WO2023190762A1 - 設計装置、設計方法、プログラム、多孔質構造体及びその製造方法 - Google Patents
設計装置、設計方法、プログラム、多孔質構造体及びその製造方法 Download PDFInfo
- Publication number
- WO2023190762A1 WO2023190762A1 PCT/JP2023/012987 JP2023012987W WO2023190762A1 WO 2023190762 A1 WO2023190762 A1 WO 2023190762A1 JP 2023012987 W JP2023012987 W JP 2023012987W WO 2023190762 A1 WO2023190762 A1 WO 2023190762A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- node
- porous structure
- nodes
- design
- unit
- Prior art date
Links
- 238000013461 design Methods 0.000 title claims abstract description 145
- 238000000034 method Methods 0.000 title claims description 73
- 238000004519 manufacturing process Methods 0.000 title claims description 45
- 238000005304 joining Methods 0.000 claims abstract description 34
- 238000012217 deletion Methods 0.000 claims description 9
- 230000037430 deletion Effects 0.000 claims description 9
- 238000003860 storage Methods 0.000 description 42
- 230000008569 process Effects 0.000 description 35
- 238000009826 distribution Methods 0.000 description 30
- 230000006870 function Effects 0.000 description 28
- 238000011960 computer-aided design Methods 0.000 description 19
- 238000010586 diagram Methods 0.000 description 14
- 238000012545 processing Methods 0.000 description 11
- 239000000654 additive Substances 0.000 description 10
- 230000000996 additive effect Effects 0.000 description 10
- 238000004891 communication Methods 0.000 description 10
- 238000012360 testing method Methods 0.000 description 8
- 208000010392 Bone Fractures Diseases 0.000 description 6
- 206010017076 Fracture Diseases 0.000 description 6
- 238000012938 design process Methods 0.000 description 6
- 238000012986 modification Methods 0.000 description 6
- 230000004048 modification Effects 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- 238000003466 welding Methods 0.000 description 6
- 230000008859 change Effects 0.000 description 4
- 239000007943 implant Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000006378 damage Effects 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 206010010214 Compression fracture Diseases 0.000 description 2
- 230000006399 behavior Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011359 shock absorbing material Substances 0.000 description 2
- 229910001240 Maraging steel Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000004035 construction material Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/28—Bones
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/02—Inorganic materials
- A61L27/10—Ceramics or glasses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/14—Macromolecular materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L27/56—Porous materials, e.g. foams or sponges
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/10—Geometric CAD
Definitions
- the present invention relates to a design device, a design method, a program, a porous structure, and a manufacturing method thereof.
- Patent Document 1 discloses a method of designing a porous structure for an implant by fusing cells made of a plurality of struts and nodes with other cells.
- the present invention was made based on this background, and provides a design device, a design method, and a program that can easily control the structural characteristics and mechanical characteristics of a porous structure, as well as structural characteristics and mechanical characteristics.
- An object of the present invention is to provide a porous structure with controlled porous structure and a method for manufacturing the same.
- a design device includes: an acquisition unit that acquires a design space for generating a porous structure model; At least one of the beam length, the number of branches, and the rotation angle around the axis of the existing beam so that a large number of beams constituting the network structure of the porous structure are generated in the design space acquired by the acquisition unit.
- a beam generating unit that repeatedly generates a plurality of new beams branching from a node on the tip side of an existing beam while changing the beam based on a preset rule; a nodal joint unit that selects a plurality of nodes that are not directly connected to each other by a beam from among the large number of nodes generated by the beam generation unit and joins each one to one, based on a preset rule; a model generation unit that generates a porous structure model by volumeizing each beam forming the network structure obtained by the nodal joints; Equipped with
- the beam generation unit may generate a plurality of new beams such that each beam branching from the same node extends three-dimensionally isotropically according to the number of branches set for each node of the beam.
- the beam generation unit When the beam generation unit generates a plurality of new beams branching from a node on the tip side of an existing beam, the beam generation unit may terminate beam generation at the node.
- the beam generation unit terminates beam generation at the tip side node of the new beam when the node exists outside the design space;
- the design device may further include a beam deletion unit that deletes a portion outside the design space of the beam generated by the beam generation unit and extending outside the design space.
- the beam generation unit ends the beam generation at the node on the tip side of the new beam if there is a node that satisfies a preset weldability condition within the search range from the node on the tip side of the new beam,
- the node joining unit joins the node for which beam generation has been completed in the beam generating unit, assuming that there is a node that satisfies the joinable condition within the search range, to the closest possible node to the jointable node. It's okay.
- the beam generation unit sets node numbers to the nodes in the order in which the nodes are generated;
- the nodal joining unit selects the nodes closest to the node in the descending order of set node numbers for the nodes for which beam generation has been completed in the beam generating unit because there is a node that satisfies the weldable condition within the search range. It may be joined to a jointable node.
- the beam generation unit terminates beam generation at the node when the nodal density, which is the number of nodes per unit volume within the search range set for the node on the tip side of the new beam, is greater than a nodal density threshold. It's okay.
- the model generation unit may convert each beam into a beam-like member having the same cross-sectional shape at least in the intermediate portion.
- a design method includes: A design method executed by a design device, comprising: an acquisition step of acquiring a design space for generating a porous structure model; At least one of the beam length, the number of branches, and the rotation angle around the axis of the existing beam so that a large number of beams constituting the network structure of the porous structure are generated in the design space acquired by the acquisition step.
- a beam generation step of repeatedly generating a plurality of new beams branching from a node on the tip side of an existing beam while changing the beam based on a preset rule; a node joining step of selecting a plurality of nodes that are not directly connected to each other by a beam from among the many nodes generated in the beam generation step and joining each one to one, based on a preset rule; a model generation step of generating a porous structure model by volumeizing each beam constituting the network structure obtained by the node joining step; include.
- a program according to a third aspect of the present invention, computer, an acquisition means for acquiring a design space for generating a porous structure model; At least one of the beam length, the number of branches, and the rotation angle around the axis of the existing beam so that a large number of beams constituting the network structure of the porous structure are generated in the design space acquired by the acquisition means.
- beam generating means for repeatedly generating a plurality of new beams branching from a node on the tip side of an existing beam while changing the beam based on a preset rule;
- Node joining means for selecting a plurality of nodes that are not directly connected to each other by a beam from among the large number of nodes generated by the beam generating means and joining each one to one, based on a preset rule;
- model generation means for generating a porous structure model by volumeizing each beam constituting the network structure obtained by the node joining means; function as
- a porous structure comprising a plurality of beam-like members connected to each other at nodes, Each beam-like member is arranged so that the same unit structure is not repeated in the porous structure,
- the length of the beam-like member and the number of the beam-like members branching from the node are set to be distributed within ranges of upper and lower limits respectively set.
- At least some of the multiple nodes included in the porous structure may be nodes arranged such that each beam member extends three-dimensionally isotropically from the same node.
- a method for manufacturing a porous structure according to a fifth aspect of the present invention includes: The method includes a step of manufacturing a porous structure based on a porous structure model generated by the design device or the design method.
- a design device, a design method, and a program that can easily control the structural properties and mechanical properties of a porous structure, a porous structure with controlled structural properties and mechanical properties, and the production thereof I can provide a method.
- FIG. 1 is a schematic diagram showing the configuration of a porous structure manufacturing system according to an embodiment of the present invention.
- FIG. 3 is a diagram showing an example of a beam generated by the design device according to the embodiment of the present invention.
- FIG. 2 is a perspective view showing a network structure composed of beams generated by the design device according to the embodiment of the present invention.
- FIG. 3B is a diagram showing how the beam of FIG. 3A is made into a volume.
- FIG. 1 is a block diagram showing a hardware configuration of a design device according to an embodiment of the present invention. It is a figure showing an example of the data table of the parameter storage part concerning an embodiment of the present invention. It is a figure showing an example of a data table of a probability distribution storage part concerning an embodiment of the present invention.
- FIG. 3 is a diagram showing a specific example of a beam arrangement having three-dimensional isotropy.
- FIG. 3 is a diagram showing a procedure for joining two nodes into one by the design device according to the embodiment of the present invention.
- 3 is a flowchart showing the flow of design processing according to an embodiment of the present invention.
- 3 is a flowchart showing the flow of beam generation processing according to an embodiment of the present invention.
- FIG. 6 is a diagram showing a procedure for joining two nodes into one by a design device according to a modification of the present invention.
- FIG. 7 is a diagram showing an example of the orientation angle of a beam generated by a design device according to a modification of the present invention. It is a front view which shows how the porous structure based on the modification of this invention deform
- FIG. 2 is a photographed view of the appearance of a test piece of a porous structure of the present invention in an example.
- FIG. 3 is a photographed view of the appearance of a test piece of a diamond-shaped lattice structure in an example. It is a graph showing the stress-strain relationship of each test piece in an example.
- FIG. 1 is a schematic diagram showing the configuration of a porous structure manufacturing system 1 according to an embodiment.
- the manufacturing system 1 is a system that generates a model of a porous structure and manufactures the porous structure based on the generated model.
- the manufacturing system 1 includes a design device 100 and a manufacturing device 200.
- the design device 100 and the manufacturing device 200 are communicably connected to each other via a wired or wireless communication line.
- the design device 100 generates a porous structure model composed of a large number of beam-like members arranged in a three-dimensional network in an arbitrary design space.
- the porous structure model is obtained by volumizing a large number of beams constituting the network structure, and may be either a solid model or a surface model.
- the network structure is composed of a large number of beams arranged in a three-dimensional network, and the beams are straight lines with no volume and nodes at both ends.
- FIG. 2 is a diagram showing an example of a beam generated by the design device 100 according to the embodiment.
- FIG. 2 shows a three-dimensional space viewed from directly above, and each beam is distributed on the three-dimensional space. Each beam is represented by a solid line or a dotted line, and each node including the starting point is represented by a " ⁇ " symbol.
- Generation of a new beam starts from one origin set within the design space. The next new beams are generated at the nodes on the tip sides of the four existing cantilever beams that were initially generated, as shown by the dotted lines in FIG. New beams are generated in such a way that all beams belonging to the same node extend three-dimensionally isotropically during each generation. By repeating the generation of new beams that branch from the nodes on the tip side of existing cantilever beams, a network structure consisting of a large number of beams gradually grows.
- each parameter of the beam length, the number of branches, and the rotation angle is randomly set based on a preset rule, for example, a probability distribution.
- the beam length is randomly set for each beam
- the number of branches and rotation angle are randomly set for each node.
- Beam length is the length between the nodes at each end of the beam.
- the number of branches is the number of beams branching from one node, and includes not only new beams but also existing beams. In the example of FIG. 2, the number of branches at the origin is four, and the number of branches at other nodes is three.
- the rotation angle is the rotation angle when the new beam is rotated around an axis extending in the longitudinal direction of the existing beam.
- FIG. 3A is a perspective view showing a network structure made up of beams generated by the design device 100 according to the embodiment
- FIG. 3B is a diagram showing how the beams in FIG. 3A are made into volumes.
- a network structure is generated within a design space of 25 mm x 25 mm x 25 mm. For example, if you start generating a new beam from the starting point (0, 0, 0) and then repeat generating a new beam from the node on the tip side of the generated cantilever-shaped existing beam, the result will be as shown in Figure 3A. A large number of beams are generated to extend throughout the design space.
- a porous structure model is generated by volumizing each beam so that it has a volume as shown in FIG. 3B. In beam volumeization, for example, each beam may be converted into a beam-like member having the same cross section at least in the middle.
- the manufacturing device 200 is a device that manufactures a porous structure based on CAD (Computer Aided Design) data of a model generated by the design device 100.
- the manufacturing device 200 is, for example, an additive manufacturing machine.
- Additive manufacturing machines use, for example, a laser powder bed melting method that repeats a series of steps in which a thin layer of metal powder is formed on a base plate and the metal powder layer is selectively melted with laser light.
- FIG. 4 is a block diagram showing the hardware configuration of the design device 100 according to the embodiment.
- the design device 100 is, for example, a general-purpose computer.
- the design device 100 includes an operation section 110, a display section 120, a communication section 130, a storage section 140, and a control section 150.
- Each part of the design device 100 is interconnected via an internal bus (not shown).
- an example will be described in which the design device 100 randomly changes the beam length for each beam generation, the number of branches, and the rotation angle for each node, and converts each beam into a cylindrical body with a constant diameter during volumeization.
- the operation unit 110 receives a user's instruction and supplies an operation signal corresponding to the received operation to the control unit 150.
- the operation unit 110 includes input devices such as a mouse and a keyboard, for example.
- the display unit 120 includes a display drive circuit, and displays various images for the user based on data supplied from the control unit 150.
- the display unit 120 includes, for example, a display device such as a liquid crystal display.
- the display unit 120 displays, for example, a porous structure model generated by the design device 100.
- the communication unit 130 is a communication interface for the design device 100 to communicate with external equipment.
- the communication unit 130 communicates with external equipment via a communication network such as the Internet or an input/output terminal such as a USB (Universal Serial Bus).
- a communication network such as the Internet or an input/output terminal such as a USB (Universal Serial Bus).
- USB Universal Serial Bus
- the storage unit 140 includes, for example, a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, and a hard disk.
- the storage unit 140 stores programs executed by the control unit 150 and various data. Furthermore, the storage unit 140 temporarily stores various information and also functions as a work memory for the control unit 150 to execute processing. Furthermore, the storage unit 140 includes a parameter storage unit 141 , a probability distribution storage unit 142 , and a model storage unit 143 .
- FIG. 5A is a diagram showing an example of a data table in the parameter storage unit 141 according to the embodiment.
- the parameter storage unit 141 stores the beam diameter of the network structure representing the porous structure, the search range of node junctions, the search range of node density, and the node density threshold.
- the beam diameter is the diameter of a cylindrical body when the beam is volumized and converted into a cylindrical body, and is limited to a range where additive manufacturing is possible.
- the nodal junction search range, the nodal density search range, and the nodal density threshold are all parameters related to the conditions for terminating the generation of the new beam at the node on the tip side of the new beam, and will be described in detail later.
- FIG. 5B is a diagram showing an example of a data table in the probability distribution storage unit 142 according to the embodiment.
- the probability distribution storage unit 142 stores a probability density function of the beam length and a probability mass function of the number of branches. It is preferable that upper and lower limits are set for the beam length and the number of branches, respectively.
