述的方法,其特征在于,所述确定所述第一极片边缘和第二极片边缘之间的边缘间距,包括:
    获取所述第一极片边缘和所述第二极片边缘分别在所述待检测图像中的位置坐标;
    根据所述位置坐标得到所述第一极片边缘和所述第二极片边缘之间的边缘间距。
  8. 根据权利要求6所述的方法,其特征在于,在所述若所述边缘间距满足连续复合料带分极片的间距要求,提取所述第一极片边缘和第二极片边缘之间的图像,输出极片单元图像之后,所述方法还包括:
    提取所述极片单元图像的图像特征;
    根据所述图像特征,检测所述极片单元图像是否满足电芯切分条件;
    若满足所述电芯切分条件,则判断连续的多个极片单元在连续复合料带中的累积长度是否符合电芯长度要求;其中,一个电芯包括预设数量的极片单元;
    若符合电芯长度要求,标记电芯的切分位置。
  9. 根据权利要求8所述的方法,其特征在于,所述根据所述图像特征,检测所述极片单元图像是否满足电芯切分条件,包括:
    检测所述图像特征中的阴阳极耳数量差值是否满足电芯切分条件中的数量差值要求;
    若满足电芯切分条件中的数量差值要求,检测所述图像特征中的电芯尾部标识是否满足电芯切分条件中的尾部标识要求;
    若满足所述电芯切分条件中的尾部标识要求,确定满足电芯切分条件。
  10. 根据权利要求9所述的方法,其特征在于,所述标记电芯的切分位置,包括:
    将所述图像特征中的电芯尾部标识在所述连续复合料带中的位置标记为电芯的切分位置。
  11. 根据权利要求9所述的方法,其特征在于,在所述标记电芯的切分位置之前,所述方法还包括:
    获取所述连续复合料带在运输至叠片工序过程中的图像采集脉冲值;
    检测所述图像采集脉冲值是否符合电芯切分的脉冲要求。
  12. 一种连续复合料带的标记处理装置,其特征在于,所述装置包括:
    图像采集模块,用于采集连续复合料带在运输至叠片工序过程中的第一图像序列;
    待检测图像确定模块,用于按采集顺序拼接所述第一图像序列中的多个图像,得到包括至少一个极片结构的待检测图像;
    极片分片模块,用于若识别到所述待检测图像中包括两个极片边缘,则将采集顺序上的第二极片边缘在所述连续复合料带中的位置标记为连续复合料带的分极片位置。
  13. 一种计算机设备,包括存储器和处理器,所述存储器存储有计算机程序,其特征在于,所述处理器执行所述计算机程序时实现权利要求1至11中任一项所述的方法的步骤。
  14. 一种对电池的连续复合料带的标记处理系统,其特征在于,所述处理系统包括图像采集组件、编码器、存储器和如权利要求13所述的计算机设备,所述图像采集组件将连续复合料带支撑起来,连续复合料带在料带运行过程中带动所述编码器工作触发所述图像采集组件采集图像。
  15. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现权利要求1至11中任一项所述的方法的步骤。
  16. 一种计算机程序产品,包括计算机程序,其特征在于,该计算机程序 被处理器执行时实现权利要求1至11中任一项所述的方法的步骤。
PCT/CN2022/085713 2022-04-08 2022-04-08 连续复合料带的标记处理方法、装置和计算机设备 WO2023193217A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020247007208A KR20240036113A (ko) 2022-04-08 2022-04-08 연속 복합 재료 테이프의 마킹 처리 방법, 장치 및 컴퓨터 디바이스
PCT/CN2022/085713 WO2023193217A1 (zh) 2022-04-08 2022-04-08 连续复合料带的标记处理方法、装置和计算机设备
CN202280032987.8A CN117280514A (zh) 2022-04-08 2022-04-08 连续复合料带的标记处理方法、装置和计算机设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/085713 WO2023193217A1 (zh) 2022-04-08 2022-04-08 连续复合料带的标记处理方法、装置和计算机设备

Publications (1)

Publication Number Publication Date
WO2023193217A1 true WO2023193217A1 (zh) 2023-10-12

Family

ID=88243753

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/085713 WO2023193217A1 (zh) 2022-04-08 2022-04-08 连续复合料带的标记处理方法、装置和计算机设备

Country Status (3)

