WO2023191037A1 - Laminate cured body, printed wiring board having same, and laminate cured body manufacturing method - Google Patents

Laminate cured body, printed wiring board having same, and laminate cured body manufacturing method Download PDF

Info

Publication number
WO2023191037A1
WO2023191037A1 PCT/JP2023/013508 JP2023013508W WO2023191037A1 WO 2023191037 A1 WO2023191037 A1 WO 2023191037A1 JP 2023013508 W JP2023013508 W JP 2023013508W WO 2023191037 A1 WO2023191037 A1 WO 2023191037A1
Authority
WO
WIPO (PCT)
Prior art keywords
cured
film
laminated
laminate
resin composition
Prior art date
Application number
PCT/JP2023/013508
Other languages
French (fr)
Japanese (ja)
Inventor
孝典 中島
尚人 小山
悠斗 小田桐
Original Assignee
太陽ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太陽ホールディングス株式会社 filed Critical 太陽ホールディングス株式会社
Publication of WO2023191037A1 publication Critical patent/WO2023191037A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings

Definitions

  • the present invention relates to a cured laminate used as a resist for printed wiring boards, a printed wiring board including the same, and a method for producing the cured laminate.
  • Patent Document 1 describes applying a solder resist made of a photocurable resin composition onto a substrate, curing the solder resist with ultraviolet rays, and then developing unexposed areas of the solder resist. As a result, a circuit protection pattern is formed using the solder resist.
  • Various components are mounted on the substrate manufactured in this way to complete a printed wiring board.
  • the film thickness of the cured product of the photocurable resin composition is required to be 40 ⁇ m to 500 ⁇ m.
  • a photocurable resin composition containing a white colorant or a black colorant that can be used as a reflective material or a light-shielding agent is used to improve reflectance or light-shielding properties.
  • the film thickness may be increased from 40 ⁇ m to 500 ⁇ m, which is greater than the conventional thickness.
  • photocurable resin compositions containing these colorants it becomes even more difficult for ultraviolet light to reach the bottom of the resin layer, making it more likely that undercuts will occur and it will be difficult to obtain sufficient adhesion. Therefore, such concerns should be eliminated in advance.
  • Patent Document 1 discloses that in the exposure process, ultraviolet light is selectively diffused through an exposure mask film consisting of a mask film on which a mask pattern is drawn and a light diffusion film laminated and bonded below the mask film.
  • a technique has been disclosed in which a black solder resist can be cured satisfactorily.
  • the ultraviolet light is diffused to form an overexposed area that does not need to be exposed, so the overexposed area remains during development, resulting in the desired shape. There is a possibility that it may not be possible to obtain the desired solder resist pattern.
  • the cured solder resist body of Patent Document 1 does not particularly contribute to improving the connection stability between the conductor circuit and the mounted component.
  • an object of the present invention is to suppress undercut formation by curing well even at the bottom even when forming a cured body with a thick film thickness using a photocurable resin composition. It is an object of the present invention to provide a cured laminate that has improved adhesion to a substrate, a printed wiring board equipped with the same, and a method for manufacturing the cured laminate.
  • the cured laminate includes a lower cured film made of a photocurable resin composition that is laminated on one of the surfaces of the printed wiring board and photocured; one or more upper layer cured films made of a photocurable resin composition laminated on the lower layer cured film and separately photocured; and one or more recesses extending in the circumferential direction along the joint surface of the lower layer cured film and the upper layer cured film, or the joint surface of the plurality of upper layer cured films, on the end surface of each layered and cured cured film. It has been found that the problem can be solved by a laminated cured body characterized by having the following.
  • the cured laminate of the present invention is preferably laminated to surround a conductor portion provided on a printed wiring board, and the recess is preferably formed along the inner circumferential surface of the cured laminate.
  • the cured laminated body of the present invention is laminated on both sides of the conductor portion laminated on the substrate so as to face each other, and the recesses are formed on the end faces facing each other.
  • a printed wiring board characterized by comprising a cured laminated body.
  • an object of the present invention is to provide a method for producing a cured laminate used as a resist for printed wiring boards, comprising: (1) A lower layer uncured film forming step of coating and drying a photocurable resin composition on one of the surfaces of the printed wiring board; (2) a lower layer cured film forming step of exposing and curing the lower layer uncured film; (3) an upper layer uncured film forming step of coating the upper surface of the lower layer cured film with a photocurable resin composition that is the same as or different from the photocurable resin composition and drying; (4) an upper layer cured film forming step of exposing and curing the upper layer uncured film;
  • the problem is solved by a method for producing a cured laminate, which comprises:
  • the manufacturing method of the present invention includes: After the upper layer uncured film forming step and the upper layer cured film forming step one or more times, further (5) a developing step of subjecting the laminated lower layer cured film and upper layer cured film to a development treatment, (6) a step of thermosetting the laminated lower cured film and upper cured film after development; It is preferable to include.
  • the photocurable resin composition used in the production method of the present invention includes (A) carboxyl group-containing resin, (B) photopolymerization initiator, (C) epoxy resin, (D) colorant, and (E) photopolymerizable compound. It is preferable to include.
  • the colorant (D) used in the production method of the present invention includes a white colorant, and the amount of the white colorant is preferably 50 to 500 parts by mass based on 100 parts by mass of the carboxyl group-containing resin (A). , more preferably 100 to 450 parts by mass.
  • the colorant (D) used in the production method of the present invention includes a black colorant, and the amount of the black colorant is 1 to 50 parts by weight based on 100 parts by weight of the carboxyl group-containing resin (A). It is preferable that
  • the cured laminate of the present invention is well cured as a whole consisting of the lower cured film and the upper cured film, the occurrence of undercuts at the bottom of the cured product is suppressed, and the adhesiveness of the cured laminate to the substrate is improved.
  • the laminated cured body having recesses at the ends can improve the connection stability of parts due to the anchor effect.
  • a cured laminate having the above-mentioned effects can be manufactured smoothly and reliably.
  • the printed wiring board of the present invention has excellent connection stability of mounted components by applying the cured laminate of the present invention.
  • FIG. 1 is a schematic cross-sectional view for explaining a printed wiring board in which cured laminated bodies are laminated according to an embodiment of the present invention.
  • 2 is an explanatory diagram showing a state in which components are mounted on the printed wiring board of FIG. 1.
  • FIG. 2 is a schematic top view of the printed wiring board of FIG. 1.
  • FIG. 1 is a schematic cross-sectional view of a cured laminate according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram for explaining the shape of a cured laminate according to an embodiment of the present invention.
  • FIG. 1 is a schematic enlarged cross-sectional view of a cured laminate according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of a cured laminate obtained in Comparative Example 1 (exposed only once).
  • the cured laminate of the present invention is used as a resist for printed wiring boards, and includes a lower cured film made of a photocurable resin composition that is laminated on either surface of the printed wiring board and photocured. , and one or more upper layer cured films made of a photocurable resin composition that is laminated on the lower layer cured film and separately photocured.
  • the end face of each cured film stacked and cured has one or more recesses extending in the circumferential direction along the joint surface of the lower cured film and the upper cured film or the joint surfaces of a plurality of upper layer cured films. It is characterized by
  • the lower layer refers to a layer laminated in contact with the substrate
  • the upper layer refers to the upper surface of the lower layer, that is, a layer laminated apart from the substrate.
  • each of the plurality of layers becomes an upper layer.
  • the upper layer farthest from the substrate is also called the top layer
  • the upper layer between the lower layer and the top layer is also called an intermediate layer.
  • FIG. 1 is a schematic cross-sectional view of a printed wiring board 10 in which a cured laminate 3 of the present invention is laminated on a circuit board 1.
  • a conductor circuit made of copper is drawn on the surface of the circuit board 1, and the cured laminate 3 surrounds and covers the periphery 5a of the conductor portion 5, which is a part of the conductor circuit.
  • FIG. 2 is an explanatory diagram showing a state in which components are mounted on the printed wiring board 10 of FIG. 1.
  • FIG. 2 shows how solder 9 is adhered to the opening 7 of the cured laminated body 3 shown in FIG. 1, and thereby a component 11 such as an LED is mounted.
  • FIG. 3 is a schematic top view of printed wiring board 10 of FIG.
  • a copper conductor portion 5 (hereinafter also referred to as copper 5) is drawn in a circular shape on the circuit board 1, and the laminate cured body has a peripheral edge 5a of the copper 5 (surrounded by solid lines and broken lines in the figure). area).
  • the shape of the conductor part may be square, rectangular, elliptical, linear, etc. as long as it is applied to patterning of a circuit board. There is no particular limitation on the shape.
  • the conductor portion is entirely surrounded by the hardened laminated body, but it is not necessary that the entire periphery of the conductor portion is surrounded by the hardened laminated body, and the connection area between the conductor portion and other circuits is not necessarily surrounded by the hardened laminated body. etc. may have a portion that is not surrounded by the laminated cured body. Further, FIG. 3 shows how the cured laminate covers a portion of the conductor portion when viewed from above.
  • the cured laminate of the present invention is a cured laminate consisting of two or more cured films, and the uncured lower film made of the photocurable resin composition is exposed to light.
  • an uncured upper layer film made of a photocurable resin composition is formed on the resulting lower layer cured film and is further exposed to light, so that even the bottom of each layer is exposed.
  • the irradiation light spreads and the entire coating film is cured well even when the film is thick. For this reason, when the photocured laminate cured product is developed, the occurrence of undercuts at the bottom of the cured laminate is suppressed, and a sufficient area of the bottom surface of the cured laminate is secured.
  • the cured product is said to have excellent adhesion to the substrate.
  • the end face thereof corresponds to the inner periphery of the joint surface of the lower cured film and the upper cured film.
  • the portion has a circumferentially extending recess.
  • the conductor portions 5 shown in two locations are both surrounded by the laminated cured body 3.
  • a recess 3C is formed on the end surface of the cured laminate 3, extending in the circumferential direction of the cured laminate 3, along the joint surface between the upper surface of the lower cured film 3A and the lower surface of the upper cured film 3B.
  • recesses 3C are formed at a plurality of locations corresponding to the joints between the respective cured films on the end face of the laminated cured body 3.
  • the solder used when mounting components near or in contact with the laminated cured body 3, the solder used enters the one or more concave portions 3C, and when the solder is fixed, it is fixed to the cured body having the concave portions. An anchor effect occurs between the solder. Further, in the printed wiring board including the laminated cured body in the form of FIG. 1, the connection stability between the printed wiring board and the mounted components is improved.
  • FIG. 4 shows a schematic partial cross-sectional view for explaining one embodiment of the laminated cured body 3.
  • the laminated cured body 3 is composed of a lower cured film 3A and an upper cured film 3B formed thereon. Even if the lower layer cured film 3A is cured by coating a photocurable resin composition on the circuit board 1, drying it, and exposing it to light, the lower layer cured film 3A may be obtained by manufacturing a dry film of the photocurable resin composition in advance, An uncured film may be formed on the circuit board 1 using this dry film and then cured by exposure.
  • the upper cured film 3B may be a dry film of the photocurable resin composition, even if it is cured by applying a photocurable resin composition to the upper surface of the lower cured film 3A, drying it, and exposing it to light.
  • the dry film may be produced in advance, and an uncured film may be provided on the lower cured film 3A using this dry film, and the film may be cured by exposure.
  • the upper layer cured film 3B After the upper layer cured film 3B is exposed, it undergoes at least a development process, and more preferably, further undergoes a heat curing process, so that it has the shape shown in the partial cross-sectional view of FIG.
  • the ends of the lower cured film 3A and the upper cured film 3B are shaped to bulge in the extending direction of the cured film.
  • the cross-sectional shape of the bulge at the end can be approximately arcuate as shown in FIG. 4 .
  • the most swollen portions of the end surfaces 3Aa, 3Ba may be above or below the thickness positions 3Ad, 3Bd. Furthermore, the periphery of the joint surface between the upper surface of the cured film 3A (corresponding to the upper end of the arcuate end 3Aa in FIG. 4) and the lower surface of the cured film 3B that is in contact with this (corresponding to the lower end of the arcuate end 3Ba in FIG. 4) A recess 3C is formed over a part or the entire circumference of the cured laminate 3 (end surface), that is, the cured laminate 3.
  • the cross-sectional shape of the bulging portion of the end 3Aa of the lower cured film 3A and the end 3Ba of the upper cured film 3B is a shape other than the above-mentioned approximately arc shape, for example, an angular protruding shape or an asymmetrically protruding shape. There may be. For example, it may be bulged into a trapezoidal shape as shown in FIG.
  • the film thicknesses 3Ab and 3Bb of the lower cured film 3A and the upper cured film 3B are not limited, but are generally 10 to 40 ⁇ m, particularly 20 to 30 ⁇ m. By setting it to 10 ⁇ m or more, halation during exposure can be suppressed, and by setting it to 40 ⁇ m or less, undercut can be suppressed and the effects of the present invention can be better obtained. Furthermore, the thicknesses of the lower cured film 3A and the upper cured film 3B may be different from each other. Moreover, the film thickness of the entire cured laminate can be selected depending on the location where the cured laminate is laminated on the printed wiring board.
  • the film thickness means the average film thickness.
  • the position of the recess 3C in the cured multilayer body 3 is outside the vicinity of the bottom surface of the cured multilayer body 3 (the bottom surface 3A bottom of the cured film 3A), and on the top surface of the cured multilayer body 3 (the top surface 3B top of the cured film 3B).
  • the location is outside the vicinity.
  • the recess is formed at a position that is 5 ⁇ m or more higher than the bottom surface 3A bottom and 5 ⁇ m or more lower than the top surface 3B top .
  • FIG. 6 shows a schematic enlarged sectional view of a cured laminate according to an embodiment of the present invention.
  • FIG. 6 shows that, as explained using FIG. 2, a laminated cured body 3 composed of a lower cured film 3A and an upper cured film 3B provided thereon is laminated on a circuit board 1. There is.
  • the laminated cured body 3 is laminated so as to surround the conductor portion 5.
  • the solder 9 is in the state of a solder ball that has not yet melted, but in FIG. 6, the solder 9 is shown to be in a molten state due to the heating of the reflow process and has entered the recess 3C. It is.
  • the laminated cured body 300 consists of a lower cured film 300A and an upper cured film 300B, and a recess 300C is formed in the joint surface of these so as to satisfy the following conditions.
  • the recessed portion 300C is formed such that there is at least one location where the upper width (W upper ) is narrower than the lower width (W lower ) (W upper ⁇ W lower ).
  • W upper ⁇ W lower the width of the width W6
  • W 7 the width of the width W6
  • W 7 the width of the width W6
  • the film surface of the laminated cured product is not smooth and the top surface 300B top is not horizontal, determine the position P 1 based on the point with the largest film thickness on the top surface 300B top , and compare W n in the same way. . Moreover, the distances t b and t t are both 5 ⁇ m.
  • the cross-sectional shape shown in FIG. 5 is formed, for example, between any two conductor portions 5 in FIG. 3. That is, between any two adjacent conductor portions 5, the two end surfaces generally have a substantially symmetrical cross-sectional shape as in the laminated cured body shown in FIG.
  • the inclined end face is formed around the conductor portion 5 of FIG.
  • the cured laminate extends from, for example, the periphery of the conductor portion 5 in the upper right corner of FIG. In such a case, the end face on the conductor portion 5 side and the other end face do not necessarily have a symmetrical shape in cross-sectional shape.
  • the other end face may not be determined or may have an irregular shape that cannot be used as a reference, and it is also assumed that it will be difficult to uniformly measure the width W n .
  • an arbitrary perpendicular line drawn from the bottom surface 300A bottom toward the upper surface 300B top of the laminated cured body 300 is used as a reference line segment, and one end of the laminated cured body 300 and the reference
  • the position of the concave portion 300C is determined by determining distances W n corresponding to a plurality of positions P n and comparing W n in the same manner as above.
  • the cured laminate of the present invention includes, in addition to the above-mentioned upper cured film, further upper cured films such as second and third layers that are sequentially laminated thereon.
  • the number of cured film layers in the cured laminate is generally 2 to 10, preferably 2 or 3. Since recesses can be formed in the cured laminated body along the bonding surfaces of two adjacent layers of cured films, the number of recesses is one less than the number of cured films.
  • the laminated cured product of the present invention is (1) A lower layer uncured film forming step (step (1)) of coating and drying a photocurable resin composition on one of the surfaces of the printed wiring board; (2) a lower layer cured film forming step (step (2)) of exposing and curing the lower uncured film; (3) an upper layer uncured film forming step (step (3)) of applying and drying a photocurable resin composition that is the same as or different from the photocurable resin composition on the upper surface of the lower layer cured film; (4) Manufactured by a manufacturing method including an upper layer cured film forming step (step (4)) of exposing and curing the upper layer uncured film.
  • the laminated lower layer cured film and upper layer cured film are subjected to a development treatment. and (6) a step of thermally curing the laminated lower cured film and upper cured film after development.
  • steps (3) and (4) when the combination of steps (3) and (4) is performed once, a laminated cured body consisting of two layers, the lower cured film 3A and the upper cured film 3B thereon, is formed.
  • a laminated cured layer consisting of a total of three or more layers of a lower cured film 3A and two or more upper layer cured films 3B sequentially formed thereon.
  • the body is manufactured.
  • the step (step (5)) of subjecting the laminated lower layer cured film and upper layer cured film to a development treatment is performed.
  • step (5) once all the cured film has been obtained, it is exposed to a developer and treated, but in some cases, prior to this, a portion of the lower layer or upper layer may be developed in advance. You may.
  • step (6) a step of thermally curing the laminated lower cured film and upper cured film after development is performed.
  • the cured laminate of the present invention obtained after development is further heated to a temperature of about 100 to 180° C. to thermally cure (post-cure). Heat treatment improves various properties of the cured product, such as heat resistance, chemical resistance, moisture absorption resistance, adhesion, and electrical properties.
  • a photocurable resin composition is used to form, for example, a lower uncured film on the circuit board 1.
  • the photocurable resin composition any photocurable resin composition that is commonly used in the production of solder resists can be used without particular limitation.
  • the photocurable resin composition is applied to a circuit board or the like by a method such as a screen printing method, a curtain coating method, a spray coating method, or a roll coating method, and the photocurable resin composition is coated at a temperature of, for example, 70 to 90°C. By evaporating the organic solvent contained in the composition and drying it, an uncured lower film can be formed.
  • a dry film of the photocurable resin composition may be produced in advance and an uncured film may be formed on the circuit board using this dry film.
  • the uncured lower film thus obtained is dried for 10 to 30 minutes at a temperature of 60°C to 90°C using a drying device such as a hot air circulation type drying oven, and the film thickness after drying is 10 to 30°C.
  • the uncured film is approximately 40 ⁇ m thick.
  • step (2) a photomask with a predetermined pattern is placed on the upper surface of the lower uncured film obtained in step (1), and active energy rays (light intensity: 100 to 1000 mJ/cm2) are selectively passed through the photomask. ) or by direct writing with active energy ray irradiation.
  • the photocurable resin composition of the present invention is generally of a type that hardens at exposed areas.
  • step (2) it is also possible to form a patterned film by developing the unexposed areas with an alkaline aqueous solution or the like, but as will be described later, it is preferable to omit the development at this stage.
  • a direct exposure machine from the viewpoint of accuracy of alignment of the pattern to be formed.
  • a light source for irradiating active energy rays a low-pressure mercury lamp, a medium-pressure mercury lamp, a high-pressure mercury lamp, an ultra-high-pressure mercury lamp, an LED, a xenon lamp, a metal halide lamp, or the like can be used.
  • step (3) an upper uncured film made of a photocurable resin composition is further formed on the upper surface of the lower cured film obtained in step (2).
  • the photocurable resin composition used here may be the same as or different from the photocurable resin composition in step (1), and is applied to the upper surface of the lower cured film (the opposite side of the substrate 1). Alternatively, they may be formed into a dry film and then laminated. The thus obtained laminate consisting of the lower cured film and the upper uncured film is dried to form a dry coating film. Drying conditions may be the same as or different from step (1).
  • step (4) the upper surface of the upper uncured film of the laminate is exposed to light in the same manner as in step (2).
  • the exposure conditions may be the same as or different from step (2).
  • a laminated cured body having two layers of cured films is obtained.
  • the laminated cured product of the present invention can have a total of three or more cured films, and in this case, step (3) and step (4) are further applied to the upper surface of the upper cured film.
  • step (3) and step (4) are further applied to the upper surface of the upper cured film.
  • step (5) the cured laminate body obtained as described above is developed.
  • a 0.5 to 5% by weight aqueous sodium carbonate solution is generally used, but other alkaline aqueous solutions can also be used.
  • alkaline aqueous solutions include alkaline aqueous solutions of potassium hydroxide, sodium hydroxide, potassium carbonate, sodium phosphate, sodium silicate, ammonia, amines, and the like.
  • the development time varies depending on the film thickness, etc., but is generally from 70 seconds to 210 seconds, for example.
  • step (2) exposure of the lower layer uncured film
  • step (4) exposure of the upper uncured film
  • Step (6) The cured laminate of the present invention obtained after development can be further heated to a temperature of about 100 to 180° C. for thermal curing (post-curing).
  • a cured laminate having relatively high hardness is already obtained even before development.
  • further heat treatment improves various properties of the cured product, such as heat resistance, chemical resistance, moisture absorption resistance, adhesion, and electrical properties, so it is preferable to perform step (6).
  • the film thickness of each cured film after step (6) is the same as that of each cured film after drying in step (1) or step (3). It is the same as the film thickness.
  • each uncured film of the photocurable resin composition is exposed to light, that is, the whole is exposed twice or more (multiple exposures).
  • an uncured film of a photocurable resin composition having a film thickness corresponding to the entire cured laminate is irradiated with light only once from above (on the side opposite to the substrate). It hardens, and ultraviolet light etc. irradiated from the surface of the uncured film may not fully reach the entire bottom (substrate side) of the uncured film. In that case, the photoreaction rate of the cured film after exposure monotonically decreases from the top to the bottom of the cured film.
  • the developing process results in a cured laminate having an undercut shape.
  • the uncured film is sequentially exposed to the thickness that is obtained by dividing the entire cured laminate, the uncured film is exposed from above the divided uncured film. The irradiation light reaches the entire bottom part. This suppresses the occurrence of undercuts.
  • the lower cured film provided directly on the substrate when the lower cured film provided directly on the substrate is exposed to the upper uncured film provided above (directly above or above), the lower cured film receives the irradiation light of this exposure and is further cured. There is also. Similarly, layers other than the top layer may be affected by two or more exposures, even if the amount of light is reduced. That is, the reaction rate tends to be particularly high in layers close to the substrate, and the entire cured laminate has a good photocured state. Since the entire cured laminate has a good photocured state, the cured laminate of the present invention has excellent heat resistance. Further, the cured laminated body of the present invention can be laminated on both sides of the substrate.
  • photocurable resin composition any composition that is generally used in the production of solder resists and that is cured by exposure to light can be used without particular limitation.
  • a composition containing (A) a carboxyl group-containing resin, (B) a photopolymerization initiator, (C) an epoxy resin, (D) a colorant, and (E) a photopolymerizable compound. be able to.
  • the photocurable resin composition of the present invention may contain (A) a carboxyl group-containing resin.
  • the carboxyl group-containing resin can be made into an alkali-developable photosensitive resin composition by including a carboxyl group.
  • a photosensitive carboxyl group-containing resin which itself has one or more photosensitive unsaturated double bonds can be used, and is not limited to a specific one.
  • the carboxyl group-containing resin may be either an oligomer or a polymer.
  • carboxyl group-containing resin (A) As examples of the carboxyl group-containing resin (A), the following can be suitably used. That is, (1) Carboxyl group-containing resin obtained by copolymerization of an unsaturated carboxylic acid and a compound having an unsaturated double bond, (2) A photosensitive carboxyl group-containing resin obtained by reacting a carboxyl group-containing (meth)acrylic copolymer resin with a compound having an oxirane ring and an ethylenically unsaturated group in one molecule, (3) A copolymer of a compound having one epoxy group and an unsaturated double bond in each molecule and a compound having an unsaturated double bond is reacted with an unsaturated monocarboxylic acid.
  • a photosensitive carboxyl group-containing resin obtained by reacting a saturated or unsaturated polybasic acid anhydride with a secondary hydroxyl group, (4) After reacting a hydroxyl group-containing polymer with a saturated or unsaturated polybasic acid anhydride, the resulting carboxylic acid is reacted with a compound having one epoxy group and one unsaturated double bond in each molecule. It is a photosensitive hydroxyl group- and carboxyl group-containing resin obtained by
  • (2) photosensitive carboxyl group-containing resin (a) a carboxyl group-containing (meth)acrylic copolymer resin, and (b) an oxirane ring and an ethylenically unsaturated group in one molecule.
  • a copolymer resin having a carboxyl group obtained by reaction with a compound having a carboxyl group is preferred.
  • the carboxyl group-containing (meth)acrylic copolymer resin (a) is obtained by copolymerizing a (meth)acrylic acid ester and a compound having one unsaturated group and at least one carboxyl group in one molecule. can be obtained.
  • Examples of the (meth)acrylic ester constituting the copolymer resin (a) include methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, butyl (meth)acrylate, pentyl (meth)acrylate, and hexyl (meth)acrylate.
  • (meth)acrylic acid alkyl esters such as meth)acrylate, hydroxyl groups such as 2-hydroxyethyl (meth)acrylate, hydroxypropyl (meth)acrylate, hydroxybutyl (meth)acrylate, caprolactone-modified 2-hydroxyethyl (meth)acrylate, etc.
  • (meth)acrylic acid esters methoxydiethylene glycol (meth)acrylate, ethoxydiethylene glycol (meth)acrylate, isooctyloxydiethylene glycol (meth)acrylate, phenoxytriethylene glycol (meth)acrylate, methoxytriethylene glycol (meth)acrylate
  • examples include glycol-modified (meth)acrylates such as methoxypolyethylene glycol (meth)acrylate. These may be used alone or in combination of two or more. Note that in this specification, (meth)acrylate is a term that collectively refers to acrylate and methacrylate, and the same applies to other similar expressions.
  • examples of compounds having one unsaturated group and at least one carboxyl group in one molecule include acrylic acid, methacrylic acid, and modified unsaturated monocarboxylic acids in which the chain between the unsaturated group and the carboxylic acid is extended. , for example, ⁇ -carboxyethyl (meth)acrylate, 2-acryloyloxyethylsuccinic acid, 2-acryloyloxyethylhexahydrophthalic acid, unsaturated monocarboxylic acid having an ester bond by lactone modification, modified unsaturated having an ether bond, etc.
  • examples include monocarboxylic acids and those containing two or more carboxyl groups in the molecule, such as maleic acid. These may be used alone or in combination of two or more.
  • the compound having an oxirane ring and an ethylenically unsaturated group in one molecule may be any compound having an ethylenically unsaturated group and an oxirane ring in one molecule, such as glycidyl (meth)acrylate, ⁇ -Methylglycidyl (meth)acrylate, 3,4-epoxycyclohexylmethyl (meth)acrylate, 3,4-epoxycyclohexylethyl (meth)acrylate, 3,4-epoxycyclohexylbutyl (meth)acrylate, 3,4-epoxycyclohexyl Examples include methylaminoacrylate.
  • carboxyl group-containing resin (A) of the present invention is preferably 10 to 60% by mass, more preferably 15 to 55% by mass in terms of solid content of the photocurable resin composition of the present invention.
  • photopolymerization initiator in the photocurable resin composition of the present invention, any known photopolymerization initiator can be used as a photopolymerization initiator or a photoradical generator.
  • the photopolymerization initiator (B) used in the present invention include benzoin and benzoin alkyl ethers such as benzoin, benzoin methyl ether, benzoin ethyl ether, and benzoin isopropyl ether; acetophenone, 2,2-dimethoxy-2-phenyl Acetophenones such as acetophenone, 2,2-diethoxy-2-phenylacetophenone, 2,2-diethoxy-2-phenylacetophenone, 1,1-dichloroacetophenone; 2-methyl-1-[4-(methylthio)phenyl]- 2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butanone-1,2-(dimethyl
  • photopolymerization initiators can be used alone or in combination of two or more.
  • the amount of the photopolymerization initiator (B) of the present invention is preferably 0.01 to 30 parts by weight, more preferably 0.5 to 15 parts by weight, based on 100 parts by weight of the carboxyl group-containing resin (A). range.
  • the photocurable resin composition of the present invention may contain (C) an epoxy resin in order to impart heat resistance.
  • an epoxy resin various known and commonly used epoxy resins such as bisphenol S type epoxy resin, diglycidyl phthalate resin, triglycidyl isocyanurate (for example, TEPIC-H manufactured by Nissan Chemical Co., Ltd.
  • Epoxy resins that are poorly soluble in diluents such as heterocyclic epoxy resins (mixtures with ⁇ -isomers that have a directional bond structure), bixylenol-type epoxy resins, biphenol-type epoxy resins, and tetraglycidyl xylenoylethane resins.
  • Resins bisphenol A type epoxy resins, hydrogenated bisphenol A type epoxy resins, bisphenol F type resins, brominated bisphenol A type epoxy resins, phenol novolac type or cresol novolac type epoxy resins, alicyclic epoxy resins, bisphenol A novolacs.
  • Soluble in diluents such as type epoxy resins, chelate type epoxy resins, glyoxal type epoxy resins, amino group-containing epoxy resins, rubber modified epoxy resins, dicyclopentadiene phenolic type epoxy resins, silicone modified epoxy resins, and ⁇ -caprolactone modified epoxy resins. Examples include epoxy resins. These epoxy resins can be used alone or in combination of two or more.
  • the blending amount of the epoxy resin (C) of the present invention is preferably 0.3 to 3.0 equivalents, more preferably 0.5 to 2.0 equivalents per equivalent of carboxyl group in the carboxyl group-containing resin (A). Equivalent range.
  • the photocurable resin composition of the present invention may contain (D) a colorant in order to form a cured laminate that reflects the color of the colorant itself.
  • a coloring agent used in the photocurable resin composition of the present invention, conventionally known pigments or dyes such as white, black, green, blue, yellow, red, and purple may be used alone or depending on the desired use. Two or more types can be used in combination.
  • the white colorant is preferably a white pigment, and specific examples thereof include titanium oxide, zinc oxide, potassium titanate, zirconium oxide, antimony oxide, white lead, zinc sulfide, lead titanate, and the like.
  • white pigments it is preferable to use titanium oxide because it has a high effect of suppressing discoloration due to heat.
  • As the titanium oxide it is particularly preferable to use rutile type titanium oxide. Anatase titanium oxide is often used because it has higher whiteness than rutile titanium oxide. However, since anatase titanium oxide has photocatalytic activity, it may cause discoloration of the resin in the solder resist composition.
  • rutile type titanium oxide has slightly inferior whiteness compared to anatase type titanium oxide, it has almost no photoactivity, so it is possible to obtain a stable solder resist film.
  • known rutile-type titanium oxides can be used. Specifically, TR-600, TR-700, TR-750, TR-840 manufactured by Fuji Titanium Industries Co., Ltd., R-550, R-580, R-630, R-820 manufactured by Ishihara Sangyo Co., Ltd. CR-50, CR-60, CR-90, KR-270, KR-310, KR-380 manufactured by Titanium Kogyo Co., Ltd., etc. can be used.
  • White pigments can be used as a single type or as a mixture of multiple types. Furthermore, in order to make the photocurable resin composition white after curing, it is also possible to add a pigment other than white, such as a blue pigment, to the white pigment.
  • black pigments are preferable, and specific examples thereof include carbon black, lamp black, bone black, graphite, iron black, copper chromium black, copper iron manganese black, cobalt iron chromium black, Examples include cobalt oxide such as tricobalt tetraoxide, ruthenium oxide, and the like. Further, specific examples of the purple pigment include cobalt violet, manganese violet, quinacridone violet, dioxazine violet, and the like.
  • green pigments include chrome green, cobalt green, chromium oxide, phthalocyanine green, brominated green, cobalt chrome green, titanium/nickel/cobalt/zinc green, and the like.
  • blue pigments include ultramarine blue, phthalocyanine blue, metal-free phthalocyanine blue, indanthrene blue, and cobalt blue.
  • yellow pigments include yellow lead, yellow iron oxide, titanium yellow, loess, antimony yellow, barium yellow, monoazo pigments, disazo pigments, polyazo pigments, isoindolinone pigments, threne pigments, metal complex pigments, and quinophthalone pigments. Examples include pigments.
  • red pigments include chrome vermilion, molybdenum red, red red, red radish, lake red 4R, carmine FB, dinitroaniline orange, pyrazolone orange, pyrazolone red, perinone orange, permanent red 2B, lake red R, bon maroon light, Examples include Bordeaux 10B, Bon Maroon Medium, Thioindigo Bordeaux, Bon Maroon L, Perylene Vermilion, Perylene Scarlet, Perylene Maroon, Benzuidazolone Orange, and the like.
  • the tendency to yellow after reflow is reduced by using the cured laminate produced by the production method of the present invention.
  • Ru The reason for this is as follows.
  • a cured laminate of a photocurable resin composition used as a solder resist etc. shows a tendency to yellow when exposed to high temperatures of, for example, 260° C. or higher during component mounting.
  • each uncured film is sequentially and individually exposed to light in steps (2) and (4), etc., so that the ultraviolet light sufficiently reaches each layer, resulting in good photocuring. Since it has a state, it has excellent heat resistance.
  • the photocurable resin composition of the present invention contains a white pigment or a black pigment as the colorant (D), by using the cured laminate produced by the production method of the present invention, resolution, Adhesion is improved.
  • a black resist containing a black pigment has the property that irradiated light during exposure is easily absorbed by the resist and difficult to transmit.
  • a white resist containing a white pigment has the property that the irradiated light during exposure is easily reflected by the resist and difficult to transmit.
  • the black resist or white resist manufactured through the two-time exposure process of the present invention has improved adhesion to the circuit board and is difficult to peel off.
  • the blending amount of the colorant (D) of the present invention is preferably 50 to 500 parts by mass, more preferably 100 to 450 parts by mass, based on 100 parts by mass of the carboxyl group-containing resin (A). be.
  • the blending amount of the colorant (D) of the present invention is preferably 1 to 50 parts by weight based on 100 parts by weight of the carboxyl group-containing resin (A).
  • the photocurable resin composition of the present invention has an ethylenically unsaturated group and is photocured by irradiation with active energy rays to make the irradiated part of the photocurable resin composition insolubilized in an aqueous alkaline solution or to prevent insolubilization.
  • a photopolymerizable compound may be included.
  • the photopolymerizable compound (E) used in the present invention include hydroxyalkyl acrylates such as 2-hydroxyethyl acrylate and 2-hydroxybutyl acrylate; ethylene glycol, methoxytetraethylene glycol, polyethylene glycol, propylene glycol, etc.
  • Glycol mono- or diacrylates acrylamides such as N,N-dimethylacrylamide and N-methylolacrylamide; aminoalkyl acrylates such as N,N-dimethylaminoethyl acrylate; hexanediol, trimethylolpropane, pentaerythritol, di
  • Polyhydric alcohols such as pentaerythritol, dipentaerythritol hexaacrylate (DHPA), tris-hydroxyethyl isocyanurate, or polyhydric acrylates of their ethylene oxide or propylene oxide adducts; phenoxy acrylate, bisphenol A diacrylate, and these acrylates such as ethylene oxide or propylene oxide adducts of phenols; acrylates of glycidyl ethers such as glycerin diglycidyl ether and trimethylolpropane triglycidyl ether; melamine acrylate
  • the amount of the photopolymerizable compound (E) of the present invention is preferably 0.01 to 40 parts by weight, more preferably 0.5 to 30 parts by weight, based on 100 parts by weight of the carboxyl group-containing resin (A). It is.
  • the photocurable resin composition of the present invention can use an organic solvent for preparing the composition or adjusting the viscosity for coating on a substrate or carrier film.
  • organic solvent known organic solvents can be used.
  • one type of organic solvent may be used alone, or two or more types may be used in combination.
  • Such organic solvents include ketones such as methyl ethyl ketone and cyclohexanone; aromatic hydrocarbons such as toluene, xylene, and tetramethylbenzene; methyl cellosolve, ethyl cellosolve, butyl cellosolve, methyl carbitol, butyl carbitol, carbitol acetate, Glycol ethers such as propylene glycol monomethyl ether, diethylene glycol monoethyl ether, dipropylene glycol monoethyl ether, and triethylene glycol monoethyl ether; ethyl acetate, butyl acetate, cellosolve acetate, diethylene glycol monoethyl ether acetate, and esters of the above glycol ethers Alcohols such as ethanol, propanol, ethylene glycol, and propylene glycol; Aliphatic hydrocarbons such as octane and decane; Petroleum
  • a curing catalyst a curing accelerator, a thermal polymerization inhibitor, a thickener, an antifoaming agent, a leveling agent, a coupling agent, a flame retardant aid, etc. can be used as necessary.
  • the photocurable resin composition of the present invention can be laminated by coating it on a substrate in a liquid or paste form and drying it.
  • composition 1 and composition 2 A photocurable resin composition was prepared by blending the components shown in Table 1 below in the amounts shown in the table, stirring and dispersing the mixture using three rolls. The numbers in Table 1 indicate parts by mass in terms of varnish containing solvent.
  • Examples 1 to 4 Comparative Examples 1 to 4
  • a cured laminate consisting of one, two, or three layers of cured films was created.
  • the method for producing a cured laminate and the evaluation of the cured laminate of the present invention will be explained below.
  • "-" in the treatment step means that the corresponding treatment was not performed, "-" indicates that the corresponding evaluation was not performed because Composition 2, which does not contain a white colorant, was not required to function as a reflective material.
  • DF610 hot air circulation drying oven manufactured by Yamato Scientific Co., Ltd.
  • Example 2 using a direct exposure machine (manufactured by Oak Seisakusho Co., Ltd., DiIMPACT Mms60) using a metal halide as a light source, a line pattern with a width of 30 to 300 ⁇ m (in 30 ⁇ m increments) was formed on the dried uncured film. Exposure was carried out at a cumulative exposure amount of 600 mJ/cm2. Similar treatments were carried out in Examples 2 to 4 and Comparative Examples 1 to 3, but Composition 2 was used in Example 4 and Comparative Example 3. Further, in Comparative Examples 1 to 3, no exposure was performed. Thereafter, in Example 2, development was carried out for 70 seconds using a 1% by mass aqueous sodium carbonate solution at a liquid temperature of 30° C.
  • Example 4 printing, drying, and exposure were performed using the same equipment and procedures as in Example 1, but the entire surface was printed using #60 screen printing so that the film thickness after drying was 50 ⁇ m. The drying time was 30 minutes, and the cumulative exposure amount was 1200 mJ/cm2. In Table 2, the fact that the corresponding treatment step was performed is indicated by a symbol of ⁇ or ⁇ .
  • the same composition as the composition was used to form the lower layer, and the entire surface was printed by #100 screen printing so that the film thickness after drying was 25 ⁇ m. It was dried at 80° C. for 30 minutes using DF610 (manufactured by Kagaku Co., Ltd.) (precure).
  • a direct exposure machine manufactured by Oak Seisakusho Co., Ltd., DiIMPACT Mms60
  • a metal halide as a light source was used to form a line pattern with a width of 30 to 300 ⁇ m (in 30 ⁇ m increments) on the dried uncured film.
  • 1 to 4 and Comparative Examples 1 and 3 exposure was performed at an integrated exposure amount of 600 mJ/cm 2
  • Comparative Example 2 was exposed at an integrated exposure amount of 1200 mJ/cm 2 .
  • Example 3 was developed for 210 seconds
  • other Examples and Comparative Examples were developed for 140 seconds using a 1% by mass aqueous sodium carbonate solution at a liquid temperature of 30° C. and a spray pressure of 0.2 MPa.
  • no upper layer was provided on the lower layer, and the cured product consisted of only one lower layer.
  • Discoloration resistance evaluation> A substrate for discoloration resistance evaluation was created according to the same process as described above in ⁇ Creation of evaluation board>, except that instead of exposing the entire surface of the dried uncured film to light to form a line pattern. .
  • the substrate for discoloration resistance evaluation was repeatedly subjected to reflow treatment five times at a maximum temperature of 285°C.
  • the surface of the cured film on the substrate for discoloration resistance evaluation was measured in the L*a*b* color system using a Konica Minolta spectrophotometer CM-2600d in accordance with JIS Z8781. Measure the L* value, a* value, and b* value, and use equation (1) based on the amount of change ( ⁇ L, ⁇ a, ⁇ b) in the L* value, a* value, and b* value by comparing before and after reflow treatment.
  • the ⁇ E calculated in was evaluated based on the following criteria.
  • a heating bump pull test was conducted in the following manner. First, the tensile probe of the bond tester is heated with a heater, and when the temperature of the tip of the tensile probe reaches 270° C., the tip of the tensile probe is vertically inserted into the center of the solder ball. Thereafter, the solder ball and the tensile probe were fixed together by cooling the inserted state until the temperature of the tip of the tensile probe reached 40°C.
  • the tensile probe was vertically pulled up at a speed of 300 ⁇ m/sec, and the strength required for the solder ball to peel off from the bonding surface (interfacial peeling) (bonding strength (N)) was determined as the bonding strength. Evaluation was made based on the criteria below the measured bonding strength.
  • Bonding strength is 8.5N or more ⁇ : Bonding strength is 7.5N or more, less than 8.5N ⁇ : Bonding strength is 6.0N or more, less than 7.5N ⁇ : Bonding strength is less than 6.0N
  • FIG. 7 shows a cross-sectional view of the laminate obtained in Comparative Example 1.
  • the lower layer was printed and dried, and without exposure, the upper layer was provided on the dried lower layer, and then exposed. As a result, it was observed that significant undercutting occurred in the obtained laminate.
  • FIG. 7 shows a schematic cross-sectional view of the cured laminated body of Comparative Example 1.
  • Circuit board 3 Laminated cured body 3A Lower cured film 3Aa End face 3B of lower cured film Upper cured film 3Ba End face 3C of upper cured film Recessed part of cured laminated body 5 Conductor portion 10 Printed wiring board

Abstract

[Problem] To provide a laminate cured body, a printed wiring board having the same, and a laminate cured body manufacturing method, wherein, even when a cured body having a large film thickness is manufactured using a photocurable resin composition, excellent curing can be performed also in the bottom portion, thereby suppressing undercut formation and achieving improved adhesion to a substrate. [Solution] Provided are: a laminate cured body for use as a resist for a printed wiring board, the laminate cured body being characterized by comprising a lower-layer cured film made of a photocurable resin composition that has been laminated on a substrate upper surface and photocured, and one or a plurality of upper-layer cured films made of a photocurable resin composition that has been laminated on the lower-layer cured film and separately photocured, the laminate cured body being used as a resist for a printed wiring board; a printed wiring board having the same; and a laminate manufacturing method. 

