WO2023190968A1 - 窒化珪素基板の製造方法 - Google Patents

窒化珪素基板の製造方法 Download PDF

Info

Publication number
WO2023190968A1
WO2023190968A1 PCT/JP2023/013362 JP2023013362W WO2023190968A1 WO 2023190968 A1 WO2023190968 A1 WO 2023190968A1 JP 2023013362 W JP2023013362 W JP 2023013362W WO 2023190968 A1 WO2023190968 A1 WO 2023190968A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon nitride
nitride substrate
manufacturing
sheet
laminate
Prior art date
Application number
PCT/JP2023/013362
Other languages
English (en)
French (fr)
Inventor
馨 島田
寿之 今村
Original Assignee
株式会社プロテリアル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社プロテリアル filed Critical 株式会社プロテリアル
Publication of WO2023190968A1 publication Critical patent/WO2023190968A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/587Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate

Definitions

  • the present invention relates to a method for manufacturing a silicon nitride substrate, and particularly to a method for manufacturing a silicon nitride substrate in which nitriding and sintering are performed in a state in which a plurality of sheet-like molded bodies mainly made of silicon powder are stacked.
  • the method for manufacturing silicon nitride substrates involves mixing raw materials such as silicon (silicon, Si) powder, sintering aid, binder, and solvent to create a slurry, and then forming the slurry into a sheet.
  • a method is known in which a silicon nitride substrate is obtained by producing a green sheet and degreasing, nitriding, and sintering the sheet-like molded body.
  • productivity is improved by stacking a plurality of sheet-like compacts and then feeding them into a batch furnace (for example, see Patent Document 1).
  • the present invention was made for the purpose of improving the productivity of silicon nitride substrates.
  • a method for manufacturing a silicon nitride substrate in one embodiment includes: an inlet and an outlet; a heating mechanism that heats between the inlet and the outlet; and a heating mechanism that heats a space between the inlet and the outlet; A laminate in which 5 or more and 20 or less sheet-like formed bodies containing silicon are laminated is conveyed from the loading port to the loading port into a continuous heating furnace equipped with a nitrogen supply mechanism. It is nitrided by this process.
  • the productivity of silicon nitride substrates is improved.
  • FIG. 1 is a perspective view showing a schematic configuration of a nitriding furnace in an embodiment. It is a top view which shows the laminated body and case which consist of several sheet-like molded bodies in embodiment. 3 is a sectional view taken along line AA in FIG. 2.
  • FIG. 2 is a cross-sectional view showing a case and a laminate made of a plurality of sheet-like molded bodies in a comparative example and Examples 1 and 2.
  • FIG. 3 is a plan view showing the manner in which the laminate is transported in Comparative Example and Examples 1 and 2.
  • the silicon nitride substrate in this embodiment is a silicon nitride substrate having two main surfaces, for example, a silicon nitride substrate having a first main surface, which is the front surface, and a second main surface, which is the back surface, which is the opposite surface.
  • a silicon substrate is mentioned. Note that the terms “front side” and “back side” are used for convenience to distinguish each side.
  • the silicon nitride substrate of this embodiment can be used, for example, as an insulating substrate used in a power module.
  • a power module is an electronic device that constitutes an inverter circuit that controls a motor included in, for example, an electric vehicle, a hybrid electric vehicle, a railway vehicle, or industrial equipment.
  • silicon used here industrially available grade silicon powder can be used.
  • the purity of the silicon powder is preferably 99% or more, more preferably 99.5% or more.
  • the impurity oxygen contained in silicon is one of the factors that inhibits the heat conduction of the silicon nitride substrate obtained by reaction sintering, and it is preferable that it be as small as possible.
  • impurity carbon contained in silicon may inhibit the growth of silicon nitride particles in a silicon nitride substrate obtained by reaction sintering. As a result, densification becomes insufficient, which is one of the causes of deterioration in heat conduction and insulation.
  • the rare earth element oxide used here is preferably an oxide of Y, Yb, Gd, Er, Lu, etc., which is easily available and stable as an oxide.
  • Specific examples of rare earth element oxides include Y 2 O 3 , Yb 2 O 3 , Gd 2 O 3 , Er 2 O 3 , Lu 2 O 3 and the like.
  • magnesium compound As the magnesium compound, one or more magnesium compounds containing silicon (Si), nitrogen (N), or oxygen (O) can be used. In particular, it is preferable to use magnesium oxide (MgO), magnesium silicon nitride (MgSiN 2 ), magnesium silicide (Mg 2 Si), magnesium nitride (Mg 3 N 2 ), and the like.
  • a rare earth element oxide and a magnesium compound as sintering aids are added to the silicon powder in a predetermined ratio, a dispersion medium (organic solvent) and a dispersant are added as necessary, and a ball mill is used. to create a slurry (a dispersion of raw material powder).
  • a dispersion medium organic solvent
  • a dispersant are not particularly limited, and can be arbitrarily selected depending on the sheet forming method and the like.
  • Ethanol, n-butanol, toluene, methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK), etc. can be used as the dispersion medium, and examples of the dispersant include sorbitan ester type dispersants, polyoxyalkylene type dispersants, etc. Agents, etc. can be used.
  • the time for pulverization is not particularly limited as it varies depending on the milling device used, the amount and characteristics of the starting materials, etc., but it is preferable to select the time so that the raw material powder can be sufficiently pulverized and mixed.
  • the pulverization time is preferably 6 hours or more and 48 hours or less, and more preferably 12 hours or more and 24 hours or less. If the pulverization time is too short, sufficient pulverization may not be possible and a silicon nitride substrate having the characteristics desired in this embodiment may not be obtained. If the grinding time is too long, the amount of impurity oxygen gradually increases, and the thermal conductivity of the silicon nitride substrate may decrease.
  • the prepared coating slurry is formed into a sheet using a sheet forming machine, cut into a predetermined size, and then dried to obtain a sheet-like molded product.
  • the organic binder used for preparing the coating slurry is not particularly limited, and examples thereof include PVB resin (polyvinyl butyral resin), ethyl cellulose resin, acrylic resin, and the like. It is preferable to adjust the amounts of the dispersion medium, organic binder, dispersant, etc. as appropriate depending on the coating conditions.
  • the method for forming the coating slurry into a sheet shape is not particularly limited, and for example, a sheet forming method such as a doctor blade method can be used.
  • the sheet-shaped slurry is then transported to a drying chamber set at a predetermined temperature and humidity, where the solvent is evaporated and a dried sheet-shaped molded product is obtained. After coating, the sheet is passed through a drying zone where it is gradually heated and dried.
  • the thickness of the sheet-like molded body formed in the molding process can be adjusted so that the thickness of the silicon nitride substrate finally obtained is a desired thickness, for example, 0.15 mm or more and 0.8 mm or less, and The sheet-like molded body can be cut into a predetermined size using a punching machine or the like, if necessary.
  • Heating the molded body By heating the obtained sheet-like molded body, silicon contained in the molded body is nitrided and then densified.
  • This heating process is a degreasing process to remove the organic binder in the molded body, and by heating the sheet-shaped molded body in a nitrogen atmosphere, silicon (Si) and nitrogen (N) contained in the molded body are reacted and nitrided. It includes a nitriding step and a sintering step for densification after nitriding. These steps may be performed sequentially in separate furnaces or continuously in the same furnace.
  • boron nitride in performing this heating step, powdered boron nitride (BN) is applied to the first main surface of the sheet-like molded body to form a boron nitride (BN powder) layer.
  • This boron nitride (BN) also functions as a separation material that facilitates separation after sintering when multiple sheet-like molded bodies are laminated. Since boron nitride (BN) is present between the sheet-like compacts, each sintered body can be easily separated from the stack of sintered bodies obtained after sintering.
  • the sheet-shaped compact coated with boron nitride powder (BN powder) is placed in an electric furnace, degreased (removal of organic binder, etc.), and then decarbonized in a nitriding furnace at a temperature of 900°C to 1300°C. Then, the temperature is raised to a predetermined temperature in a nitrogen atmosphere to nitride it, and then sintered in a sintering device. At this time, it is preferable to heat the molded body while applying a load of 10 Pa or more and 1000 Pa or less.
  • the degreasing is carried out at a temperature of 800°C or lower.
  • a BN powder layer with a thickness of approximately 3 ⁇ m or more and 20 ⁇ m or less as the separation material.
  • a BN powder layer can be formed by spraying, brush coating, or screen printing a BN powder slurry on one surface of each sheet-like molded body.
  • the BN powder preferably has a purity of 95% or more and an average particle size (D50) of 1 ⁇ m or more and 20 ⁇ m or less.
  • a laminate of sheet-like molded bodies is prepared by stacking a plurality of sheet-like molded bodies so that they are in contact with each other. It is considered that the above-mentioned BN powder layer exists between the sheet-like molded bodies that constitute the laminate and overlap one another. However, in this application, the laminate will be explained as being constituted by a plurality of sheet-like molded bodies stacked in contact with each other.
