WO2023190386A1 - 硫黄含有シロキサン、前記硫黄含有シロキサンを含むシリコン含有膜形成用の組成物、硫黄含有シロキサンの製造方法、シリコン含有膜、及びシリコン含有膜の製造方法 - Google Patents

硫黄含有シロキサン、前記硫黄含有シロキサンを含むシリコン含有膜形成用の組成物、硫黄含有シロキサンの製造方法、シリコン含有膜、及びシリコン含有膜の製造方法 Download PDF

Info

Publication number
WO2023190386A1
WO2023190386A1 PCT/JP2023/012290 JP2023012290W WO2023190386A1 WO 2023190386 A1 WO2023190386 A1 WO 2023190386A1 JP 2023012290 W JP2023012290 W JP 2023012290W WO 2023190386 A1 WO2023190386 A1 WO 2023190386A1
Authority
WO
WIPO (PCT)
Prior art keywords
sulfur
siloxane
independently
formula
silicon
Prior art date
Application number
PCT/JP2023/012290
Other languages
English (en)
French (fr)
Inventor
元輝 平
恵英 上野
新大 島田
Original Assignee
住友精化株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友精化株式会社 filed Critical 住友精化株式会社
Publication of WO2023190386A1 publication Critical patent/WO2023190386A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/21Cyclic compounds having at least one ring containing silicon, but no carbon in the ring
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/42Silicides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers

Definitions

  • the technical field of the present disclosure relates to sulfur-containing siloxanes and compositions for forming silicon-containing films containing the compounds.
  • silicon-containing thin films are manufactured into various forms of thin films such as silicon films, silicon oxide films, silicon nitride films, silicon carbonitride films, and silicon oxynitride films through various deposition processes. It is applied in various fields. Among them, silicon oxide films and silicon nitride films have excellent blocking properties and oxidation resistance, so they are used as insulating films, intermetal dielectric materials, seed layers, spacers, hard masks, trench isolation, and diffusion prevention in device fabrication. It functions as a film, an etch stop layer, and a protective film layer.
  • Patent Document 1 describes a method of forming a uniform silicon oxide film using an atomic layer deposition (ALD) method using bisdiethylaminosilane (BDEAS), an aminosilane compound, as a silicon source. Proposed.
  • ALD atomic layer deposition
  • BDEAS bisdiethylaminosilane
  • Patent Document 2 by using 2-dimethylamino-2,4,6,8-tetramethylcyclotetrasiloxane, which is an aminosilane compound, as a silicon source, a uniform silicon oxide film can be formed at a high temperature using an atomic layer deposition (ALD) method. A method of forming at a deposition rate has been proposed.
  • ALD atomic layer deposition
  • Patent Document 3 proposes a method of forming a uniform silicon oxide film at high temperature by using dimethylaminotrimethylsilane (DMATMS), an aminosilane compound, as a silicon source using an atomic layer deposition (ALD) method. .
  • DMATMS dimethylaminotrimethylsilane
  • ALD atomic layer deposition
  • the dimethylaminotrimethylsilane described in Patent Document 3 is better than the bisdiethylaminosilane described in Patent Document 1 and the 2-dimethylamino-2,4,6,8-tetramethylcyclotetrasiloxane described in Patent Document 2.
  • the ALD method it is possible to form a silicon oxide film using the ALD method at high temperatures of 500 to 650°C, it is difficult to say that the high temperature conditions are still sufficient, and furthermore, the film formation rate is slow at about 0.12 nm/cycle. There are also concerns from the perspective of production costs.
  • the present disclosure was conceived under these circumstances, and provides a new silicon precursor that can be formed by atomic layer deposition (ALD) even under high temperature conditions in the formation of silicon-containing films. This is the main issue.
  • ALD atomic layer deposition
  • Each occurrence of A 1 to 10 is independently a hydrogen atom, an organic group, a halogen, a siloxy group represented by OSiR a R b R c , or an amino group represented by NR d R e ; 1 and A 3 may be an oxygen atom together to form a siloxane ring, and A 4 and A 6 may be an oxygen atom together to form a cyclic siloxane;
  • Each occurrence of R a to e is independently a hydrogen atom or an organic group, and R d and R e may be combined with each other to form a ring;
  • p and q are each independently an integer of 1 to 5.
  • the sulfur-containing siloxane according to Item 1 wherein A 1 and A 3 are oxygen atoms taken together to form a cyclic siloxane, and A 4 and A 6 are taken together to form an oxygen atom and form a cyclic siloxane.
  • a 4 and A 6 are taken together to form an oxygen atom and form a cyclic siloxane.
  • the sulfur-containing siloxane according to item 1 or 2 which is represented by: [Section 4] The sulfur-containing siloxane according to any one of Items 1 to 3, having a molecular weight of 1000 or less. [Section 5] Item 5. The sulfur-containing siloxane according to any one of items 1 to 4, wherein the sulfur-containing siloxane has 50 or less carbon atoms. [Section 6] Below formula (3): [In formula (3), Each occurrence of R 1 to R 3 is independently a hydrogen atom or a monovalent aliphatic hydrocarbon group having 1 to 10 carbon atoms. ] The sulfur-containing siloxane according to any one of items 1 to 5, represented by: [Section 7] Below formula (4): Item 7.
  • [Section 12] 12 12.
  • [Section 13] 13 13.
  • Item 11 Item 11.
  • a composition for forming a silicon-containing film comprising the sulfur-containing siloxane according to any one of Items 1 to 10.
  • [Section 15] 15. The composition according to item 14, wherein the silicon-containing film is formed by chemical vapor deposition.
  • [Section 16] 16 16. The composition according to item 14 or 15, wherein the silicon-containing film is formed by an atomic layer deposition method.
  • Each occurrence of A 1 to 10 is independently a hydrogen atom, an organic group, a halogen, a siloxy group represented by OSiR a R b R c , or an amino group represented by NR d R e ; 1 and A 3 may be an oxygen atom together to form a cyclic siloxane, and A 4 and A 6 may be an oxygen atom together to form a cyclic siloxane;
  • Each occurrence of R a to e is independently a hydrogen atom or an organic group, and R d and R e may be combined with each other to form a ring;
  • p and q are each independently an integer of 1 to 5.
  • a method for producing a sulfur-containing siloxane represented by A method for producing a sulfur-containing siloxane comprising: (a) a step of synthesizing the sulfur-containing siloxane from a raw material siloxane; and (b) a distillation step of isolating the sulfur-containing siloxane by distillation.
  • the raw material siloxane has the following formula (8-3): [In formula (8-3), Each occurrence of R 1 to R 3 is independently a hydrogen atom or a monovalent aliphatic hydrocarbon group having 1 to 10 carbon atoms; Z is a halogen or hydrogen atom; n is an integer from 1 to 4. ]
  • Each occurrence of A 1 to 10 is independently a hydrogen atom, an organic group, a halogen, a siloxy group represented by OSiR a R b R c , or an amino group represented by NR d R e , provided that A 1 and A 3 may be an oxygen atom together to form a cyclic siloxane, and A 4 and A 6 may be an oxygen atom together to form a cyclic siloxane;
  • Each occurrence of R a to e is independently a hydrogen atom or an organic group, and R d and R e may be combined with each other to form a ring; p and q are each independently an integer of 1 to 5.
  • a uniform and high-quality film can be formed by ALD in a wide temperature range including high temperature conditions. Therefore, according to the method of the present disclosure, it is possible to form a film that is uniform and has excellent film characteristics even under high temperature conditions, so that a high-performance semiconductor device can be manufactured.
  • 1 shows a 1 H-NMR chart of bis(2,4,6,8-tetramethylcyclotetrasiloxanyl) sulfide obtained by the production method in Example 1 of the present disclosure.
  • the relationship between substrate temperature and deposition rate in Examples 2 and 4 of the present disclosure and Comparative Examples 1, 2, and 3 is shown.
  • 1 shows a 1 H-NMR chart of bis(1,1,1,3,3-pentamethyldisiloxan-3-yl) sulfide obtained by the production method in Example 3 of the present disclosure.
  • the sulfur-containing siloxane in the present disclosure has the following formula (1): Below formula (1): [In formula (1), Each occurrence of A 1 to 10 is independently a hydrogen atom, an organic group, a halogen, a siloxy group represented by OSiR a R b R c , or an amino group represented by NR d R e ; 1 and A 3 may be an oxygen atom together to form a cyclic siloxane, and A 4 and A 6 may be an oxygen atom together to form a cyclic siloxane; Each occurrence of R a to e is independently a hydrogen atom or an organic group, and R d and R e may be combined with each other to form a ring; p and q are each independently an integer of 1 to 5.
  • It may be a sulfur-containing siloxane represented by
  • the sulfur-containing siloxane in the present disclosure may not include a compound in which A 1 to 7 and A 10 are methyl groups, A 8 and A 9 are trimethylsiloxy groups, and p and q are 1 in formula (1). .
  • Each occurrence of A 1 to A 10 is independently a hydrogen atom, an organic group, a halogen, a siloxy group represented by OSiR a R b R c , or an amino group represented by NR d R e .
  • a 1 and A 3 may be oxygen atoms together to form a cyclic siloxane (that is, -A 1 -A 3 - may be -O-), and A 4 and A 6 may be integrated together.
  • Either one of A 1 and A 3 and A 4 and A 6 may form a cyclic siloxane.
  • the ratio of the number of groups other than hydrogen atoms (for example, organic groups, especially monovalent aliphatic hydrocarbon groups) among all A 1 to 10 is 0% or more, 10% or more, 30% or more, 50% or more, Or it may be 70% or more, for example 50% or more, for example 100%.
  • the ratio of the number of groups other than hydrogen atoms (for example, organic groups, especially monovalent aliphatic hydrocarbon groups) among all A 1 to 10 is 90% or less, 70% or less, 50% or less, 30% or less, Or it may be 0.
  • Each --Si may have zero or at least one (one, two, or three) groups other than hydrogen atoms (eg, organic groups, especially monovalent aliphatic hydrocarbon groups).
  • At least one (eg, one or more, two or more) of all A 1 to 10 may be a hydrogen atom.
  • at least one (eg, one or both) of A 2 and A 10 in each -SiA 2 A 10 O- may be a hydrogen atom
  • a 5 and A 7 in each -SiA 5 A 7 O- At least one of (for example, one or both) may be a hydrogen atom.
  • each Si may be bonded to at least one hydrogen atom.
  • Each of A 2 and A 10 may be the same or different from each other, and each of A 5 and A 7 may be the same or different from each other.
  • Each of A 1 to 10 may be the same or different from each other.
  • Each of A 2 , A 5 and A 7 to 10 may be the same or different from each other.
  • the organic group of A 1-10 may be an aliphatic group or an aromatic group, preferably an aliphatic group (eg an aliphatic hydrocarbon group).
  • the organic groups of A 1 to 10 may be heteroelement-containing groups or hydrocarbon groups, preferably hydrocarbon groups (eg, aliphatic hydrocarbon groups).
  • the organic groups A 1 to 10 may be linear, branched, or cyclic, and are preferably linear.
  • the number of carbon atoms in the organic group A 1 to 10 may be 1 or more, 2 or more, 3 or more, 5 or more, or 7 or more.
  • the number of carbon atoms in the organic group A 1 to 10 may be 20 or less, 15 or less, 10 or less, 5 or less, or 3 or less, preferably 5 or less.
  • R a to e in OSiR a R b R c or NR d Re is independently a hydrogen atom or an organic group.
  • R d and R e may be combined with each other to form a ring.
  • the organic groups of R a to e may be aliphatic or aromatic groups, preferably aliphatic groups (eg, aliphatic hydrocarbon groups).
  • the organic groups of A 1 to 10 may be heteroelement-containing groups or hydrocarbon groups, preferably hydrocarbon groups (eg, aliphatic hydrocarbon groups).
  • the organic groups R a to e may be linear, branched, or cyclic, and are preferably linear.
  • the number of carbon atoms in the organic group R a to e may be 1 or more, 2 or more, 3 or more, 5 or more, or 7 or more.
  • the number of carbon atoms in the organic group R a to e may be 20 or less, 15 or less, 10 or less, 5 or less, or 3 or less, preferably 5 or less.
  • each occurrence of A 1 to 10 is independently a hydrogen atom, an alkyl group having 1 to 10 carbon atoms (e.g., methyl, ethyl, propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, pentyl, hexyl, heptyl, octyl, nonyl or decanyl), alkenyl groups having 2 to 10 carbon atoms (e.g. vinyl or 2-propenyl), alkynyl groups having 2 to 10 carbon atoms (e.g.
  • ethynyl or propynyl 3 carbon atoms ⁇ 10 cycloalkyl groups (e.g. cyclopentyl or cyclobutyl), aryl groups having 4 to 10 carbon atoms (e.g. cyclopentadienyl or phenyl), halogens (e.g.
  • a siloxy group represented by OSiR a R b R c e.g., trimethylsiloxy or dimethylsiloxy
  • an amino group represented by NR d R e e.g., methylamino, ethylamino, dimethylamino, diethylamino, propylamino, It may be a hydrogen atom or an alkyl group having 1 to 3 carbon atoms (methyl, ethyl, propyl or isopropyl).
  • a 1 and A 3 may be an oxygen atom and may form a cyclic siloxane
  • a 4 and A 6 may be an oxygen atom and may form a cyclic siloxane.
  • Each of the hydrocarbon groups in A 1-10 may be independently branched or linear, preferably linear.
  • the molecular weight of the sulfur-containing siloxane may be 200 or more, 250 or more, 300 or more, or 350 or more.
  • the molecular weight of the sulfur-containing siloxane may be less than 1000, less than 900, less than 800, or less than 700, preferably less than 700.
  • the number of carbon atoms in the sulfur-containing siloxane may be 0 or more, 1 or more, 5 or more, 10 or more, 15 or more, 20 or more, 25 or more, or 30 or more.
  • the number of carbon atoms in the sulfur-containing siloxane may be 50 or less, 45 or less, 40 or less, 35 or less, 30 or less, or 25 or less.
  • the presence of a large number of Si--O structures in one molecule is preferable from the viewpoint of film properties since the constituent elements are similar to the film composition when forming a silicon oxide film. Further, although the detailed reason is unknown, the presence of the Si--S structure is preferable from the viewpoint of a film forming method under high-temperature conditions. On the other hand, from the viewpoint of film-forming properties and vapor pressure control, molecular size is also important. As a result of extensive studies, the inventors of the present application found that a sulfur-containing siloxane having an appropriate number of Si--O structures and an appropriate molecular weight as specified above can produce good effects.
  • the sulfur-containing siloxane in this disclosure may be a cyclic siloxane.
  • the sulfur-containing siloxanes in the present disclosure include bis(cyclotrisiloxanyl) sulfide compounds, bis(cyclotetrasiloxanyl) sulfide compounds, bis(cyclopentasiloxanyl) sulfide compounds, bis(cyclohexasiloxanyl) Sulfide compounds, (cyclotrisiloxanyl)thiocyclotetrasiloxane compounds, (cyclotrisiloxanyl)thiocyclopentasiloxane compounds, (cyclotrisiloxanyl)thiocyclohexasiloxane compounds, (cyclotetrasiloxanyl)thio It may be a cyclopentasiloxane compound, a (cyclotetrasiloxanyl)thiocyclohexasiloxane compound or a (cyclopentasiloxane compound,
  • the sulfur-containing siloxane in the present disclosure is particularly represented by the following formula (2): [In formula (2), Each occurrence of R 1 to R 3 is independently a hydrogen atom or a monovalent aliphatic hydrocarbon group having 1 to 10 carbon atoms; n and m are each independently an integer of 1 to 4. ] It may be a sulfur-containing siloxane which is a cyclic siloxane represented by:
  • each occurrence of R 1 to R 3 is independently a hydrogen atom, a monovalent aliphatic hydrocarbon group having 1 to 10 carbon atoms (for example, an alkyl group having 1 to 10 carbon atoms (for example, methyl, ethyl, propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, pentyl, hexyl, heptyl, octyl, nonyl or decanyl), alkenyl groups having 2 to 10 carbon atoms (e.g.
  • R 1-3 may be independently branched or linear at each occurrence, preferably linear.
  • the ratio of the number of groups other than hydrogen atoms (monovalent aliphatic hydrocarbon groups) among all R 1 to 3 is 0% or more, 10% or more, 30% or more, 50% or more , or 70% or more, such as 50% or more, such as 100%.
  • the ratio of the number of groups other than hydrogen atoms (monovalent aliphatic hydrocarbon groups) among all R 1 to 3 is 90% or less, 70% or less, 50% or less, 30% or less, or 0. good.
  • Each --Si may have zero or one or more (eg, one or two) groups other than hydrogen atoms (monovalent aliphatic hydrocarbon groups).
  • At least one (for example, one or more, two or more) of all R 1 and R 2 may be a hydrogen atom.
  • At least one (eg, one or both) of R 1 and R 2 in each -SiR 1 R 2 O- may be a hydrogen atom.
  • each of R 1 and R 2 may be the same or different from each other, and each of R 1 to 3 may be the same or different from each other.
  • p, q, n, and m are within the above ranges, film formability can be excellent.
  • the sulfur-containing siloxane has n and m of 2 and has the following formula (3): [In formula (3), Each occurrence of R 1 to R 3 is independently a hydrogen atom or a monovalent aliphatic hydrocarbon group having 1 to 10 carbon atoms. ] It may be a compound represented by
  • the sulfur-containing siloxane in the present disclosure has the following formula (4): It may also be bis(2,4,6,8-tetramethylcyclotetrasiloxanyl) sulfide represented by:
  • the sulfur-containing siloxane in this disclosure may be an acyclic siloxane.
  • the sulfur-containing siloxanes in the present disclosure include bis(disiloxanyl) sulfide compounds, bis(trisiloxanyl) sulfide compounds, bis(tetrasiloxanyl) sulfide compounds, bis(pentasiloxanyl) sulfide compounds, and (disiloxanyl)thiotrisiloxane compounds.
  • the sulfur-containing siloxane in the present disclosure is particularly represented by the following formula (5): [In formula (5), Each occurrence of R 1 to R 3 is independently a hydrogen atom or a monovalent aliphatic hydrocarbon group having 1 to 10 carbon atoms; p and q are each independently an integer of 1 to 5. ] It may be a sulfur-containing siloxane which is an acyclic siloxane represented by:
  • R 1 to 3 each independently represent a hydrogen atom, a monovalent aliphatic hydrocarbon group having 1 to 10 carbon atoms (for example, an alkyl group having 1 to 10 carbon atoms (for example, methyl, ethyl, propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, pentyl, hexyl, heptyl, octyl, nonyl or decanyl), alkenyl groups having 2 to 10 carbon atoms (e.g.
  • R 1-3 may be independently branched or linear at each occurrence, preferably linear.
  • the ratio of the number of groups other than hydrogen atoms (monovalent aliphatic hydrocarbon groups) among all R 1 to 3 is 0% or more, 10% or more, 30% or more, 50% or more , or 70% or more, such as 50% or more, such as 100%.
  • the ratio of the number of groups other than hydrogen atoms (monovalent aliphatic hydrocarbon groups) among all R 1 to 3 is 90% or less, 70% or less, 50% or less, 30% or less, or 0. good.
  • Each --Si may have zero or one or more (eg, one or two) groups other than hydrogen atoms (monovalent aliphatic hydrocarbon groups).
  • At least one (for example, one or more, two or more) of all R 1 and R 2 may be a hydrogen atom, but the sulfur-containing siloxane is a monovalent fatty acid. It is preferable to have a plurality of group hydrocarbon groups. At least one of R 1 and R 2 (for example, one or both) in each -SiR 1 R 2 O- may be a monovalent aliphatic hydrocarbon group, and all of R 1 to 3 may be a monovalent aliphatic hydrocarbon group. may be a group hydrocarbon group.
  • each of R 1 and R 2 may be the same or different from each other, and each of R 1 to 3 may be the same or different from each other.
  • the sulfur-containing siloxane has p and q of 1 and has the following formula (6): [In formula (6), Each occurrence of R 1 to R 10 independently represents a hydrogen atom or a monovalent aliphatic hydrocarbon group having 1 to 10 carbon atoms. ] It may be a compound represented by
  • the sulfur-containing siloxane in the present disclosure has the following formula (7): It may also be bis(1,1,1,3,3-pentamethyldisiloxan-3-yl) sulfide represented by:
  • the method for producing sulfur-containing siloxane in the present disclosure includes: The manufacturing method may include (a) a step of synthesizing a sulfur-containing siloxane from a raw material siloxane, and (b) a distillation step of isolating the sulfur-containing siloxane by distillation.
  • the synthesis step (a) may include a step of reacting the raw material siloxane with a sulfurizing agent.
  • the raw material siloxane has the following formulas (8-1) and (8-2): [In formula (8-1) and formula (8-2), Each occurrence of A 1 to 10 is independently a hydrogen atom, an organic group, a halogen, a siloxy group represented by OSiR a R b R c , or an amino group represented by NR d R e ; 1 and A 3 may be an oxygen atom together to form a cyclic siloxane, and A 4 and A 6 may be an oxygen atom together to form a cyclic siloxane; Each occurrence of R a to e is independently a hydrogen atom or an organic group, and R d and R e may be combined with each other to form a ring; p and q are each independently an integer of 1 to 5; Z is a halogen or hydrogen atom. ] It may be a compound represented by Here, the aspects of A 1 to 10 and p and q are as explained above.
  • the raw material siloxane has the following formula (8-3): [In formula (8-3), Each occurrence of R 1 to R 3 is independently a hydrogen atom or a monovalent aliphatic hydrocarbon group having 1 to 10 carbon atoms; Z is a halogen or hydrogen atom; n is an integer from 1 to 4. ] It may be a compound represented by Here, the aspects of R 1 , R 2 , R 3 and n are as explained above.
  • the raw material siloxane has the following formula (8-4): [In formula (8-4), Each occurrence of R 1 to R 3 is independently a hydrogen atom, a monovalent aliphatic hydrocarbon group having 1 to 10 carbon atoms, Z is a halogen or hydrogen atom; p is an integer from 1 to 5. ] It may be a compound represented by Here, the aspects of R 1-3 , p and q are as explained above.
  • Z examples include fluorine atom, chlorine atom, bromine atom, iodine atom, and hydrogen atom.
  • the molecular weight of the raw material siloxane may be 100 or more, 150 or more, 200 or more, or 250 or more.
  • the molecular weight of the raw siloxane may be 750 or less, 600 or less, 500 or less, or 400 or less, preferably 500 or less.
  • the carbon number of the raw material siloxane may be 0 or more, 1 or more, 3 or more, 5 or more, 7 or more, 10 or more, 12 or more, or 15 or more.
  • the number of carbon atoms in the sulfur-containing siloxane may be 30 or less, 25 or less, 20 or less, 15 or less, or 10 or less.
  • the raw material siloxane may be synthesized in advance before use.
  • a siloxane compound in which Z is a hydrogen atom may be used as is in the synthesis step (a), or may be carried out after Z is replaced with a halogen using a halogenating agent.
  • the halogenating agent may be a fluorinating agent, a chlorinating agent, a brominating agent, an iodinating agent.
  • chlorinating agents such as N-chlorosuccinimide and N-chlorophthalimide are preferably used.
  • the sulfurizing agent is a sulfur compound capable of replacing Z in -SiZ with sulfur, and for example, sulfides such as lithium sulfide, sodium sulfide, and hydrogen sulfide can be used.
  • step (a) the raw material siloxane is first dissolved in an organic solvent and a sulfurizing agent is added thereto, or the sulfurizing agent is dissolved in an organic solvent and the raw material siloxane is added. It is applicable to this reaction.
  • the amount of the sulfurizing agent used is usually 0.2 to 3.0 mol, preferably 0.4 to 2.0 mol (for example, 0.5 to 1.0 mol) per 1.0 mol of raw material siloxane. .
  • the reaction may be carried out in the range of -20°C to 100°C, preferably -10°C to 60°C.
  • the reaction time is usually in the range of 0.5 to 30 hours.
  • Solvents that can be used in the present disclosure include, for example, hydrocarbons such as hexane, cyclohexane, heptane, nonane, and decane; halogenated hydrocarbons such as dichloroethane, dichloromethane, and chloroform; benzene, toluene, xylene, chlorobenzene, trichlorobenzene, etc.
  • Aromatic hydrocarbons; ethers such as diethyl ether, tetrahydrofuran (THF), ethylene glycol dimethyl ether, and mixtures thereof can be used.
  • ethers such as diethyl ether and tetrahydrofuran (THF) are preferred, and tetrahydrofuran (THF) is particularly preferably used.
  • the amount of solvent used is usually 0.1 to 50 times the mass of the raw material siloxane compound.
  • the entire reaction system be conducted under anhydrous conditions, and the water content in all raw materials used should be 0 to 5000 mass ppm, preferably 0.
  • the reaction is carried out in the range of ⁇ 500 ppm by mass. Further, it is desirable to use a reaction apparatus that has been dried by heating and reducing pressure, and replacing the reaction with an inert gas such as nitrogen or argon.
  • step (a) if solids such as by-product salts are present in the reaction solution, filtration may be performed after the reaction is completed, if necessary. When filtration is performed, it is desirable to perform it under a dry inert gas, such as nitrogen or argon, to suppress decomposition of the sulfur-containing siloxane.
  • a dry inert gas such as nitrogen or argon
  • the filtration temperature is not uniquely determined, it is applicable from 10° C. to the boiling point of the solvent used. Preferably, the temperature is from 20°C to 65°C.
  • step (b) the sulfur-containing siloxane is isolated by distillation, for example vacuum distillation.
  • the sulfiding agent and organic solvent are easily removed and the sulfur-containing siloxane can be purified to a sufficiently high purity.
  • a sulfur-containing siloxane according to the present disclosure can be used as a silicon-containing film intermediate to form a silicon-containing film on a substrate.
  • the method of forming silicon-containing films according to the present disclosure may be chemical vapor deposition, particularly atomic layer deposition.
  • the method of forming a silicon-containing film according to the present disclosure includes: (c) On the substrate, the following formula (1): Below formula (1): [In formula (1), Each occurrence of A 1 to 10 is independently a hydrogen atom, an organic group, a halogen, a siloxy group represented by OSiR a R b R c , or an amino group represented by NR d R e ; 1 and A 3 may be an oxygen atom together to form a cyclic siloxane, and A 4 and A 6 may be an oxygen atom together to form a cyclic siloxane; Each occurrence of R a to e is independently a hydrogen atom or an organic group, and R d and R e may be combined with each other to form a ring; p and q are each independently an integer of 1 to 5.
  • the process may be an atomic layer deposition process.
  • the temperature of the substrate may be 100 to 800°C, preferably 100 to 750°C. From the viewpoint of the obtained film properties, the temperature of the substrate may be 200°C or higher, 300°C or higher, 400°C or higher, 500°C or higher, 600°C or higher, or 700°C or higher, for example 250°C or higher, preferably The temperature is 300°C or higher, 400°C or higher, or 500°C or higher.
  • the film forming temperature may be the temperature of at least one of the steps (c) to (f), for example, the temperature of the substrate when it comes into contact with the sulfur-containing siloxane composition in step (c).
  • the silicon-containing film obtained from the sulfur-containing siloxane of the present disclosure is stable even at high temperatures, and the sulfur-containing siloxane of the present disclosure can also be suitably used in a method for producing a silicon-containing film that employs a high substrate temperature.
  • the pressure during gas injection in step (c) and step (e) is 0.05 to 100 Torr, preferably 0.05 to 50 Torr.
  • one or more gases selected from oxygen, ozone, and nitrogen monoxide can be used as the reactive gas when forming a silicon oxide film having Si—O bonds.
  • one or more gases selected from nitrogen, ammonia, dinitrogen monoxide, nitrogen monoxide, and nitrogen dioxide can be used.
  • the sulfur-containing siloxane in the present disclosure is suitably used for manufacturing silicon-containing films (silicon oxide films, silicon nitride films, etc.) by ALD.
  • the lower limit of the ALD window may be 300°C, preferably 350°C.
  • the upper limit of the ALD window may be 800°C, and preferably 750°C.
  • the ALD window generally refers to the temperature range between the vaporization temperature of the silicon-containing film precursor compound and the thermal decomposition temperature of the silicon-containing film precursor compound. It can be defined as the temperature range from the point where the deposition rate is maximum to the point where the deposition rate is minimum when the horizontal axis is the film temperature and the vertical axis is the deposition rate.
  • Example 1 Synthesis of bis(2,4,6,8-tetramethylcyclotetrasiloxanyl) sulfide
  • 7.7 g (0.17 mol) of lithium sulfide and 82.1 g of tetrahydrofuran were added to a 500 mL flask equipped with a thermometer, cooling tube, and motor stirrer. While stirring at room temperature, 145.9 g of a solution containing 72.6 g (0.26 mol) of 2-chloro-2,4,6,8-tetramethylcyclotetrasiloxane was slowly added dropwise over 30 minutes. After the dropwise addition, the mixture was stirred for 23 hours while maintaining the temperature at 26 to 33°C.
  • Example 2 Formation of silicon-containing film using bis(2,4,6,8-tetramethylcyclotetrasiloxanyl) sulfide
  • a silicon substrate was placed in a vacuum apparatus and heated to a predetermined temperature of 100 to 750°C.
  • a siloxane composition containing bis(2,4,6,8-tetramethylcyclotetrasiloxanyl) sulfide obtained in Example 1 and a carrier gas was injected at a pressure of 0.05 to 100 Torr and heated to a silicon substrate. was adsorbed to.
  • the unadsorbed sulfur-containing siloxane composition and byproducts were purged into the apparatus by introducing argon gas.
  • ozone is injected as a reaction gas at a pressure of 0.05 to 100 Torr, and an atomic layer of silicon oxide derived from bis(2,4,6,8-tetramethylcyclotetrasiloxanyl) sulfide deposited on the substrate is removed. Formed. Next, unreacted ozone and byproducts were purged by introducing argon gas. The above cycle was repeated to obtain a silicon oxide film.
  • Example 3 Synthesis of bis(1,1,1,3,3-pentamethyldisiloxan-3-yl) sulfide
  • 274 g (1.85 mol) of pentamethyldisiloxane and 1700 g of tetrahydrofuran were added to a 3 L flask equipped with a thermometer, cooling tube, and motor stirrer.
  • 244 g (1.83 mol) of N-chlorosuccinimide was added with stirring at room temperature. After the addition, the mixture was stirred for 5 hours while maintaining the temperature at 56-59°C.
  • tetrahydrofuran was removed by vacuum distillation at an internal temperature of 60 to 80°C, and by-product solids were removed by vacuum filtration in a glove box purged with nitrogen to obtain a tetrahydrofuran solution containing chloropentamethyldisiloxane.
  • This tetrahydrofuran solution was further distilled under reduced pressure using a distillation column at an internal temperature of 100°C and 175 Torr to obtain a tetrahydrofuran solution containing highly pure chloropentamethyldisiloxane.
  • Example 4 Formation of silicon-containing film using bis(1,1,1,3,3-pentamethyldisiloxan-3-yl) sulfide
  • a silicon substrate was placed in a vacuum apparatus and heated to a predetermined temperature of 100 to 750°C.
  • the siloxane composition containing bis(1,1,1,3,3-pentamethyldisiloxan-3-yl) sulfide obtained in Example 3 and a carrier gas was injected at a pressure of 0.05 to 100 Torr and heated. It was adsorbed onto a silicon substrate.
  • the unadsorbed sulfur-containing siloxane composition and byproducts were purged into the apparatus by introducing argon gas.
  • ozone was injected as a reaction gas at a pressure of 0.05 to 100 Torr to remove silicon oxide derived from bis(1,1,1,3,3-pentamethyldisiloxan-3-yl) sulfide deposited on the substrate. Formed an atomic layer. Next, unreacted ozone and byproducts were purged by introducing argon gas. The above cycle was repeated to obtain a silicon oxide film.
  • ozone is injected as a reactive gas at a pressure of 0.05 to 100 Torr to form an atomic layer of silicon oxide derived from 2-dimethylamino-2,4,6,8-tetramethylcyclotetrasiloxane deposited on the substrate. did.
  • unreacted ozone gas and byproducts were purged by introducing argon gas. The above cycle was repeated to obtain a silicon oxide film.
  • ozone was injected as a reactive gas at a pressure of 0.05 to 100 Torr to form an atomic layer of silicon oxide derived from triethoxy-[3-(trimethoxysilyl)propylthio]silane deposited on the substrate.
  • unreacted ozone gas and byproducts were purged by introducing argon gas. The above cycle was repeated to obtain a silicon oxide film.
  • Table 1 below shows specific vapor deposition methods.
  • FIG. 2 shows the relationship between substrate temperature and deposition rate. In the measurement of each plot in FIG. 2, the siloxane supply time that resulted in the maximum deposition rate was selected.
  • Table 2 shows the deposition rate when 50 cycles were repeated at substrate temperatures of 400° C. and 725° C., which are the lowest and highest temperatures of the ALD window, in Example 2.
  • Table 3 shows the deposition rate in Example 4 when 50 cycles were repeated at substrate temperatures of 500° C. and 750° C., which are the lowest and highest temperatures of the ALD window.
  • the ALD window herein refers to the temperature range from the point where the deposition rate is maximum to the point where it is minimum in FIG.
  • Table 4 summarizes the temperature ranges of the ALD window for Example 2, Example 4, and Comparative Examples 1, 2, and 3. Note that the layer thickness was measured using an ellipsometer.
  • Example 2 in order to form an atomic layer of silicon oxide derived from a bis(2,4,6,8-tetramethylcyclotetrasiloxanyl) sulfide compound, bis(2, The feeding time of the (4,6,8-tetramethylcyclotetrasiloxanyl) sulfide composition was investigated. At a substrate temperature of 400° C., the deposition rate reached its maximum in 15 seconds or more, and at a substrate temperature of 725° C., the deposition rate reached its maximum in 6 seconds or more, confirming that ALD film formation was possible at any temperature.
  • Example 4 in order to form an atomic layer of silicon oxide derived from a bis(1,1,1,3,3-pentamethyldisiloxan-3-yl) sulfide compound, The feeding time of the (1,1,1,3,3-pentamethyldisiloxan-3-yl) sulfide composition was investigated. At a substrate temperature of 500° C., the deposition rate reached its maximum in 6 seconds or more, and at a substrate temperature of 750° C., the deposition rate reached its maximum in 6 seconds or more, confirming that ALD film formation was possible at any temperature.
  • bis(2,4,6,8-tetramethylcyclotetrasiloxanyl) sulfide and bis(1,1,1,3,3-pentamethyldisiloxane-3- yl) sulfide enables ALD film formation more than bisdiethylaminosilane, 2-dimethylamino-2,4,6,8-tetramethylcyclotetrasiloxane, and triethoxy-[3-(trimethoxysilyl)propylthio]silane. It was confirmed that the temperature region (ALD window) was located on the high temperature side.
  • Sulfur-containing siloxanes according to the present disclosure are useful in atomic deposition methods that form films at high temperatures.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Silicon Polymers (AREA)

