WO2023190739A1 - 変倍光学系、光学機器および変倍光学系の製造方法 - Google Patents

変倍光学系、光学機器および変倍光学系の製造方法 Download PDF

Info

Publication number
WO2023190739A1
WO2023190739A1 PCT/JP2023/012935 JP2023012935W WO2023190739A1 WO 2023190739 A1 WO2023190739 A1 WO 2023190739A1 JP 2023012935 W JP2023012935 W JP 2023012935W WO 2023190739 A1 WO2023190739 A1 WO 2023190739A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens group
focusing
optical system
lens
variable magnification
Prior art date
Application number
PCT/JP2023/012935
Other languages
English (en)
French (fr)
Inventor
拓郎 小野
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Publication of WO2023190739A1 publication Critical patent/WO2023190739A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/20Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having an additional movable lens or lens group for varying the objective focal length

Definitions

  • the present disclosure relates to a variable power optical system, an optical device, and a method for manufacturing a variable power optical system.
  • variable magnification optical systems used in optical devices such as photographic cameras, electronic still cameras, and video cameras have been proposed (see, for example, Patent Document 1).
  • the variable power optical system of the present disclosure includes, in order from the object side, a first lens group, a second lens group, a third lens group, and a rear group.
  • the interval changes, and the rear group has a plurality of focusing states with different amounts of aberration at a predetermined shooting distance. It has a second focusing lens group that is placed on the side and moves in a trajectory different from that of the first focusing lens group during focusing, and at a predetermined shooting distance, one of the plurality of focusing states is selected.
  • the first focusing lens group and the second focusing lens group Move and satisfy the following conditional expression. -6.80 ⁇ f1/f2 ⁇ -0.05 however, f1: Focal length of the first lens group f2: Focal length of the second lens group
  • the variable power optical system of the present disclosure includes, in order from the object side, a first lens group, a second lens group, a third lens group, and a rear group.
  • the interval changes and there are multiple focusing states with different amounts of aberration at a predetermined shooting distance. It moves when changing from one in-focus state to another in-focus state that has an amount of aberration different from the amount of aberration in one of the multiple focusing states, and has variable aberrations that are different from the focusing lens group. and a lens group.
  • a method for manufacturing a variable power optical system includes, in order from the object side, a first lens group, a second lens group, a third lens group, and a rear group. , when changing the magnification, the distance between adjacent lens groups changes, and at a predetermined shooting distance, there are multiple focusing states with different amounts of aberration, and the rear group has a first focusing state that moves during focusing. It has a focusing lens group, and a second focusing lens group that is disposed closer to the image side than the first focusing lens group and moves on a trajectory different from that of the first focusing lens group when focusing.
  • the first focusing lens group and the second focusing lens group move so that the following conditional expression is satisfied. Make it. -6.80 ⁇ f1/f2 ⁇ -0.05 however, f1: Focal length of the first lens group f2: Focal length of the second lens group
  • FIG. 3 is a cross-sectional view of the variable power optical system of the first embodiment when focusing on an object at infinity in the wide-angle end state.
  • FIG. 4 is a diagram of various aberrations when focusing on an object at infinity in the wide-angle end state of the variable magnification optical system of the first embodiment.
  • FIG. 4 is a diagram of various aberrations at the time of first focusing on a close object in the wide-angle end state of the variable magnification optical system of the first embodiment.
  • FIG. 7 is a diagram of various aberrations at the time of second focusing on a close object in the wide-angle end state of the variable power optical system of the first embodiment.
  • FIG. 7 is a diagram of various aberrations at the time of third focusing on a short distance object in the wide-angle end state of the variable power optical system of the first example.
  • FIG. 4 is a diagram of various aberrations when focusing on an object at infinity in the telephoto end state of the variable power optical system of the first embodiment.
  • FIG. 6 is a diagram of various aberrations at the time of first focusing on a close object in the telephoto end state of the variable power optical system of the first embodiment.
  • FIG. 6 is a diagram of various aberrations at the time of second focusing on a close object in the telephoto end state of the variable power optical system of the first embodiment.
  • FIG. 7 is a diagram of various aberrations at the time of third focusing on a short distance object in the wide-angle end state of the variable power optical system of the first example.
  • FIG. 7 is a cross-sectional view of the variable magnification optical system of the second embodiment when focusing on an object at infinity in the wide-angle end state.
  • FIG. 7 is a diagram of various aberrations when focusing on an object at infinity in the wide-angle end state of the variable magnification optical system of the second embodiment.
  • FIG. 7 is a diagram of various aberrations at the time of first focusing on a short-distance object in the wide-angle end state of the variable magnification optical system of the second embodiment.
  • FIG. 7 is a diagram of various aberrations at the time of second focusing on a close object in the wide-angle end state of the variable magnification optical system of the second embodiment.
  • FIG. 7 is a diagram of various aberrations at the time of third focusing on a short distance object in the wide-angle end state of the variable magnification optical system of the second embodiment.
  • FIG. 7 is a diagram of various aberrations when focusing on an object at infinity in the telephoto end state of the variable magnification optical system of the second embodiment.
  • FIG. 7 is a diagram of various aberrations at the time of first focusing on a close object in the telephoto end state of the variable power optical system of the second embodiment.
  • FIG. 7 is a diagram of various aberrations at the time of second focusing on a close object in the telephoto end state of the variable power optical system of the second embodiment. These are various aberration diagrams at the time of third focusing on a short distance object in the wide-angle end state of the variable magnification optical system of the second embodiment.
  • FIG. 7 is a cross-sectional view of the variable power optical system of the third embodiment when focusing on an object at infinity in the wide-angle end state.
  • FIG. 7 is a diagram of various aberrations when focusing on an object at infinity in the wide-angle end state of the variable magnification optical system of the third embodiment.
  • FIG. 7 is a diagram of various aberrations at the time of first focusing on a close object in the wide-angle end state of the variable magnification optical system of the third embodiment.
  • FIG. 7 is a diagram of various aberrations at the time of second focusing on a close object in the wide-angle end state of the variable magnification optical system of the third embodiment.
  • FIG. 7 is a diagram of various aberrations at the time of third focusing on a close object in the wide-angle end state of the variable magnification optical system of the third embodiment.
  • FIG. 7 is a diagram of various aberrations when focusing on an object at infinity in the telephoto end state of the variable power optical system of the third embodiment.
  • FIG. 7 is a diagram of various aberrations at the time of first focusing on a short-distance object in the telephoto end state of the variable power optical system of the third embodiment.
  • FIG. 7 is a diagram of various aberrations at the time of second focusing on a close object in the telephoto end state of the variable power optical system of the third embodiment.
  • FIG. 7 is a diagram of various aberrations at the time of third focusing on a close object in the wide-angle end state of the variable magnification optical system of the third embodiment.
  • FIG. 7 is a cross-sectional view of the variable magnification optical system of the fourth embodiment when focusing on an object at infinity in the wide-angle end state.
  • FIG. 7 is a diagram of various aberrations when focusing on an object at infinity in the wide-angle end state of the variable magnification optical system of the fourth embodiment.
  • FIG. 7 is a diagram of various aberrations at the time of first focusing on a close object in the wide-angle end state of the variable magnification optical system of the fourth embodiment.
  • FIG. 7 is a diagram of various aberrations at the time of second focusing on a short distance object in the wide-angle end state of the variable magnification optical system of the fourth embodiment.
  • FIG. 7 is a diagram of various aberrations at the time of third focusing on a close object in the wide-angle end state of the variable magnification optical system of the fourth embodiment.
  • FIG. 7 is a diagram of various aberrations when focusing on an object at infinity in the telephoto end state of the variable power optical system of the fourth embodiment.
  • FIG. 7 is a diagram of various aberrations at the time of first focusing on a close object in the telephoto end state of the variable power optical system of the fourth embodiment.
  • FIG. 7 is a diagram of various aberrations at the time of second focusing on a close object in the telephoto end state of the variable power optical system of the fourth embodiment.
  • FIG. 7 is a diagram of various aberrations at the time of third focusing on a close object in the wide-angle end state of the variable magnification optical system of the fourth embodiment.
  • FIG. 7 is a cross-sectional view of the variable power optical system of the fifth embodiment when focusing on an object at infinity in the wide-angle end state.
  • FIG. 7 is a diagram of various aberrations when focusing on an object at infinity in the wide-angle end state of the variable magnification optical system of the fifth embodiment.
  • FIG. 7 is a diagram of various aberrations at the time of first focusing on a close object in the wide-angle end state of the variable magnification optical system of the fifth embodiment.
  • FIG. 7 is a diagram of various aberrations at the time of second focusing on a close object in the wide-angle end state of the variable magnification optical system of the fifth embodiment.
  • FIG. 7 is a diagram of various aberrations at the time of third focusing on a close object in the wide-angle end state of the variable magnification optical system of the fifth embodiment.
  • FIG. 7 is a diagram of various aberrations when focusing on an object at infinity in the telephoto end state of the variable power optical system of the fifth embodiment.
  • FIG. 7 is a diagram of various aberrations at the time of first focusing on a close object in the telephoto end state of the variable power optical system of the fifth embodiment.
  • FIG. 7 is a diagram of various aberrations at the time of second focusing on a close object in the telephoto end state of the variable power optical system of the fifth embodiment.
  • FIG. 7 is a diagram of various aberrations at the time of third focusing on a close object in the wide-angle end state of the variable magnification optical system of the fifth embodiment.
  • FIG. 9 is a cross-sectional view of the variable power optical system of the sixth embodiment when focusing on an object at infinity in the wide-angle end state.
  • FIG. 12 is a diagram of various aberrations when focusing on an object at infinity in the wide-angle end state of the variable magnification optical system of the sixth embodiment.
  • FIG. 7 is a diagram of various aberrations at the time of first focusing on a short distance object in the wide-angle end state of the variable magnification optical system of the sixth embodiment.
  • FIG. 7 is a diagram of various aberrations at the time of second focusing on a close object in the wide-angle end state of the variable magnification optical system of the sixth embodiment.
  • FIG. 7 is a diagram of various aberrations at the time of third focusing on a short distance object in the wide-angle end state of the variable magnification optical system of the sixth embodiment.
  • FIG. 7 is a diagram of various aberrations when focusing on an object at infinity in the telephoto end state of the variable power optical system of the sixth embodiment.
  • FIG. 7 is a diagram of various aberrations at the time of first focusing on a close object in the telephoto end state of the variable power optical system of the sixth embodiment.
  • FIG. 7 is a diagram of various aberrations at the time of second focusing on a short-distance object in the telephoto end state of the variable power optical system of the sixth embodiment.
  • FIG. 7 is a diagram of various aberrations at the time of third focusing on a short distance object in the wide-angle end state of the variable magnification optical system of the sixth embodiment.
  • FIG. 7 is a cross-sectional view of the variable magnification optical system of the seventh embodiment when focusing on an object at infinity in the wide-angle end state.
  • FIG. 7 is a diagram of various aberrations when focusing on an object at infinity in the wide-angle end state of the variable magnification optical system of the seventh embodiment.
  • FIG. 7 is a diagram of various aberrations at the time of first focusing on a close object in the wide-angle end state of the variable magnification optical system of the seventh embodiment.
  • FIG. 7 is a diagram of various aberrations at the time of second focusing on a short-distance object in the wide-angle end state of the variable magnification optical system of the seventh embodiment.
  • FIG. 7 is a diagram of various aberrations at the time of third focusing on a short distance object in the wide-angle end state of the variable magnification optical system of the seventh embodiment.
  • FIG. 7 is a diagram of various aberrations when focusing on an object at infinity in the telephoto end state of the variable magnification optical system of the seventh embodiment.
  • FIG. 7 is a diagram of various aberrations at the time of first focusing on a close object in the telephoto end state of the variable power optical system of the seventh embodiment.
  • FIG. 7 is a diagram of various aberrations at the time of second focusing on a close object in the telephoto end state of the variable power optical system of the seventh embodiment.
  • FIG. 7 is a diagram of various aberrations at the time of third focusing on a short distance object in the wide-angle end state of the variable magnification optical system of the seventh embodiment.
  • FIG. 12 is a cross-sectional view of the variable magnification optical system of the eighth embodiment when focusing on an object at infinity in the wide-angle end state.
  • FIG. 7 is a diagram of various aberrations when focusing on an object at infinity in the wide-angle end state of the variable magnification optical system of the eighth embodiment.
  • FIG. 9 is a diagram of various aberrations at the time of first focusing on a close object in the wide-angle end state of the variable magnification optical system of the eighth embodiment.
  • FIG. 7 is a diagram of various aberrations at the time of second focusing on a close object in the wide-angle end state of the variable magnification optical system of the eighth embodiment.
  • FIG. 7 is a diagram of various aberrations at the time of third focusing on a short distance object in the wide-angle end state of the variable magnification optical system of the eighth embodiment.
  • FIG. 7 is a diagram of various aberrations when focusing on an object at infinity in the telephoto end state of the variable power optical system of the eighth embodiment.
  • FIG. 12 is a diagram of various aberrations at the time of first focusing on a close object in the telephoto end state of the variable power optical system of the eighth embodiment.
  • FIG. 12 is a diagram of various aberrations at the time of second focusing on a short-distance object in the telephoto end state of the variable power optical system of the eighth embodiment.
  • FIG. 7 is a diagram of various aberrations at the time of third focusing on a short distance object in the wide-angle end state of the variable magnification optical system of the eighth embodiment.
  • FIG. 9 is a cross-sectional view of the variable magnification optical system of the ninth embodiment when focusing on an object at infinity in the wide-angle end state.
  • FIG. 9 is a diagram of various aberrations when focusing on an object at infinity in the wide-angle end state of the variable power optical system of the ninth embodiment.
  • FIG. 9 is a diagram of various aberrations at the time of first focusing on a short distance object in the wide-angle end state of the variable magnification optical system of the ninth embodiment.
  • FIG. 9 is a diagram of various aberrations at the time of second focusing on a close object in the wide-angle end state of the variable magnification optical system of the ninth embodiment.
  • FIG. 9 is a diagram of various aberrations at the time of third focusing on a close object in the wide-angle end state of the variable power optical system of the ninth embodiment.
  • FIG. 9 is a diagram of various aberrations when focusing on an object at infinity in the telephoto end state of the variable power optical system of the ninth embodiment.
  • FIG. 9 is a diagram of various aberrations at the time of first focusing on a close object in the telephoto end state of the variable power optical system of the ninth embodiment.
  • FIG. 12 is a diagram of various aberrations at the time of second focusing on a short-distance object in the telephoto end state of the variable power optical system of the ninth embodiment.
  • FIG. 9 is a diagram of various aberrations at the time of third focusing on a close object in the wide-angle end state of the variable power optical system of the ninth embodiment.
  • FIG. 1 is a schematic diagram of a camera equipped with a variable magnification optical system according to the present embodiment. 1 is a flowchart showing an outline of a first manufacturing method of a variable magnification optical system according to the present embodiment. 7 is a flowchart schematically showing a second manufacturing method of the variable magnification optical system according to the present embodiment.
  • variable magnification optical system an optical device, and a method for manufacturing the variable magnification optical system according to an embodiment of the present application will be described.
  • the variable power optical system of this embodiment includes, in order from the object side, a first lens group, a second lens group, a third lens group, and a rear group.
  • the rear group has a plurality of focusing states with different amounts of aberration at a predetermined shooting distance, and the rear group has a first focusing lens group that moves during focusing, and a second focusing lens group that moves during focusing. It has a second focusing lens group that is arranged on the image side and moves on a trajectory different from that of the first focusing lens group during focusing, and at a predetermined shooting distance, one of the plurality of focusing states is set.
  • the first focusing lens group and the second focusing lens group moves and satisfies the following conditional expression.
  • Conditional expression (1) defines the ratio of the focal length of the first lens group to the focal length of the second lens group.
  • variable power optical system of this embodiment if the value of conditional expression (1) exceeds the upper limit, the refractive power of the second lens group becomes too strong, causing fluctuations in various aberrations including spherical aberration during variable power. It becomes difficult to suppress it appropriately.
  • variable magnification optical system of this embodiment by setting the upper limit of conditional expression (1) to -0.05, the effect of this embodiment can be made more reliable.
  • the upper limit values of conditional expression (1) are set to -0.10, -0.25, -0.40, -1.00, -1.50, - It is preferable to set it to 2.00, -2.50, and even -3.00.
  • variable power optical system of this embodiment if the value of conditional expression (1) falls below the lower limit, the refractive power of the first lens group becomes too strong, and various aberrations such as spherical aberration occur during variable power. It becomes difficult to appropriately suppress fluctuations.
  • the effects of this embodiment can be made more reliable.
  • the lower limit of conditional expression (1) is set to -6.50, -6.00, -5.50, -5.00, and further to -4.75. It is preferable to set
  • a variable magnification optical system having the above-mentioned configuration and satisfying conditional expression (1) makes it possible to change from one in-focus state to another at a predetermined photographing distance, and also to change the focus state during zooming. Fluctuations in various aberrations including spherical aberration can be appropriately suppressed.
  • variable magnification optical system of this embodiment when changing from one focusing state to another focusing state at a predetermined shooting distance, the first focusing lens group and the second focusing lens group are the same. It is preferable to move in the direction.
  • variable magnification optical system of this embodiment the first focusing lens group and the second focusing lens group move in the same direction, thereby reducing spherical aberration when changing from one focusing state to another focusing state. Also, variations in field curvature can be appropriately suppressed.
  • variable magnification optical system of this embodiment it is preferable that one of the first focusing lens group and the second focusing lens group has a positive refractive power, and the other has a negative refractive power.
  • one of the first focusing lens group and the second focusing lens group has a positive refractive power and the other has a negative refractive power, so that one focusing lens group is Fluctuations in spherical aberration and curvature of field when changing from a focused state to another focused state can be appropriately suppressed.
  • the first focusing lens group and the second focusing lens group are preferably arranged between the aperture stop and the image plane.
  • variable magnification optical system of this embodiment by arranging the first focusing lens group and the second focusing lens group between the aperture stop and the image plane, it is possible to change from one focused state to another focused state. It is possible to appropriately suppress fluctuations in various aberrations other than spherical aberration.
  • variable magnification optical system of this embodiment it is preferable that both of the following conditional expressions are satisfied.
  • Dsr1W Distance on the optical axis between the object-side surface of the lens placed closest to the object in the first focusing lens group and the aperture stop when focusing at infinity in the wide-angle end state
  • TLW Optical system in the wide-angle end state
  • Dsr1T Distance on the optical axis between the object-side surface of the lens placed closest to the object in the first focusing lens group and the aperture stop when focusing at infinity in the telephoto end state
  • TLT Optical distance in the telephoto end state System total length
  • variable magnification optical system of this embodiment by satisfying both conditional expressions (2) and (3), the amount of spherical aberration can be appropriately varied when changing from one in-focus state to another. It is possible to appropriately suppress fluctuations in other aberrations.
  • Conditional expression (2) is based on the distance on the optical axis between the object-side surface of the lens placed closest to the object in the first focusing lens group and the aperture stop when focusing at infinity in the wide-angle end state, and the distance at the wide-angle end. This defines the ratio to the total length of the optical system in the state.
  • variable magnification optical system of this embodiment if the value of conditional expression (2) exceeds the upper limit, it may be difficult to appropriately suppress fluctuations in other aberrations when the amount of spherical aberration is appropriately varied. Obviously, if the value of conditional expression (2) exceeds the upper limit, it may be difficult to appropriately suppress fluctuations in other aberrations when the amount of spherical aberration is appropriately varied. Obviously, Obviously, Obviously, Obviously, Obviously, if the value of conditional expression (2) exceeds the upper limit, it may be difficult to appropriately suppress fluctuations in other aberrations when the amount of spherical aberration is appropriately varied. Become.
  • variable power optical system of this embodiment by setting the upper limit of conditional expression (2) to 0.20, the effects of this embodiment can be made more reliable. Further, in order to further ensure the effects of this embodiment, it is preferable to set the upper limit of conditional expression (2) to 0.18, 0.16, 0.14, and even 0.13.
  • variable magnification optical system of this embodiment if the value of conditional expression (2) is below the lower limit, it is difficult to appropriately suppress fluctuations in other aberrations when the amount of spherical aberration is appropriately varied. It becomes difficult.
  • the lower limit of conditional expression (2) is set to -0.16, -0.12, -0.08, -0.04, -0.02, 0. It is preferable to set it to .00, more preferably 0.04.
  • Conditional expression (3) is based on the distance on the optical axis between the object-side surface of the lens placed closest to the object in the first focusing lens group and the aperture stop when focusing at infinity in the telephoto end state, and the distance at the telephoto end. This defines the ratio to the total length of the optical system in the state.
  • variable magnification optical system of this embodiment if the value of conditional expression (3) exceeds the upper limit, it may be difficult to appropriately suppress fluctuations in other aberrations when the amount of spherical aberration is appropriately varied. Obviously, if the value of conditional expression (3) exceeds the upper limit, it may be difficult to appropriately suppress fluctuations in other aberrations when the amount of spherical aberration is appropriately varied. Obviously, Obviously, Obviously, Obviously, Obviously, if the value of conditional expression (3) exceeds the upper limit, it may be difficult to appropriately suppress fluctuations in other aberrations when the amount of spherical aberration is appropriately varied. Become.
  • variable magnification optical system of this embodiment by setting the upper limit of conditional expression (3) to 0.25, the effect of this embodiment can be made more reliable. Furthermore, in order to ensure the effects of this embodiment, it is preferable to set the upper limit of conditional expression (3) to 0.22, 0.20, 0.18, 0.16, and further 0.14. .
  • variable power optical system of this embodiment if the value of conditional expression (3) is below the lower limit, it is difficult to appropriately suppress fluctuations in other aberrations when the amount of spherical aberration is appropriately varied. It becomes difficult.
  • variable magnification optical system of this embodiment by setting the lower limit of conditional expression (3) to -0.25, the effects of this embodiment can be made more reliable.
  • the lower limit of conditional expression (3) is set to -0.22, -0.18, -0.14, -0.10, -0.06, - It is preferable to set it to 0.02, 0.02, 0.06, and even 0.10.
  • variable magnification optical system of this embodiment it is preferable that both of the following conditional expressions are satisfied.
  • Dsr2W Distance on the optical axis between the object-side surface of the lens placed closest to the object in the second focusing lens group and the aperture stop when focusing at infinity in the wide-angle end state
  • TLW Optical system in the wide-angle end state
  • Dsr2T Distance on the optical axis between the object-side surface of the lens placed closest to the object in the second focusing lens group and the aperture stop when focusing at infinity in the telephoto end state
  • TLT Optical distance in the telephoto end state System total length
  • variable magnification optical system of this embodiment by satisfying both conditional expressions (4) and (5), the amount of spherical aberration can be appropriately varied when changing from one in-focus state to another. It is possible to appropriately suppress fluctuations in other aberrations.
  • Conditional expression (4) is based on the distance on the optical axis between the object-side surface of the lens placed closest to the object in the second focusing lens group and the aperture stop when focusing at infinity in the wide-angle end state and the wide-angle end. This defines the ratio to the total length of the optical system in the state.
  • variable magnification optical system of this embodiment when the value of conditional expression (4) exceeds the upper limit, the lens diameter of the second focusing lens group increases and the weight increases. As a result, the load on the actuator that moves the second focusing lens group for focusing increases, making it difficult to move the second focusing lens group appropriately.
  • variable power optical system of this embodiment by setting the upper limit of conditional expression (4) to 0.40, the effect of this embodiment can be made more reliable. In order to further ensure the effects of this embodiment, it is preferable to set the upper limit of conditional expression (4) to 0.36, 0.32, 0.28, and further 0.26.
  • variable magnification optical system of this embodiment if the value of conditional expression (4) is below the lower limit, it is difficult to appropriately suppress fluctuations in other aberrations when the amount of spherical aberration is appropriately varied. It becomes difficult.
  • variable power optical system of this embodiment by setting the lower limit of conditional expression (4) to 0.10, the effect of this embodiment can be made more reliable. Further, in order to further ensure the effects of this embodiment, it is preferable to set the lower limit value of conditional expression (4) to 0.11, 0.12, and even 0.13.
  • Conditional expression (5) is based on the distance on the optical axis between the object-side surface of the lens placed closest to the object in the second focusing lens group and the aperture stop when focusing at infinity in the telephoto end state, and the distance at the telephoto end. This defines the ratio to the total length of the optical system in the state.
  • variable power optical system of this embodiment when the value of conditional expression (5) exceeds the upper limit, the lens diameter of the second focusing lens group increases and the weight increases. As a result, the load on the actuator that moves the second focusing lens group for focusing increases, making it difficult to move the second focusing lens group appropriately.
  • variable power optical system of this embodiment by setting the upper limit of conditional expression (5) to 0.40, the effect of this embodiment can be made more reliable. Further, in order to ensure the effects of this embodiment, it is preferable to set the upper limit of conditional expression (5) to 0.36, 0.32, 0.28, and further 0.26.
  • variable magnification optical system of this embodiment if the value of conditional expression (5) is below the lower limit, it is difficult to appropriately suppress fluctuations in other aberrations when the amount of spherical aberration is appropriately varied. It becomes difficult.
  • variable power optical system of this embodiment by setting the lower limit of conditional expression (5) to 0.10, the effect of this embodiment can be made more reliable. Furthermore, in order to ensure the effects of this embodiment, it is preferable to set the lower limit value of conditional expression (5) to 0.11, 0.12, and even 0.13.
  • variable magnification optical system of this embodiment satisfies both of the following conditional expressions. (6) Dsr1W/DsiW ⁇ 0.30 (7) Dsr1T/DsiT ⁇ 0.35 however, DsiW: Distance on the optical axis between the aperture stop and the image plane when focusing on infinity in the wide-angle end state DsiT: Distance on the optical axis between the aperture stop and the image plane when focusing on infinity in the telephoto end state
  • variable magnification optical system of this embodiment by satisfying both conditional expressions (6) and (7), the amount of spherical aberration can be appropriately varied when changing from one in-focus state to another. It is possible to appropriately suppress fluctuations in other aberrations.
  • Conditional expression (6) is based on the distance on the optical axis between the object-side surface of the lens placed closest to the object in the first focusing lens group and the aperture stop when focusing at infinity in the wide-angle end state, and the distance at the wide-angle end. This defines the ratio of the distance between the aperture stop and the image plane on the optical axis when focusing at infinity in the state.
  • variable power optical system of this embodiment if the value of conditional expression (6) exceeds the upper limit, it may be difficult to appropriately suppress fluctuations in other aberrations when the amount of spherical aberration is appropriately varied. Obviously, if the value of conditional expression (6) exceeds the upper limit, it may be difficult to appropriately suppress fluctuations in other aberrations when the amount of spherical aberration is appropriately varied. Obviously, Obviously, Obviously, Obviously, Obviously, if the value of conditional expression (6) exceeds the upper limit, it may be difficult to appropriately suppress fluctuations in other aberrations when the amount of spherical aberration is appropriately varied. Become.
  • variable magnification optical system of this embodiment by setting the upper limit of conditional expression (6) to 0.30, the effect of this embodiment can be made more reliable. Furthermore, in order to ensure the effects of this embodiment, it is preferable to set the upper limit of conditional expression (6) to 0.29, and more preferably to 0.28.
  • variable magnification optical system of this embodiment if the lower limit of conditional expression (6) is to be set, it is preferable to set it to ⁇ 0.30, ⁇ 0.10, and even 0.00.
  • Conditional expression (7) is based on the distance on the optical axis between the object-side surface of the lens placed closest to the object in the first focusing lens group and the aperture stop when focusing at infinity in the telephoto end state, and the distance at the telephoto end. This defines the ratio of the distance between the aperture stop and the image plane on the optical axis when focusing at infinity in the state.
  • variable magnification optical system of this embodiment if the value of conditional expression (7) exceeds the upper limit, it may be difficult to appropriately suppress fluctuations in other aberrations when the amount of spherical aberration is appropriately varied. Obviously, if the value of conditional expression (7) exceeds the upper limit, it may be difficult to appropriately suppress fluctuations in other aberrations when the amount of spherical aberration is appropriately varied. Obviously, Obviously, the value of conditional expression (7) exceeds the upper limit, it may be difficult to appropriately suppress fluctuations in other aberrations when the amount of spherical aberration is appropriately varied. Become.
  • variable magnification optical system of this embodiment by setting the upper limit of conditional expression (7) to 0.35, the effect of this embodiment can be made more reliable. Furthermore, in order to ensure the effects of this embodiment, it is preferable to set the upper limit of conditional expression (7) to 0.34, 0.33, and further 0.32.
  • variable magnification optical system of this embodiment if the lower limit of conditional expression (7) is to be set, it is preferable to set it to ⁇ 0.40, ⁇ 0.20, and even 0.00.
  • variable magnification optical system of this embodiment satisfies both of the following conditional expressions.
  • variable magnification optical system of this embodiment by satisfying both conditional expressions (8) and (9), the amount of spherical aberration can be appropriately varied when changing from one in-focus state to another. It is possible to appropriately suppress fluctuations in other aberrations.
  • Conditional expression (8) is based on the distance on the optical axis between the object-side surface of the lens placed closest to the object in the second focusing lens group and the aperture stop when focusing at infinity in the wide-angle end state, and the distance at the wide-angle end. This defines the ratio of the distance between the aperture stop and the image plane on the optical axis when focusing at infinity in the state.
  • variable magnification optical system of this embodiment if the value of conditional expression (8) is below the lower limit, it may be difficult to appropriately suppress fluctuations in other aberrations when the amount of spherical aberration is appropriately varied. Obviously, if the value of conditional expression (8) is below the lower limit, it may be difficult to appropriately suppress fluctuations in other aberrations when the amount of spherical aberration is appropriately varied. Obviously, Obviously, the value of conditional expression (8) is below the lower limit, it may be difficult to appropriately suppress fluctuations in other aberrations when the amount of spherical aberration is appropriately varied. Become.