  • FIGS. 1 to 5 the configuration of the nitriding furnace, and the configurations of the sheet-shaped compacts and their laminates conveyed in the nitriding furnace will be explained using FIGS. 1 to 5.
  • FIG. 1 is a perspective view of a nitriding furnace (continuous heating furnace) 1.
  • a part of the nitriding furnace 1 is cut away to show the inside.
  • the nitriding furnace 1 has, for example, a cylindrical structure with a rectangular cross section, and inside the nitriding furnace 1, a laminate 5 of sheet-like molded bodies is conveyed in the longitudinal direction of the nitriding furnace 1.
  • a conveyor 4 is arranged for this purpose.
  • the conveyor 4 is, for example, a cylindrical rod that is rotatably supported and arranged sideways, and a plurality of the rods are arranged in the radial direction (the conveyance direction of the stacked body 5).
  • the nitriding furnace 1 includes an inlet 2 through which the laminate 5 is brought in, and an outlet 3 through which the laminate 5 is taken out.
  • the nitriding furnace 1 also includes a heating mechanism that heats the space between the carry-in port 2 and the carry-out port 3, and a nitrogen supply mechanism that supplies nitrogen between the carry-in port 2 and the carry-out port 3.
  • the laminate 5 is carried into the nitriding furnace 1 through the carry-in port 2, conveyed by the conveyor 4, and then carried out of the nitriding furnace 1 through the carry-in port 3.
  • each of the plurality of sheet-like molded bodies constituting the laminate (degreased body) 5 is nitrided by being heated in a nitrogen atmosphere. That is, the laminate 5 is nitrided by being conveyed from the carry-in port 2 to the carry-out port 3.
  • each of the loading inlet 2 and the unloading outlet 3 may be provided with a shutter that closes only when the stacked body 5 is passing through.
  • the conveyance direction of the laminate 5 is indicated by a white arrow.
  • the nitrogen partial pressure during nitriding is preferably 0.05 MPa or more and 0.7 MPa or less, more preferably 0.07 MPa or more and 0.2 MPa or less.
  • the nitriding temperature is preferably 1350°C or more and 1500°C or less, more preferably 1400°C or more and 1450°C or less.
  • the holding time after heating to the nitriding temperature is preferably 3 hours or more and 12 hours or less, more preferably 5 hours or more and 10 hours or less.
  • a plurality of laminates 5 are arranged in a first direction (column direction) that intersects the transport direction in plan view.
  • first direction column direction
  • four laminates 5 are arranged side by side in a direction perpendicular to the transport direction in plan view.
  • the nitriding process can be performed on a plurality of laminates 5 at once.
  • a large number of laminates 5 can be continuously nitrided.
  • FIG. 3 is a cross-sectional view taken along line AA in FIG.
  • the laminate 5 is arranged in a case 6 consisting of a plate-shaped BN (boron nitride) setter 6a and a BN frame 6b surrounding the side surface of the laminate 5 on the BN setter 6a. has been done. That is, the laminate 5 is conveyed on the conveyor 4 while being placed inside the case 6 .
  • BN boronitride
  • the planar shape of the sheet-like molded body 5a constituting the laminate 5 is a rectangle, that is, a rectangle having a long side (first long side) and a short side (first short side).
  • the long side of the sheet-like molded body 5a is 100 mm or more, and the short side is 100 mm or more.
  • the long side of the sheet-like molded body 5a is, for example, 257 mm, and the short side is, for example, 190 mm.
  • the shape of the BN setter 6a in plan view is a rectangle having long sides and short sides, that is, a rectangle.
  • the long side of the BN setter 6a is, for example, 280 mm, and the short side is, for example, 210 mm.
  • BN setters 6a are stacked at intervals.
  • one laminate 5 is placed on the surface of the lowest BN setter 6a, and another laminate 5 is placed on the surface of the third BN setter 6a from the bottom. That is, the laminate 5 is stacked in two stages in plan view.
  • the stacked laminates 5 do not touch each other in the height direction (vertical direction), but are spaced apart from each other with a predetermined interval.
  • one of the main features of this embodiment is that the number of sheet-like molded bodies 5a constituting one laminate 5 is within the range of 5 to 20 sheets. Specifically, here, one laminate 5 is composed of 15 sheet-like molded bodies 5a stacked one on top of the other in contact with each other in the height direction.
  • the thickness of one BN setter 6a is, for example, 1 mm or more and 5 mm or less.
  • the thickness of one laminate 5 is, for example, 7 mm.
  • the distance between the stacked body 5 and the BN setter 6a thereon is, for example, 3 mm or more and 23 mm or less.
  • the shortest distance between the BN setters 6a that overlap in the height direction, that is, the height of the BN frame 6b, is, for example, 10 mm or more and 30 mm or less.
  • the stacked body 5 is not arranged between the second BN setter 6a from the bottom and the third BN setter 6a from the bottom.
  • the shortest distance between two stacked bodies 5 stacked in the height direction is 9.0 mm or more and 35.0 mm or less. Specifically, here the distance is 27 mm.
  • the laminate 5 in which a plurality of sheet-like molded bodies 5a are stacked is nitrided at once. Further, a plurality of laminates 5 are stacked at a distance from each other and nitrided at the same time. By doing so, the number of sheet-like molded bodies 5a to be nitrided per unit time can be increased, so that the manufacturing cost of the silicon nitride substrate can be reduced.
  • the number of laminated bodies 5 stacked here is two stages, the number may be three or more stages depending on the space within the nitriding furnace 1. In that case, as described above, it is necessary to ensure that the interval between the overlapping laminates 5 is a predetermined distance or more (9.0 mm or more).
  • the interval between the overlapping laminates 5 As described above. By setting the interval between the overlapping laminates 5 to be 9.0 mm or more in a plan view, it is possible to prevent reaction heat from concentrating on the laminate 5 during the heat treatment of the nitriding process and melting the sheet-like molded body 5a. Furthermore, by setting the interval between the overlapping laminates 5 to 35.0 mm or less in plan view, the number of sheet-shaped compacts to be nitrided can be increased even in a nitriding furnace with a relatively low internal space height. be able to.
  • the manufacturing cost of the silicon nitride substrate can be reduced.
  • the laminates 5 are arranged on the conveyor 4 so that their long sides extend along the conveyance direction (the direction of the white arrow shown in FIG. 4).
  • each of the plurality of laminates 5 lined up in the column direction is conveyed in a direction along its long side.
  • the number of stacked bodies 5 (four in this case) arranged in the row direction on the conveyor 4 can be increased to the maximum. Therefore, the number of sheet-like molded bodies 5a to be nitrided per unit time can be increased, so that the manufacturing cost of silicon nitride substrates can be reduced.
  • each laminate 5 is also possible to arrange each laminate 5 on the conveyor 4 so that the short side direction thereof is along the conveyance direction (the direction of the white arrow shown in FIG. 5).
  • each of the plurality of laminates 5 lined up in the row direction is conveyed in a direction along its short side.
  • the laminates 5 it is possible to maximize the number of laminates 5 (four in this case) arranged in rows on the conveyor 4 in the transport direction, that is, the longitudinal direction of the nitriding furnace 1. can. Therefore, the number of sheet-like molded bodies 5a to be nitrided per unit time can be increased, so that the manufacturing cost of silicon nitride substrates can be reduced.
  • the distance L1 between adjacent laminates 5 in the column direction is 10 mm or more.
  • the distance L2 between adjacent laminates 5 is 10 mm or more. in this way.
  • reaction heat is concentrated in the laminate 5 during the heat treatment of the nitriding process, and the sheet-like molded body 5a is melted. This can be suppressed.
  • the distances L1 and L2 be 100 mm or more.
  • the distances L1 and L2 By setting the distances L1 and L2 to 100 mm or more, it is possible to further suppress reaction heat from concentrating on the laminate 5 and melting of the sheet-like molded body 5a during the heat treatment of the nitriding process. It is more preferable that the distances L1 and L2 be 200 mm or more. By setting the distances L1 and L2 to 200 mm or more, it is possible to further suppress reaction heat from concentrating on the laminate 5 and melting of the sheet-like molded body 5a during the heat treatment in the nitriding process, and to prevent sheet-like molding from occurring. Deformation due to swelling of the body 5a can be suppressed.
  • the silicon nitride substrate of this embodiment can be obtained by the method described above.
  • the nitridation rate of the silicon nitride substrate is 90% or more. More specifically, the nitridation rate of the silicon nitride substrate is 90% or more in both the central portion SC and the end portion SE in a plan view of the silicon nitride substrate.
  • the positions of the center portion SC and end portions SE of the silicon nitride substrate herein correspond to the positions of the center portion SC and end portions SE of the sheet-like molded body 5a shown in FIG.
  • the end SE is, for example, one of the four corners of a rectangular silicon nitride substrate, that is, a corner.
  • the nitridation rate of a silicon nitride substrate in this application is determined by cutting out test pieces each measuring 10 mm square in plan view from within the center SC and end SE regions of the silicon nitride substrate, and measuring the test pieces by X-ray analysis. It is determined from the silicon content based on the following formula (1).
