WO2023190119A1 - ジルコニア粉末、ジルコニア焼結体、及び、ジルコニア焼結体の製造方法 - Google Patents

ジルコニア粉末、ジルコニア焼結体、及び、ジルコニア焼結体の製造方法 Download PDF

Info

Publication number
WO2023190119A1
WO2023190119A1 PCT/JP2023/011743 JP2023011743W WO2023190119A1 WO 2023190119 A1 WO2023190119 A1 WO 2023190119A1 JP 2023011743 W JP2023011743 W JP 2023011743W WO 2023190119 A1 WO2023190119 A1 WO 2023190119A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
zirconia
stabilizer
mol
mass
Prior art date
Application number
PCT/JP2023/011743
Other languages
English (en)
French (fr)
Inventor
智史 田中
啓太 金西
Original Assignee
第一稀元素化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 第一稀元素化学工業株式会社 filed Critical 第一稀元素化学工業株式会社
Publication of WO2023190119A1 publication Critical patent/WO2023190119A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/02Oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics

Definitions

  • the present invention relates to a zirconia powder, a zirconia sintered body, and a method for producing a zirconia sintered body.
  • Zirconia is used for a variety of purposes, taking advantage of its mechanical strength, translucency, and refractive index.
  • mechanical strength e.g., acoustic strength
  • translucency e.g., acoustic strength
  • refractive index e.g., alumina-based index
  • Patent Document 1 describes that ZrO 2 powder with a particle size of 0.1 to 2.0 ⁇ m containing 2 to 4 mol % of Y 2 O 3 as a stabilizer, and 2 to 4 mol % of Y 2 O 3 as a stabilizer.
  • a mixed powder is obtained by mixing 2 to 10% by weight of ZrO2 fine powder with a particle size of 0.05 ⁇ m or less, then this mixed powder is granulated, the obtained granulated powder is further molded, and then the obtained
  • a method for producing a zirconia sintered body is disclosed in which a compacted body is pre-sintered at normal pressure to a relative density of 96 to 98%, and then subjected to hot isostatic pressing at a temperature of 1480°C or less (claimed (see 1).
  • Patent Document 1 attempts to obtain a highly tough zirconia sintered body by utilizing a microcrack strengthening mechanism.
  • Patent Document 1 has the problem that controlling the particle diameters of the two types of powder is complicated and difficult. Additionally, HIP sintering has a problem of low versatility.
  • the applicant has filed an application for zirconia powder in which the content of the stabilizer is within a specific range and the pore distribution is in a specific manner (patent application). No. 2020-170949). According to the zirconia powder, it is possible to easily obtain a zirconia sintered body having high strength and high toughness.
  • the present applicant has applied for the following zirconia powder in Japanese Patent Application No. 2020-170949.
  • the stabilizer is CaO, Y2O3 , Er2O3 , or Yb2O3 ,
  • the content of Y 2 O 3 with respect to the entire zirconia powder is 1.4 mol% or more and less than 2.0 mol%
  • the stabilizer is Er 2 O 3
  • the content of Er 2 O 3 with respect to the entire zirconia powder is 1.4 mol% or more and 1.8 mol% or less
  • the stabilizer is Yb 2 O 3
  • the content of Yb 2 O 3 with respect to the entire zirconia powder is 1.4 mol% or more and 1.8 mol% or less
  • the stabilizer is CaO
  • the content of CaO with respect to the entire zirconia powder is 3.5 mol% or more and 4.5 mol% or less, In the range of 10 nm or more and 200 .
  • the present inventors found that when using only CaO as a stabilizer, there is room for further improvement in that the sintering temperature range for obtaining a sintered body with high strength and high toughness is narrow. I discovered something. Specifically, when only CaO is used as a stabilizer, in the case of pressureless sintering, the sintering temperature must be within the range of 1,225°C to 1,275°C to produce a sintered body with high strength and high toughness.
  • the sintering temperature range in which a sintered body with high strength and high toughness can be obtained will be referred to as the "sinterable temperature range.”
  • the sinterable temperature range is 1225°C to 1275°C, the difference between the maximum and minimum sinterable temperatures is 50°C.
  • the sinterable temperature range is narrow (the difference between the maximum and minimum sinterable temperatures is about 50° C.)
  • there is a problem that temperature control during sintering is not easy.
  • sintering zirconia powder using a large-sized electric furnace there is a temperature difference between high-temperature points and low-temperature points depending on the position in the electric furnace.
  • the zirconia powder will be absorbed in the high-temperature areas of the furnace (exceeding the sintering temperature) and the zirconia powder in the low-temperature areas of the furnace (below the sintering temperature). Some zirconia powders are not properly sintered, making it impossible to obtain a sintered body with high strength and high toughness.
  • the present inventors found that when using only Y 2 O 3 as a stabilizer, a sintered body with high strength and high toughness could be obtained, but when using other stabilizers, In comparison, it was found that there was room for improvement in that the resistance to hydrothermal deterioration was slightly inferior.
  • the present invention has been made in view of the above-mentioned problems, and its purpose is to widen the sintering temperature range in order to obtain a zirconia sintered body having high strength and high toughness, and to improve the zirconia sintered body obtained.
  • An object of the present invention is to provide zirconia powder with high resistance to hydrothermal deterioration.
  • Another object of the present invention is to provide a zirconia sintered body obtained by sintering the zirconia powder.
  • Another object of the present invention is to provide a method for manufacturing the zirconia sintered body.
  • the inventors of the present invention have conducted extensive studies on the above-mentioned problems. As a result, CaO was used as the first stabilizer, and Y2O3 , Yb2O3 , Er2O3 , CeO2 , Nd2O3 , La2O3 , The inventors have discovered that the above problems can be solved by using one or more selected from the group consisting of Tb 2 O 3 and Tb 2 O 3 and keeping the content within a specific range, and have completed the present invention.
  • the zirconia powder according to the present invention is a stabilized zirconia containing zirconia and a stabilizer;
  • the stabilizer includes a first stabilizer and a second stabilizer, the first stabilizer is CaO,
  • the second stabilizer is one selected from the group consisting of Y2O3, Yb2O3 , Er2O3 , CeO2 , Nd2O3 , La2O3 , and Tb2O3 .
  • the total amount of the stabilizer in the stabilized zirconia is 2.5 mol% or more and 6.5 mol% or less in terms of oxide, It is characterized in that the ratio of [amount of CaO (mol%)]/[total amount of stabilizer (mol%)] is 50% or more and 98% or less.
  • the temperature at which sintering can be performed can be expanded.
  • the present inventors speculate as follows about the reason why the sintering temperature increases when the second stabilizer is included in addition to CaO.
  • a zirconia sintered body has a critical crystal grain size that allows it to maintain a tetragonal crystal structure at room temperature. The crystal grain size increases as the temperature during sintering increases. Therefore, when zirconia powder is sintered at high temperatures, the crystal grain size exceeds the critical crystal grain size, and when the temperature drops to room temperature, a martensitic phase transition from tetragonal to monoclinic occurs, causing cracks. I end up.
  • a sintered body in which such cracks occur cannot be said to be a sintered body with high strength and high toughness. Therefore, it is necessary to perform sintering at a temperature that does not exceed the critical crystal grain size.
  • the critical crystal particle size of stabilized zirconia using only CaO as a stabilizer is said to be about 90 nm (see W. Pyda et al., Ceramics International 13 (1987) 114-118). This critical crystal particle size of 90 nm is smaller than when other stabilizers are used. Therefore, in addition to CaO, it was decided to add a second stabilizer capable of increasing the critical crystal particle size. This makes it possible to increase the upper limit of the sinterable temperature range compared to stabilized zirconia using only CaO.
  • the temperature range in which zirconia powder can be sintered can be widened. Furthermore, when the amount of the second stabilizer added increases, the hydrothermal deterioration resistance of the obtained zirconia sintered body decreases, but according to the above configuration, [amount of CaO (mol%)]/ The ratio of [total amount of stabilizers (mol%)] was set to 50% or more, and the amount of the second stabilizer added was as small as possible, resulting in high strength, high toughness, and resistance to hydrothermal deterioration. can be maintained high.
  • the total amount of the stabilizer is 2.5 mol% or more in terms of oxide, the monoclinic phase ratio in the obtained zirconia sintered body can be reduced, and the zirconia powder can be sintered. It is possible to prevent cracks from forming in the obtained zirconia sintered body.
  • the total amount of stabilizers is 6.5 mol% or less in terms of oxides, the cubic phase fraction with low mechanical properties (strength, toughness) can be reduced and the tetragonal phase fraction with high mechanical properties can be increased. I can do it.
  • the sintering temperature range (sinterable temperature range) for obtaining a sintered body with high strength and high toughness can be widened, and the water in the obtained sintered body can be widened.
  • Zirconia powder with high resistance to thermal deterioration can be provided.
  • the second stabilizer is selected from the group consisting of Y2O3 , Yb2O3 , Er2O3 , Nd2O3 , La2O3 , and Tb2O3 .
  • the total amount of the stabilizer in the stabilized zirconia is 2.5 mol% or more and 4.5 mol% or less in terms of oxide.
  • the second stabilizer is CeO 2
  • the total amount of the stabilizer in the stabilized zirconia is preferably 4.0 mol% or more and 6.5 mol% or less in terms of oxide.
  • Al 2 O 3 is contained within a range of 3% by mass or less based on the entire zirconia powder.
  • Al 2 O 3 When Al 2 O 3 is contained within a range of 3% by mass or less, it acts as a sintering aid, and the relative sintered density can be increased even when sintering at a low temperature. Therefore, even when sintered at a low temperature, a sintered body with high strength and high toughness can be obtained. In this way, when Al 2 O 3 is contained within a range of 3% by mass or less, the lower limit of the sinterable temperature range can be lowered, and the sinterable temperature range can be made wider.
  • Temperature A is the lowest sintering temperature that satisfies The best sintering that satisfies the following ⁇ Property 1>, ⁇ Property 2>, ⁇ Property 3>, and ⁇ Property 4> below when molded at a molding pressure of 2t/ cm2 and sintered at atmospheric pressure.
  • the difference between the average grain size A when sintered at the temperature A and the average grain size B when sintered at the temperature B [(average grain size B) - (average grain size A)] is , preferably 50 nm or more.
  • ⁇ Characteristic 2> The toughness value determined by the IF method is 10 MPa ⁇ m 0.5 or more.
  • ⁇ Characteristic 3> The three-point bending strength is 700 MPa or more.
  • the difference [(average grain size B) - (average grain size A)] is 50 nm or more, which means that the difference between the maximum sinterable temperature (temperature B) and the minimum temperature (temperature A) This means that the difference is wide (at least the difference is greater than 50°C). Therefore, if the difference [(average grain size B)-(average grain size A)] is 50 nm or more, the sinterable temperature range can be said to be particularly wide.
  • the specific surface area is preferably 10 m 2 /g or more and 40 m 2 /g or less.
  • the specific surface area is 10 m 2 /g or more, sinterability is excellent. Therefore, even when sintered at a low temperature, the relative sintered density can be increased, and a sintered body with high strength and high toughness can be obtained. Thus, when the specific surface area is 10 m 2 /g or more, the lower limit of the sinterable temperature range can be lowered, and the sinterable temperature range can be made wider.
  • the particle diameter D 50 is 0.10 ⁇ m or more and 0.80 ⁇ m or less.
  • the particle size D 50 is 0.80 ⁇ m or less, sinterability is excellent. Therefore, even when sintered at a low temperature, the relative sintered density can be increased, and a sintered body with high strength and high toughness can be obtained. In this way, when the particle size D 50 is 0.80 ⁇ m or less, the lower limit of the sinterable temperature range can be lowered, and the sinterable temperature range can be made wider.
  • the zirconia sintered body according to the present invention is a stabilized zirconia containing zirconia and a stabilizer;
  • the stabilizer includes a first stabilizer and a second stabilizer, the first stabilizer is CaO,
  • the second stabilizer is one selected from the group consisting of Y2O3, Yb2O3 , Er2O3 , CeO2 , Nd2O3 , La2O3 , and Tb2O3 .
  • the total amount of the stabilizer in the stabilized zirconia is 2.5 mol% or more and 6.5 mol% or less in terms of oxide, It is characterized in that the ratio of [amount of CaO (mol%)]/[total amount of stabilizer (mol%)] is 50% or more and 98% or less.
  • the second stabilizer is included in addition to CaO (first stabilizer), and the total amount of the stabilizer is 2.5 mol% or more and 6.5 mol% or less in terms of oxide. Since the ratio of [amount of CaO (mol%)]/[total amount of stabilizer (mol%)] is 50% or more, the zirconia sintered body has a wide sinterable temperature range. It can be said that it was obtained by sintering. Further, the zirconia sintered body obtained by sintering the zirconia powder at a sinterable temperature range can have high strength, high toughness, and high resistance to hydrothermal deterioration.
  • the second stabilizer is selected from the group consisting of Y2O3 , Yb2O3 , Er2O3 , Nd2O3 , La2O3 , and Tb2O3 .
  • the total amount of the stabilizer in the stabilized zirconia is 2.5 mol% or more and 4.5 mol% or less in terms of oxide.
  • the second stabilizer is CeO 2
  • the total amount of the stabilizer in the stabilized zirconia is preferably 4.0 mol% or more and 6.5 mol% or less in terms of oxide.
  • Al 2 O 3 is contained within a range of 3% by mass or less based on the entire zirconia sintered body.
  • Al 2 O 3 When Al 2 O 3 is contained in a range of 3% by mass or less, it acts as a sintering aid when the zirconia powder is sintered to obtain the zirconia sintered body. Therefore, it can be said that the zirconia sintered body is obtained by sintering the zirconia powder having a wider sinterable temperature range.
  • the monoclinic phase ratio after hydrothermal treatment at 134° C., 0.3 MPa, and 15 hours is 30% or less.
  • the monoclinic phase ratio before hydrothermal treatment is 7.0% or less, It is preferable that the value obtained by subtracting the monoclinic phase fraction before hydrothermal deterioration from the monoclinic phase fraction after hydrothermal treatment at 134° C., 0.3 MPa, and 15 hours is 20% or less.