Country Link
KR (1) KR20240036113A (zh)
CN (1) CN117280514A (zh)
WO (1) WO2023193217A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105290621A (zh) * 2015-10-12 2016-02-03 深圳市海目星激光科技有限公司 一种基于视觉引导的高速高精度极耳切割方法和设备
WO2019076592A1 (de) * 2017-10-17 2019-04-25 Robert Bosch Gmbh Verfahren zur herstellung einer batteriezelle und batteriezelle
CN109926733A (zh) * 2019-04-01 2019-06-25 大族激光科技产业集团股份有限公司 激光切割装置及激光切割方法
CN110480724A (zh) * 2019-08-30 2019-11-22 广东利元亨智能装备股份有限公司 一种裁切模具纠偏方法、装置及切片方法
CN212625734U (zh) * 2020-06-30 2021-02-26 蜂巢能源科技有限公司 叠片单元生产系统
CN215280451U (zh) * 2021-11-29 2021-12-24 大族激光科技产业集团股份有限公司 电池极片加工机构和激光模切设备
CN113928908A (zh) * 2021-09-29 2022-01-14 广东利元亨智能装备股份有限公司 一种料带的切割装置、方法、设备和存储介质
CN114122528A (zh) * 2021-11-25 2022-03-01 蜂巢能源科技有限公司 极片裁切输送装置及叠片系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105290621A (zh) * 2015-10-12 2016-02-03 深圳市海目星激光科技有限公司 一种基于视觉引导的高速高精度极耳切割方法和设备
WO2019076592A1 (de) * 2017-10-17 2019-04-25 Robert Bosch Gmbh Verfahren zur herstellung einer batteriezelle und batteriezelle
CN109926733A (zh) * 2019-04-01 2019-06-25 大族激光科技产业集团股份有限公司 激光切割装置及激光切割方法
CN110480724A (zh) * 2019-08-30 2019-11-22 广东利元亨智能装备股份有限公司 一种裁切模具纠偏方法、装置及切片方法
CN212625734U (zh) * 2020-06-30 2021-02-26 蜂巢能源科技有限公司 叠片单元生产系统
CN113928908A (zh) * 2021-09-29 2022-01-14 广东利元亨智能装备股份有限公司 一种料带的切割装置、方法、设备和存储介质
CN114122528A (zh) * 2021-11-25 2022-03-01 蜂巢能源科技有限公司 极片裁切输送装置及叠片系统
CN215280451U (zh) * 2021-11-29 2021-12-24 大族激光科技产业集团股份有限公司 电池极片加工机构和激光模切设备

Also Published As

Publication number Publication date
CN117280514A (zh) 2023-12-22
KR20240036113A (ko) 2024-03-19

Similar Documents

Publication Publication Date Title
WO2023193213A1 (zh) 电池极片绝缘涂层缺陷的检测方法、装置和计算机设备
JP6475666B2 (ja) 欠陥検査装置
EP4350334A1 (en) Battery cell detection method, apparatus and system, and computer device and storage medium
JP5415017B2 (ja) 二次電池、二次電池の製造方法、及び製造システム
EP4350621A1 (en) Bare cell appearance inspection method and apparatus, computer device, and storage medium
WO2023202234A1 (zh) 对复合料带的阴极极片进行缺陷检测的方法、装置、系统
CN110706509A (zh) 车位及其方向角度检测方法、装置、设备及介质
CN115797346B (zh) 极耳状态检测方法、装置、计算机设备和存储介质
WO2024045589A1 (zh) 刻码质量检测方法、装置、计算机设备和存储介质
KR20130012379A (ko) 필름의 수율 예측 시스템 및 방법
WO2023070552A1 (zh) 一种电池卷芯卷绕覆盖检测方法、装置及设备
US20240071111A1 (en) Method, apparatus and system for inspecting cell crush
CN116007506A (zh) 电池极片的检测方法、装置、计算机设备及存储介质
CN103632368A (zh) 金属板带材表面图像缺陷合并方法
WO2023193217A1 (zh) 连续复合料带的标记处理方法、装置和计算机设备
Choudhary et al. Autonomous visual detection of defects from battery electrode manufacturing
CN110163850B (zh) 贴胶质量检测方法、装置、计算机设备和存储介质
CN114549393A (zh) 图像标注方法、装置、设备及计算机存储介质
KR102593244B1 (ko) 전극 위치 추적시스템
CN115797254A (zh) 极片缺陷检测方法、装置、计算机设备和存储介质
WO2023133690A1 (zh) 极片卷绕间隙的检测方法、其检测装置及其检测系统
CN115829907A (zh) 对复合料带的隔膜进行缺陷检测的方法、装置、系统
CN110470217B (zh) 电芯收尾状态的检测方法
KR102221782B1 (ko) 결함 검사 장치
JP4829578B2 (ja) 検査データ加工装置、検査データ加工方法、検査データ加工プログラム及び検査データ加工プログラムを記憶したコンピュータ読み取り可能な記憶媒体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280032987.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22936159

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20247007208

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022936159

Country of ref document: EP

Effective date: 20240311