  • variable magnification optical system of this embodiment by setting the lower limit of conditional expression (8) to 0.20, the effect of this embodiment can be made more reliable. Furthermore, in order to ensure the effects of this embodiment, it is preferable to set the lower limit value of conditional expression (8) to 0.22, 0.24, 0.26, 0.28, and further 0.30. .
  • variable magnification optical system of this embodiment if the upper limit of conditional expression (8) is to be set, it is preferably set to 5.00, 2.50, and even 1.00.
  • Conditional expression (9) is based on the distance on the optical axis between the object-side surface of the lens placed closest to the object in the second focusing lens group and the aperture stop when focusing at infinity in the telephoto end state, and the distance at the telephoto end. This defines the ratio of the distance between the aperture stop and the image plane on the optical axis when focusing at infinity in the state.
  • variable magnification optical system of this embodiment if the value of conditional expression (9) falls below the lower limit, it may be difficult to appropriately suppress fluctuations in other aberrations when the amount of spherical aberration is appropriately varied. Obviously, if the value of conditional expression (9) falls below the lower limit, it may be difficult to appropriately suppress fluctuations in other aberrations when the amount of spherical aberration is appropriately varied. Obviously, Obviously, the value of conditional expression (9) falls below the lower limit, it may be difficult to appropriately suppress fluctuations in other aberrations when the amount of spherical aberration is appropriately varied. Become.
  • variable power optical system of this embodiment by setting the lower limit of conditional expression (9) to 0.25, the effects of this embodiment can be made more reliable. Further, in order to ensure the effects of this embodiment, it is preferable to set the lower limit value of conditional expression (9) to 0.26, 0.27, 0.28, 0.29, and further 0.30. .
  • variable magnification optical system of this embodiment if the upper limit of conditional expression (9) is to be set, it is preferably set to 5.00, 2.50, and even 1.00.
  • At least one of the first focusing lens group and the second focusing lens group includes at least one lens Z, so that various aberrations including chromatic aberration can be appropriately corrected. can.
  • variable magnification optical system of this embodiment by setting the value of conditional expression (10) smaller than the upper limit value, the Petzval sum does not become too small and the field curvature can be corrected well. Furthermore, by setting the upper limit of conditional expression (10) to 2.250, the effects of this embodiment can be made more reliable. Further, in order to ensure the effects of this embodiment, it is preferable that the upper limit of conditional expression (10) be set to 2.235, 2.225, 2.215, and further 2.210.
  • variable magnification optical system of this embodiment can satisfactorily correct the second-order dispersion of longitudinal chromatic aberration by making the value of conditional expression (11) smaller than the upper limit value. Furthermore, by setting the upper limit of conditional expression (11) to 35.00, the effects of this embodiment can be made more reliable. In order to further ensure the effects of this embodiment, the upper limit values of conditional expression (11) are set to 33.50, 32.50, 30.00, 28.50, 25.00, 23.50, 21. 00, preferably 20.00.
  • variable magnification optical system of this embodiment can satisfactorily correct the second-order dispersion of longitudinal chromatic aberration by making the value of conditional expression (12) larger than the lower limit value. Furthermore, by setting the lower limit of conditional expression (12) to 0.702, the effects of this embodiment can be made more reliable. Furthermore, in order to ensure the effects of this embodiment, it is preferable that the upper limit of conditional expression (12) be set to 0.705, 0.708, and further 0.710.
  • the first focusing lens group or the second focusing lens group includes at least one lens that satisfies the following conditional expression. (13) 1.60 ⁇ ndF ⁇ 2.00 however, ndF: refractive index for the d-line of each lens included in the first focusing lens group and the second focusing lens group
  • variable power optical system of this embodiment deterioration of optical performance can be suppressed by having at least one lens that satisfies conditional expression (13) in the first focusing lens group or the second focusing lens group. can.
  • variable power optical system of this embodiment by setting the upper limit of conditional expression (13) to 2.00, the effects of this embodiment can be made more reliable. In order to further ensure the effects of this embodiment, it is preferable to set the upper limit of conditional expression (13) to 1.99, 1.98, 1.97, and further 1.96.
  • variable magnification optical system of this embodiment by setting the lower limit of conditional expression (13) to 1.60, the effect of this embodiment can be made more reliable. Furthermore, in order to ensure the effects of this embodiment, it is preferable to set the lower limit value of conditional expression (13) to 1.56, 1.52, 1.48, 1.44, and further 1.40. .
  • variable magnification optical system of this embodiment it is preferable that the following conditional expression is satisfied. (14) 0.00 ⁇
  • Conditional expression (14) defines the ratio of the focal length of the first focusing lens group to the focal length of the second focusing lens group.
  • the variable magnification optical system of this embodiment can appropriately correct various aberrations by satisfying conditional expression (14).
  • variable power optical system of this embodiment if the value of conditional expression (14) exceeds the upper limit, the refractive power of the first focusing lens group becomes too large, making it difficult to correct various aberrations.
  • variable magnification optical system of this embodiment by setting the upper limit of conditional expression (14) to 4.00, the effect of this embodiment can be made more reliable. Furthermore, in order to ensure the effects of this embodiment, it is preferable to set the upper limit of conditional expression (14) to 3.86, 3.71, 3.57, 3.42, and further 3.28. .
  • the variable power optical system of this embodiment includes, in order from the object side, a first lens group, a second lens group, a third lens group, and a rear group.
  • the rear group has a focusing lens group that moves during focusing, and a plurality of focusing states with different amounts of aberration at a predetermined shooting distance. It moves when moving from one of the focused states to another focusing state that has an amount of aberration different from the amount of aberration in one of the multiple focusing states, and causes aberrations that are different from the focusing lens group. It has a variable lens group.
  • variable magnification optical system of this embodiment has a focusing lens group and a variable aberration lens group in the rear group, so that various aberrations other than spherical aberration change when changing from one focused state to another. can be appropriately suppressed.
  • variable aberration lens group is preferably arranged between the aperture stop and the image plane.
  • variable magnification optical system of this embodiment has a variable aberration lens group placed between the aperture stop and the image plane, so that various aberrations other than spherical aberration can be eliminated when changing from one focused state to another. fluctuations can be appropriately suppressed.
  • At least one of the focusing lens group and the variable aberration lens group includes at least one lens Z that both satisfies the following conditional expression.
  • (10) ndLZ + (0.01425 ⁇ dLZ) ⁇ 2.250 (11) ⁇ dLZ ⁇ 35.00 (12) 0.702 ⁇ ⁇ gFLZ + (0.00316 ⁇ dLZ) however, ndLZ: Refractive index of lens Z for d-line ⁇ dLZ: Abbe number of lens Z based on d-line ⁇ gFLZ: Partial dispersion ratio of lens Z, where the refractive index of lens Z for g-line is ngLZ, and F of lens Z When the refractive index for the line is nFLZ and the refractive index of the lens Z for the C line is nCLZ, it is defined by the following formula: ⁇ gFLZ (ngLZ - nFLZ)/(nFLZ - nCLZ
  • At least one of the focusing lens group and the variable aberration lens group includes at least one lens Z, so that various aberrations including chromatic aberration can be appropriately corrected.
  • the focusing lens group and the variable aberration lens group are constituted by lenses that satisfy the following conditional expression.
  • ndFDC refractive index for the d-line of each lens included in the focusing lens group and variable aberration lens group
  • variable magnification optical system of the present embodiment deterioration of optical performance can be suppressed by having the focusing lens group or the variable aberration lens group composed of lenses that satisfy conditional expression (15).
  • variable power optical system of this embodiment by setting the upper limit of conditional expression (15) to 1.95, the effect of this embodiment can be made more reliable. Furthermore, in order to ensure the effects of this embodiment, it is preferable to set the upper limit of conditional expression (15) to 1.91, and more preferably to 1.88.
  • variable power optical system of this embodiment by setting the lower limit of conditional expression (15) to 1.49, the effects of this embodiment can be made more reliable. Furthermore, in order to ensure the effects of this embodiment, it is preferable to set the lower limit value of conditional expression (15) to 1.55, and more preferably to 1.58.
  • variable magnification optical system of this embodiment it is preferable that the following conditional expression is satisfied. (16) -2.50 ⁇ f1/fW ⁇ -1.00 however, f1: Focal length of the first lens group fW: Focal length of the variable magnification optical system in the wide-angle end state
  • Conditional expression (16) defines the ratio between the focal length of the first lens group and the focal length of the variable magnification optical system in the wide-angle end state.
  • variable power optical system of this embodiment when the value of conditional expression (16) exceeds the upper limit, the first lens group becomes larger.
  • the effect of this embodiment can be made more reliable.
  • the upper limit of conditional expression (16) is set to -1.20, -1.38, -1.58, -1.75, and further to -1.95. It is preferable to set
  • variable power optical system of this embodiment if the value of conditional expression (16) is below the lower limit, the refractive power of the first lens group becomes too weak, making it difficult to appropriately correct various aberrations. Furthermore, the total length of the variable power optical system becomes longer, making it larger.
  • variable magnification optical system of this embodiment by setting the lower limit of conditional expression (16) to -2.50, the effect of this embodiment can be made more reliable. Further, in order to ensure the effects of this embodiment, it is preferable to set the lower limit value of conditional expression (16) to -2.45, -2.40, -2.35, and further to -2.30. .
  • variable magnification optical system of this embodiment it is preferable that the following conditional expression is satisfied. (17) 1.00 ⁇ f1/fW ⁇ 4.00 however, f1: Focal length of the first lens group fW: Focal length of the variable magnification optical system in the wide-angle end state
  • Conditional expression (17) defines the ratio between the focal length of the first lens group and the focal length of the variable magnification optical system in the wide-angle end state.
  • variable magnification optical system of this embodiment if the value of conditional expression (17) exceeds the upper limit, the refractive power of the first lens group becomes too weak, making it difficult to appropriately correct various aberrations. Furthermore, the total length of the variable power optical system becomes longer, making it larger.
  • variable power optical system of this embodiment by setting the upper limit of conditional expression (17) to 4.00, the effects of this embodiment can be made more reliable. In order to further ensure the effects of this embodiment, it is preferable to set the upper limit of conditional expression (17) to 3.90, 3.85, 3.75, 3.70, and further 3.60. .
  • variable magnification optical system of this embodiment if the value of conditional expression (17) falls below the lower limit, the refractive power of the first lens group becomes too strong, making it difficult to appropriately correct various aberrations including coma aberration. This becomes difficult.
  • variable power optical system of this embodiment by setting the lower limit of conditional expression (17) to 1.00, the effect of this embodiment can be made more reliable. Furthermore, in order to ensure the effects of this embodiment, it is preferable to set the lower limit value of conditional expression (17) to 1.03, 1.06, 1.08, 1.11, and further to 1.14. .
  • variable magnification optical system of this embodiment satisfies the following conditional expression. (18) 0.10 ⁇ Y/fW ⁇ 1.00 however, Y: Image height fW: Focal length in the wide-angle end state of the variable magnification optical system
  • Conditional expression (18) defines the ratio between the image height and the focal length of the variable magnification optical system in the wide-angle end state.
  • the variable power optical system of this embodiment can be made smaller by satisfying conditional expression (18).
  • conditional expression (18) exceeds the upper limit in the variable magnification optical system of this embodiment, the lens diameter increases, and the variable magnification optical system accordingly increases in size.
  • variable power optical system of this embodiment by setting the upper limit of conditional expression (18) to 1.00, the effects of this embodiment can be made more reliable. Furthermore, in order to ensure the effects of this embodiment, it is preferable to set the upper limit of conditional expression (18) to 0.98, 0.96, 0.94, 0.92, and further 0.90. .
  • variable power optical system of the present embodiment if the value of conditional expression (18) is less than the lower limit value, the overall length of the variable power optical system becomes long, resulting in an increase in size.
  • variable power optical system of this embodiment by setting the lower limit of conditional expression (18) to 0.10, the effect of this embodiment can be made more reliable. Further, in order to further ensure the effects of this embodiment, it is preferable to set the lower limit value of conditional expression (18) to 0.15, 0.20, and further 0.25.
  • variable magnification optical system of this embodiment satisfies the following conditional expression. (19) 1.50 ⁇ fW/BfW ⁇ 7.00 however, BfW: Back focus of the variable magnification optical system at the wide-angle end state fW: Focal length of the variable magnification optical system at the wide-angle end state
  • Conditional expression (19) defines the ratio of the back focus to the focal length in the wide-angle end state of the variable magnification optical system.
  • conditional expression (19) exceeds the upper limit in the variable magnification optical system of this embodiment, the total length of the variable magnification optical system becomes long, resulting in an increase in size.
  • variable magnification optical system of this embodiment by setting the upper limit of conditional expression (19) to 7.00, the effect of this embodiment can be made more reliable. Furthermore, in order to ensure the effects of this embodiment, it is preferable to set the upper limit of conditional expression (19) to 6.92, 6.84, 6.76, 6.68, and further 6.60. .
  • variable magnification optical system of this embodiment when the value of conditional expression (19) falls below the lower limit, the refractive power of each lens group becomes strong, and various aberrations including coma and curvature of field are appropriately suppressed. It becomes difficult to correct.
  • variable power optical system of this embodiment by setting the lower limit of conditional expression (19) to 1.50, the effect of this embodiment can be made more reliable. Furthermore, in order to ensure the effects of this embodiment, it is preferable to set the lower limit value of conditional expression (19) to 1.53, 1.57, 1.60, 1.64, and further 1.67. .
  • the optical device of this embodiment has a variable magnification optical system configured as described above. Thereby, it is possible to change from one focused state to another focused state at a predetermined photographing distance, and it is also possible to realize an optical device that is small and has good imaging performance.
  • the first manufacturing method of the variable power optical system of the present embodiment is to manufacture a variable power optical system including, in order from the object side, a first lens group, a second lens group, a third lens group, and a rear group.
  • a second focusing lens group that is disposed closer to the image side than the first focusing lens group and moves on a trajectory different from that of the first focusing lens group during focusing.
  • the second manufacturing method of the variable power optical system of the present embodiment is to manufacture a variable power optical system including, in order from the object side, a first lens group, a second lens group, a third lens group, and a rear group.
  • a method in which the distance between adjacent lens groups changes when changing magnification, and a plurality of focusing states with different amounts of aberrations are created at a predetermined shooting distance, and the rear group moves during focusing.
  • one of the plurality of focusing states changes to another focusing state that differs from the amount of aberration in one of the plurality of focusing states.
  • the lens is moved and has a variable aberration lens that is different from the focusing lens group.
  • variable magnification optical system By using such a manufacturing method of a variable magnification optical system, it is possible to change from one in-focus state to another at a predetermined shooting distance, and it is possible to create a variable magnification optical system that is compact and has good imaging performance. can be manufactured.
  • FIG. 1 is a sectional view of the variable power optical system of the first embodiment when focusing on an object at infinity in the wide-angle end state.
  • the variable magnification optical system of this embodiment includes, in order from the object side, a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, and a third lens group having a positive refractive power. a fourth lens group G4 having positive refractive power, a fifth lens group G5 having positive refractive power, a sixth lens group G6 having negative refractive power, and a fourth lens group G4 having positive refractive power. 7 lens groups G7.
  • the first lens group G1 includes, in order from the object side, a meniscus-shaped negative lens L1 with a convex surface facing the object side, a meniscus-shaped negative lens L2 with a convex surface facing the object side, and a meniscus-shaped negative lens L2 with a convex surface facing the object side. It consists of a positive lens L3 and a cemented positive lens.
  • the second lens group G2 consists of, in order from the object side, a meniscus-shaped negative lens L4 with a convex surface facing the object side, and a cemented positive lens consisting of a biconvex positive lens L5 and a biconcave negative lens L6. .
  • the third lens group G3 consists of, in order from the object side, a biconvex positive lens L7, and a cemented positive lens consisting of a biconvex positive lens L8 and a meniscus negative lens L9 with a concave surface facing the object side. .
  • the fourth lens group G4 consists of, in order from the object side, an aperture stop S, and a cemented positive lens consisting of a biconvex positive lens L10 and a biconcave negative lens L11.
  • the fifth lens group G5 consists of a cemented positive lens consisting of a meniscus-shaped positive lens L12 with a concave surface facing the object side and a meniscus-shaped negative lens L13 with a concave surface facing the object side.
  • the sixth lens group G6 consists of, in order from the object side, a biconcave negative lens L14 and a meniscus positive lens L15 with a convex surface facing the object side.
  • the seventh lens group G7 consists of, in order from the object side, a meniscus-shaped positive lens L16 with a concave surface facing the object side, and a meniscus-shaped positive lens L17 with a concave surface facing the object side.
  • an image sensor (not shown) composed of a CCD, CMOS, or the like is arranged on the image plane I.
  • variable magnification optical system of this embodiment performs focusing by moving the fifth lens group G5 and the sixth lens group G6 along the optical axis.
  • the fifth lens group G5 is moved from the image side to the object side
  • the sixth lens group G6 is moved from the object side to the image side. Ru.
  • variable magnification optical system of this embodiment moves the fifth lens group G5 and the sixth lens group G6 from the image side to the object side, or from the object side to the image side, respectively, along the optical axis.
  • the focus state at a predetermined photographing distance can be changed from one focus state to another focus state.
  • the fourth lens group G4, the fifth lens group G5, the sixth lens group G6, and the seventh lens group G7 correspond to the rear group. Further, the fifth lens group G5 corresponds to the first focusing lens group, and the sixth lens group G6 corresponds to the second focusing lens group.
  • Table 1 below lists the values of the specifications of the variable power optical system of this example.
  • TLW is the total optical length when focusing on an object at infinity in the wide-angle end state of the variable magnification optical system
  • TLT is the optical total length when focusing on an object at infinity in the telephoto end state of the variable power optical system. Shows the optical total length when focused.
  • fW indicates the focal length of the variable magnification optical system in the wide-angle end state
  • fT indicates the focal length of the variable magnification optical system in the telephoto end state.
  • FnoW is the F value at the wide-angle end state of the variable power optical system
  • FnoT is the F number at the wide-angle end state of the variable power optical system
  • Y is the image height
  • 2 ⁇ W is the total angle of view at the wide-angle end state of the variable power optical system. 2 ⁇ T indicates the total angle of view at the telephoto end state of the variable magnification optical system.
  • m is the order of the optical surfaces counted from the object side
  • r is the radius of curvature
  • d is the surface spacing
  • nd is the refractive index for the d-line (wavelength 587.6 nm)
  • ⁇ d is for the d-line.
  • optical surfaces marked with "*" indicate that they are aspheric surfaces.
  • lenses corresponding to lens Z in conditional expressions (10), (11), and (12), lens F in conditional expression (13), and lens FDC in conditional expression (15) are shown.
  • m is the optical surface corresponding to the aspheric data
  • K is the conic constant
  • A4 to A12 are the aspheric coefficients.
  • the height of the aspherical surface in the direction perpendicular to the optical axis is y, and the distance (sag amount) along the optical axis from the tangent plane of the vertex of each aspherical surface to each aspherical surface at the height y is S(y)
  • the radius of curvature (paraxial radius of curvature) of the reference sphere is r
  • the conic constant is K
  • the nth-order aspherical coefficient is An
  • variable magnification optical system can obtain the same optical performance even when proportionally enlarged or proportionally reduced, it is not limited to this.
  • FIG. 2A is a diagram showing various aberrations when focusing on an object at infinity in the wide-angle end state of the variable magnification optical system of the first embodiment
  • FIG. 2B is a diagram showing a close-range object in the wide-angle end state of the variable power optical system of the first embodiment
  • FIG. 2C is a diagram showing various aberrations during the first focusing on a close object in the wide-angle end state of the variable magnification optical system of the first embodiment
  • FIG. FIG. 2E is a diagram showing various aberrations during the third focusing on a short-distance object in the wide-angle end state of the variable power optical system of the first embodiment
  • FIG. FIG. 2F is a diagram of various aberrations during focusing
  • 2F is a diagram of various aberrations at the time of first focusing on a short-distance object in the telephoto end state of the variable power optical system of the first embodiment.
  • 2H is a diagram showing various aberrations at the time of second focusing on a close object in the telephoto end state of the variable power optical system, and
  • FIG. 2H is a diagram showing third focusing on a close object in the wide angle end state of the variable power optical system of the first embodiment.
  • FNO indicates the F value
  • Y indicates the image height
  • the spherical aberration diagram shows the F value corresponding to the maximum aperture
  • the astigmatism diagram and the distortion diagram show the maximum image height
  • the coma aberration diagram shows the value of each image height.
  • d indicates the d-line
  • g indicates the g-line (wavelength 435.8 nm).
  • the solid line indicates the sagittal image plane
  • the broken line indicates the meridional image plane.
  • variable magnification optical system of this example effectively suppresses aberration fluctuations during focusing and variable magnification, and has high optical performance.
  • FIG. 3 is a cross-sectional view of the variable magnification optical system of the second embodiment when focusing on an object at infinity in the wide-angle end state.
  • the variable magnification optical system of this embodiment includes, in order from the object side, a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, and a third lens group having a positive refractive power. a fourth lens group G4 having negative refractive power, a fifth lens group G5 having negative refractive power, a sixth lens group G6 having positive refractive power, and a fourth lens group G4 having negative refractive power. 7 lens groups G7.
  • the first lens group G1 includes, in order from the object side, a meniscus-shaped negative lens L1 with a convex surface facing the object side, a biconcave negative lens L2, and a meniscus-shaped positive lens L3 with a convex surface facing the object side. It consists of a cemented positive lens.
  • the second lens group G2 consists of, in order from the object side, a meniscus-shaped negative lens L4 with a convex surface facing the object side, and a cemented positive lens consisting of a biconvex positive lens L5 and a biconcave negative lens L6. .
  • the third lens group G3 includes, in order from the object side, a meniscus-shaped positive lens L7 with a convex surface facing the object side, a biconvex positive lens L8, and a meniscus-shaped negative lens L9 with a concave surface facing the object side. It consists of a cemented positive lens.
  • the fourth lens group G4 consists of, in order from the object side, an aperture stop S, and a cemented negative lens consisting of a biconvex positive lens L10 and a biconcave negative lens L11.
  • the fifth lens group G5 is composed of a cemented negative lens consisting of a biconcave negative lens L12 and a biconvex positive lens L13.
  • the sixth lens group G6 consists of, in order from the object side, a meniscus-shaped positive lens L14 with a convex surface facing the object side, and a biconvex-shaped positive lens L15.
  • the seventh lens group G7 consists of, in order from the object side, a meniscus-shaped positive lens L16 with a concave surface facing the object side, and a meniscus-shaped negative lens L17 with a concave surface facing the object side.
  • an image sensor (not shown) composed of a CCD, CMOS, or the like is arranged on the image plane I.
  • variable magnification optical system of this embodiment performs focusing by moving the fifth lens group G5 and the sixth lens group G6 along the optical axis.
  • the fifth lens group G5 is moved from the object side to the image side
  • the sixth lens group G6 is moved from the image side to the object side. Ru.
  • variable magnification optical system of this embodiment moves the fifth lens group G5 and the sixth lens group G6 along the optical axis from the object side to the image side, or from the image side to the object side, respectively.
  • the focus state at a predetermined photographing distance can be changed from one focus state to another focus state.
  • the fourth lens group G4, the fifth lens group G5, the sixth lens group G6, and the seventh lens group G7 correspond to the rear group. Further, the fifth lens group G5 corresponds to the first focusing lens group, and the sixth lens group G6 corresponds to the second focusing lens group.
  • Table 2 below lists the values of the specifications of the variable power optical system of this example.
  • FIG. 4A is a diagram showing various aberrations when focusing on an object at infinity in the wide-angle end state of the variable magnification optical system of the second embodiment
  • FIG. 4B is a diagram showing a close-range object in the wide-angle end state of the variable power optical system of the second embodiment
  • FIG. 4C is a diagram showing various aberrations during the first focusing on a close object in the wide-angle end state of the variable magnification optical system of the second embodiment
  • FIG. 4D is a diagram showing various aberrations during the second focusing on a close object
  • FIG. 4E is a diagram showing various aberrations during the third focusing on a short distance object in the wide-angle end state of the variable power optical system of the second embodiment
  • FIG. 4F is a diagram of various aberrations during focusing, and FIG. 4F is a diagram of various aberrations at the time of first focusing on a short-distance object in the telephoto end state of the variable power optical system of the second embodiment.
  • FIG. 4H is a diagram showing various aberrations during second focusing on a close object in the telephoto end state of the variable magnification optical system, and FIG. 4H shows third focusing on a close object in the wide angle end state of the variable power optical system of the second embodiment.
  • FIG. 4H is a diagram showing various aberrations during second focusing on a close object in the telephoto end state of the variable magnification optical system
  • FIG. 4H shows third focusing on a close object in the wide angle end state of the variable power optical system of the second embodiment.
  • variable magnification optical system of this example effectively suppresses aberration fluctuations during focusing and variable magnification, and has high optical performance.
  • FIG. 5 is a cross-sectional view of the variable power optical system of the third embodiment when focusing on an object at infinity in the wide-angle end state.
  • the variable magnification optical system of this embodiment includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens group having a positive refractive power.
  • a fourth lens group G4 having a positive refractive power a fifth lens group G5 having a negative refractive power, a sixth lens group G6 having a positive refractive power, and a fourth lens group G4 having a positive refractive power. It has seven lens groups G7, an eighth lens group G8 having negative refractive power, and a ninth lens group G9 having positive refractive power.
  • the first lens group G1 includes, in order from the object side, a cemented positive lens consisting of a meniscus-shaped negative lens L1 with a convex surface facing the object side, a plano-convex lens L2 with a convex surface facing the object side, and a cemented positive lens with a convex surface facing the object side. It consists of a meniscus-shaped positive lens L3.
  • the second lens group G2 includes, in order from the object side, a meniscus-shaped negative lens L4 with a convex surface facing the object side, a meniscus-shaped negative lens L5 with a convex surface facing the object side, and a meniscus negative lens L5 with a convex surface facing the object side. It consists of a positive lens L6 having a shape and a negative lens L7 having a biconcave shape.
  • the third lens group G3 consists of a meniscus-shaped positive lens L8 with a convex surface facing the object side.
  • the fourth lens group G4 consists of, in order from the object side, a meniscus-shaped positive lens L9 with a convex surface facing the object side, and a meniscus-shaped positive lens L10 with a convex surface facing the object side.
  • the fifth lens group G5 consists of an aperture stop S and a cemented negative lens consisting of a biconcave negative lens L11 and a meniscus positive lens L12 with a convex surface facing the object side.
  • the sixth lens group G6 includes, in order from the object side, a meniscus-shaped negative lens L13 with a convex surface facing the object side, a biconvex positive lens L14, and a meniscus-shaped negative lens L15 with a concave surface facing the object side. It consists of a cemented positive lens.
  • the seventh lens group G7 consists of a biconvex positive lens L16.
  • the eighth lens group G8 consists of, in order from the object side, a meniscus-shaped positive lens L17 with a concave surface facing the object side, and a biconcave-shaped negative lens L18.
  • the ninth lens group G9 includes, in order from the object side, a biconvex positive lens L19, a meniscus negative lens L20 with a concave surface facing the object side, and a meniscus negative lens L21 with a concave surface facing the object side. Consisting of
  • an image sensor (not shown) composed of a CCD, CMOS, or the like is arranged on the image plane I.
  • variable magnification optical system of this embodiment performs focusing by moving the seventh lens group G7 and the eighth lens group G8 along the optical axis.
  • the seventh lens group G7 is moved from the image side to the object side
  • the eighth lens group G8 is moved from the object side to the image side. Ru.
  • variable magnification optical system of this embodiment moves the seventh lens group G7 and the eighth lens group G8 along the optical axis from the image side to the object side or from the object side to the image side, respectively.
  • the focus state at a predetermined photographing distance can be changed from one focus state to another focus state.
  • the fourth lens group G4, the fifth lens group G5, the sixth lens group G6, the seventh lens group G7, the eighth lens group G8, and the ninth lens group G9 are arranged in the rear group. Applicable. Further, the seventh lens group G7 corresponds to the first focusing lens group, and the eighth lens group G8 corresponds to the second focusing lens group.
  • Table 3 below lists the values of the specifications of the variable power optical system of this example.
  • FIG. 6A is a diagram showing various aberrations when focusing on an object at infinity in the wide-angle end state of the variable magnification optical system of the third embodiment
  • FIG. 6B is a diagram showing a close-range object in the wide-angle end state of the variable power optical system of the third embodiment
  • FIG. 6C is a diagram showing various aberrations during the first focusing on a close object in the wide-angle end state of the variable magnification optical system of the third embodiment
  • FIG. FIG. 6E is a diagram showing various aberrations during the third focusing on a short distance object in the wide-angle end state of the variable power optical system of the third embodiment
  • FIG. FIG. 6F is a diagram of various aberrations during focusing
  • 6F is a diagram of various aberrations at the time of first focusing on a short-distance object in the telephoto end state of the variable power optical system of the third embodiment.
  • 6H is a diagram showing various aberrations during second focusing on a close object in the telephoto end state of the variable magnification optical system, and FIG. 6H shows third focusing on a close object in the wide angle end state of the variable power optical system of the third embodiment.
  • variable magnification optical system of this example effectively suppresses aberration fluctuations during focusing and variable magnification, and has high optical performance.
  • FIG. 7 is a cross-sectional view of the variable power optical system of the fourth embodiment when focusing on an object at infinity in the wide-angle end state.
  • the variable magnification optical system of this embodiment includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens group having a positive refractive power.
  • a fourth lens group G4 having a positive refractive power a fifth lens group G5 having a negative refractive power, a sixth lens group G6 having a positive refractive power, and a fourth lens group G4 having a negative refractive power. It has seven lens groups G7, an eighth lens group G8 having positive refractive power, and a ninth lens group G9 having negative refractive power.
  • the first lens group G1 includes, in order from the object side, a cemented positive lens consisting of a meniscus-shaped negative lens L1 with a convex surface facing the object side, a plano-convex lens L2 with a convex surface facing the object side, and a cemented positive lens with a convex surface facing the object side. It consists of a meniscus-shaped positive lens L3.