  • the monoclinic phase fraction before hydrothermal treatment is 7.0% or less, and the monoclinic phase fraction before hydrothermal deterioration is subtracted from the monoclinic phase fraction after hydrothermal treatment at 134°C, 0.3 MPa, 15 hours. If the value is 20% or less, the monoclinic phase ratio before hydrothermal treatment is small, and the amount of change in the monoclinic phase ratio before and after hydrothermal treatment is small, so the monoclinic phase ratio after hydrothermal treatment is low. It can be said that there are few. Therefore, it can be said that it has better resistance to hydrothermal deterioration.
  • the three-point bending strength is preferably 700 MPa or more and 1500 MPa or less.
  • the three-point bending strength is 700 MPa or more, it can be said that the strength is higher.
  • the toughness value determined by the IF method is 10 MPa ⁇ m 0.5 or more and 40 MPa ⁇ m 0.5 or less.
  • the toughness value is 10 MPa ⁇ m 0.5 or more, it can be said that the toughness is higher.
  • the monoclinic phase ratio after hydrothermal treatment at 400° C., 30 MPa, and 5 hours is 30% or less.
  • the hydrothermal deterioration resistance is further excellent.
  • the monoclinic phase ratio before hydrothermal treatment is 7.0% or less, It is preferable that the value obtained by subtracting the monoclinic phase fraction before hydrothermal deterioration from the monoclinic phase fraction after hydrothermal treatment at 400° C., 30 MPa, and 5 hours is 20% or less.
  • the monoclinic phase fraction before hydrothermal treatment is 7.0% or less, and the value is calculated by subtracting the monoclinic phase fraction before hydrothermal deterioration from the monoclinic phase fraction after hydrothermal treatment at 400°C, 30 MPa, for 5 hours. is 20% or less, the monoclinic phase ratio before hydrothermal treatment is small, and the amount of change in the monoclinic phase ratio before and after hydrothermal treatment is small, so the monoclinic phase ratio after hydrothermal treatment is small. It can be said. Therefore, it can be said that it has better resistance to hydrothermal deterioration.
  • the method for manufacturing a zirconia sintered body according to the present invention includes: a step X of molding the zirconia powder to obtain a molded body; After the step
  • the zirconia powder contains the second stabilizer in addition to CaO (first stabilizer), and the total amount of the stabilizer is 2.5 mol% or more and 6.5 mol% or less in terms of oxide. , the ratio of [amount of CaO (mol%)]/[total amount of stabilizer (mol%)] is 50% or more.
  • high strength is obtained by sintering the zirconia powder within a wide temperature range of 1200° C. or more and 1450° C. or less for 1 hour or more and 5 hours or less.
  • a zirconia sintered body having high toughness and high resistance to hydrothermal deterioration can be obtained.
  • a zirconia powder that can be sintered over a wide range of temperatures to obtain a zirconia sintered body with high strength and high toughness, and the obtained zirconia sintered body has high resistance to hydrothermal deterioration.
  • a zirconia sintered body obtained by sintering the zirconia powder can be provided.
  • a method for manufacturing the zirconia sintered body can be provided.
  • FIG. 2 is a schematic diagram for explaining a method for manufacturing zirconia powder according to the present embodiment.
  • FIG. 3 is a schematic diagram for explaining indentation length and crack length.
  • zirconia zirconium oxide
  • the expressions "contain” and “contain” include the concepts of "containing”, “containing”, “consisting essentially” and “consisting only”.
  • the maximum value and minimum value of the content of each component shown below are independently the preferred minimum value and the preferred maximum value of the present invention, regardless of the content of other components. Moreover, the maximum values and minimum values of various parameters (measured values, etc.) shown below are independently preferred minimum values and maximum values of the present invention, regardless of the content (composition) of each component.
  • zirconia powder An example of zirconia powder according to this embodiment will be described below. However, the zirconia powder of the present invention is not limited to the following examples.
  • the zirconia powder according to this embodiment is a stabilized zirconia containing zirconia and a stabilizer;
  • the stabilizer includes a first stabilizer and a second stabilizer, the first stabilizer is CaO,
  • the second stabilizer is one selected from the group consisting of Y2O3, Yb2O3 , Er2O3 , CeO2 , Nd2O3 , La2O3 , and Tb2O3 . More than a species,
  • the total amount of the stabilizer in the stabilized zirconia is 2.5 mol% or more and 6.5 mol% or less in terms of oxide,
  • the ratio of [amount of CaO (mol%)]/[total amount of stabilizer (mol%)] is 50% or more and 98% or less.
  • the zirconia powder includes primary particles that are not aggregated and secondary particles that are aggregated primary particles.
  • the amount of primary particles that do not become secondary particles and exist in the state of non-agglomerated primary particles is very small. It is less than 1% by mass of the total amount of primary particles that have become secondary particles. That is, the zirconia powder may contain a very small amount of non-agglomerated primary particles, but is mostly composed of secondary particles.
  • the zirconia powder according to this embodiment contains stabilized zirconia.
  • the content of the stabilized zirconia is preferably 70% by mass or more, more preferably 75% by mass or more, even more preferably 80% by mass or more, particularly preferably 85% by mass, when the entire zirconia powder is 100% by mass. % or more.
  • the content of the stabilized zirconia can be 99% by mass or less, 95% by mass or less, etc. when the entire zirconia powder is 100% by mass.
  • the zirconia powder may be composed only of the stabilized zirconia. In this case, the content of the stabilized zirconia is 100% by mass when the entire zirconia powder is 100% by mass.
  • the content of the stabilized zirconia is preferably 70% by mass or more and 99% by mass or less, more preferably 75% by mass or more and 95% by mass or less, when the entire zirconia powder is 100% by mass.
  • the stabilized zirconia includes zirconia and a stabilizer.
  • the stabilizer is contained in the primary particles in the form of solid solution or the like.
  • the total content of zirconia and the stabilizer in the stabilized zirconia is preferably 70% by mass or more, and preferably 80% by mass or more when the entire stabilized zirconia is 100% by mass. is more preferable.
  • the total content of zirconia and the stabilizer can be 99% by mass or less, 95% by mass or less, etc., when the entire stabilized zirconia is 100% by mass.
  • the total content of zirconia and the stabilizer in the stabilized zirconia is preferably 70% by mass or more and 99% by mass or less, and 75% by mass when the entire stabilized zirconia is 100% by mass. More preferably, the content is 95% by mass or less.
  • the stabilized zirconia may be composed of only zirconia and a stabilizer.
  • the stabilizer includes a first stabilizer and a second stabilizer.
  • the first stabilizer is CaO. Since the zirconia powder contains CaO as the first stabilizer, it has excellent resistance to hydrothermal deterioration.
  • the second stabilizer is one selected from the group consisting of Y2O3, Yb2O3 , Er2O3 , CeO2 , Nd2O3 , La2O3 , and Tb2O3 . More than a species. Y 2 O 3 , Yb 2 O 3 , Er 2 O 3 , CeO 2 , Nd 2 O 3 , La 2 O 3 , and Tb 2 O 3 are added to stabilized zirconia using only CaO as a stabilizer. This is a stabilizer that can increase the critical crystal particle size. Since the zirconia powder contains the second stabilizer in addition to CaO (first stabilizer), the sinterable temperature can be widened.
  • the second stabilizer may be selected from the viewpoint of determining the critical crystal particle size of the zirconia powder.
  • the second stabilizer is preferably Y 2 O 3 , Yb 2 O 3 , or La 2 O 3 from the viewpoint of obtaining a white sintered body.
  • the second stabilizer is preferably Er 2 O 3 from the viewpoint of obtaining a pink sintered body.
  • the second stabilizer is preferably CeO 2 from the viewpoint of obtaining a yellow sintered body.
  • the second stabilizer is preferably Nd 2 O 3 from the viewpoint of obtaining a purple sintered body.
  • the second stabilizer is preferably Tb 2 O 3 from the viewpoint of obtaining an orange sintered body.
  • the ratio of [amount of CaO (mol%)]/[total amount of stabilizer (mol%)] is 50% or more and 98% or less.
  • the amount of the second stabilizer added increases, the hydrothermal deterioration resistance of the resulting zirconia sintered body decreases; %)] is 50% or more and the amount of the second stabilizer added is as small as possible, so it is possible to have high strength and high toughness, and maintain high resistance to hydrothermal deterioration.
  • the ratio of [amount of CaO (mol%)]/[total amount of stabilizer (mol%)] is more preferably 55% or more, still more preferably 60% or more.
  • the ratio of [amount of CaO (mol%)]/[total amount of stabilizer (mol%)] is more preferably 90% or less, and still more preferably 80% or less.
  • the ratio of [amount of CaO (mol%)]/[total amount of stabilizer (mol%)] is more preferably 55% or more and 90% or less, and even more preferably 60% or more and 80% or less.
  • the total amount of stabilizers in the stabilized zirconia is 2.5 mol% or more and 6.5 mol% or less in terms of oxide. Since the total amount of the stabilizer is 2.5 mol% or more in terms of oxide, the monoclinic phase ratio in the obtained zirconia sintered body can be reduced, and the zirconia powder can be obtained by sintering the zirconia powder. It is possible to prevent cracks from forming in the zirconia sintered body. In addition, since the total amount of stabilizers is 6.5 mol% or less in terms of oxides, the cubic phase fraction with low mechanical properties (strength, toughness) can be reduced and the tetragonal phase fraction with high mechanical properties can be increased. Can be done.
  • the total amount of the stabilizer is preferably 2.7 mol% or more, more preferably 2.9 mol% or more, and even more preferably 3.0 mol% or more in terms of oxide.
  • the total amount of the stabilizer is preferably 6.0 mol% or less, more preferably 5.5 mol% or less, even more preferably 5.0 mol% or less, particularly preferably 4.5 mol% or less in terms of oxide.
  • the total amount of the stabilizer is preferably 2.7 mol% or more and 6.0 mol% or less, more preferably 2.9 mol% or more and 5.5 mol% or less, and 3.0 mol% or more and 5.0 mol% or less in terms of oxides. More preferably, 3.0 mol% or more and 4.5 mol% or less is particularly preferable.
  • the second stabilizer is selected from the group consisting of Y2O3 , Yb2O3 , Er2O3 , Nd2O3 , La2O3 , and Tb2O3 .
  • the total amount of the stabilizer in the stabilized zirconia is preferably 2.5 mol % or more and 4.5 mol % or less in terms of oxide.
  • the second stabilizer is one or more selected from the group consisting of Y2O3 , Yb2O3 , Er2O3 , Nd2O3 , La2O3 , and Tb2O3 .
  • the total amount of the stabilizer in the stabilized zirconia is more preferably 2.6 mol% or more, and even more preferably 2.8 mol% or more in terms of oxide.
  • the second stabilizer is one or more selected from the group consisting of Y2O3 , Yb2O3 , Er2O3 , Nd2O3 , La2O3 , and Tb2O3 .
  • the total amount of the stabilizer in the stabilized zirconia is more preferably 4.1 mol% or less, and even more preferably 3.7 mol% or less, in terms of oxide.
  • the second stabilizer is one or more selected from the group consisting of Y2O3 , Yb2O3 , Er2O3 , Nd2O3 , La2O3 , and Tb2O3 .
  • the total amount of the stabilizer in the stabilized zirconia is more preferably 2.6 mol% or more and 4.1 mol% or less in terms of oxide, More preferably 2.8 mol% or more and 3.7 mol% or less.
  • Y 2 O 3 , Yb 2 O 3 , Er 2 O 3 , Nd 2 O 3 , La 2 O 3 , and Tb 2 O 3 exhibit similar behavior because they are all trivalent elements. . That is, Y 2 O 3 , Yb 2 O 3 , Er 2 O 3 , Nd 2 O 3 , La 2 O 3 , and Tb 2 O 3 exhibit similar behavior when added in the same amounts to the zirconia powder. shows.
  • the total amount of the stabilizer in the stabilized zirconia is 4.0 mol% or more and 6.5 mol% or less in terms of oxide. is preferred.
  • the total amount of the stabilizer in the stabilized zirconia is more preferably 4.3 mol % or more, and even more preferably 4.5 mol % or more in terms of oxide.
  • the second stabilizer is CeO 2
  • the total amount of the stabilizer in the stabilized zirconia is more preferably 6.3 mol% or less, and even more preferably 6.0 mol% or less, in terms of oxide.
  • the total amount of the stabilizer in the stabilized zirconia is more preferably 4.3 mol% or more and 6.3 mol% or less, and 4.5 mol% in terms of oxide.
  • the content is more preferably 6.0 mol% or less.
  • the content of zirconia in the stabilized zirconia is preferably 80% by mass or more and 99% by mass or less.
  • the content of zirconia in the stabilized zirconia is more preferably 85% by mass or more, and even more preferably 90% by mass or more.
  • the content of zirconia in the stabilized zirconia is more preferably 98% by mass or less, and even more preferably 97% by mass or less.
  • the content of zirconia in the stabilized zirconia is more preferably 85% by mass or more and 98% by mass or less, and even more preferably 90% by mass or more and 97% by mass or less.
  • the zirconia powder has the following ⁇ Property 1>, the following ⁇ Property 2>, the following ⁇ Property 3>, and the following ⁇ Property 4> when molded at a molding pressure of 2 t/cm 2 and sintered at atmospheric pressure.
  • Temperature A is the lowest sintering temperature that satisfies The best sintering that satisfies the following ⁇ Property 1>, ⁇ Property 2>, ⁇ Property 3>, and ⁇ Property 4> below when molded at a molding pressure of 2t/ cm2 and sintered at atmospheric pressure.
  • the difference between the average grain size A when sintered at the temperature A and the average grain size B when sintered at the temperature B [(average grain size B) - (average grain size A)] is , preferably 50 nm or more.
  • ⁇ Characteristic 2> The toughness value determined by the IF method is 10 MPa ⁇ m 0.5 or more.
  • ⁇ Characteristic 3> The three-point bending strength is 700 MPa or more.
  • the difference [(average grain size B) - (average grain size A)] is 50 nm or more, which means that the difference between the maximum sinterable temperature (temperature B) and the minimum temperature (temperature A) means that it is wide. Therefore, if the difference [(average grain size B)-(average grain size A)] is 50 nm or more, the sinterable temperature range can be said to be particularly wide.
  • the difference [(average grain size B) ⁇ (average grain size A)] is more preferably 55 nm or more, and still more preferably 60 nm or more.