  • Nitriding rate (%) 100-silicon (wt%) ... (1) For example, when the measured silicon content is 10% by mass, the nitridation rate is 90%, and when the measured silicon content is 0% by mass, the nitridation rate is 100%.
  • the silicon nitride substrate obtained in this manner has, for example, a shape having two main surfaces and four side surfaces, and one of the first main surfaces has a surface roughness Ra1 of 0.50 ⁇ m or less.
  • This silicon nitride substrate has a rectangular shape, and is preferably obtained with each side being 100 mm or more.
  • the thickness of the silicon nitride substrate is preferably 0.15 mm or more and 0.8 mm or less.
  • Silicon nitride substrates have good thermal conductivity and are suitable for the above-mentioned applications, such as power modules. Its thermal conductivity is preferably 100 W/m ⁇ K or more, more preferably 110 W/m ⁇ K or more, and even more preferably 130 W/m ⁇ K or more.
  • a silicon nitride substrate including the nitriding step described in detail above, since the purity of silicon nitride can be improved, a silicon nitride with a thermal conductivity of 110 W/m ⁇ K or more can be easily manufactured, which is preferable.
  • the laminate 5 becomes a sintered laminate in which the sheet-like molded bodies 5a are sintered. That is, a plurality of silicon nitride substrates, which are sintered bodies, are obtained from this laminate.
  • the silicon nitride substrate after sintering is mainly composed of ⁇ -phase silicon nitride and contains rare earth elements and magnesium.
  • the rare earth element may be in a simple state or may form a compound with another substance.
  • Magnesium contained in the silicon nitride substrate may be in a single state or may be in a compound with another substance.
  • the silicon nitride substrate manufactured as described above preferably has a dense structure with a relative density of 98% or more. If the relative density of the silicon nitride substrate is less than 98%, high thermal conductivity cannot be obtained. In such a dense silicon nitride substrate, thermal conduction is less likely to be inhibited by voids, and in particular, the silicon nitride substrate of this embodiment preferably has a thermal conductivity in the thickness direction of 110 W/m ⁇ K or more.
  • the thickness of the silicon nitride substrate is not particularly limited and can be any thickness.
  • the thickness thereof when used as an insulated heat dissipation substrate for semiconductor devices or electronic equipment, the thickness thereof is preferably 0.05 mm or more and 2.5 mm or less, more preferably 0.1 mm or more and 1 mm or less, particularly for silicon nitride circuits for power modules.
  • it When used as a substrate, it is more preferably 0.2 mm or more and 0.7 mm or less.
  • the thickness of the silicon nitride substrate after sintering can be adjusted to the desired thickness by adjusting the thickness of the sheet formed body in the sheet forming process, taking into account the effect on the thickness during sintering. I can do it.
  • the laminates are stacked in two layers separated in the height direction, and then transported into a nitriding furnace and subjected to nitriding treatment. It is possible that However, if the distance between the two stacked stacked bodies is too short, heat may be trapped during the nitriding process and the silicon may melt.
  • the number of sheet-like molded bodies 5a constituting one laminate 5 is set within a range of 5 to 20. Further, the interval between the stacked bodies 5 that overlap each other in plan view is set to 9.0 mm or more. This increases the number of sheet-like molded bodies to be nitrided per hour and reduces the manufacturing cost of silicon nitride substrates. 5a can be prevented from melting. Therefore, productivity of silicon nitride substrates can be improved.
  • the nitriding treatment is performed while transporting a plurality of stacked bodies 5 lined up in a direction intersecting the transport direction, and at this time, the interval between adjacent stacked bodies 5 is set to 10 mm or more in plan view.
  • This increases the number of sheet-like molded bodies to be nitrided per hour and reduces the manufacturing cost of silicon nitride substrates. 5a can be prevented from melting. Therefore, productivity of silicon nitride substrates can be improved.
  • the amount of the magnesium compound added is expressed in mol% when all the magnesium compounds are converted to MgO.
  • the BET specific surface area, median diameter D50, and oxygen content of silicon powder before pulverization were determined using a BET single point method BET specific surface area meter, a laser diffraction/scattering method particle size distribution meter, and an inert gas melting-non-dispersive infrared absorption method, respectively. Measured using an oxygen analyzer.
  • the obtained slurry was adjusted in concentration by adding a dispersion medium and an organic binder (acrylic resin), and subjected to defoaming treatment to obtain a slurry-like coating liquid.
  • This coating slurry was applied to a conveying film using a doctor blade method, and formed into a sheet with a thickness of 0.38 mm at a forming speed of 600 mm/min or less, and cut into a sheet of 257 mm x 191 mm. A shaped body was obtained.
  • a boron nitride (BN powder) layer is formed on the main surface of the obtained sheet-like molded body.
  • a laminate 5 was prepared in which 15 sheet-like molded bodies were stacked with a boron nitride powder (BN powder) layer (thickness: 4.5 ⁇ m) interposed therebetween.
  • the case 6A is configured by stacking six BN setters 6a at intervals.
  • the first laminate 5 is placed on the surface of the lowest BN setter 6a
  • the second laminate 5 is placed on the surface of the third BN setter 6a from the bottom.
  • the third laminate 5 is placed on the surface of the fifth BN setter 6a from the bottom. That is, the laminate 5 is stacked in three stages in plan view.
  • the stacked laminates 5 do not touch each other in the height direction (vertical direction) and are spaced apart from each other with an interval of 28 mm.
  • the laminates 5 of Comparative Example and Examples 1 and 2 were arranged as shown in FIG. 7, and degreased and nitrided as follows.
  • the laminates were labeled laminate (1), laminate (2), laminate (3), and laminate (4) from the entrance side of the nitriding furnace. Further, in the transport direction of the laminate 5, the interval L2 between adjacent laminates 5 was 10 mm in the comparative example, 100 mm in Example 1, and 200 mm in Example 2.
  • the nitriding furnace used was one in which a plurality of regions were set within the nitriding furnace.
  • the nitriding furnace has a width of 330mm, a depth of 7200mm, and a height of 110mm, and is divided into 16 regions with each region having a length of 450mm.
  • the heating area is 1 to 13 regions (1 to 13 zones) from the entrance side.
  • 14 to 16 areas were used as cooling areas.
  • nitrogen gas supply pipes were provided in zones 1 to 16, respectively, and internal atmosphere discharge pipes were provided in zones 1 to 7, respectively.
  • the supply pipe and the discharge pipe were arranged at the bottom of the apparatus and the discharge pipe at the top of the apparatus so that the flow was counter-current to the conveying direction of the sheet-like molded body.
  • SiC heaters were installed in zones 1 to 13, and as the transport mechanism, a roller conveyor was used.
  • nitriding treatment was performed under the conditions shown in Table 1. At this time, the holding time indicated the holding time at the nitriding temperature, and the furnace pressure was set to 15 to 20 Pa. Further, the oxygen concentration in the nitriding furnace was always controlled to be 1 ppm or less.
  • Table 2 summarizes the evaluation results of the sheet-like molded body (nitrided body) obtained after the nitriding process. The appearance of the nitride body was observed to confirm whether melting of silicon had occurred. That is, in the white part, nitridation of silicon has been completed and turned into silicon nitride, and in the black part, silicon has melted and nitridation has not been completed.
  • indicates that no black area due to silicon melting was observed in any of the 15 nitride layers stacked in each layer of the laminate, and ⁇ indicates that the black area occupies the area of the nitride surface.
  • the ratio of the black part to the area of the nitride surface was 1% or less, and the mark "x" was the ratio of the black part to the area of the nitride surface exceeding 1%.
  • the appearance of the nitride body was observed to confirm whether swelling had occurred. That is, a convex portion having a height of 100 ⁇ m or more with respect to the nitride surface was defined as a bulge.
  • indicates that no protrusions due to blistering were observed in any of the 15 nitrides stacked on each stage of each laminate, and ⁇ indicates the protrusions occupying the area of the nitride surface.
  • the ratio of the convex portions to the area of the nitride body surface area was 5% or less, and ⁇ was the ratio of the protrusions to the area of the nitride surface exceeding 5%.
  • Example 1 In comparative examples, deformation due to melting of silicon and swelling of the substrate was confirmed in laminates (1) to (4).
  • Example 1 no melting of silicon was observed in the laminates (1) to (4), and blistering of the nitride was observed in the first stage of the laminates (1) and (2).
  • Example 2 no melting of silicon was observed in the laminates (1) to (4), and slight swelling of the substrate was observed in the first stage of the laminates (1) and (4).
  • the distance between adjacent laminates 5 is set to 100 mm or more from the viewpoint of suppressing melting of silicon. Further, it is more preferable that the interval between adjacent laminates 5 is 200 mm or more from the viewpoint of suppressing melting of silicon and suppressing deformation due to swelling of the nitride body.
  • the present invention can be widely used in methods for manufacturing silicon nitride substrates.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Ceramic Products (AREA)