Description

積層硬化体、これを備えるプリント配線板、および積層硬化体の製造方法Cured laminate, printed wiring board including the same, and method for producing the cured laminate
 本発明は、プリント配線板のレジストとして使用される積層硬化体、これを備えるプリント配線板、および積層硬化体の製造方法に関する。 The present invention relates to a cured laminate used as a resist for printed wiring boards, a printed wiring board including the same, and a method for producing the cured laminate.
 一般に、プリント配線板の製造においては、回路基板に対してLED素子などの部品を実装する前工程で、回路パターンを保護するレジストとして光硬化性樹脂組成物が使用される。例えば、特許文献1には、基板上に光硬化性樹脂組成物からなるソルダーレジストを塗布し、ソルダーレジストを紫外線により硬化させ、次いでソルダーレジストの未露光部を現像することが記載されている。これにより、ソルダーレジストによる回路保護パターンが形成される。このように製造された基板上には、各種部品が実装されて、プリント配線板が完成する。 Generally, in the production of printed wiring boards, a photocurable resin composition is used as a resist to protect circuit patterns in the pre-process of mounting components such as LED elements on a circuit board. For example, Patent Document 1 describes applying a solder resist made of a photocurable resin composition onto a substrate, curing the solder resist with ultraviolet rays, and then developing unexposed areas of the solder resist. As a result, a circuit protection pattern is formed using the solder resist. Various components are mounted on the substrate manufactured in this way to complete a printed wiring board.
 一方、近年では、電子機器の性能の向上のために、小スペースでありながら大電力を流すことができる厚銅基板に対する需要が増大している。そして、厚銅基板を得るためには、光硬化性樹脂組成物の硬化体の膜厚を従来よりもさらに厚くする必要がある。具体的には、光硬化性樹脂組成物の硬化体の膜厚は、40μm~500μmのものが必要とされている。 On the other hand, in recent years, in order to improve the performance of electronic devices, there has been an increasing demand for thick copper substrates that can flow large amounts of power in a small space. In order to obtain a thick copper substrate, it is necessary to make the film thickness of the cured product of the photocurable resin composition even thicker than before. Specifically, the film thickness of the cured product of the photocurable resin composition is required to be 40 μm to 500 μm.
 また、電子機器の性能を最大限に発揮させるためには、導体回路と実装部品との接続安定性を向上させることも重要である。 Additionally, in order to maximize the performance of electronic devices, it is also important to improve the connection stability between conductor circuits and mounted components.
 光硬化性樹脂組成物で厚い膜厚を有する硬化体を形成する場合、基板に光硬化性樹脂組成物を塗布、乾燥して形成した樹脂層を露光する際、紫外光が樹脂層の底部まで十分には到達しないため、樹脂層の底部の光硬化反応が十分に進行せず、後の現像工程で本来残存するはずの樹脂層が除去され、表層よりも底部が細くなってしまうアンダーカットが発生しやすくなる。このような場合には、樹脂層と基板との密着性が十分に得られないことがある。特に、ディスプレイ用途で、反射材や遮光剤としても使用可能な白色着色剤または黒色着色剤を含む光硬化性樹脂組成物は、反射率または遮光性を向上させるため、硬化体を形成する場合、上述した様に膜厚を40μm~500μmと従来よりも厚くすることがある。このような場合、これらの着色剤を含む光硬化性樹脂組成物では、紫外光が樹脂層の底部までさらに到達しにくくなるため、アンダーカットが発生しやすく、密着性も十分に得られにくくなることから、その懸念をあらかじめ排除すべきである。 When forming a cured product with a thick film thickness using a photocurable resin composition, when exposing the resin layer formed by coating the photocurable resin composition on a substrate and drying it, the ultraviolet light reaches the bottom of the resin layer. Because the photocuring reaction at the bottom of the resin layer does not reach the full extent, the resin layer that should remain is removed in the subsequent development process, resulting in an undercut where the bottom is thinner than the surface layer. It is more likely to occur. In such a case, sufficient adhesion between the resin layer and the substrate may not be obtained. In particular, in display applications, when forming a cured product, a photocurable resin composition containing a white colorant or a black colorant that can be used as a reflective material or a light-shielding agent is used to improve reflectance or light-shielding properties. As mentioned above, the film thickness may be increased from 40 μm to 500 μm, which is greater than the conventional thickness. In such cases, in photocurable resin compositions containing these colorants, it becomes even more difficult for ultraviolet light to reach the bottom of the resin layer, making it more likely that undercuts will occur and it will be difficult to obtain sufficient adhesion. Therefore, such concerns should be eliminated in advance.
 この点、特許文献1には、露光工程で、マスクパターンが描画されたマスクフィルムとその下方に積層接着された光拡散フィルムとからなる露光用マスクフィルムを介して紫外光を選択的に拡散させることにより、黒色のソルダーレジストを良好に硬化させることができる技術が開示されている。しかしながら、特許文献1に開示された方法では、紫外光を拡散させ、本来露光する必要のないオーバー露光部を形成するものであるため、オーバー露光部が現像時に残存してしまい、目的とした形状のソルダーレジストパターンを得ることが出来ない恐れがある。
 また、特許文献1のソルダーレジスト硬化体は、導体回路と実装部品との接続安定性を向上させることについて、特に寄与するものではない。
In this regard, Patent Document 1 discloses that in the exposure process, ultraviolet light is selectively diffused through an exposure mask film consisting of a mask film on which a mask pattern is drawn and a light diffusion film laminated and bonded below the mask film. A technique has been disclosed in which a black solder resist can be cured satisfactorily. However, in the method disclosed in Patent Document 1, the ultraviolet light is diffused to form an overexposed area that does not need to be exposed, so the overexposed area remains during development, resulting in the desired shape. There is a possibility that it may not be possible to obtain the desired solder resist pattern.
Further, the cured solder resist body of Patent Document 1 does not particularly contribute to improving the connection stability between the conductor circuit and the mounted component.
特開2012-199351公報Japanese Patent Application Publication No. 2012-199351
 上記従来技術の課題に鑑み、本発明の目的は、光硬化性樹脂組成物で厚い膜厚を有する硬化体を形成する場合にも、底部においても良好に硬化することで、アンダーカット形成が抑制され、かつ基板に対する密着性が向上した積層硬化体、これを備えるプリント配線板、および積層硬化体の製造方法を提供することにある。 In view of the above-mentioned problems of the prior art, an object of the present invention is to suppress undercut formation by curing well even at the bottom even when forming a cured body with a thick film thickness using a photocurable resin composition. It is an object of the present invention to provide a cured laminate that has improved adhesion to a substrate, a printed wiring board equipped with the same, and a method for manufacturing the cured laminate.
 本発明者等は、鋭意検討の結果、本発明の上記の目的が、プリント配線板のレジストとして使用される積層硬化体であって、
 積層硬化体は、プリント配線板の表面のいずれか一方に積層されて光硬化された光硬化性樹脂組成物からなる下層硬化膜と、
 該下層硬化膜上に積層されて別途光硬化された光硬化性樹脂組成物からなる1又は複数の上層硬化膜と、
を備え、積層されて硬化した各硬化膜の端面には、下層硬化膜と上層硬化膜の接合面、または複数の上層硬化膜の接合面に沿って、周囲方向に伸長する1または複数の凹部を有することを特徴とする積層硬化体により解決されることを見出した。
As a result of intensive studies, the present inventors have found that the above-mentioned object of the present invention is a cured laminate used as a resist for printed wiring boards,
The cured laminate includes a lower cured film made of a photocurable resin composition that is laminated on one of the surfaces of the printed wiring board and photocured;
one or more upper layer cured films made of a photocurable resin composition laminated on the lower layer cured film and separately photocured;
and one or more recesses extending in the circumferential direction along the joint surface of the lower layer cured film and the upper layer cured film, or the joint surface of the plurality of upper layer cured films, on the end surface of each layered and cured cured film. It has been found that the problem can be solved by a laminated cured body characterized by having the following.
 本発明の積層硬化体は、プリント配線板上に設けられた導体部分の周囲を囲むように積層され、凹部は積層硬化体の内周面に沿って形成されていることが好ましい。 The cured laminate of the present invention is preferably laminated to surround a conductor portion provided on a printed wiring board, and the recess is preferably formed along the inner circumferential surface of the cured laminate.
 本発明の積層硬化体は、基板上に積層された導体部分の両側に互いに対向して積層され、凹部は互いに対向する端面に形成されていることが好ましい。 It is preferable that the cured laminated body of the present invention is laminated on both sides of the conductor portion laminated on the substrate so as to face each other, and the recesses are formed on the end faces facing each other.
 また、本発明の目的は、積層硬化体を備えることを特徴とするプリント配線板によって解決される。 Further, the object of the present invention is solved by a printed wiring board characterized by comprising a cured laminated body.
 さらに、本発明の目的は、プリント配線板のレジストとして使用される積層硬化体の製造方法であって、
(1)光硬化性樹脂組成物をプリント配線板の表面のいずれか一方に塗布、乾燥して形成する下層の未硬化膜形成工程と、
(2)下層の未硬化膜を露光して、硬化させる下層硬化膜形成工程と、
(3)下層硬化膜の上面に、光硬化性樹脂組成物と同一または異なる光硬化性樹脂組成物を塗布、乾燥して形成する上層の未硬化膜形成工程と、
(4)上層の未硬化膜を露光して、硬化させる上層硬化膜形成工程と、
 を含むことを特徴とする積層硬化体の製造方法により解決される。
Furthermore, an object of the present invention is to provide a method for producing a cured laminate used as a resist for printed wiring boards, comprising:
(1) A lower layer uncured film forming step of coating and drying a photocurable resin composition on one of the surfaces of the printed wiring board;
(2) a lower layer cured film forming step of exposing and curing the lower layer uncured film;
(3) an upper layer uncured film forming step of coating the upper surface of the lower layer cured film with a photocurable resin composition that is the same as or different from the photocurable resin composition and drying;
(4) an upper layer cured film forming step of exposing and curing the upper layer uncured film;
The problem is solved by a method for producing a cured laminate, which comprises:
 本発明の製造方法は、
 1回又は複数回の、上層の未硬化膜形成工程と上層硬化膜形成工程の後に、さらに
(5)積層された下層硬化膜および上層硬化膜を現像処理に付す現像工程と、
(6)現像後の積層された下層硬化膜および上層硬化膜を熱硬化する工程と、
を含むことが好ましい。
The manufacturing method of the present invention includes:
After the upper layer uncured film forming step and the upper layer cured film forming step one or more times, further (5) a developing step of subjecting the laminated lower layer cured film and upper layer cured film to a development treatment,
(6) a step of thermosetting the laminated lower cured film and upper cured film after development;
It is preferable to include.
 本発明の製造方法で用いる光硬化性樹脂組成物は、(A)カルボキシル基含有樹脂、(B)光重合開始剤、(C)エポキシ樹脂、(D)着色剤、(E)光重合性化合物を含むことが好ましい。 The photocurable resin composition used in the production method of the present invention includes (A) carboxyl group-containing resin, (B) photopolymerization initiator, (C) epoxy resin, (D) colorant, and (E) photopolymerizable compound. It is preferable to include.
 本発明の製造方法で用いる(D)着色剤は、白色着色剤を含み、その白色着色剤の配合量は、(A)カルボキシル基含有樹脂100質量部に対して、好ましくは50~500質量部、より好ましくは100~450質量部である。 The colorant (D) used in the production method of the present invention includes a white colorant, and the amount of the white colorant is preferably 50 to 500 parts by mass based on 100 parts by mass of the carboxyl group-containing resin (A). , more preferably 100 to 450 parts by mass.
 また、本発明の製造方法で用いる(D)着色剤は、黒色着色剤を含み、その黒色着色剤の配合量は、(A)カルボキシル基含有樹脂100質量部に対して、1~50質量部であることが好ましい。 Furthermore, the colorant (D) used in the production method of the present invention includes a black colorant, and the amount of the black colorant is 1 to 50 parts by weight based on 100 parts by weight of the carboxyl group-containing resin (A). It is preferable that
 本発明の積層硬化体は、下層硬化膜と上層硬化膜とからなる全体が良好に硬化されていることから、硬化体底部のアンダーカットの発生が抑制されて、積層硬化体の基板に対する密着性に優れる。さらに端部に凹部を有する積層硬化体は、アンカー効果により、部品の接続安定性を向上させることができる。
 また、本発明の製造方法によると上述の効果を有する積層硬化体が、円滑かつ確実に製造される。さらに、本発明のプリント配線板は、本発明の積層硬化体の適用により実装部品の接続安定性に優れたものとされる。
Since the cured laminate of the present invention is well cured as a whole consisting of the lower cured film and the upper cured film, the occurrence of undercuts at the bottom of the cured product is suppressed, and the adhesiveness of the cured laminate to the substrate is improved. Excellent in Furthermore, the laminated cured body having recesses at the ends can improve the connection stability of parts due to the anchor effect.
Moreover, according to the manufacturing method of the present invention, a cured laminate having the above-mentioned effects can be manufactured smoothly and reliably. Further, the printed wiring board of the present invention has excellent connection stability of mounted components by applying the cured laminate of the present invention.
本発明の一実施の形態に係る積層硬化体が積層された状態のプリント配線板を説明するための模式断面図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic cross-sectional view for explaining a printed wiring board in which cured laminated bodies are laminated according to an embodiment of the present invention. 図1のプリント配線板に部品が実装された状態を示す説明図である。2 is an explanatory diagram showing a state in which components are mounted on the printed wiring board of FIG. 1. FIG. 図1のプリント配線板の概略上面図である。2 is a schematic top view of the printed wiring board of FIG. 1. FIG. 本発明の一実施の形態に係る積層硬化体の模式断面図である。FIG. 1 is a schematic cross-sectional view of a cured laminate according to an embodiment of the present invention. 本発明の一実施の形態に係る積層硬化体の形状を説明するための模式図である。FIG. 2 is a schematic diagram for explaining the shape of a cured laminate according to an embodiment of the present invention. 本発明の一実施の形態に係る積層硬化体の模式拡大断面図である。FIG. 1 is a schematic enlarged cross-sectional view of a cured laminate according to an embodiment of the present invention. 比較例1(露光1回のみ)により得られた積層硬化体の模式断面図である。FIG. 2 is a schematic cross-sectional view of a cured laminate obtained in Comparative Example 1 (exposed only once).
 本発明の積層硬化体は、プリント配線板のレジストとして使用されるものであり、プリント配線板の表面のいずれか一方に積層されて光硬化された光硬化性樹脂組成物からなる下層硬化膜と、この下層硬化膜上に積層されて別途光硬化された光硬化性樹脂組成物からなる1又は複数の上層硬化膜とを備えるものである。積層されて硬化した各硬化膜の端面には、下層硬化膜と上層硬化膜の接合面、または複数の上層硬化膜の接合面に沿って、周囲方向に伸長する1または複数の凹部を有することを特徴とする。 The cured laminate of the present invention is used as a resist for printed wiring boards, and includes a lower cured film made of a photocurable resin composition that is laminated on either surface of the printed wiring board and photocured. , and one or more upper layer cured films made of a photocurable resin composition that is laminated on the lower layer cured film and separately photocured. The end face of each cured film stacked and cured has one or more recesses extending in the circumferential direction along the joint surface of the lower cured film and the upper cured film or the joint surfaces of a plurality of upper layer cured films. It is characterized by
 なお、本発明において、下層とは基板に接して積層された層を表し、上層とは下層の上面、すなわち基板から離間して積層された層を表す。下層の上面に複数の層が存在する場合には、複数の層がそれぞれ上層となる。基板から最も離れた上層を最上層、下層と最上層との間に存在する上層を中間層ともいう。 In the present invention, the lower layer refers to a layer laminated in contact with the substrate, and the upper layer refers to the upper surface of the lower layer, that is, a layer laminated apart from the substrate. When a plurality of layers exist on the upper surface of a lower layer, each of the plurality of layers becomes an upper layer. The upper layer farthest from the substrate is also called the top layer, and the upper layer between the lower layer and the top layer is also called an intermediate layer.
 以下、図面を用いて本発明の積層硬化体について説明する。 Hereinafter, the cured laminate of the present invention will be explained using the drawings.
 図1は、回路基板1上に本発明の積層硬化体3が積層された状態のプリント配線板10の模式断面図である。回路基板1の表面には、銅による導体回路が描かれて、積層硬化体3が、導体回路の一部である導体部分5の周縁5aを囲むように覆っている。 FIG. 1 is a schematic cross-sectional view of a printed wiring board 10 in which a cured laminate 3 of the present invention is laminated on a circuit board 1. A conductor circuit made of copper is drawn on the surface of the circuit board 1, and the cured laminate 3 surrounds and covers the periphery 5a of the conductor portion 5, which is a part of the conductor circuit.
 図2は、図1のプリント配線板10に部品が実装された状態を示す説明図である。図2には、図1に示した積層硬化体3の開口部7に、はんだ9を付着させ、これによりLEDなどの部品11が実装された様子が示されている。 FIG. 2 is an explanatory diagram showing a state in which components are mounted on the printed wiring board 10 of FIG. 1. FIG. 2 shows how solder 9 is adhered to the opening 7 of the cured laminated body 3 shown in FIG. 1, and thereby a component 11 such as an LED is mounted.
 図3は、図1のプリント配線板10の概略上面図である。図3では、回路基板1上に銅の導体部分5(以下、銅5ともいう)が円形状に描かれて、積層硬化体は、銅5の周縁5a(同図の実線と破線で囲まれた領域)を覆い囲んでいる。
 なお、図3では、円形の導体部分に対する積層硬化体の適用を説明したが、導体部分の形状は正方形、長方形、楕円形、ライン状など、回路基板のパターニングに適用されるものであれば、特に形状に限定はない。また、図3では、積層硬化体が導体部分の全周囲を囲んでいるが、導体部分の周囲は全てが積層硬化体で囲まれている必要はなく、導体部分と他の回路との接続部分等は積層硬化体に囲まれない箇所を有していても良い。さらに、図3では、積層硬化体が上面視において導体部分の一部を覆っている様子が示されている。
FIG. 3 is a schematic top view of printed wiring board 10 of FIG. In FIG. 3, a copper conductor portion 5 (hereinafter also referred to as copper 5) is drawn in a circular shape on the circuit board 1, and the laminate cured body has a peripheral edge 5a of the copper 5 (surrounded by solid lines and broken lines in the figure). area).
In addition, in FIG. 3, the application of the laminated cured body to a circular conductor part was explained, but the shape of the conductor part may be square, rectangular, elliptical, linear, etc. as long as it is applied to patterning of a circuit board. There is no particular limitation on the shape. In addition, in Fig. 3, the conductor portion is entirely surrounded by the hardened laminated body, but it is not necessary that the entire periphery of the conductor portion is surrounded by the hardened laminated body, and the connection area between the conductor portion and other circuits is not necessarily surrounded by the hardened laminated body. etc. may have a portion that is not surrounded by the laminated cured body. Further, FIG. 3 shows how the cured laminate covers a portion of the conductor portion when viewed from above.
 本発明の積層硬化体は、その製造方法に関連して後述するように、2層以上の複数の硬化膜による積層硬化体であり、光硬化性樹脂組成物からなる未硬化の下層膜が露光により硬化された後に、これにより得られた下層硬化膜上に光硬化性樹脂組成物からなる未硬化の上層膜が形成された状態で、さらに露光に付されることから、各層の底部にまで照射光が行き渡り、膜厚が厚い場合においても塗膜全体が良好に硬化される。このために、光硬化された積層硬化体が、現像された際、積層硬化体底部のアンダーカットの発生が抑制されて、積層硬化体の底面の面積が十分に確保されていることから、積層硬化体の基板に対する密着性に優れたものとされる。 As will be described later in connection with the manufacturing method, the cured laminate of the present invention is a cured laminate consisting of two or more cured films, and the uncured lower film made of the photocurable resin composition is exposed to light. After being cured, an uncured upper layer film made of a photocurable resin composition is formed on the resulting lower layer cured film and is further exposed to light, so that even the bottom of each layer is exposed. The irradiation light spreads and the entire coating film is cured well even when the film is thick. For this reason, when the photocured laminate cured product is developed, the occurrence of undercuts at the bottom of the cured laminate is suppressed, and a sufficient area of the bottom surface of the cured laminate is secured. The cured product is said to have excellent adhesion to the substrate.