  • the difference [(average grain size B) ⁇ (average grain size A)] is preferably as large as possible, and may be, for example, 120 nm or less, 100 nm or less, etc.
  • the difference [(average grain size B) ⁇ (average grain size A)] is more preferably 55 nm or more and 120 nm or less, and even more preferably 60 nm or more and 100 nm or less.
  • the toughness value determined by the IF method, the three-point bending strength, and the monoclinic phase ratio after hydrothermal treatment at 134° C., 0.3 MPa, and 15 hours refer to the values obtained by the method described in Examples.
  • the expression of pressure when performing hydrothermal treatment is absolute pressure.
  • characteristic 4 means that "the monoclinic phase ratio after hydrothermal treatment at 134° C., absolute pressure 0.3 MPa, and 15 hours is 30% or less.”
  • the specific surface area of the zirconia powder is preferably 10 m 2 /g or more and 40 m 2 /g or less.
  • the specific surface area is 10 m 2 /g or more, sinterability is excellent. Therefore, even when sintered at a low temperature, the relative sintered density can be increased, and a sintered body with high strength and high toughness can be obtained.
  • the specific surface area is 10 m 2 /g or more, the lower limit of the sinterable temperature range can be lowered, and the sinterable temperature range can be made wider.
  • the specific surface area is more preferably 15 m 2 /g or more, still more preferably 20 m 2 /g or more.
  • the specific surface area is preferably 37 m 2 /g or less, more preferably 35 m 2 /g or less, even more preferably 30 m 2 /g or less.
  • the specific surface area is more preferably 15 m 2 /g or more and 37 m 2 /g or less, still more preferably 20 m 2 /g or more and 35 m 2 /g or less, particularly preferably 20 m 2 /g or more and 30 m 2 /g or less.
  • the specific surface area refers to a value obtained by the method described in Examples.
  • the particle diameter D50 of the zirconia powder is preferably 0.10 ⁇ m or more and 0.80 ⁇ m or less.
  • the particle size D 50 is 0.80 ⁇ m or less, the sinterability is more excellent. Therefore, even when sintered at a low temperature, the relative sintered density can be increased, and a sintered body with high strength and high toughness can be obtained. In this way, when the particle size D 50 is 0.80 ⁇ m or less, the lower limit of the sinterable temperature range can be lowered, and the sinterable temperature range can be made wider.
  • the particle diameter D 50 is more preferably 0.15 ⁇ m or more, still more preferably 0.20 ⁇ m or more.
  • the particle diameter D 50 is more preferably 0.70 ⁇ m or less, still more preferably 0.60 ⁇ m or less.
  • the particle diameter D 50 is more preferably 0.15 ⁇ m or more and 0.70 ⁇ m or less, and even more preferably 0.20 ⁇ m or more and 0.60 ⁇ m or less.
  • the particle diameter D50 refers to a value obtained by the method described in Examples. Note that when measuring the particle diameter D50 , not only secondary particles but also non-agglomerated primary particles may be included, but the amount of non-agglomerated primary particles that may be included in the zirconia powder is very small. It is a trace amount. Therefore, the particle diameter D 50 may be considered to represent the particle diameter D 50 of the secondary particles, that is, the average particle diameter of the secondary particles.
  • the crystallite diameter of the zirconia powder is preferably 10 nm or more and 60 nm or less.
  • the sinterability is more excellent. Therefore, even when sintered at a low temperature, the relative sintered density can be increased, and a sintered body with high strength and high toughness can be obtained.
  • the crystallite diameter is 60 nm or less, the lower limit of the sinterable temperature range can be lowered, and the sinterable temperature range can be made wider.
  • Peak top diameter of primary particle gap The zirconia powder preferably has a peak top diameter of pore volume distribution of 20 nm or more and 120 nm or less in the range of 10 nm or more and 200 nm or less in the pore distribution based on mercury intrusion porosimetry.
  • the peak top diameter is preferably 30 nm or more, more preferably 35 nm or more, still more preferably 40 nm or more, particularly preferably 45 nm or more.
  • the peak top diameter is preferably 110 nm or less, more preferably 100 nm or less, even more preferably 90 nm or less, particularly preferably 80 nm or less.
  • the peak top diameter is preferably 30 nm or more and 110 nm or less, more preferably 35 nm or more and 100 nm or less, still more preferably 40 nm or more and 90 nm or less, particularly preferably 45 nm or more and 80 nm or less.
  • the peak top diameter of the pore volume distribution is 20 nm or more and 120 nm or less. It means that all peak top diameters in the range of 10 nm or more and 200 nm or less are in the range of 20 nm or more and 120 nm or less.
  • the zirconia powder preferably has a pore distribution width of 30 nm or more and 170 nm or less in a pore distribution range of 10 nm or more and 200 nm or less based on mercury intrusion porosimetry.
  • the pore distribution width is preferably 40 nm or more, more preferably 46 nm or more, still more preferably 50 nm or more, particularly preferably 60 nm or more.
  • the pore distribution width is preferably 120 nm or less, more preferably 110 nm or less, even more preferably 100 nm or less, particularly preferably 95 nm or less, particularly preferably 90 nm or less.
  • the pore distribution width is preferably 40 nm or more and 120 nm or less, more preferably 46 nm or more and 110 nm or less, even more preferably 50 nm or more and 100 nm or less, particularly preferably 60 nm or more and 95 nm or less, and especially 60 nm or more and 90 nm or less.
  • the pore distribution width refers to the width of the peak at which the log differential pore volume is 0.1 ml/g or more.
  • the pore distribution width is 30 nm or more and 170 nm or less
  • the horizontal axis is the pore diameter and the vertical axis is the pore diameter.
  • the point where the pore diameter intersects the log differential pore volume of 0.1 ml/g for the first time is the minimum diameter.
  • the maximum diameter is defined as the point where it crosses the log differential pore volume of 0.1 ml/g again (the point where it intersects while descending), and the difference between the maximum diameter and the minimum diameter is 30 nm or more and 170 nm or less.
  • the zirconia powder preferably has a pore volume of 0.2 ml/g or more and less than 0.5 ml/g in the range of 10 nm or more and 200 nm or less in pore distribution based on mercury intrusion porosimetry. .
  • the pore volume is preferably 0.22 ml/g or more, more preferably 0.25 ml/g or more, even more preferably 0.3 ml/g or more, particularly preferably 0.33 ml/g or more, particularly preferably 0. .35ml/g or more.
  • the pore volume is preferably 0.48 ml/g or less, more preferably 0.46 ml/g or less, even more preferably 0.44 ml/g or less.
  • the pore volume is preferably 0.22 ml/g or more and 0.48 ml/g or less, more preferably 0.25 ml/g or more and 0.46 ml/g or less, and still more preferably 0.30 ml/g or more and 0.44 ml/g. g or less, particularly preferably from 0.33 ml/g to 0.44 ml/g, particularly preferably from 0.35 ml/g to 0.44 ml/g.
  • the peak top diameter, the pore volume, and the pore distribution width refer to values obtained by the method described in Examples.
  • the zirconia powder may contain additives.
  • additive refers to something added to zirconia particles as a mixture.
  • the additives include sintering aids, colorants, and the like.
  • the additives include those that function only as a sintering aid, those that function only as a coloring agent, and those that function as a sintering aid and a coloring agent. The sintering aid and coloring agent will be explained below.
  • the zirconia powder preferably contains Al 2 O 3 (alumina) in a range of 3% by mass or less based on the entire zirconia powder.
  • alumina When alumina is contained within a range of 3% by mass or less, it acts as a sintering aid, and the relative sintered density can be increased even when sintering at a low temperature. Therefore, even when sintered at a low temperature, a sintered body with high strength and high toughness can be obtained. In this way, when alumina is contained within a range of 3% by mass or less, the lower limit of the sinterable temperature range can be lowered, and the sinterable temperature range can be made wider.
  • the zirconia powder contains alumina, it is easy to suppress a decrease in the toughness of the zirconia sintered body. Furthermore, by adjusting the alumina content, the translucency of the zirconia sintered body can be improved.
  • the content of Al 2 O 3 is more preferably 2.0% by mass or less, and even more preferably 1.0% by mass from the viewpoint of functioning suitably as a sintering aid. % by mass or less.
  • the content of Al 2 O 3 is more preferably 0.05% by mass or more, and even more preferably 0.10% by mass from the viewpoint of suitably functioning as a sintering aid. % by mass or more.
  • the content of Al 2 O 3 is more preferably 0.05% by mass or more and 2.0% by mass or less, further preferably 0.10% by mass or more and 1.0% by mass or less. % by mass or less.
  • alumina powder is preferred from the viewpoint of ease of handling during preparation of zirconia powder (when mixed and dispersed in zirconia particles) and reducing residual impurities.
  • the average particle size of the primary particles of alumina is not particularly limited, but for example, 0.02 to 0.4 ⁇ m, preferably 0.05 to 0.3 ⁇ m, more preferably 0.07 ⁇ m. ⁇ 0.2 ⁇ m.
  • the zirconia powder does not need to contain Al 2 O 3 (alumina) because the sinterable temperature range is wide and the obtained sintered body has high resistance to hydrothermal deterioration.
  • the zirconia powder may also contain sinterable ceramics, thermosetting resin, etc. for the purpose of improving properties such as strength.
  • the zirconia powder may contain one or more selected from the group consisting of Fe, V, Mn, Co, Zn, Cu, and Ti.
  • the zirconia sintered body obtained by sintering the zirconia powder can be suitably colored. can do.
  • the form of the coloring element is not particularly limited, and it can be added in the form of an oxide, chloride, or the like.
  • Specific examples of the coloring agent containing the coloring element include Fe 2 O 3 , V 2 O 5 , MnO 2 , CoO, ZnO, CuO, TiO 2 and the like.
  • the colorant is added to the zirconia powder as a mixture.
  • the content of the coloring agent is preferably 0.005% by mass or more and 1% by mass or less, and 0.05% by mass when the entire zirconia powder is 100% by mass.
  • the content is more preferably 0.5% by mass or less.
  • V 2 O 5 When V 2 O 5 is included as the colorant, it is preferably 0.005% by mass or more and 0.5% by mass or less, and 0.01% by mass or more and 0.1% by mass, when the entire zirconia powder is 100% by mass. The following are more preferred.
  • the content of the colorant is 0.005% by mass or more, the intended coloring can be easily obtained. In other words, the color tone can be easily adjusted.
  • MnO 2 When MnO 2 is included as the colorant, it is preferably 0.005% by mass or more and 2% by mass or less, more preferably 0.1% by mass or more and 1.1% by mass or less, when the entire zirconia powder is 100% by mass. .
  • the content of the colorant is 0.005% by mass or more, the intended coloring can be easily obtained. In other words, the color tone can be easily adjusted.
  • the content of the colorant is preferably 0.005% by mass or more and 2% by mass or less, and 0.01% by mass or more and 1.0% by mass or less, when the entire zirconia powder is 100% by mass. More preferably, it is 5% by mass or less.
  • the content of the colorant is 0.005% by mass or more, the intended coloring can be easily obtained. In other words, the color tone can be easily adjusted.
  • the content of the colorant is preferably 0.005% by mass or more and 1% by mass or less, and 0.1% by mass or more and 0.1% by mass or less, when the entire zirconia powder is 100% by mass. More preferably, it is 5% by mass or less.
  • the content of the colorant is 0.005% by mass or more, the intended coloring can be easily obtained. In other words, the color tone can be easily adjusted.
  • the content of the coloring agent is preferably 0.005% by mass or more and 1% by mass or less, and 0.05% by mass or more and 0.00% by mass or less, when the entire zirconia powder is 100% by mass. More preferably, it is 6% by mass or less.
  • the content of the colorant is 0.005% by mass or more, the intended coloring can be easily obtained. In other words, the color tone can be easily adjusted.
  • the content of the coloring agent is preferably 0.005% by mass or more and 2% by mass or less, and 0.01% by mass or more and 1% by mass or less, when the entire zirconia powder is 100% by mass. It is more preferably at most 0.1% by mass and at most 0.3% by mass.
  • the content of the colorant is 0.005% by mass or more, the intended coloring can be easily obtained. In other words, the color tone can be easily adjusted.
  • the zirconia powder preferably has a relative molded density of 43 to 51% when molded at a molding pressure of 2 t/cm 2 .
  • the relative molding density is a value calculated by the following formula.
  • Relative molding density (%) (molding density / theoretical sintered density) ⁇ 100... (4)
  • the theoretical sintered density (rho is assumed to be 0 ) is a value calculated by equation (2-1), which will be explained later as a method for measuring the relative sintered density of a zirconia sintered body.
  • the lower limit of the relative molding density is preferably 44.5% or more, more preferably 45% or more.
  • the upper limit thereof is preferably 50.5% or less, more preferably 49.5% or less, even more preferably 48.5% or less, and particularly preferably 48% or less.
  • the relative molding density is preferably 44.5% or more and 50.5% or less, more preferably 45% or more and 49.5% or less, even more preferably 45% or more and 48.5% or less, and 45% or more and 48% or less. Particularly preferred.
  • the zirconia powder according to this embodiment has been described above.
  • Method for producing zirconia powder An example of a method for producing zirconia powder will be described below. However, the method for producing zirconia powder is not limited to the following example.
  • the method for producing zirconia powder according to this embodiment is as follows: Step 1 of heating the zirconium salt solution and the sulfating agent solution separately to 95°C or more and 100°C or less, By bringing the heated zirconium salt solution and the heated sulfating agent solution into contact with each other such that the concentration of the mixed liquid does not change from the start to the end of the contact, a basic zirconium sulfate-containing reaction is carried out as a mixed liquid. Step 2 of obtaining the liquid; Step 3 of aging the basic zirconium sulfate-containing reaction solution obtained in Step 2 at 95° C.
  • Step 4 of adding a stabilizer to the aged basic zirconium sulfate-containing reaction solution obtained in Step 3;
  • Step 5 of obtaining a zirconium-containing hydroxide by adding an alkali to the basic zirconium sulfate-containing reaction solution obtained in Step 4;
  • Step 6 of obtaining zirconia powder by heat-treating the zirconium-containing hydroxide obtained in Step 5 including;
  • the weight ratio of SO 4 2- /ZrO 2 in the mixed liquid is maintained in the range of 0.3 to 0.8, and the temperature of the mixed liquid is maintained at 95 ° C. or higher. do.