Abstract

珪素を含むシート状成形体を複数重ねた積層体を窒化処理して窒化珪素基板を製造する場合において、窒化珪素基板の生産性を向上する。その手段として、搬入口および搬出口と、搬入口と搬出口との間を加熱する加熱機構と、搬入口と搬出口との間に窒素を供給する窒素供給機構とを備えた連続式加熱炉に、シート状であり珪素を含むシート状成形体が5枚以上20枚以下積層された積層体を、搬入口から搬出口まで搬送することにより窒化する、窒化珪素基板の製造方法を用いる。

Description

窒化珪素基板の製造方法
 本発明は、窒化珪素基板の製造方法に係り、特に、主に珪素粉末からなるシート状成形体を複数重ねた状態で窒化・焼結を行う窒化珪素基板の製造方法に関する。
 従来から、窒化珪素基板と金属回路および金属放熱板とを接合したセラミックス回路基板は、半導体モジュール、パワーモジュール等に利用されている。
 窒化珪素基板の製造方法として、珪素(シリコン、Si)粉末、焼結助剤、バインダおよび溶剤などからなる原材料を混合してスラリーを作製し、そのスラリーをシート状に成形することでシート状成形体(グリーンシート)を作製し、そのシート状成形体を脱脂・窒化・焼結することで窒化珪素基板を得る方法が知られている。脱脂・窒化・焼結の工程において、シート状成形体は、複数枚が積層されたうえでバッチ炉に投入されることで生産性の向上が図られている(例えば、特許文献1参照)。
特開2015-199657号公報
 しかしながら、窒化の工程において、シート状成形体の積層枚数が多くなりすぎると、反応熱が集中することで連鎖反応が発生して珪素が溶融する場合がある。このことは、製造する窒化珪素基板の外観上の問題と、当該基板における窒化反応が不十分となる問題とを生じさせる。すなわち、シート状成形体の窒化時における積層枚数を多くすることで窒化珪素基板の生産性の向上を図ることには、限界があった。
 そこで、本発明は、窒化珪素基板の生産性を向上させることを目的としてなされたものである。
 一実施の形態における窒化珪素基板の製造方法は、搬入口および搬出口と、前記搬入口と前記搬出口との間を加熱する加熱機構と、前記搬入口と前記搬出口との間に窒素を供給する窒素供給機構とを備えた連続式加熱炉に、シート状であり珪素を含むシート状成形体が5枚以上20枚以下積層された積層体を、前記搬入口から前記搬出口まで搬送することにより窒化するものである。
 一実施の形態の窒化珪素基板の製造方法によれば、窒化珪素基板の生産性を向上させる。
実施の形態における窒化処理炉の概略構成を示した斜視図である。 実施の形態における複数のシート状成形体からなる積層体とケースを示す平面図である。 図2のA-A線における断面図である。 実施の形態における積層体の搬送態様の一例を示す平面図である。 実施の形態における積層体の搬送態様の一例を示す平面図である。 比較例および実施例1、2における複数のシート状成形体からなる積層体とケースを示す断面図である。 比較例および実施例1、2における積層体の搬送態様を示す平面図である。
 実施の形態を説明するための全図において、同一の部材には原則として同一の符号を付し、その繰り返しの説明は省略する。なお、図面をわかりやすくするために平面図や側面図であってもハッチングを付す場合がある。
 <窒化珪素基板>
 本実施の形態における窒化珪素基板は、主面として、2つの面を有する窒化珪素基板であり、例えば、表面となる第1主面およびその反対面である裏面となる第2主面を有する窒化珪素基板が挙げられる。なお、表面および裏面の用語は、各面を区別するために便宜的に使用したものである。
 本実施の形態の窒化珪素基板は、例えば、パワーモジュールに使用される絶縁基板として用いることができる。パワーモジュールとは、例えば、電気自動車、ハイブリッド電気自動車、鉄道車両、あるいは、産業機器に備わるモータを制御するインバータ回路を構成する電子装置である。
 <窒化珪素基板の製造方法>
 次に、本実施の形態の窒化珪素基板の製造方法について説明する。
 (1-1)スラリーの作製(スラリー作製工程)
 まず、基板の原料となる珪素粉末に、焼結助剤として希土類元素酸化物およびマグネシウム化合物を添加して原料粉末とし、これをメディア分散等の方法で粉砕し、スラリーを作製する。以下、使用する原料について詳細に説明する。
 (a)珪素
 ここで用いる珪素としては、工業的に入手可能なグレードの珪素粉末を使用することができる。珪素粉末の純度は、99%以上が好ましく、99.5%以上がより好ましい。珪素に含まれる不純物酸素は、反応焼結によって得られる窒化珪素基板の熱伝導を阻害する要因の一つであり、できるだけ少ない方が好ましい。また、珪素に含まれる不純物炭素は、反応焼結によって得られる窒化珪素基板において、窒化珪素粒子の成長を阻害するおそれがある。その結果、緻密化不足となり熱伝導や絶縁が低下する要因の一つとなる。
 (b)希土類元素酸化物(焼結助材)
 ここで用いる希土類元素酸化物としては、入手が容易であり、また、酸化物として安定なY、Yb、Gd、Er、Lu等の酸化物が好ましい。希土類元素酸化物の具体例としては、Y、Yb、Gd、Er、Lu等が挙げられる。
 (c)マグネシウム化合物(焼結助材)
 マグネシウム化合物としては、珪素(Si)、窒素(N)または酸素(O)を含有するマグネシウム化合物を1種または2種以上使用することができる。特に、酸化マグネシウム(MgO)、窒化珪素マグネシウム(MgSiN)、珪化マグネシウム(MgSi)、窒化マグネシウム(Mg)等を使用するのが好ましい。
 (d)粉砕
 珪素粉末に、焼結助剤として希土類元素酸化物およびマグネシウム化合物を所定の比率となるように添加して、分散媒(有機溶剤)および必要に応じて分散剤を添加し、ボールミルで粉砕しスラリー(原料粉末の分散物)を作製する。分散媒および分散剤の種類は、特に限定されるものではなく、シート成形する方法等に応じて任意に選択することができる。
 分散媒としては、エタノール、n-ブタノール、トルエン、メチルエチルケトン(MEK)、メチルイソブチルケトン(MIBK)等を使用することができ、分散剤としては、例えば、ソルビタンエステル型分散剤、ポリオキシアルキレン型分散剤等を使用できる。
 粉砕を行う時間は使用するミリング装置や出発原料の量、特性等により異なるため特に限定されないが、原料粉末を十分に粉砕、混合できるように時間を選択することが好ましい。粉砕時間は例えば6時間以上48時間以下で行うのが好ましく、12時間以上24時間以下で行うのがより好ましい。粉砕時間が短すぎる場合、十分な粉砕ができず本実施の形態で求める特性の窒化珪素基板が得られない場合がある。粉砕時間が長過ぎる場合、不純物酸素量が徐々に増加し、窒化珪素基板の熱伝導率が低下する場合がある。
 (1-2)シート状成形体の作製(シート成形工程)
 得られたスラリーに、必要に応じて分散媒、有機系バインダ、分散剤等を加えて、必要に応じて真空脱泡を行い、粘度を所定の範囲内に調整し、塗工用のスラリーを作製する。
 作製した塗工用スラリーを、シート成形機を用いてシート状に成形し、所定の大きさに切断した後、乾燥することによってシート状成形体を得る。塗工用スラリー作製に用いる有機系バインダは、特に限定されないが、PVB系樹脂(ポリビニルブチラール樹脂)、エチルセルロース系樹脂、アクリル系樹脂等が挙げられる。分散媒、有機系バインダ、分散剤等の添加量は塗工条件に応じて適宜調整するのが好ましい。塗工用スラリーをシート状に成形する方法は、特に限定されるものではないが、例えば、ドクターブレード法等のシート成形法を用いることができる。