 また、本発明の積層硬化体は、基板上に設けられた導体部分の周囲を囲むように積層された場合に、その端面の、下層硬化膜と上層硬化膜の接合面の内周に対応する部分に、周囲方向に伸長する凹部を有することが好ましい。 図1に示した例では、2カ所に示した導体部分5が、いずれも積層硬化体3に囲まれている。積層硬化体3の端面には、下層硬化膜3Aの上面と上層硬化膜3Bの下面との接合面に沿って、積層硬化体3の周囲方向に伸長する凹部3Cが形成されている。上層硬化膜を2層以上とする場合には、積層硬化体3の端面における各硬化膜間の接合部に対応した複数個所に凹部3Cが形成されることになる。 Furthermore, when the cured laminated body of the present invention is laminated so as to surround the periphery of the conductor portion provided on the substrate, the end face thereof corresponds to the inner periphery of the joint surface of the lower cured film and the upper cured film. Preferably, the portion has a circumferentially extending recess. In the example shown in FIG. 1, the conductor portions 5 shown in two locations are both surrounded by the laminated cured body 3. A recess 3C is formed on the end surface of the cured laminate 3, extending in the circumferential direction of the cured laminate 3, along the joint surface between the upper surface of the lower cured film 3A and the lower surface of the upper cured film 3B. When the upper layer cured film has two or more layers, recesses 3C are formed at a plurality of locations corresponding to the joints between the respective cured films on the end face of the laminated cured body 3.
 この構成によると、積層硬化体3は、その近傍またはこれ接して部品を実装する際に、使用するはんだが1または複数の凹部3Cに侵入し、はんだが固着した時に凹部を有する硬化体と固着したはんだ間にアンカー効果が生ずる。そして、図1の形態で積層硬化体を備えるプリント配線板では、プリント配線板と実装部品との接続安定性が向上するものである。 According to this configuration, when mounting components near or in contact with the laminated cured body 3, the solder used enters the one or more concave portions 3C, and when the solder is fixed, it is fixed to the cured body having the concave portions. An anchor effect occurs between the solder. Further, in the printed wiring board including the laminated cured body in the form of FIG. 1, the connection stability between the printed wiring board and the mounted components is improved.
 図4に、積層硬化体3の一実施の形態を説明するための、模式的な部分断面図を示す。積層硬化体3は、下層硬化膜3Aと、その上に形成された上層硬化膜3Bとから構成される。下層硬化膜3Aは、光硬化性樹脂組成物を回路基板1上に塗布、乾燥し、露光することにより硬化したものであっても、光硬化性樹脂組成物のドライフィルムを予め製造して、このドライフィルムを用いて回路基板1上に未硬化膜を形成し、露光により硬化したものであってもよい。同様に、上層硬化膜3Bは、光硬化性樹脂組成物を下層硬化膜3Aの上面に塗布、乾燥し、露光することにより硬化したものであっても、光硬化性樹脂組成物のドライフィルムを予め製造して、このドライフィルムを用いて下層硬化膜3A上に未硬化膜を設け、露光により硬化したものであってもよい。上層硬化膜3Bの露光後、少なくとも現像工程を経て、より好ましくは、さらに熱硬化工程を経て図4の部分断面図の形状となる。 FIG. 4 shows a schematic partial cross-sectional view for explaining one embodiment of the laminated cured body 3. The laminated cured body 3 is composed of a lower cured film 3A and an upper cured film 3B formed thereon. Even if the lower layer cured film 3A is cured by coating a photocurable resin composition on the circuit board 1, drying it, and exposing it to light, the lower layer cured film 3A may be obtained by manufacturing a dry film of the photocurable resin composition in advance, An uncured film may be formed on the circuit board 1 using this dry film and then cured by exposure. Similarly, the upper cured film 3B may be a dry film of the photocurable resin composition, even if it is cured by applying a photocurable resin composition to the upper surface of the lower cured film 3A, drying it, and exposing it to light. The dry film may be produced in advance, and an uncured film may be provided on the lower cured film 3A using this dry film, and the film may be cured by exposure. After the upper layer cured film 3B is exposed, it undergoes at least a development process, and more preferably, further undergoes a heat curing process, so that it has the shape shown in the partial cross-sectional view of FIG.
 この実施の形態では、下層硬化膜3Aおよび上層硬化膜3B端部が、硬化膜の延在方向に膨出した形状とされている。このような端部の膨出部の断面形状は、図4に示すように略円弧状とすることができる。図4では、下層硬化膜3A、上層硬化膜3Bの端面3Aa、3Baは、各膜厚3Ab、3Bbのほぼ半分(3Ab1=3Ab2、3Bb1=3Bb2)の厚さ位置3Ad、3Bdにおいて膜の外方に向かって最も膨出、ないし最大径を有することにより円弧状の断面を有するように構成されている。端面3Aa、3Baにおける最も膨出した部分は、上記厚さ位置3Ad、3Bdより上であっても下であってもよい。さらに、硬化膜3Aの上面(図4では円弧状端部3Aaの上端に対応)と、これに接する硬化膜3Bの下面(図4では円弧状端部3Baの下端対応)の接合面の周囲(端面)、すなわち積層硬化体3の周囲の一部または全体にわたり、凹部3Cが形成される。 In this embodiment, the ends of the lower cured film 3A and the upper cured film 3B are shaped to bulge in the extending direction of the cured film. The cross-sectional shape of the bulge at the end can be approximately arcuate as shown in FIG. 4 . In FIG. 4, the end surfaces 3Aa and 3Ba of the lower cured film 3A and the upper cured film 3B are located on the outer side of the film at thickness positions 3Ad and 3Bd, which are approximately half of the respective film thicknesses 3Ab and 3Bb (3Ab1=3Ab2, 3Bb1=3Bb2). It is configured to have an arc-shaped cross section by having the largest bulge or the largest diameter toward the center. The most swollen portions of the end surfaces 3Aa, 3Ba may be above or below the thickness positions 3Ad, 3Bd. Furthermore, the periphery of the joint surface between the upper surface of the cured film 3A (corresponding to the upper end of the arcuate end 3Aa in FIG. 4) and the lower surface of the cured film 3B that is in contact with this (corresponding to the lower end of the arcuate end 3Ba in FIG. 4) A recess 3C is formed over a part or the entire circumference of the cured laminate 3 (end surface), that is, the cured laminate 3.
 下層硬化膜3Aの端部3Aa、および上層硬化膜3Bの端部3Baの膨出部の断面形状は、上記略円弧状以外の形状、例えば角ばった形状で突出したものや非対称に突出したものであってもよい。例えば図5のような台形状に膨出したものであっても良い。 The cross-sectional shape of the bulging portion of the end 3Aa of the lower cured film 3A and the end 3Ba of the upper cured film 3B is a shape other than the above-mentioned approximately arc shape, for example, an angular protruding shape or an asymmetrically protruding shape. There may be. For example, it may be bulged into a trapezoidal shape as shown in FIG.
 下層硬化膜3A、上層硬化膜3Bの膜厚3Ab、3Bbには制限はないが、一般には10~40μm、特に20~30μmとされる。10μm以上とすることで、露光時のハレーションを抑制することができ、40μm以下とすることで、アンダーカットを抑制し、本発明の効果をより良好に得ることができる。また、下層硬化膜3Aと、上層硬化膜3Bの膜厚は相互に異なるものであってもよい。また、積層硬化体全体の膜厚は、プリント配線板上の積層硬化体の積層箇所に応じて、選択することができる。本発明の積層硬化体は、全体の膜厚が厚い場合、例えば全体の膜厚が40μm超であっても、樹脂層の底部まで十分に光硬化反応が進行するため、アンダーカットが抑制されたものとすることができる。下層硬化膜3Aと上層硬化膜3Bの膜厚および積層硬化体全体の膜厚を適宜選択することによって、積層硬化体3全体の高さに対する凹部3Cの位置(高さ)を種々決定することができる。なお、本発明において、膜厚とはいずれも平均膜厚を意味している。 The film thicknesses 3Ab and 3Bb of the lower cured film 3A and the upper cured film 3B are not limited, but are generally 10 to 40 μm, particularly 20 to 30 μm. By setting it to 10 μm or more, halation during exposure can be suppressed, and by setting it to 40 μm or less, undercut can be suppressed and the effects of the present invention can be better obtained. Furthermore, the thicknesses of the lower cured film 3A and the upper cured film 3B may be different from each other. Moreover, the film thickness of the entire cured laminate can be selected depending on the location where the cured laminate is laminated on the printed wiring board. In the laminated cured product of the present invention, when the total film thickness is thick, for example, even if the total film thickness exceeds 40 μm, the photocuring reaction sufficiently progresses to the bottom of the resin layer, so undercuts are suppressed. can be taken as a thing. By appropriately selecting the thicknesses of the lower cured film 3A and the upper cured film 3B and the thickness of the entire cured layer 3, the position (height) of the recess 3C relative to the overall height of the cured layer 3 can be determined in various ways. can. In addition, in the present invention, the film thickness means the average film thickness.
 積層硬化体3における凹部3Cの位置は、積層硬化体3の底面(硬化膜3Aの底面3Abottom)の近傍以外であり、かつ、積層硬化体3の上面(硬化膜3Bの上面3Btop)の近傍以外の位置であることが好ましい。例えば、底面3Abottomから5μm以上高く、かつ、上面3Btopよりも5μm以上低い位置に凹部が形成されると好ましい。 The position of the recess 3C in the cured multilayer body 3 is outside the vicinity of the bottom surface of the cured multilayer body 3 (the bottom surface 3A bottom of the cured film 3A), and on the top surface of the cured multilayer body 3 (the top surface 3B top of the cured film 3B). Preferably, the location is outside the vicinity. For example, it is preferable that the recess is formed at a position that is 5 μm or more higher than the bottom surface 3A bottom and 5 μm or more lower than the top surface 3B top .
 図6に、本発明の一実施の形態にかかる積層硬化体の模式拡大断面図を示す。図6は、図2を用いて説明したと同様に、下層硬化膜3Aと、その上に設けられた上層硬化膜3Bとから構成される積層硬化体3が、回路基板1上に積層されている。そして、図6では、図3を用いて説明したように、積層硬化体3が導体部分5の周囲を囲むように積層されている。
 図2では、はんだ9が、いまだ溶融していないはんだボールの状態とされているが、図6では、はんだ9が、リフロー処理の加熱により溶融状態とされて、凹部3Cに侵入した様子が描かれている。この状態で、温度が低下すると、積層硬化体3の凹部3Cに入り込んだ状態ではんだ9が固着するため、はんだ9と積層硬化体3の結合状態が向上する、いわゆるアンカー効果が得られることとなる。この結果、はんだ9を介して、実装される部品11が回路基板1上に安定的に結合されるため、これにより得られる電子部品の信頼性が向上する。
FIG. 6 shows a schematic enlarged sectional view of a cured laminate according to an embodiment of the present invention. FIG. 6 shows that, as explained using FIG. 2, a laminated cured body 3 composed of a lower cured film 3A and an upper cured film 3B provided thereon is laminated on a circuit board 1. There is. In FIG. 6, as explained using FIG. 3, the laminated cured body 3 is laminated so as to surround the conductor portion 5.
In FIG. 2, the solder 9 is in the state of a solder ball that has not yet melted, but in FIG. 6, the solder 9 is shown to be in a molten state due to the heating of the reflow process and has entered the recess 3C. It is. In this state, when the temperature decreases, the solder 9 enters into the recess 3C of the cured laminate 3 and becomes fixed, so that a so-called anchor effect is obtained, which improves the bonding state between the solder 9 and the cured laminate 3. Become. As a result, the component 11 to be mounted is stably bonded onto the circuit board 1 via the solder 9, thereby improving the reliability of the electronic component obtained.
 以下に、積層構造体における凹部形成位置の設定についての例を説明する。
 図5に示すように、積層硬化体300は下層硬化膜300Aと上層硬化膜300Bからなり、これらの接合面に、凹部300Cが、以下の条件を満たすように形成される。まず、図5に示すように積層硬化体300の上面300Btopよりも距離tt低い位置Pから、底面300Abottomよりも距離t高い位置Pまでの間において、位置Pと位置Pから距離t(例えば5μm)毎のそれぞれの位置(高さ)Pを(図示せず。図5中、距離tを示す両矢印の下側の破線により示される各高さに相当)を決定する。次に、位置Pにおいて積層硬化体300の幅W(図5中の幅W、W、W....)を測定する。その後、隣接する位置(高さ)に対応する2つの幅WとWn+1(例えばWとW)を比較する。凹部300Cは、上方の幅(Wupper)が下方の幅(Wlower)より狭い箇所(Wupper<Wlower)が少なくとも1か所以上存在するように形成される。図5においては、幅Wが幅Wよりも狭いため、WとWの間において、凹部300Cが形成されていることになる。
 なお、本実施例においては、上面300Btopおよび底面300Abottomはいずれも水平面であり、幅W、W等の幅Wも、それぞれ300Btopおよび底面300Abottomに平行かつ水平な面である場合を例に挙げている。積層硬化体の膜表面が平滑ではなく上面300Btopが水平とならない場合には、上面300Btop中で最も膜厚の大きな点を基準として位置Pを決定し、同様にWの比較を行う。
また、距離t、tは、ともに5μmである。
Below, an example of setting the recess formation position in the laminated structure will be explained.
As shown in FIG. 5, the laminated cured body 300 consists of a lower cured film 300A and an upper cured film 300B, and a recess 300C is formed in the joint surface of these so as to satisfy the following conditions. First, as shown in FIG. 5, from a position P 1 that is a distance t t lower than the upper surface 300B top of the laminated cured body 300 to a position P m that is a distance t b higher than the bottom surface 300A bottom , the position P 1 and the position P 1 to each position (height) P n at every distance t n (for example, 5 μm) (not shown; corresponds to each height indicated by the broken line below the double-headed arrow indicating the distance t n in FIG. ) to determine. Next, the width W n (widths W 1 , W 2 , W 3 . . . in FIG. 5) of the cured laminated body 300 is measured at the position P n . Thereafter, two widths W n and W n+1 (for example, W 6 and W 7 ) corresponding to adjacent positions (heights) are compared. The recessed portion 300C is formed such that there is at least one location where the upper width (W upper ) is narrower than the lower width (W lower ) (W upper <W lower ). In FIG. 5, since the width W6 is narrower than the width W7 , a recess 300C is formed between W6 and W7 .
In this embodiment, the upper surface 300B top and the bottom surface 300A bottom are both horizontal surfaces, and the widths W n such as the widths W 1 and W 2 are also parallel and horizontal surfaces to the 300B top and the bottom surface 300A bottom , respectively. The case is given as an example. If the film surface of the laminated cured product is not smooth and the top surface 300B top is not horizontal, determine the position P 1 based on the point with the largest film thickness on the top surface 300B top , and compare W n in the same way. .
Moreover, the distances t b and t t are both 5 μm.
なお、上記図5に示した断面形状は、例えば、図3のいずれか2つの導体部分5の間などに形成される。すなわち、隣接する何れか2つの導体部分5の間において、一般には、図5に示した積層硬化体のように2つの端面が略対称な断面形状となる。その傾斜した端面は、図3の導体部分5の周囲に形成される。
 一方、積層硬化体が、例えば図3の右上の導体部分5の周縁から、プリント配線板10上の導体部分が存在しない領域(例えば、図3(部分図)外周を越えた外側の領域)にわたって形成される場合等には、その断面形状において導体部分5側の端面と、他方の端面は必ずしも対称的な形状を有さない。この場合には他方の端面が定まらない、または基準とできないような不定形状となる場合もあり、画一的な幅Wの測定が困難となることも想定される。その場合には、図5の位置Pで、底面300Abottomから積層硬化体300の上面300Btopに向かって描いた任意垂線を基準の線分として、積層硬化体300の一方の端部と基準の線分との距離を距離Wとして、複数の位置Pに対応する距離Wをそれぞれ求め、上記と同様にWの比較を行うことにより凹部300Cの位置を決定する。 
Note that the cross-sectional shape shown in FIG. 5 is formed, for example, between any two conductor portions 5 in FIG. 3. That is, between any two adjacent conductor portions 5, the two end surfaces generally have a substantially symmetrical cross-sectional shape as in the laminated cured body shown in FIG. The inclined end face is formed around the conductor portion 5 of FIG.
On the other hand, the cured laminate extends from, for example, the periphery of the conductor portion 5 in the upper right corner of FIG. In such a case, the end face on the conductor portion 5 side and the other end face do not necessarily have a symmetrical shape in cross-sectional shape. In this case, the other end face may not be determined or may have an irregular shape that cannot be used as a reference, and it is also assumed that it will be difficult to uniformly measure the width W n . In that case, at position Pn in FIG. 5, an arbitrary perpendicular line drawn from the bottom surface 300A bottom toward the upper surface 300B top of the laminated cured body 300 is used as a reference line segment, and one end of the laminated cured body 300 and the reference The position of the concave portion 300C is determined by determining distances W n corresponding to a plurality of positions P n and comparing W n in the same manner as above.
 また、先に説明したとおり、本発明の積層硬化体は、上記の上層硬化膜の他に、さらにその上に順次積層される第2、第3等のさらなる上層硬化膜を含むものであってもよく、積層硬化体における硬化膜の層数は、一般に2~10とされ、好ましくは2または3とされる。そして、積層硬化体には、隣接する2層の硬化膜の接合面に沿って凹部が形成可能であることから、凹部の数は硬化膜の層数よりも1つ少ないものとされる。 Furthermore, as explained above, the cured laminate of the present invention includes, in addition to the above-mentioned upper cured film, further upper cured films such as second and third layers that are sequentially laminated thereon. The number of cured film layers in the cured laminate is generally 2 to 10, preferably 2 or 3. Since recesses can be formed in the cured laminated body along the bonding surfaces of two adjacent layers of cured films, the number of recesses is one less than the number of cured films.
[積層硬化体の製造方法]
 本発明の積層硬化体は、
(1)光硬化性樹脂組成物をプリント配線板の表面のいずれか一方に塗布、乾燥して形成する下層の未硬化膜形成工程(工程(1))と、
(2)下層の未硬化膜を露光して、硬化させる下層硬化膜形成工程(工程(2))と、
(3)下層硬化膜の上面に、光硬化性樹脂組成物と同一または異なる光硬化性樹脂組成物を塗布、乾燥して形成する上層の未硬化膜形成工程(工程(3))と、
(4)上層の未硬化膜を露光して、硬化させる上層硬化膜形成工程(工程(4))と、を含む製造方法により製造される。
[Method for manufacturing laminated cured body]
The laminated cured product of the present invention is
(1) A lower layer uncured film forming step (step (1)) of coating and drying a photocurable resin composition on one of the surfaces of the printed wiring board;
(2) a lower layer cured film forming step (step (2)) of exposing and curing the lower uncured film;
(3) an upper layer uncured film forming step (step (3)) of applying and drying a photocurable resin composition that is the same as or different from the photocurable resin composition on the upper surface of the lower layer cured film;
(4) Manufactured by a manufacturing method including an upper layer cured film forming step (step (4)) of exposing and curing the upper layer uncured film.
 さらに、本発明の製造方法は、上記の1回又は複数回の上層の未硬化膜形成工程及び上層硬化膜形成工程の後に、(5)積層された下層硬化膜および上層硬化膜を現像処理に付す現像工程と、(6)現像後の積層された下層硬化膜および上層硬化膜を熱硬化する工程と、を含むことが好ましい。
 上記のうち、工程(3)および工程(4)は、その組み合わせを1回として行うと、下層硬化膜3A、およびその上の上層硬化膜3Bの2層からなる積層硬化体として形成される。また、工程(3)および工程(4)の組み合わせを2回以上行えば、下層硬化膜3A、およびその上に順次形成された2層以上の上層硬化膜3Bの合計3層以上からなる積層硬化体が製造される。
 本発明では、上層(最上層)が硬化した後に、積層された下層硬化膜および上層硬化膜を現像処理に付す工程(工程(5))が行われることが好ましい。工程(5)は、すべての硬化膜が得られた状態で、これを現像液により暴露して処理するものであるが、場合によっては、これに先立って、予め下層または上層の一部を現像してもよい。しかしながら、すべての未硬化膜を露光して硬化膜とした後に、未露光部に現像処理を一括して行い、これ以前には現像処理を行わないことで、処理工程の簡素化と円滑化が行われる。
 本発明では、現像後の積層された下層硬化膜および上層硬化膜を熱硬化する工程(工程(6))が行われることが好ましい。工程(6)は、現像後に得られた本発明の積層硬化体を、さらに約100~180℃の温度に加熱して熱硬化(ポストキュア)させるものである。加熱処理することにより、硬化物の耐熱性、耐薬品性、耐吸湿性、密着性、電気特性等の諸特性が向上する。
 いずれの場合にも、本発明の製造方法では、未硬化膜を硬化させた後に、この上に設けられた上層の未硬化膜を設けてこれを別途露光することにより、下層および上層双方の硬化膜がいずれも良好に硬化した状態とされた積層硬化体を得ることができる。
 工程(1)~(6)について、更に詳細に説明する。
Further, in the manufacturing method of the present invention, after the above-mentioned one or more uncured upper layer film forming steps and upper layer cured film forming step, (5) the laminated lower layer cured film and upper layer cured film are subjected to a development treatment. and (6) a step of thermally curing the laminated lower cured film and upper cured film after development.
Among the above, when the combination of steps (3) and (4) is performed once, a laminated cured body consisting of two layers, the lower cured film 3A and the upper cured film 3B thereon, is formed. In addition, if the combination of steps (3) and (4) is performed two or more times, a laminated cured layer consisting of a total of three or more layers of a lower cured film 3A and two or more upper layer cured films 3B sequentially formed thereon. The body is manufactured.
In the present invention, after the upper layer (top layer) is cured, it is preferable that the step (step (5)) of subjecting the laminated lower layer cured film and upper layer cured film to a development treatment is performed. In step (5), once all the cured film has been obtained, it is exposed to a developer and treated, but in some cases, prior to this, a portion of the lower layer or upper layer may be developed in advance. You may. However, after all uncured films are exposed to light to form a cured film, the unexposed areas are developed all at once, and no development is performed before this, simplifying and smoothing the processing process. It will be done.