  • the second lens group G2 includes, in order from the object side, a meniscus-shaped negative lens L4 with a convex surface facing the object side, a meniscus-shaped negative lens L5 with a convex surface facing the object side, and a meniscus negative lens L5 with a convex surface facing the object side. It consists of a positive lens L6 having a shape and a negative lens L7 having a biconcave shape.
  • the third lens group G3 consists of a meniscus-shaped positive lens L8 with a convex surface facing the object side.
  • the fourth lens group G4 consists of, in order from the object side, a meniscus-shaped positive lens L9 with a convex surface facing the object side, and a meniscus-shaped positive lens L10 with a convex surface facing the object side.
  • the fifth lens group G5 consists of, in order from the object side, an aperture stop S, a cemented negative lens consisting of a biconcave negative lens L11 and a meniscus positive lens L12 with a convex surface facing the object side.
  • the sixth lens group G6 includes, in order from the object side, a meniscus-shaped negative lens L13 with a convex surface facing the object side, a biconvex positive lens L14, and a meniscus-shaped negative lens L15 with a concave surface facing the object side. It consists of a cemented positive lens and a meniscus-shaped positive lens L16 with a convex surface facing the object side.
  • the seventh lens group G7 consists of, in order from the object side, a biconvex positive lens L17 and a meniscus negative lens L18 with a convex surface facing the object side.
  • the eighth lens group G8 consists of a biconvex positive lens L19.
  • the ninth lens group G9 consists of, in order from the object side, a biconcave negative lens L20 and a meniscus negative lens L21 with a concave surface facing the object side.
  • an image sensor (not shown) composed of a CCD, CMOS, or the like is arranged on the image plane I.
  • variable magnification optical system of this embodiment performs focusing by moving the seventh lens group G7 and the eighth lens group G8 along the optical axis.
  • the seventh lens group G7 is moved from the object side to the image side
  • the eighth lens group G8 is moved from the image side to the object side. Ru.
  • variable magnification optical system of this embodiment moves the seventh lens group G7 and the eighth lens group G8 along the optical axis from the image side to the object side or from the object side to the image side, respectively.
  • the focus state at a predetermined photographing distance can be changed from one focus state to another focus state.
  • the fourth lens group G4, the fifth lens group G5, the sixth lens group G6, the seventh lens group G7, the eighth lens group G8, and the ninth lens group G9 are arranged in the rear group. Applicable. Further, the seventh lens group G7 corresponds to the first focusing lens group, and the eighth lens group G8 corresponds to the second focusing lens group.
  • Table 4 lists the values of the specifications of the variable power optical system of this example.
  • FIG. 8A is a diagram showing various aberrations when focusing on an object at infinity in the wide-angle end state of the variable magnification optical system of the fourth embodiment
  • FIG. 8B is a diagram of various aberrations when focusing on a close-range object in the wide-angle end state of the variable power optical system of the fourth embodiment
  • FIG. 8C is a diagram showing various aberrations during the first focusing on a close object in the wide-angle end state of the variable magnification optical system of the fourth embodiment
  • FIG. FIG. 8E is a diagram showing various aberrations during the third focusing on a close object in the wide-angle end state of the variable magnification optical system of the fourth embodiment
  • FIG. 8F is a diagram of various aberrations during focusing, and FIG. 8F is a diagram of various aberrations at the time of first focusing on a close object in the telephoto end state of the variable power optical system of the fourth embodiment.
  • FIG. 8H is a diagram showing various aberrations during second focusing on a close object in the telephoto end state of the variable magnification optical system, and FIG. 8H shows third focusing on a close object in the wide angle end state of the variable power optical system of the fourth embodiment.
  • FIG. 8H is a diagram showing various aberrations during second focusing on a close object in the telephoto end state of the variable magnification optical system
  • FIG. 8H shows third focusing on a close object in the wide angle end state of the variable power optical system of the fourth embodiment.
  • variable magnification optical system of this example effectively suppresses aberration fluctuations during focusing and variable magnification, and has high optical performance.
  • FIG. 9 is a cross-sectional view of the variable power optical system of the fifth embodiment when focusing on an object at infinity in the wide-angle end state.
  • the variable magnification optical system of this embodiment includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens group having a positive refractive power. a fourth lens group G4 having a positive refractive power, a fifth lens group G5 having a positive refractive power, a sixth lens group G6 having a negative refractive power, and a fourth lens group G4 having a negative refractive power. 7 lens groups G7.
  • the first lens group G1 consists of, in order from the object side, a cemented positive lens consisting of a meniscus-shaped negative lens L1 with a convex surface facing the object side, a double-convex positive lens L2, and a double-convex positive lens L3. .
  • the second lens group G2 includes, in order from the object side, a cemented negative lens consisting of a biconvex positive lens L4 and a biconcave negative lens L5, a meniscus positive lens L6 with a convex surface facing the object side, and a cemented negative lens L6 having a convex surface facing the object side. It consists of a cemented positive lens with a meniscus-shaped negative lens L7 with a convex surface facing toward the side, and a double-concave negative lens L8.
  • the third lens group G3 includes, in order from the object side, a double-convex positive lens L9, a double-convex positive lens L10, a cemented positive lens consisting of a double-convex positive lens L11, and a double-concave negative lens L12. , an aperture stop S, and a cemented negative lens consisting of a biconvex positive lens L13 and a biconcave negative lens L14.
  • the fourth lens group G4 consists of a biconvex positive lens L15.
  • the fifth lens group G5 is composed of a cemented positive lens consisting of a biconvex positive lens L16 and a biconcave negative lens L17.
  • the sixth lens group G6 consists of a meniscus-shaped negative lens L18 with a convex surface facing the object side.
  • the seventh lens group G7 consists of a cemented negative lens consisting of a biconcave negative lens L19 and a biconvex positive lens L20.
  • an image sensor (not shown) composed of a CCD, CMOS, or the like is arranged on the image plane I.
  • variable magnification optical system of this embodiment performs focusing by moving the fifth lens group G5 and the sixth lens group G6 along the optical axis.
  • the fifth lens group G5 is moved from the image side to the object side
  • the sixth lens group G6 is moved from the object side to the image side. Ru.
  • variable magnification optical system of this embodiment moves the fifth lens group G5 and the sixth lens group G6 along the optical axis from the object side to the image side, or from the image side to the object side, respectively.
  • the focus state at a predetermined photographing distance can be changed from one focus state to another focus state.
  • the fourth lens group G4, the fifth lens group G5, the sixth lens group G6, and the seventh lens group G7 correspond to the rear group. Further, the fifth lens group G5 corresponds to the first focusing lens group, and the sixth lens group G6 corresponds to the second focusing lens group.
  • Table 5 lists the values of the specifications of the variable power optical system of this example.
  • FIG. 10A is a diagram showing various aberrations when focusing on an object at infinity in the wide-angle end state of the variable magnification optical system of the fifth embodiment
  • FIG. 10B is a diagram showing a close-range object in the wide-angle end state of the variable power optical system of the fifth embodiment
  • FIG. 10C is a diagram showing various aberrations during the first focusing on a close object in the wide-angle end state of the variable magnification optical system of the fifth embodiment
  • FIG. FIG. 10E is a diagram showing various aberrations during the third focusing on a short distance object in the wide-angle end state of the variable power optical system of the fifth embodiment
  • FIG. 10F is a diagram of various aberrations during focusing
  • FIG. 10A is a diagram showing various aberrations when focusing on an object at infinity in the wide-angle end state of the variable magnification optical system of the fifth embodiment
  • FIG. 10B is a diagram showing a close-range object in the wide-angle end state of the variable power optical
  • 10F is a diagram of various aberrations at the time of first focusing on a close object in the telephoto end state of the variable power optical system of the fifth embodiment.
  • 10H is a diagram showing various aberrations at the time of second focusing on a close object in the telephoto end state of the variable power optical system, and
  • FIG. 10H is a diagram showing third focusing on a close object in the wide angle end state of the variable power optical system of the fifth embodiment.
  • variable magnification optical system of this example effectively suppresses aberration fluctuations during focusing and variable magnification, and has high optical performance.
  • FIG. 11 is a sectional view of the variable power optical system of the sixth embodiment when focusing on an object at infinity in the wide-angle end state.
  • the variable magnification optical system of this embodiment includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens group having a positive refractive power. a fourth lens group G4 having a positive refractive power, a fifth lens group G5 having a negative refractive power, a sixth lens group G6 having a positive refractive power, and a fourth lens group G4 having a negative refractive power. 7 lens groups G7.
  • the first lens group G1 includes, in order from the object side, a cemented positive lens consisting of a meniscus-shaped negative lens L1 with a convex surface facing the object side and a double-convex positive lens L2, and a meniscus-shaped negative lens L1 with a convex surface facing the object side. It consists of a positive lens L3.
  • the second lens group G2 includes, in order from the object side, a cemented negative lens consisting of a biconvex positive lens L4 and a biconcave negative lens L5, a meniscus positive lens L6 with a convex surface facing the object side, and a cemented negative lens L6 having a convex surface facing the object side. It consists of a cemented positive lens with a meniscus-shaped negative lens L7 with a convex surface facing toward the side, and a double-concave negative lens L8.
  • the third lens group G3 includes, in order from the object side, a double-convex positive lens L9, a double-convex positive lens L10, a cemented positive lens consisting of a double-convex positive lens L11, and a double-concave negative lens L12. , an aperture stop S, and a cemented negative lens consisting of a biconvex positive lens L13 and a biconcave negative lens L14.
  • the fourth lens group G4 consists of, in order from the object side, a biconvex positive lens L15, and a cemented positive lens consisting of a biconvex positive lens L16 and a meniscus negative lens L17 with a concave surface facing the object side. .
  • the fifth lens group G5 consists of a meniscus-shaped negative lens L18 with a convex surface facing the object side.
  • the sixth lens group G6 consists of a meniscus-shaped positive lens L19 with a concave surface facing the object side.
  • the seventh lens group G7 consists of a biconcave negative lens L20.
  • an image sensor (not shown) composed of a CCD, CMOS, or the like is arranged on the image plane I.
  • variable magnification optical system of this embodiment performs focusing by moving the fifth lens group G5 and the sixth lens group G6 along the optical axis.
  • the fifth lens group G5 is moved from the object side to the image side
  • the sixth lens group G6 is moved from the image side to the object side. Ru.
  • variable magnification optical system of this embodiment moves the fifth lens group G5 and the sixth lens group G6 from the image side to the object side, or from the object side to the image side, respectively, along the optical axis.
  • the focus state at a predetermined photographing distance can be changed from one focus state to another focus state.
  • the fourth lens group G4, the fifth lens group G5, the sixth lens group G6, and the seventh lens group G7 correspond to the rear group. Further, the fifth lens group G5 corresponds to the first focusing lens group, and the sixth lens group G6 corresponds to the second focusing lens group.
  • Table 6 lists the values of the specifications of the variable power optical system of this example.
  • FIG. 12A is a diagram showing various aberrations when focusing on an object at infinity in the wide-angle end state of the variable magnification optical system of the sixth embodiment
  • FIG. 12B is a diagram showing a close-range object in the wide-angle end state of the variable magnification optical system of the sixth embodiment
  • FIG. 12C is a diagram showing various aberrations during the first focusing on a close object in the wide-angle end state of the variable magnification optical system of the sixth embodiment
  • FIG. FIG. 12E is a diagram showing various aberrations during the third focusing on a short distance object in the wide-angle end state of the variable power optical system of the sixth embodiment
  • FIG. FIG. 12F is a diagram of various aberrations during focusing
  • 12F is a diagram of various aberrations at the time of first focusing on a close object in the telephoto end state of the variable power optical system of the sixth embodiment.
  • 12H is a diagram showing various aberrations during second focusing on a close object in the telephoto end state of the variable magnification optical system, and FIG. 12H shows third focusing on a short distance object in the wide angle end state of the variable power optical system of the sixth embodiment.
  • variable magnification optical system of this example effectively suppresses aberration fluctuations during focusing and variable magnification, and has high optical performance.
  • FIG. 13 is a cross-sectional view of the variable magnification optical system of the seventh embodiment when focusing on an object at infinity in the wide-angle end state.
  • the variable magnification optical system of this embodiment includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens group having a positive refractive power. a fourth lens group G4 having a positive refractive power, a fifth lens group G5 having a negative refractive power, a sixth lens group G6 having a positive refractive power, and a fourth lens group G4 having a negative refractive power. 7 lens groups G7.
  • the first lens group G1 includes, in order from the object side, a cemented positive lens consisting of a meniscus-shaped negative lens L1 with a convex surface facing the object side and a double-convex positive lens L2, and a meniscus-shaped negative lens L1 with a convex surface facing the object side. It consists of a positive lens L3.
  • the second lens group G2 includes, in order from the object side, a cemented negative lens consisting of a biconvex positive lens L4 and a biconcave negative lens L5, a meniscus positive lens L6 with a convex surface facing the object side, and a cemented negative lens L6 having a convex surface facing the object side. It consists of a cemented positive lens with a meniscus-shaped negative lens L7 with a convex surface facing toward the side, and a double-concave negative lens L8.
  • the third lens group G3 includes, in order from the object side, a biconvex positive lens L9, a biconvex positive lens L10, and a cemented negative lens consisting of a biconvex positive lens L11 and a biconcave negative lens L12. , an aperture stop S, and a cemented negative lens consisting of a biconvex positive lens L13 and a biconcave negative lens L14.
  • the fourth lens group G4 consists of, in order from the object side, a biconvex positive lens L15, and a cemented positive lens consisting of a biconvex positive lens L16 and a biconcave negative lens L17.
  • the fifth lens group G5 consists of a meniscus-shaped negative lens L18 with a convex surface facing the object side.
  • the sixth lens group G6 consists of a meniscus-shaped positive lens L19 with a concave surface facing the object side.
  • the seventh lens group G7 consists of a meniscus-shaped negative lens L20 with a concave surface facing the object side.
  • an image sensor (not shown) composed of a CCD, CMOS, or the like is arranged on the image plane I.
  • variable magnification optical system of this embodiment performs focusing by moving the fifth lens group G5 and the sixth lens group G6 along the optical axis.
  • the fifth lens group G5 is moved from the object side to the image side
  • the sixth lens group G6 is moved from the image side to the object side. Ru.
  • variable magnification optical system of this embodiment moves the fifth lens group G5 and the sixth lens group G6 from the image side to the object side, or from the object side to the image side, respectively, along the optical axis.
  • the focus state at a predetermined photographing distance can be changed from one focus state to another focus state.
  • the fourth lens group G4, the fifth lens group G5, the sixth lens group G6, and the seventh lens group G7 correspond to the rear group. Further, the fifth lens group G5 corresponds to the first focusing lens group, and the sixth lens group G6 corresponds to the second focusing lens group.
  • Table 7 lists the values of the specifications of the variable power optical system of this example.
  • FIG. 14A is a diagram showing various aberrations when focusing on an object at infinity in the wide-angle end state of the variable magnification optical system of the seventh embodiment
  • FIG. 14B is a diagram showing a close-range object in the wide-angle end state of the variable magnification optical system of the seventh embodiment
  • FIG. 14C is a diagram showing various aberrations during the first focusing on a close object in the wide-angle end state of the variable magnification optical system of the seventh embodiment
  • FIG. FIG. 14E is a diagram showing various aberrations during the third focusing on a short distance object in the wide-angle end state of the variable power optical system of the seventh embodiment
  • FIG. FIG. 14F is a diagram of various aberrations during focusing
  • 14F is a diagram of various aberrations at the time of first focusing on a close object in the telephoto end state of the variable power optical system of the seventh embodiment.
  • 14H is a diagram showing various aberrations at the time of second focusing on a close object in the telephoto end state of the variable magnification optical system, and
  • FIG. 14H is a diagram showing third focusing on a close object in the wide angle end state of the variable power optical system of the seventh embodiment.
  • variable magnification optical system of this example effectively suppresses aberration fluctuations during focusing and variable magnification, and has high optical performance.
  • FIG. 15 is a sectional view of the variable power optical system of the eighth embodiment when focusing on an object at infinity in the wide-angle end state.
  • the variable magnification optical system of this embodiment includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens group having a positive refractive power. a fourth lens group G4 having a positive refractive power, a fifth lens group G5 having a positive refractive power, a sixth lens group G6 having a negative refractive power, and a fourth lens group G4 having a negative refractive power. 7 lens groups G7.
  • the first lens group G1 includes, in order from the object side, a cemented positive lens consisting of a meniscus-shaped negative lens L1 with a convex surface facing the object side, a plano-convex lens L2 with a convex surface facing the object side, and a cemented positive lens with a convex surface facing the object side. It consists of a meniscus-shaped positive lens L3.
  • the second lens group G2 includes, in order from the object side, a meniscus-shaped negative lens L4 with a convex surface facing the object side, a meniscus-shaped negative lens L5 with a convex surface facing the object side, and a meniscus negative lens L5 with a convex surface facing the object side. It consists of a positive lens L6 having a shape and a negative lens L7 having a biconcave shape.
  • the third lens group G3 consists of a biconvex positive lens L8.
  • the fourth lens group G4 includes, in order from the object side, a double-convex positive lens L9, a meniscus-shaped positive lens L10 with a convex surface facing the object side, an aperture stop S, and a meniscus-shaped positive lens L10 with a convex surface facing the object side. It consists of a cemented negative lens consisting of a negative lens L11 and a meniscus-shaped positive lens L12 with a convex surface facing the object side.
  • the fifth lens group G5 includes, in order from the object side, a meniscus negative lens L13 with a convex surface facing the object side, a cemented positive lens consisting of a biconvex positive lens L14, a biconcave negative lens L15, and an object lens. It consists of a meniscus-shaped positive lens L16 with a convex surface facing the side.
  • the sixth lens group G6 includes, in order from the object side, a biconvex positive lens L17, a meniscus negative lens L18 with a convex surface facing the object side, and a meniscus positive lens L19 with a convex surface facing the object side. Consisting of
  • the seventh lens group G7 consists of, in order from the object side, a meniscus-shaped negative lens L20 with a convex surface facing the object side, and a meniscus-shaped negative lens L21 with a concave surface facing the object side.
  • an image sensor (not shown) composed of a CCD, CMOS, or the like is arranged on the image plane I.
  • variable magnification optical system of this embodiment performs focusing by moving the fourth lens group G4 along the optical axis.
  • the fourth lens group G4 is moved from the image plane side to the object side when focusing on a close object from an infinity focused state.
  • variable magnification optical system of this embodiment achieves focusing at a predetermined photographing distance by moving the sixth lens group G6 from the image side to the object side or from the object side to the image side.
  • the focus state can be changed from one focus state to another focus state.
  • the fourth lens group G4, the fifth lens group G5, the sixth lens group G6, and the seventh lens group G7 correspond to the rear group. Further, the fourth lens group G4 corresponds to a focusing lens group, and the sixth lens group G6 corresponds to a variable aberration lens group.
  • Table 8 lists the values of the specifications of the variable power optical system of this example.
  • FIG. 16A is a diagram showing various aberrations when focusing on an object at infinity in the wide-angle end state of the variable magnification optical system of the eighth embodiment
  • FIG. 16B is a diagram of various aberrations when focusing on a close-range object in the wide-angle end state of the variable magnification optical system of the eighth embodiment
  • FIG. 16C is a diagram showing various aberrations during the first focusing on a close object in the wide-angle end state of the variable magnification optical system of the eighth embodiment
  • FIG. FIG. 16E is a diagram showing various aberrations at the third focusing on a close object in the wide-angle end state of the variable power optical system of the eighth embodiment
  • 16F is a diagram of various aberrations when focusing
  • FIG. 16F is a diagram of various aberrations when first focusing on a close object in the telephoto end state of the variable power optical system of the eighth embodiment
  • 16H is a diagram showing various aberrations during second focusing on a close object in the telephoto end state of the variable magnification optical system
  • FIG. 16H is a diagram showing third focusing on a close object in the wide angle end state of the variable power optical system of the eighth embodiment.
  • variable magnification optical system of this example effectively suppresses aberration fluctuations during focusing and variable magnification, and has high optical performance.
  • FIG. 17 is a sectional view of the variable power optical system of the ninth embodiment when focusing on an object at infinity in the wide-angle end state.
  • the variable magnification optical system of this embodiment includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens group having a positive refractive power.
  • a fourth lens group G4 having a positive refractive power a fifth lens group G5 having a negative refractive power, a sixth lens group G6 having a positive refractive power, and a fourth lens group G4 having a negative refractive power. It has seven lens groups G7, an eighth lens group G8 having positive refractive power, and a ninth lens group G9 having negative refractive power.
  • the first lens group G1 includes, in order from the object side, a cemented positive lens consisting of a meniscus-shaped negative lens L1 with a convex surface facing the object side, a plano-convex lens L2 with a convex surface facing the object side, and a cemented positive lens with a convex surface facing the object side. It consists of a meniscus-shaped positive lens L3.
  • the second lens group G2 includes, in order from the object side, a meniscus-shaped negative lens L4 with a convex surface facing the object side, a meniscus-shaped negative lens L5 with a convex surface facing the object side, and a meniscus negative lens L5 with a convex surface facing the object side. It consists of a positive lens L6 having a shape and a negative lens L7 having a biconcave shape.
  • the third lens group G3 consists of a meniscus-shaped positive lens L8 with a convex surface facing the object side.
  • the fourth lens group G4 consists of, in order from the object side, a biconvex positive lens L9 and a meniscus positive lens L10 with a convex surface facing the object side.
  • the fifth lens group G5 consists of, in order from the object side, an aperture stop S, and a cemented negative lens consisting of a biconcave negative lens L11 and a meniscus positive lens L12 with a convex surface facing the object side.
  • the sixth lens group G6 includes, in order from the object side, a meniscus-shaped negative lens L13 with a convex surface facing the object side, a biconvex positive lens L14, and a meniscus-shaped negative lens L15 with a concave surface facing the object side. It consists of a cemented positive lens and a meniscus-shaped positive lens L16 with a convex surface facing the object side.
  • the seventh lens group G7 consists of, in order from the object side, a biconvex positive lens L17 and a meniscus negative lens L18 with a convex surface facing the object side.
  • the eighth lens group G8 consists of a biconvex positive lens L19.
  • the ninth lens group G9 consists of, in order from the object side, a biconcave negative lens L20 and a meniscus negative lens L21 with a concave surface facing the object side.
  • an image sensor (not shown) composed of a CCD, CMOS, or the like is arranged on the image plane I.
  • variable magnification optical system of this embodiment performs focusing by moving the fourth lens group G4 and the fifth lens group G5 along the optical axis.
  • the fourth lens group G4 and the fifth lens group G5 are each moved from the image plane side to the object side.
  • variable magnification optical system of this embodiment moves the seventh lens group G7 and the eighth lens group G8 along the optical axis from the image side to the object side or from the object side to the image side, respectively.
  • the focus state at a predetermined photographing distance can be changed from one focus state to another focus state.
  • the fourth lens group G4, the fifth lens group G5, the sixth lens group G6, the seventh lens group G7, the eighth lens group G8, and the ninth lens group G9 are arranged in the rear group. Applicable. Furthermore, the fourth lens group G4 and the fifth lens group G5 correspond to focusing lens groups, and the seventh lens group G7 and eighth lens group G8 correspond to variable aberration lens groups.
  • Table 9 lists the values of the specifications of the variable power optical system of this example.
  • FIG. 18A is a diagram showing various aberrations when focusing on an object at infinity in the wide-angle end state of the variable magnification optical system of the ninth embodiment
  • FIG. 18B is a diagram showing a close-range object in the wide-angle end state of the variable magnification optical system of the ninth embodiment
  • FIG. 18C is a diagram showing various aberrations during the first focusing on a close object in the wide-angle end state of the variable magnification optical system of the ninth embodiment
  • FIG. FIG. 18E is a diagram showing various aberrations during the third focusing on a close object in the wide-angle end state of the variable power optical system of the ninth embodiment
  • FIG. FIG. 18F is a diagram of various aberrations during focusing
  • 18F is a diagram of various aberrations at the time of first focusing on a close object in the telephoto end state of the variable power optical system of the ninth embodiment.
  • 18H is a diagram showing various aberrations during second focusing on a close object in the telephoto end state of the variable magnification optical system, and FIG. 18H shows third focusing on a short distance object in the wide angle end state of the variable power optical system of the ninth embodiment.
  • variable magnification optical system of this example effectively suppresses aberration fluctuations during focusing and variable magnification, and has high optical performance.
  • variable power optical system having good optical performance can be realized.
  • f1 is the focal length of the first lens group
  • f2 is the focal length of the second lens group.
  • Dsr1W is the distance on the optical axis between the object-side surface of the lens placed closest to the object in the first focusing lens group and the aperture stop when focusing at infinity in the wide-angle end state
  • TLW is the distance on the optical axis between the aperture stop and the object-side surface of the lens placed closest to the object in the first focusing lens group when focusing at infinity in the wide-angle end state. is the total length of the optical system.
  • Dsr1T is the distance on the optical axis between the object-side surface of the lens placed closest to the object in the first focusing lens group and the aperture stop when focusing at infinity in the telephoto end state
  • TLT is the distance on the optical axis between the aperture stop and the object side surface of the lens placed closest to the object in the first focusing lens group when focusing at infinity in the telephoto end state is the total length of the optical system.
  • Dsr2W is the distance on the optical axis between the object-side surface of the lens placed closest to the object in the second focusing lens group and the aperture stop when focusing at infinity in the wide-angle end state
  • Dsr1T is the distance on the optical axis between the aperture stop and the object-side surface of the lens placed closest to the object in the second focusing lens group when focusing at infinity. This is the distance on the optical axis between the object-side surface of the lens disposed closest to the object side in the second focusing lens group and the aperture stop during infinity focusing.
  • DsiW is the distance on the optical axis between the aperture stop and the image plane when focusing on infinity in the wide-angle end state
  • DsiT is the distance on the optical axis between the aperture stop and the image plane when focusing on infinity in the telephoto end state. It is distance.
  • ndLZ is the refractive index of lens Z for d-line
  • ⁇ gFLZ is the partial dispersion ratio of lens Z
  • the refractive index of lens Z for g-line is ngLZ
  • the refractive index of lens Z for F-line is nFLZ
  • ndF is the refractive index for the d-line of each lens included in the first focusing lens group and the second focusing lens group.
  • fF1 is the focal length of the first focusing lens group
  • fF2 is the focal length of the second focusing lens group.
  • ndFDC is the refractive index for the d-line of each lens included in the focusing lens group and the variable aberration lens group.
  • fW is the focal length of the variable power optical system in the wide-angle end state
  • Y is the image height
  • BfW is the back focus of the variable power optical system in the wide-angle end state.
  • the lens surface of the lens constituting the optical system of each of the above embodiments may be a spherical or flat surface, or may be an aspherical surface. It is preferable that the lens surface is spherical or flat because lens processing and assembly adjustment are facilitated, and deterioration of optical performance due to errors in lens processing and assembly adjustment can be prevented. Further, even when the image plane shifts, there is little deterioration in depiction performance, which is preferable. If the lens surface is aspherical, it can be an aspherical surface made by grinding, a glass molded aspherical surface made by molding glass into an aspherical shape, or a composite aspherical surface made by forming a resin on the glass surface into an aspherical shape. good. Further, the lens surface may be a diffractive surface, and the lens may be a gradient index lens (GRIN lens) or a plastic lens.
  • GRIN lens gradient index lens
  • an antireflection film having high transmittance in a wide wavelength range may be applied to the lens surface of the lens constituting the variable magnification optical system of each of the above embodiments. This makes it possible to reduce flare and ghost and achieve optical performance with high contrast.
  • FIG. 19 is a schematic diagram of a camera equipped with a variable magnification optical system according to this embodiment.
  • the camera 1 is a so-called mirrorless camera with interchangeable lenses, which is equipped with the variable magnification optical system according to the first embodiment as a photographing lens 2.
  • the camera 1 In the camera 1 , light from an object (subject) (not shown) is collected by the photographing lens 2 and reaches the image sensor 3 .
  • the image sensor 3 converts light from a subject into image data.
  • the image data is displayed on the electronic viewfinder 4. Thereby, the photographer who has positioned his/her eye at the eye point EP can observe the subject.
  • the image data is stored in a memory (not shown). In this way, the photographer can photograph the subject using the camera 1.
  • variable magnification optical system of the first embodiment mounted on the camera 1 as the photographic lens 2 is a variable magnification optical system having good optical performance. Therefore, the camera 1 can achieve good optical performance. Note that even if a camera is configured in which the variable magnification optical system of the second to ninth embodiments described above is mounted as the photographing lens 2, the same effects as the camera 1 can be achieved.
  • FIGS. 20 and 21 are flowcharts showing the outline of the first and second manufacturing methods of the variable magnification optical system of this embodiment, respectively.
  • the first manufacturing method of the variable magnification optical system of this embodiment shown in FIG. 20 includes the following steps S11 to S15.
  • Step S11 Prepare a first lens group, a second lens group, a third lens group, and a rear group in order from the object side.
  • Step S12 When changing the magnification, the distance between adjacent lens groups is changed.
  • Step S13 The rear group includes a first focusing lens group and a second focusing lens group.
  • Step S14 At a predetermined shooting distance, there are a plurality of focusing states with different amounts of aberrations, and when changing from one focusing state to another focusing state, the first focusing lens group and the second focusing lens Make the group move.
  • Step S15 Make the variable magnification optical system satisfy all of the following conditional expressions. (1) -6.80 ⁇ f1/f2 ⁇ -0.05 however, f1: Focal length of the first lens group f2: Focal length of the second lens group
  • the second manufacturing method of the variable magnification optical system of this embodiment shown in FIG. 21 includes the following steps S21 to S24.
  • Step S21 Prepare a first lens group, a second lens group, a third lens group, and a rear group in order from the object side.
  • Step S22 During zooming, the distance between adjacent lens groups is changed.
  • Step S23 The rear group includes a focusing lens group and a variable aberration lens group.
  • Step S24 At a predetermined photographing distance, a plurality of focusing states with different amounts of aberrations are provided, and the variable aberration lens group is moved when changing from one focusing state to another focusing state.
  • variable magnification optical system having good imaging performance