 シート状のスラリーは、その後所定の温度および湿度に設定された乾燥室に搬送され、溶剤を蒸発させて乾燥したシート状成形体となる。塗工後のシートは乾燥ゾーンを通過させることで、徐々に昇温して乾燥させる。
 成形工程において形成するシート状成形体の厚さは、最終的に得られる窒化珪素基板の厚さが所望の厚さ、例えば、0.15mm以上0.8mm以下、となるように調整でき、また、シート状成形体は、必要に応じて、打ち抜き機等で所定の大きさにカットを行うことができる。
 (1-3)成形体の加熱(加熱工程)
 得られたシート状成形体を加熱することにより、成形体に含まれる珪素を窒化した後、緻密化する。この加熱工程は、成形体中の有機バインダを除去する脱脂工程、シート状成形体を窒素雰囲気で加熱することにより成形体中に含まれる珪素(Si)と窒素(N)を反応させて窒化させる窒化工程、および窒化後に緻密化する焼結工程を含んでいる。これらの工程は、別々の炉で逐次的に行っても良いし、同じ炉において連続で行ってもよい。
 本実施の形態においては、この加熱工程を行うにあたって、シート状成形体の第1主面に、粉末状の窒化硼素(BN)を塗布し、窒化硼素(BN粉)層を形成する。この窒化硼素(BN)は、シート状成形体を複数枚積層する場合には、焼結後の分離を容易にする分離材としても機能するため、複数のシート状成形体を積層する場合には、シート状成形体同士の間に窒化硼素(BN)が存在することとなり、焼結後に得られる焼結体の積層体から各焼結体を容易に分離できる。
 このように窒化硼素粉(BN粉)を塗布したシート状成形体を電気炉内に設置し、脱脂(有機バインダ等の除去)したのち、窒化処理炉にて900℃以上1300℃以下で脱炭素し、窒素雰囲気下で、所定の温度まで昇温して窒化させ、その後、焼結装置にて焼結する。このとき成形体に10Pa以上1000Pa以下の荷重をかけながら加熱するのが好ましい。脱脂は800℃以下の温度で行うのが好ましい。
 なお、上記分離材として厚さ約3μm以上20μm以下のBN粉層を用いるのが好ましい。各シート状成形体の一面にBN粉のスラリーを、例えばスプレー、ブラシ塗布またはスクリーン印刷することによりBN粉層を形成することができる。BN粉は95%以上の純度および1μm以上20μm以下の平均粒径(D50)を有するのが好ましい。
 ここで、複数枚のシート状成形体を互いに接するように重ねることで、シート状成形体の積層体を用意する。積層体を構成して上下に重なるシート状成形体同士の間には、上記BN粉層が存在することが考えられる。ただし本願では、積層体は、互いに接して積層された複数のシート状成形体同士により構成されているものとして説明する。
 以下に、図1~図5を用いて、窒化処理炉の構成と、窒化処理炉内にて搬送するシート状成形体およびその積層体の構成について説明する。
 図1は、窒化処理炉(連続式加熱炉)1の斜視図であり、図1では窒化処理炉1の一部を破断して内部を示している。図1に示すように、窒化処理炉1は、例えば断面が矩形の筒状の構造を有しており、内部には窒化処理炉1の長手方向にシート状成形体の積層体5を搬送するためのコンベア4が配置されている。コンベア4は、例えば軸回転可能に支持された円柱状の棒を横倒しに配置し、当該棒を径方向(積層体5の搬送方向)に複数並べたものである。
 窒化処理炉1は、積層体5を搬入する搬入口2と、積層体5を搬出する搬出口3とを備えている。また、窒化処理炉1は、搬入口2と搬出口3との間を加熱する加熱機構と、搬入口2と搬出口3との間に窒素を供給する窒素供給機構とを備えている。窒化処理工程において、積層体5は搬入口2から窒化処理炉1内に搬入され、コンベア4により搬送されて、搬出口3から窒化処理炉1の外へ搬出される。
 このようにして搬送される間に、積層体(脱脂体)5を構成する複数のシート状成形体のそれぞれは、窒素雰囲気下で昇温されることで窒化する。つまり、積層体5を、搬入口2から搬出口3まで搬送することにより窒化する。搬入口2および搬出口3のそれぞれには、窒化処理炉1内の温度が下がることを防ぐため、積層体5が通過するとき以外に閉まるシャッターが設けられていてもよい。図1には、積層体5の搬送方向を白い矢印で示している。
 窒化工程において、窒化時の窒素分圧は0.05MPa以上0.7MPa以下が好ましく、0.07MPa以上0.2MPa以下がより好ましい。窒化温度は、1350℃以上1500℃以下が好ましく、1400℃以上1450℃以下がより好ましい。窒化温度まで加熱した後の保持時間は、3時間以上12時間以下が好ましく、5時間以上10時間以下がより好ましい。
 図1に示すように、積層体5は搬送方向に対して平面視において交わる第1方向(列方向)に複数並んで配置されている。ここでは、例えば4つの積層体5が、搬送方向に対して平面視において直交する方向に並んで配置されている。このようにして複数の積層体5を列方向に並べて搬送することで、一度に複数の積層体5に対し窒化処理を行える。また、このように列方向に並ぶ複数の積層体5の列を、搬送方向に複数並べて搬送することで、連続的に多数の積層体5に対して窒化処理を行える。
 ここで、図1においてコンベア4上に並ぶ積層体5の具体的な構成を、図2および図3に示す。図3は、図2のA-Aにおける断面図である。図2および図3に示すように、積層体5は、板状のBN(窒化ホウ素)セッタ6aと、BNセッタ6a上で積層体5の側面を囲むBN枠6bとからなるケース6内に配置されている。つまり、積層体5は、ケース6内に配置された状態でコンベア4上を搬送される。
 積層体5を構成するシート状成形体5aの平面形状は、長辺(第1長辺)と短辺(第1短辺)とを有する矩形、つまり長方形である。シート状成形体5aの長辺は100mm以上であり、短辺は100mm以上である。ここでは、シート状成形体5aの長辺は例えば257mmであり、短辺は例えば190mmである。BNセッタ6aの平面視における形状は、長辺と短辺とを有する矩形、つまり長方形である。BNセッタ6aの長辺は例えば280mmであり、短辺は例えば210mmである。
 図3に示すように、BNセッタ6aは互いに間隔を空けて4枚重ねられている。ここでは、1つの積層体5が一番下のBNセッタ6aの表面上に載せられており、他の積層体5が下から3番目のBNセッタ6aの表面上に載せられている。つまり、積層体5は、平面視において2段重ねられている。重ねられた積層体5同士は、高さ方向(上下方向)において接しておらず、所定の間隔を有して互いに離間している。
 本実施の形態の主な特徴の1つとして、1つの積層体5を構成するシート状成形体5aの枚数は、5枚以上20枚以下の範囲内である。具体的には、ここでは1つの積層体5が、高さ方向において互いに接して重ねられた15枚のシート状成形体5aにより構成されている。
 1枚のBNセッタ6aの厚さは、例えば1mm以上5mm以下である。1つの積層体5の厚さは、例えば7mmである。積層体5とその上のBNセッタ6aとの間隔は、例えば3mm以上23mm以下である。高さ方向で重なり合うBNセッタ6a同士の最短距離、つまりBN枠6bの高さは、例えば10mm以上30mm以下である。