In the present invention, it is preferable that a step (step (6)) of thermally curing the laminated lower cured film and upper cured film after development is performed. In step (6), the cured laminate of the present invention obtained after development is further heated to a temperature of about 100 to 180° C. to thermally cure (post-cure). Heat treatment improves various properties of the cured product, such as heat resistance, chemical resistance, moisture absorption resistance, adhesion, and electrical properties.
In either case, in the manufacturing method of the present invention, after the uncured film is cured, an upper uncured film is provided on top of the uncured film and is separately exposed, thereby curing both the lower layer and the upper layer. It is possible to obtain a cured laminate in which all the films are well cured.
Steps (1) to (6) will be explained in more detail.
[工程(1)]
 本発明の積層硬化体の製造方法では、工程(1)として光硬化性樹脂組成物を用い、例えば、回路基板1上に下層の未硬化膜を形成する。光硬化性樹脂組成物としては、ソルダーレジストの製造に一般に用いられるものであれば特に制限なく使用可能である。
 工程(1)では、光硬化性樹脂組成物を、回路基板等に対して、スクリーン印刷法、カーテンコート法、スプレーコート法、ロールコート法等の方法により塗布し、例えば70~90℃の温度で組成物中に含まれる有機溶剤を揮発乾燥させることにより下層の未硬化膜を形成することができる。または、光硬化性樹脂組成物のドライフィルムを予め製造し、このドライフィルムを用いて回路基板上に未硬化膜を形成してもよい。このように得られた下層の未硬化膜は、熱風循環式乾燥炉等の乾燥装置を用い、例えば60℃~90℃の範囲で、10分~30分にわたり乾燥させ、乾燥後膜厚10~40μm程度の未硬化膜とされる。
[Step (1)]
In the method for producing a cured laminate of the present invention, in step (1), a photocurable resin composition is used to form, for example, a lower uncured film on the circuit board 1. As the photocurable resin composition, any photocurable resin composition that is commonly used in the production of solder resists can be used without particular limitation.
In step (1), the photocurable resin composition is applied to a circuit board or the like by a method such as a screen printing method, a curtain coating method, a spray coating method, or a roll coating method, and the photocurable resin composition is coated at a temperature of, for example, 70 to 90°C. By evaporating the organic solvent contained in the composition and drying it, an uncured lower film can be formed. Alternatively, a dry film of the photocurable resin composition may be produced in advance and an uncured film may be formed on the circuit board using this dry film. The uncured lower film thus obtained is dried for 10 to 30 minutes at a temperature of 60°C to 90°C using a drying device such as a hot air circulation type drying oven, and the film thickness after drying is 10 to 30°C. The uncured film is approximately 40 μm thick.
[工程(2)]
 工程(2)では、工程(1)により得られた下層の未硬化膜の上面に所定のパターンを形成したフォトマスクを設置し、これを通して選択的に活性エネルギー線(光量:100~1000mJ/cm2)を照射する、又は活性エネルギー線照射により直接描画することにより露光する。本発明の光硬化性樹脂組成物としては、一般に露光箇所が硬化するタイプのものが用いられる。工程(2)の後には、未露光部をアルカリ水溶液等により現像してパターン膜を形成することも可能であるが、後述のように、この段階では現像を省略することが好ましい。この際、形成するパターンのアライメントの正確性の観点から、ダイレクト露光機を用いることが好ましい。また、活性エネルギー線の照射光源としては、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、LED、キセノンランプ又はメタルハライドランプなどを用いることができる。
[Step (2)]
In step (2), a photomask with a predetermined pattern is placed on the upper surface of the lower uncured film obtained in step (1), and active energy rays (light intensity: 100 to 1000 mJ/cm2) are selectively passed through the photomask. ) or by direct writing with active energy ray irradiation. The photocurable resin composition of the present invention is generally of a type that hardens at exposed areas. After step (2), it is also possible to form a patterned film by developing the unexposed areas with an alkaline aqueous solution or the like, but as will be described later, it is preferable to omit the development at this stage. At this time, it is preferable to use a direct exposure machine from the viewpoint of accuracy of alignment of the pattern to be formed. Furthermore, as a light source for irradiating active energy rays, a low-pressure mercury lamp, a medium-pressure mercury lamp, a high-pressure mercury lamp, an ultra-high-pressure mercury lamp, an LED, a xenon lamp, a metal halide lamp, or the like can be used.
[工程(3)]
 工程(2)で得られた下層硬化膜の上面に対し、工程(3)では、さらに光硬化性樹脂組成物からなる上層の未硬化膜を形成する。ここで用いる光硬化性樹脂組成物は、工程(1)の光硬化性樹脂組成物と同一であっても、異なってもよく、下層硬化膜の上面(基板1の反対側)に対し、塗布しても、ドライフィルム状としてから積層してもよい。このように得られた下層硬化膜と上層の未硬化膜からなる積層体は、乾燥に付されて乾燥塗膜とされる。乾燥の条件は工程(1)と同一であっても、異なっても良い。
[Step (3)]
In step (3), an upper uncured film made of a photocurable resin composition is further formed on the upper surface of the lower cured film obtained in step (2). The photocurable resin composition used here may be the same as or different from the photocurable resin composition in step (1), and is applied to the upper surface of the lower cured film (the opposite side of the substrate 1). Alternatively, they may be formed into a dry film and then laminated. The thus obtained laminate consisting of the lower cured film and the upper uncured film is dried to form a dry coating film. Drying conditions may be the same as or different from step (1).
[工程(4)]
 工程(4)では上記の積層体の上層の未硬化膜の上面に対し、上記工程(2)と同様に露光を行う。露光の条件は工程(2)と同一であっても、異なっても良い。
 これにより、2層の硬化膜を有する積層硬化体が得られる。
 さらに、本発明の積層硬化体は、硬化膜数を合計3層以上とすることも可能であり、この場合には、上層硬化膜の上面に対し、工程(3)および工程(4)を更に1回行って、下層、上層(中間層)、上層(最上層)の3層の硬化膜を有する積層硬化体を得ることができる。また、同様の手法を繰り返すことにより、4層以上の硬化膜を有する積層硬化体を得ることもできる。このように、塗布および露光工程を繰り返すことにより、所望の膜厚の積層硬化体を製造することができる。
[Step (4)]
In step (4), the upper surface of the upper uncured film of the laminate is exposed to light in the same manner as in step (2). The exposure conditions may be the same as or different from step (2).
Thereby, a laminated cured body having two layers of cured films is obtained.
Furthermore, the laminated cured product of the present invention can have a total of three or more cured films, and in this case, step (3) and step (4) are further applied to the upper surface of the upper cured film. By carrying out this process once, it is possible to obtain a cured laminate having three cured films: a lower layer, an upper layer (intermediate layer), and an upper layer (top layer). Further, by repeating the same method, a cured laminate having four or more cured films can also be obtained. By repeating the coating and exposure steps in this manner, a cured laminate having a desired thickness can be produced.
[工程(5)]
 さらに、工程(5)では、上記のように得られた積層硬化体の現像を行う。
現像液としては、0.5~5重量%の炭酸ナトリウム水溶液が一般的であるが、他のアルカリ水溶液を使用することも可能である。他のアルカリ水溶液としては、例えば、水酸化カリウム、水酸化ナトリウム、炭酸カリウム、リン酸ナトリウム、ケイ酸ナトリウム、アンモニア、アミン類等のアルカリ水溶液を挙げることができる。現像時間は膜厚などによっても異なるが例えば70秒から210秒が目安とされる。
 本発明では、上層(最上層)未硬化膜の露光が完了し、上層(最上層)硬化膜を形成した後に、一括現像することが好ましいが、工程(2)(下層未硬化膜の露光)の後、および工程(4)(上層未硬化膜の露光)の後など、露光が行われる度毎に、これに続いて現像工程を行ってもよい。
[Step (5)]
Furthermore, in step (5), the cured laminate body obtained as described above is developed.
As the developer, a 0.5 to 5% by weight aqueous sodium carbonate solution is generally used, but other alkaline aqueous solutions can also be used. Examples of other alkaline aqueous solutions include alkaline aqueous solutions of potassium hydroxide, sodium hydroxide, potassium carbonate, sodium phosphate, sodium silicate, ammonia, amines, and the like. The development time varies depending on the film thickness, etc., but is generally from 70 seconds to 210 seconds, for example.
In the present invention, after the exposure of the upper layer (top layer) uncured film is completed and the upper layer (top layer) cured film is formed, it is preferable to carry out batch development, but step (2) (exposure of the lower layer uncured film) After each exposure, such as after step (4) (exposure of the upper uncured film), a development step may be performed subsequently.
[工程(6)]
 現像後に得られた本発明の積層硬化体を、さらに約100~180℃の温度に加熱して熱硬化(ポストキュア)させることができる。本発明では、未硬化膜の形成に続き、それぞれ露光が行われることから、現像前の段階であっても、すでに比較的硬度の高い積層硬化体が得られている。しかしながら、更に加熱処理することにより、硬化物の耐熱性、耐薬品性、耐吸湿性、密着性、電気特性等の諸特性が向上するため、工程(6)を行うことが好ましい。尚、工程(4)~(6)での膜厚の変化がないため、工程(6)後の各硬化膜の膜厚は、各硬化膜の工程(1)または工程(3)における乾燥後膜厚と同じである。
[Step (6)]
The cured laminate of the present invention obtained after development can be further heated to a temperature of about 100 to 180° C. for thermal curing (post-curing). In the present invention, since exposure is performed after the formation of the uncured film, a cured laminate having relatively high hardness is already obtained even before development. However, further heat treatment improves various properties of the cured product, such as heat resistance, chemical resistance, moisture absorption resistance, adhesion, and electrical properties, so it is preferable to perform step (6). In addition, since there is no change in film thickness in steps (4) to (6), the film thickness of each cured film after step (6) is the same as that of each cured film after drying in step (1) or step (3). It is the same as the film thickness.
 本発明の積層硬化体の製造方法によると、光硬化性樹脂組成物の未硬化膜を、未硬化膜ごとに露光、すなわち全体として2回以上の露光(複数回露光)が行われる。この点、従来技術によると、積層硬化体の全体に対応する膜厚を有する光硬化性樹脂組成物の未硬化膜を、その上方(基板とは反対側)からの1回限りの光照射により硬化するものであり、未硬化膜の表面から照射した紫外光などが未硬化膜の底部(基板側)の全体に十分到達しないことがある。その場合には、露光後の硬化膜の光反応率が、硬化膜上方から底部に向かって単調減少する。その結果、現像工程によりアンダーカット形状の積層硬化体になってしまう。これに対し、本発明の製造方法における複数回露光によると、積層硬化体の全体を分割した膜厚の未硬化膜に対して順次露光が行われることから、分割された未硬化膜の上方からの照射光が底部の全体にわたり十分到達するようになる。これにより、アンダーカットの発生が抑制される。 According to the method for producing a cured laminate of the present invention, each uncured film of the photocurable resin composition is exposed to light, that is, the whole is exposed twice or more (multiple exposures). In this regard, according to the prior art, an uncured film of a photocurable resin composition having a film thickness corresponding to the entire cured laminate is irradiated with light only once from above (on the side opposite to the substrate). It hardens, and ultraviolet light etc. irradiated from the surface of the uncured film may not fully reach the entire bottom (substrate side) of the uncured film. In that case, the photoreaction rate of the cured film after exposure monotonically decreases from the top to the bottom of the cured film. As a result, the developing process results in a cured laminate having an undercut shape. On the other hand, according to the multiple exposure in the manufacturing method of the present invention, since the uncured film is sequentially exposed to the thickness that is obtained by dividing the entire cured laminate, the uncured film is exposed from above the divided uncured film. The irradiation light reaches the entire bottom part. This suppresses the occurrence of undercuts.
 また、基板上に直接設けられた下層硬化膜は、これより上方(直上またはその上)に設けられた上層の未硬化膜を露光する際に、この露光の照射光を受けてさらに硬化することもある。同様に、最上層以外の層は、光量は減少したとしても、2回以上の露光の影響を受けることがある。すなわち、基板に近い層では特に反応率が高くなる傾向が得られ、積層硬化体全体が良好な光硬化状態を有することになる。積層硬化体全体が良好な光硬化状態を有することになるため、本発明の積層硬化体は優れた耐熱性を有する。また、本発明の積層硬化体は、基板の両面にも積層可能である。 Furthermore, when the lower cured film provided directly on the substrate is exposed to the upper uncured film provided above (directly above or above), the lower cured film receives the irradiation light of this exposure and is further cured. There is also. Similarly, layers other than the top layer may be affected by two or more exposures, even if the amount of light is reduced. That is, the reaction rate tends to be particularly high in layers close to the substrate, and the entire cured laminate has a good photocured state. Since the entire cured laminate has a good photocured state, the cured laminate of the present invention has excellent heat resistance. Further, the cured laminated body of the present invention can be laminated on both sides of the substrate.
 以下に、本発明で用いられる光硬化性樹脂組成物の成分の例を示す。
[光硬化性樹脂組成物]
 本発明では、光硬化性樹脂組成物として、一般にソルダーレジストの製造に用いられ、露光により硬化する組成物を、特に制限なく用いることができる。その一実施の形態としては、(A)カルボキシル基含有樹脂、(B)光重合開始剤、(C)エポキシ樹脂、(D)着色剤、および(E)光重合性化合物を含む組成物を挙げることができる。
Examples of components of the photocurable resin composition used in the present invention are shown below.
[Photocurable resin composition]
In the present invention, as the photocurable resin composition, any composition that is generally used in the production of solder resists and that is cured by exposure to light can be used without particular limitation. One embodiment thereof includes a composition containing (A) a carboxyl group-containing resin, (B) a photopolymerization initiator, (C) an epoxy resin, (D) a colorant, and (E) a photopolymerizable compound. be able to.
[(A)カルボキシル基含有樹脂]
 本発明の光硬化性樹脂組成物は(A)カルボキシル基含有樹脂を含むものとすることができる。(A)カルボキシル基含有樹脂は、カルボキシル基を含むことにより、アルカリ現像可能な感光性樹脂組成物とすることができる。(A)カルボキシル基含有樹脂としては、それ自体に感光性の不飽和二重結合を1個以上有する感光性のカルボキシル基含有樹脂が使用可能であり、特定のものに限定されるものではない。(A)カルボキシル基含有樹脂はオリゴマーまたはポリマーのいずれでもよい。
[(A) Carboxyl group-containing resin]
The photocurable resin composition of the present invention may contain (A) a carboxyl group-containing resin. (A) The carboxyl group-containing resin can be made into an alkali-developable photosensitive resin composition by including a carboxyl group. (A) As the carboxyl group-containing resin, a photosensitive carboxyl group-containing resin which itself has one or more photosensitive unsaturated double bonds can be used, and is not limited to a specific one. (A) The carboxyl group-containing resin may be either an oligomer or a polymer.
 (A)カルボキシル基含有樹脂の例としては以下のものを好適に使用することができる。すなわち、
(1)不飽和カルボン酸と不飽和二重結合を有する化合物の共重合によって得られるカルボキシル基含有樹脂、
(2)カルボキシル基含有(メタ)アクリル系共重合樹脂に、1分子中にオキシラン環とエチレン性不飽和基を有する化合物との反応により得られる感光性のカルボキシル基含有樹脂、
(3)1分子中にそれぞれ1個のエポキシ基と不飽和二重結合を有する化合物と、不飽和二重結合を有する化合物の共重合体に、不飽和モノカルボン酸を反応させ、生成した第2級の水酸基に飽和または不飽和多塩基酸無水物を反応させて得られる感光性のカルボキシル基含有樹脂、
(4)水酸基含有ポリマーに、飽和または不飽和多塩基酸無水物を反応させた後、生成したカルボン酸に、1分子中にそれぞれ1個のエポキシ基と不飽和二重結合を有する化合物を反応させて得られる感光性の水酸基およびカルボキシル基含有樹脂である。
As examples of the carboxyl group-containing resin (A), the following can be suitably used. That is,
(1) Carboxyl group-containing resin obtained by copolymerization of an unsaturated carboxylic acid and a compound having an unsaturated double bond,
(2) A photosensitive carboxyl group-containing resin obtained by reacting a carboxyl group-containing (meth)acrylic copolymer resin with a compound having an oxirane ring and an ethylenically unsaturated group in one molecule,
(3) A copolymer of a compound having one epoxy group and an unsaturated double bond in each molecule and a compound having an unsaturated double bond is reacted with an unsaturated monocarboxylic acid. A photosensitive carboxyl group-containing resin obtained by reacting a saturated or unsaturated polybasic acid anhydride with a secondary hydroxyl group,
(4) After reacting a hydroxyl group-containing polymer with a saturated or unsaturated polybasic acid anhydride, the resulting carboxylic acid is reacted with a compound having one epoxy group and one unsaturated double bond in each molecule. It is a photosensitive hydroxyl group- and carboxyl group-containing resin obtained by
 これらの中でも、上記(2)の感光性のカルボキシル基含有樹脂である、(a)カルボキシル基含有(メタ)アクリル系共重合樹脂と、(b)1分子中にオキシラン環とエチレン性不飽和基を有する化合物との反応により得られるカルボキシル基を有する共重合系樹脂が好ましい。 Among these, (2) photosensitive carboxyl group-containing resin, (a) a carboxyl group-containing (meth)acrylic copolymer resin, and (b) an oxirane ring and an ethylenically unsaturated group in one molecule. A copolymer resin having a carboxyl group obtained by reaction with a compound having a carboxyl group is preferred.
 (a)のカルボキシル基含有(メタ)アクリル系共重合樹脂は、(メタ)アクリル酸エステルと、1分子中に1個の不飽和基と少なくとも1個のカルボキシル基を有する化合物とを共重合させて得られる。共重合樹脂(a)を構成する(メタ)アクリル酸エステルとしては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート等の(メタ)アクリル酸アルキルエステル類、2-ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート、カプロラクトン変性2-ヒドロキシエチル(メタ)アクリレート等の水酸基含有(メタ)アクリル酸エステル類、メトキシジエチレングリコール(メタ)アクリレート、エトキシジエチレングリコール(メタ)アクリレート、イソオクチルオキシジエチレングリコール(メタ)アクリレート、フェノキシトリエチレングリコール(メタ)アクリレート、メトキシトリエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート等のグリコール変性(メタ)アクリレート類などが挙げられる。これらは単独で用いても、2種以上を混合して用いてもよい。なお、本明細書中において、(メタ)アクリレートとは、アクリレートおよびメタアクリレートを総称する用語であり、他の類似の表現についても同様である。 The carboxyl group-containing (meth)acrylic copolymer resin (a) is obtained by copolymerizing a (meth)acrylic acid ester and a compound having one unsaturated group and at least one carboxyl group in one molecule. can be obtained. Examples of the (meth)acrylic ester constituting the copolymer resin (a) include methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, butyl (meth)acrylate, pentyl (meth)acrylate, and hexyl (meth)acrylate. (meth)acrylic acid alkyl esters such as meth)acrylate, hydroxyl groups such as 2-hydroxyethyl (meth)acrylate, hydroxypropyl (meth)acrylate, hydroxybutyl (meth)acrylate, caprolactone-modified 2-hydroxyethyl (meth)acrylate, etc. Containing (meth)acrylic acid esters, methoxydiethylene glycol (meth)acrylate, ethoxydiethylene glycol (meth)acrylate, isooctyloxydiethylene glycol (meth)acrylate, phenoxytriethylene glycol (meth)acrylate, methoxytriethylene glycol (meth)acrylate, Examples include glycol-modified (meth)acrylates such as methoxypolyethylene glycol (meth)acrylate. These may be used alone or in combination of two or more. Note that in this specification, (meth)acrylate is a term that collectively refers to acrylate and methacrylate, and the same applies to other similar expressions.
 また、1分子中に1個の不飽和基と少なくとも1個のカルボキシル基を有する化合物としては、アクリル酸、メタクリル酸、不飽和基とカルボン酸の間が鎖延長された変性不飽和モノカルボン酸、例えばβ-カルボキシエチル(メタ)アクリレート、2-アクリロイルオキシエチルコハク酸、2-アクリロイルオキシエチルヘキサヒドロフタル酸、ラクトン変性等によりエステル結合を有する不飽和モノカルボン酸、エーテル結合を有する変性不飽和モノカルボン酸、さらにはマレイン酸等のカルボキシル基を分子中に2個以上含むものなどが挙げられる。これらは単独で用いても、2種以上を混合して用いてもよい。 In addition, examples of compounds having one unsaturated group and at least one carboxyl group in one molecule include acrylic acid, methacrylic acid, and modified unsaturated monocarboxylic acids in which the chain between the unsaturated group and the carboxylic acid is extended. , for example, β-carboxyethyl (meth)acrylate, 2-acryloyloxyethylsuccinic acid, 2-acryloyloxyethylhexahydrophthalic acid, unsaturated monocarboxylic acid having an ester bond by lactone modification, modified unsaturated having an ether bond, etc. Examples include monocarboxylic acids and those containing two or more carboxyl groups in the molecule, such as maleic acid. These may be used alone or in combination of two or more.
 (b)1分子中にオキシラン環とエチレン性不飽和基を有する化合物としては、1分子中にエチレン性不飽和基とオキシラン環を有する化合物であればよく、例えば、グリシジル(メタ)アクリレート、α-メチルグリシジル(メタ)アクリレート、3,4-エポキシシクロヘキシルメチル(メタ)アクリレート、3,4-エポキシシクロヘキシルエチル(メタ)アクリレート、3,4-エポキシシクロヘキシルブチル(メタ)アクリレート、3,4-エポキシシクロヘキシルメチルアミノアクリレート等を挙げることができる。中でも、3,4-エポキシシクロヘキシルメチル(メタ)アクリレートが好ましい。これら(b)1分子中にオキシラン環とエチレン性不飽和基を有する化合物は、単独で用いても2種以上を混合して用いてもよい。
 本発明の(A)カルボキシル基含有樹脂の配合量は、本発明の光硬化性樹脂組成物の固形分換算で好ましくは10~60質量%、より好ましくは15~55質量%である。