- the probability density function of the beam length is expressed by a gamma probability distribution with upper and lower limits set as shown in FIG. 6A, and the probability mass distribution of the number of branches is expressed as 3 branches as shown in FIG. 6B. It is expressed as a Poisson probability distribution that is discretely distributed within the range of ⁇ 6.
- the probability density function of the beam length is set in consideration of the beam diameter stored in the parameter storage section 141.
- the volume density of a porous structure is one of the design indicators that greatly affects the mechanical properties of the porous structure.
- This volume density for example, at least one of increasing the beam diameter, decreasing the average beam length, or increasing the average number of branches may be performed.
- the node density threshold may be increased. For example, by increasing the volume density, the rigidity of the porous structure can be increased.
- the model storage unit 143 stores CAD data indicating the boundary surface of the design space set by the user and CAD data indicating the porous structure model generated by the design device 100.
- the boundary surface of the design space may be generated by a user using three-dimensional CAD, and the CAD data of the boundary surface generated using three-dimensional CAD may be imported into the model storage unit 143.
- the control unit 150 includes a processor and controls each part of the design device 100.
- the processor is, for example, a CPU (Central Processing Unit).
- the control unit 150 executes the design process in FIG. 9 and the beam generation process in FIG. 10 by executing programs stored in the storage unit 140.
- the control unit 150 functionally includes an acquisition unit 151, a beam generation unit 152, a node joining unit 153, a beam deletion unit 154, a model generation unit 155, and an output unit 156.
- the acquisition unit 151 obtains CAD data indicating the boundary surface of the design space set by the user, the beam diameter, the search range of node junctions, the search range of node density, and the node density threshold, as well as the probability density function of the beam length and the number of branches.
- a probability mass function is acquired and stored in one of the parameter storage unit 141, probability distribution storage unit 142, and model storage unit 143, respectively. Acquisition of data by the acquisition unit 151 also includes reading out data stored in the storage unit 140.
- the beam generation unit 152 generates a plurality of new beams branching from the nodes on the tip side of the existing beams so that a large number of beams forming a network structure of the porous structure are generated in the design space acquired by the acquisition unit 151. Generate a beam repeatedly. Specifically, as shown in Figure 2, beam generation is started at a starting point set in the design space, and then a new beam is generated that branches from the node on the tip side of the generated cantilever-shaped existing beam. repeat.
- Each beam branching from the same node is generated so as to extend three-dimensionally isotropically according to the assigned number of branches.
- the branching angle which is the angle formed by adjacent beams among a plurality of beams belonging to the same node, may be set to 120° as shown in the upper part of FIG. If the number of branches is 4, each beam is arranged in a four-legged block shape as shown in the lower part of FIG. 7, so the branching angle may be set to 109.5°.
- the beam generation unit 152 randomly changes the beam length, and the number of branches and rotation angle for each node, based on a preset rule, each time a beam is generated at a node on the tip side of an existing beam.
- the beam length and the number of branches are changed based on the probability density function and probability mass function stored in the probability distribution storage unit 142 in FIG. 5B, and the rotation angle is changed with equal probability.
- random numbers may be generated according to rules set for each. It is assumed that the random numbers include pseudo-random numbers.
- the beam generation unit 152 sequentially sets a node number i for each node each time a beam is generated. Different node numbers i are sequentially set to the nodes on the tip side of a plurality of new beams branching from the same node. For example, if the number of branches is 4, individual node numbers i are set for each of the three newly generated nodes. The node number i is used to define the order in which nodes are joined in a node joining process that will be described later.
- the beam generation unit 152 determines whether it is possible to generate a new beam for each node or whether to terminate the generation of the new beam.
- the beam generation unit 152 terminates the generation of the new beam at the node when the new beam generation termination condition is satisfied. Generation of a new beam at each node is terminated when any of the following four termination conditions (1) to (4) are satisfied.
- the node on the tip side of the new beam will be referred to as a "new node.”
- Termination condition (1) When a plurality of new beams branching from a node on the tip side of an existing beam are generated, the beam generation at the node is terminated.
- Termination condition (2) If the new node exists outside the design space, beam generation at the new node is terminated. By setting the termination condition (2), after the repeated generation of beams is completed, a network structure that slightly protrudes from the boundary surface of the design space is generated. Since the beam having the node whose beam generation has been completed under the termination condition (2) extends outside the design space, the portion extending outside the design space is deleted in the process described later.
- Termination condition (3) If the new node does not satisfy the termination condition (2) and there is a node within the search range from the new node that satisfies the preset weldability condition, the beam generation at the new node is terminated.
- a new node that satisfies termination condition (3) is joined to a node that can be joined by a process described later.
- the search range is, for example, a spherical area centered on the new node, and is expressed by the radius of the spherical area.
- the only nodes that satisfy the weldability condition during beam generation are the nodes that satisfy termination condition (1) or (2) at the time of determining whether the new node satisfies termination condition (3), and the new node to which the new node belongs Does not include the nodes at both ends of the existing beam that has branched off.
- Termination condition (4) If the new node does not satisfy termination conditions (2) and (3) and the nodal density within the search range from the new node is greater than the node density threshold, beam generation at the new node is terminated.
- the search range is, for example, a spherical area centered on the new node, and is expressed by the radius of the spherical area.
- the nodal density is the unit of nodes that can generate a new beam that exist within the search range at the time of determining whether the new node satisfies termination condition (4), or nodes that satisfy termination condition (1) or (2). This is the number per volume.
- Termination condition (4) may be omitted if the search range of node junctions, the beam length, and the probability distribution of the number of branches are appropriately set. The above are the conditions for ending beam generation.
- the node joining unit 153 joins the node for which the beam generation unit 152 has finished generating a new beam, assuming that there is a node that satisfies the joinability condition within the search range, to the nearest possible joinable node to the node.
- the node that can be joined to the node for which the new beam has been generated in the node joining section 153 is the possible node that is closest to the new node when it is determined that there is a node that satisfies the conditions for joining. It does not necessarily match the node. This is because, for example, after it is determined that there is a node that satisfies the weldability condition, a new node that satisfies the weldability condition may occur closer to the node.
- the beam generation unit 152 terminates the generation of a new beam because there is a node that satisfies the joinability condition within the search range. , search for the closest node that can be joined to the node. As shown in the area surrounded by the broken line in FIG. 8, the beam generation unit 152 assumes that there is a node that satisfies the welding possible condition within the search range, and selects the node for which a new beam has been generated as the closest weldable node to that node. join to a node. Specifically, the node where the new beam has been generated is moved so that it overlaps with the node that can be joined closest to the node, and as the node moves, the inclination and length of the beam to which the node belongs is also changed. .
- the joining of the nodes is performed in the following procedure after the beam generation unit 152 finishes repeatedly generating beams.
- the nodes that can be welded at the node with the node number i are determined in descending order of the set node number i.
- the nodes are searched and the closest possible node among the nodes that can be joined and the node with node number i are joined together.
- the nodes that can be welded are the nodes that satisfy the termination condition (1) or (2) at the time when the beam generation unit 152 completes the repeated generation of beams, and the beam to which the node with node number i belongs and this does not include nodes belonging to beams directly connected to. Furthermore, if there are a plurality of nodes having the same distance that can be joined, the node with the smallest node number i is selected and joined. By performing the joining process using the above steps, joining of nodes can be minimized. This makes it possible to maintain structural isotropy in the network structure.
- the beam deletion unit 154 removes a part of the beam that exists outside the design space and all of the cantilever-like beams that exist inside the design space and do not touch the boundary surface of the design space. Delete. Specifically, the beam deletion unit 154 deletes the cantilevered beam whose part that satisfies the beam generation termination condition (2) in the beam generation unit 152 is outside the design space acquired by the acquisition unit 151. Delete parts outside the design space. Furthermore, the beam deletion unit 154 deletes the cantilever-shaped beam inside the network structure obtained by the node joint unit 153. The reason why such a cantilever beam is removed is that it does not contribute to load transmission as a structure.
- the model generation unit 155 generates a porous structure model by volumeizing each beam of the network structure from which some beams forming the network structure have been deleted by the beam deletion unit 154. Specifically, by converting all the beams constituting the network structure into cylindrical bodies having the beam diameter acquired by the acquisition unit 151, and setting a sphere whose diameter is the beam diameter at each node, the porous CAD data representing a quality structure model is generated. By adding a sphere to each node during volumeization, the surface quality at each node can be improved.
- the output unit 156 outputs the porous structure model generated by the model generation unit 155.
- the output unit 156 causes the display unit 120 to display the CAD data of the porous structure model generated by the model generation unit 155.
- the output unit 156 controls the communication unit 130 to transmit the CAD data of the porous structure model generated by the model generation unit 155 to the manufacturing apparatus 200, for example.
- the above is the hardware configuration of the design device 100.
- the design process is a process of generating CAD data of a porous structure model in a design space specified by the user.
- the design process starts when the user starts the application of the design device 100.
- the design device 100 requests the user for instructions regarding CAD data and various parameters indicating the boundary surface of the design space.
- the various parameters include the beam diameter, the search range for node junctions, the search range for node density, the node density threshold, the beam length, and the number of branches.
- the user sets CAD data indicating the boundary surface of the design space and various parameters according to requests.
- the beam length is set by a probability density function
- the number of branches is set by a probability mass function.
- the acquisition unit 151 acquires CAD data and various parameters indicating the boundary surface of the design space set by the user, and stores them in the parameter storage unit 141 in FIG. 5A, the probability distribution storage unit 142 in FIG. 5B, and the model storage unit 143, respectively. (Step S1).
- the beam generation unit 152 executes a beam generation process in which beam generation is repeated until the beam is expanded to cover the entire design space acquired in the process of step S1 (step S2).
- the flow of beam generation processing executed by the beam generation unit 152 will be described below with reference to FIG.
- the beam generation unit 152 randomly sets the beam length, the number of branches, and the rotation angle, and performs the first beam generation at the starting point based on the set beam length, number of branches, and rotation angle (step S21).
- the starting point is preset in the design space by the user.
- the beam length and the number of branches are set based on the probability density function of the beam length and the probability mass function of the number of branches stored in the probability distribution storage unit 142 in FIG. 5B, and the rotation angle is set randomly with equal probability.
- Each beam belonging to the same node is generated so as to extend three-dimensionally isotropically according to the assigned number of branches. In the example of FIG.
- node numbers i are set in order for new nodes.
- Different node numbers i are sequentially set to nodes on the tip side of a plurality of new beams generated from the same node.
- the beam generation unit 152 determines whether there is a node that can generate a new beam (step S22). If it is determined that there is a node that can generate a new beam (step S22; Yes), the beam generation unit 152 randomly sets the beam length, number of branches, and rotation angle, and uses the set beam length, number of branches, and rotation angle. Beam generation is performed at the node where beam generation is possible with the smallest node number based on the rotation angle (step S23). At this time, the beam length is randomly set for each beam, and the number of branches and rotation angle are randomly set for each node. After beam generation, the corresponding node is set to "end of beam generation". On the other hand, if it is determined that there is no beam node that can generate a new beam (step S22; No), the process returns.
- the beam generation unit 152 determines whether the new node generated in the process in step S23 satisfies the condition for terminating the generation of the new beam at the node (step S24).
- the conditions for terminating the generation of a new beam at each node are: if multiple new beams are generated that branch from the node on the tip side of an existing beam, and if the new node exists outside the design space, the search starts from the new node. This may be done either when there is a node that satisfies the joinability condition within the range or when the node density in the search range for the new node is greater than the node density threshold.
- the search range for node junctions, the search range for node density, and the node density threshold may be read from the parameter storage unit 141 in FIG. 5A, respectively.
- step S24 If it is determined that the new node satisfies the new beam generation termination condition (step S24; Yes), the beam generation unit 152 sets the new node to "end beam generation" (step S25), and returns the process to step S22. return. On the other hand, if it is determined that the new node does not satisfy the new beam generation termination condition (step S24; No), the beam generation unit 152 sets the new node to "beam generation possible" (step S26), and continues the process. Return to step S22.
- the above is the flow of the beam generation process.
- the node joining unit 153 determines that there is a node that satisfies the weldable condition within the search range in the process of step S2, and selects the node for which the new beam has been generated, which is the closest node to the node. It joins to a joinable node (step S3).
- the nodes that can be joined at the node with the node number i are sorted in descending order of node number The nodes are searched, and the closest possible node among the nodes that can be joined and the node with node number i are joined together. If there are multiple nodes with equal distances that can be joined, the node with the smallest node number i may be selected.
- the beam deletion unit 154 removes a part of the beam that exists outside the design space and a cantilevered beam that exists inside the design space and does not touch the boundary surface of the design space. (Step S4).
- the model generation unit 155 generates CAD data of the porous structure model by volumeizing each beam of the network structure obtained in the process of step S4, and stores it in the model storage unit 143 (step S5).
- each beam is converted into a cylinder whose diameter is the beam diameter stored in the parameter storage unit 141 in FIG. 5A, and a sphere whose diameter is the beam diameter is set at each node.
- the output unit 156 outputs the porous structure model generated in the process of step S5 to the outside (step S6), and ends the process.
- the output unit 156 may display the porous structure model on the display unit 120.
- the output unit 156 may transmit CAD data of the porous structure to the manufacturing apparatus 200 via the communication unit 130. The above is the flow of the design process.
- the manufacturing device 200 Upon acquiring the CAD data of the porous structure from the design device 100, the manufacturing device 200 executes slicing to determine a tool path based on the CAD data.
- the tool path is a path along which the laser beam of the manufacturing apparatus 200 moves.
- the manufacturing apparatus 200 performs additive manufacturing based on the slicing results, thereby obtaining an actual porous structure based on the porous structure model.
- the porous structure obtained in the above steps is not limited to one that strictly reflects the shape of the porous structure model, but may be influenced by dimensional accuracy that can be realized in additive manufacturing. For example, a portion of the porous structure where a plurality of cylindrical bodies are connected may be rounded.
- the porous structure obtained by the manufacturing apparatus 200 according to the embodiment is a porous structure including a plurality of rod-like members connected to each other at nodes, and each rod-like member is the same in the porous structure. are arranged so that repetition of the unit structure does not occur.
- a rod-shaped member is an example of a beam-shaped member that connects nodes.