Abstract

本発明は、下式(1)[式(1)中、A1~10は各出現においてそれぞれ独立して水素原子、有機基、ハロゲン、OSiRで表されるシロキシ基、又はNRで表されるアミノ基であり、ただし、AとAは一体として酸素原子であって環状シロキサンを形成してもよく、AとAは一体として酸素原子であって環状シロキサンを形成してもよく;Ra~eは各出現においてそれぞれ独立して水素原子、又は有機基であり、RとRは互いに結合して環を形成してもよく;p及びqはそれぞれ独立して1~5の整数である。]で表される硫黄含有シロキサンを提供する。

Description

硫黄含有シロキサン、前記硫黄含有シロキサンを含むシリコン含有膜形成用の組成物、硫黄含有シロキサンの製造方法、シリコン含有膜、及びシリコン含有膜の製造方法
 本開示の技術分野は、硫黄含有シロキサン、及び当該化合物を含むシリコン含有膜形成用の組成物に関する。
  半導体デバイスの製作において、シリコン含有薄膜は、様々な蒸着工程によりシリコン膜、シリコン酸化膜、シリコン窒化膜、シリコン炭窒化膜、及びシリコンオキシ窒化膜等の種々の形態の薄膜に製造されており、様々な分野で応用されている。中でもシリコン酸化膜及びシリコン窒化膜は、非常に優れた遮断特性及び耐酸化性を有するため、装置の製作において絶縁膜、金属間誘電物質、シード層、スペーサー、ハードマスク、トレンチアイソレーション、拡散防止膜、エッチング停止層、及び保護膜層として機能する。
 近年は素子の微細化、アスペクト比の増加、及び素子材料の多様化に伴い、均一な膜形成が可能な原子層堆積(ALD)法で成膜する技術が要求されている。また、近年は不純物が少なく電気特性に優れた高品質な膜の需要がある。高品質な膜を形成するための解決策の一つとして、500℃以上の高温で成膜する方法が注目されている。しかしながら、従来の成膜材料では高温で分解し、原子層堆積(ALD)法での成膜が困難となる場合が多い。分解が生じると成膜の自己制御が難しいため、均一な膜の形成が困難となり、微細化などに伴う高アスペクト比の成膜が実現できない可能性がある。このため、高温条件でも分解せずALD法で成膜できる材料が求められている。
  従来の成膜材料の一例として、特許文献1では原子層堆積(ALD)法で、シリコン源としてアミノシラン化合物であるビスジエチルアミノシラン(BDEAS)を用いることにより、均一なシリコン酸化膜を形成する方法が提案されている。
  特許文献2ではシリコン源としてアミノシラン化合物である2-ジメチルアミノ-2,4,6,8-テトラメチルシクロテトラシロキサンを使用することにより、原子層堆積(ALD)法で均一なシリコン酸化膜を高い堆積速度で形成する方法が提案されている。
  また、特許文献3では原子層堆積(ALD)法で、シリコン源としてアミノシラン化合物であるジメチルアミノトリメチルシラン(DMATMS)を用いることにより、均一なシリコン酸化膜を高温で形成する方法が提案されている。
特表2008-533731 特開2018-154615 特開2020-038978
 しかしながら、特許文献1に記載のビスジエチルアミノシランは200~400℃で、特許文献2に記載の2-ジメチルアミノ-2,4,6,8-テトラメチルシクロテトラシロキサンは100~300℃でそれぞれALD法にてシリコン酸化膜を形成可能であるが、その温度範囲は低温であり、500℃以上のような高温で成膜する場合は成膜材料が分解して均一に成膜できない恐れがある。また、特許文献3に記載のジメチルアミノトリメチルシランは、特許文献1に記載のビスジエチルアミノシランや特許文献2に記載の2-ジメチルアミノ-2,4,6,8-テトラメチルシクロテトラシロキサンよりも高温である500~650℃でALD法にてシリコン酸化膜を形成可能であるが、高温条件が未だ十分であるとは言い難く、さらに成膜速度が0.12nm/サイクル程度と低速であるため、生産コストの点からも懸念がある。
 本開示は、このような事情の下で考え出されたものであって、シリコン含有膜の形成において、高温条件でも原子層堆積(ALD)法による成膜が可能な新規シリコン前駆体を提供することを主たる課題とする。
  従来、Si原子に対してアミノ基が結合したアミノシラン化合物をシリコン含有膜形成用の前駆体とすることが一般的であったが、本発明者らは鋭意検討の結果、所望の効果を得るためにはSi原子に対して硫黄原子が結合したチオシラン化合物をシリコン含有膜前駆体として用いることが有用であることを見出した。特に、シロキサン構造(-Si-O-Si-)のSi原子に対して硫黄原子が結合した特定の化合物をシリコン前駆体とすることで、高温条件を含む広い温度領域で原子層堆積(ALD)法による膜形成が実現できることを見出し、本開示を完成させるに至った。
  本開示における実施形態の一例は次のとおりである。
[項1]
下式(1):
Figure JPOXMLDOC01-appb-I000012
[式(1)中、
1~10は各出現においてそれぞれ独立して水素原子、有機基、ハロゲン、OSiRで表されるシロキシ基、又はNRで表されるアミノ基であり、ただし、AとAは一体として酸素原子であってシロキサン環を形成してもよく、AとAは一体として酸素原子であって環状シロキサンを形成してもよく; 
a~eは各出現においてそれぞれ独立して水素原子、又は有機基であり、RとRは互いに結合して環を形成してもよく;
p及びqはそれぞれ独立して1~5の整数である。]
で表される硫黄含有シロキサン。
[項2]
とAは一体として酸素原子であって環状シロキサンを形成し、かつ、AとAは一体として酸素原子であって環状シロキサンを形成する、項1に記載の硫黄含有シロキサン。
[項3]
下式(2)
Figure JPOXMLDOC01-appb-I000013
[式(2)中、
1~3は各出現においてそれぞれ独立して水素原子、又は炭素数1~10の一価の脂肪族炭化水素基であり;
n及びmはそれぞれ独立して1~4の整数である。]
で表される、項1又は2に記載の硫黄含有シロキサン。
[項4]
分子量が1000以下である、項1~3のいずれか一項に記載の硫黄含有シロキサン。
[項5]
前記硫黄含有シロキサンの炭素数は50以下である、項1~4のいずれか一項に記載の硫黄含有シロキサン。
[項6]
下式(3):
Figure JPOXMLDOC01-appb-I000014
[式(3)中、
1~3は各出現においてそれぞれ独立して水素原子、又は炭素数1~10の一価の脂肪族炭化水素基である。]
で表される、項1~5のいずれか一項に記載の硫黄含有シロキサン。
[項7]
下式(4):
Figure JPOXMLDOC01-appb-I000015
で表される、ビス(2,4,6,8-テトラメチルシクロテトラシロキサニル)スルフィドである、項1~6のいずれか一項に記載の硫黄含有シロキサン。
[項8]
下式(5):
Figure JPOXMLDOC01-appb-I000016
[式(5)中、
1~3は各出現においてそれぞれ独立して水素原子、又は炭素数1~10の一価の脂肪族炭化水素基であり;
p及びqはそれぞれ独立して1~5の整数である。]
で表される、項1~7のいずれか一項に記載の硫黄含有シロキサン。
[項9]
下式(6):
Figure JPOXMLDOC01-appb-I000017
[式(6)中、
1~3は各出現においてそれぞれ独立して水素原子、又は炭素数1~10の一価の脂肪族炭化水素基である。]
で表される、項1~8のいずれか一項に記載の硫黄含有シロキサン。
[項10]
下式(7):
Figure JPOXMLDOC01-appb-I000018
で表される、ビス(1,1,1,3,3-ペンタメチルジシロキサン-3-イル)スルフィドである、項1~9のいずれか一項に記載の硫黄含有シロキサン。
[項11]
項1~10のいずれか一項に記載の前記硫黄含有シロキサンを含む、シリコン含有膜の前駆体。
[項12]
前記シリコン含有膜が化学気相成長により形成される、項11に記載の前駆体。
[項13]
前記シリコン含有膜が原子層堆積法により形成される、項11又は12に記載の前駆体。
[項14]
項1~10のいずれか一項に記載の前記硫黄含有シロキサンを含む、シリコン含有膜形成用の組成物。
[項15]
前記シリコン含有膜が化学気相成長により形成される、項14に記載の組成物。
[項16]
前記シリコン含有膜が原子層堆積法により形成される、項14又は15に記載の組成物。
[項17]
下式(1):
Figure JPOXMLDOC01-appb-I000019
[式(1)中、
1~10は各出現においてそれぞれ独立して水素原子、有機基、ハロゲン、OSiRで表されるシロキシ基、又はNRで表されるアミノ基であり、ただし、AとAは一体として酸素原子であって環状シロキサンを形成してもよく、AとAは一体として酸素原子であって環状シロキサンを形成してもよく; 
a~eは各出現においてそれぞれ独立して水素原子、又は有機基であり、RとRは互いに結合して環を形成してもよく;
p及びqはそれぞれ独立して1~5の整数である。]
で表される硫黄含有シロキサンの製造方法であって、
(a)原料シロキサンから前記硫黄含有シロキサンを合成する工程;及び
(b)蒸留により前記硫黄含有シロキサンを単離する蒸留工程
を含む、硫黄含有シロキサンの製造方法。
[項18]
 工程(a)において、前記原料シロキサンと硫化剤とを反応させて前記硫黄含有シロキサンを合成する、項17に記載の硫黄含有シロキサンの製造方法。
[項19]
前記原料シロキサンが下式(8-3):
Figure JPOXMLDOC01-appb-I000020
[式(8-3)中、
1~3は各出現においてそれぞれ独立して水素原子、又は炭素数1~10の一価の脂肪族炭化水素基であり;
Zはハロゲン又は水素原子であり;
nは1~4の整数である。]
で表される化合物、又は
下式(8-4):
Figure JPOXMLDOC01-appb-I000021
[式(8-4)中、
1~3は各出現においてそれぞれ独立して水素原子、炭素数1~10の一価の脂肪族炭化水素基であり、
Zはハロゲン又は水素原子であり;
pは1~5の整数である。]
で表される化合物
である、項17又は18に記載の硫黄含有シロキサンの製造方法。
[項20]
下式(1):
Figure JPOXMLDOC01-appb-I000022
[式(1)中、
1~10は各出現においてそれぞれ独立して水素原子、有機基、ハロゲン、OSiRで表されるシロキシ基、又はNRで表されるアミノ基であり、ただし、AとAは一体として酸素原子であって環状シロキサンを形成してもよく、AとAは一体として酸素原子であって環状シロキサンを形成してもよく; 
a~eは各出現においてそれぞれ独立して水素原子、又は有機基であり、RとRは互いに結合して環を形成してもよく; 
p及びqはそれぞれ独立して1~5の整数である。]
で表される硫黄含有シロキサンを用いる、シリコン含有膜の製造方法。
  本開示によれば、硫黄原子を有するシロキサン化合物をシリコン前駆体として使用することで、高温条件を含む広い温度領域においてALD法により均一で良質な膜を形成することが出来る。従って、本開示の方法によれば、高温条件でも均一で膜特性に優れた成膜が可能となるため、高性能な半導体デバイスを作製することができる。
本開示の実施例1における製造方法により得られたビス(2,4,6,8-テトラメチルシクロテトラシロキサニル)スルフィドのH-NMRチャートを示す。 本開示の実施例2及び4並びに比較例1及び2及び3における基板温度と堆積速度の関係を示す。 本開示の実施例3における製造方法により得られたビス(1,1,1,3,3-ペンタメチルジシロキサン-3-イル)スルフィドのH-NMRチャートを示す。
<硫黄含有シロキサン>
 本開示における硫黄含有シロキサンは、下式(1):
下式(1):
Figure JPOXMLDOC01-appb-I000023
[式(1)中、
1~10は各出現においてそれぞれ独立して水素原子、有機基、ハロゲン、OSiRで表されるシロキシ基、又はNRで表されるアミノ基であり、ただし、AとAは一体として酸素原子であって環状シロキサンを形成してもよく、AとAは一体として酸素原子であって環状シロキサンを形成してもよく;
a~eは各出現においてそれぞれ独立して水素原子、又は有機基であり、RとRは互いに結合して環を形成してもよく;
p及びqはそれぞれ独立して1~5の整数である。]
で表される硫黄含有シロキサンであってよい。本開示における硫黄含有シロキサンには、式(1)においてA1~7及びA10がメチル基かつA及びAがトリメチルシロキシ基かつp及びqが1である化合物は含まれなくてもよい。
 A1~10は各出現においてそれぞれ独立して水素原子、有機基、ハロゲン、OSiRで表されるシロキシ基、又はNRで表されるアミノ基である。ただし、AとAは一体として酸素原子であって環状シロキサンを形成してもよく(すなわち、-A-A-が-O-であってよく)、AとAは一体として酸素原子であって環状シロキサンを形成してもよい(すなわち、-A-A-が-O-であってよい)。AとAおよびAとAのいずれか一方が環状シロキサンを形成してもよい。
 全てのA1~10のうち水素原子以外の基(例えば有機基、特に一価の脂肪族炭化水素基)の数の比率は、0%以上、10%以上、30%以上、50%以上、又は70%以上であってよく、例えば50%以上、例えば100%である。全てのA1~10のうち水素原子以外の基(例えば有機基、特に一価の脂肪族炭化水素基)の数の比率は、90%以下、70%以下、50%以下、30%以下、又は0であってよい。各-Siが0個又は少なくとも1個(1個、2個、又は3個)の水素原子以外の基(例えば有機基、特に一価の脂肪族炭化水素基)を有していてもよい。
 全てのA1~10の少なくとも1つ(例えば、1個以上、2個以上)が水素原子であってよい。例えば、各-SiA10O-におけるA及びA10の少なくとも一方(例えば、一方又は両方)は水素原子であってよく、かつ、各-SiAO-におけるA及びAの少なくとも一方(例えば、一方又は両方)は水素原子であってよい。例えば、各Siが少なくとも一の水素原子と結合していてもよい。
 A及びA10のそれぞれは互いに同一又は異なっていてもよく、A及びAのそれぞれは互いに同一又は異なっていてもよい。A1~10のそれぞれは互いに同一又は異なっていてもよい。A、A及びA7~10のそれぞれは互いに同一又は異なっていてもよい。
 A1~10の有機基は脂肪族基又は芳香族基であってよく、好ましくは脂肪族基(例えば脂肪族炭化水素基)である。A1~10の有機基はヘテロ元素含有基又は炭化水素基であってよく、好ましくは炭化水素基(例えば脂肪族炭化水素基)である。A1~10の有機基は、直鎖状、分岐鎖状、又は環状であってよく、好ましくは直鎖状である。A1~10の有機基の炭素数は1以上、2以上、3以上、5以上、又は7以上であってよい。A1~10の有機基の炭素数は20以下、15以下、10以下、5以下、又は3以下であってよく、好ましくは5以下である。
 OSiR又はNRにおけるRa~eは各出現においてそれぞれ独立して水素原子、又は有機基である。RとRは互いに結合して環を形成してもよい。
 Ra~eの有機基は脂肪族基又は芳香族基であってよく、好ましくは脂肪族基(例えば脂肪族炭化水素基)である。A1~10の有機基はヘテロ元素含有基又は炭化水素基であってよく、好ましくは炭化水素基(例えば脂肪族炭化水素基)である。Ra~eの有機基は、直鎖状、分岐鎖状、又は環状であってよく、好ましくは直鎖状である。Ra~eの有機基の炭素数は1以上、2以上、又は3以上、5以上、又は7以上であってよい。Ra~eの有機基の炭素数は20以下、15以下、10以下、5以下、又は3以下であってよく、好ましくは5以下である。
 例えば、A1~10は各出現においてそれぞれ独立して水素原子、炭素数1~10のアルキル基(例えば、メチル、エチル、プロピル、イソプロピル、n-ブチル、sec-ブチル、イソブチル、tert-ブチル、ペンチル、ヘキシル、ヘプチル、オクチル、ノニル又はデカニル)、炭素数2~10のアルケニル基(例えば、ビニル又は2-プロペニル)、炭素数2~10のアルキニル基(例えば、エチニル又はプロピニル)、炭素数3~10のシクロアルキル基(例えば、シクロペンチル又はシクロブチル)、炭素数4~10のアリール基(例えば、シクロペンタジエニル又はフェニル)、ハロゲン(例えば、フッ素原子、塩素原子、臭素原子又はヨウ素原子等)、OSiRで表されるシロキシ基(例えば、トリメチルシロキシ又はジメチルシロキシ)又はNRで表されるアミノ基(例えば、メチルアミノ、エチルアミノ、ジメチルアミノ、ジエチルアミノ、プロピルアミノ、イソプロピルアミノ、ジプロピルアミノ、ジイソプロピルアミノ、ピロリジノ又はピペリジノ)であってよく、好ましくは水素原子又は炭素数1~3のアルキル基(メチル、エチル、プロピル又はイソプロピル)である。AとAは一体として酸素原子であって環状シロキサンを形成してもよく、AとAは一体として酸素原子であって環状シロキサンを形成してもよい。A1~10における炭化水素基のそれぞれは独立して分岐鎖状又は直鎖状であってよく、好ましくは直鎖状である。
 式(1)におけるp及びqはそれぞれ1~5から選択される整数であり、例えば、(p,q)=(1,1)、(2,2)、(3,3)、(4,4)、(5,5)、(1,2)、(4,5)である。
  硫黄含有シロキサンの分子量は200以上、250以上、300以上、又は350以上であってよい。硫黄含有シロキサンの分子量は1000以下、900以下、800以下、又は700以下であってよく、好ましくは700以下である。