(b) The compound having an oxirane ring and an ethylenically unsaturated group in one molecule may be any compound having an ethylenically unsaturated group and an oxirane ring in one molecule, such as glycidyl (meth)acrylate, α -Methylglycidyl (meth)acrylate, 3,4-epoxycyclohexylmethyl (meth)acrylate, 3,4-epoxycyclohexylethyl (meth)acrylate, 3,4-epoxycyclohexylbutyl (meth)acrylate, 3,4-epoxycyclohexyl Examples include methylaminoacrylate. Among them, 3,4-epoxycyclohexylmethyl (meth)acrylate is preferred. These (b) compounds having an oxirane ring and an ethylenically unsaturated group in one molecule may be used alone or in combination of two or more.
The amount of carboxyl group-containing resin (A) of the present invention is preferably 10 to 60% by mass, more preferably 15 to 55% by mass in terms of solid content of the photocurable resin composition of the present invention.
[(B)光重合開始剤] 
 本発明の光硬化性樹脂組成物は、光重合開始剤や光ラジカル発生剤として公知の光重合開始剤であれば、いずれのものを用いることもできる。本発明に用いられる(B)光重合開始剤としては、例えば、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル等のベンゾインとベンゾインアルキルエーテル類;アセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、2,2-ジエトキシ-2-フェニルアセトフェノン、2,2-ジエトキシ-2-フェニルアセトフェノン、1,1-ジクロロアセトフェノン等のアセトフェノン類;2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルフォリニル)フェニル]-1-ブタノン等のアミノアルキルフェノン類;2-メチルアントラキノン、2-エチルアントラキノン、2-ターシャリーブチルアントラキノン、1-クロロアントラキノン等のアントラキノン類;2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、2-クロロチオキサントン、2,4-ジイソプロピルチオキサントン等のチオキサントン類;アセトフェノンジメチルケタール、ベンジルジメチルケタール等のケタール類;ベンゾフェノン等のベンゾフェノン類;又はキサントン類;(2,6-ジメトキシベンゾイル)-2,4,4-ペンチルホスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド、エチル-2,4,6-トリメチルベンゾイルフェニルフォスフィネイト等のフォスフィンオキサイド類;各種パーオキサイド類、チタノセン系開始剤などが挙げられ、これらは、N,N-ジメチルアミノ安息香酸エチルエステル、N,N-ジメチルアミノ安息香酸イソアミルエステル、ペンチル-4-ジメチルアミノベンゾエート、トリエチルアミン、トリエタノールアミン等の三級アミン類のような光増感剤等と併用しても良い。これらの光重合開始剤は単独で又は2種以上を組み合わせて用いることができる。
 本発明の(B)光重合開始剤の配合量は、(A)カルボキシル基含有樹脂100質量部に対して、好ましくは0.01~30質量部、より好ましくは0.5~15質量部の範囲である。
[(B) Photopolymerization initiator]
In the photocurable resin composition of the present invention, any known photopolymerization initiator can be used as a photopolymerization initiator or a photoradical generator. Examples of the photopolymerization initiator (B) used in the present invention include benzoin and benzoin alkyl ethers such as benzoin, benzoin methyl ether, benzoin ethyl ether, and benzoin isopropyl ether; acetophenone, 2,2-dimethoxy-2-phenyl Acetophenones such as acetophenone, 2,2-diethoxy-2-phenylacetophenone, 2,2-diethoxy-2-phenylacetophenone, 1,1-dichloroacetophenone; 2-methyl-1-[4-(methylthio)phenyl]- 2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butanone-1,2-(dimethylamino)-2-[(4-methylphenyl)methyl Aminoalkylphenones such as ]-1-[4-(4-morpholinyl)phenyl]-1-butanone; Anthraquinones such as 2-methylanthraquinone, 2-ethylanthraquinone, 2-tert-butylanthraquinone, and 1-chloroanthraquinone ; Thioxanthone such as 2,4-dimethylthioxanthone, 2,4-diethylthioxanthone, 2-chlorothioxanthone, 2,4-diisopropylthioxanthone; Ketals such as acetophenone dimethyl ketal, benzyl dimethyl ketal; Benzophenones such as benzophenone; or Xanthone; (2,6-dimethoxybenzoyl)-2,4,4-pentylphosphine oxide, bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, phosphine oxides such as ethyl-2,4,6-trimethylbenzoylphenylphosphinate; various peroxides, titanocene-based initiators, etc., and these include N,N-dimethylaminobenzoic acid ethyl ester , N,N-dimethylaminobenzoic acid isoamyl ester, pentyl-4-dimethylaminobenzoate, triethylamine, triethanolamine, and other tertiary amines. These photopolymerization initiators can be used alone or in combination of two or more.
The amount of the photopolymerization initiator (B) of the present invention is preferably 0.01 to 30 parts by weight, more preferably 0.5 to 15 parts by weight, based on 100 parts by weight of the carboxyl group-containing resin (A). range.
[(C)エポキシ樹脂]
 本発明の光硬化性樹脂組成物は、耐熱性を付与するために、(C)エポキシ樹脂を含むものとすることができる。
 (C)エポキシ樹脂としては、公知慣用の各種エポキシ樹脂、例えばビスフェノールS型エポキシ樹脂、ジグリシジルフタレート樹脂、トリグリシジルイソシアヌレート(例えば日産化学(株)製のTEPIC-H(S-トリアジン環骨格面に対し3個のエポキシ基が同一方向に結合した構造をもつβ体)や、TEPIC(β体と、S-トリアジン環骨格面に対し1個のエポキシ基が他の2個のエポキシ基と異なる方向に結合した構造をもつα体との混合物)等)などの複素環式エポキシ樹脂、ビキシレノール型エポキシ樹脂、ビフェノール型エポキシ樹脂、テトラグリシジルキシレノイルエタン樹脂などの希釈剤に難溶性のエポキシ樹脂や、ビスフェノールA型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、ビスフェノールF型樹脂、臭素化ビスフェノールA型エポキシ樹脂、フェノールノボラック型またはクレゾールノボラック型エポキシ樹脂、脂環式エポキシ樹脂、ビスフェノールAのノボラック型エポキシ樹脂、キレート型エポキシ樹脂、グリオキザール型エポキシ樹脂、アミノ基含有エポキシ樹脂、ゴム変性エポキシ樹脂、ジシクロペンタジエンフェノリック型エポキシ樹脂、シリコーン変性エポキシ樹脂、ε-カプロラクトン変性エポキシ樹脂などの希釈剤に可溶性のエポキシ樹脂などが挙げられる。これらのエポキシ樹脂は、単独でまたは2種以上を組み合わせて用いることができる。
 本発明の(C)エポキシ樹脂の配合量は、(A)カルボキシル基含有樹脂のカルボキシル基1当量に対して、好ましくは0.3~3.0当量、より好ましくは0.5~2.0当量の範囲である。
[(C) Epoxy resin]
The photocurable resin composition of the present invention may contain (C) an epoxy resin in order to impart heat resistance.
(C) As the epoxy resin, various known and commonly used epoxy resins such as bisphenol S type epoxy resin, diglycidyl phthalate resin, triglycidyl isocyanurate (for example, TEPIC-H manufactured by Nissan Chemical Co., Ltd. (S-triazine ring skeleton surface β-form, which has a structure in which three epoxy groups are bonded in the same direction), and TEPIC (β-form, in which one epoxy group on the S-triazine ring skeleton surface is different from the other two epoxy groups) Epoxy resins that are poorly soluble in diluents, such as heterocyclic epoxy resins (mixtures with α-isomers that have a directional bond structure), bixylenol-type epoxy resins, biphenol-type epoxy resins, and tetraglycidyl xylenoylethane resins. Resins, bisphenol A type epoxy resins, hydrogenated bisphenol A type epoxy resins, bisphenol F type resins, brominated bisphenol A type epoxy resins, phenol novolac type or cresol novolac type epoxy resins, alicyclic epoxy resins, bisphenol A novolacs. Soluble in diluents such as type epoxy resins, chelate type epoxy resins, glyoxal type epoxy resins, amino group-containing epoxy resins, rubber modified epoxy resins, dicyclopentadiene phenolic type epoxy resins, silicone modified epoxy resins, and ε-caprolactone modified epoxy resins. Examples include epoxy resins. These epoxy resins can be used alone or in combination of two or more.
The blending amount of the epoxy resin (C) of the present invention is preferably 0.3 to 3.0 equivalents, more preferably 0.5 to 2.0 equivalents per equivalent of carboxyl group in the carboxyl group-containing resin (A). Equivalent range.
[(D)着色剤]
 本発明の光硬化性樹脂組成物は、着色剤自体の色を反映した積層硬化体を形成するため、(D)着色剤を含むものとすることができる。
 本発明の光硬化性樹脂組成物に用いる(D)着色剤としては、所望の用途に応じて、白色、黒色、緑色、青色、黄色、赤色、紫色等の従来公知の顔料または染料を単独又は2種類以上を組み合わせて用いることができる。
[(D) Colorant]
The photocurable resin composition of the present invention may contain (D) a colorant in order to form a cured laminate that reflects the color of the colorant itself.
As the coloring agent (D) used in the photocurable resin composition of the present invention, conventionally known pigments or dyes such as white, black, green, blue, yellow, red, and purple may be used alone or depending on the desired use. Two or more types can be used in combination.
 白色着色剤としては、白色顔料が好ましく、その具体例としては、酸化チタン、酸化亜鉛、チタン酸カリウム、酸化ジルコニウム、酸化アンチモン、鉛白、硫化亜鉛、チタン酸鉛等が挙げられる。白色顔料の中でも、熱による変色の抑制効果が高いことから、酸化チタンを用いることが好ましい。酸化チタンは、特にルチル型酸化チタンを用いることが好ましい。アナターゼ型酸化チタンは、ルチル型と比較して白色度が高いためによく使用される。しかしながら、アナターゼ型酸化チタンは、光触媒活性を有するために、ソルダーレジスト組成物中の樹脂の変色を引き起こすことがある。これに対し、ルチル型酸化チタンは、白色度はアナターゼ型と比較して若干劣るものの、光活性を殆ど有さないために、安定したソルダーレジスト膜を得ることができる。ルチル型酸化チタンとしては、公知のルチル型のものを使用することができる。具体的には、富士チタン工業(株)製TR-600、TR-700、TR-750、TR-840、石原産業(株)製R-550、R-580、R-630、R-820、CR-50、CR-60、CR-90、チタン工業(株)製KR-270、KR-310、KR-380等を使用することができる。白色顔料は一種類または複数種類の混合物として使用することができる。
 また、硬化後の光硬化性樹脂組成物を白色とするために、白色顔料に対して、青色顔料などの白色以外の顔料を添加することも可能である。
The white colorant is preferably a white pigment, and specific examples thereof include titanium oxide, zinc oxide, potassium titanate, zirconium oxide, antimony oxide, white lead, zinc sulfide, lead titanate, and the like. Among white pigments, it is preferable to use titanium oxide because it has a high effect of suppressing discoloration due to heat. As the titanium oxide, it is particularly preferable to use rutile type titanium oxide. Anatase titanium oxide is often used because it has higher whiteness than rutile titanium oxide. However, since anatase titanium oxide has photocatalytic activity, it may cause discoloration of the resin in the solder resist composition. On the other hand, although rutile type titanium oxide has slightly inferior whiteness compared to anatase type titanium oxide, it has almost no photoactivity, so it is possible to obtain a stable solder resist film. As the rutile-type titanium oxide, known rutile-type titanium oxides can be used. Specifically, TR-600, TR-700, TR-750, TR-840 manufactured by Fuji Titanium Industries Co., Ltd., R-550, R-580, R-630, R-820 manufactured by Ishihara Sangyo Co., Ltd. CR-50, CR-60, CR-90, KR-270, KR-310, KR-380 manufactured by Titanium Kogyo Co., Ltd., etc. can be used. White pigments can be used as a single type or as a mixture of multiple types.
Furthermore, in order to make the photocurable resin composition white after curing, it is also possible to add a pigment other than white, such as a blue pigment, to the white pigment.
 また、黒色着色剤としては、黒色顔料が好ましく、その具体例としては、カーボンブラック、ランプブラック、ボーン黒、黒鉛、鉄黒、銅クロム系ブラック、銅鉄マンガン系ブラック、コバルト鉄クロム系ブラック、四三酸化コバルト等の酸化コバルト、酸化ルテニウムなどが挙げられる。
 さらに、紫色顔料の具体例としては、コバルトバイオレット、マンガンバイオレット、キナクリドンバイオレット、ジオキサジンバイオレット等が挙げられる。
Further, as the black coloring agent, black pigments are preferable, and specific examples thereof include carbon black, lamp black, bone black, graphite, iron black, copper chromium black, copper iron manganese black, cobalt iron chromium black, Examples include cobalt oxide such as tricobalt tetraoxide, ruthenium oxide, and the like.
Further, specific examples of the purple pigment include cobalt violet, manganese violet, quinacridone violet, dioxazine violet, and the like.
 緑色顔料の具体例としては、クロムグリーン、コバルトグリーン、酸化クロム、フタロシアニン・グリーン、ブロム化グリーン、コバルトクロムグリーン、チタン・ニッケル・コバルト・亜鉛系グリーン等が挙げられる。青色顔料の具体例としては、群青、フタロシアニン・ブルー、メタルフリー・フタロシアニン・ブルー、インダンスレンブルー、コバルトブルー等が挙げられる。 Specific examples of green pigments include chrome green, cobalt green, chromium oxide, phthalocyanine green, brominated green, cobalt chrome green, titanium/nickel/cobalt/zinc green, and the like. Specific examples of blue pigments include ultramarine blue, phthalocyanine blue, metal-free phthalocyanine blue, indanthrene blue, and cobalt blue.
 黄色顔料の具体例としては、黄鉛、黄色酸化鉄、チタンイエロー、黄土、アンチモン黄、バリウム黄、モノアゾ顔料、ジスアゾ顔料、ポリアゾ顔料、イソインドリノン顔料、スレン系顔料、金属錯体顔料、キノフタロン系顔料等が挙げられる。 Specific examples of yellow pigments include yellow lead, yellow iron oxide, titanium yellow, loess, antimony yellow, barium yellow, monoazo pigments, disazo pigments, polyazo pigments, isoindolinone pigments, threne pigments, metal complex pigments, and quinophthalone pigments. Examples include pigments.
 赤色顔料の具体例としては、クロムバーミリオン、モリブデン赤、べんがら、レーキレッド4R、カーミンFB、ジニトロアニリンオレンジ、ピラゾロンオレンジ、ピラゾロンレッド、ペリノンオレンジ、パーマネントレッド2B、レーキレッドR、ボンマルーンライト、ボルドー10B、ボンマルーンメジウム、チオインジゴボルドー、ボンマルーンL、ペリレンバーミリオン、ペリレンスカーレット、ペリレンマルーン、ベンツイダゾロンオレンジ等が挙げられる。 Specific examples of red pigments include chrome vermilion, molybdenum red, red red, red radish, lake red 4R, carmine FB, dinitroaniline orange, pyrazolone orange, pyrazolone red, perinone orange, permanent red 2B, lake red R, bon maroon light, Examples include Bordeaux 10B, Bon Maroon Medium, Thioindigo Bordeaux, Bon Maroon L, Perylene Vermilion, Perylene Scarlet, Perylene Maroon, Benzuidazolone Orange, and the like.
 本発明の光硬化性樹脂組成物が(D)着色剤として白色顔料を含む場合には、本発明の製造方法で製造された積層硬化体を用いることで、リフロー後の黄変傾向が低減される。この理由は以下の通りである。
 一般に、ソルダーレジスト等として使用される光硬化性樹脂組成物の積層硬化体は、部品実装時に、例えば260℃以上の高温に曝されることにより、黄変傾向を示す。しかしながら、本発明の製造方法によると、各未硬化膜が上述の工程(2)および(4)などにより順次個別に露光されることで紫外光が十分に各層に到達することから良好な光硬化状態を有するため耐熱性に優れるものとなる。この状態で部品実装を行う場合には、各硬化膜、特に下層の膜に未反応の光硬化成分が少なくなるため、黄変の程度が低減される。このような黄変の抑制は、特に黄変により影響を受けやすい白色の積層硬化体には極めて有意な特性である。すなわち、白色または淡色の光硬化性樹脂組成物から製造された積層硬化体は、黄変が生ずれば黒色や濃色の積層硬化体よりも特性に与える影響が大きい。本発明の方法により製造された場合には、黄変傾向が低減されることから、白色または淡色、特に白色で顕著に生じる黄変が、極めて良好に抑制される。
When the photocurable resin composition of the present invention contains a white pigment as the colorant (D), the tendency to yellow after reflow is reduced by using the cured laminate produced by the production method of the present invention. Ru. The reason for this is as follows.
Generally, a cured laminate of a photocurable resin composition used as a solder resist etc. shows a tendency to yellow when exposed to high temperatures of, for example, 260° C. or higher during component mounting. However, according to the manufacturing method of the present invention, each uncured film is sequentially and individually exposed to light in steps (2) and (4), etc., so that the ultraviolet light sufficiently reaches each layer, resulting in good photocuring. Since it has a state, it has excellent heat resistance. When components are mounted in this state, the amount of unreacted photocuring components in each cured film, especially the underlying film, is reduced, so the degree of yellowing is reduced. Such suppression of yellowing is an extremely significant property, especially for white cured laminates that are susceptible to yellowing. In other words, if yellowing occurs in a cured laminate manufactured from a white or light-colored photocurable resin composition, it will have a greater effect on the properties than a cured laminate made of a black or dark color. When produced by the method of the present invention, since the yellowing tendency is reduced, the yellowing that occurs noticeably in white or light colors, especially white, is extremely well suppressed.
 また、本発明の光硬化性樹脂組成物が(D)着色剤として白色顔料または黒色顔料を含む場合にも、本発明の製造方法で製造された積層硬化体を用いることで、解像性、密着性が向上する。この理由は以下の通りである。
 一般に、黒色顔料を含む黒色のレジストは、露光の際の照射光がレジストに吸収されやすく、透過しにくいという性質がある。また、白色顔料を含む白色のレジストは、露光の際の照射光がレジストに反射されやすく、透過しにくいという性質がある。すなわち、黒色レジストまたは白色レジストの上部から照射された光は、レジストの深部に至る以前に、層内で吸収または反射されて、レジストの深部などの照射光が十分到達しない場所では、光硬化性樹脂組成物の光反応が十分に進行せず、アンダーカットの発生割合や解像性に影響が生ずることがある。しかしながら、本発明の製造方法によると、上述の工程(2)および(4)などの2回以上の露光に付されるため、1回露光の場合よりも光硬化性樹脂組成物の全体にわたって光反応が確実に進行する。この結果、解像性が向上、アンダーカットの発生が抑制される。すなわち、本発明の2回露光を経て製造された黒色のレジストまたは白色のレジストは、回路基板に対するレジストの密着性が向上して、剥離しにくいものとなる。
 本発明の(D)着色剤の配合量は、白色着色剤の場合、(A)カルボキシル基含有樹脂100質量部に対して、好ましくは50~500質量部、より好ましくは100~450質量部である。
 本発明の(D)着色剤の配合量は、黒色着色剤の場合、(A)カルボキシル基含有樹脂100質量部に対して、1~50質量部であることが好ましい。
Further, even when the photocurable resin composition of the present invention contains a white pigment or a black pigment as the colorant (D), by using the cured laminate produced by the production method of the present invention, resolution, Adhesion is improved. The reason for this is as follows.
In general, a black resist containing a black pigment has the property that irradiated light during exposure is easily absorbed by the resist and difficult to transmit. Furthermore, a white resist containing a white pigment has the property that the irradiated light during exposure is easily reflected by the resist and difficult to transmit. In other words, light irradiated from the top of a black resist or white resist is absorbed or reflected within the layer before reaching the deep part of the resist, and in places where the irradiated light does not reach sufficiently, such as deep parts of the resist, photocuring occurs. The photoreaction of the resin composition may not proceed sufficiently, which may affect the undercut generation rate and resolution. However, according to the production method of the present invention, since the photocurable resin composition is subjected to two or more exposures such as steps (2) and (4) above, the entire photocurable resin composition is exposed to light more than in the case of one exposure. The reaction progresses reliably. As a result, resolution is improved and undercuts are suppressed. In other words, the black resist or white resist manufactured through the two-time exposure process of the present invention has improved adhesion to the circuit board and is difficult to peel off.
In the case of a white colorant, the blending amount of the colorant (D) of the present invention is preferably 50 to 500 parts by mass, more preferably 100 to 450 parts by mass, based on 100 parts by mass of the carboxyl group-containing resin (A). be.
In the case of a black colorant, the blending amount of the colorant (D) of the present invention is preferably 1 to 50 parts by weight based on 100 parts by weight of the carboxyl group-containing resin (A).
[(E)光重合性化合物]
 本発明の光硬化性樹脂組成物は、エチレン性不飽和基を有し、活性エネルギー線の照射により光硬化して、光硬化性樹脂組成物の照射部をアルカリ水溶液に不溶化し、または不溶化を助ける(E)光重合性化合物を含むものとすることができる。本発明で使用される(E)光重合性化合物としては例えば、2-ヒドロキシエチルアクリレート、2-ヒドロキシブチルアクリレートなどのヒドロキシアルキルアクリレート類;エチレングリコール、メトキシテトラエチレングリコール、ポリエチレングリコール、プロピレングリコールなどのグリコールのモノ又はジアクリレート類;N,N-ジメチルアクリルアミド、N-メチロールアクリルアミドなどのアクリルアミド類;N,N-ジメチルアミノエチルアクリレートなどのアミノアルキルアクリレート類;ヘキサンジオール、トリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール、ジペンタエリスリトールヘキサアクリレート(DHPA)、トリス-ヒドロキシエチルイソシアヌレート、などの多価アルコール又はこれらのエチレンオキサイドもしくはプロピレンオキサイド付加物の多価アクリレート類;フェノキシアクリレート、ビスフェノールAジアクリレート及び、これらのフェノール類のエチレンオキサイドあるいはプロピレンオキサイド付加物などのアクリレート類;グルセリンジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテルなどのグリシジルエーテルのアクリレート類;メラミンアクリレート;及び/又は上記アクリレート類に対応するメタクリレート類等を挙げることができるがこれに限定されるものではなく、公知慣用の光重合性化合物を用いることができる。
 本発明の(E)光重合性化合物の配合量は、(A)カルボキシル基含有樹脂100質量部に対して、好ましくは0.01~40質量部、より好ましくは、0.5~30質量部である。
[(E) Photopolymerizable compound]
The photocurable resin composition of the present invention has an ethylenically unsaturated group and is photocured by irradiation with active energy rays to make the irradiated part of the photocurable resin composition insolubilized in an aqueous alkaline solution or to prevent insolubilization. (E) A photopolymerizable compound may be included. Examples of the photopolymerizable compound (E) used in the present invention include hydroxyalkyl acrylates such as 2-hydroxyethyl acrylate and 2-hydroxybutyl acrylate; ethylene glycol, methoxytetraethylene glycol, polyethylene glycol, propylene glycol, etc. Glycol mono- or diacrylates; acrylamides such as N,N-dimethylacrylamide and N-methylolacrylamide; aminoalkyl acrylates such as N,N-dimethylaminoethyl acrylate; hexanediol, trimethylolpropane, pentaerythritol, di Polyhydric alcohols such as pentaerythritol, dipentaerythritol hexaacrylate (DHPA), tris-hydroxyethyl isocyanurate, or polyhydric acrylates of their ethylene oxide or propylene oxide adducts; phenoxy acrylate, bisphenol A diacrylate, and these acrylates such as ethylene oxide or propylene oxide adducts of phenols; acrylates of glycidyl ethers such as glycerin diglycidyl ether and trimethylolpropane triglycidyl ether; melamine acrylate; and/or methacrylates corresponding to the above acrylates. Examples thereof include, but are not limited to, and any known and commonly used photopolymerizable compounds may be used.