- the length of the rod-like members and the number of rod-like members branching from the node are set to be distributed within the upper and lower limits set for each, and the direction in which the rod-like members extend is not limited to a specific direction. has been done. Further, in the porous structure, it is preferable that the arrangement of each rod-like member does not match the arrangement of Voronoi sides constructed by Voronoi division of the design space.
- the porous structure may have the same shape at least in the middle portion of each rod-shaped member.
- the porous structure includes a large number of nodes, and some of the large number of nodes are nodes arranged such that each rod-like member extends three-dimensionally isotropically from the same node.
- Each rod-like member extends three-dimensionally isotropically when we say that for N rod-like members extending from the same node, when N points are arranged equally or equally on a unit sphere centering on the origin, each This means that N rod-shaped members are arranged along the direction of the unit vector connecting the points.
- Arranging the N points evenly means, for example, an arrangement in which the minimum value of the spherical distance between the points is the maximum among possible arrangements of the N points.
- the arrangement of the respective rod-shaped members when N points are equally arranged matches the beam arrangement shown in the specific example of FIG.
- being equivalent with respect to the same node means, for example, that the absolute value of the difference between the angles formed by each rod-shaped member and the angle formed when the point group is evenly arranged on the unit sphere is within 10 degrees. preferably within 5°.
- the porous structure has the above configuration, it has the following advantages when compared to a regular lattice structure (for example, a diamond-shaped lattice structure) composed of repeating unit structures.
- a regular lattice structure for example, a diamond-shaped lattice structure
- the porous structure according to the embodiment does not have structural anisotropy like a regular lattice structure, and is mechanically isotropic as a result. It can also withstand loads in different directions.
- unlike a regular lattice structure there is no incomplete unit structure on the surface of the design space, and therefore local destruction on the surface of the design space can be prevented.
- the stress drop and fluctuation after the initial maximum compressive stress under the compressive load exhibited by the regular lattice structure are suppressed, so the design stress can be set high and the fracture progress is suppressed. can also be suppressed. Therefore, it is suitable for application to technical fields such as biomedical engineering and aerospace engineering where fatal destructive progress is not allowed.
- the design apparatus 100 changes the existing beam while changing at least one of the beam length, the number of branches, and the rotation angle around the axis of the existing beam based on a preset rule.
- Multiple new beams branching from the tip side node are repeatedly generated, and if there is a node that satisfies the preset weldability condition within the search range from the tip side node of the new beam, the tip side node of the new beam is selected.
- the beam generation unit 152 terminates beam generation at , and selects a plurality of nodes that are not directly connected to each other by a beam from among the large number of nodes generated by the beam generation unit 152 based on a preset rule. and a nodal joint portion 153 that joins together. Therefore, it is possible to easily design a porous structure model having mechanical isotropy in any design space.
- the beam diameter, the search range of node junctions, the search range of node density, the node density threshold, the probability density function of the beam length, and the probability mass function of the number of branches are set by the user. is not limited to this.
- the design device 100 may generate the parameters and probability distributions described above based on conditions specified by the user, or the design device 100 may obtain those generated by an external computer.
- the beam length, the number of branches, and the rotation angle are changed each time the beam is generated, but the present invention is not limited to this.
- any one of the beam length, the number of branches, and the rotation angle may be changed each time the beam is generated, or two of the beam length, the number of branches, and the rotation angle may be changed each time the beam is generated.
- the same parameters are not necessarily randomly set for every beam generation, but the types of parameters that are randomly set for each beam generation may be changed each time.
- the beam length, number of branches, and rotation angle may be changed for each node during beam generation.
- the beam length is expressed by a gamma probability distribution and the number of branches is expressed by a Poisson probability distribution, but the present invention is not limited to this.
- the beam length and the number of branches may be expressed, for example, by a uniform probability distribution.
- the beam length and the number of branches do not necessarily have to be randomly generated based on a probability distribution, but may be set based on a predetermined rule within a numerical range set for each beam generation.
- the new beam is generated so that the existing beam and the new beam belonging to the same node are three-dimensionally isotropic, but the present invention is not limited to this.
- New beams may be generated such that the angles formed by adjacent beams among a plurality of beams belonging to the same node are different from each other.
- the present invention is not limited to this.
- Two or more starting points may be set within the design space.
- the network structure may be integrated by connecting the beams belonging to each origin to each other. For example, if two starting points are set in the design space, and the node on the tip side of the beam belonging to one starting point and the node on the tip side of the beam belonging to the other starting point are within the distance threshold, The network structure may be integrated by joining to one node.
- the new beam generation end condition is set in advance and beam generation is controlled based on this, but the present invention is not limited to this.
- the target number of generations for beam generation may be stored in the parameter storage unit 141, and new beams may be repeatedly generated simultaneously from all nodes on the tip side of the existing cantilever beam until the number of repetitions reaches the target number of generations. may be used as the condition for terminating the generation of a new beam.
- the number of generations is the number of times beams are generated at the same timing, and the target number of generations is the target number of generations.
- two nodes defined by the node joining conditions are joined into one after a network structure composed of a large number of beams is generated, but the present invention is not limited to this.
- two nodes defined by the new beam generation termination condition (3) may be joined into one.
- the node at which the generation of a new beam has ended is moved so that it overlaps with the node that satisfies the welding possibility condition closest to the node, but the present invention is not limited to this. I can't do it.
- the extension line of the beam to which the node that has finished generating a new beam belongs and the line of one of the beams to which the node that satisfies the weldability condition closest to the node belongs.
- a new node may be set at the point where the extension line intersects.
- the beam generation unit 152 determines that there is a node that satisfies the welding possible condition within the search range from the node on the tip side of the new beam, and selects the node that is the closest to the welding node from which the new beam has been generated.
- possible nodes are joined into one, the present invention is not limited to this.
- the node is The node that can be joined at the second closest position to the node may be joined together.
- the cantilevered beam inside the structure that does not touch the boundary surface of the design space is deleted, but the present invention is not limited to this.
- the process of deleting the cantilever beam may be omitted.
- a cantilever-shaped beam exists on the surface of the structure that is in contact with the boundary surface of the design space, but the present invention is not limited to this.
- a network structure may also be formed on the surface by connecting the tips of mutually adjacent cantilever beams on the surface of the structure through additional beams.
- a plurality of surfaces may be attached along the boundary surface of the design space so as to cover the tip surface of the cantilever beam.
- the surface attached to the tip end surface of the cantilevered beam may be a flat surface or a curved surface.
- the network structure is generated to the extent that it slightly exceeds the boundary surface of the design space, but the present invention is not limited to this.
- a spherical space containing the design space may be set, a network structure may be generated within this spherical space, and then portions of the network structure outside the boundary of the design space may be deleted.
- a network structure composed of a large number of beams is made into a volume by converting each beam into a cylinder and setting spheres with the same diameter at the nodes, but the present invention is not limited to this. do not have.
- the cross-sectional shape of the beam-like member obtained by volumeizing the beam may be formed into an ellipse, or a polygon such as a triangle, square, or rectangle.
- the beam-like member is not limited to a rod-like member, and may be, for example, a plate-like member.
- a porous structure having structural isotropy was created, but the present invention is not limited to this.
- structural anisotropy may be intentionally provided by adjusting beams and branches according to the orientation angle.
- the orientation angle of the beam is a parameter that represents the attitude of the beam with respect to the reference coordinate system set in the design space. For example, if the reference coordinate system is an orthogonal coordinate system consisting of the XYZ axes, the orientation angle is as shown in FIG. It can be expressed as an angle with respect to the Z axis.
- step S4 an additional process to give the network structure structural anisotropy is performed. It may be applied.
- the orientation direction of all beams relative to the reference coordinate system may be changed, and specifically, the entire network structure may be expanded or contracted in one direction.
- a beam within a preset orientation angle range may be deleted, or a new beam having an orientation angle within a preset range may be added.
- processing may be performed to give the model structural anisotropy during beam generation in the beam generation process (step S2).
- the beam length may be expanded or contracted depending on the orientation angle, or at least one of the number of branches and the rotation angle may be changed.
- a weighting coefficient according to the orientation angle is set in advance, and this weighting coefficient is read from the probability distribution storage unit 142 as a probability density function of the beam length and a probability mass function of the number of branches, and is stored in the storage unit 140.
- the rotation angle can be multiplied by any of the probability density functions of the rotation angle.
- the weighting coefficient is, for example, a value obtained by adding 0.5 to the cosine value of the angle formed with the Z axis.
- the weighting coefficient was set as the cosine of the angle with the Z axis plus 0.5, and the beam length determined by the probability density function was multiplied by the weighting coefficient. It is best to set it to length.
- the beam oriented along the Z axis has a length 1.5 times the beam length determined by the probability density function
- the beam oriented along the XY plane has a length 0.5 times.
- Another method for creating structural anisotropy in a model during beam generation is to increase the beam length of a beam whose orientation angle, which is the angle formed by the Z axis, is larger than a threshold value and whose beam length is larger than a threshold value.
- the beams may be shortened or shortened to a certain beam length, and the beams connected to these beams may be lengthened.
- the above method can be applied, for example, to eliminating beams with orientation angles and lengths that are difficult to manufacture using manufacturing equipment when laminating in the Z-axis direction by additive manufacturing, thereby improving the manufacturability of porous structures. It is also useful in terms of improvement.
- processing to give the model structural anisotropy may be performed in the process of determining the end of generation of a new beam in the beam generation process (step S2) and in the node joining process (step S3).
- the orientation angle of the beam when welding to each possible welding node is within the preset orientation angle range. If there is a node that can be joined within the range of the orientation angle, the generation of the new beam may be terminated.
- the porous structure obtained by the above method has beams arranged in various directions compared to a lattice structure where the orientation angle of the beams is limited to a few types, so the mechanical properties depending on the direction in which the load is applied are gentle. It is possible to realize structural anisotropy that changes to Furthermore, the above method can be applied to exclude beams that are difficult to manufacture using manufacturing equipment from the model, and is also useful in improving the manufacturability of porous structures.
- the model of the porous structure may be intentionally given a sloped structure.
- a tilted structure is a type of structure with structural anisotropy, and parameters that affect the structural properties, such as beam length, nodal junction search range, number of branches, nodal density search range, nodal density threshold, and beam diameter.
- the structure is such that at least one of the parameters is distributed within the model.
- the porous structure may be provided with a weak region where deformation or destruction is likely to occur and a strong region where deformation or destruction is unlikely to occur.
- the weak region 11 is first Can be configured to transform.
- the beam length, the search range of node connections, and the number of branches a distribution according to the coordinates in the design space.
- a weighting coefficient depending on the coordinates in the design space is set, and the probability density of the beam length read from the probability distribution storage unit 142 is set. Just multiply the function.
- the origin of the reference coordinate system is set at the center of the porous structure, the weighting coefficient at the origin is set to 0.5, and the positions of the maximum and minimum Z-axis coordinates are each set to 1.5, and the Z-axis coordinate is It is only necessary to change it linearly along the .
- a beam length distribution according to the Z-axis coordinate can be given to the porous structure model.
- Another method is to convert each beam into a truncated cone-shaped bar member in the model volumeization process (step S5), and in this conversion process, change the diameter of each bar member in the length direction according to the coordinates in the design space. You may let them.
- the origin of the reference coordinate system is set at the center of the porous structure, and the diameter of each beam is set in advance by changing linearly from the origin toward the maximum and minimum positions of the Z-axis coordinate.
- the diameter of the nodes at both ends in the Z-axis coordinate may be converted into a truncated cone-shaped rod member by using the diameters of the upper and lower surfaces of the truncated cone.
- the beam diameter and volume density distribution according to the Z-axis coordinate can be given to the porous structure model.
- Another method is to change the nodal density threshold, which is one of the conditions for terminating the generation of a new beam, in accordance with the coordinates in the design space in the process of step S24 that constitutes the beam generation process (step S2). Then, the density distribution of the nodes may be changed depending on the coordinates in the design space.
- the tilted porous structure obtained by the above method can control deformation and fracture behavior, and retains high energy absorption properties compared to isotropic porous structures of the same or equivalent mass.
- the elastic modulus, offset stress, and plateau stress can be changed, it is suitable as, for example, a shock absorbing material.
- various data are stored in the storage unit 140 of the design device 100, but the present invention is not limited to this.
- all or part of various data may be stored in an external control device or computer via a communication network.
- the design device 100 operates based on the program stored in the storage unit 140, but the present invention is not limited to this.
- a functional configuration realized by a program may be realized by hardware.
- the design device 100 is a general-purpose computer, but the present invention is not limited to this.
- the design device 100 may be realized by a dedicated system or a computer provided on the cloud.
- the process executed by the design device 100 is realized by the device having the above-described physical configuration executing the program stored in the storage unit 140.
- the program may be realized as a storage medium on which the program is recorded.
- the program for executing the above processing operations can be stored on a computer-readable disk such as a flexible disk, CD-ROM (Compact Disk Read-Only Memory), DVD (Digital Versatile Disk), or MO (Magneto-Optical Disk).
- a computer-readable disk such as a flexible disk, CD-ROM (Compact Disk Read-Only Memory), DVD (Digital Versatile Disk), or MO (Magneto-Optical Disk).
- a porous structure made of metal is manufactured using a laser powder bed melting method, but the present invention is not limited to this, and can be applied to the manufacture of porous structures made of ceramic or resin materials. It's okay.
- a resin porous structure may be manufactured using a material extrusion method (MEX).
- MEX material extrusion method
- the produced porous structure can be used in a wide variety of applications, such as medical devices (eg, implants), structural materials for transportation devices, construction materials for buildings, and shock absorbing materials.
- a porous structure was produced using the method according to the embodiment described above, and its mechanical properties were evaluated.
- a porous structure was designed in a design space of 25 mm x 25 mm x 25 mm, and this was manufactured by additive manufacturing. Specifically, first, a network-like skeleton was created by arbitrarily giving the length and number of branches of each beam constituting the skeleton of the porous structure according to a probability distribution. Next, by giving all the beams of the network structure a cylindrical volume with a constant diameter and giving the nodes a spherical volume with the same diameter, a volume was given to the network structure, and a porous structure model was generated.
- the probability density function of the beam length of each beam constituting the skeleton of the porous structure was given by a gamma probability distribution, and upper and lower limits were set.
- the cross-sectional dimension of the beam to be manufactured was set within the range of the length of the beam that can be horizontally formed by the manufacturing apparatus.