 硫黄含有シロキサンの炭素数は0以上、1以上、5以上、10以上、15以上、20以上、25以上、又は30以上であってよい。硫黄含有シロキサンの炭素数は50以下、45以下、40以下、35以下、30以下、又は25以下であってよい。
 一分子中に多数のSi-O構造が存在する方が、シリコン酸化膜を形成する上では構成元素が膜組成と類似しているため、膜特性の観点から好ましい。また、詳細な理由は不明であるが、Si-S構造が存在する方が、高温条件における膜形成方法の観点から好ましい。一方で、成膜性の観点や蒸気圧制御の観点からいうと、分子サイズも重要である。本願発明者らは鋭意検討を重ねた結果、上記で特定したような適度なSi-O構造の数及び適度な分子量を有する硫黄含有シロキサンにより良好な効果を奏し得ることを見出した。
[環状シロキサン]
 本開示における硫黄含有シロキサンは環状シロキサンであってよい。例えば、本開示における硫黄含有シロキサンはビス(シクロトリシロキサニル)スルフィド化合物、ビス(シクロテトラシロキサニル)スルフィド化合物、ビス(シクロペンタシロキサニル)スルフィド化合物、ビス(シクロヘキサシロキサニル)スルフィド化合物、(シクロトリシロキサニル)チオシクロテトラシロキサン化合物、(シクロトリシロキサニル)チオシクロペンタシロキサン化合物、(シクロトリシロキサニル)チオシクロヘキサシロキサン化合物、(シクロテトラシロキサニル)チオシクロペンタシロキサン化合物、(シクロテトラシロキサニル)チオシクロヘキサシロキサン化合物または(シクロペンタシロキサニル)チオシクロヘキサシロキサン化合物であってよい。
 本開示における硫黄含有シロキサンは、特に、下式(2):
Figure JPOXMLDOC01-appb-I000024
[式(2)中、
1~3は各出現においてそれぞれ独立して水素原子、又は炭素数1~10の一価の脂肪族炭化水素基であり;
n及びmはそれぞれ独立して1~4の整数である。]
で表される環状シロキサンである硫黄含有シロキサンであってよい。
 式(2)において、R1~3は各出現においてそれぞれ独立して水素原子、炭素数1~10の一価の脂肪族炭化水素基(例えば炭素数1~10のアルキル基(例えば、メチル、エチル、プロピル、イソプロピル、n-ブチル、sec-ブチル、イソブチル、tert-ブチル、ペンチル、ヘキシル、ヘプチル、オクチル、ノニル又はデカニル)、炭素数2~10のアルケニル基(例えば、ビニル又は2-プロペニル)、炭素数2~10のアルキニル基(例えば、エチニル又はプロピニル)であり、好ましくは水素原子又は炭素数1~3のアルキル基(メチル、エチル、プロピル又はイソプロピル))である。R1~3における炭化水素基は各出現においてそれぞれ独立して分岐鎖状又は直鎖状であってよく、好ましくは直鎖状である。
 式(2)において、全てのR1~3のうち水素原子以外の基(一価の脂肪族炭化水素基)の数の比率は、0%以上、10%以上、30%以上、50%以上、又は70%以上であってよく、例えば50%以上、例えば100%である。全てのR1~3のうち水素原子以外の基(一価の脂肪族炭化水素基)の数の比率は、90%以下、70%以下、50%以下、30%以下、又は0であってよい。各-Siが0個又は1個以上(例えば1個、又は2個)の水素原子以外の基(一価の脂肪族炭化水素基)を有していてもよい。
 式(2)において、硫黄含有シロキサンにおいて、全てのR及びRの少なくとも1つ(例えば、1個以上、2個以上)が水素原子であってよい。各-SiRO-におけるR及びRの少なくとも一方(例えば、一方又は両方)は水素原子であってよい。
 式(2)において、R及びRのそれぞれは互いに同一又は異なっていてもよく、R1~3のそれぞれは互いに同一又は異なっていてもよい。
 また、式(2)におけるn及びmは1~4から選択される整数であり、例えばn=m=2である。p、q、n及びmが上記範囲にあることで、成膜性に優れ得る。例えば、硫黄含有シロキサンは、n及びmが2であって、下式(3):
Figure JPOXMLDOC01-appb-I000025
[式(3)中、
1~3は各出現においてそれぞれ独立して水素原子、又は炭素数1~10の一価の脂肪族炭化水素基である。]
で表される化合物であってよい。
 環状シロキサンである硫黄含有シロキサンの例としては、ビス(シクロトリシロキサニル)スルフィド、ビス(2,4,6-トリメチルシクロトリシロキサニル)スルフィド、ビス(2,4,6-トリエチルシクロトリシロキサニル)スルフィド、ビス(2,4,4,6,6-ペンタメチルシクロトリシロキサニル)スルフィド、ビス(2,4,4,6,6-ペンタエチルシクロトリシロキサニル)スルフィド、ビス(2,4,4,6,6-ペンタフェニルシクロトリシロキサニル)スルフィド、ビス(シクロテトラシロキサニル)スルフィド、ビス(2,4,6,8-テトラメチルシクロテトラシロキサニル)スルフィド、ビス(2,4,6,8-テトラエチルシクロテトラシロキサニル)スルフィド、ビス(2,4,4,6,6,8,8-ヘプタメチルシクロテトラシロキサニル)スルフィド、ビス(2,4,4,6,6,8,8-ヘプタエチルシクロテトラシロキサニル)スルフィド、ビス(2,4,4,6,6,8,8-ヘプタフェニルシクロテトラシロキサニル)スルフィド、ビス(シクロペンタシロキサニル)スルフィド、ビス(2,4,6,8,10-ペンタメチルシクロペンタシロキサニル)スルフィド、ビス(2,4,6,8,10-ペンタエチルシクロペンタシロキサニル)スルフィド、ビス(2,4,4,6,6,8,8,10,10-ノナメチルシクロペンタシロキサニル)スルフィド、ビス(2,4,4,6,6,8,8,10,10-ノナエチルシクロペンタシロキサニル)スルフィド、ビス(2,4,4,6,6,8,8,10,10-ノナフェニルシクロペンタシロキサニル)スルフィド、ビス(シクロヘキサシロキサニル)スルフィド、ビス(2,4,6,8,10,12-ヘキサメチルシクロヘキサシロキサニル)スルフィド、ビス(2,4,6,8,10,12-ヘキサエチルシクロヘキサシロキサニル)スルフィド、ビス(2,4,4,6,6,8,8,10,10,12,12-ウンデカメチルシクロヘキサシロキサニル)スルフィド、ビス(2,4,4,6,6,8,8,10,10,12,12-ウンデカエチルシクロヘキサシロキサニル)スルフィド、ビス(2,4,4,6,6,8,8,10,10,12,12-ウンデカフェニルシクロヘキサシロキサニル)スルフィド、2-[(2’,4’,6’-トリメチルシクロトリシロキサン-2’-イル)チオ]-2,4,6,8-テトラメチルシクロテトラシロキサン、2-[(2’,4’,6’-トリメチルシクロトリシロキサン-2’-イル)チオ]-2,4,6,8,10-ペンタメチルシクロペンタシロキサン、2-[(2’,4’,6’-トリメチルシクロトリシロキサン-2’-イル)チオ]-2,4,6,8,10,12-ヘキサメチルシクロヘキサシロキサン、2-[(2’,4’,6’ ,8’-テトラメチルシクロテトラシロキサン-2’-イル)チオ]-2,4,6,8,10-ペンタメチルシクロペンタシロキサン、2-[(2’,4’,6’ ,8’-テトラメチルシクロテトラシロキサン-2’-イル)チオ]-2,4,6,8,10,12-ヘキサメチルシクロヘキサシロキサンまたは2-[(2’,4’,6’ ,8’ ,10’-ペンタメチルシクロペンタシロキサン-2’-イル)チオ]-2,4,6,8,10,12-ヘキサメチルシクロヘキサシロキサン等が挙げられる。
 本開示における硫黄含有シロキサンは、下式(4):
Figure JPOXMLDOC01-appb-I000026
で表される、ビス(2,4,6,8-テトラメチルシクロテトラシロキサニル)スルフィドであってもよい。
[非環状シロキサン]
 本開示における硫黄含有シロキサンは非環状シロキサンであってよい。例えば、本開示における硫黄含有シロキサンはビス(ジシロキサニル)スルフィド化合物、ビス(トリシロキサニル)スルフィド化合物、ビス(テトラシロキサニル)スルフィド化合物、ビス(ペンタシロキサニル)スルフィド化合物、(ジシロキサニル)チオトリシロキサン化合物、(ジシロキサニル)チオテトラシロキサン化合物、(ジシロキサニル)チオペンタシロキサン化合物、(トリシロキサニル)チオテトラシロキサン化合物、(トリシロキサニル)チオペンタシロキサン化合物、(テトラシロキサニル)チオペンタシロキサン化合物であってよい。
 本開示における硫黄含有シロキサンは、特に、下式(5):
Figure JPOXMLDOC01-appb-I000027
[式(5)中、
1~3は各出現においてそれぞれ独立して水素原子、又は炭素数1~10の一価の脂肪族炭化水素基であり;
p及びqはそれぞれ独立して1~5の整数である。]
で表される非環状シロキサンである硫黄含有シロキサンであってよい。
 式(5)において、R1~3は各出現においてそれぞれ独立して水素原子、炭素数1~10の一価の脂肪族炭化水素基(例えば炭素数1~10のアルキル基(例えば、メチル、エチル、プロピル、イソプロピル、n-ブチル、sec-ブチル、イソブチル、tert-ブチル、ペンチル、ヘキシル、ヘプチル、オクチル、ノニル又はデカニル)、炭素数2~10のアルケニル基(例えば、ビニル又は2-プロペニル)、炭素数2~10のアルキニル基(例えば、エチニル又はプロピニル)であり、好ましくは水素原子又は炭素数1~3のアルキル基(メチル、エチル、プロピル又はイソプロピル))である。R1~3における炭化水素基は各出現においてそれぞれ独立して分岐鎖状又は直鎖状であってよく、好ましくは直鎖状である。
 式(5)において、全てのR1~3のうち水素原子以外の基(一価の脂肪族炭化水素基)の数の比率は、0%以上、10%以上、30%以上、50%以上、又は70%以上であってよく、例えば50%以上、例えば100%である。全てのR1~3のうち水素原子以外の基(一価の脂肪族炭化水素基)の数の比率は、90%以下、70%以下、50%以下、30%以下、又は0であってよい。各-Siが0個又は1個以上(例えば1個、又は2個)の水素原子以外の基(一価の脂肪族炭化水素基)を有していてもよい。
 式(5)において、硫黄含有シロキサンにおいて、全てのR及びRの少なくとも1つ(例えば、1個以上、2個以上)が水素原子であってよいが、硫黄含有シロキサンは一価の脂肪族炭化水素基を複数有していることが好ましい。各-SiRO-におけるR及びRの少なくとも一方(例えば、一方又は両方)が一価の脂肪族炭化水素基であってよいし、R1~3の全てが一価の脂肪族炭化水素基であってよい。
 式(5)において、R及びRのそれぞれは互いに同一又は異なっていてもよく、R1~3のそれぞれは互いに同一又は異なっていてもよい。
 また、式(5)におけるp及びqはそれぞれ1~5から選択される整数であり、例えば、(p,q)=(1,1)、(2,2)、(3,3)、(4,4)、(5,5)、(1,2)、(4,5)である。例えば、硫黄含有シロキサンは、p及びqが1であって、下記式(6):
Figure JPOXMLDOC01-appb-I000028
[式(6)中、
1~10は各出現においてそれぞれ独立して水素原子、炭素数1~10の一価の脂肪族炭化水素基である。]
で表される化合物であってよい。
 非環状シロキサンである硫黄含有シロキサンの例としては、ビス(ジシロキサニル)スルフィド、ビス(1,1,3,3-テトラメチルジシロキサニル)スルフィド、ビス(1,1,3,3-テトラエチルジシロキサニル)スルフィド、ビス(1,1,3,3-テトラプロピルジシロキサニル)スルフィド、ビス(1,1,3,3-テトライソプロピルジシロキサニル)スルフィド、ビス(1,1,1,3,3-ペンタメチルジシロキサニル)スルフィド、ビス(1,1,1,3,3-ペンタエチルジシロキサニル)スルフィド、ビス(1,1,1,3,3-ペンタプロピルジシロキサニル)スルフィド、ビス(1,1,1,3,3-ペンタイソプロピルジシロキサニル)スルフィド、ビス(トリシロキサニル)スルフィド、ビス(1,1,3,3,5,5-ヘキサメチルトリシロキサニル)スルフィド、ビス(1,1,3,3,5,5-ヘキサエチルトリシロキサニル)スルフィド、ビス(1,1,3,3,5,5-ヘキサプロピルトリシロキサニル)スルフィド、ビス(1,1,3,3,5,5-ヘキサイソプロピルトリシロキサニル)スルフィド、ビス(1,1,1,3,3,5,5-ヘプタメチルトリシロキサニル)スルフィド、ビス(1,1,1,3,3,5,5-ヘプタエチルトリシロキサニル)スルフィド、ビス(1,1,1,3,3,5,5-ヘプタプロピルトリシロキサニル)スルフィド、ビス(1,1,1,3,3,5,5-ヘプタイソプロピルトリシロキサニル)スルフィド、(ジシロキサニル)チオトリシロキサン、(1,1,3,3-テトラメチルジシロキサニル)チオトリシロキサン、(1,1,3,3-テトラエチルジシロキサニル)チオトリシロキサン、(1,1,1,3,3-ペンタメチルジシロキサニル)チオトリシロキサン、(1,1,1,3,3-ペンタエチルジシロキサニル)チオトリシロキサン、(1,1,3,3-テトラメチルジシロキサニル)チオ-1,1,3,3,5,5,5-ペンタメチルトリシロキサン、(1,1,3,3-テトラエチルジシロキサニル)チオ-1,1,3,3,5,5,5-ペンタメチルトリシロキサン、(1,1,1,3,3-ペンタメチルジシロキサニル)チオ-1,1,3,3,5,5,5-ペンタメチルトリシロキサン、(1,1,1,3,3-ペンタエチルジシロキサニル)チオ-1,1,3,3,5,5,5-ペンタメチルトリシロキサン等が挙げられる。
 本開示における硫黄含有シロキサンは、下式(7):
Figure JPOXMLDOC01-appb-I000029
で表される、ビス(1,1,1,3,3-ペンタメチルジシロキサン-3-イル)スルフィドであってもよい。
<硫黄含有シロキサンの製造方法>
  本開示における硫黄含有シロキサンの製造方法は、
(a)原料のシロキサンから硫黄含有シロキサンを合成する工程、及び(b)蒸留により硫黄含有シロキサンを単離する蒸留工程
を含む製造方法を含んでよい。
[合成工程(a)]
 合成工程(a)においては、原料シロキサンを硫化剤と反応させる工程を含んでよい。
 前記原料シロキサンは下式(8-1)及び(8-2):
Figure JPOXMLDOC01-appb-I000030
[式(8-1)及び式(8-2)中、
1~10は各出現においてそれぞれ独立して水素原子、有機基、ハロゲン、OSiRで表されるシロキシ基、又はNRで表されるアミノ基であり、ただし、AとAは一体として酸素原子であって環状シロキサンを形成してもよく、AとAは一体として酸素原子であって環状シロキサンを形成してもよく; 
a~eは各出現においてそれぞれ独立して水素原子、又は有機基であり、RとRは互いに結合して環を形成してもよく; 
p及びqはそれぞれ独立して1~5の整数であり;
Zはハロゲン又は水素原子である。]
で表される化合物であってよい。ここで、A1~10及びp及びqの態様は上記で説明したとおりである。
 前記原料シロキサンは下式(8-3):
Figure JPOXMLDOC01-appb-I000031
[式(8-3)中、
1~3は各出現においてそれぞれ独立して水素原子、又は炭素数1~10の一価の脂肪族炭化水素基であり;
Zはハロゲン又は水素原子であり;
nは1~4の整数である。]
で表される化合物であってよい。ここで、R、R、R及びnの態様は上記で説明したとおりである。
 前記原料シロキサンは下式(8-4):
Figure JPOXMLDOC01-appb-I000032
[式(8-4)中、
1~3は各出現においてそれぞれ独立して水素原子、炭素数1~10の一価の脂肪族炭化水素基であり、
Zはハロゲン又は水素原子であり;
pは1~5の整数である。]
で表される化合物であってよい。ここで、R1~3、p及びqの態様は上記で説明したとおりである。
 Zの例としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子、及び水素原子が挙げられる。
 原料シロキサンの分子量は100以上、150以上、200以上、又は250以上であってよい。原料シロキサンの分子量は750以下、600以下、500以下、又は400以下であってよく、好ましくは500以下である。
 原料シロキサンの炭素数は0以上、1以上、3以上、5以上、7以上、10以上、12以上、又は15以上であってよい。硫黄含有シロキサンの炭素数は30以下、25以下、20以下、15以下、又は10以下であってよい。
 前記原料シロキサンは、あらかじめ合成してから使用してもよい。例えば、Zが水素原子であるシロキサン化合物は、そのまま合成工程(a)に使用してもよく、ハロゲン化剤を用いてZをハロゲンに置換してから合成工程(a)を実施してもよい。ハロゲン化剤はフッ素化剤、塩素化剤、臭素化剤、ヨウ素化剤であってよい。これらの中でもN-クロロスクシンイミド、N-クロロフタルイミド等の塩素化剤が好ましく用いられる。
 前記硫化剤は-SiZにおけるZを硫黄に置換可能な硫黄化合物であって、例えば硫化リチウム、硫化ナトリウム、硫化水素等の硫化物を用いることができる。
 原料シロキサン(8-1)及び(8-2)と硫化剤との反応式の例を以下に示す。
式(9-1):
Figure JPOXMLDOC01-appb-I000033
 原料シロキサン(8-3)と硫化剤との反応式の例を以下に示す。
式(9-2):
Figure JPOXMLDOC01-appb-I000034
 原料シロキサン(8-4)と硫化剤との反応式の例を以下に示す。
式(9-3):
Figure JPOXMLDOC01-appb-I000035