 ここで、下から2番目のBNセッタ6aと下から3番目のBNセッタ6aとの間には、積層体5を配置していない。本実施の形態の主な特徴の1つとして、高さ方向において重ねられた2つの積層体5同士の最短の間隔は、9.0mm以上35.0mm以下である。具体的には、ここでは当該間隔は27mmである。
 このように、ここでは、シート状成形体5aを複数重ねた積層体5を一度に窒化処理している。また、積層体5を互いに離間させて複数重ねて一度に窒化処理している。こうすることで、単位時間当たりに窒化処理するシート状成形体5aの数を増やせるため、窒化珪素基板の製造コストを低減できる。ここで重ねた積層体5の数は2段であるが、窒化処理炉1内のスペースによっては3段以上であってもよい。その場合も、上記のように、重なり合う積層体5同士の間隔を所定の距離以上(9.0mm以上)確保する必要がある。
 上記のように。平面視において重なる積層体5同士の間隔を9.0mm以上とすることで、窒化処理工程の加熱処理において反応熱が積層体5に集中し、シート状成形体5aが溶融することを防げる。また、平面視において重なる積層体5同士の間隔を35.0mm以下とすることにより、内部空間の高さが比較的低い窒化処理炉であっても、窒化処理するシート状成形体の数を増やすことができる。
 また、図1に示すように、搬送方向に対し平面視において直交する方向に積層体5を複数並べることで、窒化珪素基板の製造コストを低減できる。ここでは、図4に示すように、各積層体5を、その長辺方向が搬送方向(図4に示す白い矢印の方向)に沿うようにコンベア4上に配列する。つまり、列方向に並ぶ複数の積層体5のそれぞれは、その長辺方向に沿う方向に搬送される。これにより、コンベア4上において列方向に並べる積層体5の数(ここでは4つ)を最大限に増やすことができる。したがって、単位時間当たりに窒化処理するシート状成形体5aの数を増やせるため、窒化珪素基板の製造コストを低減できる。
 また、図5に示すように、各積層体5を、その短辺方向が搬送方向(図5に示す白い矢印の方向)に沿うようにコンベア4上に配列することも考えられる。つまり、列方向に並ぶ複数の積層体5のそれぞれは、その短辺方向に沿う方向に搬送される。積層体5をこのように配置することで、搬送方向、つまり窒化処理炉1の長手方向、コンベア4上において列方向に並べる積層体5の数(ここでは4つ)を最大限に増やすことができる。したがって、単位時間当たりに窒化処理するシート状成形体5aの数を増やせるため、窒化珪素基板の製造コストを低減できる。
 図4および図5のいずれの向きに積層体5を配置する場合でも、列方向において隣り合う積層体5同士の間隔L1は、10mm以上である。また、積層体5の搬送方向においても、隣り合う積層体5同士の間隔L2は、10mm以上である。このように。平面視において、搬送時に隣り合う積層体5同士の間隔L1、L2を10mm以上とすることで、窒化処理工程の加熱処理において反応熱が積層体5に集中し、シート状成形体5aが溶融することを抑制することができる。間隔L1、L2は、100mm以上とすることがより好ましい。間隔L1、L2を100mm以上とすることで、窒化処理工程の加熱処理において反応熱が積層体5に集中し、シート状成形体5aが溶融することをより抑制することができる。間隔L1、L2は、200mm以上とすることがさらに好ましい。間隔L1、L2を200mm以上とすることで、窒化処理工程の加熱処理において反応熱が積層体5に集中し、シート状成形体5aが溶融することをより抑制することができるとともに、シート状成形体5aの膨れによる変形を抑制することができる。
 上記のような方法により、本実施の形態である窒化珪素基板が得られる。窒化珪素基板の窒化率は、90%以上である。より具体的にいえば、窒化珪素基板の窒化率は、窒化珪素基板の平面視における中央部SCおよび端部SEのいずれにおいても90%以上である。ここでいう窒化珪素基板の中央部SCおよび端部SEの位置は、図2に示すシート状成形体5aの中央部SCおよび端部SEの位置に対応する。端部SEは、例えば矩形の窒化珪素基板の四隅のうちの1つ、つまり角部である。
 本願でいう窒化珪素基板の窒化率は、窒化珪素基板の中央部SCおよび端部SEの領域内から平面視において10mm角の試験片をそれぞれ切り出し、X線解析により測定されるそれらの試験片の珪素の含有量より、以下の式(1)を基に求められる。
 窒化率(%)=100-珪素(wt%)   ・・・・(1)
 例えば、測定された珪素の含有量が10質量%であるときは窒化率90%であり、測定された珪素の含有量が0質量%であるときは窒化率100%である。
 このようにして得られる窒化珪素基板は、例えば、2つの主面と、4つの側面とを有する形状であり、一方の第1主面の表面粗さRa1が0.50μm以下である。
 この窒化珪素基板は、矩形形状であり、各辺を100mm以上のものとして得ることが好ましい。窒化珪素基板の厚さは0.15mm以上0.8mm以下であることが好ましい。窒化珪素基板は、熱伝導率が良好で、上記した用途、例えば、パワーモジュール等の用途に好適である。その熱伝導率は、100W/m・K以上が好ましく、110W/m・K以上がより好ましく、130W/m・K以上がさらに好ましい。上記詳細に説明した、窒化工程を有する窒化珪素基板の製造方法においては、窒化珪素の純度を向上できるため、熱伝導率も110W/m・K以上のものが容易に製造でき、好ましい。
 その後の焼結工程により、積層体5は、シート状成形体5aが焼結された焼結体の積層体となる。すなわち、この積層体から複数の焼結体である窒化珪素基板が得られる。
 焼結後の窒化珪素基板は、β相窒化珪素を主成分とし、希土類元素およびマグネシウムを含有する。希土類元素は単体の状態であってもよく、他の物質と化合物を形成していてもよい。窒化珪素基板に含まれるマグネシウムは単体の状態であってもよいし、他の物質との化合物であってもよい。
 (1-4)その他
 上記のように製造される窒化珪素基板は、相対密度が98%以上の緻密な構造を有していることが好ましい。窒化珪素基板の相対密度が98%未満であると高い熱伝導率が得られない。このような緻密な窒化珪素基板は、ボイドによる熱伝導の阻害が起こりにくく、特に本実施の形態の窒化珪素基板は、厚み方向の熱伝導率が110W/m・K以上であることが好ましい。
 窒化珪素基板の厚さは、特に限定されるものではなく、任意の厚さとすることができる。例えば、半導体素子や電子機器の絶縁放熱基板として用いる場合、その厚さは、0.05mm以上2.5mm以下が好ましく、0.1mm以上1mm以下がより好ましく、特に、パワーモジュール用の窒化珪素回路基板とする場合には、0.2mm以上0.7mm以下がさらに好ましい。焼結後の窒化珪素基板の厚さは、焼結時の厚さへの影響を考慮して、シート成形工程におけるシート成形体の厚さを調整することで、所望の厚さに調節することができる。
 <本実施の形態の効果>
 図1を用いて説明した窒化処理炉における窒化工程では、例えば45枚以上90枚以下程度のシート状成形体を互いに接するように高さ方向に重ねて窒化処理炉内に搬入させ、熱処理を行うことが考えられる。このようにシート状成形体の積層枚数を多くすることの目的は、時間当たりに窒化処理するシート状成形体の枚数を増やし、窒化珪素基板の製造コストを低減することにある。
 しかし、発明が解決しようとする課題にて説明したように、窒化工程において、シート状成形体の積層枚数が上記のように多くなりすぎると、反応熱が集中することで連鎖反応が発生して珪素が溶融する場合がある。このことは、製造する窒化珪素基板の外観上の問題と、当該基板における窒化反応が不十分となる問題とを生じさせる。