- the probability mass function of the number of branches was given by Poisson probability distribution, and the number of branches was limited to three or four.
- the probability density functions of the beam diameter and beam length, and the probability mass function of the number of branches were each set so that the volume density of the porous structure was about 40%. It was confirmed that the designed porous structure had no bias in the direction of beam orientation when viewed macroscopically, and had no structural anisotropy.
- a porous structure was manufactured using an additive manufacturing device (LUMEX Avance-25 manufactured by Matsuura Kikai Seisakusho) using a laser powder bed melting method.
- Maraging steel powder (Matsuura Maraging II manufactured by Matsuura Kikai Seisakusho) was used as the material.
- six sides of the sample were machined to produce a 20 mm x 20 mm x 20 mm test piece shown in Figure 14A.
- a test piece with a standard diamond-shaped lattice structure having the same dimensions and the same volume density as shown in FIG. 14B was prepared.
- a compression fracture test was conducted on both in accordance with ISO13314.
- a mechanical testing machine AG-250kND manufactured by Shimadzu Corporation
- Figure 15 shows the results.
- the porous structure of the present invention suppresses the decrease and fluctuation of stress after the initial maximum compressive stress, and greatly improves absorbed energy. Therefore, it can be understood that in the porous structure of the present invention, the development of fracture during compressive loading can be suppressed, so the design stress can be set high, and the absorbed energy can be improved.
- the design device, design method, and program of the present invention can easily control the structural properties and mechanical properties of a porous structure, and the porous structure and its manufacturing method of the present invention can easily control the structural properties and mechanical properties of a porous structure. It is useful because its properties are controlled.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Transplantation (AREA)
- Veterinary Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Oral & Maxillofacial Surgery (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Epidemiology (AREA)
- Physics & Mathematics (AREA)
- Dermatology (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Geometry (AREA)
- Mathematical Analysis (AREA)
- Pure & Applied Mathematics (AREA)
- Mathematical Optimization (AREA)
- Computer Hardware Design (AREA)
- Evolutionary Computation (AREA)
- General Engineering & Computer Science (AREA)
- Computational Mathematics (AREA)
- Dispersion Chemistry (AREA)
- Ceramic Engineering (AREA)
- Inorganic Chemistry (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Cardiology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
Abstract
設計装置(100)は、取得部(151)により取得された設計空間内に多孔質構造体のネットワーク構造を構成する多数のビームが生成されるように、ビーム長、分岐数、及び既存ビームの軸周りの回転角度の少なくとも1つを予め設定した規則に基づいて変更しながら、既存ビームの先端側の節点から分岐する複数の新規ビームを繰り返し生成するビーム生成部(152)と、予め設定した規則に基づいて、ビーム生成部(152)で生成される多数の節点のうちビームにより互いに直接接続されていない複数の節点を選択してそれぞれ1つに接合する節点接合部(153)と、を備える。
Description
本発明は、設計装置、設計方法、プログラム、多孔質構造体及びその製造方法に関する。
近年、生体医工学や宇宙航空工学といった高度な機能性が要求される分野で多数の空孔を有する多孔質構造体に注目が集まっている。付加製造技術により製造が可能で、所望の特性を有する多孔質構造体を実現するための設計手法の開発が進められている。例えば、特許文献1には、複数のストラット及びノードからなるセルを他のセルに融合させることで、インプラント用の多孔質構造体を設計する方法が開示されている。
特許文献1の設計方法では、各ストラットの剛性、配向及び分岐といった特性を制御していないため、多孔質構造体の構造特性を制御できず、負荷方向によって力学特性が異なる多孔質構造体が得られる。このような多孔質構造体を例えばインプラントに適用した場合、予期しない方向から突発的な荷重が加えられると破損するおそれがある。このような問題は、多孔質構造体をインプラントに適用する場合に限られず、多孔質構造体を他の物体に適用する場合にも存在している。
本発明は、このような背景に基づいてなされたものであり、多孔質構造体における構造特性や力学特性を容易に制御することが可能な設計装置、設計方法及びプログラム、並びに構造特性や力学特性が制御された多孔質構造体及びその製造方法を提供することを目的とする。
上記目的を達成するために、本発明の第1の観点に係る設計装置は、
多孔質構造体モデルを生成する設計空間を取得する取得部と、
前記取得部により取得された設計空間内に多孔質構造体のネットワーク構造を構成する多数のビームが生成されるように、ビーム長、分岐数、及び既存ビームの軸周りの回転角度の少なくとも1つを予め設定した規則に基づいて変更しながら、既存ビームの先端側の節点から分岐する複数の新規ビームを繰り返し生成するビーム生成部と、
予め設定した規則に基づいて、前記ビーム生成部で生成される多数の節点のうちビームにより互いに直接接続されていない複数の節点を選択してそれぞれ1つに接合する節点接合部と、
前記節点接合部により得られたネットワーク構造を構成する各ビームをボリューム化することで多孔質構造体モデルを生成するモデル生成部と、
を備える。
多孔質構造体モデルを生成する設計空間を取得する取得部と、
前記取得部により取得された設計空間内に多孔質構造体のネットワーク構造を構成する多数のビームが生成されるように、ビーム長、分岐数、及び既存ビームの軸周りの回転角度の少なくとも1つを予め設定した規則に基づいて変更しながら、既存ビームの先端側の節点から分岐する複数の新規ビームを繰り返し生成するビーム生成部と、
予め設定した規則に基づいて、前記ビーム生成部で生成される多数の節点のうちビームにより互いに直接接続されていない複数の節点を選択してそれぞれ1つに接合する節点接合部と、
前記節点接合部により得られたネットワーク構造を構成する各ビームをボリューム化することで多孔質構造体モデルを生成するモデル生成部と、
を備える。
前記ビーム生成部は、ビームの節点毎に設定される分岐数に応じて同一の節点から分岐する各ビームが3次元等方的に延びるように複数の新規ビームを生成してもよい。
前記ビーム生成部は、既存ビームの先端側の節点から分岐する複数の新規ビームを生成した場合に当該節点におけるビームの生成を終了してもよい。
前記ビーム生成部は、新規ビームの先端側の節点が設計空間外に存在する場合に当該節点におけるビームの生成を終了し、
前記設計装置は、前記ビーム生成部により生成され、前記設計空間外に延びるビームのうち前記設計空間外の部分を削除するビーム削除部をさらに備えてもよい。
前記設計装置は、前記ビーム生成部により生成され、前記設計空間外に延びるビームのうち前記設計空間外の部分を削除するビーム削除部をさらに備えてもよい。
ビーム生成部は、新規ビームの先端側の節点から探索範囲以内に予め設定した被接合可能条件を満たす節点がある場合に当該新規ビームの先端側の節点でビームの生成を終了し、
前記節点接合部は、前記ビーム生成部で探索範囲内に被接合可能条件を満たす節点が存在するとしてビームの生成が終了した節点を、当該節点から最も近くにある被接合可能な節点に接合させてもよい。
前記節点接合部は、前記ビーム生成部で探索範囲内に被接合可能条件を満たす節点が存在するとしてビームの生成が終了した節点を、当該節点から最も近くにある被接合可能な節点に接合させてもよい。
前記ビーム生成部は、節点が生成された順番に節点に節点番号を設定し、
前記節点接合部は、前記ビーム生成部において探索範囲内に被接合可能条件を満たす節点が存在するとしてビームの生成を終了した節点について、設定された節点番号の小さい順番で当該節点から最も近い被接合可能な節点に接合させてもよい。
前記節点接合部は、前記ビーム生成部において探索範囲内に被接合可能条件を満たす節点が存在するとしてビームの生成を終了した節点について、設定された節点番号の小さい順番で当該節点から最も近い被接合可能な節点に接合させてもよい。
前記ビーム生成部は、新規ビームの先端側の節点に設定された探索範囲内における単位体積あたりの節点の数である節点密度が節点密度閾値よりも大きい場合に当該節点におけるビームの生成を終了してもよい。
前記モデル生成部は、各ビームを少なくとも中間部において同一の断面形状を有する梁状部材に変換してもよい。
上記目的を達成するために、本発明の第2の観点に係る設計方法は、
設計装置が実行する設計方法であって、
多孔質構造体モデルを生成する設計空間を取得する取得工程と、
前記取得工程により取得された設計空間内に多孔質構造体のネットワーク構造を構成する多数のビームが生成されるように、ビーム長、分岐数、及び既存ビームの軸周りの回転角度の少なくとも1つを予め設定した規則に基づいて変更しながら、既存ビームの先端側の節点から分岐する複数の新規ビームを繰り返し生成するビーム生成工程と、
予め設定した規則に基づいて、前記ビーム生成工程で生成される多数の節点のうちビームにより互いに直接接続されていない複数の節点を選択してそれぞれ1つに接合する節点接合工程と、
前記節点接合工程により得られたネットワーク構造を構成する各ビームをボリューム化することで多孔質構造体モデルを生成するモデル生成工程と、
含む。
設計装置が実行する設計方法であって、
多孔質構造体モデルを生成する設計空間を取得する取得工程と、
前記取得工程により取得された設計空間内に多孔質構造体のネットワーク構造を構成する多数のビームが生成されるように、ビーム長、分岐数、及び既存ビームの軸周りの回転角度の少なくとも1つを予め設定した規則に基づいて変更しながら、既存ビームの先端側の節点から分岐する複数の新規ビームを繰り返し生成するビーム生成工程と、
予め設定した規則に基づいて、前記ビーム生成工程で生成される多数の節点のうちビームにより互いに直接接続されていない複数の節点を選択してそれぞれ1つに接合する節点接合工程と、
前記節点接合工程により得られたネットワーク構造を構成する各ビームをボリューム化することで多孔質構造体モデルを生成するモデル生成工程と、
含む。
上記目的を達成するために、本発明の第3の観点に係るプログラムは、
コンピュータを、
多孔質構造体モデルを生成する設計空間を取得する取得手段、
前記取得手段により取得された設計空間内に多孔質構造体のネットワーク構造を構成する多数のビームが生成されるように、ビーム長、分岐数、及び既存ビームの軸周りの回転角度の少なくとも1つを予め設定した規則に基づいて変更しながら、既存ビームの先端側の節点から分岐する複数の新規ビームを繰り返し生成するビーム生成手段、
予め設定した規則に基づいて、前記ビーム生成手段で生成される多数の節点のうちビームにより互いに直接接続されていない複数の節点を選択してそれぞれ1つに接合する節点接合手段、
前記節点接合手段により得られたネットワーク構造を構成する各ビームをボリューム化することで多孔質構造体モデルを生成するモデル生成手段、
として機能させる。
コンピュータを、
多孔質構造体モデルを生成する設計空間を取得する取得手段、
前記取得手段により取得された設計空間内に多孔質構造体のネットワーク構造を構成する多数のビームが生成されるように、ビーム長、分岐数、及び既存ビームの軸周りの回転角度の少なくとも1つを予め設定した規則に基づいて変更しながら、既存ビームの先端側の節点から分岐する複数の新規ビームを繰り返し生成するビーム生成手段、
予め設定した規則に基づいて、前記ビーム生成手段で生成される多数の節点のうちビームにより互いに直接接続されていない複数の節点を選択してそれぞれ1つに接合する節点接合手段、
前記節点接合手段により得られたネットワーク構造を構成する各ビームをボリューム化することで多孔質構造体モデルを生成するモデル生成手段、
として機能させる。
上記目的を達成するために、本発明の第4の観点に係る多孔質構造体は、
節点同士で互いに接続された複数の梁状部材を備える多孔質構造体であって、
各梁状部材は、前記多孔質構造体において同一の単位構造の繰り返しが発生しないように配置され、
前記梁状部材の長さ及び前記節点から分岐する前記梁状部材の数は、それぞれに設定された上限及び下限の範囲内で分布するように設定されている。