 工程(a)では、最初に原料シロキサンを有機溶媒に溶解させて、そこに硫化剤を加えていく方法、及び、硫化剤を有機溶媒に溶かしておき、原料シロキサンを加えていく方法のいずれでも本反応には適用可能である。
硫化剤の使用量は、原料シロキサン1.0モルに対して、通常0.2~3.0モル、好ましくは0.4~2.0モル(例えば0.5~1.0モル)である。
  反応は-20℃~100℃、好ましくは-10℃~60℃の範囲で反応が行われてよい。反応時間は通常0.5~30時間の範囲である。
 本開示に用いることができる溶媒は、例えばヘキサン、シクロヘキサン、ヘプタン、ノナン、デカンなどの炭化水素類;ジクロロエタン、ジクロロメタン、クロロホルム等のハロゲン化炭化水素類;ベンゼン、トルエン、キシレン、クロロベンゼン、トリクロロベンゼン等の芳香族炭化水素類;ジエチルエーテル、テトラヒドロフラン(THF)、エチレングリコールジメチルエーテルなどのエーテル類及びこれらの混合物を用いることができる。これらの中でもジエチルエーテル、テトラヒドロフラン(THF)などのエーテル類が好ましく、とりわけテトラヒドロフラン(THF)が好ましく用いられる。溶媒の使用量は原料シロキサン化合物に対して、通常0.1~50倍質量である。
  シロキサン、硫黄含有シロキサンの加水分解を回避するため、反応系は全て無水条件で行うことが望ましく、使用する全ての原料中の水分を全ての原料質量に対して0~5000質量ppm、好ましくは0~500質量ppmの範囲にして反応を行う。また、反応装置は加熱乾燥及び減圧、窒素やアルゴンなどの不活性ガス置換を行うことで乾燥されたものを用いることが望ましい。
 工程(a)では、副生塩などの固体が反応液中に存在する場合は、必要に応じて反応終了後に濾過を行ってよい。濾過を行う場合は、硫黄含有シロキサンの分解を抑えるために乾燥した不活性ガス下で、例えば窒素またはアルゴン下で行うことが望ましい。濾過温度は一意的に決まるものではないが、10℃から使用溶媒の沸点まで適用可能である。好ましくは20℃から65℃の範囲で行うのが望ましい。
[蒸留工程(b)]
  工程(b)では、蒸留、例えば減圧蒸留を行うことによって硫黄含有シロキサンが単離される。硫化剤及び有機溶媒は容易に除去され、硫黄含有シロキサンを十分に高い純度で精製することができる。
<シリコン含有膜の製造方法>
 本開示による硫黄含有シロキサンをシリコン含有膜の中間体として用いて、基板上にシリコン含有膜を形成することができる。本開示によるシリコン含有膜の形成方法は、化学気相成長、特に原子層堆積であってよい。より詳しくは、本開示によるシリコン含有膜の形成方法は、
(c)基板に、下式(1):
下式(1):
Figure JPOXMLDOC01-appb-I000036
[式(1)中、
1~10は各出現においてそれぞれ独立して水素原子、有機基、ハロゲン、OSiRで表されるシロキシ基、又はNRで表されるアミノ基であり、ただし、AとAは一体として酸素原子であって環状シロキサンを形成してもよく、AとAは一体として酸素原子であって環状シロキサンを形成してもよく; 
a~eは各出現においてそれぞれ独立して水素原子、又は有機基であり、RとRは互いに結合して環を形成してもよく;
p及びqはそれぞれ独立して1~5の整数である。]
で表される硫黄含有シロキサンを含む硫黄含有シロキサン組成物を接触させて、基板に前記硫黄含有シロキサン組成物を吸着させる工程;
(d)未吸着の硫黄含有シロキサン組成物および副生物をパージする工程;
(e)前記硫黄含有シロキサン組成物が吸着した基板に反応ガスを注入することで、硫黄含有シロキサンが分解され原子層を形成する工程;および
(f)未反応の反応ガスと副生物をパージする工程
を含む、原子層堆積法であってよい。
基板の温度は100~800℃で行われてよく、好ましくは100~750℃である。得られる膜特性の観点から、基板の温度は200℃以上、300℃以上、400℃以上、500℃以上、600℃以上、又は700℃以上であってよく、例えば250℃以上であり、好ましくは300℃以上、400℃以上、又は500℃以上である。なお、成膜温度は、(c)~(f)の少なくとも一工程の温度であってよく、例えば、工程(c)における硫黄含有シロキサン組成物と接触する際の基板の温度である。本開示の硫黄含有シロキサンから得られるシリコン含有膜は高温においても安定しており、本開示の硫黄含有シロキサンは高温の基板温度を採用するシリコン含有膜の製造方法においても好適に用いることができる。
 工程(c)および工程(e)でガス注入時の圧力は0.05~100Torr、好ましくは0.05~50Torrである。
 工程(e)では、反応ガスとして、Si-O結合を有する酸化シリコン膜を形成する際は酸素、オゾン、及び一酸化窒素から選択される一種類以上のガスを用いることができる。Si-N結合を有する窒化シリコン膜を形成する際は窒素、アンモニア、一酸化二窒素、一酸化窒素、二酸化窒素から選択される一種類以上のガスを用いることができる。
 シリコン含有膜の形成は窒素やアルゴンなどの不活性ガス置換を行った後に行うことが望ましい。すなわち、反応系内部を不活性ガス置換した後に、上記工程(c)を行うことが好ましい。
 本開示における硫黄含有シロキサンは、ALD法によるシリコン含有膜(シリコン酸化膜、シリコン窒化膜等)の製造に好適に用いられる。本開示におけるシリコン含有膜の製造方法においては、そのALDウィンドウの下限が、300℃であってよく、好ましくは350℃である。また、本開示におけるシリコン含有膜の製造方法においては、ALDウィンドウの上限が、800℃であってよく、好ましくは750℃である。ここで、ALDウィンドウとは、一般にはシリコン含有膜前駆体化合物の蒸気化する温度とシリコン含有膜前駆体化合物の熱分解温度との間の温度範囲を指し、本願明細書においてはALDウィンドウは成膜温度を横軸にとって堆積速度を縦軸にとったときに堆積速度が極大となる点から極小となる点までの温度範囲と定義することができる。
  以下に本開示を実施例により詳細に説明する。
[実施例1:ビス(2,4,6,8-テトラメチルシクロテトラシロキサニル)スルフィドの合成]
窒素置換後、温度計、冷却管、モーター攪拌機をセットした500mLのフラスコに硫化リチウム7.7g(0.17モル)とテトラヒドロフラン82.1gを添加した。室温で撹拌しながら2-クロロ-2,4,6,8-テトラメチルシクロテトラシロキサン72.6g(0.26モル)を含む溶液145.9gを30分かけてゆっくり滴下した。滴下後、26~33℃を保持しながら23時間撹拌した。その後、窒素置換したグローブボックス内で減圧濾過により副生する塩化リチウムが主である固形物を取り除き、ビス(2,4,6,8-テトラメチルシクロテトラシロキサニル)スルフィドを含むテトラヒドロフラン溶液を得た。このテトラヒドロフラン溶液を内温60~80℃で減圧蒸留することでテトラヒドロフランを除去し、さらに蒸留塔を用いて内温145℃、0.6Torrで減圧蒸留することでビス(2,4,6,8-テトラメチルシクロテトラシロキサニル)スルフィドを高純度で得た。
  蒸留後のGC分析により、96.2面積%の純度で19.0g(収率28.1%)のビス(2,4,6,8-テトラメチルシクロテトラシロキサニル)スルフィドが得られたことが確認された。得られたビス(2,4,6,8-テトラメチルシクロテトラシロキサニル)スルフィドはH-NMRおよびGC-MSによって同定した。H-NMRの帰属は以下の通りである。H-NMRチャートは図1に示す通りである。
H-NMR(400MHz,CDCl3):δ0.21-0.28(m,18H,[CH -SiH-]), δ0.48-0.51,6H,[CH -SiS]),δ4.71-4.79(m, 6H,[Si-])
  上記H-NMRおよびGC-MSの結果により、得られた硫黄含有シロキサンは、下式:
Figure JPOXMLDOC01-appb-I000037
で表される、ビス(2,4,6,8-テトラメチルシクロテトラシロキサニル)スルフィドであると同定した。
[実施例2:ビス(2,4,6,8-テトラメチルシクロテトラシロキサニル)スルフィドを用いたシリコン含有膜の形成]
 真空装置内にシリコン基板を設置し、100~750℃の所定温度に加熱した。実施例1で得られたビス(2,4,6,8-テトラメチルシクロテトラシロキサニル)スルフィドおよびキャリアガスを含むシロキサン組成物を0.05~100Torrの圧力で注入し、加熱したシリコン基板に吸着させた。次いで、アルゴンガスを導入することで装置内に未吸着の硫黄含有シロキサン組成物および副生物をパージした。その後、反応ガスとしてオゾンを0.05~100Torrの圧力で注入し、基板上に堆積したビス(2,4,6,8-テトラメチルシクロテトラシロキサニル)スルフィド由来の酸化シリコンの原子層を形成した。次いで、アルゴンガスを導入することで未反応のオゾンと副生物をパージした。上記のサイクルを繰り返して、酸化シリコン膜を得た。
[実施例3:ビス(1,1,1,3,3-ペンタメチルジシロキサン-3-イル)スルフィドの合成]
 窒素置換後、温度計、冷却管、モーター攪拌機をセットした3Lのフラスコにペンタメチルジシロキサン274g(1.85モル)とテトラヒドロフラン1700gを添加した。室温で撹拌しながらN-クロロスクシンイミド244g(1.83モル)を添加した。添加後、56~59℃を保持しながら5時間撹拌した。その後、内温60~80℃で減圧蒸留することでテトラヒドロフランを除去し、窒素置換したグローブボックス内で減圧濾過により副生する固形物を取り除き、クロロペンタメチルジシロキサンを含むテトラヒドロフラン溶液を得た。このテトラヒドロフラン溶液をさらに蒸留塔を用いて内温100℃、175Torrで減圧蒸留することで高純度のクロロペンタメチルジシロキサンを含むテトラヒドロフラン溶液を得た。続いて窒素置換後、温度計、冷却管、モーター攪拌機をセットした300mLのフラスコに硫化リチウム8.7g(0.19モル)とテトラヒドロフラン96gを添加した。室温で撹拌しながら先ほど得られたクロロペンタメチルジシロキサン56g(0.31モル)を含むテトラヒドロフラン溶液68gを40分かけてゆっくり滴下した。滴下後、26~33℃を保持しながら4時間撹拌した。その後、窒素置換したグローブボックス内で減圧濾過により副生する塩化リチウムが主である固形物を取り除き、ビス(1,1,1,3,3-ペンタメチルジシロキサン-3-イル)スルフィドを含むテトラヒドロフラン溶液を得た。このテトラヒドロフラン溶液を内温60~80℃で減圧蒸留することでテトラヒドロフランを除去し、さらに蒸留塔を用いて内温84℃、2.2Torrで減圧蒸留することでビス(1,1,1,3,3-ペンタメチルジシロキサン-3-イル)スルフィドを高純度で得た。
 蒸留後のGC分析により、98.0面積%の純度で27g(収率18%)のビス(1,1,1,3,3-ペンタメチルジシロキサン-3-イル)スルフィドが得られたことが確認された。得られたビス(2,4,6,8-テトラメチルシクロテトラシロキサニル)スルフィドは1H-NMRおよびGC-MSによって同定した。1H-NMRの帰属は以下の通りである。1H-NMRチャートは図3に示す通りである。
 1H-NMR(400MHz,CDCl):δ0.12(s,18H,[CH-Si]), δ0.40(s,12H,[CH-SiS])
  上記1H-NMRおよびGC-MSの結果により、得られた硫黄含有シロキサンは、下式:
Figure JPOXMLDOC01-appb-I000038
で表される、ビス(1,1,1,3,3-ペンタメチルジシロキサン-3-イル)スルフィドであると同定した。
[実施例4:ビス(1,1,1,3,3-ペンタメチルジシロキサン-3-イル)スルフィドを用いたシリコン含有膜の形成]
 真空装置内にシリコン基板を設置し、100~750℃の所定温度に加熱した。実施例3で得られたビス(1,1,1,3,3-ペンタメチルジシロキサン-3-イル)スルフィドおよびキャリアガスを含むシロキサン組成物を0.05~100Torrの圧力で注入し、加熱したシリコン基板に吸着させた。次いで、アルゴンガスを導入することで装置内に未吸着の硫黄含有シロキサン組成物および副生物をパージした。その後、反応ガスとしてオゾンを0.05~100Torrの圧力で注入し、基板上に堆積したビス(1,1,1,3,3-ペンタメチルジシロキサン-3-イル)スルフィド由来の酸化シリコンの原子層を形成した。次いで、アルゴンガスを導入することで未反応のオゾンと副生物をパージした。上記のサイクルを繰り返して、酸化シリコン膜を得た。
[比較例1:ビスジエチルアミノシランを用いたシリコン含有膜の形成]
 真空装置内にシリコン基板を設置し、100~750℃の所定温度に加熱した。ビスジエチルアミノシラン及びキャリアガスを含むアミノシラン組成物を0.05~100Torrの圧力で注入し、加熱したシリコン基板に吸着させた。次いで、アルゴンガスを導入することで装置内に未吸着のアミノシラン組成物及び副生物をパージした。その後、反応ガスとしてオゾンを0.05~100Torrの圧力で注入し、基板上に堆積したビスジエチルアミノシラン由来の酸化シリコンの原子層を形成した。次いで、アルゴンガスを導入することで未反応のオゾンガスと副生物をパージした。上記のサイクルを繰り返して、酸化シリコン膜を得た。
[比較例2:2-ジメチルアミノ-2,4,6,8-テトラメチルシクロテトラシロキサンを用いたシリコン含有膜の形成]
 真空装置内にシリコン基板を設置し、100~750℃の所定温度に加熱した。2-ジメチルアミノ-2,4,6,8-テトラメチルシクロテトラシロキサン及びキャリアガスを含むシロキサン組成物を0.05~100Torrの圧力で注入し、加熱したシリコン基板に吸着させた。次いで、アルゴンガスを導入することで装置内に未吸着のアミノシロキサン組成物及び副生物をパージした。その後、反応ガスとしてオゾンを0.05~100Torrの圧力で注入し、基板上に堆積した2-ジメチルアミノ-2,4,6,8-テトラメチルシクロテトラシロキサン由来の酸化シリコンの原子層を形成した。次いで、アルゴンガスを導入することで未反応のオゾンガスと副生物をパージした。上記のサイクルを繰り返して、酸化シリコン膜を得た。
[比較例3:トリエトキシ-[3-(トリメトキシシリル)プロピルチオ]シランを用いたシリコン含有膜の形成]
 真空装置内にシリコン基板を設置し、100~750℃の所定温度に加熱した。トリエトキシ-[3-(トリメトキシシリル)プロピルチオ]シラン及びキャリアガスを含むシロキサン組成物を0.05~100Torrの圧力で注入し、加熱したシリコン基板に吸着させた。次いで、アルゴンガスを導入することで装置内に未吸着のアミノシロキサン組成物及び副生物をパージした。その後、反応ガスとしてオゾンを0.05~100Torrの圧力で注入し、基板上に堆積したトリエトキシ-[3-(トリメトキシシリル)プロピルチオ]シラン由来の酸化シリコンの原子層を形成した。次いで、アルゴンガスを導入することで未反応のオゾンガスと副生物をパージした。上記のサイクルを繰り返して、酸化シリコン膜を得た。
 以下表1に具体的な蒸着方法を示した。図2には基板温度と堆積速度の関係を示した。図2の各プロットの測定において、堆積速度最大となるシロキサン供給時間を選択した。表2には実施例2にてALDウィンドウの最低温度及び最高温度である基板温度400℃及び725℃で50サイクル繰り返した際の堆積速度を示した。表3には実施例4にてALDウィンドウの最低温度及び最高温度である基板温度500℃及び750℃で50サイクル繰り返した際の堆積速度を示した。ここでのALDウィンドウとは図2において堆積速度が極大となる点から極小となる点までの温度領域を示す。また、表4に実施例2並びに実施例4、比較例1、2及び3についてのALDウィンドウの温度範囲をまとめる。なお、層の厚さはエリプソメータで測定した。
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000042
 表2に示したように、実施例2にてビス(2,4,6,8-テトラメチルシクロテトラシロキサニル)スルフィド化合物由来の酸化シリコンの原子層を形成するために、ビス(2,4,6,8-テトラメチルシクロテトラシロキサニル)スルフィド組成物の供給時間を検討した。基板温度400℃では15秒以上で堆積速度が最大となり、基板温度725℃では6秒以上で堆積速度が最大となり、いずれの温度においてもALD成膜となることを確認した。
 表3に示したように、実施例4にてビス(1,1,1,3,3-ペンタメチルジシロキサン-3-イル)スルフィド化合物由来の酸化シリコンの原子層を形成するために、ビス(1,1,1,3,3-ペンタメチルジシロキサン-3-イル)スルフィド組成物の供給時間を検討した。基板温度500℃では6秒以上で堆積速度が最大となり、基板温度750℃では6秒以上で堆積速度が最大となり、いずれの温度においてもALD成膜となることを確認した。
 表4及び図2に示したように、ビス(2,4,6,8-テトラメチルシクロテトラシロキサニル)スルフィド及びビス(1,1,1,3,3-ペンタメチルジシロキサン-3-イル)スルフィドは、ビスジエチルアミノシラン、2-ジメチルアミノ-2,4,6,8-テトラメチルシクロテトラシロキサン及びトリエトキシ-[3-(トリメトキシシリル)プロピルチオ]シランよりもALD成膜が可能となる温度領域(ALDウィンドウ)が高温側に位置することを確認した。
 原子堆積法を用いれば、アスペクト比が高い構造が形成された半導体基板やナノワイヤーなどにも、極薄かつ原子欠陥がない酸化シリコン膜などを形成することができる。本開示による硫黄含有シロキサンは、高温で成膜する原子堆積法に有用である。