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Lenses (AREA)

Abstract

物体側から順に、第1レンズ群と、第2レンズ群と、第3レンズ群と、後群とからなる変倍光学系を、変倍の際に、隣り合う各レンズ群の間隔が変化し、所定の撮影距離において、収差量の異なる複数の合焦状態を有し、後群は、合焦の際移動する第1合焦レンズ群と、第1合焦レンズ群より像側に配置され、合焦の際に、第1合焦レンズ群とは異なる軌跡で移動する第2合焦レンズ群とを有し、所定の撮影距離において、一の合焦状態から他の合焦状態になる際に、第1合焦レンズ群と第2合焦レンズ群とが移動し、以下の条件式を満足するように構成する。 -6.80 < f1/f2 < -0.05 但し、f1は第1レンズ群の焦点距離であり、f2は第2レンズ群の焦点距離である。

Description

変倍光学系、光学機器および変倍光学系の製造方法
 本開示は、変倍光学系、光学機器および変倍光学系の製造方法に関する。
 従来、写真用カメラ、電子スチルカメラ、ビデオカメラ等の光学機器に使用される変倍光学系が提案されている(例えば特許文献1参照)。
特開2018-097240号公報
 本開示の変倍光学系は、物体側から順に、第1レンズ群と、第2レンズ群と、第3レンズ群と、後群とからなり、変倍の際に、隣り合う各レンズ群の間隔が変化し、所定の撮影距離において、収差量の異なる複数の合焦状態を有し、後群は、合焦の際移動する第1合焦レンズ群と、第1合焦レンズ群より像側に配置され、合焦の際に、第1合焦レンズ群とは異なる軌跡で移動する第2合焦レンズ群とを有し、所定の撮影距離において、複数の合焦状態のうち一の合焦状態から複数の合焦状態のうち一の合焦状態の収差量と異なる収差量を有する他の合焦状態になる際に、第1合焦レンズ群と第2合焦レンズ群とが移動し、以下の条件式を満足する。
 -6.80 < f1/f2 < -0.05
但し、
 f1 : 第1レンズ群の焦点距離
 f2 : 第2レンズ群の焦点距離
 本開示の変倍光学系は、物体側から順に、第1レンズ群と、第2レンズ群と、第3レンズ群と、後群とからなり、変倍の際に、隣り合う各レンズ群の間隔が変化し、所定の撮影距離において、収差量の異なる複数の合焦状態を有し、後群は、合焦の際移動する合焦レンズ群と、所定の撮影距離において、複数の合焦状態のうち一の合焦状態から複数の合焦状態のうち一の合焦状態の収差量と異なる収差量を有する他の合焦状態になる際に移動し、合焦レンズ群と異なる収差可変レンズ群とを有する。
 本開示の変倍光学系の製造方法は、物体側から順に、第1レンズ群と、第2レンズ群と、第3レンズ群と、後群とからなる変倍光学系の製造方法であって、変倍の際に、隣り合う各レンズ群の間隔が変化し、所定の撮影距離において、収差量の異なる複数の合焦状態を有し、後群は、合焦の際移動する第1合焦レンズ群と、第1合焦レンズ群より像側に配置され、合焦の際に、第1合焦レンズ群とは異なる軌跡で移動する第2合焦レンズ群とを有し、所定の撮影距離において、一の合焦状態から収差量の異なる他の合焦状態になる際に、第1合焦レンズ群と第2合焦レンズ群とが移動し、以下の条件式を満足するようにする。
 -6.80 < f1/f2 < -0.05
但し、
 f1 : 第1レンズ群の焦点距離
 f2 : 第2レンズ群の焦点距離
広角端状態における無限遠物体合焦時の第1実施例の変倍光学系の断面図である。 第1実施例の変倍光学系の広角端状態における無限遠物体合焦時の諸収差図である。 第1実施例の変倍光学系の広角端状態における近距離物体に対する第1合焦時の諸収差図である。 第1実施例の変倍光学系の広角端状態における近距離物体に対する第2合焦時の諸収差図である。 第1実施例の変倍光学系の広角端状態における近距離物体に対する第3合焦時の諸収差図である。 第1実施例の変倍光学系の望遠端状態における無限遠物体合焦時の諸収差図である。 第1実施例の変倍光学系の望遠端状態における近距離物体に対する第1合焦時の諸収差図である。 第1実施例の変倍光学系の望遠端状態における近距離物体に対する第2合焦時の諸収差図である。 第1実施例の変倍光学系の広角端状態における近距離物体に対する第3合焦時の諸収差図である。 広角端状態における無限遠物体合焦時の第2実施例の変倍光学系の断面図である。 第2実施例の変倍光学系の広角端状態における無限遠物体合焦時の諸収差図である。 第2実施例の変倍光学系の広角端状態における近距離物体に対する第1合焦時の諸収差図である。 第2実施例の変倍光学系の広角端状態における近距離物体に対する第2合焦時の諸収差図である。 第2実施例の変倍光学系の広角端状態における近距離物体に対する第3合焦時の諸収差図である。 第2実施例の変倍光学系の望遠端状態における無限遠物体合焦時の諸収差図である。 第2実施例の変倍光学系の望遠端状態における近距離物体に対する第1合焦時の諸収差図である。 第2実施例の変倍光学系の望遠端状態における近距離物体に対する第2合焦時の諸収差図である。 は第2実施例の変倍光学系の広角端状態における近距離物体に対する第3合焦時の諸収差図である。 広角端状態における無限遠物体合焦時の第3実施例の変倍光学系の断面図である。 第3実施例の変倍光学系の広角端状態における無限遠物体合焦時の諸収差図である。 第3実施例の変倍光学系の広角端状態における近距離物体に対する第1合焦時の諸収差図である。 第3実施例の変倍光学系の広角端状態における近距離物体に対する第2合焦時の諸収差図である。 第3実施例の変倍光学系の広角端状態における近距離物体に対する第3合焦時の諸収差図である。 第3実施例の変倍光学系の望遠端状態における無限遠物体合焦時の諸収差図である。 第3実施例の変倍光学系の望遠端状態における近距離物体に対する第1合焦時の諸収差図である。 第3実施例の変倍光学系の望遠端状態における近距離物体に対する第2合焦時の諸収差図である。 第3実施例の変倍光学系の広角端状態における近距離物体に対する第3合焦時の諸収差図である。 広角端状態における無限遠物体合焦時の第4実施例の変倍光学系の断面図である。 第4実施例の変倍光学系の広角端状態における無限遠物体合焦時の諸収差図である。 第4実施例の変倍光学系の広角端状態における近距離物体に対する第1合焦時の諸収差図である。 第4実施例の変倍光学系の広角端状態における近距離物体に対する第2合焦時の諸収差図である。 第4実施例の変倍光学系の広角端状態における近距離物体に対する第3合焦時の諸収差図である。 第4実施例の変倍光学系の望遠端状態における無限遠物体合焦時の諸収差図である。 第4実施例の変倍光学系の望遠端状態における近距離物体に対する第1合焦時の諸収差図である。 第4実施例の変倍光学系の望遠端状態における近距離物体に対する第2合焦時の諸収差図である。 第4実施例の変倍光学系の広角端状態における近距離物体に対する第3合焦時の諸収差図である。 広角端状態における無限遠物体合焦時の第5実施例の変倍光学系の断面図である。 第5実施例の変倍光学系の広角端状態における無限遠物体合焦時の諸収差図である。 第5実施例の変倍光学系の広角端状態における近距離物体に対する第1合焦時の諸収差図である。 第5実施例の変倍光学系の広角端状態における近距離物体に対する第2合焦時の諸収差図である。 第5実施例の変倍光学系の広角端状態における近距離物体に対する第3合焦時の諸収差図である。 第5実施例の変倍光学系の望遠端状態における無限遠物体合焦時の諸収差図である。 第5実施例の変倍光学系の望遠端状態における近距離物体に対する第1合焦時の諸収差図である。 第5実施例の変倍光学系の望遠端状態における近距離物体に対する第2合焦時の諸収差図である。 第5実施例の変倍光学系の広角端状態における近距離物体に対する第3合焦時の諸収差図である。 広角端状態における無限遠物体合焦時の第6実施例の変倍光学系の断面図である。 第6実施例の変倍光学系の広角端状態における無限遠物体合焦時の諸収差図である。 第6実施例の変倍光学系の広角端状態における近距離物体に対する第1合焦時の諸収差図である。 第6実施例の変倍光学系の広角端状態における近距離物体に対する第2合焦時の諸収差図である。 第6実施例の変倍光学系の広角端状態における近距離物体に対する第3合焦時の諸収差図である。 第6実施例の変倍光学系の望遠端状態における無限遠物体合焦時の諸収差図である。 第6実施例の変倍光学系の望遠端状態における近距離物体に対する第1合焦時の諸収差図である。 第6実施例の変倍光学系の望遠端状態における近距離物体に対する第2合焦時の諸収差図である。 第6実施例の変倍光学系の広角端状態における近距離物体に対する第3合焦時の諸収差図である。 広角端状態における無限遠物体合焦時の第7実施例の変倍光学系の断面図である。 第7実施例の変倍光学系の広角端状態における無限遠物体合焦時の諸収差図である。 第7実施例の変倍光学系の広角端状態における近距離物体に対する第1合焦時の諸収差図である。 第7実施例の変倍光学系の広角端状態における近距離物体に対する第2合焦時の諸収差図である。 第7実施例の変倍光学系の広角端状態における近距離物体に対する第3合焦時の諸収差図である。 第7実施例の変倍光学系の望遠端状態における無限遠物体合焦時の諸収差図である。 第7実施例の変倍光学系の望遠端状態における近距離物体に対する第1合焦時の諸収差図である。 第7実施例の変倍光学系の望遠端状態における近距離物体に対する第2合焦時の諸収差図である。 第7実施例の変倍光学系の広角端状態における近距離物体に対する第3合焦時の諸収差図である。 広角端状態における無限遠物体合焦時の第8実施例の変倍光学系の断面図である。 第8実施例の変倍光学系の広角端状態における無限遠物体合焦時の諸収差図である。 第8実施例の変倍光学系の広角端状態における近距離物体に対する第1合焦時の諸収差図である。 第8実施例の変倍光学系の広角端状態における近距離物体に対する第2合焦時の諸収差図である。 第8実施例の変倍光学系の広角端状態における近距離物体に対する第3合焦時の諸収差図である。 第8実施例の変倍光学系の望遠端状態における無限遠物体合焦時の諸収差図である。 第8実施例の変倍光学系の望遠端状態における近距離物体に対する第1合焦時の諸収差図である。 第8実施例の変倍光学系の望遠端状態における近距離物体に対する第2合焦時の諸収差図である。 第8実施例の変倍光学系の広角端状態における近距離物体に対する第3合焦時の諸収差図である。 広角端状態における無限遠物体合焦時の第9実施例の変倍光学系の断面図である。 第9実施例の変倍光学系の広角端状態における無限遠物体合焦時の諸収差図である。 第9実施例の変倍光学系の広角端状態における近距離物体に対する第1合焦時の諸収差図である。 第9実施例の変倍光学系の広角端状態における近距離物体に対する第2合焦時の諸収差図である。 第9実施例の変倍光学系の広角端状態における近距離物体に対する第3合焦時の諸収差図である。 第9実施例の変倍光学系の望遠端状態における無限遠物体合焦時の諸収差図である。 第9実施例の変倍光学系の望遠端状態における近距離物体に対する第1合焦時の諸収差図である。 第9実施例の変倍光学系の望遠端状態における近距離物体に対する第2合焦時の諸収差図である。 第9実施例の変倍光学系の広角端状態における近距離物体に対する第3合焦時の諸収差図である。 本実施形態の変倍光学系を備えたカメラの模式図である。 本実施形態の変倍光学系の第1の製造方法の概略を示すフローチャートである。 本実施形態の変倍光学系の第2の製造方法の概略を示すフローチャートである。
 以下、本願の実施形態の変倍光学系、光学機器および変倍光学系の製造方法について説明する。
 本実施形態の変倍光学系は、物体側から順に、第1レンズ群と、第2レンズ群と、第3レンズ群と、後群とからなり、変倍の際に、隣り合う各レンズ群の間隔が変化し、所定の撮影距離において、収差量の異なる複数の合焦状態を有し、後群は、合焦の際移動する第1合焦レンズ群と、第1合焦レンズ群より像側に配置され、合焦の際に、第1合焦レンズ群とは異なる軌跡で移動する第2合焦レンズ群とを有し、所定の撮影距離において、複数の合焦状態のうち一の合焦状態から複数の合焦状態のうち一の合焦状態の収差量と異なる収差量を有する他の合焦状態になる際に、第1合焦レンズ群と第2合焦レンズ群とが移動し、以下の条件式を満足する。
(1)-6.80 < f1/f2 < -0.05
但し、
 f1 : 第1レンズ群の焦点距離
 f2 : 第2レンズ群の焦点距離
 条件式(1)は、第1レンズ群の焦点距離と第2レンズ群の焦点距離との比を規定するものである。本実施形態の変倍光学系は、条件式(1)を満足することで、変倍の際の球面収差をはじめとする諸収差の変動を適切に抑制することができる。
 本実施形態の変倍光学系において条件式(1)の値が上限値を上回ると、第2レンズ群の屈折力が強くなりすぎ、変倍時の球面収差をはじめとする諸収差の変動を適切に抑制することが困難となる。
 本実施形態の変倍光学系では、条件式(1)の上限値を-0.05に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(1)の上限値を-0.10、-0.25、-0.40、-1.00、-1.50、-2.00、-2.50、さらに-3.00に設定することが好ましい。
 また、本実施形態の変倍光学系において条件式(1)の値が下限値を下回ると、第1レンズ群の屈折力が強くなりすぎ、変倍時の球面収差をはじめとする諸収差の変動を適切に抑制することが困難となる。
 本実施形態の変倍光学系では、条件式(1)の下限値を-6.80に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(1)の下限値を-6.50、-6.00、-5.50、-5.00、さらに-4.75に設定することが好ましい。
 上述の構成を有するとともに条件式(1)を満足する変倍光学系では、所定の撮影距離において一の合焦状態から他の合焦状態とすることが可能となるとともに、変倍の際の球面収差をはじめとする諸収差の変動を適切に抑制することができる。
 また、本実施形態の変倍光学系では、所定の撮影距離において、一の合焦状態から他の合焦状態になる際に、第1合焦レンズ群と第2合焦レンズ群とが同じ方向に移動することが好ましい。
 本実施形態の変倍光学系では、第1合焦レンズ群と第2合焦レンズ群とが同じ方向に移動することで、一の合焦状態から他の合焦状態になるときの球面収差および像面湾曲の変動を適切に抑制することができる。
 また、本実施形態の変倍光学系では、第1合焦レンズ群および第2合焦レンズ群のうち、一方は正の屈折力を有し、他方は負の屈折力を有することが好ましい。
 本実施形態の変倍光学系では、第1合焦レンズ群および第2合焦レンズ群のうち、一方が正の屈折力を有し、他方が負の屈折力を有することで、一の合焦状態から他の合焦状態になるときの球面収差および像面湾曲の変動を適切に抑制することができる。
 また、本実施形態の変倍光学系では、第1合焦レンズ群および第2合焦レンズ群は、開口絞りと像面との間に配置されることが好ましい。
 本実施形態の変倍光学系では、第1合焦レンズ群および第2合焦レンズ群を開口絞りと像面との間に配置することで、一の合焦状態から他の合焦状態になるときの球面収差以外の諸収差の変動を適切に抑制することができる。
 また、本実施形態の変倍光学系では、以下の条件式をともに満足することが好ましい。
(2) -0.20 < Dsr1W/TLW < 0.20
(3) -0.25 < Dsr1T/TLT < 0.25
但し、
 Dsr1W : 広角端状態における無限遠合焦時の第1合焦レンズ群において最も物体側に配置されたレンズの物体側の面と開口絞りとの光軸上の距離
 TLW   : 広角端状態における光学系全長
 Dsr1T : 望遠端状態における無限遠合焦時の第1合焦レンズ群において最も物体側に配置されたレンズの物体側の面と開口絞りとの光軸上の距離
 TLT   : 望遠端状態における光学系全長
 本実施形態の変倍光学系では、条件式(2)および(3)をともに満足することにより、一の合焦状態から他の合焦状態になるときに、球面収差の量を適切に変動させつつ、他の収差の変動を適切に抑制することができる。
 条件式(2)は、広角端状態における無限遠合焦時の第1合焦レンズ群において最も物体側に配置されたレンズの物体側の面と開口絞りとの光軸上の距離と広角端状態における光学系全長との比を規定するものである。本実施形態の変倍光学系は、条件式(2)を満足することで、球面収差の量を適切に変動させつつ、他の収差の変動を適切に抑制することができる。
 本実施形態の変倍光学系において条件式(2)の値が上限値を上回ると、球面収差の量を適切に変動させたときに、他の収差の変動を適切に抑制することが困難となる。
 本実施形態の変倍光学系では、条件式(2)の上限値を0.20に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(2)の上限値を0.18、0.16、0.14、さらに0.13に設定することが好ましい。
 また、本実施形態の変倍光学系において条件式(2)の値が下限値を下回ると、球面収差の量を適切に変動させたときに、他の収差の変動を適切に抑制することが困難となる。
 本実施形態の変倍光学系では、条件式(2)の下限値を-0.20に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(2)の下限値を-0.16、-0.12、-0.08、-0.04、-0.02、0.00、さらに0.04に設定することが好ましい。
 条件式(3)は、望遠端状態における無限遠合焦時の第1合焦レンズ群において最も物体側に配置されたレンズの物体側の面と開口絞りとの光軸上の距離と望遠端状態における光学系全長との比を規定するものである。本実施形態の変倍光学系は、条件式(3)を満足することで、球面収差の量を適切に変動させつつ、他の収差の変動を適切に抑制することができる。
 本実施形態の変倍光学系において条件式(3)の値が上限値を上回ると、球面収差の量を適切に変動させたときに、他の収差の変動を適切に抑制することが困難となる。
 本実施形態の変倍光学系では、条件式(3)の上限値を0.25に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(3)の上限値を0.22、0.20、0.18、0.16、さらに0.14に設定することが好ましい。
 また、本実施形態の変倍光学系において条件式(3)の値が下限値を下回ると、球面収差の量を適切に変動させたときに、他の収差の変動を適切に抑制することが困難となる。
 本実施形態の変倍光学系では、条件式(3)の下限値を-0.25に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(3)の下限値を-0.22、-0.18、-0.14、-0.10、-0.06、-0.02、0.02、0.06、さらに0.10に設定することが好ましい。
 また、本実施形態の変倍光学系では、以下の条件式をともに満足することが好ましい。
(4) 0.10 < Dsr2W/TLW < 0.40
(5) 0.10 < Dsr2T/TLT < 0.40
但し、
 Dsr2W : 広角端状態における無限遠合焦時の第2合焦レンズ群において最も物体側に配置されたレンズの物体側の面と開口絞りとの光軸上の距離
 TLW   : 広角端状態における光学系全長
 Dsr2T : 望遠端状態における無限遠合焦時の第2合焦レンズ群において最も物体側に配置されたレンズの物体側の面と開口絞りとの光軸上の距離
 TLT   : 望遠端状態における光学系全長
 本実施形態の変倍光学系では、条件式(4)および(5)をともに満足することにより、一の合焦状態から他の合焦状態になるときに、球面収差の量を適切に変動させつつ、他の収差の変動を適切に抑制することができる。
 条件式(4)は、広角端状態における無限遠合焦時の第2合焦レンズ群において最も物体側に配置されたレンズの物体側の面と開口絞りとの光軸上の距離と広角端状態における光学系全長との比を規定するものである。本実施形態の変倍光学系は、条件式(4)を満足することで、球面収差の量を適切に変動させつつ、他の収差の変動を適切に抑制することができる。
 本実施形態の変倍光学系において条件式(4)の値が上限値を上回ると、第2合焦レンズ群のレンズ径が大きくなり、重量が増加する。その結果、合焦のために第2合焦レンズ群を移動させるアクチュエーターの負荷が大きくなり、第2合焦レンズ群を適切に移動させることが困難となる。
 本実施形態の変倍光学系では、条件式(4)の上限値を0.40に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(4)の上限値を0.36、0.32、0.28、さらに0.26に設定することが好ましい。
 また、本実施形態の変倍光学系において条件式(4)の値が下限値を下回ると、球面収差の量を適切に変動させたときに、他の収差の変動を適切に抑制することが困難となる。
 本実施形態の変倍光学系では、条件式(4)の下限値を0.10に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(4)の下限値を0.11、0.12、さらに0.13に設定することが好ましい。
 条件式(5)は、望遠端状態における無限遠合焦時の第2合焦レンズ群において最も物体側に配置されたレンズの物体側の面と開口絞りとの光軸上の距離と望遠端状態における光学系全長との比を規定するものである。本実施形態の変倍光学系は、条件式(5)を満足することで、球面収差の量を適切に変動させつつ、他の収差の変動を適切に抑制することができる。
 本実施形態の変倍光学系において条件式(5)の値が上限値を上回ると、第2合焦レンズ群のレンズ径が大きくなり、重量が増加する。その結果、合焦のために第2合焦レンズ群を移動させるアクチュエーターの負荷が大きくなり、第2合焦レンズ群を適切に移動させることが困難となる。
 本実施形態の変倍光学系では、条件式(5)の上限値を0.40に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(5)の上限値を0.36、0.32、0.28、さらに0.26に設定することが好ましい。
 また、本実施形態の変倍光学系において条件式(5)の値が下限値を下回ると、球面収差の量を適切に変動させたときに、他の収差の変動を適切に抑制することが困難となる。
 本実施形態の変倍光学系では、条件式(5)の下限値を0.10に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(5)の下限値を0.11、0.12、さらに0.13に設定することが好ましい。
 また、本実施形態の変倍光学系は、以下の条件式をともに満足することが好ましい。
(6) Dsr1W/DsiW < 0.30
(7) Dsr1T/DsiT < 0.35
但し、
 DsiW  : 広角端状態における無限遠合焦時の開口絞りと像面との光軸上の距離
 DsiT  : 望遠端状態における無限遠合焦時の開口絞りと像面との光軸上の距離
 本実施形態の変倍光学系では、条件式(6)および(7)をともに満足することにより、一の合焦状態から他の合焦状態になるときに、球面収差の量を適切に変動させつつ、他の収差の変動を適切に抑制することができる。
 条件式(6)は、広角端状態における無限遠合焦時の第1合焦レンズ群において最も物体側に配置されたレンズの物体側の面と開口絞りとの光軸上の距離と広角端状態における無限遠合焦時の開口絞りと像面との光軸上の距離との比を規定するものである。本実施形態の変倍光学系は、条件式(6)を満足することで、一の合焦状態から他の合焦状態になるときに、球面収差の量を適切に変動させつつ、他の収差の変動を適切に抑制することができる。
 本実施形態の変倍光学系において条件式(6)の値が上限値を上回ると、球面収差の量を適切に変動させたときに、他の収差の変動を適切に抑制することが困難となる。
 本実施形態の変倍光学系では、条件式(6)の上限値を0.30に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(6)の上限値を0.29、さらに0.28に設定することが好ましい。
 本実施形態の変倍光学系において、条件式(6)の下限値を設定するならば、-0.30、-0.10、さらに0.00に設定することが好ましい。
 条件式(7)は、望遠端状態における無限遠合焦時の第1合焦レンズ群において最も物体側に配置されたレンズの物体側の面と開口絞りとの光軸上の距離と望遠端状態における無限遠合焦時の開口絞りと像面との光軸上の距離との比を規定するものである。本実施形態の変倍光学系は、条件式(7)を満足することで、一の合焦状態から他の合焦状態になるときに、球面収差の量を適切に変動させつつ、他の収差の変動を適切に抑制することができる。
 本実施形態の変倍光学系において条件式(7)の値が上限値を上回ると、球面収差の量を適切に変動させたときに、他の収差の変動を適切に抑制することが困難となる。
 本実施形態の変倍光学系では、条件式(7)の上限値を0.35に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(7)の上限値を0.34、0.33、さらに0.32に設定することが好ましい。
 本実施形態の変倍光学系において、条件式(7)の下限値を設定するならば、-0.40、-0.20、さらに0.00に設定することが好ましい。
 また、本実施形態の変倍光学系は、以下の条件式をともに満足することが好ましい。
(8) 0.20 < Dsr2W/DsiW
(9) 0.25 < Dsr2T/DsiT
但し、
 DsiW  : 広角端状態における無限遠合焦時の開口絞りと像面との光軸上の距離
 DsiT  : 望遠端状態における無限遠合焦時の開口絞りと像面との光軸上の距離
 本実施形態の変倍光学系では、条件式(8)および(9)をともに満足することにより、一の合焦状態から他の合焦状態になるときに、球面収差の量を適切に変動させつつ、他の収差の変動を適切に抑制することができる。
 条件式(8)は、広角端状態における無限遠合焦時の第2合焦レンズ群において最も物体側に配置されたレンズの物体側の面と開口絞りとの光軸上の距離と広角端状態における無限遠合焦時の開口絞りと像面との光軸上の距離との比を規定するものである。本実施形態の変倍光学系は、条件式(8)を満足することで、一の合焦状態から他の合焦状態になるときに、球面収差の量を適切に変動させつつ、他の収差の変動を適切に抑制することができる。