  • step 1 the zirconium salt solution and the sulfating agent solution, which are the starting materials, are heated separately to 95° C. or higher and 100° C. or lower.
  • the zirconium salt used to prepare the zirconium salt solution may be any salt that supplies zirconium ions, such as zirconium oxynitrate, zirconium oxychloride, zirconium nitrate, and the like. These can be used alone or in combination of two or more. Among these, zirconium oxychloride is preferred because of its high productivity on an industrial scale.
  • the solvent used to prepare the zirconium salt solution may be selected depending on the type of zirconium salt, etc. Usually, water (pure water, ion-exchanged water, the same applies hereinafter) is preferable.
  • the concentration of the zirconium salt solution is not particularly limited, but it is generally preferably contained in an amount of 5 to 250 g, more preferably 20 to 150 g, in terms of zirconium oxide (ZrO 2 ) per 1000 g of solvent. .
  • the sulfating agent may be one that reacts with zirconium ions to produce sulfate (that is, a sulfating agent), such as sodium sulfate, potassium sulfate, ammonium sulfate, potassium hydrogen sulfate, sodium hydrogen sulfate, dihydrogen sulfate, etc. Examples include potassium sulfate, sodium disulfate, and sulfur trioxide.
  • the sulfating agent may be in any form such as a powder or a solution, but a solution (particularly an aqueous solution) is preferable.
  • the solvent the same solvent as used for producing the zirconium salt solution can be used.
  • the acid concentration of the zirconium salt solution is preferably 0.1 to 2.0N.
  • the acid concentration can be adjusted using, for example, hydrochloric acid, nitric acid, sodium hydroxide, or the like.
  • the concentration of the sulfating agent is not particularly limited, but it is generally preferable to use 5 to 250 g, particularly 20 to 150 g, of the sulfating agent per 1000 g of the solvent.
  • the material of the container for preparing the zirconium salt solution and the sulfating agent solution is not particularly limited as long as it has a capacity that can sufficiently stir the zirconium salt solution and the sulfating agent solution, respectively. However, it is preferable to have equipment that can appropriately heat each solution so that the temperature does not fall below 95°C.
  • the heating temperature of the zirconium salt solution and the sulfating agent solution may be 95°C or higher and 100°C or lower, preferably 97°C or higher. If Step 2 is performed while the temperatures of the zirconium salt solution and the sulfating agent solution are below 95° C., the zirconium salt solution and the sulfating agent will not react sufficiently, resulting in a decrease in yield.
  • Step 2 the heated zirconium salt solution and the heated sulfating agent solution are brought into contact with each other such that the concentration of the mixed solution does not change from the start to the end of the contact, so that the mixed solution becomes basic.
  • a reaction solution containing zirconium sulfate is obtained.
  • the weight ratio of SO 4 2- /ZrO 2 in the mixed liquid is maintained in the range of 0.3 to 0.8, and the temperature of the mixed liquid is maintained at 95° C. or higher.
  • FIG. 1 is a schematic diagram for explaining the method for producing zirconia powder according to the present embodiment.
  • the container 10 is connected to one upper end (left side in FIG. 1) of the T-tube 20 via a valve 12.
  • the container 30 is connected to the other upper end (the right side in FIG. 1) of the T-tube 20 via a valve 32.
  • the container 10 stores a zirconium solution heated to a temperature of 95° C. or higher and 100° C. or lower.
  • the container 30 stores a sulfating agent solution heated to 95° C. or higher and 100° C. or lower.
  • step 2 the zirconium solution and the sulfating agent solution are brought into contact by opening valve 12 and opening valve 32.
  • step 2 by using such a method, the concentration of the reaction liquid (concentration of the reaction liquid in the T-tube 20) does not change from the start to the end of contact between the zirconium solution and the sulfating agent solution. That's what I do.
  • step 2 a uniform reaction product is obtained because the change in the concentration of SO 4 2 ⁇ /ZrO 2 from the start of contact to the end of contact is suppressed.
  • the weight ratio of SO 4 2 ⁇ /ZrO 2 in the mixed solution in step 2 is preferably within the range of 0.3 to 0.8, more preferably 0.4 to 0.7, and even more preferably 0.45 to 0. It is .65.
  • step 2 in order to maintain the temperature of the mixed solution at 95° C. or higher, it is preferable to install a heater in the pipes (for example, T-tube 20) that supply each solution.
  • the T-shaped tube 20 is a T-shaped tube with a tube diameter L1 of 10 mm at one upper end (left side in FIG. 1), a tube diameter L2 of 10 mm at the other end (right side in FIG. 1), and a 15 mm tube diameter L3 at the lower end.
  • the time (contact time) until the agent solution runs out is preferably 30 seconds to 300 seconds, more preferably 60 seconds to 200 seconds, and even more preferably 90 seconds to 150 seconds.
  • step 3 the basic zirconium sulfate-containing reaction solution obtained in step 2 is aged at 95° C. or higher for 3 hours or more.
  • step 3 for example, the basic zirconium sulfate-containing reaction solution that has flowed into the aging container 40 is aged at 95° C. or higher for 3 hours or more while being stirred by the stirrer 42 .
  • the upper limit of the aging time is not particularly limited, but is, for example, 7 hours or less.
  • the temperature (aging temperature) of the mixed solution (basic zirconium sulfate-containing reaction solution) in step 3 is preferably 95°C or higher, more preferably 97°C or higher and 100°C or lower.
  • the above-mentioned liquid mixture contains basic zirconium sulfate as a main component, and is a basic zirconium sulfate slurry.
  • a stabilizer is added to the aged basic zirconium sulfate-containing reaction solution obtained in step 3.
  • the order of adding the stabilizers is not particularly limited.
  • the first stabilizer may be added first and then the second stabilizer may be added, or the second stabilizer may be added first and then the first stabilizer may be added. Alternatively, the first stabilizer and the second stabilizer may be added at the same time.
  • step 5 an alkali is added to the basic zirconium sulfate-containing reaction solution obtained in step 4 to perform a neutralization reaction. Neutralization produces zirconium-containing hydroxide.
  • the alkali is not limited, and includes, for example, caustic soda, soda carbonate, ammonia, hydrazine ammonium bicarbonate, and the like.
  • the concentration of alkali is not particularly limited, but it is diluted with water and is usually used at a concentration of 5 to 30%.
  • zirconium-containing hydroxide is obtained by filtering the slurry. It is preferable to remove impurities from this zirconium-containing hydroxide by washing it with pure water or the like, if necessary. After washing with water, drying etc. can be performed as necessary.
  • step 6 the zirconium-containing hydroxide obtained in step 5 is heat-treated (fired) to oxidize the zirconium-containing hydroxide and obtain zirconia powder.
  • the heat treatment temperature (firing temperature) and heat treatment time (firing time) of the zirconium-containing hydroxide are not particularly limited, but the heat treatment is usually carried out at about 600 to 1200° C. for 1 hour to 10 hours.
  • the firing temperature is more preferably 650°C or more and 1100°C or less, and even more preferably 700°C or more and 1000°C or less.
  • the firing temperature is more preferably from 2 hours to 6 hours, and even more preferably from 2 hours to 4 hours. By setting the heat treatment temperature to 600° C.
  • the specific surface area of the obtained zirconia powder can be set within a suitable range.
  • the heat treatment temperature is not particularly limited, but it may normally be in the air or in an oxidizing atmosphere.
  • the obtained zirconia powder may be ground into a slurry, if necessary.
  • a binder may be added to improve moldability. If not slurried (not pulverized), the binder and zirconia powder may be uniformly mixed with a kneader.
  • the binder is preferably an organic binder. Since the organic binder can be easily removed from the molded body in a heating furnace in an oxidizing atmosphere and a degreased body can be obtained, it becomes difficult for impurities to remain in the sintered body in the end.
  • Examples of the organic binder include those that dissolve in alcohol, or those that dissolve in a mixed liquid of two or more selected from the group consisting of alcohol, water, aliphatic ketones, and aromatic hydrocarbons.
  • Examples of the organic binder include at least one selected from the group consisting of polyethylene glycol, glycol fatty acid ester, glycerin fatty acid ester, polyvinyl butyral, polyvinyl methyl ether, polyvinylethyl ether, and vinyl propionate.
  • the organic binder may further include one or more thermoplastic resins that are insoluble in alcohol or the mixed liquid.
  • a zirconia powder containing the sintering aid, coloring agent, etc. can be obtained.
  • a sintering aid, a coloring agent, etc. may be added.
  • the zirconia powder according to this embodiment has been described above.
  • the method for manufacturing a zirconia sintered body according to this embodiment is as follows: a step X of molding the zirconia powder to obtain a molded body; After the step
  • zirconia powder is prepared.
  • zirconia powder those explained in the section [zirconia powder] can be used.
  • the zirconia powder is molded to obtain a molded body (Step X).
  • a commercially available mold molding machine or cold isostatic pressing (CIP) can be used.
  • the final molding may be performed by press molding. Press molding can usually be performed in a range of 0.1 t/cm 2 to 3 t/cm 2 . Preferably, it is 0.5t to 2.5t/cm 2 , more preferably 0.8t to 2.2t/cm 2 , and still more preferably 1t to 2t/cm 2 .
  • the molded body is sintered under conditions of 1200° C. or more and 1450° C. or less for 1 hour or more and 5 hours or less (Step Y).
  • the zirconia powder includes the second stabilizer in addition to CaO (first stabilizer), and the total amount of the stabilizer is 2.5 mol % or more in terms of oxide.6. 5 mol% or less, and the ratio of [amount of CaO (mol%)]/[total amount of stabilizer (mol%)] is 50% or more, so it is necessary to obtain a sintered body with high strength and high toughness.
  • the sintering temperature range (sinterable temperature range) can be widened. Therefore, sintering may be performed within the range of 1200° C. or higher and 1450° C. or lower.
  • the sintering temperature is preferably as wide as possible; however, for example, it is more preferably 1200°C or more and 1300°C or less.
  • the holding time during sintering is also not particularly limited, but is, for example, more preferably 1 hour to 3 hours.
  • the sintering atmosphere can be air or an oxidizing atmosphere. Sintering may be carried out under normal pressure, and pressurization is not particularly necessary. However, pressure may be applied.
  • the zirconia powder is sintered within a wide temperature range of 1200°C or more and 1450°C or less for 1 hour or more and 5 hours or less, thereby achieving high strength.
  • a zirconia sintered body having high toughness and high resistance to hydrothermal deterioration can be obtained.
  • zirconia sintered body An example of the zirconia sintered body according to this embodiment will be described below. However, the zirconia sintered body of the present invention is not limited to the following examples.
  • the zirconia sintered body according to this embodiment is a stabilized zirconia containing zirconia and a stabilizer;
  • the stabilizer includes a first stabilizer and a second stabilizer, the first stabilizer is CaO,
  • the second stabilizer is one selected from the group consisting of Y2O3, Yb2O3 , Er2O3 , CeO2 , Nd2O3 , La2O3 , and Tb2O3 . More than a species,
  • the total amount of the stabilizer in the stabilized zirconia is 2.5 mol% or more and 6.5 mol% or less in terms of oxide,
  • the ratio of [amount of CaO (mol%)]/[total amount of stabilizer (mol%)] is 50% or more and 98% or less.
  • the zirconia sintered body according to this embodiment includes stabilized zirconia.
  • the content of the stabilized zirconia is preferably 70% by mass or more, more preferably 75% by mass or more, still more preferably 80% by mass or more, particularly preferably It is 85% by mass or more.
  • the content of the stabilized zirconia can be 99% by mass or less, 95% by mass or less, etc. when the entire zirconia sintered body is 100% by mass.
  • the zirconia sintered body may be composed only of the stabilized zirconia. That is, the zirconia sintered body may have a configuration in which only the stabilized zirconia is sintered. In this case, the content of the stabilized zirconia is 100% by mass when the entire zirconia sintered body is 100% by mass.
  • the content of the stabilized zirconia is preferably 70% by mass or more and 99% by mass or less, more preferably 75% by mass or more and 95% by mass or less, even more preferably, when the entire zirconia sintered body is 100% by mass.
  • the content is 80% by mass or more and 95% by mass or less, particularly preferably 85% by mass or more and 95% by mass or less.
  • the zirconia sintered body contains zirconia and a stabilizer.
  • the total content of zirconia and the stabilizer in the stabilized zirconia is preferably 70% by mass or more, and preferably 80% by mass or more when the entire stabilized zirconia is 100% by mass. is more preferable.
  • the total content of zirconia and the stabilizer can be 99% by mass or less, 95% by mass or less, etc., when the entire stabilized zirconia is 100% by mass.
  • the total content of zirconia and the stabilizer in the stabilized zirconia is preferably 70% by mass or more and 99% by mass or less, and 80% by mass when the entire stabilized zirconia is 100% by mass. More preferably, the content is 95% by mass or less.
  • the stabilized zirconia may be composed of only zirconia and a stabilizer.
  • the stabilizer includes a first stabilizer and a second stabilizer.
  • the first stabilizer is CaO. Since the zirconia powder contains CaO as the first stabilizer, it has excellent resistance to hydrothermal deterioration.
  • the second stabilizer is one selected from the group consisting of Y2O3, Yb2O3 , Er2O3 , CeO2 , Nd2O3 , La2O3 , and Tb2O3 . More than a species. Since the zirconia sintered body contains the second stabilizer in addition to CaO (first stabilizer), the temperature at which it can be sintered is widened.
  • the second stabilizer may be selected based on the critical crystal particle size.
  • the second stabilizer is preferably Y 2 O 3 , Yb 2 O 3 , or La 2 O 3 from the viewpoint of obtaining a white sintered body.
  • the second stabilizer is preferably Er 2 O 3 from the viewpoint of obtaining a pink sintered body.
  • the second stabilizer is preferably CeO 2 from the viewpoint of obtaining a yellow sintered body.
  • the second stabilizer is preferably Nd 2 O 3 from the viewpoint of obtaining a purple sintered body.
  • the second stabilizer is preferably Tb 2 O 3 from the viewpoint of obtaining an orange sintered body.
  • the ratio of [amount of CaO (mol%)]/[total amount of stabilizer (mol%)] is 50% or more and 98% or less.