Claims (20)

  1. 下式(1):
    Figure JPOXMLDOC01-appb-I000001
    [式(1)中、
    1~10は各出現においてそれぞれ独立して水素原子、有機基、ハロゲン、OSiRで表されるシロキシ基、又はNRで表されるアミノ基であり、ただし、AとAは一体として酸素原子であってシロキサン環を形成してもよく、AとAは一体として酸素原子であって環状シロキサンを形成してもよく; 
    a~eは各出現においてそれぞれ独立して水素原子、又は有機基であり、RとRは互いに結合して環を形成してもよく;
    p及びqはそれぞれ独立して1~5の整数である。]
    で表される硫黄含有シロキサン。
  2. とAは一体として酸素原子であって環状シロキサンを形成し、かつ、AとAは一体として酸素原子であって環状シロキサンを形成する、請求項1に記載の硫黄含有シロキサン。
  3. 下式(2)
    Figure JPOXMLDOC01-appb-I000002
    [式(2)中、
    1~3は各出現においてそれぞれ独立して水素原子、又は炭素数1~10の一価の脂肪族炭化水素基であり;
    n及びmはそれぞれ独立して1~4の整数である。]
    で表される、請求項1又は2に記載の硫黄含有シロキサン。
  4. 分子量が1000以下である、請求項1~3のいずれか一項に記載の硫黄含有シロキサン。
  5. 前記硫黄含有シロキサンの炭素数は50以下である、請求項1~4のいずれか一項に記載の硫黄含有シロキサン。
  6. 下式(3):
    Figure JPOXMLDOC01-appb-I000003
    [式(3)中、
    1~3は各出現においてそれぞれ独立して水素原子、又は炭素数1~10の一価の脂肪族炭化水素基である。]
    で表される、請求項1~5のいずれか一項に記載の硫黄含有シロキサン。
  7. 下式(4):
    Figure JPOXMLDOC01-appb-I000004
    で表される、ビス(2,4,6,8-テトラメチルシクロテトラシロキサニル)スルフィドである、請求項1~6のいずれか一項に記載の硫黄含有シロキサン。
  8. 下式(5):
    Figure JPOXMLDOC01-appb-I000005
    [式(5)中、
    1~3は各出現においてそれぞれ独立して水素原子、又は炭素数1~10の一価の脂肪族炭化水素基であり;
    p及びqはそれぞれ独立して1~5の整数である。]
    で表される、請求項1~7のいずれか一項に記載の硫黄含有シロキサン。
  9. 下式(6):
    Figure JPOXMLDOC01-appb-I000006
    [式(6)中、
    1~3は各出現においてそれぞれ独立して水素原子、又は炭素数1~10の一価の脂肪族炭化水素基である。]
    で表される、請求項1~8のいずれか一項に記載の硫黄含有シロキサン。
  10. 下式(7):
    Figure JPOXMLDOC01-appb-I000007
    で表される、ビス(1,1,1,3,3-ペンタメチルジシロキサン-3-イル)スルフィドである、請求項1~9のいずれか一項に記載の硫黄含有シロキサン。
  11. 請求項1~10のいずれか一項に記載の前記硫黄含有シロキサンを含む、シリコン含有膜の前駆体。
  12. 前記シリコン含有膜が化学気相成長により形成される、請求項11に記載の前駆体。
  13. 前記シリコン含有膜が原子層堆積法により形成される、請求項11又は12に記載の前駆体。
  14. 請求項1~10のいずれか一項に記載の前記硫黄含有シロキサンを含む、シリコン含有膜形成用の組成物。
  15. 前記シリコン含有膜が化学気相成長により形成される、請求項14に記載の組成物。
  16. 前記シリコン含有膜が原子層堆積法により形成される、請求項14又は15に記載の組成物。
  17. 下式(1):
    Figure JPOXMLDOC01-appb-I000008
    [式(1)中、
    1~10は各出現においてそれぞれ独立して水素原子、有機基、ハロゲン、OSiRで表されるシロキシ基、又はNRで表されるアミノ基であり、ただし、AとAは一体として酸素原子であって環状シロキサンを形成してもよく、AとAは一体として酸素原子であって環状シロキサンを形成してもよく; 
    a~eは各出現においてそれぞれ独立して水素原子、又は有機基であり、RとRは互いに結合して環を形成してもよく;
    p及びqはそれぞれ独立して1~5の整数である。]
    で表される硫黄含有シロキサンの製造方法であって、
    (a)原料シロキサンから前記硫黄含有シロキサンを合成する工程;及び
    (b)蒸留により前記硫黄含有シロキサンを単離する蒸留工程
    を含む、硫黄含有シロキサンの製造方法。
  18.  工程(a)において、前記原料シロキサンと硫化剤とを反応させて前記硫黄含有シロキサンを合成する、請求項17に記載の硫黄含有シロキサンの製造方法。
  19. 前記原料シロキサンが下式(8-3):
    Figure JPOXMLDOC01-appb-I000009
    [式(8-3)中、
    1~3は各出現においてそれぞれ独立して水素原子、又は炭素数1~10の一価の脂肪族炭化水素基であり;
    Zはハロゲン又は水素原子であり;
    nは1~4の整数である。]
    で表される化合物、又は
    下式(8-4):
    Figure JPOXMLDOC01-appb-I000010
    [式(8-4)中、
    1~3は各出現においてそれぞれ独立して水素原子、炭素数1~10の一価の脂肪族炭化水素基であり、
    Zはハロゲン又は水素原子であり;
    pは1~5の整数である。]
    で表される化合物
    である、請求項17又は18に記載の硫黄含有シロキサンの製造方法。
  20. 下式(1):
    Figure JPOXMLDOC01-appb-I000011
    [式(1)中、
    1~10は各出現においてそれぞれ独立して水素原子、有機基、ハロゲン、OSiRで表されるシロキシ基、又はNRで表されるアミノ基であり、ただし、AとAは一体として酸素原子であって環状シロキサンを形成してもよく、AとAは一体として酸素原子であって環状シロキサンを形成してもよく; 
    a~eは各出現においてそれぞれ独立して水素原子、又は有機基であり、RとRは互いに結合して環を形成してもよく; 
    p及びqはそれぞれ独立して1~5の整数である。]
    で表される硫黄含有シロキサンを用いる、シリコン含有膜の製造方法。
PCT/JP2023/012290 2022-03-29 2023-03-27 硫黄含有シロキサン、前記硫黄含有シロキサンを含むシリコン含有膜形成用の組成物、硫黄含有シロキサンの製造方法、シリコン含有膜、及びシリコン含有膜の製造方法 WO2023190386A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022054385 2022-03-29
JP2022-054385 2022-03-29