節点同士で互いに接続された複数の梁状部材を備える多孔質構造体であって、
各梁状部材は、前記多孔質構造体において同一の単位構造の繰り返しが発生しないように配置され、
前記梁状部材の長さ及び前記節点から分岐する前記梁状部材の数は、それぞれに設定された上限及び下限の範囲内で分布するように設定されている。
前記多孔質構造体が備える多数の節点の少なくとも一部が、各梁状部材が同一節点から3次元等方的に延びるように配置された節点であってもよい。
上記目的を達成するために、本発明の第5の観点に係る多孔質構造体の製造方法は、
前記設計装置又は前記設計方法により生成された多孔質構造体モデルに基づいて、多孔質構造体を製造する工程を含む。
前記設計装置又は前記設計方法により生成された多孔質構造体モデルに基づいて、多孔質構造体を製造する工程を含む。
本発明によれば、多孔質構造体における構造特性や力学特性を容易に制御することが可能な設計装置、設計方法及びプログラム、並びに構造特性や力学特性が制御された多孔質構造体及びその製造方法を提供できる。
以下、本発明の実施の形態に係る設計装置、設計方法、プログラム、多孔質構造体及びその製造方法を、図面を参照しながら詳細に説明する。各図面においては、同一又は同等の部分に同一の符号を付す。
図1は、実施の形態に係る多孔質構造体の製造システム1の構成を示す概略図である。製造システム1は、多孔質構造体のモデルを生成し、生成されたモデルに基づいて多孔質構造体を製造するシステムである。製造システム1は、設計装置100と、製造装置200と、を備える。設計装置100と製造装置200とは、有線又は無線の通信回線を介して互いに通信可能に接続されている。
設計装置100は、任意の設計空間に3次元ネットワーク状に配列された多数の梁状部材で構成された多孔質構造体モデルを生成する。多孔質構造体モデルは、ネットワーク構造を構成する多数のビームをボリューム化することで得られ、ソリッドモデル及びサーフェースモデルのいずれであってもよい。ネットワーク構造は、3次元ネットワーク状に配列された多数のビームで構成され、ビームは、両端に節点を有する体積を有していない直線である。
図2は、実施の形態に係る設計装置100が生成するビームの一例を示す図である。図2では、3次元空間を真上から見下ろした様子を図示しており、各ビームは3次元空間上に分布している。各ビームを実線又は点線で、起点を含む各節点を「記号●」で表現している。新規ビームの生成は、設計空間内に設定された1つの起点から開始される。次の新規ビームは、図2の点線で示すように最初に生成された片持ち梁状の4本の既存ビームの先端側にある節点でそれぞれ生成される。新規ビームは、いずれの生成時にも同一の節点に属する全てのビームが3次元等方的に延びるように生成される。片持ち梁状の既存ビームの先端側の節点から分岐する新規ビームの生成を繰り返すことで、多数のビームで構成されるネットワーク構造が次第に成長する。
ネットワーク構造の各ビームをランダムに配向させるため、ビーム長、分岐数及び回転角度の各パラメータは、予め設定した規則、例えば、確率分布に基づいてランダムに設定される。具体的には、ビーム長はビーム毎に、分岐数及び回転角度は節点毎にランダムに設定される。ビーム長は、ビームの両端にある節点間の長さである。分岐数は、1つの節点から分岐するビームの数であり、新規ビームのみならず既存ビームも含まれる。図2の例では、起点での分岐数は4であり、その他の節点での分岐数は3である。回転角度は、新規ビームを既存ビームの長手方向に延びる軸周りに回転させた際の回転角度である。
図3Aは、実施の形態に係る設計装置100が生成したビームで構成されるネットワーク構造を示す斜視図であり、図3Bは、図3Aのビームをボリューム化する様子を示す図である。図3Aでは、一例として25mm×25mm×25mmの設計空間内にネットワーク構造を生成している。例えば、起点(0,0,0)から新規ビームの生成を開始し、その後は生成された片持ち梁状の既存ビームの先端側の節点から新規ビームの生成を繰り返すと、図3Aに示すように設計空間全体に拡張するように多数のビームが生成される。次に、図3Bに示すように各ビームが体積を持つようにボリューム化すると、多孔質構造体モデルが生成される。ビームのボリューム化では、例えば、各ビームを、少なくとも中間部で同一断面を有する梁状部材に変換すればよい。
図1に戻り、製造装置200は、設計装置100で生成されたモデルのCAD(Computer Aided Design)データに基づいて、多孔質構造体を製造する装置である。製造装置200は、例えば、付加製造機である。付加製造機では、例えば、ベースプレート上に金属粉末の薄い層を形成し、レーザ光で選択的に金属粉末層を溶かす一連の工程を繰り返すレーザ粉末床溶融法を用いる。
図4は、実施の形態に係る設計装置100のハードウェア構成を示すブロック図である。設計装置100は、例えば、汎用コンピュータである。設計装置100は、操作部110と、表示部120と、通信部130と、記憶部140と、制御部150と、を備える。設計装置100の各部は、内部バス(図示せず)を介して相互に接続されている。以下、設計装置100においてビーム生成毎にビーム長を、節点毎に分岐数及び回転角度をランダムに変更し、ボリューム化において各ビームを直径一定の円柱体に変換する場合を例に説明する。
操作部110は、ユーザの指示を受け付け、受け付けた操作に対応する操作信号を制御部150に供給する。操作部110は、例えば、マウス、キーボードといった入力デバイスを備える。
表示部120は、表示駆動回路を備え、制御部150から供給されるデータに基づいて、ユーザに向けて各種の画像を表示する。表示部120は、例えば、液晶ディスプレイのような表示デバイスを備える。表示部120は、例えば、設計装置100で生成された多孔質構造体モデルを表示する。
通信部130は、設計装置100が外部の機器と通信するための通信インタフェースである。通信部130は、例えば、インターネットのような通信ネットワーク、USB(Universal Serial Bus)のような入出力端子を介して外部の機器と通信する。
記憶部140は、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、ハードディスクを備える。記憶部140は、制御部150で実行されるプログラムや各種のデータを記憶する。また、記憶部140は、各種の情報を一時的に記憶し、制御部150が処理を実行するためのワークメモリとしても機能する。さらに、記憶部140は、パラメータ記憶部141と、確率分布記憶部142と、モデル記憶部143と、を備える。
図5Aは、実施の形態に係るパラメータ記憶部141のデータテーブルの一例を示す図である。パラメータ記憶部141は、多孔質構造体を示すネットワーク構造のビーム径、節点接合の探索範囲、節点密度の探索範囲及び節点密度閾値を記憶する。ビーム径は、ビームをボリューム化して円柱体に変換する際の円柱体の直径であり、付加製造が可能な範囲に制限される。節点接合の探索範囲、節点密度の探索範囲及び節点密度閾値は、いずれも新規ビームの先端側の節点における新規ビームの生成終了条件に関するパラメータであり、詳しくは後述する。
図5Bは、実施の形態に係る確率分布記憶部142のデータテーブルの一例を示す図である。確率分布記憶部142は、ビーム長の確率密度関数及び分岐数の確率質量関数を記憶する。ビーム長及び分岐数には、それぞれ上限値及び下限値が設定されることが好ましい。一例として、ビーム長の確率密度関数は、図6Aに示すように上限値及び下限値が設定されたガンマ確率分布で表現され、分岐数の確率質量分布は、図6Bに示すように分岐数3~6の範囲内で離散的に分布するポアソン確率分布で表現される。ビーム長の確率密度関数は、パラメータ記憶部141に記憶されたビーム径を考慮して設定される。
多孔質構造体の体積密度は、多孔質構造体の力学的特性に大きく影響を与える設計指標の一つである。この体積密度を大きくするには、例えば、ビーム径を大きくするか、平均ビーム長を短くするか、平均分岐数を大きくするか、少なくとも1つを行うとよい。節点密度閾値を大きくしてもよい。体積密度を大きくすることで、例えば、多孔質構造体の剛性を高めることができる。
図4に戻り、モデル記憶部143は、ユーザにより設定された設計空間の境界面を示すCADデータ、及び設計装置100により生成された多孔質構造体モデルを示すCADデータを記憶する。設計空間の境界面は、例えば、ユーザが三次元CADを用いて生成し、三次元CADで生成された境界面のCADデータをモデル記憶部143に取り込めばよい。
制御部150は、プロセッサを備え、設計装置100の各部の制御を行う。プロセッサは、例えば、CPU(Central Processing Unit)である。制御部150は、記憶部140に記憶されているプログラムを実行することにより、図9の設計処理及び図10のビーム生成処理をそれぞれ実行する。制御部150は、機能的には、取得部151と、ビーム生成部152と、節点接合部153と、ビーム削除部154と、モデル生成部155と、出力部156と、を備える。
取得部151は、ユーザにより設定された設計空間の境界面を示すCADデータ、ビーム径、節点接合の探索範囲、節点密度の探索範囲及び節点密度閾値、並びにビーム長の確率密度関数及び分岐数の確率質量関数を取得し、それぞれをパラメータ記憶部141、確率分布記憶部142及びモデル記憶部143のいずれかに記憶させる。取得部151によるデータの取得には、記憶部140に記憶されたデータを読み出すことも含まれる。
ビーム生成部152は、取得部151により取得された設計空間内に多孔質構造体のネットワーク構造を構成する多数のビームが生成されるように、既存ビームの先端側の節点から分岐する複数の新規ビームを繰り返し生成する。具体的には、図2に示すように設計空間内に設定された起点においてビーム生成を開始し、その後は生成された片持ち梁状の既存ビームの先端側の節点から分岐する新規ビームの生成を繰り返す。
同一節点から分岐する各ビームは、割り当てられた分岐数に応じて3次元等方的に延びるように生成する。例えば、分岐数が3であれば、図7の上側に示すように同一の節点に属する複数のビームのうち互いに隣り合うビームのなす角である分岐角度を120°に設定すればよい。分岐数が4であれば、図7の下側に示すように各ビームが4脚ブロック状に配置されるため、分岐角度を109.5°に設定すればよい。
ビーム生成部152は、既存ビームの先端側の節点におけるビーム生成毎にビーム長を、節点毎に分岐数及び回転角度を、予め設定した規則に基づいてランダムに変更する。ビーム長及び分岐数は、図5Bの確率分布記憶部142に記憶された確率密度関数及び確率質量関数に基づいて変更し、回転角度は、等確率で変更する。ビーム長、分岐数及び回転角度をランダムに変更するには、それぞれに設定された規則に従って乱数を発生させるとよい。乱数には、疑似乱数が含まれるものとする。ビーム生成毎にビーム長、分岐数及び回転角度をランダムに変更することで、各ビームのビーム長や配向がランダムに分布し、巨視的に見るとネットワーク構造における構造的な等方性が得られる。
ビーム生成部152は、ビームの生成毎に各節点に対して節点番号iを順番に設定する。同一節点から分岐する複数の新規ビームの先端側の節点に互いに異なる節点番号iを順番に設定する。例えば、分岐数4であれば、新規に生成された3つの節点にそれぞれ個別の節点番号iを設定する。節点番号iは、後述する節点の接合処理で節点を接合する順番を規定するのに用いる。
ビーム生成部152は、節点毎に新規ビームの生成が可能か新規ビームの生成を終了させるかを判断する。ビーム生成部152は、新規ビーム生成の終了条件を満たす場合に節点における新規ビームの生成を終了させる。各節点において新規ビームの生成を終了させるのは、以下の4つの終了条件(1)~(4)のいずれかを満たす場合である。以下、理解を容易にするために、新規ビームの先端側の節点を「新規節点」と呼ぶこととする。
終了条件(1)
既存ビームの先端側の節点から分岐する複数の新規ビームを生成した場合、当該節点におけるビームの生成を終了させる。
既存ビームの先端側の節点から分岐する複数の新規ビームを生成した場合、当該節点におけるビームの生成を終了させる。
終了条件(2)
新規節点が設計空間外に存在する場合に、当該新規節点におけるビーム生成を終了させる。終了条件(2)が設定されることにより、ビームの繰り返し生成の終了後には、設計空間の境界面を僅かにはみ出すようなネットワーク構造が生成される。終了条件(2)でビーム生成を終了させた節点を有するビームは、設計空間外に延びるため、後述する処理で設計空間外に延びた部分を削除する。
新規節点が設計空間外に存在する場合に、当該新規節点におけるビーム生成を終了させる。終了条件(2)が設定されることにより、ビームの繰り返し生成の終了後には、設計空間の境界面を僅かにはみ出すようなネットワーク構造が生成される。終了条件(2)でビーム生成を終了させた節点を有するビームは、設計空間外に延びるため、後述する処理で設計空間外に延びた部分を削除する。
終了条件(3)
新規節点が終了条件(2)を満たさず、当該新規節点から探索範囲内に予め設定した被接合可能条件を満たす節点が存在する場合に、当該新規節点におけるビームの生成を終了させる。終了条件(3)を満たす新規節点については、後述する処理で被接合可能な節点に接合させる。探索範囲は、例えば、新規節点を中心とする球状領域であり、球状領域の半径で表現される。ビーム生成時における被接合可能条件を満たす節点は、新規節点が終了条件(3)を満たすか判定する時点で終了条件(1)又は(2)を満たす節点だけであり、当該新規節点が属する新規ビームを分岐させた既存ビームの両端の節点を含まない。
新規節点が終了条件(2)を満たさず、当該新規節点から探索範囲内に予め設定した被接合可能条件を満たす節点が存在する場合に、当該新規節点におけるビームの生成を終了させる。終了条件(3)を満たす新規節点については、後述する処理で被接合可能な節点に接合させる。探索範囲は、例えば、新規節点を中心とする球状領域であり、球状領域の半径で表現される。ビーム生成時における被接合可能条件を満たす節点は、新規節点が終了条件(3)を満たすか判定する時点で終了条件(1)又は(2)を満たす節点だけであり、当該新規節点が属する新規ビームを分岐させた既存ビームの両端の節点を含まない。
終了条件(4)
新規節点が終了条件(2)及び(3)を満たさず、当該新規節点から探索範囲内の節点密度が節点密度閾値よりも大きい場合に、当該新規節点におけるビームの生成を終了させる。探索範囲は、例えば、新規節点を中心とする球状領域であり、球状領域の半径で表現される。節点密度は、当該新規節点が終了条件(4)を満たすか判定する時点で探索範囲内に存在する新規ビームの生成が可能な節点、又は終了条件(1)若しくは(2)を満たす節点の単位体積あたりの数である。終了条件(4)を設定するのは、これを満たす新規節点においてこれ以上のビーム生成を繰り返すと周囲領域にビームが密集してしまうためである。終了条件(4)は、節点接合の探索範囲やビーム長及び分岐数の確率分布を適切に設定すれば省略してもよい。
以上が、ビーム生成の終了条件である。
新規節点が終了条件(2)及び(3)を満たさず、当該新規節点から探索範囲内の節点密度が節点密度閾値よりも大きい場合に、当該新規節点におけるビームの生成を終了させる。探索範囲は、例えば、新規節点を中心とする球状領域であり、球状領域の半径で表現される。節点密度は、当該新規節点が終了条件(4)を満たすか判定する時点で探索範囲内に存在する新規ビームの生成が可能な節点、又は終了条件(1)若しくは(2)を満たす節点の単位体積あたりの数である。終了条件(4)を設定するのは、これを満たす新規節点においてこれ以上のビーム生成を繰り返すと周囲領域にビームが密集してしまうためである。終了条件(4)は、節点接合の探索範囲やビーム長及び分岐数の確率分布を適切に設定すれば省略してもよい。
以上が、ビーム生成の終了条件である。
節点接合部153は、ビーム生成部152において探索範囲内に被接合可能条件を満たす節点が存在するとして新規ビームの生成が終了した節点を、当該節点と最も近い被接合可能な節点に接合する。節点接合部153で新規ビームの生成が終了した節点を接合する被接合可能な節点は、被接合可能条件を満たす節点が存在すると判定された時点で当該新規節点から最も近いとされた被接合可能な節点と必ずしも一致しない。これは、例えば、被接合可能条件を満たす節点が存在すると判定した後に、より近くに被接合可能条件を新たに満たす節点が生じることがあるためである。