 本実施形態の変倍光学系において条件式(8)の値が下限値を下回ると、球面収差の量を適切に変動させたときに、他の収差の変動を適切に抑制することが困難となる。
 本実施形態の変倍光学系では、条件式(8)の下限値を0.20に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(8)の下限値を0.22、0.24、0.26、0.28、さらに0.30に設定することが好ましい。
 本実施形態の変倍光学系において、条件式(8)の上限値を設定するならば、5.00、2.50、さらに1.00に設定することが好ましい。
 条件式(9)は、望遠端状態における無限遠合焦時の第2合焦レンズ群において最も物体側に配置されたレンズの物体側の面と開口絞りとの光軸上の距離と望遠端状態における無限遠合焦時の開口絞りと像面との光軸上の距離との比を規定するものである。本実施形態の変倍光学系は、条件式(9)を満足することで、一の合焦状態から他の合焦状態になるときに、球面収差の量を適切に変動させつつ、他の収差の変動を適切に抑制することができる。
 本実施形態の変倍光学系において条件式(9)の値が下限値を下回ると、球面収差の量を適切に変動させたときに、他の収差の変動を適切に抑制することが困難となる。
 本実施形態の変倍光学系では、条件式(9)の下限値を0.25に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(9)の下限値を0.26、0.27、0.28、0.29、さらに0.30に設定することが好ましい。
 本実施形態の変倍光学系において、条件式(9)の上限値を設定するならば、5.00、2.50、さらに1.00に設定することが好ましい。
 また、本実施形態の変倍光学系では、第1合焦レンズ群および第2合焦レンズ群のうち少なくとも一つは、以下の条件式をともに満足するレンズZを少なくとも1枚有することが好ましい。
(10)ndLZ + (0.01425×νdLZ) < 2.250
(11)νdLZ < 35.00
(12)0.702 < θgFLZ + (0.00316×νdLZ)
但し、
 ndLZ :レンズZのd線に対する屈折率
 νdLZ :レンズZのd線を基準とするアッベ数
 θgFLZ:レンズZの部分分散比であり、レンズZのg線に対する屈折率をngLZとし、レンズZのF線に対する屈折率をnFLZとし、レンズZのC線に対する屈折率をnCLZとしたとき、次式で定義される
 θgFLZ = (ngLZ - nFLZ)/(nFLZ - nCLZ)
 本実施形態の変倍光学系では、第1合焦レンズ群および第2合焦レンズ群のうち少なくとも一つがレンズZを少なくとも1枚有することで、色収差を含む諸収差を適切に補正することができる。
 本実施形態の変倍光学系は、条件式(10)の値を上限値より小さくすることにより、ペッツバール和が小さくなりすぎず、像面湾曲を良好に補正することができる。また、条件式(10)の上限値を2.250に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(10)の上限値を2.235、2.225、2.215、さらに2.210にすることが好ましい。
 本実施形態の変倍光学系は、条件式(11)の値を上限値より小さくすることにより、軸上色収差の2次分散を良好に補正することができる。また、条件式(11)の上限値を35.00に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(11)の上限値を33.50、32.50、30.00、28.50、25.00、23.50、21.00、さらに20.00にすることが好ましい。
 本実施形態の変倍光学系は、条件式(12)の値を下限値より大きくすることにより、軸上色収差の2次分散を良好に補正することができる。また、条件式(12)の下限値を0.702に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(12)の上限値を0.705、0.708、さらに0.710にすることが好ましい。
 また、本実施形態の変倍光学系では、第1合焦レンズ群または第2合焦レンズ群は、以下の条件式を満たすレンズを少なくとも1つ有することが好ましい。
(13) 1.60 < ndF < 2.00
但し、
 ndF  : 第1合焦レンズ群および第2合焦レンズ群に含まれる各レンズのd線に対する屈折率
 本実施形態の変倍光学系では、第1合焦レンズ群または第2合焦レンズ群が条件式(13)を満足するレンズを少なくとも1枚有することで、光学性能の悪化を抑制することができる。
 条件式(13)の上限値を上回るレンズを第1合焦レンズ群または第2合焦レンズ群に用いる場合、レンズの感度が上がるため、製造誤差による光学性能の悪化が生じやすくなる。
 本実施形態の変倍光学系では、条件式(13)の上限値を2.00に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(13)の上限値を1.99、1.98、1.97、さらに1.96に設定することが好ましい。
 条件式(13)の下限値を下回るレンズを第1合焦レンズ群または第2合焦レンズ群に用いる場合、レンズの曲率を強くする必要がある。その結果、高次の収差が発生し、光学性能が悪化する。
 本実施形態の変倍光学系では、条件式(13)の下限値を1.60に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(13)の下限値を1.56、1.52、1.48、1.44、さらに1.40に設定することが好ましい。
 また、本実施形態の変倍光学系では、以下の条件式を満足することが好ましい。
(14) 0.00 < |fF1/fF2| < 4.00
但し、
 fF1  : 第1合焦レンズ群の焦点距離
 fF2  : 第2合焦レンズ群の焦点距離
 条件式(14)は、第1合焦レンズ群の焦点距離と第2合焦レンズ群の焦点距離との比を規定するものである。本実施形態の変倍光学系は、条件式(14)を満足することで、諸収差を適切に補正することができる。
 本実施形態の変倍光学系において条件式(14)の値が上限値を上回ると、第1合焦レンズ群の屈折力が大きくなりすぎ、諸収差の補正が困難となる。
 本実施形態の変倍光学系では、条件式(14)の上限値を4.00に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(14)の上限値を3.86、3.71、3.57、3.42、さらに3.28に設定することが好ましい。
 本実施形態の変倍光学系は、物体側から順に、第1レンズ群と、第2レンズ群と、第3レンズ群と、後群とからなり、変倍の際に、隣り合う各レンズ群の間隔が変化し、所定の撮影距離において、収差量の異なる複数の合焦状態を有し、後群は、合焦の際移動する合焦レンズ群と、所定の撮影距離において、複数の合焦状態のうち一の合焦状態から複数の合焦状態のうち一の合焦状態の収差量と異なる収差量を有する他の合焦状態になる際に移動し、合焦レンズ群と異なる収差可変レンズ群とを有する。
 本実施形態の変倍光学系は、後群が合焦レンズ群および収差可変レンズ群を有することで、一の合焦状態から他の合焦状態になるときの球面収差以外の諸収差の変動を適切に抑制することができる。
 また、本実施形態の変倍光学系では、収差可変レンズ群は、開口絞りと像面との間に配置されることが好ましい。
 本実施形態の変倍光学系は、収差可変レンズ群を開口絞りと像面との間に配置することで、一の合焦状態から他の合焦状態になるときの球面収差以外の諸収差の変動を適切に抑制することができる。
 また、本実施形態の変倍光学系では、前記合焦レンズ群および前記収差可変レンズ群のうち少なくとも一つは、以下の条件式をともに満足するレンズZを少なくとも1枚有することが好ましい。
(10)ndLZ + (0.01425×νdLZ) < 2.250
(11)νdLZ < 35.00
(12)0.702 < θgFLZ + (0.00316×νdLZ)
但し、
 ndLZ :レンズZのd線に対する屈折率
 νdLZ :レンズZのd線を基準とするアッベ数
 θgFLZ:レンズZの部分分散比であり、レンズZのg線に対する屈折率をngLZとし、レンズZのF線に対する屈折率をnFLZとし、レンズZのC線に対する屈折率をnCLZとしたとき、次式で定義される
 θgFLZ = (ngLZ - nFLZ)/(nFLZ - nCLZ)
 本実施形態の変倍光学系では、合焦レンズ群および収差可変レンズ群のうち少なくとも一つがレンズZを少なくとも1枚有することで、色収差を含む諸収差を適切に補正することができる。
 また、本実施形態の変倍光学系では、合焦レンズ群および収差可変レンズ群は、以下の条件式を満たすレンズにより構成されることが好ましい。
(15) 1.49 < ndFDC < 1.95
但し、
 ndFDC  : 合焦レンズ群および収差可変レンズ群に含まれる各レンズのd線に対する屈折率
 本実施形態の変倍光学系では、合焦レンズ群または収差可変レンズ群が条件式(15)を満足するレンズにより構成されることで、光学性能の悪化を抑制することができる。
 条件式(15)の上限値を上回るレンズを合焦レンズ群または収差可変レンズ群に用いる場合、レンズの感度が上がるため、製造誤差による光学性能の悪化が生じやすくなる。
 本実施形態の変倍光学系では、条件式(15)の上限値を1.95に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(15)の上限値を1.91、さらに1.88に設定することが好ましい。
 条件式(15)の下限値を下回るレンズを合焦レンズ群または収差可変レンズ群に用いる場合、レンズの曲率を強くする必要がある。その結果、高次の収差が発生し、光学性能が悪化する。
 本実施形態の変倍光学系では、条件式(15)の下限値を1.49に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(15)の下限値を1.55、さらに1.58に設定することが好ましい。
 また、本実施形態の変倍光学系では、以下の条件式を満足することが好ましい。
(16) -2.50 < f1/fW < -1.00
但し、
 f1 : 第1レンズ群の焦点距離
 fW : 変倍光学系の広角端状態における焦点距離
 条件式(16)は、第1レンズ群の焦点距離と変倍光学系の広角端状態における焦点距離との比を規定するものである。本実施形態の変倍光学系は、条件式(16)を満足することで、第1レンズ群を小型化するとともに変倍光学系を小型化しつつ、諸収差を適切に補正することができる。
 本実施形態の変倍光学系において条件式(16)の値が上限値を上回ると、第1レンズ群が大型化する。
 本実施形態の変倍光学系では、条件式(16)の上限値を-1.00に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(16)の上限値を-1.20、-1.38、-1.58、-1.75、さらに-1.95に設定することが好ましい。
 また、本実施形態の変倍光学系において条件式(16)の値が下限値を下回ると、第1レンズ群の屈折力が弱くなりすぎ、諸収差を適切に補正することが困難となる。また、変倍光学系の全長が長くなり、大型化する。
 本実施形態の変倍光学系では、条件式(16)の下限値を-2.50に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(16)の下限値を-2.45、-2.40、-2.35、さらに-2.30に設定することが好ましい。
 また、本実施形態の変倍光学系では、以下の条件式を満足することが好ましい。
(17) 1.00 < f1/fW < 4.00
但し、
 f1 : 第1レンズ群の焦点距離
 fW : 変倍光学系の広角端状態における焦点距離
 条件式(17)は、第1レンズ群の焦点距離と変倍光学系の広角端状態における焦点距離との比を規定するものである。本実施形態の変倍光学系は、条件式(17)を満足することで、変倍光学系を小型化しつつ、諸収差を適切に補正することができる。
 本実施形態の変倍光学系において条件式(17)の値が上限値を上回ると、第1レンズ群の屈折力が弱くなりすぎ、諸収差を適切に補正することが困難となる。また、変倍光学系の全長が長くなり、大型化する。
 本実施形態の変倍光学系では、条件式(17)の上限値を4.00に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(17)の上限値を3.90、3.85、3.75、3.70、さらに3.60に設定することが好ましい。
 また、本実施形態の変倍光学系において条件式(17)の値が下限値を下回ると、第1レンズ群の屈折力が強くなりすぎ、コマ収差をはじめとする諸収差を適切に補正することが困難となる。
 本実施形態の変倍光学系では、条件式(17)の下限値を1.00に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(17)の下限値を1.03、1.06、1.08、1.11、さらに1.14に設定することが好ましい。
 また、本実施形態の変倍光学系は、以下の条件式を満足することが好ましい。
(18) 0.10 < Y/fW < 1.00
但し、
 Y  : 像高
 fW : 変倍光学系の広角端状態における焦点距離
 条件式(18)は、像高と変倍光学系の広角端状態における焦点距離との比を規定するものである。本実施形態の変倍光学系は、条件式(18)を満足することで、変倍光学系を小型化することができる。
 本実施形態の変倍光学系において条件式(18)の値が上限値を上回ると、レンズ直径が大きくなり、それに伴って変倍光学系が大型化する。
 本実施形態の変倍光学系では、条件式(18)の上限値を1.00に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(18)の上限値を0.98、0.96、0.94、0.92、さらに0.90に設定することが好ましい。
 また、本実施形態の変倍光学系において条件式(18)の値が下限値を下回ると、変倍光学系の全長が長くなり、大型化する。
 本実施形態の変倍光学系では、条件式(18)の下限値を0.10に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(18)の下限値を0.15、0.20、さらに0.25に設定することが好ましい。
 また、本実施形態の変倍光学系は、以下の条件式を満足することが好ましい。
(19) 1.50 < fW/BfW < 7.00
但し、
 BfW : 変倍光学系の広角端状態におけるバックフォーカス
 fW  : 変倍光学系の広角端状態における焦点距離
 条件式(19)は、 変倍光学系の広角端状態におけるバックフォーカスと焦点距離との比を規定するものである。本実施形態の変倍光学系は、条件式(19)を満足することで、変倍光学系を小型化しつつ、諸収差を適切に補正することができる。
 本実施形態の変倍光学系において条件式(19)の値が上限値を上回ると、変倍光学系の全長が長くなり、大型化する。
 本実施形態の変倍光学系では、条件式(19)の上限値を7.00に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(19)の上限値を6.92、6.84、6.76、6.68、さらに6.60に設定することが好ましい。
 また、本実施形態の変倍光学系において条件式(19)の値が下限値を下回ると、各レンズ群の屈折力が強くなり、コマ収差や像面湾曲をはじめとする諸収差を適切に補正することが困難となる。
 本実施形態の変倍光学系では、条件式(19)の下限値を1.50に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(19)の下限値を1.53、1.57、1.60、1.64、さらに1.67に設定することが好ましい。
 以上の構成により、所定の撮影距離において一の合焦状態から他の合焦状態とすることが可能であるとともに、小型で良好な結像性能を有する変倍光学系を実現することができる。
 本実施形態の光学機器は、上述した構成の変倍光学系を有している。これにより、所定の撮影距離において一の合焦状態から他の合焦状態とすることが可能であるとともに、小型で良好な結像性能を有する光学機器を実現することができる。
 本実施形態の変倍光学系の第1の製造方法は、物体側から順に、第1レンズ群と、第2レンズ群と、第3レンズ群と、後群とからなる変倍光学系の製造方法であって、変倍の際に、隣り合う各レンズ群の間隔が変化し、所定の撮影距離において、収差量の異なる複数の合焦状態を有し、後群は、合焦の際移動する第1合焦レンズ群と、第1合焦レンズ群より像側に配置され、合焦の際に、第1合焦レンズ群とは異なる軌跡で移動する第2合焦レンズ群とを有し、所定の撮影距離において、複数の合焦状態のうち一の合焦状態から複数の合焦状態のうち一の合焦状態の収差量と異なる収差量を有する他の合焦状態になる際に、第1合焦レンズ群と第2合焦レンズ群とが移動し、以下の条件式を満足するようにする。
(1) -6.80 < f1/f2 < -0.05
但し、
 f1 : 第1レンズ群の焦点距離
 f2 : 第2レンズ群の焦点距離
 本実施形態の変倍光学系の第2の製造方法は、物体側から順に、第1レンズ群と、第2レンズ群と、第3レンズ群と、後群とからなる変倍光学系の製造方法であって、変倍の際に、隣り合う各レンズ群の間隔が変化し、所定の撮影距離において、収差量の異なる複数の合焦状態を有し、後群は、合焦の際移動する合焦レンズ群と、所定の撮影距離において、複数の合焦状態のうち一の合焦状態から複数の合焦状態のうち一の合焦状態の収差量と異なる他の合焦状態になる際に、移動し、合焦レンズ群と異なる収差可変レンズを有するようにする。
 このような変倍光学系の製造方法により、所定の撮影距離において一の合焦状態から他の合焦状態とすることが可能であるとともに、小型で良好な結像性能を有する変倍光学系を製造することができる。
 (数値実施例)
 以下、本願の実施例を図面に基づいて説明する。
 (第1実施例)
 図1は、広角端状態における無限遠物体合焦時の第1実施例の変倍光学系の断面図である。
 本実施例の変倍光学系は、物体側から順に、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5と、負の屈折力を有する第6レンズ群G6と、正の屈折力を有する第7レンズ群G7とを有している。
 第1レンズ群G1は、物体側から順に、物体側に凸面を向けたメニスカス形状の負レンズL1と、物体側に凸面を向けたメニスカス形状の負レンズL2と物体側に凸面を向けたメニスカス形状の正レンズL3との接合正レンズとからなる。
 第2レンズ群G2は、物体側から順に、物体側に凸面を向けたメニスカス形状の負レンズL4と、両凸形状の正レンズL5と両凹形状の負レンズL6との接合正レンズとからなる。
 第3レンズ群G3は、物体側から順に、両凸形状の正レンズL7と、両凸形状の正レンズL8と物体側に凹面を向けたメニスカス形状の負レンズL9との接合正レンズとからなる。
 第4レンズ群G4は、物体側から順に、開口絞りSと、両凸形状の正レンズL10と両凹形状の負レンズL11との接合正レンズとからなる。
 第5レンズ群G5は、物体側に凹面を向けたメニスカス形状の正レンズL12と物体側に凹面を向けたメニスカス形状の負レンズL13との接合正レンズからなる。
 第6レンズ群G6は、物体側から順に、両凹形状の負レンズL14と、物体側に凸面を向けたメニスカス形状の正レンズL15とからなる。
 第7レンズ群G7は、物体側から順に、物体側に凹面を向けたメニスカス形状の正レンズL16と、物体側に凹面を向けたメニスカス形状の正レンズL17とからなる。
 像面I上には、CCDまたはCMOS等から構成された撮像素子(不図示)が配置されている。
 本実施例の変倍光学系は、第5レンズ群G5および第6レンズ群G6を光軸に沿って移動させることにより合焦を行う。無限遠に合焦している状態から近距離物体に合焦させる場合、第5レンズ群G5は像面側から物体側に移動され、第6レンズ群G6は物体側から像面側に移動される。
 本実施例の変倍光学系は、第5レンズ群G5および第6レンズ群G6を、それぞれ像面側から物体側に、または、それぞれ物体側から像面側に、光軸に沿って移動させることにより、所定の撮影距離における合焦状態を、一の合焦状態から他の合焦状態とすることができる。
 本実施例の変倍光学系において、第4レンズ群G4、第5レンズ群G5、第6レンズ群G6、および第7レンズ群G7は後群に該当する。また、第5レンズ群G5は第1合焦レンズ群に該当し、第6レンズ群G6は第2合焦レンズ群に該当する。
 以下の表1に、本実施例の変倍光学系の諸元の値を掲げる。
 表1の[全体諸元]において、TLWは変倍光学系の広角端状態における無限遠物体への合焦時の光学全長、TLTは変倍光学系の望遠端状態における無限遠物体への合焦時の光学全長を示す。また、fWは変倍光学系の広角端状態の焦点距離、fTは変倍光学系の望遠端状態の焦点距離を示す。また、FnoWは変倍光学系の広角端状態のF値、FnoTは変倍光学系の広角端状態のF値、Yは像高、2ωWは変倍光学系の広角端状態における全画角、2ωTは変倍光学系の望遠端状態における全画角を示す。
 表1の[レンズ諸元]において、mは物体側から数えた光学面の順番、rは曲率半径、dは面間隔、ndはd線(波長587.6nm)に対する屈折率、νdはd線に対するアッベ数を示す。曲率半径r=∞は平面を示している。また、[レンズ諸元]において、「*」の付された光学面は非球面であることを示している。また、[レンズ諸元]において、条件式(10)(11)(12)におけるレンズZ、条件式(13)におけるレンズF、条件式(15)におけるレンズFDCにそれぞれ対応するレンズが示される。
 表1の[非球面データ]において、mは非球面データに対応する光学面、Kは円錐定数、A4~A12は非球面係数を示す。
 非球面は、光軸に垂直な方向の高さをyとし、高さyにおける各非球面の頂点の接平面から各非球面までの光軸に沿った距離(サグ量)をS(y)とし、基準球面の曲率半径(近軸曲率半径)をrとし、円錐定数をKとし、n次の非球面係数をAnとしたとき、以下の式(a)で表される。なお、各実施例において、2次の非球面係数A2は0である。また、「E-n」は「×10-n」を示す。
(a) S(y) = (y2/r) / { 1 + (1-K×y2/r2)1/2 }
        + A4×y4 + A6×y6 + A8×y8 + A10×y10 + A12×y12 + A14×y14 
 表1に記載される焦点距離fW、fT、曲率半径rおよびその他の長さの単位は「mm」である。しかし、変倍光学系は比例拡大または比例縮小しても同等の光学性能が得られるため、これに限られるものではない。
 以上に述べた表1の符号は、後述する他の実施例の表においても同様に使用する。
 (表1)
[全体諸元]
TLW  190.00
TLT  160.00
fW   24.06
fT   50.15
FNoW   2.80
FNoT   3.81
Y    21.60
2ωW  96.26
2ωT  44.29

[レンズ諸元]
 m    r     d     nd    νd
 1)  217.722   3.322  1.816000  46.59
* 2)  32.544  22.488
 3)  92.013   1.500  1.487490  70.31
 4)  36.365   6.583  2.000600  25.46
 5)  50.858   D5
* 6)  55.026   3.000  1.821299  42.72
 7)  43.751   3.280
 8)  35.764   7.168  1.691000  54.93
 9) -1277.616   1.000  1.595509  39.24
 10)  90.417   D10
 11)  231.974   4.573  1.880000  41.00
 12)  -70.324   0.200
 13)  133.738   4.445  1.593190  67.90
 14)  -63.365   1.000  1.883603  20.66
 15) -835.249   D15
 16>   ∞    2.000            (開口絞り)
 17) 1314.631   2.653  1.945945  17.98
 18) -419.873   1.000  1.737999  32.26
 19) 11823.597   D19
 20)  -68.484   5.996  1.593190  67.90
 21)  -14.603   3.000  1.767798  44.65    (F)
*22)  -33.051   D22
 23)  -47.759   2.000  1.712435  25.87    (F)
 24)  48.391   0.200
 25)  41.866   5.000  1.951722  23.27    (F)
 26)  175.493   D26
 27)  -87.637   3.187  1.927786  20.73
*28)  -60.073   0.200
 29) -209.911   2.594  1.851348  40.10
*30) -148.155   D30

[非球面データ]
 m   K    A4     A6     A8    A10    A12
 2) 0.0000 -8.10E-07  9.90E-10 -6.63E-12  9.93E-15 -6.98E-18
 6) 0.0000 -2.60E-06 -3.04E-09  4.62E-12 -2.03E-14  2.00E-17
 22) 0.0000 -1.61E-07 -3.61E-08  2.37E-10 -8.08E-13
 28) 0.0000  5.24E-06 -2.05E-08  2.90E-11  2.79E-14
 30) 0.0000  0.00E+00  5.11E-08 -1.86E-10  4.96E-13 -6.00E-16

[各群焦点距離データ]
群  始面   焦点距離
G1   1   -47.27
G2   6   102.26
G3  11    57.85
G4  16   849.34
G5  20   265.02
G6  23   -80.86
G7  27   144.76