Publications (1)

Publication Number Publication Date
WO2023190386A1 true WO2023190386A1 (ja) 2023-10-05

Family

ID=88202308

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/012290 WO2023190386A1 (ja) 2022-03-29 2023-03-27 硫黄含有シロキサン、前記硫黄含有シロキサンを含むシリコン含有膜形成用の組成物、硫黄含有シロキサンの製造方法、シリコン含有膜、及びシリコン含有膜の製造方法

Country Status (2)

Country Link
TW (1) TW202402888A (ja)
WO (1) WO2023190386A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2867606A (en) * 1954-05-11 1959-01-06 Gen Electric Polymerizable organopolysiloxane solutions and the process of preparing gels from these solutions
WO2021099746A1 (fr) * 2019-11-21 2021-05-27 Bostik Sa Composition réticulable à l'humidité à base de polymère silylé

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2867606A (en) * 1954-05-11 1959-01-06 Gen Electric Polymerizable organopolysiloxane solutions and the process of preparing gels from these solutions
WO2021099746A1 (fr) * 2019-11-21 2021-05-27 Bostik Sa Composition réticulable à l'humidité à base de polymère silylé

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
E.P. LEBEDEV AND M.M. FRENKEL: "Reaction of hexamthyldisilthiane with chloroorganosiloxanes. Zhurnal Obshchei Khimii, 1977, vol. 47, no.10, pp. 2275-2278", JOURNAL OF GENERAL CHEMISTRY USSR., CONSULTANTS BUREAU, NEW YORK, NY., US, vol. 47, no. 10, 1 January 1977 (1977-01-01), US , pages 2275 - 2278, XP009548990, ISSN: 0022-1279 *
LIAO MENGCHEN, ZHENG SIJIA, BROOK MICHAEL A.: "Silylating Disulfides and Thiols with Hydrosilicones Catalyzed by B(C6F5)3", EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, WILEY-VCH, DE, vol. 2021, no. 18, 14 May 2021 (2021-05-14), DE , pages 2694 - 2700, XP093094210, ISSN: 1434-193X, DOI: 10.1002/ejoc.202100349 *
MIZHIRITSKII, M. D. ET AL.: "[Synthesis of organosilthianes containing functional substituents at the silicon atom by transsilylation]", ZHURNAL OBSHCHEI KHIMII [RUSSIAN JOURNAL OF ORGANIC CHEMISTRY], NAUKA, RU, vol. 55, no. 7, 1 January 1985 (1985-01-01), RU , pages 1537 - 1543, XP009549421, ISSN: 0044-460X *

Also Published As

Publication number Publication date
TW202402888A (zh) 2024-01-16

Similar Documents

Publication Publication Date Title
KR102242461B1 (ko) 실리콘 옥사이드 필름의 증착을 위한 조성물 및 방법
US9822132B2 (en) Hexacoordinate silicon-containing precursors for ALD/CVD silicon-containing film applications
KR101787204B1 (ko) 원자층 증착용(ald) 유기금속 전구체 화합물 및 이를 이용한 ald 증착법
JP2019530235A (ja) 酸化ケイ素膜の堆積のための組成物及び方法
KR101284664B1 (ko) 실릴아민 리간드가 포함된 유기금속화합물, 및 이를 전구체로 이용한 금속 산화물 또는 금속-규소 산화물의 박막 증착 방법
JP6876145B2 (ja) ビス(アミノシリル)アルキルアミン化合物を含むシリコン含有薄膜蒸着用組成物、およびそれを用いたシリコン含有薄膜の製造方法
US20190256532A1 (en) Alkylamino-substituted carbosilane precursors
KR20150123766A (ko) 신규한 아미노실릴아민 화합물, 이의 제조방법 및 이를 이용한 실리콘 함유 박막
KR102105977B1 (ko) 실릴아민 화합물, 이를 포함하는 실리콘 함유 박막증착용 조성물 및 이를 이용하는 실리콘 함유 박막의 제조방법
KR102286114B1 (ko) 4족 전이금속 화합물, 이의 제조방법 및 이를 이용하여 박막을 형성하는 방법
WO2023190386A1 (ja) 硫黄含有シロキサン、前記硫黄含有シロキサンを含むシリコン含有膜形成用の組成物、硫黄含有シロキサンの製造方法、シリコン含有膜、及びシリコン含有膜の製造方法
WO2020116386A1 (ja) ビスアルキルアミノジシラザン化合物、前記ビスアルキルアミノジシラザン化合物を含むシリコン含有膜形成用の組成物
KR102438983B1 (ko) 열 안정성이 우수한 신규 4족 유기금속 전구체 화합물, 그 제조방법 및 이를 이용한 박막 형성 방법
WO2024080237A1 (ja) シリコン含有膜前駆体、シリコン含有膜形成用の組成物、硫黄含有シロキサンの製造方法、及びシリコン含有膜の製造方法
KR102327450B1 (ko) 4족 전이금속 화합물, 이의 제조방법 및 이를 포함하는 박막증착용 조성물
KR20210037393A (ko) 아미노실란 화합물 및 이를 포함하는 실리콘 함유 박막 증착용 조성물
KR101770152B1 (ko) 붕소함유 화합물을 포함하는 조성물, 이를 이용하여 제조된 붕소함유 박막 및 이를 이용한 붕소함유 박막의 제조방법
KR101380317B1 (ko) 실리콘 원자 및 금속 원자에 대한 친화성이 우수한 고리형 아미노실란 화합물, 이의 제조방법 및 이의 응용
JP7337257B2 (ja) 新規なシリルシクロジシラザン化合物およびこれを用いたシリコン含有薄膜の製造方法
TW202031667A (zh) 雙烷胺基二矽氮烷化合物、含有該雙烷胺基二矽氮烷化合物的用於形成含矽膜之組成物
KR101919755B1 (ko) 신규한 유기아미노 규소 화합물 및 이를 이용한 규소 함유 박막
WO2023182336A1 (ja) 化学気相堆積用化合物および金属含有膜の形成方法
TW202311273A (zh) 矽前驅物
KR20230139282A (ko) 이종 환상기를 포함하는 실리콘 전구체를 이용하는 실리콘 함유 박막의 증착 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23780395

Country of ref document: EP

Kind code of ref document: A1