 また、シート状成形体の1つの積層体における積層枚数を減らしたうえで、当該積層体を高さ方向において離間した状態で2段重ねたものを窒化処理炉内に搬入させ、窒化処理を行うことが考えられる。しかし、重ねられた2つの積層体同士の距離が近すぎると、窒化処理時に熱がこもり、珪素が溶融する場合がある。
 そこで、本実施の形態の窒化珪素基板の製造方法では、1つの積層体5を構成するシート状成形体5aの枚数を、5枚以上20枚以下の範囲内としている。また、平面視において重なる積層体5同士の間隔を9.0mm以上としている。これにより、時間当たりに窒化処理するシート状成形体の枚数を増やし、窒化珪素基板の製造コストを低減しつつ、窒化処理工程の加熱処理において反応熱が積層体5に集中し、シート状成形体5aが溶融することを防げる。したがって、窒化珪素基板の生産性を向上させることができる。
 また、搬送方向に対して交わる方向に複数並んだ積層体5を搬送しながら窒化処理を行い、その際、平面視において、隣り合う積層体5同士の間隔を10mm以上としている。これにより、時間当たりに窒化処理するシート状成形体の枚数を増やし、窒化珪素基板の製造コストを低減しつつ、窒化処理工程の加熱処理において反応熱が積層体5に集中し、シート状成形体5aが溶融することを防げる。したがって、窒化珪素基板の生産性を向上させることができる。
 (実施例)
 本実施の形態について、実施例によりさらに詳細に説明するが、本発明はこれらに限定されるものではない。
 (スラリー作製工程)
 BET比表面積が2.1m2/g、メジアン径D50が8.2μm、酸素量が0.3質量%の珪素粉末に、珪素(窒化珪素換算)、希土類元素酸化物(三価の酸化物換算)およびマグネシウム化合物(MgO換算)の合計に対して、1.2mol%のYの粉末および9.8mol%のMgSiNの粉末を焼結助剤として添加し、原料粉末を得た。この原料粉末に、分散媒および分散剤を添加して、42質量%の濃度のスラリーとし、ボールミルを用いて、メディアとして窒化珪素製ボールを使用し、24時間粉砕を行った。
 なおマグネシウム化合物の添加量は、マグネシウム化合物を全てMgOに換算したときのmol%で示した。粉砕前の珪素粉末のBET比表面積、メジアン径D50および酸素量は、それぞれBET一点法のBET比表面積計、レーザー回折・散乱法の粒度分布計、および不活性ガス融解-非分散型赤外線吸収法の酸素分析装置を用いて測定した。
 (シート成形工程)
 得られたスラリーは、分散媒および有機系バインダ(アクリル系樹脂)を加えて濃度調整し、脱泡処理を施してスラリー状の塗工液とした。この塗工用スラリーをドクターブレード法により、搬送用フィルムに塗工し、成形速度を600mm/min以下として、厚さ0.38mmのシート状に成形し、257mm×191mmの大きさに切断しシート状成形体を得た。
 (窒化工程)
 得られたシート状成形体について、主面に窒化硼素(BN粉)層を形成する。窒化硼素粉(BN粉)層(厚さ4.5μm)を挟んで15枚のシート状成形体を積層した積層体5を作製した。比較例および実施例1、2では、図6に示したように、ケース6Aは、BNセッタ6aが互いに間隔を空けて6枚重ねて構成されている。ここでは、1つ目の積層体5が一番下のBNセッタ6aの表面上に載せられており、2つ目の積層体5が下から3番目のBNセッタ6aの表面上に載せられており、3つ目の積層体5が下から5番目のBNセッタ6aの表面上に載せられている。つまり、積層体5は、平面視において3段重ねられている。重ねられた積層体5同士は、高さ方向(上下方向)において接しておらず、それぞれ28mmの間隔を有して互いに離間している。
 図1に示した窒化処理炉を用い、比較例および実施例1、2の積層体5を、図7に示すように配置し、次のように脱脂処理および窒化処理した。各積層体は、窒化処理炉の搬入口側から積層体(1)、積層体(2)、積層体(3)、積層体(4)とした。また、積層体5の搬送方向において、隣り合う積層体5同士の間隔L2は、比較例では10mm、実施例1では100mm、実施例2では200mmとした。なお、使用した窒化処理炉は、窒化処理炉内の領域を複数設定したものを用いた。窒化処理炉は、幅330mm、奥行き7200mm、高さ110mmで、各領域の長さを450mmとして16個の領域に分け、入口側から1~13個までの領域(1~13ゾーン)を加熱エリア、14~16個までの領域(14~16ゾーン)を冷却エリアとした。ここで、窒素ガスの供給配管は、1~16ゾーンにそれぞれ設け、内部雰囲気の排出配管は、1~7ゾーンにそれぞれ設けた。供給配管と排出配管は、それぞれシート状成形体の搬送方向と向流となるように、供給配管は装置下方に、排出配管は装置上方に配置した。
 窒化処理炉の加熱機構として、1~13ゾーンにSiCヒーターを設け、搬送機構としては、ローラーコンベアを有するものとした。
 この窒化処理装置を用い、表1に示す条件で、窒化処理を行った。このとき、保持時間は窒化温度での保持時間を示し、炉内圧力は15~20Paとなるようにした。また、窒化処理炉内の酸素濃度は常時1ppm以下に制御した。
Figure JPOXMLDOC01-appb-T000001
 窒化工程後に得られたシート状成形体(窒化体)の評価結果を表2にまとめて示した。窒化体は外観を観察して珪素の溶融が起きたかを確認した。すなわち、白色部は珪素の窒化が完了して窒化珪素になっており、黒色部は珪素が溶融し窒化が完了していないとした。表2において、〇は各積層体の段毎に積層された15枚の窒化体のいずれかにおいても珪素の溶融による黒色部が確認されなかったもの、△は窒化体表面の面積に占める黒色部の割合が1%以下であったもの、×は窒化体表面の面積に占める黒色部の割合が1%を超えたものとした。また、窒化体の外観を観察して膨れが発生したかを確認した。すなわち、窒化体表面に対して高さが100μm以上である凸起部を膨れとした。表2において、〇は各積層体の段毎に積層された15枚の窒化体のいずれかにおいても膨れによる凸起部が確認されなかったもの、△は窒化体表面の面積に占める凸起部の割合が5%以下であるもの、×は窒化体表面の面積に占める凸起部の割合が5%を超えるものとした。
Figure JPOXMLDOC01-appb-T000002
 比較例では積層体(1)~(4)で珪素の溶融と基板の膨れによる変形が確認された。実施例1では積層体(1)~(4)で珪素の溶融は確認されず、積層体(1)および(2)の1段目で窒化体の膨れが確認された。実施例2では積層体(1)~(4)で珪素の溶融は確認されず、積層体(1)および(4)の1段目でわずかに基板の膨れが確認された。
 よって、隣り合う積層体5同士の間隔は、珪素の溶融を抑制する観点から、100mm以上とする。また、隣り合う積層体5同士の間隔は、200mm以上であることが珪素の溶融を抑制し、窒化体の膨れによる変形を抑制する観点からより好ましい。
 以上、本発明者によってなされた発明をその実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。
 本発明は、窒化珪素基板の製造方法に幅広く利用することができる。
1 窒化処理炉(連続式加熱炉)
2 搬入口
3 搬出口
4 コンベア
5 積層体
5a シート状成形体
6 ケース
6a BNセッタ
6b BN枠