The amount of the photopolymerizable compound (E) of the present invention is preferably 0.01 to 40 parts by weight, more preferably 0.5 to 30 parts by weight, based on 100 parts by weight of the carboxyl group-containing resin (A). It is.
[有機溶剤]
 本発明の光硬化性樹脂組成物は、組成物の調製のため、又は基板やキャリアフィルムに塗布するための粘度調整のため、有機溶剤を使用することができる。有機溶剤としては、公知のものを使用可能である。また、有機溶剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。このような有機溶剤として、メチルエチルケトン、シクロヘキサノンなどのケトン類;トルエン、キシレン、テトラメチルベンゼンなどの芳香族炭化水素類;メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、メチルカルビトール、ブチルカルビトール、カルビトールアセテート、プロピレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジプロプレングリコールモノエチルエーテル、トリエチレングリコールモノエチルエーテルなどのグリコールエーテル類;酢酸エチル、酢酸ブチル、セロソルブアセテート、ジエチレングリコールモノエチルエーテルアセテート及び上記グリコールエーテル類のエステル化物などのエステル類;エタノール、プロパノール、エチレングリコール、プロピレングリコールなどのアルコール類;オクタン、デカンなどの脂肪族炭化水素類;石油エーテル、石油ナフサ、水添石油ナフサ、ソルベントナフサなどの石油系溶剤等を用いることができる。 
[Organic solvent]
The photocurable resin composition of the present invention can use an organic solvent for preparing the composition or adjusting the viscosity for coating on a substrate or carrier film. As the organic solvent, known organic solvents can be used. Moreover, one type of organic solvent may be used alone, or two or more types may be used in combination. Such organic solvents include ketones such as methyl ethyl ketone and cyclohexanone; aromatic hydrocarbons such as toluene, xylene, and tetramethylbenzene; methyl cellosolve, ethyl cellosolve, butyl cellosolve, methyl carbitol, butyl carbitol, carbitol acetate, Glycol ethers such as propylene glycol monomethyl ether, diethylene glycol monoethyl ether, dipropylene glycol monoethyl ether, and triethylene glycol monoethyl ether; ethyl acetate, butyl acetate, cellosolve acetate, diethylene glycol monoethyl ether acetate, and esters of the above glycol ethers Alcohols such as ethanol, propanol, ethylene glycol, and propylene glycol; Aliphatic hydrocarbons such as octane and decane; Petroleum solvents such as petroleum ether, petroleum naphtha, hydrogenated petroleum naphtha, and solvent naphtha, etc. can be used.
 さらに、必要に応じて、硬化触媒、硬化促進剤、熱重合禁止剤、増粘剤、消泡剤、レベリング剤、カップリング剤、難燃助剤等が使用できる。 Furthermore, a curing catalyst, a curing accelerator, a thermal polymerization inhibitor, a thickener, an antifoaming agent, a leveling agent, a coupling agent, a flame retardant aid, etc. can be used as necessary.
 本発明の光硬化性樹脂組成物は、液状、ペースト状の形態で基板上に塗布、乾燥することで積層することができる。 The photocurable resin composition of the present invention can be laminated by coating it on a substrate in a liquid or paste form and drying it.
 以下、本発明を実施例により説明するが、本発明はこれに限定されるものではない。以下に記載の「部」及び「%」とは、特に断りのない限り全て質量基準とする。  Hereinafter, the present invention will be explained with reference to Examples, but the present invention is not limited thereto. All "parts" and "%" described below are based on mass unless otherwise specified. 
[光硬化性樹脂組成物の製造例]
[組成物1および組成物2の製造]
 下記表1に記載した成分を、同表に記載の使用量にて配合し、これを攪拌して3本ロールにて分散させることにより光硬化性樹脂組成物を調製した。表1中の数字は、溶剤を含むワニス換算の質量部を示す。
[Production example of photocurable resin composition]
[Production of composition 1 and composition 2]
A photocurable resin composition was prepared by blending the components shown in Table 1 below in the amounts shown in the table, stirring and dispersing the mixture using three rolls. The numbers in Table 1 indicate parts by mass in terms of varnish containing solvent.
Figure JPOXMLDOC01-appb-T000001
 表1中の成分の詳細は以下のとおりである。
(A)カルボキシル基含有樹脂 サイクロマーP (ACA) Z250: ダイセル社製 アクリルオリゴマー(平均分子量(Mw):22000) 固形分濃度53質量%(溶剤:ジプロピレングリコールモノメチルエーテル)
(B)光重合開始剤 Omnirad 819: IGM Resins社製、ビス(2,4,6-メチルベンゾイル)フェニルホスフィンオキシド
(B)光重合開始剤 2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシド
(C)エポキシ樹脂 jER-828:三菱ケミカル株式会社製、エポキシ当量:184~194、室温(25℃)で液状、分子量(Mw):約370
(D)着色剤 CR-90:石原産業株式会社製、ルチル型酸化チタン
(D)着色剤 MA-100:三菱化学株式会社製、カーボンブラック
(E)光重合性化合物 DPHA:ジペンタエリスリトールヘキサアクリレート、ダイセル・オルネクス株式会社
 硬化触媒 DICY:ジシアンジアミド
 硬化触媒 メラミン
Figure JPOXMLDOC01-appb-T000001
Details of the components in Table 1 are as follows.
(A) Carboxyl group-containing resin Cyclomer P (ACA) Z250: Acrylic oligomer manufactured by Daicel (average molecular weight (Mw): 22000) Solid content concentration 53% by mass (solvent: dipropylene glycol monomethyl ether)
(B) Photoinitiator Omnirad 819: Manufactured by IGM Resins, bis(2,4,6-methylbenzoyl)phenylphosphine oxide (B) Photoinitiator 2,4,6-trimethylbenzoyldiphenylphosphine oxide (C) Epoxy resin jER-828: manufactured by Mitsubishi Chemical Corporation, epoxy equivalent: 184-194, liquid at room temperature (25°C), molecular weight (Mw): approximately 370
(D) Colorant CR-90: Manufactured by Ishihara Sangyo Co., Ltd., rutile type titanium oxide (D) Colorant MA-100: Manufactured by Mitsubishi Chemical Corporation, carbon black (E) Photopolymerizable compound DPHA: Dipentaerythritol hexaacrylate , Daicel Allnex Corporation Curing catalyst DICY: dicyandiamide Curing catalyst melamine
[実施例1~4、比較例1~4]
 上記により製造された組成物1および組成物2を用いて、1層、2層または3層の硬化膜からなる積層硬化体を作成した。
 以下に本発明の、積層硬化体の製造方法および得られた積層硬化体の評価を説明するが、表2中、処理工程中の「-」は該当の処理を行なわなかったこと、評価項目中の「-」は、白色着色剤を含まない組成物2を用い、反射材としての機能は求められないため、該当の評価を行わなかったことを示す。
[Examples 1 to 4, Comparative Examples 1 to 4]
Using Composition 1 and Composition 2 produced as described above, a cured laminate consisting of one, two, or three layers of cured films was created.
The method for producing a cured laminate and the evaluation of the cured laminate of the present invention will be explained below. In Table 2, "-" in the treatment step means that the corresponding treatment was not performed, "-" indicates that the corresponding evaluation was not performed because Composition 2, which does not contain a white colorant, was not required to function as a reflective material.
<評価基板の作成>
<1.下層の形成>
 表2に記載したように、実施例1では、酸洗、およびバフ研磨(Scotch  brite  SF(#600相当)とUEF(#1000相当)の2連)により前処理した回路基板に対し、組成物1を、各乾燥後膜厚が25μmとなるように#100のスクリーン印刷により全面印刷した。これにより得られた組成物1の未硬化膜を、熱風循環式乾燥炉(ヤマト科学株式会社製DF610)を用いて80℃にて15分乾燥させた(プレキュア)。そして、乾燥した未硬化膜に対し、光源としてメタルハライドを用いたダイレクト露光機(株式会社オーク製作所製、DiIMPACT Mms60)を用い、30~300μm幅(30μm刻み)のラインパターンが形成されるように、積算露光量600mJ/cm2にて露光した。 実施例2~4、比較例1~3においても同様の処理を行ったが、実施例4と比較例3では組成物2を用いた。また、比較例1~3は露光を行わなかった。その後、実施例2では、液温30℃の1質量%の炭酸ナトリウム水溶液を用いてスプレー圧0.2MPaの条件により70秒間現像した。また、比較例4では、実施例1と同様の装置や手順で印刷、乾燥、露光を行うが、乾燥後膜厚が50μmとなるように#60のスクリーン印刷による全面印刷を行い、80℃における乾燥時間を30分間とし、積算露光量を1200mJ/cm2とした。
 なお、表2中、該当の処理工程を行ったことを、〇または●の符号で示す。
<Creation of evaluation board>
<1. Formation of lower layer>
As described in Table 2, in Example 1, the composition was applied to a circuit board pretreated by pickling and buffing (two series of Scotch brite SF (equivalent to #600) and UEF (equivalent to #1000)). 1 was printed on the entire surface by #100 screen printing so that the film thickness after each drying was 25 μm. The uncured film of Composition 1 thus obtained was dried at 80° C. for 15 minutes using a hot air circulation drying oven (DF610 manufactured by Yamato Scientific Co., Ltd.) (precure). Then, using a direct exposure machine (manufactured by Oak Seisakusho Co., Ltd., DiIMPACT Mms60) using a metal halide as a light source, a line pattern with a width of 30 to 300 μm (in 30 μm increments) was formed on the dried uncured film. Exposure was carried out at a cumulative exposure amount of 600 mJ/cm2. Similar treatments were carried out in Examples 2 to 4 and Comparative Examples 1 to 3, but Composition 2 was used in Example 4 and Comparative Example 3. Further, in Comparative Examples 1 to 3, no exposure was performed. Thereafter, in Example 2, development was carried out for 70 seconds using a 1% by mass aqueous sodium carbonate solution at a liquid temperature of 30° C. and a spray pressure of 0.2 MPa. In Comparative Example 4, printing, drying, and exposure were performed using the same equipment and procedures as in Example 1, but the entire surface was printed using #60 screen printing so that the film thickness after drying was 50 μm. The drying time was 30 minutes, and the cumulative exposure amount was 1200 mJ/cm2.
In Table 2, the fact that the corresponding treatment step was performed is indicated by a symbol of ○ or ●.
<2.上層(中間層)の形成>
 表2に記載したように、実施例3の下層の上に、酸洗、バフ研磨を行わないこと以外は下層の形成について記載した実施例1の操作と同様の操作により上層(中間層)を形成した。なお、実施例3以外の実施例、比較例では、上層(中間層)を設けずに、下層上に直接、表2における上層(最上層)を有する積層硬化体を形成した。
<2. Formation of upper layer (middle layer)>
As described in Table 2, an upper layer (intermediate layer) was formed on the lower layer of Example 3 by the same operation as in Example 1, which described the formation of the lower layer, except that pickling and buffing were not performed. Formed. In Examples other than Example 3 and Comparative Examples, a cured laminate having the upper layer (top layer) in Table 2 was formed directly on the lower layer without providing an upper layer (intermediate layer).
<3.上層(最上層)の形成>
 さらに、表2に記載したように、実施例1、2、4、および比較例1~3の下層の上面、および実施例3の上層(中間層)の上面に上層(最上層)を形成した。各実施例、比較例では、下層形成のため組成物と同一の組成物を用い、各乾燥後膜厚が25μmとなるように#100のスクリーン印刷により全面印刷し、熱風循環式乾燥炉(ヤマト科学株式会社製DF610)を用いて80℃にて30分乾燥させた(プレキュア)。乾燥した未硬化膜に対し、光源としてメタルハライドを用いたダイレクト露光機(株式会社オーク製作所製、DiIMPACT Mms60)を用い、30~300μm幅(30μm刻み)のラインパターンが形成されるように、実施例1~4および比較例1および3では積算露光量600mJ/cm2で、比較例2では積算露光量1200mJ/cm2で露光した。その後、液温30℃の1質量%の炭酸ナトリウム水溶液を用いてスプレー圧0.2MPaの条件により実施例3は210秒間、その他の実施例、比較例は140秒現像した。なお、比較例4は、下層の上に上層は一切設けず、1層の下層のみからなる硬化体とした。
<3. Formation of upper layer (top layer)>
Furthermore, as described in Table 2, an upper layer (top layer) was formed on the upper surface of the lower layer of Examples 1, 2, 4, and Comparative Examples 1 to 3, and on the upper surface of the upper layer (intermediate layer) of Example 3. . In each Example and Comparative Example, the same composition as the composition was used to form the lower layer, and the entire surface was printed by #100 screen printing so that the film thickness after drying was 25 μm. It was dried at 80° C. for 30 minutes using DF610 (manufactured by Kagaku Co., Ltd.) (precure). A direct exposure machine (manufactured by Oak Seisakusho Co., Ltd., DiIMPACT Mms60) using a metal halide as a light source was used to form a line pattern with a width of 30 to 300 μm (in 30 μm increments) on the dried uncured film. 1 to 4 and Comparative Examples 1 and 3, exposure was performed at an integrated exposure amount of 600 mJ/cm 2 , and Comparative Example 2 was exposed at an integrated exposure amount of 1200 mJ/cm 2 . Thereafter, Example 3 was developed for 210 seconds, and other Examples and Comparative Examples were developed for 140 seconds using a 1% by mass aqueous sodium carbonate solution at a liquid temperature of 30° C. and a spray pressure of 0.2 MPa. In Comparative Example 4, no upper layer was provided on the lower layer, and the cured product consisted of only one lower layer.
<4.ポストキュア>
 上記処理を施した積層硬化体を、熱循環式ボックス炉で、150℃にて60分加熱してポストキュアした。これにより、本発明に係る実施例1~4の積層硬化体、および比較例1~4の積層硬化体としての評価基板が得られた。尚、露光からポストキュアの間での膜厚の変化がないため、ポストキュア後の積層硬化体の膜厚は、乾燥後(乾燥状態)と同じである。
<4. Post cure>
The cured laminated body subjected to the above treatment was post-cured by heating at 150° C. for 60 minutes in a thermal circulation box furnace. As a result, evaluation boards as the cured laminates of Examples 1 to 4 according to the present invention and the cured laminates of Comparative Examples 1 to 4 were obtained. Note that since there is no change in film thickness between exposure and post-curing, the film thickness of the cured laminate after post-curing is the same as after drying (dry state).
<評価>
 上記の各評価基板を用いて、下記の評価試験を行った。結果を表2に記載する。
<Evaluation>
The following evaluation tests were conducted using each of the above evaluation boards. The results are listed in Table 2.
<1.解像性の評価>
 上記、<評価基板の作成>における、ポストキュア前の各評価基盤において、残存している最小ライン幅を評価した。
<1. Evaluation of resolution>
The remaining minimum line width was evaluated on each evaluation board before post-curing in <Creation of Evaluation Board> above.
<2.金めっき後の評価基板の剥がれ>
 評価基板の表面に対し、前処理として、酸性脱脂、ソフトエッチ、硫酸処理、を行い、無電解ニッケルめっき浴および無電解金めっき浴を用いて、ニッケル3μm、金0.03μmの厚さでめっきが付くような条件で金めっき処理を行った。
 その後、金めっき処理を行った評価基板に対して、JIS K 5600-5-6に準拠してテープピール試験を行い、評価基板上に残存した最小ライン幅を評価した。
<2. Peeling of evaluation board after gold plating>
The surface of the evaluation board was pretreated with acidic degreasing, soft etching, and sulfuric acid treatment, and then plated with a thickness of 3 μm of nickel and 0.03 μm of gold using an electroless nickel plating bath and an electroless gold plating bath. The gold plating process was carried out under conditions such that .
Thereafter, the gold-plated evaluation board was subjected to a tape peel test in accordance with JIS K 5600-5-6, and the minimum line width remaining on the evaluation board was evaluated.
<3.変色耐性評価>
 上記<評価基板の作成>において、ラインパターンが形成されるように露光する工程に代えて、乾燥後の未硬化膜の全面を露光した以外は、同様の工程に従って変色耐性評価用基板を作成した。
<3. Discoloration resistance evaluation>
A substrate for discoloration resistance evaluation was created according to the same process as described above in <Creation of evaluation board>, except that instead of exposing the entire surface of the dried uncured film to light to form a line pattern. .
 変色耐性評価用基板に対してリフロー装置(エイテックテクトロン社製NIS-20-82C)を用いて、最高温度285℃の設定で5回繰り返しリフロー処理を行った。
 リフロー処理の前後において、変色耐性評価用基板上の硬化膜表面に対して、JIS  Z8781に準拠し、コニカミノルタ製  分光測色計CM-2600dを用いて、L*a*b*表色系におけるL*値、a*値、b*値を測定し、リフロー処理前後の比較によるL*値、a*値、b*値の変化量(ΔL、Δa、Δb)をもとに式(1)で算出したΔEを以下の基準で評価した。
Figure JPOXMLDOC01-appb-M000002
◎:1.5以下
〇:1.5超、2.0以下
△:2.0超、2.5以下
×:2.5超
Using a reflow device (NIS-20-82C manufactured by Atec Techtron Co., Ltd.), the substrate for discoloration resistance evaluation was repeatedly subjected to reflow treatment five times at a maximum temperature of 285°C.
Before and after the reflow treatment, the surface of the cured film on the substrate for discoloration resistance evaluation was measured in the L*a*b* color system using a Konica Minolta spectrophotometer CM-2600d in accordance with JIS Z8781. Measure the L* value, a* value, and b* value, and use equation (1) based on the amount of change (ΔL, Δa, Δb) in the L* value, a* value, and b* value by comparing before and after reflow treatment. The ΔE calculated in was evaluated based on the following criteria.
Figure JPOXMLDOC01-appb-M000002
◎: 1.5 or less 〇: More than 1.5, 2.0 or less △: More than 2.0, 2.5 or less ×: More than 2.5
<はんだボール接合評価>
 上記<評価基板の作成>において、ラインパターンが形成されるように露光する工程に代えて、ビア開口径が500μmとなるように露光した以外は同様の工程に従い、ビア開口部において銅回路が露出した接合評価用基板を作成した。
 各接合評価用基板のビア開口部にはんだボールを形成した。はんだボールは、Sn/Pb=63/37の共晶はんだを使用し、リフロー炉を用いて150℃(90秒間)+220℃(10秒間)の条件でリフロー処理することによって形成した。
<Solder ball joint evaluation>
In the above <Creation of evaluation board>, the copper circuit was exposed at the via opening by following the same process except that instead of exposing to light to form a line pattern, the via opening diameter was exposed to 500 μm. A board for bond evaluation was created.
Solder balls were formed in the via openings of each bonding evaluation substrate. The solder balls were formed by using a eutectic solder with Sn/Pb=63/37 and performing reflow treatment under the conditions of 150° C. (90 seconds) + 220° C. (10 seconds) using a reflow oven.
 次にデイジ社製の万能型ボンドテスター「シリーズ4000」を使用し、以下の方法で加熱式バンププルテストを行った。
まず、ボンドテスターの引張プローブをヒーターで加熱し、引張プローブの先端温度が270℃となったところで、上記はんだボールの中心に引張プローブの先端を垂直に挿入する。その後、挿入した状態で引張プローブの先端温度が40℃となるまで放冷することによって、はんだボールと引張プローブを固着させた。次に引張プローブを300μm/秒の速度で垂直に引き上げ、はんだボールが接合面から剥離(界面剥離)するのに必要な強度(接合強度(N))を測定して接合強度とした。
測定した接合強度以下の基準で評価を行った。
Next, using a universal bond tester "Series 4000" manufactured by Daiji Corporation, a heating bump pull test was conducted in the following manner.
First, the tensile probe of the bond tester is heated with a heater, and when the temperature of the tip of the tensile probe reaches 270° C., the tip of the tensile probe is vertically inserted into the center of the solder ball. Thereafter, the solder ball and the tensile probe were fixed together by cooling the inserted state until the temperature of the tip of the tensile probe reached 40°C. Next, the tensile probe was vertically pulled up at a speed of 300 μm/sec, and the strength required for the solder ball to peel off from the bonding surface (interfacial peeling) (bonding strength (N)) was determined as the bonding strength.
Evaluation was made based on the criteria below the measured bonding strength.
◎:接合強度が8.5N以上
〇:接合強度が7.5N以上、8.5N未満
△:接合強度が6.0N以上、7.5N未満
×:接合強度が6.0N未満
◎: Bonding strength is 8.5N or more 〇: Bonding strength is 7.5N or more, less than 8.5N △: Bonding strength is 6.0N or more, less than 7.5N ×: Bonding strength is less than 6.0N
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 図7に、比較例1により得られた積層体の断面図を示す。
 比較例1では、下層を印刷および乾燥させ、露光はせずに、乾燥後の下層上に上層を設け、その後に露光を行った。その結果、得られた積層体には、顕著なアンダーカットが発生していることが観察された。図7に比較例1の積層硬化体の模式断面図を示す。
FIG. 7 shows a cross-sectional view of the laminate obtained in Comparative Example 1.
In Comparative Example 1, the lower layer was printed and dried, and without exposure, the upper layer was provided on the dried lower layer, and then exposed. As a result, it was observed that significant undercutting occurred in the obtained laminate. FIG. 7 shows a schematic cross-sectional view of the cured laminated body of Comparative Example 1.
 以上、本発明者等によってなされた発明を実施形態に基づき具体的に説明したが、本発明は上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。 As above, the invention made by the present inventors has been specifically explained based on the embodiments, but the present invention is not limited to the above embodiments, and it is understood that various changes can be made without departing from the gist of the invention. Needless to say.
1   回路基板
3   積層硬化体
3A  下層硬化膜
3Aa 下層硬化膜の端面
3B  上層硬化膜
3Ba 上層硬化膜の端面
3C  積層硬化体の凹部
5   導体部分
10  プリント配線板
1 Circuit board 3 Laminated cured body 3A Lower cured film 3Aa End face 3B of lower cured film Upper cured film 3Ba End face 3C of upper cured film Recessed part of cured laminated body 5 Conductor portion 10 Printed wiring board