図8の具体例を用いて個々の節点の接合処理を説明すると、まず、ビーム生成部152において探索範囲内に被接合可能条件を満たす節点が存在するとして新規ビームの生成を終了させた節点について、当該節点から最も近い被接合可能な節点を検索する。図8の破線で囲んだ領域に示すようにビーム生成部152において探索範囲内に被接合可能条件を満たす節点が存在するとして新規ビームの生成が終了した節点を、当該節点と最も近い被接合可能な節点に接合する。具体的には、新規ビームの生成が終了した節点が当該節点と最も近い被接合可能な節点と重なるように移動させ、当該節点の移動に合わせて当該節点が属するビームの傾きや長さも変化させる。
節点の接合は、ビーム生成部152によりビームの繰り返しの生成が終了した後に、以下の手順で行う。ビーム生成部152において探索範囲内に被接合可能条件を満たす節点が存在するとして新規ビームの生成が終了した節点について、設定された節点番号iの小さい順に、節点番号iの節点において被接合可能な節点を検索し被接合可能な節点のうち最も近い位置にある被接合可能な節点と節点番号iの節点とを1つに接合する。このとき、被接合可能な節点は、ビーム生成部152によりビームの繰り返しの生成が終了した時点で終了条件(1)又は(2)を満たした節点とし、節点番号iの節点が属するビーム及びこれに直接接続するビームに属する節点を含まない。また、等しい距離の被接合可能な節点が複数ある場合には、節点番号iが最も小さい節点を選択して接合する。
以上の手順で接合処理を行うことで、節点の接合を最小限に抑えることができる。これによりネットワーク構造における構造的な等方性を維持できる。
以上の手順で接合処理を行うことで、節点の接合を最小限に抑えることができる。これによりネットワーク構造における構造的な等方性を維持できる。
ビーム削除部154は、節点接合部153で得られたネットワーク構造において、設計空間外に存在するビームの一部と設計空間の境界面に接しない内部に存在する片持ち梁状のビームの全部とを削除する。具体的には、ビーム削除部154は、ビーム生成部152においてビーム生成の終了条件(2)を満たした一部が取得部151で取得した設計空間外にある片持ち梁状のビームについて、当該設計空間外の部分を削除する。また、ビーム削除部154は、節点接合部153で得られたネットワーク構造の内部にある片持ち梁状のビームを削除する。このような片持ち梁状のビームを削除するのは、構造体として負荷の伝達に寄与しないためである。
モデル生成部155は、ビーム削除部154によりネットワーク構造を構成する一部のビームが削除されたネットワーク構造の各ビームをボリューム化することで、多孔質構造体モデルを生成する。具体的には、ネットワーク構造を構成する全てのビームを取得部151で取得したビーム径を有する円柱体に変換すると共に、各節点にビーム径を直径とする球体を合わせて設定することで、多孔質構造体モデルを示すCADデータを生成する。ボリューム化の際に各節点に球体を付与することで、各節点における表面性状を向上させることができる。
出力部156は、モデル生成部155で生成された多孔質構造体モデルを出力する。出力部156は、例えば、モデル生成部155で生成した多孔質構造体モデルのCADデータを表示部120に表示させる。また、出力部156は、例えば、通信部130を制御して、モデル生成部155で生成した多孔質構造体モデルのCADデータを製造装置200に向けて送信する。
以上が、設計装置100のハードウェア構成である。
以上が、設計装置100のハードウェア構成である。
(設計処理)
次に、図9を参照して、実施の形態に係る設計装置100の制御部150が実行する設計処理を説明する。設計処理は、ユーザにより指定された設計空間に多孔質構造体モデルのCADデータを生成する処理である。設計処理は、ユーザが設計装置100のアプリケーションを起動させた時点で開始される。
次に、図9を参照して、実施の形態に係る設計装置100の制御部150が実行する設計処理を説明する。設計処理は、ユーザにより指定された設計空間に多孔質構造体モデルのCADデータを生成する処理である。設計処理は、ユーザが設計装置100のアプリケーションを起動させた時点で開始される。
設計装置100は、設計空間の境界面を示すCADデータ及び各種パラメータに関する指示をユーザに要求する。各種パラメータには、ビーム径、節点接合の探索範囲、節点密度の探索範囲、節点密度閾値、ビーム長、分岐数が含まれる。ユーザは、要求に応じて設計空間の境界面を示すCADデータ及び各種パラメータを設定する。このとき、ビーム長は確率密度関数で、分岐数は確率質量関数で設定する。取得部151は、ユーザにより設定された設計空間の境界面を示すCADデータ及び各種パラメータを取得し、それぞれ図5Aのパラメータ記憶部141、図5Bの確率分布記憶部142及びモデル記憶部143のいずれかに記憶させる(ステップS1)。
次に、ビーム生成部152は、ステップS1の処理で取得された設計空間全体に拡張するまでビームの生成を繰り返すビーム生成処理を実行する(ステップS2)。以下、図10を参照して、ビーム生成部152が実行するビーム生成処理の流れを説明する。
(ビーム生成処理)
まず、ビーム生成部152は、ビーム長、分岐数及び回転角度をランダムに設定し、設定されたビーム長、分岐数及び回転角度に基づいて起点における最初のビーム生成を行う(ステップS21)。起点は、ユーザにより設計空間内に予め設定されている。ビーム長及び分岐数は、図5Bの確率分布記憶部142に記憶されたビーム長の確率密度関数及び分岐数の確率質量関数に基づいて設定し、回転角度は、等確率でランダムに設定する。同一節点に属する各ビームは、割り当てられた分岐数に応じて3次元等方的に延びるように生成する。図2の例では、起点から4本のビームを生成しているが、起点の分岐数は4以外であってもよい。ビーム生成後、起点を「ビーム生成終了」に設定し、新規節点を「ビーム生成可能」に設定する。以下、各節点におけるビームの生成時には、新規節点に対して節点番号iを順番に設定する。起点における節点番号はi=1である。同一節点から生成する複数の新規ビームの先端側の節点に、互いに異なる節点番号iを順番に設定する。
まず、ビーム生成部152は、ビーム長、分岐数及び回転角度をランダムに設定し、設定されたビーム長、分岐数及び回転角度に基づいて起点における最初のビーム生成を行う(ステップS21)。起点は、ユーザにより設計空間内に予め設定されている。ビーム長及び分岐数は、図5Bの確率分布記憶部142に記憶されたビーム長の確率密度関数及び分岐数の確率質量関数に基づいて設定し、回転角度は、等確率でランダムに設定する。同一節点に属する各ビームは、割り当てられた分岐数に応じて3次元等方的に延びるように生成する。図2の例では、起点から4本のビームを生成しているが、起点の分岐数は4以外であってもよい。ビーム生成後、起点を「ビーム生成終了」に設定し、新規節点を「ビーム生成可能」に設定する。以下、各節点におけるビームの生成時には、新規節点に対して節点番号iを順番に設定する。起点における節点番号はi=1である。同一節点から生成する複数の新規ビームの先端側の節点に、互いに異なる節点番号iを順番に設定する。
次に、ビーム生成部152は、新規ビームを生成可能な節点が存在するかどうかを判定する(ステップS22)。新規ビームを生成可能な節点が存在すると判定された場合(ステップS22;Yes)、ビーム生成部152は、ビーム長、分岐数及び回転角度をランダムに設定し、設定されたビーム長、分岐数及び回転角度に基づいて節点番号が最小であるビーム生成が可能な節点におけるビーム生成を行う(ステップS23)。このとき、ビーム長はビーム毎に、分岐数及び回転角度は節点毎にランダムに設定する。ビーム生成後、当該節点を「ビーム生成終了」に設定する。他方、新規ビームを生成可能なビームの節点が存在しないと判定された場合(ステップS22;No)、処理をリターンする。
ステップS23の処理の終了後、ビーム生成部152は、ステップS23の処理で生成された新規節点が、当該節点における新規ビームの生成を終了させる条件を満たすかどうかを判定する(ステップS24)。具体的には、各節点における新規ビームの生成終了条件は、既存ビームの先端側の節点から分岐する複数の新規ビームを生成した場合、新規節点が設計空間外に存在する場合、新規節点から探索範囲内に被接合可能条件を満たす節点が存在する場合、及び新規節点の探索範囲における節点密度が節点密度閾値よりも大きい場合のいずれかとすればよい。節点接合の探索範囲、節点密度の探索範囲、及び節点密度閾値は、それぞれ図5Aのパラメータ記憶部141に記憶されているものを読み取ればよい。
新規節点が新規ビームの生成終了条件を満たすと判定された場合(ステップS24;Yes)、ビーム生成部152は、新規節点を「ビーム生成終了」に設定し(ステップS25)、処理をステップS22に戻す。他方、新規節点が新規ビームの生成終了条件を満たさないと判定された場合(ステップS24;No)、ビーム生成部152は、新規節点を「ビーム生成可能」に設定し(ステップS26)、処理をステップS22に戻す。
以上が、ビーム生成処理の流れである。
以上が、ビーム生成処理の流れである。
図9の設計処理に戻り、節点接合部153は、ステップS2の処理において探索範囲内に被接合可能条件を満たす節点が存在するとして新規ビームの生成が終了した節点を、当該節点と最も近い被接合可能な節点に接合する(ステップS3)。具体的には、ステップS2の処理で探索範囲内に被接合可能条件を満たす節点が存在していると判定された節点について、節点番号iの小さい順に、節点番号iの節点において被接合可能な節点を検索し、被接合可能な節点のうち最も近い位置にある被接合可能な節点と節点番号iの節点とを1つに接合する。等しい距離の被接合可能な節点が複数ある場合には、節点番号iが最も小さい節点を選択すればよい。
次に、ビーム削除部154は、ステップS3の処理で得られたネットワーク構造において、設計空間外に存在するビームの一部と設計空間の境界面に接しない内部に存在する片持ち梁状のビームの全部とを削除する(ステップS4)。
次に、モデル生成部155は、ステップS4の処理で得られたネットワーク構造の各ビームをボリューム化することで、多孔質構造体モデルのCADデータを生成してモデル記憶部143に記憶させる(ステップS5)。ボリューム化では、各ビームを図5Aのパラメータ記憶部141に記憶されたビーム径を直径とする円柱体に変換すると共に、各節点に当該ビーム径を直径とする球体を設定する。
次に、出力部156は、ステップS5の処理で生成された多孔質構造体モデルを外部に出力し(ステップS6)、処理を終了する。例えば、ユーザがモデルの表示を指示する場合、出力部156は、多孔質構造体モデルを表示部120に表示させてもよい。また、ユーザが製造装置200における多孔質構造体の実物の製造を指示する場合、出力部156は、通信部130を介して製造装置200に多孔質構造体のCADデータを送信してもよい。
以上が、設計処理の流れである。
以上が、設計処理の流れである。
製造装置200は、設計装置100から多孔質構造体のCADデータを取得すると、CADデータに基づいて工具経路を決定するスライシングを実行する。工具経路は、製造装置200のレーザビームが移動する経路である。そして、製造装置200が、スライシングの結果に基づいて付加製造を実行することで、多孔質構造体モデルに基づく多孔質構造体の実物が得られる。上記の工程で得られる多孔質構造体は、多孔質構造体モデルの形状を厳密に反映させたものに限られず、付加製造において実現可能な寸法精度の影響を許容するものとする。例えば、多孔質構造体において複数の円柱体が接続された部分が丸みを帯びていてもよい。
実施の形態に係る製造装置200により得られた多孔質構造体は、節点同士で互いに接続された複数の棒状部材を備える多孔質構造体であって、各棒状部材は、多孔質構造体において同一の単位構造の繰り返しが発生しないように配置されている。棒状部材は、節点と節点を繋ぐ梁状部材の一例である。棒状部材の長さ及び前記節点から分岐する棒状部材の数は、それぞれに設定された上限及び下限の範囲内で分布するように設定され、棒状部材が延びる方向が特定方向に限定されずに配置されている。また、多孔質構造体では、各棒状部材の配置が設計空間のボロノイ分割により構築されるボロノイ辺の配置と一致しないように構成されることが好ましい。多孔質構造体は、各棒状部材の少なくとも中間部において同一形状を備えてもよい。
多孔質構造体は、多数の節点を備え、多数の節点の一部は、各棒状部材が同一節点から3次元等方的に延びるように配置された節点である。各棒状部材が3次元等方的に延びるとは、同一節点から延びるN本の棒状部材について、原点を中心とする単位球面上にN個の点を均等又は同等に配置したとき、原点と各点とを結ぶ単位ベクトルの方向に沿って、N本の棒状部材が配置されることを意味する。N個の点を均等に配置するとは、例えば、N個の点の可能な配置の中で点間の球面距離の最小値が最大となるような配置である。例えば、N=3、4においてN個の点を均等に配置したときのそれぞれの棒状部材の配置は、図7の具体例で示すビーム配置と一致する。また、同一節点に関して同等であるとは、例えば、各棒状部材が互いになす角が、点群を単位球面上に均等に配置したときのなす角との差分の絶対値が例えば10°以内であること、好ましくは5°以内であることを含む。
多孔質構造体は、上記の構成を備えるため、単位構造の繰り返しで構成される規則的な格子構造体(例えば、ダイヤモンド型格子構造体)と比較すると、以下の利点を有する。まず、実施の形態に係る多孔質構造体には、規則的な格子構造体のような構造異方性が存在せず、その結果として力学的にも等方的であるため、突発的な予期しない方向の荷重にも耐えることができる。また、実施の形態に係る多孔質構造体では、規則的な格子構造体のように設計空間表面に不完全な単位構造が存在しないため、設計空間表面における局所的な破壊を防止できる。加えて、実施の形態に係る多孔質構造体では、規則的な格子構造体が示す圧縮負荷における初期最大圧縮応力後の応力低下や変動が抑制されるため、設計応力を高く設定でき、破壊進展も抑制できる。したがって、生体医工学や宇宙航空工学といった致命的な破壊進展が許されない技術分野への適用に好適である。
以上説明したように、実施の形態に係る設計装置100では、ビーム長、分岐数、及び既存ビームの軸周りの回転角度の少なくとも1つを予め設定した規則に基づいて変更しながら、既存ビームの先端側の節点から分岐する複数の新規ビームを繰り返し生成し、新規ビームの先端側の節点から探索範囲以内に予め設定した被接合可能条件を満たす節点がある場合に当該新規ビームの先端側の節点でビームの生成を終了させるビーム生成部152と、予め設定した規則に基づいて、ビーム生成部152で生成される多数の節点のうちビームにより互いに直接接続されていない複数の節点を選択してそれぞれ1つに接合する節点接合部153と、を備える。このため、任意の設計空間に力学的な等方性を有する多孔質構造体モデルを容易に設計できる。
本発明は上記の実施形態に限られず、以下に述べる変形も可能である。
(変形例)
上記実施の形態では、ビーム径、節点接合の探索範囲、節点密度の探索範囲及び節点密度閾値、並びにビーム長の確率密度関数及び分岐数の確率質量関数がユーザにより設定されていたが、本発明はこれに限られない。例えば、ユーザの指定した条件に基づいて設計装置100で上記のパラメータ及び確率分布を生成してもよく、外部のコンピュータで生成したものを設計装置100が取得してもよい。
上記実施の形態では、ビーム径、節点接合の探索範囲、節点密度の探索範囲及び節点密度閾値、並びにビーム長の確率密度関数及び分岐数の確率質量関数がユーザにより設定されていたが、本発明はこれに限られない。例えば、ユーザの指定した条件に基づいて設計装置100で上記のパラメータ及び確率分布を生成してもよく、外部のコンピュータで生成したものを設計装置100が取得してもよい。