  • the ratio of [amount of CaO (mol%)]/[total amount of stabilizer (mol%)] is 50%. % or more, and the amount of the second stabilizer added is as small as possible, so it is possible to have high strength and high toughness, and maintain high resistance to hydrothermal deterioration.
  • the ratio of [amount of CaO (mol%)]/[total amount of stabilizer (mol%)] is more preferably 55% or more, still more preferably 60% or more.
  • the ratio of [amount of CaO (mol%)]/[total amount of stabilizer (mol%)] is more preferably 90% or less, and still more preferably 80% or less.
  • the ratio of [amount of CaO (mol%)]/[total amount of stabilizer (mol%)] is more preferably 55% or more and 90% or less, and even more preferably 60% or more and 80% or less.
  • the total amount of stabilizers in the stabilized zirconia is 2.5 mol% or more and 6.5 mol% or less in terms of oxide. Since the total amount of the stabilizer is 2.5 mol % or more in terms of oxide, the monoclinic phase ratio can be reduced and the occurrence of cracks can be prevented. In addition, since the total amount of stabilizers is 6.5 mol% or less in terms of oxides, the cubic phase fraction, which has low mechanical properties (strength, toughness), can be reduced, and the tetragonal phase fraction, which has high mechanical properties, can be increased. Can be done.
  • the total amount of the stabilizer is preferably 2.7 mol% or more, more preferably 2.9 mol% or more, and even more preferably 3.0 mol% or more in terms of oxide.
  • the total amount of the stabilizer is preferably 6.0 mol% or less, more preferably 5.5 mol% or less, even more preferably 5.0 mol% or less, particularly preferably 4.5 mol% or less in terms of oxide.
  • the total amount of the stabilizer is preferably 2.7 mol% or more and 6.0 mol% or less, more preferably 2.9 mol% or more and 5.5 mol% or less, and 3.0 mol% or more and 5.0 mol% or less in terms of oxides. More preferably, 3.0 mol% or more and 4.5 mol% or less is particularly preferable.
  • the second stabilizer is a group consisting of Y2O3 , Yb2O3 , Er2O3 , Nd2O3 , La2O3 , and Tb2O3 .
  • the stabilizer is one or more selected from the following, it is preferable that the total amount of the stabilizer in the stabilized zirconia is 2.5 mol% or more and 4.5 mol% or less in terms of oxide.
  • the second stabilizer is one or more selected from the group consisting of Y2O3 , Yb2O3 , Er2O3 , Nd2O3 , La2O3 , and Tb2O3 .
  • the total amount of the stabilizer in the stabilized zirconia is more preferably 2.6 mol% or more, and even more preferably 2.8 mol% or more in terms of oxide.
  • the second stabilizer is one or more selected from the group consisting of Y2O3 , Yb2O3 , Er2O3 , Nd2O3 , La2O3 , and Tb2O3 .
  • the total amount of the stabilizer in the stabilized zirconia is more preferably 4.1 mol% or less, and even more preferably 3.7 mol% or less, in terms of oxide.
  • the second stabilizer is one or more selected from the group consisting of Y2O3 , Yb2O3 , Er2O3 , Nd2O3 , La2O3 , and Tb2O3 .
  • the total amount of the stabilizer in the stabilized zirconia is more preferably 2.6 mol% or more and 4.1 mol% or less, and even more preferably 2.8 mol% or more and 3.7 mol% or less in terms of oxide.
  • Y 2 O 3 , Yb 2 O 3 , Er 2 O 3 , Nd 2 O 3 , La 2 O 3 , and Tb 2 O 3 exhibit similar behavior because they are all trivalent elements. . That is, Y 2 O 3 , Yb 2 O 3 , Er 2 O 3 , Nd 2 O 3 , La 2 O 3 , and Tb 2 O 3 are the same when added to the zirconia sintered body in the same amounts. It shows the behavior of
  • the total amount of the stabilizer in the stabilized zirconia is 4.0 mol% or more and 6.5 mol% or less in terms of oxide. It is preferable that there be.
  • the total amount of the stabilizer in the stabilized zirconia is more preferably 4.3 mol % or more, and even more preferably 4.5 mol % or more in terms of oxide.
  • the second stabilizer is CeO 2
  • the total amount of the stabilizer in the stabilized zirconia is more preferably 6.3 mol% or less, and even more preferably 6.0 mol% or less, in terms of oxide.
  • the total amount of the stabilizer in the stabilized zirconia is more preferably 4.3 mol% or more and 6.3 mol% or less, and 4.5 mol% in terms of oxide.
  • the content is more preferably 6.0 mol% or less.
  • the content of zirconia in the stabilized zirconia is preferably 80% by mass or more and 99% by mass or less.
  • the content of zirconia in the stabilized zirconia is more preferably 85% by mass or more, and even more preferably 90% by mass or more.
  • the content of zirconia in the stabilized zirconia is more preferably 98% by mass or less, and even more preferably 97% by mass or less.
  • the content of zirconia in the stabilized zirconia is more preferably 85% by mass or more and 98% by mass or less, and even more preferably 90% by mass or more and 97% by mass or less.
  • the monoclinic phase ratio (monoclinic phase ratio before hydrothermal treatment) contained in the crystal phase of the zirconia sintered body is preferably 0.2% or more and 7.0% or less.
  • the monoclinic phase ratio is more preferably 0.3% or more, still more preferably 0.5% or more.
  • the monoclinic phase ratio is more preferably 5.0% or less, still more preferably 4.0% or less.
  • the monoclinic phase rate (monoclinic phase rate before hydrothermal treatment) contained in the crystal phase of the zirconia sintered body is more preferably 0.3% or more and 5.0% or less, and 0.5%. More preferably, the content is 4.0% or less.
  • the monoclinic phase ratio can be controlled by, for example, the content, content ratio, sintering temperature, etc. of the first stabilizer and the second stabilizer.
  • the monoclinic phase ratio is determined by the method described in Examples.
  • the cubic phase fraction (cubic phase fraction before hydrothermal treatment) contained in the crystal phase of the zirconia sintered body is preferably 3.0% or less.
  • the cubic crystal phase ratio is 3.0% or less, it can be said that the cubic crystal phase ratio, which has low mechanical properties (strength, toughness), is small.
  • the zirconia sintered body does not substantially contain crystal phases other than monoclinic, cubic, and tetragonal.
  • the zirconia sintered body preferably has a monoclinic phase ratio of 30% or less after hydrothermal treatment at 134° C., 0.3 MPa (absolute pressure 0.3 MPa), and 15 hours.
  • the monoclinic phase ratio after the hydrothermal treatment can be controlled by, for example, the content, content ratio, sintering temperature, etc. of the first stabilizer and the second stabilizer.
  • the monoclinic phase ratio after the hydrothermal treatment is more preferably 20% or less, still more preferably 10% or less.
  • the monoclinic phase ratio after the hydrothermal treatment is preferably as small as possible, and is, for example, 0.5% or more, 1% or more.
  • the monoclinic phase ratio after the hydrothermal treatment is more preferably 0.5% or more and 20% or less, and even more preferably 1% or more and 10% or less.
  • the zirconia sintered body has a monoclinic phase ratio of 7.0% or less before hydrothermal treatment, and a monoclinic phase ratio after hydrothermal treatment at 134°C, 0.3 MPa (absolute pressure 0.3 MPa) for 15 hours.
  • the value obtained by subtracting the monoclinic phase ratio before hydrothermal deterioration is preferably 20% or less.
  • the monoclinic phase fraction before hydrothermal treatment is 7.0% or less, and the monoclinic phase fraction before hydrothermal deterioration is subtracted from the monoclinic phase fraction after hydrothermal treatment at 134°C, 0.3 MPa, 15 hours. If the value is 20% or less, the monoclinic phase ratio before hydrothermal treatment is small, and the amount of change in the monoclinic phase ratio before and after hydrothermal treatment is small, so the monoclinic phase ratio after hydrothermal treatment is low. It can be said that there are few. Therefore, it can be said that it has better resistance to hydrothermal deterioration.
  • the value obtained by subtracting the monoclinic phase fraction before hydrothermal deterioration from the monoclinic phase fraction after hydrothermal treatment at 134° C., 0.3 MPa, and 15 hours is preferably 15% or less, and even more preferably 10% or less. be.
  • the zirconia sintered body preferably has a monoclinic phase ratio of 30% or less after hydrothermal treatment at 300° C., 8 MPa (absolute pressure 8 MPa), and 5 hours.
  • the monoclinic phase ratio after the hydrothermal treatment can be controlled by, for example, the content, content ratio, sintering temperature, etc. of the first stabilizer and the second stabilizer.
  • the monoclinic phase ratio after the hydrothermal treatment is more preferably 20% or less, still more preferably 15% or less.
  • the monoclinic phase ratio after the hydrothermal treatment is preferably as small as possible, and is, for example, 0.5% or more, 1.0% or more.
  • the monoclinic phase ratio after the hydrothermal treatment is more preferably 0.5% or more and 20% or less, and even more preferably 1.0% or more and 10% or less.
  • the zirconia sintered body preferably has a monoclinic phase ratio of 30% or less after hydrothermal treatment at 400° C., 30 MPa (absolute pressure 30 MPa), and 5 hours. If the monoclinic phase ratio after the hydrothermal treatment is 30% or less, it can be said that the hydrothermal deterioration resistance is further excellent.
  • the monoclinic phase ratio after the hydrothermal treatment can be controlled by, for example, the content, content ratio, sintering temperature, etc. of the first stabilizer and the second stabilizer.
  • the monoclinic phase ratio after the hydrothermal treatment is more preferably 25% or less, still more preferably 20% or less.
  • the monoclinic phase ratio after the hydrothermal treatment is preferably as small as possible, and is, for example, 0.5% or more, 1.0% or more.
  • the monoclinic phase ratio after the hydrothermal treatment is more preferably 0.5% or more and 25% or less, and even more preferably 1.0% or more and 20% or less.
  • the zirconia sintered body has a monoclinic phase ratio of 7.0% or less before hydrothermal treatment, and from the monoclinic phase ratio after hydrothermal treatment at 400° C. and 30 MPa (absolute pressure 30 MPa) for 5 hours, It is preferable that the value obtained by subtracting the monoclinic phase ratio before deterioration is 20% or less.
  • the monoclinic phase ratio before hydrothermal treatment is 7.0% or less, and the monoclinic phase ratio after hydrothermal treatment at 400°C, 30 MPa (absolute pressure 30 MPa) for 5 hours indicates that the monoclinic phase before hydrothermal deterioration is If the value after subtracting the ratio is 20% or less, the monoclinic phase ratio before hydrothermal treatment is small, and the amount of change in the monoclinic phase ratio before and after hydrothermal treatment is small, so the monoclinic phase ratio after hydrothermal treatment is small. It can be said that the crystal phase ratio is low. Therefore, it can be said that it has better resistance to hydrothermal deterioration.
  • the value obtained by subtracting the monoclinic phase fraction before hydrothermal deterioration from the monoclinic phase fraction after hydrothermal treatment at 400° C., 30 MPa (absolute pressure 30 MPa) for 5 hours is more preferably 15% or less, and even more preferably 10 % or less.
  • the zirconia sintered body preferably has a three-point bending strength of 700 MPa or more and 1500 MPa or less.
  • the three-point bending strength is more preferably 800 MPa or more, still more preferably 900 MPa or more.
  • the three-point bending strength is preferably as high as possible, but may be, for example, 1400 MPa or less, 1300 MPa or less, etc.
  • the three-point bending strength is more preferably 800 MPa or more and 1400 MPa or less, and still more preferably 900 MPa or more and 1300 MPa or less.
  • the three-point bending strength is 700 MPa or more, it can be said that the strength is higher.
  • the three-point bending strength was determined by the method described in Examples.
  • the zirconia sintered body preferably has a toughness value of 10 MPa ⁇ m 0.5 or more and 40 MPa ⁇ m 0.5 or less by an IF method.
  • the toughness value is more preferably 13 MPa ⁇ m 0.5 or more, still more preferably 15 MPa ⁇ m 0.5 or more.
  • the toughness value is preferably as large as possible, and may be, for example, 35 MPa ⁇ m 0.5 or less, 27 MPa ⁇ m 0.5 or less, etc.
  • the toughness value is more preferably 13 MPa ⁇ m 0.5 or more and 35 MPa ⁇ m 0.5 or less, and even more preferably 15 MPa ⁇ m 0.5 or more and 27 MPa ⁇ m 0.5 or less.
  • the toughness value is 10 MPa ⁇ m 0.5 or more, it can be said that the toughness is higher.
  • the toughness value is determined by the method described in Examples.
  • the relative sintered density of the zirconia sintered body is preferably 98% or more, more preferably 98.5% or more. When the relative sintered density is 98% or more, it can be said that the zirconia sintered body is sufficiently sintered. Further, when the relative sintered density is 98% or more, the zirconia sintered body can be said to have higher strength.
  • the relative sintered density refers to the relative sintered density expressed by the following formula (1).
  • Relative sintered density (%) (sintered density/theoretical sintered density) x 100...(1)
  • the theoretical sintered density (rho is assumed to be 0 ) is a value calculated by the following formula (2-1).
  • ⁇ 0 100/[(A/3.99)+(100-A)/ ⁇ z]...(2-1)
  • A is the alumina concentration (wt%)
  • ⁇ z is a value calculated by the following formula (2-2).
  • ⁇ z -0.0400 (Molar concentration of CaO)+6.1700...(2-2)
  • ⁇ 1 100/[(Z/V)+(100-Z)/ ⁇ 0 ]...(2-3)
  • Z is the concentration of other components other than alumina (% by weight)
  • V is the theoretical density of other components (g/cm 3 ).
  • the theoretical sintered density (rho 2 ) when two types of components other than alumina are included is a value calculated by the following formula (2-4).
  • Z1 is the concentration of the first other component other than alumina (wt%)
  • Z2 is the concentration of the second other component other than alumina (wt%)
  • V1 is the theoretical density of the first other component (g/cm 3 ).
  • V2 is the theoretical density (g/cm 3 ) of the second other component.
  • the theoretical density of other components is 5.01 g/cm 3 for Y 2 O 3 , 8.64 g/cm 3 for Er 2 O 3 , 7.22 g/cm 3 for CeO 2 , and 7.24 g/cm for Nd 2 O 3 .