Claims (9)

  1.  プリント配線板のレジストとして使用される積層硬化体であって、前記積層硬化体は、前記プリント配線板の表面のいずれか一方に積層されて光硬化された光硬化性樹脂組成物からなる下層硬化膜と、
     該下層硬化膜上に積層されて別途光硬化された光硬化性樹脂組成物からなる1又は複数の上層硬化膜と、
    を備え、
     前記積層されて硬化した各硬化膜の端面には、前記下層硬化膜と上層硬化膜の接合面、または前記複数の上層硬化膜の接合面に沿って、周囲方向に伸長する1または複数の凹部を有することを特徴とする積層硬化体。
    A cured laminate used as a resist for a printed wiring board, wherein the cured laminate has a cured lower layer made of a photocurable resin composition that is laminated on either one of the surfaces of the printed wiring board and photocured. a membrane;
    one or more upper layer cured films made of a photocurable resin composition laminated on the lower layer cured film and separately photocured;
    Equipped with
    One or more recesses extending in the circumferential direction along the joint surface of the lower layer cured film and the upper layer cured film, or the joint surface of the plurality of upper layer cured films, on the end face of each of the laminated and cured cured films. A laminated cured body characterized by having the following.
  2.  プリント配線板上に設けられた導体部分の周囲を囲む様に積層され、前記凹部は該積層硬化体の内周面に沿って形成されたことを特徴とする請求項1に記載の積層硬化体。 The cured laminate according to claim 1, wherein the cured laminate is laminated to surround a conductor portion provided on a printed wiring board, and the recess is formed along an inner circumferential surface of the cured laminate. .
  3.  プリント配線板上に設けられた導体部分の両側に互いに対向して積層され、前記凹部は互いに対向する端面に形成されたことを特徴とする請求項1に記載の積層硬化体。 The cured laminate according to claim 1, wherein the cured laminate is laminated on opposite sides of a conductor portion provided on a printed wiring board, and the recesses are formed on end faces facing each other.
  4.  請求項1~3のいずれか1項に記載の積層硬化体を備えることを特徴とするプリント配線板。 A printed wiring board comprising the cured laminate according to any one of claims 1 to 3.
  5.  プリント配線板のレジストとして使用される積層硬化体の製造方法であって、
    (1)光硬化性樹脂組成物をプリント配線板の表面のいずれか一方に塗布、乾燥して形成する下層の未硬化膜形成工程と、
    (2)前記下層の未硬化膜を露光して、硬化させる下層硬化膜形成工程と、
    (3)前記下層硬化膜の上面に、前記光硬化性樹脂組成物と同一または異なる光硬化性樹脂組成物を塗布、乾燥して形成する上層の未硬化膜形成工程と、
    (4)前記上層の未硬化膜を露光して、硬化させる上層硬化膜形成工程と、
     を含むことを特徴とする請求項1~3のいずれか1項に記載の積層硬化体の製造方法。
    A method for producing a cured laminate used as a resist for printed wiring boards, the method comprising:
    (1) A lower layer uncured film forming step of coating and drying a photocurable resin composition on one of the surfaces of the printed wiring board;
    (2) a lower cured film forming step of exposing and curing the lower uncured film;
    (3) an upper layer uncured film forming step of coating and drying a photocurable resin composition that is the same as or different from the photocurable resin composition on the upper surface of the lower layer cured film;
    (4) an upper layer cured film forming step of exposing and curing the upper layer uncured film;
    The method for producing a cured laminate according to any one of claims 1 to 3, comprising:
  6.  1回又は複数回の、前記上層の未硬化膜形成工程と前記上層硬化膜形成工程の後に、さらに
    (5)積層された下層硬化膜および上層硬化膜を現像処理に付す現像工程と、
    (6)現像後の積層された下層硬化膜および上層硬化膜を熱硬化する工程と、
    を含むことを特徴とする請求項5に記載の積層硬化体の製造方法。
    After the upper layer uncured film forming step and the upper layer cured film forming step one or more times, further (5) a developing step of subjecting the laminated lower layer cured film and upper layer cured film to a development treatment;
    (6) a step of thermosetting the laminated lower cured film and upper cured film after development;
    The method for producing a cured laminate according to claim 5, comprising:
  7.  前記光硬化性樹脂組成物が、(A)カルボキシル基含有樹脂、(B)光重合開始剤、(C)エポキシ樹脂、(D)着色剤、(E)光重合性化合物を含む、請求項5に記載の積層硬化体の製造方法。 Claim 5, wherein the photocurable resin composition contains (A) a carboxyl group-containing resin, (B) a photopolymerization initiator, (C) an epoxy resin, (D) a colorant, and (E) a photopolymerizable compound. A method for producing a cured laminate according to .
  8.  前記(D)着色剤は、白色着色剤を含み、その配合量は、前記(A)カルボキシル基含有樹脂100質量部に対して、50~500質量部であることを特徴とする請求項5に記載の積層硬化体の製造方法。 6. The colorant (D) includes a white colorant, and the amount thereof is 50 to 500 parts by mass based on 100 parts by mass of the carboxyl group-containing resin (A). A method for producing the above-described cured laminate.
  9.  前記(D)着色剤は、黒色着色剤を含み、その配合量は、前記(A)カルボキシル基含有樹脂100質量部に対して、1~50質量部であることを特徴とする請求項5に記載の積層硬化体の製造方法。 According to claim 5, the colorant (D) includes a black colorant, and the amount thereof is 1 to 50 parts by mass based on 100 parts by mass of the carboxyl group-containing resin (A). A method for producing the above-described cured laminate.
PCT/JP2023/013508 2022-03-31 2023-03-31 Laminate cured body, printed wiring board having same, and laminate cured body manufacturing method WO2023191037A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-058719 2022-03-31
JP2022058719 2022-03-31