上記実施の形態では、ビーム生成毎にビーム長、分岐数及び回転角度を変更していたが、本発明はこれに限られない。例えば、ビーム生成毎にビーム長、分岐数及び回転角度のいずれか1つを変更してもよく、ビーム生成毎にビーム長、分岐数及び回転角度のうちの2つを変更してもよい。また、全てのビーム生成時に同一のパラメータをランダムに設定する場合に限られず、ビーム生成毎にランダムに設定されるパラメータの種類をその都度変更してもよい。加えて、ビーム生成時において節点毎にビーム長、分岐数及び回転角度を変更してもよい。
上記実施の形態では、ビーム長をガンマ確率分布で、分岐数をポアソン確率分布で表現していたが、本発明はこれに限られない。ビーム長及び分岐数は、例えば、一様確率分布で表現してもよい。また、必ずしもビーム長及び分岐数を確率分布に基づいてランダムに生成させる必要はなく、ビーム生成毎に設定された数値範囲内で予め定められた規則に基づいて設定してもよい。
上記実施の形態では、同一の節点に属する既存ビーム及び新規ビームが3次元等方的になるように新規ビームを生成していたが、本発明はこれに限られない。同一の節点に属する複数のビームのうち互いに隣り合うビームのなす角がそれぞれ相違するように新規ビームを生成してもよい。
上記実施の形態では、起点が設計空間内に1つだけ設定されていたが、本発明はこれに限られない。設計空間内に2つ以上の起点を設定してもよい。この場合、各起点に属するビームを互いに接続することで、ネットワーク構造を一体化するとよい。例えば、設計空間内に2つの起点が設定されている場合、一方の起点に属するビームの先端側の節点と他方の起点に属するビームの先端側の節点とが距離閾値以内にあるとき、両者を1つの節点に接合することで、ネットワーク構造を一体化してもよい。
上記実施の形態では、新規ビームの生成終了条件を予め設定し、これに基づいてビームの生成を制御していたが、本発明はこれに限られない。例えば、パラメータ記憶部141にビーム生成の目標世代数を記憶させ、片持ち梁状の既存ビームの先端側の節点の全てから同時に新規ビームを繰り返し生成させ、繰り返し回数が目標世代数に到達することを新規ビームの生成終了条件としてもよい。世代数は、同一のタイミングでビームを生成した回数であり、目標世代数は、目標とする世代数である。
上記実施の形態では、多数のビームで構成されるネットワーク構造を生成した後に、節点接合条件により規定された2つの節点を1つに接合していたが、本発明はこれに限られない。例えば、新規ビームを生成した時点で、新規ビームの生成終了条件(3)により規定された2つの節点を1つに接合してもよい。
上記実施の形態では、図8に示すように新規ビームの生成を終了させた節点を当該節点と最も近い被接合可能条件を満たす節点と重なるように移動させていたが、本発明はこれに限られない。例えば、図11の「記号★」で示すように、新規ビームの生成を終了させた節点が属するビームの延長線と、当該節点と最も近い被接合可能条件を満たす節点が属するいずれかのビームの延長線とが交差する点に新たな節点を設定してもよい。
上記実施の形態では、ビーム生成部152において新規ビームの先端側の節点から探索範囲内に被接合可能条件を満たす節点が存在するとして新規ビームの生成が終了した節点を当該節点と最も近い被接合可能な節点とを1つに接合していたが、本発明はこれに限られない。例えば、ビーム生成部152において探索範囲内に被接合可能条件を満たす節点が存在するとして新規ビームの生成が終了した節点について、当該節点に最も近い位置にある被接合可能な節点ではなく、当該節点に2番目に近い位置にある被接合可能な節点と当該節点とを1つに接合してもよい。
上記実施の形態では、設計空間の境界面に接しない構造体内部の片持ち梁状のビームを削除していたが、本発明はこれに限られない。例えば、多孔質構造体の体積密度を増加させたい場合などには、片持ち梁状のビームを削除する処理(ステップS4)を省略してもよい。
上記実施の形態では、設計空間の境界面に接する構造体表面に片持ち梁状のビームが存在していたが、本発明はこれに限られない。例えば、構造体表面にある互いに隣接する片持ち梁状のビームの先端同士を追加のビームを介して接続することで、表面にもネットワーク構造を形成してもよい。また、設計空間の境界面に沿って片持ち梁状のビームの先端面を覆うように複数の面を貼り付けてもよい。片持ち梁状のビームの先端面に貼り付ける面は、平面であっても曲面であってもよい。これにより多孔質構造体の表面でも強度を確保でき、巨視的な変形を抑制できる。なお、上記の手法は、製造装置による製造可能な片持ち梁状のビームの長さや配向角の条件が両端支持により緩和できるため、多孔質構造体の製造性が向上する点でも有用である。
上記実施の形態では、設計空間の境界面をわずかに越える程度にネットワーク構造を生成していたが、本発明はこれに限られない。例えば、設計空間を内包する球体空間を設定しておき、この球体空間内にネットワーク構造を生成し、次いで設計空間の境界面の外側にあるネットワーク構造の部分を削除してもよい。
上記実施の形態では、各ビームを円柱体に変換し、節点に同径の球体を設定することで、多数のビームで構成されるネットワーク構造をボリューム化していたが、本発明はこれに限られない。例えば、ビームをボリューム化して得られる梁状部材の断面形状を楕円や、三角形、正方形、長方形のような多角形で形成してもよい。また、梁状部材は、棒状部材に限られず、例えば、板状部材であってもよい。
上記実施の形態では、構造的な等方性を有する多孔質構造体を作成していたが、本発明はこれに限られない。多孔質構造体のモデルにおいて配向角に応じてビーム及び分岐を調整することで意図的に構造異方性を持たせてもよい。ビームの配向角は、設計空間に設定された基準座標系を基準とするビームの姿勢を表すパラメータであり、例えば、基準座標系をXYZ軸からなる直交座標系とすると、図12に示すようにZ軸に対するなす角で表現すればよい。
モデルに構造異方性を持たせるには、例えば、構造的な等方性を有するネットワーク構造を生成する処理(ステップS4)の終了後に、ネットワーク構造に構造異方性を持たせる追加の処理を施してもよい。構造異方性を持たせるには、例えば、基準座標系に対する全ビームの配向方向を変更すればよく、具体的には、ネットワーク構造全体を一方向に伸縮させればよい。また、予め設定された配向角の範囲内にあるビームを削除するか、予め設定された範囲内の配向角を有する新たなビームを追加してもよい。
他の手法として、ビーム生成処理(ステップS2)におけるビーム生成時にモデルに構造異方性を持たせる処理を施してもよい。例えば、ビーム生成時に配向角に応じてビーム長を伸縮するか、分岐数及び回転角度の少なくとも一方を変更すればよい。具体的には、配向角に応じた重み係数を予め設定し、この重み係数を確率分布記憶部142から読み取ったビーム長の確率密度関数及び分岐数の確率質量関数、並びに記憶部140に記憶された回転角度の確率密度関数のいずれかに乗算すればよい。重み係数は、例えば、Z軸とのなす角の余弦値に0.5を加えた値である。
配向角に応じたビーム長の伸縮の一例として、重み係数をZ軸とのなす角の余弦値に0.5を加えた値とし、確率密度関数により決定されたビーム長に重み係数を乗算した長さとするとよい。このとき、Z軸に配向するビームは確率密度関数により決定されたビーム長の1.5倍の長さとなり、XY平面に配向するビームは0.5倍の長さとなる。これにより、Z軸からX軸及びY軸へのビーム長分布を有する構造異方性を多孔質構造体モデルに付与することができる。
ビーム生成時にモデルに構造異方性を持たせる他の手法として、Z軸とのなす角である配向角が閾値より大きく、かつ、ビーム長が閾値よりも大きいビームのビーム長を一定の割合で短縮するか一定のビーム長に短縮し、これらのビームに接続しているビームを伸張するとすればよい。上記の手法は、例えば、付加製造によりZ軸方向に積層するとき、製造装置により製造が困難である配向角及び長さのビームを排除することにも応用できるため、多孔質構造体の製造性向上の点でも有用である。
もう1つの他の手法として、ビーム生成処理(ステップS2)における新規ビームの生成終了を判定する処理及び節点接合処理(ステップS3)において、モデルに構造異方性を持たせる処理を施してもよい。例えば、ステップS2の処理で探索範囲内にある被接合可能条件を満たす節点を検索するとき、各被接合可能な節点に接合した際のビームの配向角が予め設定された配向角の範囲内にあるかどうかを判定し、配向角の範囲内となる被接合可能な節点がある場合に新規ビームの生成を終了するとよい。次に、ステップS3の処理で新規節点を、予め設定された配向角の範囲内にある被接合可能な節点のうち新規節点に最も近い節点に接合させるとよい。
上記の手法により得られる多孔質構造体は、ビームの配向角が数種類に限定される格子構造体に比べてビームが様々な方向に配置されているため、荷重が加えられる向きによる力学特性が緩やかに変化する構造異方性を実現できる。また、上記の手法は、製造装置により製造が困難であるビームをモデルから排除することにも応用でき、多孔質構造体の製造性向上の点でも有用である。
また、上記変形例に関連して、多孔質構造体のモデルに意図的に傾斜構造を持たせてもよい。傾斜構造は、構造異方性を有する構造の一種であり、構造特性に影響するパラメータ、例えば、ビーム長、節点接合の探索範囲、分岐数、節点密度の探索範囲、節点密度閾値及びビーム径といったパラメータのうち少なくとも1つがモデル内部で分布するような構造である。多孔質構造体に傾斜構造を設けることにより、領域により力学特性を変化させ、変形や破壊の挙動を意図通りに制御できる。傾斜構造としては、例えば、多孔質構造体に変形又は破壊が生じやすい弱い領域と、変形又は破壊が生じにくい強い領域と、を設けてもよい。一例として、図13に示すように多孔質構造体10の弱い領域11を一対の強い領域12で挟むことで、これらの領域を重ねた方向に圧縮荷重を加えた場合に弱い領域11が最初に変形するように構成できる。
モデルに傾斜構造を持たせるには、例えば、ビーム生成処理(ステップS2)においてビーム長、節点接合の探索範囲、及び分岐数のいずれかに設計空間内の座標に応じた分布を持たせるとよい。ビーム長に設計空間内の座標に応じた分布を持たせるには、具体的には、設計空間内の座標に依存した重み係数を設定し、確率分布記憶部142から読み取ったビーム長の確率密度関数に乗算すればよい。重み係数の一例として、多孔質構造体の中心に基準座標系の原点を設定し、原点における重み係数を0.5とし、Z軸座標が最大及び最小の位置をそれぞれ1.5としてZ軸座標に沿って線形的に変化させればよい。このとき、多孔質構造体モデルにZ軸座標に応じたビーム長の分布を付与することができる。
他の手法として、モデルのボリューム化処理(ステップS5)において各ビームを円錐台形の棒状部材に変換し、この変換処理において設計空間内の座標に応じて各棒状部材の直径を長さ方向に変化させてもよい。具体的には、多孔質構造体の中心に基準座標系の原点を設定し、原点からZ軸座標が最大及び最小の位置に向かうにつれて線形的に変化させた直径を予め設定し、各ビームの両端の節点のZ軸座標における直径を円錐台の上下面の直径として円錐台形の棒状部材に変換すればよい。このとき、多孔質構造体モデルにZ軸座標に応じたビーム径及び体積密度の分布を付与することができる。
もう1つの他の手法として、ビーム生成処理(ステップS2)を構成するステップS24の処理において、新規ビームの生成終了条件の1つである節点密度閾値を設計空間内の座標に応じて変化させることで、設計空間内の座標に応じて節点の密度分布を変化させてもよい。
上記の手法により得られる傾斜構造の多孔質構造体は、変形や破壊の挙動が制御でき、同一又は同等の質量である等方的な多孔質構造体と比較して、高吸収エネルギ性を保持しつつ、弾性率、オフセット応力、及びプラトー応力を変化させられるため、例えば、衝撃吸収性材料として好適である。
上記実施の形態では、設計装置100の記憶部140に各種データが記憶されていたが、本発明はこれに限定されない。例えば、各種データは、その全部又は一部が通信ネットワークを介して外部の制御装置やコンピュータに記憶されていてもよい。
上記実施の形態では、設計装置100は、記憶部140に記憶されたプログラムに基づいて動作していたが、本発明はこれに限定されない。例えば、プログラムにより実現された機能的な構成をハードウェアにより実現してもよい。
上記実施の形態では、設計装置100は、汎用コンピュータであったが、本発明はこれに限られない。例えば、設計装置100は、専用のシステムで実現してもよく、クラウド上に設けられたコンピュータで実現してもよい。
上記実施の形態では、設計装置100が実行する処理は、上述の物理的な構成を備える装置が記憶部140に記憶されたプログラムを実行することによって実現されていたが、本発明は、プログラムとして実現されてもよく、そのプログラムが記録された記憶媒体として実現されてもよい。
また、上述の処理動作を実行させるためのプログラムを、フレキシブルディスク、CD-ROM(Compact Disk Read-Only Memory)、DVD(Digital Versatile Disk)、MO(Magneto-Optical Disk)といったコンピュータにより読み取り可能な非一時的な記録媒体に格納して配布し、そのプログラムをコンピュータにインストールすることにより、上述の処理動作を実行する装置を構成してもよい。
上記実施の形態では、レーザ粉末床溶融法を用いて金属製の多孔質構造体を製造していたが、本発明はこれに限られず、セラミックや樹脂材料の多孔質構造体の製造に適用してもよい。例えば、材料押出法(Material Extrusion:MEX)を用いて樹脂の多孔質構造体を製造してもよい。製造された多孔質構造体は、多種多様な用途に、例えば、医療機器(例えば、インプラント)、輸送装置の構造材や建築物の建材、衝撃吸収材として用いることができる。
上記実施の形態は例示であり、本発明はこれらに限定されるものではなく、特許請求の範囲に記載した発明の趣旨を逸脱しない範囲でさまざまな実施の形態が可能である。実施の形態や変形例で記載した構成要素は自由に組み合わせることが可能である。また、特許請求の範囲に記載した発明と均等な発明も本発明に含まれる。
以下、実施例を挙げて本発明を具体的に説明する。ただし、本発明はこれらの実施例に限定されるものではない。
(実施例)
実施例では、上記実施の形態に係る手法を用いて多孔質構造体を作製し、その力学的な特性を評価した。まず、設計空間25mm×25mm×25mmに多孔質構造体を設計し、これを付加製造により製造した。具体的には、まず、多孔質構造体の骨格を構成する各ビームの長さ及び分岐数を確率分布に従って任意に与えることで、ネットワーク状の骨格を作成した。次いで、ネットワーク構造の全てのビームに直径一定の円柱状の体積を与え、節点に同径の球状の体積を与えることで、ネットワーク構造に体積を与え、多孔質構造体モデルを生成した。
実施例では、上記実施の形態に係る手法を用いて多孔質構造体を作製し、その力学的な特性を評価した。まず、設計空間25mm×25mm×25mmに多孔質構造体を設計し、これを付加製造により製造した。具体的には、まず、多孔質構造体の骨格を構成する各ビームの長さ及び分岐数を確率分布に従って任意に与えることで、ネットワーク状の骨格を作成した。次いで、ネットワーク構造の全てのビームに直径一定の円柱状の体積を与え、節点に同径の球状の体積を与えることで、ネットワーク構造に体積を与え、多孔質構造体モデルを生成した。
なお、多孔質構造体の骨格を構成する各ビームのビーム長の確率密度関数はガンマ確率分布で与え、上限値と下限値を設定した。このとき、製造するビームの断面寸法において、製造装置で水平に造形可能なビームの長さの範囲内で与えた。分岐数の確率質量関数はポアソン確率分布で与え、分岐数を3、4に制限した。ビーム径、ビーム長の確率密度関数及び分岐数の確率質量関数は、それぞれ多孔質構造体の体積密度が約40%となるように設定した。設計した多孔質構造体には、巨視的に見るとビームの配向方向に偏りがなく、構造異方性がないことを確認した。
次に、付加製造装置(松浦機械製作所製LUMEX Avance-25)により、レーザ粉末床溶融法を用いて多孔質構造体を製造した。材料にはマルエージング鋼粉末(松浦機械製作所製マツウラマルエージングII)を使用した。付加製造後、試料の6面を機械加工し、図14Aに示す20mm×20mm×20mmの試験片を作製した。比較のため、図14Bに示す同寸法・同体積密度の標準的なダイヤモンド型格子構造の試験片を作製した。