  • La 2 O 3 is 6.51 g/cm 3
  • Tb 2 O 3 is 7.81 g/cm 3
  • Yb 2 O 3 is 9.17 g/cm 3
  • Fe 2 O 3 is 5.24 g/cm 3
  • ZnO is 5.61 g/cm 3
  • MnO 2 is 5.03 g/cm 3
  • CoO is 6.10 g/cm 3
  • TiO 2 is 4.23 g/cm 3
  • CuO is 6.31 g/cm 3 .
  • the sintered density is measured by the Archimedes method.
  • the zirconia sintered body preferably contains Al 2 O 3 (alumina) in a range of 3% by mass or less based on the entire zirconia sintered body.
  • alumina is contained within a range of 3% by mass or less, it acts as a sintering aid when the zirconia powder is sintered to obtain the zirconia sintered body. Therefore, it can be said that the zirconia sintered body is obtained by sintering the zirconia powder having a wider sinterable temperature range.
  • the content of Al 2 O 3 is more preferably 2.0% by mass or less, and even more preferably 1. .0% by mass or less.
  • the content of Al 2 O 3 is more preferably 0.05% by mass or more, and even more preferably 0. .1% by mass or more.
  • the content of Al 2 O 3 is more preferably 0.05% by mass or more and 2.0% by mass or less, further preferably 0.1% by mass or more and 1% by mass or less. .0% by mass or less.
  • the zirconia powder since the zirconia powder has a wide sinterable temperature range and the obtained sintered body has high resistance to hydrothermal deterioration, the zirconia powder does not need to contain Al 2 O 3 (alumina).
  • the zirconia powder before sintering does not contain Al 2 O 3 (alumina)
  • the zirconia sintered body obtained by sintering the zirconia powder does not contain Al 2 O 3 (alumina).
  • the zirconia sintered body may contain sinterable ceramics, thermosetting resin, etc. for the purpose of improving properties such as strength.
  • the zirconia sintered body may contain one or more selected from the group consisting of Fe, V, Mn, Co, Zn, Cu, and Ti. When it contains one or more selected from the group consisting of Fe, V, Mn, Co, Zn, Cu, and Ti, it can be suitably colored.
  • the form of the element is not particularly limited, and it can be added in the form of an oxide, chloride, or the like.
  • oxides containing the above elements include Fe 2 O 3 , V 2 O 5 , MnO 2 , CoO, ZnO, CuO, TiO 2 and the like.
  • the content of Fe 2 O 3 is preferably 0.005% by mass or more and 1% by mass or less, and 0.05% by mass or more, when the entire zirconia powder is 100% by mass. More preferably, it is 0.5% by mass or less.
  • the content of Fe 2 O 3 is 0.005% by mass or more, it is easy to obtain the intended coloring. In other words, the color tone can be easily adjusted.
  • the content of the V 2 O 5 is preferably 0.005% by mass or more and 0.5% by mass or less, and 0.01% by mass when the entire zirconia powder is 100% by mass. % or more and 0.1% by mass or less is more preferable.
  • the content of V 2 O 5 is 0.005% by mass or more, the intended coloring can be easily obtained. In other words, the color tone can be easily adjusted.
  • the content of the MnO 2 is preferably 0.005% by mass or more and 2% by mass or less, and 0.1% by mass or more and 1.1% by mass when the entire zirconia powder is 100% by mass. % or less is more preferable.
  • the MnO 2 content is 0.005% by mass or more, the intended coloring can be easily obtained. In other words, the color tone can be easily adjusted.
  • the content of the CoO is preferably 0.005% by mass or more and 2% by mass or less, and 0.01% by mass or more and 1.5% by mass or less, when the entire zirconia powder is 100% by mass. is more preferable.
  • the CoO content is 0.005% by mass or more, the intended coloring can be easily obtained. In other words, the color tone can be easily adjusted.
  • the content of the ZnO is preferably 0.005% by mass or more and 1% by mass or less, and 0.1% by mass or more and 0.5% by mass or less, when the entire zirconia powder is 100% by mass. is more preferable.
  • the ZnO content is 0.005% by mass or more, the intended coloring can be easily obtained. In other words, the color tone can be easily adjusted.
  • the content of the coloring agent is preferably 0.005% by mass or more and 1% by mass or less, and 0.05% by mass or more and 0.00% by mass or less, when the entire zirconia powder is 100% by mass. It is more preferably 6% by mass or less, and even more preferably 0.1% by mass or more and 0.3% by mass or less.
  • the content of the colorant is 0.005% by mass or more, the intended coloring can be easily obtained. In other words, the color tone can be easily adjusted.
  • the content of the TiO 2 is preferably 0.005% by mass or more and 2% by mass or less, and 0.01% by mass or more and 1% by mass or less, when the entire zirconia powder is 100% by mass. is more preferable.
  • the content of TiO 2 is 0.005% by mass or more, it is easy to obtain the intended coloring. In other words, the color tone can be easily adjusted.
  • the zirconia sintered body according to this embodiment can be obtained by pressureless sintering using the zirconia powder described above. Specifically, it can be obtained, for example, by the method for manufacturing a zirconia sintered body.
  • the zirconia sintered body according to this embodiment can be used as industrial parts, aesthetic parts, and dental materials. More specifically, it can be used for jewelry, watch parts, watch dials, artificial teeth, molding members, wear-resistant members, chemical-resistant members, and the like.
  • the zirconia powders and zirconia sintered bodies in Examples and Comparative Examples contain 1.3 to 2.5% by mass of hafnium oxide based on zirconium oxide as an unavoidable impurity (calculated using the following formula (X)). )are doing. ⁇ Formula (X)> ([mass of hafnium oxide] / ([mass of zirconium oxide] + [mass of hafnium oxide])) x 100 (%)
  • Step 4 After cooling the aged solution to room temperature, a 10% by mass yttrium chloride aqueous solution in terms of Y 2 O 3 was added so that Y 2 O 3 was 0.1 mol %, and mixed uniformly (Step 4).
  • a calcium chloride aqueous solution containing 10% by mass in terms of CaO was added to the obtained mixed solution so that the CaO content was 4.0 mol%, and the mixture was uniformly mixed (Step 5).
  • a 25% by mass aqueous sodium hydroxide solution was added to the obtained mixed solution to neutralize it until the pH became 13 or higher to form a hydroxide precipitate (Step 6).
  • the obtained hydroxide precipitate was filtered, washed with water, and dried at 105° C. for 24 hours.
  • the dried hydroxide was heat-treated in the air at 950° C. (calcination temperature) for 2 hours to obtain an unpulverized zirconia-based powder (calcia-yttria-stabilized zirconia-based powder) (Step 7).
  • alumina powder with an average primary particle diameter of 0.1 ⁇ m was added in an amount of 0.25% by mass based on the calcia-yttria-stabilized zirconia-based powder, and water was added as a dispersion medium.
  • the mixture was ground and mixed for 40 hours in a wet ball mill.
  • Zirconia beads with a diameter of 5 mm were used for pulverization.
  • the zirconia slurry obtained after pulverization was dried at 110° C. to obtain zirconia powder according to Example 1. Specifically, the above operation was performed using the apparatus as described using FIG.
  • Example 2 to Example 7, Example 16, Comparative Example 1 to Comparative Example 2 The amount of calcium chloride aqueous solution added was changed so that the amount of CaO added was the amount listed in Table 1, and the amount of yttrium chloride aqueous solution was changed so that the amount of Y 2 O 3 added was the amount listed in Table 1.
  • Examples 2 to 7, Example 16, and Comparison were carried out in the same manner as in Example 1, except that the amount added was changed and the amount of alumina powder added was changed to the amount listed in Table 1.
  • Zirconia powders according to Examples 1 to Comparative Examples 2 were obtained.
  • the firing temperature of the hydroxide was further changed from 950° C. to 1100° C. to obtain zirconia powder according to Example 6.
  • "-" means that it is not added (that is, the amount added is 0).
  • Example 8 The amount of calcium chloride aqueous solution added was changed so that the amount of CaO added was the amount listed in Table 1, and instead of adding yttrium chloride aqueous solution, a 10% by mass erbium chloride aqueous solution in terms of Er 2 O 3 was added to Er.
  • Zirconia powder according to Example 8 was obtained in the same manner as in Example 1, except that 2 O 3 was added at a concentration of 1.0 mol %.
  • Example 9 Zirconia according to Example 9 was prepared in the same manner as in Example 1 , except that instead of adding the yttrium chloride aqueous solution, a 10% by mass cerium chloride aqueous solution in terms of CeO 2 was added so that CeO 2 was 0.5 mol%. A powder was obtained.
  • Example 10 The amount of calcium chloride aqueous solution added was changed so that the amount of CaO added was the amount listed in Table 1, and instead of adding yttrium chloride aqueous solution, a 10 mass % cerium chloride aqueous solution in terms of CeO 2 was added .
  • Zirconia powder according to Example 10 was obtained in the same manner as in Example 1 except that the amount was added at 2.5 mol %.
  • Example 11 The amount of calcium chloride aqueous solution added was changed so that the amount of CaO added was the amount listed in Table 1, and instead of adding yttrium chloride aqueous solution, a 10 mass % neodymium chloride aqueous solution in terms of Nd 2 O 3 was added to Nd. Zirconia powder according to Example 11 was obtained in the same manner as in Example 1 except that 2 O 3 was added at 0.6 mol %.
  • Example 12 The amount of calcium chloride aqueous solution added was changed so that the amount of CaO added was the amount listed in Table 1, and instead of adding yttrium chloride aqueous solution, a 10% by mass lanthanum chloride aqueous solution in terms of La 2 O 3 was added to La. Zirconia powder according to Example 12 was obtained in the same manner as in Example 1, except that 2 O 3 was added at 0.6 mol %.
  • Example 13 The amount of calcium chloride aqueous solution added was changed so that the amount of CaO added was the amount listed in Table 1, and instead of adding yttrium chloride aqueous solution, 10% by mass terbium chloride aqueous solution in terms of Tb 2 O 3 was added.
  • a zirconia powder according to Example 13 was obtained in the same manner as in Example 1, except that Tb 2 O 3 was added at a concentration of 0.4 mol %.
  • Example 14 The amount of calcium chloride aqueous solution added was changed so that the amount of CaO added was the amount listed in Table 1, and instead of adding yttrium chloride aqueous solution, 10% by mass ytterbium chloride aqueous solution in terms of Yb 2 O 3 was added.
  • a zirconia powder according to Example 14 was obtained in the same manner as in Example 1, except that Yb 2 O 3 was added at a concentration of 0.9 mol %.
  • Example 15 The amount of calcium chloride aqueous solution added was changed so that the amount of CaO added was the amount listed in Table 1, and the amount of yttrium chloride aqueous solution was 10% by mass in terms of Y 2 O 3 so that Y 2 O 3 was 0. In the same manner as in Example 1, except that erbium chloride aqueous solution of 10% by mass in terms of Er 2 O 3 was added so that Er 2 O 3 was 0.3 mol %. Zirconia powder according to Example 15 was obtained.
  • Example 17 The amount of calcium chloride aqueous solution added was changed so that the amount of CaO added was the amount listed in Table 1, and instead of adding yttrium chloride aqueous solution, a 10% by mass erbium chloride aqueous solution in terms of Er 2 O 3 was added to Er.
  • Zirconia powder according to Example 17 was obtained in the same manner as in Example 1, except that 2 O 3 was added at 0.8 mol %.
  • Example 18 The amount of calcium chloride aqueous solution added was changed so that the amount of CaO added was the amount listed in Table 1, and instead of adding yttrium chloride aqueous solution, 10% by mass ytterbium chloride aqueous solution in terms of Yb 2 O 3 was added.
  • a zirconia powder according to Example 18 was obtained in the same manner as in Example 1, except that Yb 2 O 3 was added at a concentration of 0.6 mol %.
  • the peak top diameter, pore volume, and pore distribution width in the range of 10 nm or more and 200 nm or less were determined.
  • the results are shown in Table 2.
  • the pore distribution width refers to the width of the peak at which the log differential pore volume is 0.1 ml/g or more.
  • composition measurement The compositions (in oxide terms) of the zirconia powders of Examples and Comparative Examples were analyzed using ICP-AES ("ULTIMA-2" manufactured by HORIBA). The results are shown in Table 1.
  • the average crystal grain size of the sintered product (sintered body) at each sintering temperature was measured.
  • the average crystal grain size was measured by the following method. The results are shown in Tables 3 and 4. ⁇ Method for measuring average grain size> The average crystal grain size was determined using a SEM observation diagram of the sintered body sample obtained by scanning electron microscopy. A sample for SEM observation was prepared based on JIS R1633. The SEM observation diagram was made such that the number of crystal grains was 150 or more in one field of view. A rectangle of arbitrary size was drawn in the SEM observation diagram, and the number of particles existing on the sides and diagonals of the rectangle was calculated. Each side of the rectangle was set to have a length of at least 80% of the visual field.
  • the ratio of the length and width of the rectangle was set to 1.47:1 (width:height).
  • X, x1, x2, Y, y1, y2, D, d1, and d2 represent the following.
  • the sintered body sample was pretreated by mirror polishing and then thermal etching treatment.
  • the surface of the sintered body was ground with a surface grinder, and then polished with diamond abrasive grains having average particle diameters of 9 ⁇ m, 6 ⁇ m, and 3 ⁇ m in order with a mirror polisher.
  • the following ⁇ Characteristic 1>, the following ⁇ Characteristic 2>, the following ⁇ Characteristic 3>, and the following ⁇ Characteristic 4>> The lowest sintering temperature (temperature A) that satisfies the following, and the highest sintering temperature (temperature B) that satisfies the following ⁇ characteristic 1>, the following ⁇ characteristic 2>, the following ⁇ characteristic 3> , and the following ⁇ characteristic 4>.
  • ⁇ Property 1>, ⁇ Property 2>, ⁇ Property 3>, and ⁇ Property 4> are measured using the relative sintered density, toughness value, three-point bending strength, and 134°C of the zirconia sintered body, which will be described later. , 0.3 MPa, and the monoclinic phase ratio after 15 hours of hydrothermal treatment.
  • ⁇ Characteristic 2> The toughness value determined by the IF method is 10 MPa ⁇ m 0.5 or more.
  • ⁇ Characteristic 3> The three-point bending strength is 700 MPa or more.