Publications (1)

Publication Number Publication Date
WO2023191037A1 true WO2023191037A1 (en) 2023-10-05

Family

ID=88202354

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/013508 WO2023191037A1 (en) 2022-03-31 2023-03-31 Laminate cured body, printed wiring board having same, and laminate cured body manufacturing method

Country Status (2)

Country Link
TW (1) TW202402532A (en)
WO (1) WO2023191037A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06112632A (en) * 1992-09-25 1994-04-22 Ibiden Co Ltd Printed wiring board
JPH09232741A (en) * 1996-02-23 1997-09-05 Sony Corp Printed-wiring board
JP2019179201A (en) * 2018-03-30 2019-10-17 太陽インキ製造株式会社 Curable resin composition, dry film and cured product thereof, and printed wiring board including the same
JP2021044387A (en) * 2019-09-11 2021-03-18 太陽インキ製造株式会社 Laminated cured product, curable resin composition, dry film, and manufacturing method of laminated cured product

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06112632A (en) * 1992-09-25 1994-04-22 Ibiden Co Ltd Printed wiring board
JPH09232741A (en) * 1996-02-23 1997-09-05 Sony Corp Printed-wiring board
JP2019179201A (en) * 2018-03-30 2019-10-17 太陽インキ製造株式会社 Curable resin composition, dry film and cured product thereof, and printed wiring board including the same
JP2021044387A (en) * 2019-09-11 2021-03-18 太陽インキ製造株式会社 Laminated cured product, curable resin composition, dry film, and manufacturing method of laminated cured product

Also Published As

Publication number Publication date
TW202402532A (en) 2024-01-16

Similar Documents

Publication Publication Date Title
JP4994923B2 (en) Black solder resist composition and cured product thereof
TWI620018B (en) Alkali developing type thermosetting resin composition, printed wiring board
US9865480B2 (en) Printed circuit board including under-fill dam and fabrication method thereof
JP5380034B2 (en) Black solder resist composition and cured product thereof
KR102167483B1 (en) Photocurable thermosetting resin composition, cured product, and printed wiring board
US9188871B2 (en) Pattern forming method, alkali-developable thermosetting resin composition, printed circuit board and manufacturing method thereof
JP6359814B2 (en) Photosensitive resin composition, dry film, cured product, and printed wiring board
EP1359172B1 (en) Ultraviolet-curable resin composition and photosolder resist ink containing the composition
JP5722418B1 (en) Photosensitive resin composition, dry film, cured product, and printed wiring board
JP2008015285A (en) Photosensitive thermosetting resin composition
JPWO2013162015A1 (en) Photo-curing thermosetting resin composition, cured product, and printed wiring board
JP2011133670A (en) White solder resist composition for spray painting
CN103676476A (en) Black solidification resin composition and printed wiring substrate obtained through utilizing the black solidification resin composition
TW202004336A (en) Curable resin composition, dry film, cured product, and printed wiring board
WO2023191037A1 (en) Laminate cured body, printed wiring board having same, and laminate cured body manufacturing method
KR20150051887A (en) Printed wiring board and curable resin composition used in the same
JP2006040935A (en) Photosetting/thermosetting matt solder resist ink composition and printed circuit board using it
JP6594468B2 (en) Photosensitive resin composition, dry film, cured product, and printed wiring board
JP5797680B2 (en) Active energy ray-curable resin composition
JP7457614B2 (en) Method of forming solder resist pattern
WO2024075229A1 (en) Photosensitive resin composition, photosensitive element, printed wiring board, and method for producing printed wiring board
TWI813829B (en) Alkali-developable photocurable thermosetting resin composition
JPH05287036A (en) Resin composition, solder resist resin composition, and its cured product
JP2005108896A (en) Solder resist composition and printed wiring board using the same
JP2020166211A (en) Curable resin composition, dry film, cured product, printed wiring board, and electronic component

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23781045

Country of ref document: EP

Kind code of ref document: A1