両者に対してISO13314に準拠して圧縮破壊試験を行った。圧縮破壊試験では、力学試験機(島津製作所製AG-250kND)を用いた。図15にその結果を示す。ダイヤモンド型格子構造の巨視的応力-ひずみ関係では、初期最大圧縮応力を示した後、応力が大きく低下し、波状の大きな変動を繰り返しながら層状破壊を伴って破壊が進展した。一方、本発明の多孔質構造体では、初期最大圧縮応力後の応力の低下や変動が抑制され、吸収エネルギが大きく向上することを確認した。このため、本発明の多孔質構造体では、圧縮負荷時の破壊の進展が抑制できるため設計応力を高く設定でき、吸収エネルギが向上できることが理解できる。
本出願は、2022年3月31日に出願された日本国特許出願2022-58004号に基づくものであり、その明細書、特許請求の範囲、図面及び要約書を含むものである。上記日本国特許出願における開示は、その全体が本明細書中に参照として含まれる。
本発明の設計装置、設計方法及びプログラムは、多孔質構造体における構造特性や力学特性を容易に制御することが可能であり、本発明の多孔質構造体及びその製造方法は、構造特性や力学特性が制御されているため、有用である。
1 製造システム
10 多孔質構造体
11 弱い領域
12 強い領域
100 設計装置
110 操作部
120 表示部
130 通信部
140 記憶部
141 パラメータ記憶部
142 確率分布記憶部
143 モデル記憶部
150 制御部
151 取得部
152 ビーム生成部
153 節点接合部
154 ビーム削除部
155 モデル生成部
156 出力部
200 製造装置
10 多孔質構造体
11 弱い領域
12 強い領域
100 設計装置
110 操作部
120 表示部
130 通信部
140 記憶部
141 パラメータ記憶部
142 確率分布記憶部
143 モデル記憶部
150 制御部
151 取得部
152 ビーム生成部
153 節点接合部
154 ビーム削除部
155 モデル生成部
156 出力部
200 製造装置
Claims (13)
- 多孔質構造体モデルを生成する設計空間を取得する取得部と、
前記取得部により取得された設計空間内に多孔質構造体のネットワーク構造を構成する多数のビームが生成されるように、ビーム長、分岐数、及び既存ビームの軸周りの回転角度の少なくとも1つを予め設定した規則に基づいて変更しながら、既存ビームの先端側の節点から分岐する複数の新規ビームを繰り返し生成するビーム生成部と、
予め設定した規則に基づいて、前記ビーム生成部で生成される多数の節点のうちビームにより互いに直接接続されていない複数の節点を選択してそれぞれ1つに接合する節点接合部と、
前記節点接合部により得られたネットワーク構造を構成する各ビームをボリューム化することで多孔質構造体モデルを生成するモデル生成部と、
を備える設計装置。 - 前記ビーム生成部は、ビームの節点毎に設定される分岐数に応じて同一の節点から分岐する各ビームが3次元等方的に延びるように複数の新規ビームを生成する、
請求項1に記載の設計装置。 - 前記ビーム生成部は、既存ビームの先端側の節点から分岐する複数の新規ビームを生成した場合に当該節点におけるビームの生成を終了する、
請求項1又は2に記載の設計装置。 - 前記ビーム生成部は、新規ビームの先端側の節点が設計空間外に存在する場合に当該節点におけるビームの生成を終了し、
前記設計装置は、前記ビーム生成部により生成され、前記設計空間外に延びるビームのうち前記設計空間外の部分を削除するビーム削除部をさらに備える、
請求項1から3のいずれか1項に記載の設計装置。 - ビーム生成部は、新規ビームの先端側の節点から探索範囲以内に予め設定した被接合可能条件を満たす節点がある場合に当該新規ビームの先端側の節点でビームの生成を終了し、
前記節点接合部は、前記ビーム生成部で探索範囲内に被接合可能条件を満たす節点が存在するとしてビームの生成が終了した節点を、当該節点から最も近くにある被接合可能な節点に接合させる、
請求項1から4のいずれか1項に記載の設計装置。 - 前記ビーム生成部は、節点が生成された順番に節点に節点番号を設定し、
前記節点接合部は、前記ビーム生成部において探索範囲内に被接合可能条件を満たす節点が存在するとしてビームの生成を終了した節点について、設定された節点番号の小さい順番で当該節点から最も近い被接合可能な節点に接合させる、
請求項5に記載の設計装置。 - 前記ビーム生成部は、新規ビームの先端側の節点に設定された探索範囲内における単位体積あたりの節点の数である節点密度が節点密度閾値よりも大きい場合に当該節点におけるビームの生成を終了する、
請求項1から6のいずれか1項に記載の設計装置。 - 前記モデル生成部は、各ビームを少なくとも中間部において同一の断面形状を有する梁状部材に変換する、
請求項1から7のいずれか1項に記載の設計装置。 - 設計装置が実行する設計方法であって、
多孔質構造体モデルを生成する設計空間を取得する取得工程と、
前記取得工程により取得された設計空間内に多孔質構造体のネットワーク構造を構成する多数のビームが生成されるように、ビーム長、分岐数、及び既存ビームの軸周りの回転角度の少なくとも1つを予め設定した規則に基づいて変更しながら、既存ビームの先端側の節点から分岐する複数の新規ビームを繰り返し生成するビーム生成工程と、
予め設定した規則に基づいて、前記ビーム生成工程で生成される多数の節点のうちビームにより互いに直接接続されていない複数の節点を選択してそれぞれ1つに接合する節点接合工程と、
前記節点接合工程により得られたネットワーク構造を構成する各ビームをボリューム化することで多孔質構造体モデルを生成するモデル生成工程と、
含む設計方法。 - コンピュータを、
多孔質構造体モデルを生成する設計空間を取得する取得手段、
前記取得手段により取得された設計空間内に多孔質構造体のネットワーク構造を構成する多数のビームが生成されるように、ビーム長、分岐数、及び既存ビームの軸周りの回転角度の少なくとも1つを予め設定した規則に基づいて変更しながら、既存ビームの先端側の節点から分岐する複数の新規ビームを繰り返し生成するビーム生成手段、
予め設定した規則に基づいて、前記ビーム生成手段で生成される多数の節点のうちビームにより互いに直接接続されていない複数の節点を選択してそれぞれ1つに接合する節点接合手段、
前記節点接合手段により得られたネットワーク構造を構成する各ビームをボリューム化することで多孔質構造体モデルを生成するモデル生成手段、
として機能させるためのプログラム。 - 節点同士で互いに接続された複数の梁状部材を備える多孔質構造体であって、
各梁状部材は、前記多孔質構造体において同一の単位構造の繰り返しが発生しないように配置され、
前記梁状部材の長さ及び前記節点から分岐する前記梁状部材の数は、それぞれに設定された上限及び下限の範囲内で分布するように設定されている、
多孔質構造体。 - 前記多孔質構造体が備える多数の節点の少なくとも一部が、各梁状部材が同一節点から3次元等方的に延びるように配置された節点である、
請求項11に記載された多孔質構造体。 - 請求項1から8のいずれか1項に記載の設計装置又は請求項9に記載の設計方法により生成された多孔質構造体モデルに基づいて、多孔質構造体を製造する工程を含む、
多孔質構造体の製造方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022058004 | 2022-03-31 | ||
JP2022-058004 | 2022-03-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023190762A1 true WO2023190762A1 (ja) | 2023-10-05 |
Family
ID=88202603
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/012987 WO2023190762A1 (ja) | 2022-03-31 | 2023-03-29 | 設計装置、設計方法、プログラム、多孔質構造体及びその製造方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2023190762A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015106021A1 (en) * | 2014-01-09 | 2015-07-16 | Siemens Product Lifecycle Management Software Inc. | Method for structure preserving topology optimization of lattice structures for additive manufacturing |
US20160232262A1 (en) * | 2015-04-30 | 2016-08-11 | Within Technologies Ltd. | Junction meshing for lattice structures |
JP2019114265A (ja) * | 2017-12-24 | 2019-07-11 | ダッソー システムズDassault Systemes | トポロジー最適化による部品の設計 |
JP2022032714A (ja) * | 2020-08-13 | 2022-02-25 | 国立大学法人北見工業大学 | 多孔質構造体の設計装置、設計方法及びプログラム |
-
2023
- 2023-03-29 WO PCT/JP2023/012987 patent/WO2023190762A1/ja unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015106021A1 (en) * | 2014-01-09 | 2015-07-16 | Siemens Product Lifecycle Management Software Inc. | Method for structure preserving topology optimization of lattice structures for additive manufacturing |
US20160232262A1 (en) * | 2015-04-30 | 2016-08-11 | Within Technologies Ltd. | Junction meshing for lattice structures |
JP2019114265A (ja) * | 2017-12-24 | 2019-07-11 | ダッソー システムズDassault Systemes | トポロジー最適化による部品の設計 |
JP2022032714A (ja) * | 2020-08-13 | 2022-02-25 | 国立大学法人北見工業大学 | 多孔質構造体の設計装置、設計方法及びプログラム |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Feng et al. | Isotropic octet-truss lattice structure design and anisotropy control strategies for implant application | |
Bai et al. | Effective design of the graded strut of BCC lattice structure for improving mechanical properties | |
Wang et al. | Compression behavior of strut-reinforced hierarchical lattice—Experiment and simulation | |
JP2020071887A (ja) | トポロジー最適化による機械部品の設計 | |
Xing et al. | A differential quadrature finite element method | |
Wei et al. | The stiffness spreading method for layout optimization of truss structures | |
Ren et al. | Multi-property cellular material design approach based on the mechanical behaviour analysis of the reinforced lattice structure | |
Gu et al. | Brittle fracture of three-dimensional lattice structure | |
WO2023190762A1 (ja) | 設計装置、設計方法、プログラム、多孔質構造体及びその製造方法 | |
CN108170947B (zh) | 一种基于萤火虫算法获取新型点阵结构的方法 | |
Nguyen | Design of lattice structure for additive manufacturing in CAD environment | |
Stanković et al. | Investigation of a Voronoi diagram representation for the computational design of additively manufactured discrete lattice structures | |
Wang et al. | Novel topological design of 3D Kagome structure for additive manufacturing | |
Chang et al. | Mechanics of three-dimensional soft network materials with a class of bio-inspired designs | |
Wang et al. | Investigation of compressive deformation behaviors of cubic periodic cellular structural cubes through 3D printed parts and FE simulations | |
CN107609320A (zh) | 一种桁架非概率可靠性形状优化设计方法 | |
CN105888068B (zh) | 一种柔性建筑的建造方法 | |
Aquelet et al. | 2D to 3D ALE mapping | |
Koudelka et al. | Determination of mechanical properties of materials with complex inner structure using microstructural models | |
CN114329775B (zh) | 三维光滑曲面点阵胞元及设计方法、点阵结构、零件 | |
Witowski et al. | Topology optimization for crash | |
Mu et al. | A real parameter continuation method for complete solution of forward position analysis of the general Stewart | |
CN109446541A (zh) | 一种弹体菱形刻槽有限元网格建模的方法 | |
JP5771935B2 (ja) | シミュレーションモデルの作成方法及びそのコンピュータプログラム、シミュレーション方法及びそのコンピュータプログラム、並びにシミュレーションモデルの作成装置 | |
Jorabchi et al. | Algebraic reduction of beams for CAD-integrated analysis |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23780770 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2024512728 Country of ref document: JP Kind code of ref document: A |