Claims (10)

  1.  搬入口および搬出口と、前記搬入口と前記搬出口との間を加熱する加熱機構と、前記搬入口と前記搬出口との間に窒素を供給する窒素供給機構とを備えた連続式加熱炉に、シート状であり珪素を含むシート状成形体が5枚以上20枚以下積層された積層体を、前記搬入口から前記搬出口まで搬送することにより窒化し、
     平面視において、前記積層体は、搬送方向に対して交わる第1方向に複数並んだ状態で搬送され、
     平面視において、搬送時に隣り合う前記積層体同士の間隔は、100mm以上である、
     窒化珪素基板の製造方法。
  2.  請求項1に記載の窒化珪素基板の製造方法において、
     高さ方向において、前記積層体は複数重ねられ、
     重ねられた前記積層体同士の前記高さ方向における間隔は、9.0mm以上である、
     窒化珪素基板の製造方法。
  3.  請求項1に記載の窒化珪素基板の製造方法において、
     前記積層体の平面形状は、第1長辺および第1短辺を有する矩形であり、
     前記第1方向に複数並ぶ前記積層体のそれぞれは、前記第1長辺に沿う方向に搬送される、
     窒化珪素基板の製造方法。
  4.  請求項1に記載の窒化珪素基板の製造方法において、
     前記積層体の平面形状は、第1長辺および第1短辺を有する矩形であり、
     前記第1方向に複数並ぶ前記積層体のそれぞれは、前記第1短辺に沿う方向に搬送される、
     窒化珪素基板の製造方法。
  5.  請求項1に記載の窒化珪素基板の製造方法において、
     前記積層体の平面形状は、第1長辺および第1短辺を有する矩形であり、
     前記第1短辺の長さは、100mm以上である、
     窒化珪素基板の製造方法。
  6.  請求項1に記載の窒化珪素基板の製造方法において、
     前記シート状成形体の厚さは、0.05mm以上2.5mm以下である、
     窒化珪素基板の製造方法。
  7.  請求項1に記載の窒化珪素基板の製造方法において、
     窒化された前記積層体を焼結することで、積層された複数の焼結体を得る、
     窒化珪素基板の製造方法。
  8.  請求項1に記載の窒化珪素基板の製造方法において、
     窒化された前記シート状成形体の窒化率は、90%以上である、
     窒化珪素基板の製造方法。
  9.  請求項7に記載の窒化珪素基板の製造方法において、
     前記焼結体の平面形状は、第2長辺および第2短辺を有する矩形であり、
     前記第2短辺の長さは、100mm以上である、
     窒化珪素基板の製造方法。
  10.  請求項7に記載の窒化珪素基板の製造方法において、
     前記焼結体の厚さは、0.15mm以上0.8mm以下である、
     窒化珪素基板の製造方法。
PCT/JP2023/013362 2022-03-31 2023-03-30 窒化珪素基板の製造方法 WO2023190968A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022057848 2022-03-31
JP2022-057848 2022-03-31

Publications (1)

Publication Number Publication Date
WO2023190968A1 true WO2023190968A1 (ja) 2023-10-05

Family

ID=88202221

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/013362 WO2023190968A1 (ja) 2022-03-31 2023-03-30 窒化珪素基板の製造方法

Country Status (1)

Country Link
WO (1) WO2023190968A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06100303A (ja) * 1992-09-18 1994-04-12 Denki Kagaku Kogyo Kk 窒化けい素粉末の製造方法
JPH11201658A (ja) * 1998-01-07 1999-07-30 Murata Mfg Co Ltd 熱処理用治具
US20060087060A1 (en) * 2004-10-22 2006-04-27 Voiles Edwin T Continuous process for fabricating reaction bonded silicon nitride articles
JP2015199657A (ja) 2014-03-31 2015-11-12 日本ファインセラミックス株式会社 窒化ケイ素基板の製造方法
WO2022004755A1 (ja) * 2020-06-30 2022-01-06 株式会社トクヤマ 窒化ケイ素焼結基板

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06100303A (ja) * 1992-09-18 1994-04-12 Denki Kagaku Kogyo Kk 窒化けい素粉末の製造方法
JPH11201658A (ja) * 1998-01-07 1999-07-30 Murata Mfg Co Ltd 熱処理用治具
US20060087060A1 (en) * 2004-10-22 2006-04-27 Voiles Edwin T Continuous process for fabricating reaction bonded silicon nitride articles
JP2015199657A (ja) 2014-03-31 2015-11-12 日本ファインセラミックス株式会社 窒化ケイ素基板の製造方法
WO2022004755A1 (ja) * 2020-06-30 2022-01-06 株式会社トクヤマ 窒化ケイ素焼結基板

Similar Documents

Publication Publication Date Title
CN114380603B (zh) 氮化硅烧结基板的制造方法
EP2767524B1 (en) Silicon nitride substrate and method for manufacturing silicon nitride substrate
US9938444B2 (en) Method for producing silicon nitride substrate
CN113620716A (zh) 一种氮化硅陶瓷基板及其制备方法
WO2022196693A1 (ja) 窒化珪素基板
TW202208308A (zh) 氮化矽燒結基板
JP2024015261A (ja) 窒化珪素焼結基板の製造方法
JP6005930B2 (ja) 流路部材、これを用いた熱交換器および電子部品装置ならびに半導体製造装置
WO2023190968A1 (ja) 窒化珪素基板の製造方法
KR100350365B1 (ko) 세라믹 기재
KR20210035356A (ko) 질화규소 기판의 제조 방법
CN112912356B (zh) 氮化硅基板的制造方法以及氮化硅基板
JP7211549B2 (ja) 窒化珪素基板
US12065383B2 (en) Oriented ceramic sintered body production method and flat sheet
CN108349823B (zh) 取向烧结体的制造方法
KR20240153349A (ko) 질화규소 기판의 제조 방법
JP2023149329A (ja) 窒化珪素基板の製造方法、窒化珪素基板の製造装置および窒化珪素基板
JP7248187B2 (ja) 窒化珪素基板
JP2797372B2 (ja) 窒化アルミニウム基板の製造方法
JP7211476B2 (ja) 窒化珪素基板
JP7248186B2 (ja) 窒化珪素基板
JP2023068013A (ja) 窒化珪素基板
JP2007178007A (ja) マイクロ波焼成方法
JP5762815B2 (ja) 窒化アルミニウム焼結体の製造方法
KR20240000013A (ko) 질화규소 기판의 재생 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23780976

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024512840

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020247030625

Country of ref document: KR