[可変間隔データ]
  <       広角端       ><       望遠端       >
  <無限遠><    至近距離    ><無限遠><    至近距離    >
       第1合焦 第2合焦 第3合焦     第1合焦 第2合焦 第3合焦
D5  51.82  51.82   51.82   51.82  4.56   4.56   4.56   4.56
D10  9.84   9.84   9.84   9.84  0.92   0.92   0.92   0.92
D15  2.00   2.00   2.00   2.00  4.59   4.59   4.59   4.59
D19  5.84   3.25   5.84   5.84  6.86   4.45   6.86   6.86
D22  9.60  17.63   16.49   1.38  11.31  20.51   11.95   3.77
D26  7.87   2.46   0.20   12.92  9.34   2.55   7.64   13.43
D30  11.30  11.30   16.04   18.48  27.93  27.93   17.35   19.76
 図2Aは第1実施例の変倍光学系の広角端状態における無限遠物体合焦時の諸収差図であり、図2Bは第1実施例の変倍光学系の広角端状態における近距離物体に対する第1合焦時の諸収差図であり、図2Cは第1実施例の変倍光学系の広角端状態における近距離物体に対する第2合焦時の諸収差図であり、図2Dは第1実施例の変倍光学系の広角端状態における近距離物体に対する第3合焦時の諸収差図であり、図2Eは第1実施例の変倍光学系の望遠端状態における無限遠物体合焦時の諸収差図であり、図2Fは第1実施例の変倍光学系の望遠端状態における近距離物体に対する第1合焦時の諸収差図であり、図2Fは第1実施例の変倍光学系の望遠端状態における近距離物体に対する第2合焦時の諸収差図であり、図2Hは第1実施例の変倍光学系の広角端状態における近距離物体に対する第3合焦時の諸収差図である。
 各収差図において、FNOはF値、Yは像高をそれぞれ示す。詳細には、球面収差図では最大口径に対応するF値の値を示し、非点収差図および歪曲収差図では像高の最大値を示し、コマ収差図では各像高の値を示す。dはd線、gはg線(波長435.8nm)をそれぞれ示す。非点収差図において、実線はサジタル像面、破線はメリディオナル像面をそれぞれ示す。後述する他の実施例の諸収差図においても、本実施例の諸収差図と同様の符号を使用する。
 各収差図より、本実施例の変倍光学系は、合焦時および変倍時の収差変動を有効に抑制し、高い光学性能を有していることがわかる。
 (第2実施例)
 図3は、広角端状態における無限遠物体合焦時の第2実施例の変倍光学系の断面図である。
 本実施例の変倍光学系は、物体側から順に、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、負の屈折力を有する第5レンズ群G5と、正の屈折力を有する第6レンズ群G6と、負の屈折力を有する第7レンズ群G7とを有している。
 第1レンズ群G1は、物体側から順に、物体側に凸面を向けたメニスカス形状の負レンズL1と、両凹形状の負レンズL2と物体側に凸面を向けたメニスカス形状の正レンズL3との接合正レンズとからなる。
 第2レンズ群G2は、物体側から順に、物体側に凸面を向けたメニスカス形状の負レンズL4と、両凸形状の正レンズL5と両凹形状の負レンズL6との接合正レンズとからなる。
 第3レンズ群G3は、物体側から順に、物体側に凸面を向けたメニスカス形状の正レンズL7と、両凸形状の正レンズL8と物体側に凹面を向けたメニスカス形状の負レンズL9との接合正レンズとからなる。
 第4レンズ群G4は、物体側から順に、開口絞りSと、両凸形状の正レンズL10と両凹形状の負レンズL11との接合負レンズとからなる。
 第5レンズ群G5は、両凹形状の負レンズL12と両凸形状の正レンズL13との接合負レンズからなる。
 第6レンズ群G6は、物体側から順に、物体側に凸面を向けたメニスカス形状の正レンズL14と、両凸形状の正レンズL15とからなる。
 第7レンズ群G7は、物体側から順に、物体側に凹面を向けたメニスカス形状の正レンズL16と、物体側に凹面を向けたメニスカス形状の負レンズL17とからなる。
 像面I上には、CCDまたはCMOS等から構成された撮像素子(不図示)が配置されている。
 本実施例の変倍光学系は、第5レンズ群G5および第6レンズ群G6を光軸に沿って移動させることにより合焦を行う。無限遠に合焦している状態から近距離物体に合焦させる場合、第5レンズ群G5は物体側から像面側に移動され、第6レンズ群G6は像面側から物体側に移動される。
 本実施例の変倍光学系は、第5レンズ群G5および第6レンズ群G6を、それぞれ物体側から像面側に、または、それぞれ像面側から物体側に、光軸に沿って移動させることにより、所定の撮影距離における合焦状態を、一の合焦状態から他の合焦状態とすることができる。
 本実施例の変倍光学系において、第4レンズ群G4、第5レンズ群G5、第6レンズ群G6、および第7レンズ群G7は後群に該当する。また、第5レンズ群G5は第1合焦レンズ群に該当し、第6レンズ群G6は第2合焦レンズ群に該当する。
 以下の表2に、本実施例の変倍光学系の諸元の値を掲げる。
 (表2)
[全体諸元]
TLW  190.00
TLT  159.03
fW   24.20
fT   50.74
FNoW   2.80
FNoT   3.19
Y    21.60
2ωW  87.33
2ωT  44.43

[レンズ諸元]
 m    r     d     nd    νd
 1)  177.439   2.800  1.816000  46.59
* 2)  36.179  17.368
 3) -381.455   1.500  1.487490  70.32
 4)  55.318   6.000  2.000690  25.46
 5)  124.642   D5
* 6)  68.486   3.000  1.821300  42.72
 7)  35.342   1.963
 8)  40.600  10.376  1.691000  54.93
 9)  -51.288   2.800  1.595510  39.24
 10)  108.846   D10
 11)  61.772   4.557  1.615110  58.83
 12)  238.656   2.148
 13)  93.704   8.388  1.593190  67.90
 14)  -38.423   4.102  1.921320  20.01
 15)  -49.826   D15
 16>   ∞    3.122            (開口絞り)
 17)  373.705   3.884  1.945940  17.98
 18)  -53.352   1.000  1.738000  32.26
 19)  88.277   D19
*20)  -36.198   1.000  1.745580  25.55    (F)
 21)  93.015   5.652  1.593190  67.90
 22)  -43.188   D22
 23)  82.757   3.000  1.920000  20.00    (F)
 24)  107.104   0.200
 25)  86.016   6.730  1.525480  74.06
 26)  -54.552   D26
 27) -193.626   5.264  1.497250  80.06
*28)  -38.985   4.935
 29)  -27.667   1.000  1.851350  40.10
*30) -469.209   D30

[非球面データ]
 m   K    A4     A6     A8    A10    A12
 2) 0.0000 -1.30E-06  4.27E-10 -3.78E-12  4.37E-15 -2.50E-18
 6) 0.0000 -2.04E-06  4.73E-10 -7.01E-12  1.58E-14 -1.67E-17
 20) 0.0000 -4.64E-06 -1.65E-08  1.71E-10 -1.10E-12
 28) 0.0000  3.26E-06 -2.61E-09 -1.86E-11  2.42E-14
 30) 0.0000  0.00E+00 -1.91E-08  1.04E-10 -2.67E-13  2.75E-16

[各群焦点距離データ]
群  始面   焦点距離
G1   1   -55.58
G2   6   353.16
G3  11    45.21
G4  16   -562.97
G5  20   -133.99
G6  23    56.05
G7  27   -56.95

[可変間隔データ]
  <       広角端       ><       望遠端       >
  <無限遠><    至近距離    ><無限遠><    至近距離    >
       第1合焦 第2合焦 第3合焦     第1合焦 第2合焦 第3合焦
D5  48.86  48.86   48.86   48.86  0.20  19.86   0.20   0.20
D10  7.62   7.62   7.62   7.62  0.92   5.96   0.92   0.92
D15  2.09   2.09   2.09   2.09  13.14   4.13   13.14   13.14
D19  8.00   5.85   15.84   2.91  7.42   6.02   11.89   3.83
D22  6.43   4.89   0.20   9.67  18.41   9.37   14.58   20.78
D26  1.80   5.50   0.20   3.65  5.99   8.26   5.34   7.21
D30  14.43  15.77   11.92   15.33  13.14  16.81   11.12   14.00
 図4Aは第2実施例の変倍光学系の広角端状態における無限遠物体合焦時の諸収差図であり、図4Bは第2実施例の変倍光学系の広角端状態における近距離物体に対する第1合焦時の諸収差図であり、図4Cは第2実施例の変倍光学系の広角端状態における近距離物体に対する第2合焦時の諸収差図であり、図4Dは第2実施例の変倍光学系の広角端状態における近距離物体に対する第3合焦時の諸収差図であり、図4Eは第2実施例の変倍光学系の望遠端状態における無限遠物体合焦時の諸収差図であり、図4Fは第2実施例の変倍光学系の望遠端状態における近距離物体に対する第1合焦時の諸収差図であり、図4Gは第2実施例の変倍光学系の望遠端状態における近距離物体に対する第2合焦時の諸収差図であり、図4Hは第2実施例の変倍光学系の広角端状態における近距離物体に対する第3合焦時の諸収差図である。
 各収差図より、本実施例の変倍光学系は、合焦時および変倍時の収差変動を有効に抑制し、高い光学性能を有していることがわかる。
 (第3実施例)
 図5は、広角端状態における無限遠物体合焦時の第3実施例の変倍光学系の断面図である。
 本実施例の変倍光学系は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、負の屈折力を有する第5レンズ群G5と、正の屈折力を有する第6レンズ群G6と、正の屈折力を有する第7レンズ群G7と、負の屈折力を有する第8レンズ群G8と、正の屈折力を有する第9レンズ群G9とを有している。
 第1レンズ群G1は、物体側から順に、物体側に凸面を向けたメニスカス形状の負レンズL1と物体側に凸面を向けた平凸レンズL2との接合正レンズと、物体側に凸面を向けたメニスカス形状の正レンズL3とからなる。
 第2レンズ群G2は、物体側から順に、物体側に凸面を向けたメニスカス形状の負レンズL4と、物体側に凸面を向けたメニスカス形状の負レンズL5と、物体側に凸面を向けたメニスカス形状の正レンズL6と、両凹形状の負レンズL7とからなる。
 第3レンズ群G3は、物体側に凸面を向けたメニスカス形状の正レンズL8からなる。
 第4レンズ群G4は、物体側から順に、物体側に凸面を向けたメニスカス形状の正レンズL9と、物体側に凸面を向けたメニスカス形状の正レンズL10とからなる。
 第5レンズ群G5は、開口絞りSと、両凹形状の負レンズL11と物体側に凸面を向けたメニスカス形状の正レンズL12との接合負レンズとからなる。
 第6レンズ群G6は、物体側から順に、物体側に凸面を向けたメニスカス形状の負レンズL13と、両凸形状の正レンズL14と物体側に凹面を向けたメニスカス形状の負レンズL15との接合正レンズとからなる。
 第7レンズ群G7は、両凸形状の正レンズL16からなる。
 第8レンズ群G8は、物体側から順に、物体側に凹面を向けたメニスカス形状の正レンズL17と、両凹形状の負レンズL18とからなる。
 第9レンズ群G9は、物体側から順に、両凸形状の正レンズL19と、物体側に凹面を向けたメニスカス形状の負レンズL20と、物体側に凹面を向けたメニスカス形状の負レンズL21とからなる。
 像面I上には、CCDまたはCMOS等から構成された撮像素子(不図示)が配置されている。
 本実施例の変倍光学系は、第7レンズ群G7および第8レンズ群G8を光軸に沿って移動させることにより合焦を行う。無限遠に合焦している状態から近距離物体に合焦させる場合、第7レンズ群G7は像面側から物体側に移動され、第8レンズ群G8は物体側から像面側に移動される。
 本実施例の変倍光学系は、第7レンズ群G7および第8レンズ群G8を、それぞれ像面側から物体側に、または、それぞれ物体側から像面側に、光軸に沿って移動させることにより、所定の撮影距離における合焦状態を、一の合焦状態から他の合焦状態とすることができる。
 本実施例の変倍光学系において、第4レンズ群G4、第5レンズ群G5、第6レンズ群G6、第7レンズ群G7、第8レンズ群G8、および第9レンズ群G9は後群に該当する。また、第7レンズ群G7は第1合焦レンズ群に該当し、第8レンズ群G8は第2合焦レンズ群に該当する。
 以下の表3に、本実施例の変倍光学系の諸元の値を掲げる。
 (表3)
[全体諸元]
TLW  217.05
TLT  221.20
fW   70.50
fT   139.01
FNoW   2.80
FNoT   2.87
Y    21.60
2ωW  33.13
2ωT  16.96

[レンズ諸元]
 m    r     d     nd    νd
 1)  110.028   4.000  2.001000  29.12
 2)  85.424  11.141  1.497820  82.57
 3)   ∞    0.101
 4)  84.069   8.090  1.433837  95.16
* 5)  313.832   D5
 6)  59.635   3.000  1.603000  65.44
 7)  32.686  10.318
 8)  743.306   2.437  1.497820  82.57
 9)  59.735   2.073
 10)  42.872   4.010  1.663819  27.35
 11)  60.986   7.796
 12)  -64.039   3.001  1.497820  82.57
 13)  254.341   D13
 14)  61.747   4.001  1.945950  17.98
 15)  152.776   D15
 16)  59.607   4.541  1.497820  82.57
 17)  882.730   0.100
 18)  53.954   3.862  1.497820  82.57
 19)  183.397   D19
 20>   ∞    1.931            (開口絞り)
 21) -251.336   1.447  1.922860  20.88
 22)  37.241   4.522  1.497820  82.57
 23)  436.859   D23
 24)  73.591   1.514  1.850260  32.35
 25)  54.300   1.551
*26)  57.932   4.384  1.592010  66.89
 27) -165.806   1.553  1.620040  36.40
 28) -180.432   D28
 29)  118.634   4.354  1.801000  34.92    (F)
*30)  -92.844   D30
 31)  -90.178   2.044  1.945950  17.98 (Z)(F)
*32)  -70.350   0.100
 33) -605.985   1.296  1.713000  53.96    (F)
 34)  33.608   D34
*35)  333.382   4.568  1.902650  35.77
 36)  -87.639   7.037
*37)  -96.907   3.000  1.516120  63.84
 38) -563.358  14.132
 39)  -30.231   1.822  1.563840  60.71
 40)  -54.559   10.700

[非球面データ]
 m   K    A4     A6     A8    A10    A12
 5) 0.0000 -1.35E-08  6.90E-12 -3.44E-15  6.15E-19
 26) 0.0000 -4.44E-06 -1.79E-10 -1.24E-11  2.82E-14 -7.41E-18
 30) 0.0000  1.34E-07 -2.24E-09 -3.07E-12  1.39E-14
 32) 0.0000  1.34E-07 -2.24E-09 -3.07E-12  1.39E-14
 35) 0.0000  1.35E-06  1.36E-09 -3.43E-12  1.11E-15
 37) 0.0000  1.25E-06  3.51E-09 -1.12E-11  4.67E-14 -4.25E-17

[各群焦点距離データ]
群  始面   焦点距離
G1   1   142.99
G2   6   -43.85
G3  14   107.26
G4  16    70.12
G5  20   -61.31
G6  24   106.28
G7  29    65.62
G8  31   -51.29
G9  35   371.91

[可変間隔データ]
  <       広角端       ><       望遠端       >
  <無限遠><    至近距離    ><無限遠><    至近距離    >
       第1合焦 第2合焦 第3合焦     第1合焦 第2合焦 第3合焦
D5   1.50   1.50   1.50   1.50  32.83  32.83   32.83   32.83
D13  37.19  37.19   37.19   37.19  10.98  10.98   10.98   10.98
D15  8.20   8.20   8.20   8.20  1.50   1.50   1.50   1.50
D19  3.00   3.00   3.00   3.00  4.80   4.80   4.80   4.80
D23  1.50   1.50   1.50   1.50  2.58   2.58   2.58   2.58
D28  5.61   7.22   1.72   9.58  5.23   8.33   1.72   8.82
D30  2.77   7.56   2.96   2.55  1.76  11.70   2.00   1.50
D34  22.30  15.90   26.00   18.55  26.55  13.47   29.78   23.18
 図6Aは第3実施例の変倍光学系の広角端状態における無限遠物体合焦時の諸収差図であり、図6Bは第3実施例の変倍光学系の広角端状態における近距離物体に対する第1合焦時の諸収差図であり、図6Cは第3実施例の変倍光学系の広角端状態における近距離物体に対する第2合焦時の諸収差図であり、図6Dは第3実施例の変倍光学系の広角端状態における近距離物体に対する第3合焦時の諸収差図であり、図6Eは第3実施例の変倍光学系の望遠端状態における無限遠物体合焦時の諸収差図であり、図6Fは第3実施例の変倍光学系の望遠端状態における近距離物体に対する第1合焦時の諸収差図であり、図6Gは第3実施例の変倍光学系の望遠端状態における近距離物体に対する第2合焦時の諸収差図であり、図6Hは第3実施例の変倍光学系の広角端状態における近距離物体に対する第3合焦時の諸収差図である。
 各収差図より、本実施例の変倍光学系は、合焦時および変倍時の収差変動を有効に抑制し、高い光学性能を有していることがわかる。
 (第4実施例)
 図7は、広角端状態における無限遠物体合焦時の第4実施例の変倍光学系の断面図である。
 本実施例の変倍光学系は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、負の屈折力を有する第5レンズ群G5と、正の屈折力を有する第6レンズ群G6と、負の屈折力を有する第7レンズ群G7と、正の屈折力を有する第8レンズ群G8と、負の屈折力を有する第9レンズ群G9とを有している。
 第1レンズ群G1は、物体側から順に、物体側に凸面を向けたメニスカス形状の負レンズL1と物体側に凸面を向けた平凸レンズL2との接合正レンズと、物体側に凸面を向けたメニスカス形状の正レンズL3とからなる。
 第2レンズ群G2は、物体側から順に、物体側に凸面を向けたメニスカス形状の負レンズL4と、物体側に凸面を向けたメニスカス形状の負レンズL5と、物体側に凸面を向けたメニスカス形状の正レンズL6と、両凹形状の負レンズL7とからなる。
 第3レンズ群G3は、物体側に凸面を向けたメニスカス形状の正レンズL8からなる。
 第4レンズ群G4は、物体側から順に、物体側に凸面を向けたメニスカス形状の正レンズL9と、物体側に凸面を向けたメニスカス形状の正レンズL10とからなる。
 第5レンズ群G5は、物体側から順に、開口絞りSと、両凹形状の負レンズL11と物体側に凸面を向けたメニスカス形状の正レンズL12との接合負レンズからなる。
 第6レンズ群G6は、物体側から順に、物体側に凸面を向けたメニスカス形状の負レンズL13と、両凸形状の正レンズL14と物体側に凹面を向けたメニスカス形状の負レンズL15との接合正レンズと、物体側に凸面を向けたメニスカス形状の正レンズL16とからなる。
 第7レンズ群G7は、物体側から順に、両凸形状の正レンズL17と、物体側に凸面を向けたメニスカス形状の負レンズL18とからなる。
 第8レンズ群G8は、両凸形状の正レンズL19からなる。
 第9レンズ群G9は、物体側から順に、両凹形状の負レンズL20と、物体側に凹面を向けたメニスカス形状の負レンズL21とからなる。
 像面I上には、CCDまたはCMOS等から構成された撮像素子(不図示)が配置されている。
 本実施例の変倍光学系は、第7レンズ群G7および第8レンズ群G8を光軸に沿って移動させることにより合焦を行う。無限遠に合焦している状態から近距離物体に合焦させる場合、第7レンズ群G7は物体側から像面側に移動され、第8レンズ群G8は像面側から物体側に移動される。
 本実施例の変倍光学系は、第7レンズ群G7および第8レンズ群G8を、それぞれ像面側から物体側に、または、それぞれ物体側から像面側に、光軸に沿って移動させることにより、所定の撮影距離における合焦状態を、一の合焦状態から他の合焦状態とすることができる。
 本実施例の変倍光学系において、第4レンズ群G4、第5レンズ群G5、第6レンズ群G6、第7レンズ群G7、第8レンズ群G8、および第9レンズ群G9は後群に該当する。また、第7レンズ群G7は第1合焦レンズ群に該当し、第8レンズ群G8は第2合焦レンズ群に該当する。
 以下の表4に、本実施例の変倍光学系の諸元の値を掲げる。
 (表4)
[全体諸元]
TLW  218.90
TLT  221.19
fW   70.86
fT   139.73
FNoW   2.80
FNoT   2.93
Y    21.60
2ωW  33.59
2ωT  17.26

[レンズ諸元]
 m    r     d     nd    νd
 1)  110.788   2.597  2.001000  29.12
 2)  84.006  11.122  1.497820  82.57
 3)   ∞    0.052
 4)  74.624   7.683  1.433837  95.16
* 5)  183.809   D5
 6)  53.229   2.881  1.603000  65.44
 7)  30.752  11.000
 8)  201.222   2.191  1.497820  82.57
 9)  53.191   0.265
 10)  36.590   4.281  1.663819  27.35
 11)  47.018   9.239
 12)  -70.512   2.163  1.497820  82.57
 13)  130.180   D13
 14)  69.602   4.218  1.945950  17.98
 15)  191.210    D15
 16)  63.122   4.796  1.497820  82.57
 17) 2858.738   0.082
 18)  45.868   4.180  1.497820  82.57
 19)  127.127   D19
 20>   ∞    2.265            (開口絞り)
 21) -239.980   1.478  1.922860  20.88
 22)  36.586   4.569  1.497820  82.57
 23)  410.192   D23
 24)  71.562   1.404  1.850260  32.35
 25)  48.405   0.049
*26)  45.673   5.771  1.592010  66.89
 27)  -60.756   1.370  1.620040  36.40
 28) -163.685   0.118
 29)  74.961   2.548  1.801000  34.92
*30)  149.863   D30
 31)  382.295   2.961  1.945950  17.98 (Z)(F)
*32) -113.039   0.953
 33)  177.759   2.168  1.713000  53.96    (F)
 34)  31.415   D34
*35)  97.645   3.984  1.902650  35.77    (F)
 36) -324.454   D36
*37)  -78.659   3.006  1.516120  63.84
 38)  780.001  10.956
 39)  -35.236   2.993  1.563840  60.71
 40)  -51.465  16.710

[非球面データ]
 m   K    A4     A6     A8    A10    A12
 5) 0.0000 -2.52E-08  4.73E-13  7.68E-16 -5.72E-19
 26) 0.0000 -2.61E-06  4.09E-10 -1.53E-11  3.52E-14 -2.52E-17
 30) 0.0000  1.59E-06 -3.70E-10 -4.63E-12  6.80E-15
 32) 0.0000 -6.62E-07 -8.73E-10  1.55E-12 -6.08E-15
 35) 0.0000  1.22E-06  1.28E-09 -3.45E-12  2.08E-15
 37) 0.0000  3.73E-07  2.93E-09 -7.61E-12  3.51E-14 -3.69E-17

[各群焦点距離データ]
群  始面   焦点距離
G1   1   152.45
G2   6   -42.36
G3  14   113.77
G4  16    68.14
G5  20   -59.62
G6  24    63.37
G7  31   -139.14
G8  35    83.53
G9  37   -81.80

[可変間隔データ]
  <       広角端       ><       望遠端       >
  <無限遠><    至近距離    ><無限遠><    至近距離    >
       第1合焦 第2合焦 第3合焦     第1合焦 第2合焦 第3合焦
D5   1.61   1.61   1.61   1.61  33.32  33.32   33.32   33.32
D13  35.26  35.26   35.26   35.26  11.25  11.25   11.25   11.25
D15  12.91  12.91   12.91   12.91  3.29   3.29   3.29   3.29
D19  3.43   3.43   3.43   3.43  6.07   6.07   6.07   6.07
D23  4.47   4.47   4.47   4.47  1.50   1.50   1.50   1.50
D30  3.68   6.86   2.39   5.08  3.35   9.99   1.97   4.71
D34  21.79   9.99   22.00   21.67  26.78   3.25   27.18   26.75
D36  5.81  14.44   6.90   4.55  5.68  22.58   6.80   4.42
 図8Aは第4実施例の変倍光学系の広角端状態における無限遠物体合焦時の諸収差図であり、図8Bは第4実施例の変倍光学系の広角端状態における近距離物体に対する第1合焦時の諸収差図であり、図8Cは第4実施例の変倍光学系の広角端状態における近距離物体に対する第2合焦時の諸収差図であり、図8Dは第4実施例の変倍光学系の広角端状態における近距離物体に対する第3合焦時の諸収差図であり、図8Eは第4実施例の変倍光学系の望遠端状態における無限遠物体合焦時の諸収差図であり、図8Fは第4実施例の変倍光学系の望遠端状態における近距離物体に対する第1合焦時の諸収差図であり、図8Gは第4実施例の変倍光学系の望遠端状態における近距離物体に対する第2合焦時の諸収差図であり、図8Hは第4実施例の変倍光学系の広角端状態における近距離物体に対する第3合焦時の諸収差図である。
 各収差図より、本実施例の変倍光学系は、合焦時および変倍時の収差変動を有効に抑制し、高い光学性能を有していることがわかる。
 (第5実施例)
 図9は、広角端状態における無限遠物体合焦時の第5実施例の変倍光学系の断面図である。
 本実施例の変倍光学系は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5と、負の屈折力を有する第6レンズ群G6と、負の屈折力を有する第7レンズ群G7とを有している。
 第1レンズ群G1は、物体側から順に、物体側に凸面を向けたメニスカス形状の負レンズL1と両凸形状の正レンズL2との接合正レンズと、両凸形状の正レンズL3とからなる。
 第2レンズ群G2は、物体側から順に、両凸形状の正レンズL4と両凹形状の負レンズL5との接合負レンズと、物体側に凸面を向けたメニスカス形状の正レンズL6と物体側に凸面を向けたメニスカス形状の負レンズL7との接合正レンズと、両凹形状の負レンズL8とからなる。
 第3レンズ群G3は、物体側から順に、両凸形状の正レンズL9と、両凸形状の正レンズL10と、両凸形状の正レンズL11と両凹形状の負レンズL12との接合正レンズと、開口絞りSと、両凸形状の正レンズL13と両凹形状の負レンズL14との接合負レンズとからなる。
 第4レンズ群G4は、両凸形状の正レンズL15からなる。
 第5レンズ群G5は、両凸形状の正レンズL16と両凹形状の負レンズL17との接合正レンズからなる。
 第6レンズ群G6は、物体側に凸面を向けたメニスカス形状の負レンズL18からなる。
 第7レンズ群G7は、両凹形状の負レンズL19と両凸形状の正レンズL20との接合負レンズからなる。
 像面I上には、CCDまたはCMOS等から構成された撮像素子(不図示)が配置されている。
 本実施例の変倍光学系は、第5レンズ群G5および第6レンズ群G6を光軸に沿って移動させることにより合焦を行う。無限遠に合焦している状態から近距離物体に合焦させる場合、第5レンズ群G5は像面側から物体側に移動され、第6レンズ群G6は物体側から像面側に移動される。
 本実施例の変倍光学系は、第5レンズ群G5および第6レンズ群G6を、それぞれ物体側から像面側に、または、それぞれ像面側から物体側に、光軸に沿って移動させることにより、所定の撮影距離における合焦状態を、一の合焦状態から他の合焦状態とすることができる。
 本実施例の変倍光学系において、第4レンズ群G4、第5レンズ群G5、第6レンズ群G6、および第7レンズ群G7は後群に該当する。また、第5レンズ群G5は第1合焦レンズ群に該当し、第6レンズ群G6は第2合焦レンズ群に該当する。
 以下の表5に、本実施例の変倍光学系の諸元の値を掲げる。
 (表5)
[全体諸元]
TLW  296.15
TLT  370.80
fW   194.59
fT   570.46
FNoW   6.50
FNoT   6.90
Y    21.60
2ωW  12.53
2ωT   4.27