  • ⁇ Characteristic 4> The monoclinic phase ratio after hydrothermal treatment at 134° C., 0.3 MPa (absolute pressure 0.3 MPa) for 15 hours is 30% or less.
  • Example 1 the relative sintered density is 99.7% at a sintering temperature of 1250°C, the toughness value is 17 MPa ⁇ m 0.5 , the 3-point bending strength is 800 MPa, and the sintering temperature is 1250°C, 0.5%. Since the monoclinic phase ratio after hydrothermal treatment at 3 MPa for 15 hours was 0.6%, the sintering temperature of 1250° C. was determined as temperature A. Furthermore, in Example 1, ⁇ Property 1>, ⁇ Property 2>, ⁇ Property 3>, and ⁇ Property 4> were satisfied at the sintering temperature of 1325°C, so the sintering temperature of 1325°C was determined as temperature B.
  • Example 2 calculate the difference between the average grain size B when sintered at temperature B and the average grain size A when sintered at temperature A [(average grain size B) - (average grain size A)]. I asked for it. The results are shown in Table 2. For example, in Example 1, the average crystal grain size A (122 nm) when sintered at temperature B (1325°C) and the average crystal grain size A (66 nm) when sintered at temperature A (1250°C) are The difference [(average grain size B) ⁇ (average grain size A)] was 56 nm. Similarly, in Example 2, temperature A was determined to be 1200°C, and temperature B was determined to be 1325°C. The difference [(average grain size B) ⁇ (average grain size A)] was 70 nm.
  • Example 3 the temperature A was determined to be 1200°C, and the temperature B was determined to be 1350°C. The difference [(average grain size B) ⁇ (average grain size A)] was 78 nm.
  • Example 4 the temperature A was determined to be 1200°C, and the temperature B was determined to be 1350°C. The difference [(average grain size B) ⁇ (average grain size A)] was 77 nm.
  • Example 5 the temperature A was determined to be 1200°C, and the temperature B was determined to be 1350°C. The difference [(average grain size B) ⁇ (average grain size A)] was 74 nm.
  • Example 6 temperature A was determined to be 1250°C, and temperature B was determined to be 1375°C.
  • the difference [(average grain size B) ⁇ (average grain size A)] was 59 nm.
  • the temperature A was determined to be 1250°C, and the temperature B was determined to be 1400°C.
  • the difference [(average grain size B) ⁇ (average grain size A)] was 65 nm.
  • the temperature A was determined to be 1250°C, and the temperature B was determined to be 1350°C.
  • the difference [(average grain size B) ⁇ (average grain size A)] was 63 nm.
  • the temperature A was determined to be 1200°C, and the temperature B was determined to be 1325°C.
  • the difference [(average grain size B) ⁇ (average grain size A)] was 70 nm.
  • Example 10 the temperature A was determined to be 1200°C, and the temperature B was determined to be 1350°C.
  • the difference [(average grain size B) ⁇ (average grain size A)] was 73 nm.
  • Example 11 the temperature A was determined to be 1200°C, and the temperature B was determined to be 1350°C.
  • the difference [(average grain size B) ⁇ (average grain size A)] was 85 nm.
  • Example 12 the temperature A was determined to be 1200°C, and the temperature B was determined to be 1350°C.
  • the difference [(average grain size B) ⁇ (average grain size A)] was 78 nm.
  • Example 13 the temperature A was determined to be 1200°C, and the temperature B was determined to be 1350°C.
  • the difference [(average grain size B) ⁇ (average grain size A)] was 73 nm.
  • the temperature A was determined to be 1200°C, and the temperature B was determined to be 1350°C.
  • the difference [(average grain size B) ⁇ (average grain size A)] was 66 nm.
  • temperature A was determined to be 1200°C, and temperature B was determined to be 1350°C.
  • the difference [(average grain size B) ⁇ (average grain size A)] was 73 nm.
  • the temperature A was determined to be 1200°C, and the temperature B was determined to be 1350°C.
  • the difference [(average grain size B) ⁇ (average grain size A)] was 66 nm.
  • Example 17 temperature A was determined to be 1200°C, and temperature B was determined to be 1350°C. The difference [(average grain size B) ⁇ (average grain size A)] was 56 nm.
  • Example 18 the temperature A was determined to be 1200°C, and the temperature B was determined to be 1350°C. The difference [(average grain size B) ⁇ (average grain size A)] was 65 nm.
  • Comparative Example 1 the temperature A was determined to be 1225°C, and the temperature B was determined to be 1275°C. The difference [(average grain size B) ⁇ (average grain size A)] was 24 nm.
  • Comparative Example 2 the temperature A was determined to be 1250°C, and the temperature B was determined to be 1300°C. The difference [(average grain size B) ⁇ (average grain size A)] was 32 nm.
  • the relative sintered density is 99.7% at a sintering temperature of 1250°C, so the temperature at which the relative sintered density actually becomes 98% is lower than the sintering temperature of 1250°C.
  • the toughness value is 17 MPa ⁇ m 0.5 at a sintering temperature of 1250°C, so the temperature at which the toughness value actually becomes 10 MPa ⁇ m 0.5 or more is lower than the sintering temperature of 1250°C.
  • the 3-point bending strength is 800 MPa at a sintering temperature of 1250°C, so the temperature at which the 3-point bending strength actually becomes 700 MPa or more is lower than the sintering temperature of 1250°C.
  • Example 1 the monoclinic phase ratio after hydrothermal treatment at 134°C, 0.3 MPa for 15 hours at a sintering temperature of 1250°C is 0.6%, so in reality it was The temperature at which the monoclinic phase ratio after hydrothermal treatment is 30% or less is lower than the sintering temperature of 1250°C. That is, in Example 1, the actual temperature A is lower than 1250°C. However, in this measurement, it is possible to confirm whether the difference [(average crystal grain size B) ⁇ (average crystal grain size A)] is 50 nm or more.
  • 1250°C is treated as temperature A (the lowest sintering temperature that satisfies ⁇ Characteristic 1>, ⁇ Characteristic 2>, ⁇ Characteristic 3>, and ⁇ Characteristic 4>) in Example 1. . Even if 1250°C is treated as temperature A, if the difference [(average grain size B) - (average grain size A)] is 50 nm or more, then ⁇ Characteristic 1>, ⁇ Characteristic 2>, ⁇ Even if the lowest sintering temperature satisfying Property 3> and ⁇ Property 4> is used, the difference [(average grain size B) - (average grain size A)] will always be 50 nm or more. be.
  • the relative sintered density is 97.9% at the sintering temperature of 1200°C, so the temperature at which the relative sintered density is actually 98% is higher than the sintering temperature of 1200°C. . That is, in Comparative Example 1, the actual temperature A is higher than 1200°C. However, for the convenience of the experiment, 1200°C is treated as temperature A (the lowest sintering temperature that satisfies ⁇ Characteristic 1>, ⁇ Characteristic 2>, ⁇ Characteristic 3>, and ⁇ Characteristic 4>) in Comparative Example 1. .
  • Im(111) is the diffraction intensity of (111) in the monoclinic phase
  • Im(11-1) is the diffraction intensity of (11-1) in the monoclinic phase
  • It(101) is the (101) diffraction intensity of the tetragonal phase
  • It(220) is the (220) diffraction intensity of the tetragonal phase
  • It(004) is the (004) diffraction intensity of the tetragonal phase
  • Ic(004) is the diffraction intensity of (004) in the cubic phase
  • Ic(111) is the diffraction intensity of (111) in the cubic phase.
  • the cubic phase may be distorted depending on the amount of stabilizer added or the manufacturing method, and the peak position may shift, but in this example, the peak between (004) and (220) of the tetragonal phase is It was calculated by considering it as the peak of the phase.
  • Table 5 shows the change in monoclinic phase ratio before and after hydrothermal aging at 400°C, 30 MPa, for 5 hours (value obtained by subtracting the monoclinic phase ratio before hydrothermal treatment from the monoclinic phase ratio after hydrothermal treatment). ) are also shown.
  • Toughness measurement by the IF method was carried out using a load of 30 kgf (294.2 N) in accordance with JIS R1607 (room temperature fracture toughness test method for fine ceramics). Using a Vickers hardness tester, select 7 indentations with a rectangular indentation shape to determine the toughness, then exclude the one with the smallest value and the one with the largest value, and average the toughness of the 5 points. The value was taken as the toughness value. However, the indentation to be measured was invalidated if the crack did not extend from the indentation, and an indentation with four cracks extending from the rectangular tip was used. Each toughness value was calculated using the following formula.
  • Kc 0.018 ⁇ Hv ⁇ a 0.5 ⁇ [(ca)/a] -0.5 ⁇ (Hv/E) -0.4
  • Kc, Hv, a, c, and E mean the following.
  • the indentation lengths on the X and Y axes and the crack lengths on the X and Y axes when determining a and c are as shown in FIG.
  • Hv Vickers hardness [GPa]
  • F Test force [N]
  • d Average value of X-axis indentation length and Y-axis indentation length [mm]
  • the Young's modulus used was 210 GPa, which is known as a value for general yttria-stabilized zirconia.
  • Relative sintered density (sintered density/theoretical sintered density) x 100...(1)
  • the theoretical sintered density (rho is assumed to be 0 ) is a value calculated by the following formula (2-1).
  • ⁇ 0 100/[(A/3.99)+(100-A)/ ⁇ z]...(2-1)
  • A is the alumina concentration (wt%)
  • ⁇ z is a value calculated by the following formula (2-2).
  • ⁇ z -0.0400 (Molar concentration of CaO)+6.1700...(2-2)
  • ⁇ 1 100/[(Z/V)+(100-Z)/ ⁇ 0 ]...(2-3)
  • Z is the concentration of other components other than alumina (% by weight)
  • V is the theoretical density of other components (g/cm 3 ).
  • the theoretical sintered density (rho 2 ) when two types of components other than alumina are included is a value calculated by the following formula (2-4).
  • Z1 is the concentration of the first other component other than alumina (wt%)
  • Z2 is the concentration of the second other component other than alumina (wt%)
  • V1 is the theoretical density of the first other component (g/cm 3 ).
  • V2 is the theoretical density (g/cm 3 ) of the second other component.
  • the theoretical density of other components is 5.01 g/cm 3 for Y 2 O 3 , 8.64 g/cm 3 for Er 2 O 3 , 7.22 g/cm 3 for CeO 2 , and 7.24 g/cm for Nd 2 O 3 .
  • La 2 O 3 is 6.51 g/cm 3
  • Tb 2 O 3 is 7.81 g/cm 3
  • Yb 2 O 3 is 9.17 g/cm 3
  • Fe 2 O 3 is 5.24 g/cm 3
  • ZnO is 5.61 g/cm 3
  • MnO 2 is 5.03 g/cm 3
  • CoO is 6.10 g/cm 3
  • TiO 2 is 4.23 g/cm 3
  • CuO is 6.31 g/cm 3 .
  • the sintered density was measured by the Archimedes method.