[レンズ諸元]
 m    r     d     nd    νd
 1)  449.211   3.000  1.834000  37.35
 2)  163.594  10.050  1.497000  81.61
 3) -576.154   0.200
 4)  142.446   9.100  1.497000  81.61
 5) -1665.479   D5
 6) 1672.367   5.500  1.805180  25.45
 7)  -63.842   1.600  1.700000  48.11
 8)  70.416   3.830
 9)  60.407   5.248  1.846660  23.80
 10)  544.044   1.400  1.804000  46.60
 11)  75.451   5.502
 12)  -69.361   1.500  1.921190  23.96
 13)  682.689   D13
 14)  86.673   4.700  1.497000  81.61
 15) -151.927   0.200
 16)  58.367   5.300  1.487490  70.44
 17) -313.095   0.200
 18)  50.061   6.000  1.487490  70.44
 19)  -99.135   1.500  1.903660  31.31
 20)  198.605  10.000
 21>   ∞    2.356            (開口絞り)
 22) 4551.121   5.621  1.850260  32.35
 23)  -29.962   1.000  1.795000  45.31
 24)  37.151   4.500
 25)   ∞    D25             (仮想面)
 26)   ∞    0.000            (仮想面)
 27)  76.878   4.200  1.531720  48.78
 28)  -76.926   D28
 29)  56.990   5.000  1.595510  39.21
 30)  -71.411   1.000  1.846660  23.80    (F)
 31)  207.092   0.000
 32)   ∞    D32             (仮想面)
 33)  91.583   1.000  1.729160  54.61    (F)
 34)  41.424   D34
 35)  -50.321   1.000  1.603000  65.44
 36)  65.813   4.000  1.698950  30.13
 37) -118.348   D37

[各群焦点距離データ]
群  始面   焦点距離
G1   1   225.38
G2   6   -52.15
G3  14    85.43
G4  26    73.01
G5  29   321.67
G6  33   -104.61
G7  35   -226.35

[可変間隔データ]
  <       広角端       ><       望遠端       >
  <無限遠><    至近距離    ><無限遠><    至近距離    >
       第1合焦 第2合焦 第3合焦     第1合焦 第2合焦 第3合焦
D5  41.08  41.08   41.08   41.08 113.28  113.28  113.28  113.28
D13  40.32  40.32   40.32   40.32  1.47   1.47   1.47   1.47
D25  0.90   0.90   0.90   0.90  28.86  28.86   28.86   28.86
D28  3.55   2.29   8.57   0.20  3.11   0.62   6.43   0.28
D32  10.51  20.39   8.84   11.76  2.43  21.56   0.76   3.77
D34  16.52   7.91   13.18   18.62  22.12   5.48   20.48   23.61
D37  78.21  78.21   78.21   78.21  93.43  93.43   93.43   93.43
 図10Aは第5実施例の変倍光学系の広角端状態における無限遠物体合焦時の諸収差図であり、図10Bは第5実施例の変倍光学系の広角端状態における近距離物体に対する第1合焦時の諸収差図であり、図10Cは第5実施例の変倍光学系の広角端状態における近距離物体に対する第2合焦時の諸収差図であり、図10Dは第5実施例の変倍光学系の広角端状態における近距離物体に対する第3合焦時の諸収差図であり、図10Eは第5実施例の変倍光学系の望遠端状態における無限遠物体合焦時の諸収差図であり、図10Fは第5実施例の変倍光学系の望遠端状態における近距離物体に対する第1合焦時の諸収差図であり、図10Gは第5実施例の変倍光学系の望遠端状態における近距離物体に対する第2合焦時の諸収差図であり、図10Hは第5実施例の変倍光学系の広角端状態における近距離物体に対する第3合焦時の諸収差図である。
 各収差図より、本実施例の変倍光学系は、合焦時および変倍時の収差変動を有効に抑制し、高い光学性能を有していることがわかる。
 (第6実施例)
 図11は、広角端状態における無限遠物体合焦時の第6実施例の変倍光学系の断面図である。
 本実施例の変倍光学系は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、負の屈折力を有する第5レンズ群G5と、正の屈折力を有する第6レンズ群G6と、負の屈折力を有する第7レンズ群G7とを有している。
 第1レンズ群G1は、物体側から順に、物体側に凸面を向けたメニスカス形状の負レンズL1と両凸形状の正レンズL2との接合正レンズと、物体側に凸面を向けたメニスカス形状の正レンズL3とからなる。
 第2レンズ群G2は、物体側から順に、両凸形状の正レンズL4と両凹形状の負レンズL5との接合負レンズと、物体側に凸面を向けたメニスカス形状の正レンズL6と物体側に凸面を向けたメニスカス形状の負レンズL7との接合正レンズと、両凹形状の負レンズL8とからなる。
 第3レンズ群G3は、物体側から順に、両凸形状の正レンズL9と、両凸形状の正レンズL10と、両凸形状の正レンズL11と両凹形状の負レンズL12との接合正レンズと、開口絞りSと、両凸形状の正レンズL13と両凹形状の負レンズL14との接合負レンズとからなる。
 第4レンズ群G4は、物体側から順に、両凸形状の正レンズL15と、両凸形状の正レンズL16と物体側に凹面を向けたメニスカス形状の負レンズL17との接合正レンズとからなる。
 第5レンズ群G5は、物体側に凸面を向けたメニスカス形状の負レンズL18からなる。
 第6レンズ群G6は、物体側に凹面を向けたメニスカス形状の正レンズL19からなる。
 第7レンズ群G7は、両凹形状の負レンズL20からなる。
 像面I上には、CCDまたはCMOS等から構成された撮像素子(不図示)が配置されている。
 本実施例の変倍光学系は、第5レンズ群G5および第6レンズ群G6を光軸に沿って移動させることにより合焦を行う。無限遠に合焦している状態から近距離物体に合焦させる場合、第5レンズ群G5は物体側から像面側に移動され、第6レンズ群G6は像面側から物体側に移動される。
 本実施例の変倍光学系は、第5レンズ群G5および第6レンズ群G6を、それぞれ像面側から物体側に、または、それぞれ物体側から像面側に、光軸に沿って移動させることにより、所定の撮影距離における合焦状態を、一の合焦状態から他の合焦状態とすることができる。
 本実施例の変倍光学系において、第4レンズ群G4、第5レンズ群G5、第6レンズ群G6、および第7レンズ群G7は後群に該当する。また、第5レンズ群G5は第1合焦レンズ群に該当し、第6レンズ群G6は第2合焦レンズ群に該当する。
 以下の表6に、本実施例の変倍光学系の諸元の値を掲げる。
 (表6)
[全体諸元]
TLW  294.62
TLT  357.71
fW   203.70
fT   573.28
FNoW   6.54
FNoT   7.52
Y    21.60
2ωW  11.95
2ωT   4.24

[レンズ諸元]
 m    r     d     nd    νd
 1)  459.721   3.000  1.834000  37.35
 2)  155.194  10.050  1.497000  81.61
 3) -578.521   0.200
 4)  129.596   9.100  1.497000  81.61
 5) 8801.451   D5
 6)  946.176   5.500  1.805180  25.45
 7)  -64.381   1.600  1.700000  48.11
 8)  70.812   4.958
 9)  60.083   5.387  1.846660  23.80
 10) 8796.211   1.400  1.804000  46.60
 11)  71.565   4.551
 12)  -70.018   1.500  1.921190  23.96
 13)  778.187   D13
 14)  91.070   4.700  1.497000  81.61
 15) -116.772   0.200
 16)  65.543   5.300  1.487490  70.44
 17) -290.558   0.200
 18)  51.411   6.000  1.487490  70.44
 19) -111.623   1.500  1.903660  31.31
 20)  153.603  10.000
 21>   ∞    5.718            (開口絞り)
 22)  609.146   5.596  1.850260  32.35
 23)  -31.501   1.000  1.795000  45.31
 24)  36.192   4.500
 25)   ∞    D25             (仮想面)
 26)  58.357   4.200  1.531720  48.78
 27) -123.367   0.388
 28)  78.896   5.000  1.595510  39.21
 29)  -48.907   1.000  1.846660  23.80
 30) -537.423   0.000
 31)   ∞    D31             (仮想面)
 32)  74.871   1.000  1.729160  54.61    (F)
 33)  40.435   D33
 34) -128.033   4.000  1.698950  30.13    (F)
 35)  -32.473   D35
 36)  -31.966   1.000  1.603000  65.44
 37)  206.206   D37

[各群焦点距離データ]
群  始面   焦点距離
G1   1   125.04
G1   1   233.33
G2   6   -53.11
G3  14    83.52
G4  26    57.36
G5  32   -121.54
G6  34    60.71
G7  36   -45.66

[可変間隔データ]
  <       広角端       ><       望遠端       >
  <無限遠><    至近距離    ><無限遠><    至近距離    >
       第1合焦 第2合焦 第3合焦     第1合焦 第2合焦 第3合焦
D5  32.82  32.82   32.82   32.82 114.43  114.43  114.43  114.43
D13  36.44  36.44   36.44   36.44  3.99   3.99   3.99   3.99
D25  0.39   0.39   0.39   0.39  4.41   4.41   4.41   4.41
D31  9.65  18.76   8.60   10.52  2.18  21.58   1.40   2.94
D33  21.80  12.00   22.20   21.48  22.36   2.36   22.66   22.07
D35  1.92   2.61   2.57   1.37  0.69   1.29   1.17   0.23
D37  82.50  82.50   82.50   82.50  99.03  99.03   99.03   99.03
 図12Aは第6実施例の変倍光学系の広角端状態における無限遠物体合焦時の諸収差図であり、図12Bは第6実施例の変倍光学系の広角端状態における近距離物体に対する第1合焦時の諸収差図であり、図12Cは第6実施例の変倍光学系の広角端状態における近距離物体に対する第2合焦時の諸収差図であり、図12Dは第6実施例の変倍光学系の広角端状態における近距離物体に対する第3合焦時の諸収差図であり、図12Eは第6実施例の変倍光学系の望遠端状態における無限遠物体合焦時の諸収差図であり、図12Fは第6実施例の変倍光学系の望遠端状態における近距離物体に対する第1合焦時の諸収差図であり、図12Gは第6実施例の変倍光学系の望遠端状態における近距離物体に対する第2合焦時の諸収差図であり、図12Hは第6実施例の変倍光学系の広角端状態における近距離物体に対する第3合焦時の諸収差図である。
 各収差図より、本実施例の変倍光学系は、合焦時および変倍時の収差変動を有効に抑制し、高い光学性能を有していることがわかる。
 (第7実施例)
 図13は、広角端状態における無限遠物体合焦時の第7実施例の変倍光学系の断面図である。
 本実施例の変倍光学系は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、負の屈折力を有する第5レンズ群G5と、正の屈折力を有する第6レンズ群G6と、負の屈折力を有する第7レンズ群G7とを有している。
 第1レンズ群G1は、物体側から順に、物体側に凸面を向けたメニスカス形状の負レンズL1と両凸形状の正レンズL2との接合正レンズと、物体側に凸面を向けたメニスカス形状の正レンズL3とからなる。
 第2レンズ群G2は、物体側から順に、両凸形状の正レンズL4と両凹形状の負レンズL5との接合負レンズと、物体側に凸面を向けたメニスカス形状の正レンズL6と物体側に凸面を向けたメニスカス形状の負レンズL7との接合正レンズと、両凹形状の負レンズL8とからなる。
 第3レンズ群G3は、物体側から順に、両凸形状の正レンズL9と、両凸形状の正レンズL10と、両凸形状の正レンズL11と両凹形状の負レンズL12との接合負レンズと、開口絞りSと、両凸形状の正レンズL13と両凹形状の負レンズL14との接合負レンズとからなる。
 第4レンズ群G4は、物体側から順に、両凸形状の正レンズL15と、両凸形状の正レンズL16と両凹形状の負レンズL17との接合正レンズとからなる。
 第5レンズ群G5は、物体側に凸面を向けたメニスカス形状の負レンズL18からなる。
 第6レンズ群G6は、物体側に凹面を向けたメニスカス形状の正レンズL19からなる。
 第7レンズ群G7は、物体側に凹面を向けたメニスカス形状の負レンズL20からなる。
 像面I上には、CCDまたはCMOS等から構成された撮像素子(不図示)が配置されている。
 本実施例の変倍光学系は、第5レンズ群G5および第6レンズ群G6を光軸に沿って移動させることにより合焦を行う。無限遠に合焦している状態から近距離物体に合焦させる場合、第5レンズ群G5は物体側から像面側に移動され、第6レンズ群G6は像面側から物体側に移動される。
 本実施例の変倍光学系は、第5レンズ群G5および第6レンズ群G6を、それぞれ像面側から物体側に、または、それぞれ物体側から像面側に、光軸に沿って移動させることにより、所定の撮影距離における合焦状態を、一の合焦状態から他の合焦状態とすることができる。
 本実施例の変倍光学系において、第4レンズ群G4、第5レンズ群G5、第6レンズ群G6、および第7レンズ群G7は後群に該当する。また、第5レンズ群G5は第1合焦レンズ群に該当し、第6レンズ群G6は第2合焦レンズ群に該当する。
 以下の表7に、本実施例の変倍光学系の諸元の値を掲げる。
 (表7)
[全体諸元]
TLW  314.46
TLT  380.07
fW   198.16
fT   570.84
FNoW   6.77
FNoT   7.83
Y    21.60
2ωW  12.34
2ωT   4.29

[レンズ諸元]
 m    r     d     nd    νd
 1)  408.403   3.000  1.834000  37.35
 2)  148.061  10.050  1.497000  81.61
 3) -669.305   0.200
 4)  130.831   9.100  1.497000  81.61
 5) 11091.231   D5
 6)  758.403   5.500  1.805180  25.45
 7)  -67.708   1.600  1.700000  48.11
 8)  68.129   8.887
 9)  56.578   5.775  1.846660  23.80
 10)  676.909   1.400  1.804000  46.60
 11)  67.159   4.487
 12)  -74.167   1.500  1.921190  23.96
 13)  511.493   D13
 14)  78.165   4.700  1.497000  81.61
 15) -191.776   0.200
 16)  62.679   5.300  1.487490  70.45
 17) -208.293   0.200
 18)  54.422   6.000  1.487490  70.45
 19) -101.135   1.500  1.903660  31.31
 20)  155.030  10.000
 21>   ∞    4.023            (開口絞り)
 22)  407.419   5.571  1.850260  32.35
 23)  -35.608   1.000  1.795000  45.31
 24)  34.247   4.500
 25)   ∞    D25             (仮想面)
 26)  54.480   4.200  1.531720  48.78
 27)  -91.472   0.200
 28)  44.643   5.000  1.595510  39.21
 29) -103.691   1.000  1.896450  26.28
 30)  106.753  0.000
 31)   ∞    D31             (仮想面)
 32)  402.532   1.000  1.456000  91.37
 33)  41.271   D33
 34)  -34.286   4.000  1.606520  43.12    (F)
 35)  -21.926   D35
 36)  -21.517   1.000  1.498000  90.00
 37)  -42.265   D37

[各群焦点距離データ]
群  始面   焦点距離
G1   1   234.56
G2   6   -52.49
G3  14    97.34
G4  26    53.86
G5  32   -100.67
G6  34    88.84
G7  36   -89.21

[可変間隔データ]
  <       広角端       ><       望遠端       >
  <無限遠><    至近距離    ><無限遠><    至近距離    >
       第1合焦 第2合焦 第3合焦     第1合焦 第2合焦 第3合焦
D5  31.18  31.18   31.18   31.18 114.55  114.55  114.55  114.55
D13  37.68  37.68   37.68   37.68  1.51   1.51   1.51   1.51
D25  0.20   0.20   0.20   0.20  5.11   5.11   5.11   5.11
D31  9.65  18.02   9.26   10.03  2.19  20.82   1.88   2.51
D33  21.62  12.92   21.59   21.64  21.83   3.24   21.83   21.88
D35  1.80   2.15   2.27   1.37  0.87   0.83   1.22   0.50
D37 101.39  101.39  101.39  101.39 121.51  121.51  121.51  121.51
 図14Aは第7実施例の変倍光学系の広角端状態における無限遠物体合焦時の諸収差図であり、図14Bは第7実施例の変倍光学系の広角端状態における近距離物体に対する第1合焦時の諸収差図であり、図14Cは第7実施例の変倍光学系の広角端状態における近距離物体に対する第2合焦時の諸収差図であり、図14Dは第7実施例の変倍光学系の広角端状態における近距離物体に対する第3合焦時の諸収差図であり、図14Eは第7実施例の変倍光学系の望遠端状態における無限遠物体合焦時の諸収差図であり、図14Fは第7実施例の変倍光学系の望遠端状態における近距離物体に対する第1合焦時の諸収差図であり、図14Gは第7実施例の変倍光学系の望遠端状態における近距離物体に対する第2合焦時の諸収差図であり、図14Hは第7実施例の変倍光学系の広角端状態における近距離物体に対する第3合焦時の諸収差図である。
 各収差図より、本実施例の変倍光学系は、合焦時および変倍時の収差変動を有効に抑制し、高い光学性能を有していることがわかる。
 (第8実施例)
 図15は、広角端状態における無限遠物体合焦時の第8実施例の変倍光学系の断面図である。
 本実施例の変倍光学系は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5と、負の屈折力を有する第6レンズ群G6と、負の屈折力を有する第7レンズ群G7とを有している。
 第1レンズ群G1は、物体側から順に、物体側に凸面を向けたメニスカス形状の負レンズL1と物体側に凸面を向けた平凸レンズL2との接合正レンズと、物体側に凸面を向けたメニスカス形状の正レンズL3とからなる。
 第2レンズ群G2は、物体側から順に、物体側に凸面を向けたメニスカス形状の負レンズL4と、物体側に凸面を向けたメニスカス形状の負レンズL5と、物体側に凸面を向けたメニスカス形状の正レンズL6と、両凹形状の負レンズL7とからなる。
 第3レンズ群G3は、両凸形状の正レンズL8からなる。
 第4レンズ群G4は、物体側から順に、両凸形状の正レンズL9と、物体側に凸面を向けたメニスカス形状の正レンズL10と、開口絞りSと、物体側に凸面を向けたメニスカス形状の負レンズL11と物体側に凸面を向けたメニスカス形状の正レンズL12との接合負レンズとからなる。
 第5レンズ群G5は、物体側から順に、物体側に凸面を向けたメニスカス形状の負レンズL13と、両凸形状の正レンズL14と両凹形状の負レンズL15との接合正レンズと、物体側に凸面を向けたメニスカス形状の正レンズL16とからなる。
 第6レンズ群G6は、物体側から順に、両凸形状の正レンズL17と、物体側に凸面を向けたメニスカス形状の負レンズL18と、物体側に凸面を向けたメニスカス形状の正レンズL19とからなる。
 第7レンズ群G7は、物体側から順に、物体側に凸面を向けたメニスカス形状の負レンズL20と、物体側に凹面を向けたメニスカス形状の負レンズL21とからなる。
 像面I上には、CCDまたはCMOS等から構成された撮像素子(不図示)が配置されている。
 本実施例の変倍光学系は、第4レンズ群G4を光軸に沿って移動させることにより合焦を行う。第4レンズ群G4は、無限遠に合焦している状態から近距離物体に合焦させる場合、像面側から物体側に移動される。
 本実施例の変倍光学系は、第6レンズ群G6を、像面側から物体側、または、物体側から像面側に、光軸に沿って移動させることにより、所定の撮影距離における合焦状態を、一の合焦状態から他の合焦状態とすることができる。
 本実施例の変倍光学系において、第4レンズ群G4、第5レンズ群G5、第6レンズ群G6、および第7レンズ群G7は後群に該当する。また、第4レンズ群G4は合焦レンズ群に該当し、第6レンズ群G6は収差可変レンズ群に該当する。
 以下の表8に、本実施例の変倍光学系の諸元の値を掲げる。
 (表8)
[全体諸元]
TLW  249.90
TLT  282.95
fW   70.50
fT   139.35
FNoW   4.00
FNoT   4.59
Y    21.60
2ωW  33.81
2ωT  17.31

[レンズ諸元]
 m    r     d     nd    νd
 1)  109.629   3.000  2.001000  29.12
 2)  85.136  12.321  1.497820  82.57
 3)   ∞    0.100
 4)  63.748  11.835  1.433840  95.16
* 5)  74.618   D5
 6)  48.477   2.679  1.603000  65.44
 7)  31.266   7.776
 8)  116.755   1.000  1.497820  82.57
 9)  38.827   6.078
 10)  36.781   5.303  1.663820  27.35
 11)  49.283  13.691
 12)  -58.843   1.000  1.497820  82.57
 13)  118.752   D13
 14) 5949.642   2.178  1.945950  17.98
 15) -402.031   D15
 16)  66.198   4.586  1.497820  82.57    (FDC)
 17) -166.782   7.768
 18)  44.179   3.000  1.497820  82.57    (FDC)
 19)  91.751   5.157
 20>   ∞   12.531            (開口絞り)
 21)  106.468   1.748  1.922860  20.88    (FDC)
 22)  33.980   3.013  1.497820  82.57    (FDC)
 23)  112.524   D23
 24)  58.088   1.000  1.850260  32.35
 25)  36.655   0.100
*26)  31.967   3.749  1.592010  66.89
 27) -537.312   1.000  1.620040  36.40
 28)  200.873   0.100
 29)  49.500   2.099  1.801000  34.92
*30)  67.041   D30
 31)  535.980   2.822  1.945950  17.98 (Z)(FDC)
*32)  -81.000   1.158
 33)  112.380   2.458  1.713000  53.96    (FDC)
 34)  31.208  24.554
*35)  132.350   2.215  1.902650  35.77    (FDC)
 36)  157.371   D36
*37)  87.217   1.072  1.516120  63.84
 38)  65.869  11.018
 39)  -35.035   3.000  1.563840  60.71
 40)  -36.251  14.510

[非球面データ]
 m   K    A4     A6     A8    A10    A12
 5) 0.0000  1.34E-09  5.63E-11 -2.02E-14  4.08E-18
 26) 0.0000 -1.79E-06 -6.23E-09 -3.44E-11  1.53E-14  3.05E-17
 30) 0.0000  4.10E-06 -3.38E-09 -2.44E-11 -3.99E-14
 32) 0.0000  2.02E-07  8.29E-10 -1.51E-11  7.40E-14
 35) 0.0000  3.64E-06 -1.38E-09  1.78E-12  2.53E-15
 37) 0.0000 -4.80E-06  3.78E-09 -1.14E-11  2.35E-14 -3.24E-17

[各群焦点距離データ]
群  始面   焦点距離
G1   1   211.71
G2   6   -38.91
G3  14   398.17
G4  16    86.23
G5  24    87.88
G6  31   -977.28
G7  37   -529.17

[可変間隔データ]
  <       広角端       ><       望遠端       >
  <無限遠><    至近距離    ><無限遠><    至近距離    >
       第1合焦 第2合焦 第3合焦     第1合焦 第2合焦 第3合焦
D5   0.10   0.10   0.10   0.10  46.07  46.07   46.07   46.07
D13  27.79  27.79   27.79   27.79  12.20  12.20   12.20   12.20
D15  7.03   8.37   7.03   7.03  5.06   7.99   5.06   5.06
D23  1.38   0.10   1.38   1.38  2.68   0.20   2.68   2.68
D30  7.47   7.47   2.39   11.18  3.39   3.39   0.89   5.79
D36  4.11   4.11   9.58   0.10  21.23  21.23   24.03   18.57
 図16Aは第8実施例の変倍光学系の広角端状態における無限遠物体合焦時の諸収差図であり、図16Bは第8実施例の変倍光学系の広角端状態における近距離物体に対する第1合焦時の諸収差図であり、図16Cは第8実施例の変倍光学系の広角端状態における近距離物体に対する第2合焦時の諸収差図であり、図16Dは第8実施例の変倍光学系の広角端状態における近距離物体に対する第3合焦時の諸収差図であり、図16Eは第8実施例の変倍光学系の望遠端状態における無限遠物体合焦時の諸収差図であり、図16Fは第8実施例の変倍光学系の望遠端状態における近距離物体に対する第1合焦時の諸収差図であり、図16Gは第8実施例の変倍光学系の望遠端状態における近距離物体に対する第2合焦時の諸収差図であり、図16Hは第8実施例の変倍光学系の広角端状態における近距離物体に対する第3合焦時の諸収差図である。
 各収差図より、本実施例の変倍光学系は、合焦時および変倍時の収差変動を有効に抑制し、高い光学性能を有していることがわかる。
 (第9実施例)
 図17は、広角端状態における無限遠物体合焦時の第9実施例の変倍光学系の断面図である。
 本実施例の変倍光学系は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、負の屈折力を有する第5レンズ群G5と、正の屈折力を有する第6レンズ群G6と、負の屈折力を有する第7レンズ群G7と、正の屈折力を有する第8レンズ群G8と、負の屈折力を有する第9レンズ群G9とを有している。
 第1レンズ群G1は、物体側から順に、物体側に凸面を向けたメニスカス形状の負レンズL1と物体側に凸面を向けた平凸レンズL2との接合正レンズと、物体側に凸面を向けたメニスカス形状の正レンズL3とからなる。
 第2レンズ群G2は、物体側から順に、物体側に凸面を向けたメニスカス形状の負レンズL4と、物体側に凸面を向けたメニスカス形状の負レンズL5と、物体側に凸面を向けたメニスカス形状の正レンズL6と、両凹形状の負レンズL7とからなる。
 第3レンズ群G3は、物体側に凸面を向けたメニスカス形状の正レンズL8からなる。
 第4レンズ群G4は、物体側から順に、両凸形状の正レンズL9と、物体側に凸面を向けたメニスカス形状の正レンズL10とからなる。
 第5レンズ群G5は、物体側から順に、開口絞りSと、両凹形状の負レンズL11と物体側に凸面を向けたメニスカス形状の正レンズL12との接合負レンズとからなる。
 第6レンズ群G6は、物体側から順に、物体側に凸面を向けたメニスカス形状の負レンズL13と、両凸形状の正レンズL14と物体側に凹面を向けたメニスカス形状の負レンズL15との接合正レンズと、物体側に凸面を向けたメニスカス形状の正レンズL16とからなる。
 第7レンズ群G7は、物体側から順に、両凸形状の正レンズL17と、物体側に凸面を向けたメニスカス形状の負レンズL18とからなる。
 第8レンズ群G8は、両凸形状の正レンズL19からなる。
 第9レンズ群G9は、物体側から順に、両凹形状の負レンズL20と、物体側に凹面を向けたメニスカス形状の負レンズL21とからなる。
 像面I上には、CCDまたはCMOS等から構成された撮像素子(不図示)が配置されている。
 本実施例の変倍光学系は、第4レンズ群G4および第5レンズ群G5を光軸に沿って移動させることにより合焦を行う。無限遠に合焦している状態から近距離物体に合焦させる場合、第4レンズ群G4および第5レンズ群G5は、それぞれ像面側から物体側に移動される。
 本実施例の変倍光学系は、第7レンズ群G7および第8レンズ群G8を、それぞれ像面側から物体側に、または、それぞれ物体側から像面側に、光軸に沿って移動させることにより、所定の撮影距離における合焦状態を、一の合焦状態から他の合焦状態とすることができる。
 本実施例の変倍光学系において、第4レンズ群G4、第5レンズ群G5、第6レンズ群G6、第7レンズ群G7、第8レンズ群G8、および第9レンズ群G9は後群に該当する。また、第4レンズ群G4および第5レンズ群G5は合焦レンズ群に該当し、第7レンズ群G7および第8レンズ群G8は収差可変レンズ群に該当する。
 以下の表9に、本実施例の変倍光学系の諸元の値を掲げる。
 (表9)
[全体諸元]
TLW  243.79
TLT  250.08
fW   70.31
fT   139.00
FNoW   4.00
FNoT   4.22
Y    21.60
2ωW  34.89
2ωT  17.75

[レンズ諸元]
 m    r     d     nd    νd
 1)  111.205   3.000  2.001000  29.12 
 2)  84.962  21.600  1.497820  82.57 
 3)   ∞    0.100
 4)  67.241  10.950  1.433840  95.16 
* 5)  109.854   D5
 6)  49.907   2.677  1.603000  65.44 
 7)  31.569  15.883
 8)  256.551   1.000  1.497820  82.57 
 9)  56.598   1.775
 10)  36.670   5.054  1.663820  27.35 
 11)  46.659  20.424
 12)  -65.286   3.000  1.497820  82.57 
 13)  160.244   D13
 14)  86.089   3.332  1.945950  17.98 
 15)  413.916   D15
 16)  97.477   3.501  1.497820  82.57    (FDC)
 17) -207.488   0.127
 18)  47.603   3.279  1.497820  82.57    (FDC)
 19)  151.121   D19
 20>   ∞    2.248            (開口絞り)
 21) -175.858   1.000  1.922860  20.88    (FDC)
 22)  38.679   3.349  1.497820  82.57    (FDC)
 23)  931.596   D23
 24)  71.217   1.000  1.850260  32.35 
 25)  48.536   0.100
*26)  45.661   4.668  1.592010  66.89 
 27)  -62.834   1.000  1.620040  36.40 
 28) -170.484   0.100
 29)  74.758   2.521  1.801000  34.92 
*30)  144.739   D30
 31)  496.091   2.956  1.945950  17.98 (Z)(FDC)
*32) -100.186   0.977
 33)  168.990   2.201  1.713000  53.96    (FDC)
 34)  30.909   D34
*35)  92.535   4.160  1.902650  35.77    (FDC)
 36) -374.510   D36
*37)  -78.960   3.000  1.516120  63.84 
 38)  308.128  11.101
 39)  -35.035   2.921  1.563840  60.71 
 40)  -47.413  16.700

[非球面データ]
 m   K    A4     A6     A8    A10    A12
 5) 0.0000 -1.06E-09 -1.71E-12 -9.66E-16  9.64E-20
 26) 0.0000 -2.58E-06 -3.77E-10 -1.70E-11  2.85E-14 -1.75E-16
 30) 0.0000  1.49E-06 -4.57E-10 -6.78E-12  4.95E-15
 32) 0.0000 -1.01E-06 -1.40E-09 -2.28E-12 -9.12E-15
 35) 0.0000  1.57E-06  1.28E-09 -4.22E-12  7.99E-16
 37) 0.0000  6.38E-07  2.43E-09 -9.07E-12  3.58E-14 -1.94E-17

[各群焦点距離データ]
群  始面   焦点距離
G1   1   172.67
G2   6   -42.59
G3  14   114.34
G4  16    68.13
G5  20   -59.45
G6  24    63.77
G7  31   -146.94
G8  35    82.55
G9  37   -81.33

[可変間隔データ]
  <       広角端       ><       望遠端       >
  <無限遠><    至近距離    ><無限遠><    至近距離    >
       第1合焦 第2合焦 第3合焦     第1合焦 第2合焦 第3合焦
D5   0.23   0.23   0.23   0.23  32.30  32.30   32.30   32.30
D13  36.52  36.52   36.52   36.52  11.08  11.08   11.08   11.08
D15  14.58  12.54   14.58   14.58  8.11   4.05   8.11   8.11
D19  2.82   4.25   2.82   2.82  5.60   8.40   5.60   5.60
D23  2.61   3.21   2.61   2.61  1.01   2.26   1.01   1.01
D30  3.74   3.74   1.37   6.13  3.16   3.16   0.70   5.59
D34  21.72  21.72   23.29   21.82  27.44  27.44   29.88   26.74
D36  5.97   5.97   7.41   3.86  5.78   5.78   7.04   3.90
 図18Aは第9実施例の変倍光学系の広角端状態における無限遠物体合焦時の諸収差図であり、図18Bは第9実施例の変倍光学系の広角端状態における近距離物体に対する第1合焦時の諸収差図であり、図18Cは第9実施例の変倍光学系の広角端状態における近距離物体に対する第2合焦時の諸収差図であり、図18Dは第9実施例の変倍光学系の広角端状態における近距離物体に対する第3合焦時の諸収差図であり、図18Eは第9実施例の変倍光学系の望遠端状態における無限遠物体合焦時の諸収差図であり、図18Fは第9実施例の変倍光学系の望遠端状態における近距離物体に対する第1合焦時の諸収差図であり、図18Hは第9実施例の変倍光学系の望遠端状態における近距離物体に対する第2合焦時の諸収差図であり、図18Hは第9実施例の変倍光学系の広角端状態における近距離物体に対する第3合焦時の諸収差図である。
 各収差図より、本実施例の変倍光学系は、合焦時および変倍時の収差変動を有効に抑制し、高い光学性能を有していることがわかる。
 上記各実施例によれば、良好な光学性能を有する変倍光学系を実現することができる。
 以下に、各実施例の条件式対応値を示す。
 f1は第1レンズ群の焦点距離であり、f2は第2レンズ群の焦点距離である。Dsr1Wは広角端状態における無限遠合焦時の第1合焦レンズ群において最も物体側に配置されたレンズの物体側の面と開口絞りとの光軸上の距離であり、TLWは広角端状態における光学系全長である。Dsr1Tは望遠端状態における無限遠合焦時の第1合焦レンズ群において最も物体側に配置されたレンズの物体側の面と開口絞りとの光軸上の距離であり、TLTは望遠端状態における光学系全長である。Dsr2Wは広角端状態における無限遠合焦時の第2合焦レンズ群において最も物体側に配置されたレンズの物体側の面と開口絞りとの光軸上の距離であり、Dsr1Tは望遠端状態における無限遠合焦時の第2合焦レンズ群において最も物体側に配置されたレンズの物体側の面と開口絞りとの光軸上の距離である。DsiWは広角端状態における無限遠合焦時の開口絞りと像面との光軸上の距離であり、DsiTは望遠端状態における無限遠合焦時の開口絞りと像面との光軸上の距離である。
 ndLZはレンズZのd線に対する屈折率であり、θgFLZはレンズZの部分分散比であり、レンズZのg線に対する屈折率をngLZとし、レンズZのF線に対する屈折率をnFLZとし、レンズZのC線に対する屈折率をnCLZとしたとき、次式で定義される。
 θgFLZ = (ngLZ - nFLZ) / (nFLZ - nCLZ)
 ndFは第1合焦レンズ群および第2合焦レンズ群に含まれる各レンズのd線に対する屈折率である。fF1は第1合焦レンズ群の焦点距離であり、fF2は第2合焦レンズ群の焦点距離である。ndFDCは合焦レンズ群および収差可変レンズ群に含まれる各レンズのd線に対する屈折率である。fWは変倍光学系の広角端状態における焦点距離であり、Yは像高であり、BfWは変倍光学系の広角端状態におけるバックフォーカスである。
[条件式対応値]
 条件式     | 実施例  第1   第2   第3   第4   第5
(1)f1/f2         : -0.462  -0.157  -3.261  -3.599  -4.322
(2)Dsr1W/TLW       :  0.061  0.084  0.111  0.127  0.075
(3)Dsr1T/TLT       :  0.078  0.097  0.112  0.110  0.134
(4)Dsr2W/TLW       :  0.158  0.153  0.143  0.254  0.130
(5)Dsr2T/TLT       :  0.205  0.255  0.139  0.259  0.157
(6)Dsr1W/DsiW      :  0.184  0.241  0.245  0.280  0.182
(7)Dsr1T/DsiT      :  0.150  0.191  0.242  0.243  0.317
(8)Dsr2W/DsiW      :  0.482  0.438  0.317  0.561  0.317
(9)Dsr2T/DsiT      :  0.394  0.501  0.302  0.569  0.371
(10)ndLZ+(0.01425*νdLZ) :   -    -   2.202  2.202   -
(11)νdLZ         :   -    -   17.980  17.980   -
(12)θgFLZ+(0.00316*νdLZ):   -    -   0.711  0.711   -
  θgFLZ        :   -    -   0.6546  0.6546   -
(13)ndF          :  1.768  1.746  1.801  1.946  1.847
                1.712  1.920  1.946  1.713  1.729
                1.952   -   1.713  1.903   -
(14)|fF1/fF2|       :  3.278  2.391  1.279  1.666  3.075
(15)ndFDC         :   -    -    -    -    -
(16)(17)f1/fW       : -1.965  -2.297  2.028  2.151  1.158
(18)Y/fW         :  0.898  0.893  0.306  0.305  0.111
(19)fW/BfW        :  2.129  1.677  6.589  4.241  2.488 
[条件式対応値]
 条件式     | 実施例  第6   第7   第8   第9
(1)f1/f2         : -4.393  -4.469  -6.398  -4.054
(2)Dsr1W/TLW       :  0.127  0.112   -    -
(3)Dsr1T/TLT       :  0.095  0.086   -    -
(4)Dsr2W/TLW       :  0.204  0.184   -    -
(5)Dsr2T/TLT       :  0.160  0.146   -    -
(6)Dsr1W/DsiW      :  0.250  0.213   -    -
(7)Dsr1T/DsiT      :  0.210  0.179   -    -
(8)Dsr2W/DsiW      :  0.402  0.349   -    -
(9)Dsr2T/DsiT      :  0.354  0.304   -    -
(10)ndLZ+(0.01425*νdLZ) :   -    -   2.202  2.202
(11)νdLZ         :   -    -   17.980  17.980
(12)θgFLZ+(0.00316*νdLZ):   -    -   0.711  0.711
  θgFLZ        :   -    -   0.6546  0.6546
(13)ndF          :  1.729  1.607   -    -
             :  1.699
(14)|fF1/fF2|       :  2.002  1.133   -    -
(15)ndFDC         :   -    -   1.498  1.498
             :   -    -   1.498  1.498
             :   -    -   1.923  1.923
             :   -    -   1.498  1.498
             :   -    -   1.946  1.946
             :   -    -   1.713  1.713
             :   -    -   1.903  1.903
(16)(17)f1/fW       :  1.145  1.184  3.583  2.456
(18)Y/fW         :  0.106  0.109  0.306  0.307
(19)fW/BfW        :  2.469  1.954  4.859  4.210
 上記各実施例は、本発明の一具体例を示しているものであり、本発明はこれらに限定されない。以下の内容は、本願の実施形態の変倍光学系の光学性能を損なわない範囲で適宜採用することが可能である。
 上記各実施例の光学系を構成するレンズのレンズ面は、球面または平面としてよく、あるいは非球面としてもよい。レンズ面が球面または平面の場合、レンズ加工および組立調整が容易となり、レンズ加工および組立調整の誤差による光学性能の劣化を防ぐことができるため、好ましい。また、像面がずれた場合でも描写性能の劣化が少ないため好ましい。レンズ面が非球面の場合、研削加工による非球面、ガラスを型で非球面形状に成形したガラスモールド非球面、またはガラス表面に設けた樹脂を非球面形状に形成した複合型非球面のいずれでもよい。また、レンズ面は回折面としてもよく、レンズを屈折率分布型レンズ(GRINレンズ)あるいはプラスチックレンズとしてもよい。
 また、上記各実施例の変倍光学系を構成するレンズのレンズ面に、広い波長域で高い透過率を有する反射防止膜を施してもよい。これにより、フレアやゴーストを軽減し、コントラストの高い光学性能を達成することができる。
 次に、本実施形態の変倍光学系を備えたカメラを、図19に基づいて説明する。
 図19は、本実施形態の変倍光学系を備えたカメラの模式図である。
 カメラ1は、撮影レンズ2として上記第1実施例に係る変倍光学系を備えたレンズ交換式のいわゆるミラーレスカメラである。
 カメラ1において、不図示の物体(被写体)からの光は、撮影レンズ2で集光され、撮像素子3に到達する。撮像素子3は、被写体からの光を画像データに変換する。画像データは、電子ビューファインダ4に表示される。これにより、アイポイントEPに眼を位置させた撮影者は、被写体を観察することができる。
 また、撮影者によって不図示のレリーズボタンが押されると、画像データは不図示のメモリに記憶される。このようにして、撮影者はカメラ1による被写体の撮影を行うことができる。
 ここで、カメラ1に撮影レンズ2として搭載した上記第1実施例の変倍光学系は、良好な光学性能を有する変倍光学系である。したがって、カメラ1は良好な光学性能を実現することができる。なお、上記第2~第9実施例の変倍光学系を撮影レンズ2として搭載したカメラを構成しても、カメラ1と同様の効果を奏することができる。
 最後に、本実施形態の変倍光学系の製造方法の概略を、図20および図21に基づいて説明する。図20および図21は、それぞれ本実施形態の変倍光学系の第1および第2の製造方法の概略を示すフローチャートである。
 図20に示す本実施形態の変倍光学系の第1の製造方法は、以下のステップS11~S15を含む。
 ステップS11:物体側から順に、第1レンズ群と、第2レンズ群と、第3レンズ群と、後群とを準備する。
 ステップS12:変倍の際に、隣り合う各レンズ群の間隔が変化するようにする。
 ステップS13:後群が、第1合焦レンズ群と第2合焦レンズ群とを有するようにする。
 ステップS14:所定の撮影距離において、収差量の異なる複数の合焦状態を有し、一の合焦状態から他の合焦状態になる際に、第1合焦レンズ群と第2合焦レンズ群が移動するようにする。
 ステップS15:変倍光学系が以下の条件式をすべて満足するようにする。
(1) -6.80 < f1/f2 < -0.05
但し、
 f1 : 第1レンズ群の焦点距離
 f2 : 第2レンズ群の焦点距離
 図21に示す本実施形態の変倍光学系の第2の製造方法は、以下のステップS21~S24を含む。
 ステップS21:物体側から順に、第1レンズ群と、第2レンズ群と、第3レンズ群と、後群とを準備する。
 ステップS22:変倍の際に、隣り合う各レンズ群の間隔が変化するようにする。
 ステップS23:後群が、合焦レンズ群と収差可変レンズ群とを有するようにする。
 ステップS24:所定の撮影距離において、収差量の異なる複数の合焦状態を有し、一の合焦状態から他の合焦状態になる際に、収差可変レンズ群が移動するようにする。
 本実施形態の変倍光学系の製造方法によれば、良好な結像性能を有する変倍光学系を製造することができる。
 当業者は、本開示の精神および範囲から外れることなく、種々の変更、置換および修正をこれに加えることが可能であることを理解されたい。
 S  開口絞り
 I  像面
 1  カメラ
 2  撮影レンズ
 3  撮像素子

Claims (21)

  1.  物体側から順に、第1レンズ群と、第2レンズ群と、第3レンズ群と、後群とからなり、
     変倍の際に、隣り合う各レンズ群の間隔が変化し、
     所定の撮影距離において、収差量の異なる複数の合焦状態を有し、
     前記後群は、合焦の際移動する第1合焦レンズ群と、前記第1合焦レンズ群より像側に配置され、合焦の際に、前記第1合焦レンズ群とは異なる軌跡で移動する第2合焦レンズ群とを有し、
     前記所定の撮影距離において、前記複数の合焦状態のうち一の合焦状態から前記複数の合焦状態のうち前記一の合焦状態の収差量と異なる収差量を有する他の合焦状態になる際に、前記第1合焦レンズ群と前記第2合焦レンズ群とが移動し、
     以下の条件式を満足する変倍光学系。
     -6.80 < f1/f2 < -0.05
    但し、
     f1 : 前記第1レンズ群の焦点距離
     f2 : 前記第2レンズ群の焦点距離
  2.  前記所定の撮影距離において、前記一の合焦状態から前記他の合焦状態になる際に、前記第1合焦レンズ群と前記第2合焦レンズ群とが同じ方向に移動する請求項1に記載の変倍光学系。
  3.  前記第1合焦レンズ群および前記第2合焦レンズ群のうち、一方は正の屈折力を有し、他方は負の屈折力を有する請求項1または2に記載の変倍光学系。
  4.  前記第1合焦レンズ群および前記第2合焦レンズ群は、開口絞りと像面との間に配置される請求項1-3のいずれか一項に記載の変倍光学系。
  5.  以下の条件式をともに満足する請求項4に記載の変倍光学系。
     -0.20 < Dsr1W/TLW < 0.20
     -0.25 < Dsr1T/TLT < 0.25
    但し、
     Dsr1W : 広角端状態における無限遠合焦時の前記第1合焦レンズ群において最も物体側に配置されたレンズの物体側の面と前記開口絞りとの光軸上の距離
     TLW   : 広角端状態における光学系全長
     Dsr1T : 望遠端状態における無限遠合焦時の前記第1合焦レンズ群において最も物体側に配置されたレンズの物体側の面と前記開口絞りとの光軸上の距離
     TLT   : 望遠端状態における光学系全長
  6.  以下の条件式をともに満足する請求項4または5に記載の変倍光学系。
     0.10 < Dsr2W/TLW < 0.40
     0.20 < Dsr2T/TLT < 0.40
    但し、
     Dsr2W : 広角端状態における無限遠合焦時の前記第2合焦レンズ群において最も物体側に配置されたレンズの物体側の面と前記開口絞りとの光軸上の距離
     TLW   : 広角端状態における光学系全長
     Dsr2T : 望遠端状態における無限遠合焦時の前記第2合焦レンズ群において最も物体側に配置されたレンズの物体側の面と前記開口絞りとの光軸上の距離
     TLT   : 望遠端状態における光学系全長
  7.  以下の条件式をともに満足する請求項4-6のいずれか一項に記載の変倍光学系。
     Dsr1W/DsiW < 0.30
     Dsr1T/DsiT < 0.35
    但し、
     DsiW  : 広角端状態における無限遠合焦時の前記開口絞りと像面との光軸上の距離
     DsiT  : 望遠端状態における無限遠合焦時の前記開口絞りと像面との光軸上の距離
  8.  以下の条件式をともに満足する請求項4-7のいずれか一項に記載の変倍光学系。
     0.20 < Dsr2W/DsiW
     0.25 < Dsr2T/DsiT
    但し、
     DsiW  : 広角端状態における無限遠合焦時の前記開口絞りと像面との光軸上の距離
     DsiT  : 望遠端状態における無限遠合焦時の前記開口絞りと像面との光軸上の距離
  9.  前記第1合焦レンズ群および前記第2合焦レンズ群のうち少なくとも一つは、以下の条件式をともに満足するレンズZを少なくとも1枚有する、請求項1-8のいずれか一項に記載の変倍光学系。
     ndLZ + (0.01425×νdLZ) < 2.250
     νdLZ < 35.00
     0.702 < θgFLZ + (0.00316×νdLZ)
    但し、
     ndLZ :前記レンズZのd線に対する屈折率
     νdLZ :前記レンズZのd線を基準とするアッベ数
     θgFLZ:前記レンズZの部分分散比であり、前記レンズZのg線に対する屈折率をngLZとし、前記レンズZのF線に対する屈折率をnFLZとし、前記レンズZのC線に対する屈折率をnCLZとしたとき、次式で定義される
     θgFLZ = (ngLZ - nFLZ)/(nFLZ - nCLZ)
  10.  前記第1合焦レンズ群または前記第2合焦レンズ群は、以下の条件式を満たすレンズを少なくとも1つ有する請求項1-9のいずれか一項に記載の変倍光学系。
     1.60 < ndF < 2.00
    但し、
     ndF  : 前記第1合焦レンズ群および前記第2合焦レンズ群に含まれる各レンズのd線に対する屈折率
  11.  以下の条件式を満たす請求項1-10のいずれか一項に記載の変倍光学系。
     0.00 < |fF1/fF2| < 4.00
    但し、
     fF1  : 前記第1合焦レンズ群の焦点距離
     fF2  : 前記第2合焦レンズ群の焦点距離
  12.  物体側から順に、第1レンズ群と、第2レンズ群と、第3レンズ群と、後群とからなり、
     変倍の際に、隣り合う各レンズ群の間隔が変化し、
     所定の撮影距離において、収差量の異なる複数の合焦状態を有し、
     前記後群は、合焦の際移動する合焦レンズ群と、前記所定の撮影距離において、前記複数の合焦状態のうち一の合焦状態から前記複数の合焦状態のうち前記一の合焦状態の収差量と異なる収差量を有する他の合焦状態になる際に移動し、前記合焦レンズ群と異なる収差可変レンズ群とを有する変倍光学系。
  13.  前記収差可変レンズ群は、開口絞りと像面との間に配置される請求項12に記載の変倍光学系。
  14.  前記合焦レンズ群および前記収差可変レンズ群のうち少なくとも一つは、以下の条件式をともに満足するレンズZを少なくとも1枚有する、請求項12または13に記載の変倍光学系。
    (10)ndLZ + (0.01425×νdLZ) < 2.250
    (11)νdLZ < 35.00
    (12)0.702 < θgFLZ + (0.00316×νdLZ)
    但し、
     ndLZ :前記レンズZのd線に対する屈折率
     νdLZ :前記レンズZのd線を基準とするアッベ数
     θgFLZ:前記レンズZの部分分散比であり、前記レンズZのg線に対する屈折率をngLZとし、前記レンズZのF線に対する屈折率をnFLZとし、前記レンズZのC線に対する屈折率をnCLZとしたとき、次式で定義される
     θgFLZ = (ngLZ - nFLZ)/(nFLZ - nCLZ)
  15.  前記合焦レンズ群および前記収差可変レンズ群は、以下の条件式を満たすレンズにより構成される請求項12-14のいずれか一項に記載の変倍光学系。
    (15) 1.49 < ndFDC < 1.95
    但し、
     ndFDC  : 前記合焦レンズ群および前記収差可変レンズ群に含まれる各レンズのd線に対する屈折率
  16.  以下の条件式を満たす請求項1-15のいずれか一項に記載の変倍光学系。
     -2.50 < f1/fW < -1.00
    但し、
     f1 : 前記第1レンズ群の焦点距離
     fW : 前記変倍光学系の広角端状態における焦点距離
  17.  以下の条件式を満たす請求項1-15のいずれか一項に記載の変倍光学系。
      1.00 < f1/fW <  4.00
    但し、
     f1 : 前記第1レンズ群の焦点距離
     fW : 前記変倍光学系の広角端状態における焦点距離
  18.  以下の条件式を満たす請求項1-17のいずれか一項に記載の変倍光学系。
     0.10 < Y/fW < 1.00
    但し、
     Y  : 像高
     fW : 前記変倍光学系の広角端状態における焦点距離
  19.  以下の条件式を満たす請求項1-18のいずれか一項に記載の変倍光学系。
     1.50 < fW/BfW < 7.00
    但し、
     BfW : 前記変倍光学系の広角端状態におけるバックフォーカス
     fW : 前記変倍光学系の広角端状態における焦点距離
  20.  請求項1-19のいずれか一項に記載の変倍光学系を有する光学機器。
  21.  物体側から順に、第1レンズ群と、第2レンズ群と、第3レンズ群と、後群とからなる変倍光学系の製造方法であって、
     変倍の際に、隣り合う各レンズ群の間隔が変化し、
     所定の撮影距離において、収差量の異なる複数の合焦状態を有し、
     前記後群は、合焦の際移動する第1合焦レンズ群と、前記第1合焦レンズ群より像側に配置され、合焦の際に、前記第1合焦レンズ群とは異なる軌跡で移動する第2合焦レンズ群とを有し、
     前記所定の撮影距離において、一の合焦状態から収差量の異なる他の合焦状態になる際に、前記第1合焦レンズ群と前記第2合焦レンズ群とが移動し、
     以下の条件式を満足するようにする変倍光学系の製造方法。
    (1)-6.80 < f1/f2 < -0.05
    但し、
     f1 : 前記第1レンズ群の焦点距離
     f2 : 前記第2レンズ群の焦点距離
PCT/JP2023/012935 2022-03-29 2023-03-29 変倍光学系、光学機器および変倍光学系の製造方法 WO2023190739A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-053481 2022-03-29
JP2022053481 2022-03-29

Publications (1)

Publication Number Publication Date
WO2023190739A1 true WO2023190739A1 (ja) 2023-10-05

Family

ID=88202650

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/012935 WO2023190739A1 (ja) 2022-03-29 2023-03-29 変倍光学系、光学機器および変倍光学系の製造方法

Country Status (1)

Country Link
WO (1) WO2023190739A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014021257A (ja) * 2012-07-18 2014-02-03 Canon Inc ズームレンズ及びそれを有する撮像装置
JP2018097240A (ja) * 2016-12-15 2018-06-21 キヤノン株式会社 光学系、光学機器および撮像装置
JP2020064175A (ja) * 2018-10-17 2020-04-23 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
JP2021167973A (ja) * 2017-11-20 2021-10-21 株式会社ニコン 変倍光学系、光学装置、および変倍光学系の製造方法
JP2022021154A (ja) * 2020-07-21 2022-02-02 株式会社ニコン 光学系、光学機器、および光学系の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014021257A (ja) * 2012-07-18 2014-02-03 Canon Inc ズームレンズ及びそれを有する撮像装置
JP2018097240A (ja) * 2016-12-15 2018-06-21 キヤノン株式会社 光学系、光学機器および撮像装置
JP2021167973A (ja) * 2017-11-20 2021-10-21 株式会社ニコン 変倍光学系、光学装置、および変倍光学系の製造方法
JP2020064175A (ja) * 2018-10-17 2020-04-23 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
JP2022021154A (ja) * 2020-07-21 2022-02-02 株式会社ニコン 光学系、光学機器、および光学系の製造方法

Similar Documents

Publication Publication Date Title
US8605362B2 (en) Zoom lens system, optical apparatus and method for manufacturing zoom lens system
US9164260B2 (en) Wide-angle lens, imaging apparatus, and method for manufacturing wide-angle lens
CN110832376B (zh) 变倍光学系统以及光学装置
US8625209B2 (en) Imaging lens, optical apparatus including imaging lens and method for manufacturing imaging lens
US11994746B2 (en) Zoom lens, optical apparatus and method for manufacturing the zoom lens
JP4329059B2 (ja) ズームレンズ
WO2016121955A1 (ja) ズームレンズ、光学機器、およびズームレンズの製造方法
JP5428775B2 (ja) 広角レンズ、撮像装置、広角レンズの製造方法
US8259400B2 (en) Zoom lens system, imaging apparatus, and method for manufacturing zoom lens system
JP5821698B2 (ja) 光学系、光学装置、光学系の製造方法
CN112105980A (zh) 光学系统、光学设备以及光学系统的制造方法
JP5407363B2 (ja) 変倍光学系、撮像装置、変倍光学系の製造方法
WO2016121927A1 (ja) ズームレンズ、光学機器、およびズームレンズの製造方法
JP2019164375A (ja) ズームレンズ、および光学機器
JP5532853B2 (ja) テレコンバータレンズ、光学装置、マスタレンズの焦点距離を拡大する方法
CN107884917B (zh) 变倍光学系统和光学装置
CN108139571B (zh) 变焦镜头以及光学设备
CN114270238A (zh) 光学系统、光学设备及光学系统的制造方法以及变倍光学系统、光学设备及变倍光学系统的制造方法
CN114008508A (zh) 变倍光学系统、光学设备以及变倍光学系统的制造方法
WO2022244840A1 (ja) 光学系、光学機器および光学系の製造方法
JP5407365B2 (ja) 変倍光学系、撮像装置、変倍光学系の製造方法
WO2023190739A1 (ja) 変倍光学系、光学機器および変倍光学系の製造方法
CN113056693B (zh) 变倍光学系统以及光学设备
JP5407364B2 (ja) 変倍光学系、撮像装置、変倍光学系の製造方法
JP5445040B2 (ja) 広角レンズ、撮像装置、広角レンズの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23780747

Country of ref document: EP

Kind code of ref document: A1