  • Relative molding density (molding density / theoretical sintered density) ⁇ 100... (4)
  • the theoretical sintered density (rho is assumed to be 0 ) is a value calculated by the above formula (2-1).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

ジルコニアと安定化剤とを含む安定化ジルコニアを含み、安定化剤は、第1の安定化剤と第2の安定化剤とを含み、第1の安定化剤は、CaOであり、第2の安定化剤は、Y、Yb、Er、CeO、Nd、La、及びTbからなる群から選ばれる1種以上であり、安定化ジルコニア中の安定化剤の総量が、酸化物換算で2.5mol%以上6.5mol%以下であり、[CaOの量(mol%)]/[安定化剤の総量(mol%)]の割合が、50%以上98%以下であるジルコニア粉末。

Description

ジルコニア粉末、ジルコニア焼結体、及び、ジルコニア焼結体の製造方法
 本発明は、ジルコニア粉末、ジルコニア焼結体、及び、ジルコニア焼結体の製造方法に関する。
 ジルコニアは、機械的強度、透光性、屈折率などを利用し、様々な用途で使用されている。近年では、電子機器、生体材料、摺動部品のさらなる高機能化のため、高強度、水熱劣化耐性は当然ながら、さらなる高靭性が求められている。
 特許文献1には、安定化剤としてYを2~4モル%含む粒径0.1~2.0μmのZrO粉末に、安定化剤としてYを2~4モル%含む粒径0.05μm以下のZrO微粉末を2~10重量%混合して混合粉末を得、次にこの混合粉末を造粒し、さらに得られた造粒粉末を成形し、次いで得られた成形体を常圧で相対密度96~98%まで予備焼結し、その後1480℃以下の温度にて熱間静水圧加圧処理するジルコニア焼結体の製造方法が開示されている(請求項1参照)。特許文献1では、マイクロクラック強化機構を利用することにより、高靱性なジルコニア焼結体を得ようとしている。具体的には、比較的大きなクラックを閉気孔の形で焼結体中に導入し、その閉気孔を熱間静水圧加圧(HIP)処理することによって本来もっている破壊源の大きさより小さくし、マイクロクラック強化機構を発現させる欠陥を形成することにより、高靱性なジルコニア焼結体を得ようとしている(段落[0007]参照)。
特開平05-070224号公報
 しかしながら、特許文献1の製造方法では、2種の粉末の粒子径を制御することは煩雑で制御が困難であるといった問題がある。また、HIP焼結は汎用性が低いといった問題がある。
 このような問題に対して、本出願人は、安定化剤の含有量を特定の範囲内とするとともに、細孔の分布を特定の態様としたジルコニア粉末に係る出願を行っている(特願2020-170949号)。前記ジルコニア粉末によれば、高強度、且つ、高靱性なジルコニア焼結体を簡便に得ることが可能となる。
 具体的に、本出願人は、特願2020-170949号において、以下のジルコニア粉末に係る出願を行っている。
 安定化剤を含み、
 前記安定化剤が、CaO、Y、Er、又は、Ybであり、
 前記安定化剤がYである場合、ジルコニア粉末全体に対する前記Yの含有量が、1.4mol%以上2.0mol%未満であり、
 前記安定化剤がErである場合、ジルコニア粉末全体に対する前記Erの含有量が、1.4mol%以上1.8mol%以下であり、
 前記安定化剤がYbである場合、ジルコニア粉末全体に対する前記Ybの含有量が、1.4mol%以上1.8mol%以下であり、
 前記安定化剤がCaOである場合、ジルコニア粉末全体に対する前記CaOの含有量が、3.5mol%以上4.5mol%以下であり、
 水銀圧入法に基づく細孔分布における10nm以上200nm以下の範囲において、細孔容積分布のピークトップ径が20nm以上120nm以下であり、細孔容積が0.2ml/g以上0.5ml/g未満であり、細孔分布幅が30nm以上170nm以下であるジルコニア粉末。
 しかしながら、本発明者らは、安定化剤としてCaOのみを用いた場合には、高強度、且つ、高靱性な焼結体を得るための焼結温度範囲が狭いという点でさらなる改善の余地があることを見出した。具体的に、安定化剤としてCaOのみを用いた場合には、常圧焼結の場合、焼結温度を1225℃~1275℃の範囲内にしなければ高強度、且つ、高靱性な焼結体を得ることができないことを見出した。以下、高強度、且つ、高靱性な焼結体を得ることが可能な焼結温度範囲を「焼結可能温度範囲」と呼ぶこととする。焼結可能温度範囲が1225℃~1275℃の場合、焼結可能温度の最大温度と最低温度の差が50℃となる。
 しかしながら、焼結可能温度範囲が狭いと(焼結可能温度の最大温度と最低温度の差が50℃程度であると)、焼結時の温度コントロールが容易ではないという問題がある。特に、大型の電気炉を用いてジルコニア粉末を焼結させる場合、電気炉内の位置によって、温度の高い箇所と低い箇所との温度差がある。そのため、焼結可能温度範囲が狭いと、炉内の温度の高い箇所(焼結可能温度を越える箇所)にあるジルコニア粉末や、炉内の温度の低い箇所(焼結可能温度を下回る箇所)にあるジルコニア粉末は、好適に焼結されず、高強度、且つ、高靱性な焼結体を得ることができなくなる。
 また、本発明者らは、安定化剤としてYのみを用いた場合には、高強度、且つ、高靱性な焼結体を得られるものの、他の安定化剤を用いた場合と比較して、水熱劣化耐性にやや劣るという点で改善の余地があることを見出した。
 本発明は、上述した課題に鑑みてなされたものであり、その目的は、高強度且つ高靱性なジルコニア焼結体を得るための焼結温度範囲が広く、且つ、得られるジルコニア焼結体の水熱劣化耐性が高いジルコニア粉末を提供することにある。また、当該ジルコニア粉末を焼結して得られるジルコニア焼結体を提供することにある。また、当該ジルコニア焼結体の製造方法を提供することにある。
 本発明者らは、上記課題に対して鋭意検討を行った。その結果、第1の安定化剤としてCaOを用いるとともに、第2の安定化剤としてY、Yb、Er、CeO、Nd、La、及び、Tbからなる群から選ばれる1種以上を用い、これらの含有量を特定の範囲内とすることにより、上記課題を解決できることを見出し、本発明を完成するに至った。
 すなわち、本発明に係るジルコニア粉末は、
 ジルコニアと安定化剤とを含む安定化ジルコニアを含み、
 前記安定化剤は、第1の安定化剤と第2の安定化剤とを含み、
 前記第1の安定化剤は、CaOであり、
 前記第2の安定化剤は、Y、Yb、Er、CeO、Nd、La、及び、Tbからなる群から選ばれる1種以上であり、
 前記安定化ジルコニア中の前記安定化剤の総量が、酸化物換算で2.5mol%以上6.5mol%以下であり、
 [CaOの量(mol%)]/[安定化剤の総量(mol%)]の割合が、50%以上98%以下であることを特徴とする。
 前記構成によれば、CaO(第1の安定化剤)に加えて、前記第2の安定化剤を含むため、焼結可能温度を広げることができる。この点、実施例からも明らかである。
 本発明者らは、CaOに加えて前記第2の安定化剤を含むと焼結可能温度が広がる理由について、以下のように推察している。
 ジルコニア焼結体には、室温で正方晶を維持することができる臨界結晶粒子径が存在している。結晶粒子径は、焼結時の温度が高いほど大きくなる。そのため、ジルコニア粉末を高温で焼結させると、結晶粒子径が臨界結晶粒子径を越えてしまい、室温への降温時に正方晶から単斜晶へとマルテンサイト型の相転移が起こり、亀裂が生じてしまう。このような亀裂が生じる焼結体は、高強度且つ高靱性な焼結体とはいえない。そこで、臨界結晶粒子径を越えない温度で焼結を行う必要がある。
 ここで、安定化剤としてCaOのみ使用した安定化ジルコニアの臨界結晶粒子径は、90nm程度であるとされている(W. Pyda et al., Ceramics International 13 (1987) 114-118参照)。この90nmという臨界結晶粒子径は、他の安定化剤を使用した場合と比較して小さい。そこで、CaOに加えて、臨界結晶粒子径を大きくすることが可能な第2の安定化剤を添加することとした。これにより、CaOのみを使用した安定化ジルコニアと比較して、焼結可能温度範囲の上限を高くすることが可能となる。その結果、ジルコニア粉末の焼結可能温度範囲を広くすることができる。
 また、第2の安定化剤の添加量が増加すると、得られるジルコニア焼結体の水熱劣化耐性が低下することになるが、前記構成によれば、[CaOの量(mol%)]/[安定化剤の総量(mol%)]の割合を50%以上とし、第2の安定化剤の添加量を可能な限り少なくしたため、高強度、高靱性を備え、且つ、水熱劣化耐性を高く維持することができる。
 また、安定化剤の総量が、酸化物換算で2.5mol%以上であるため、得られるジルコニア焼結体中の単斜晶相率を少なくすることができ、当該ジルコニア粉末を焼結して得られるジルコニア焼結体に亀裂が生じてしまうことを防止することができる。
 また、安定化剤の総量が、酸化物換算で6.5mol%以下であるため、機械特性(強度、靱性)の低い立方晶相率を減らし、機械特性の高い正方晶相率を高くすることができる。
 このように、前記構成によれば、高強度且つ高靱性な焼結体を得るための焼結温度範囲(焼結可能温度範囲)を広くすることができ、且つ、得られる焼結体の水熱劣化耐性が高いジルコニア粉末を提供することができる。
 前記構成においては、前記第2の安定化剤が、Y、Yb、Er、Nd、La、及び、Tbからなる群から選ばれる1種以上であり、
 前記安定化ジルコニア中の前記安定化剤の総量が、酸化物換算で2.5mol%以上4.5mol%以下であることが好ましい。
 前記構成においては、前記第2の安定化剤が、CeOであり、
 前記安定化ジルコニア中の前記安定化剤の総量が、酸化物換算で4.0mol%以上6.5mol%以下であることが好ましい。
 前記構成においては、ジルコニア粉末全体に対してAlを3質量%以下の範囲内で含むことが好ましい。
 Alを3質量%以下の範囲内で含むと、焼結助剤として働き、低い温度での焼結でも、相対焼結密度を高くすることができる。従って、低い温度での焼結でも、高強度且つ高靱性な焼結体を得ることができる。このように、Alを3質量%以下の範囲内で含むと、焼結可能温度範囲の下限を低くすることができ、焼結可能温度範囲をより広くすることができる。
 前記構成においては、成型圧2t/cmで成型し、大気圧で焼結した際に、下記<特性1>、下記<特性2>、下記<特性3>、及び、下記<特性4>を満たす最低の焼結温度を温度A、
 成型圧2t/cmで成型し、大気圧で焼結した際に、下記<特性1>、下記<特性2>、下記<特性3>、及び、下記<特性4>を満たす最高の焼結温度を温度Bとしたときに、
 前記温度Aで焼結した際の平均結晶粒径Aと前記温度Bで焼結した際の平均結晶粒径Bとの差[(平均結晶粒径B)-(平均結晶粒径A)]が、50nm以上であることが好ましい。
<特性1>
 相対焼結密度が98.0%以上である。
<特性2>
 IF法による靭性値が10MPa・m0.5以上である。
<特性3>
 3点曲げ強度が700MPa以上である。
<特性4>
 134℃、0.3MPa、15時間水熱処理後の単斜晶相率が30%以下である。
 前記差[(平均結晶粒径B)-(平均結晶粒径A)]が、50nm以上であるということは、焼結可能温度の最高温度(温度B)と最低温度(温度A)との差が広い(少なくとも差が50℃より大きい)ことを意味する。従って、前記差[(平均結晶粒径B)-(平均結晶粒径A)]が、50nm以上であれば、焼結可能温度範囲は、特に広いといえる。
 前記構成においては、比表面積が10m/g以上40m/g以下であることが好ましい。
 前記比表面積が10m/g以上であると、焼結性に優れる。従って、低い温度での焼結でも、相対焼結密度を高くすることができ、高強度且つ高靱性な焼結体を得ることができる。このように比表面積が10m/g以上であると、焼結可能温度範囲の下限を低くすることができ、焼結可能温度範囲をより広くすることができる。
 前記構成においては、粒子径D50が0.10μm以上0.80μm以下であることが好ましい。
 前記粒子径D50が0.80μm以下であると、焼結性に優れる。従って、低い温度での焼結でも、相対焼結密度を高くすることができ、高強度且つ高靱性な焼結体を得ることができる。このように粒子径D50が0.80μm以下であると、焼結可能温度範囲の下限を低くすることができ、焼結可能温度範囲をより広くすることができる。
 また、本発明に係るジルコニア焼結体は、
 ジルコニアと安定化剤とを含む安定化ジルコニアを含み、
 前記安定化剤は、第1の安定化剤と第2の安定化剤とを含み、
 前記第1の安定化剤は、CaOであり、
 前記第2の安定化剤は、Y、Yb、Er、CeO、Nd、La、及び、Tbからなる群から選ばれる1種以上であり、
 前記安定化ジルコニア中の前記安定化剤の総量が、酸化物換算で2.5mol%以上6.5mol%以下であり、
 [CaOの量(mol%)]/[安定化剤の総量(mol%)]の割合が、50%以上98%以下であることを特徴とする。
 前記構成によれば、CaO(第1の安定化剤)に加えて、前記第2の安定化剤を含み、安定化剤の総量が酸化物換算で2.5mol%以上6.5mol%以下であり、[CaOの量(mol%)]/[安定化剤の総量(mol%)]の割合が50%以上であるため、当該ジルコニア焼結体は、焼結可能温度範囲の広い前記ジルコニア粉末を焼結して得られたものであるといえる。
 また、前記ジルコニア粉末を焼結可能温度範囲で焼結して得られる当該ジルコニア焼結体は、高強度、高靱性、且つ、高い水熱劣化耐性を有することができる。
 前記構成においては、前記第2の安定化剤が、Y、Yb、Er、Nd、La、及び、Tbからなる群から選ばれる1種以上であり、
 前記安定化ジルコニア中の前記安定化剤の総量が、酸化物換算で2.5mol%以上4.5mol%以下であることが好ましい。
 前記構成においては、前記第2の安定化剤が、CeOであり、
 前記安定化ジルコニア中の前記安定化剤の総量が、酸化物換算で4.0mol%以上6.5mol%以下であることが好ましい。
 前記構成においては、ジルコニア焼結体全体に対してAlを3質量%以下の範囲内で含むことが好ましい。
 Alを3質量%以下の範囲内で含むと、前記ジルコニア粉末を焼結して当該ジルコニア焼結体を得る際に、焼結助剤として働く。従って、当該ジルコニア焼結体は、焼結可能温度範囲のより広い前記ジルコニア粉末を焼結して得られたものであるといえる。
 前記構成においては、134℃、0.3MPa、15時間水熱処理後の単斜晶相率が30%以下であることが好ましい。
 134℃、0.3MPa、15時間水熱処理後の単斜晶相率が30%以下であると、より水熱劣化耐性に優れるといえる。
 前記構成においては、水熱処理前の単斜晶相率が7.0%以下であり、
 134℃、0.3MPa、15時間水熱処理後の単斜晶相率から、水熱劣化前の単斜晶相率を引いた値が20%以下であることが好ましい。
 水熱処理前の単斜晶相率が7.0%以下であり、134℃、0.3MPa、15時間水熱処理後の単斜晶相率から、水熱劣化前の単斜晶相率を引いた値が20%以下であると、水熱処理前の単斜晶相率が少なく、且つ、水熱処理前後での単斜晶相率の変化量が少ないため、水熱処理後の単斜晶相率は少ないといえる。従って、より水熱劣化耐性に優れるといえる。
 前記構成においては、3点曲げ強度が700MPa以上1500MPa以下であることが好ましい。
 前記3点曲げ強度が700MPa以上であると、より高強度であるといえる。
 前記構成においては、IF法による靭性値が10MPa・m0.5以上40MPa・m0.5以下であることが好ましい。
 前記靭性値が10MPa・m0.5以上であると、より高靱性であるといえる。
 前記構成においては、400℃、30MPa、5時間水熱処理後の単斜晶相率が30%以下であることが好ましい。
 400℃、30MPa、5時間水熱処理後の単斜晶相率が30%以下であると、さらに水熱劣化耐性に優れるといえる。
 前記構成においては、水熱処理前の単斜晶相率が7.0%以下であり、
 400℃、30MPa、5時間水熱処理後の単斜晶相率から、水熱劣化前の単斜晶相率を引いた値が20%以下であることが好ましい。
 水熱処理前の単斜晶相率が7.0%以下であり、400℃、30MPa、5時間水熱処理後の単斜晶相率から、水熱劣化前の単斜晶相率を引いた値が20%以下であると、水熱処理前の単斜晶相率が少なく、且つ、水熱処理前後での単斜晶相率の変化量が少ないため、水熱処理後の単斜晶相率は少ないといえる。従って、より水熱劣化耐性に優れるといえる。
 また、本発明に係るジルコニア焼結体の製造方法は、
 前記ジルコニア粉末を成型し、成型体を得る工程Xと、
 前記工程Xの後、前記成型体を、1200℃以上1450℃以下、1時間以上5時間以下の条件で焼結する工程Yとを有する。
 前記ジルコニア粉末は、CaO(第1の安定化剤)に加えて、前記第2の安定化剤を含み、安定化剤の総量が酸化物換算で2.5mol%以上6.5mol%以下であり、[CaOの量(mol%)]/[安定化剤の総量(mol%)]の割合が50%以上である。
 前記構成に係るジルコニア焼結体の製造方法によれば、前記ジルコニア粉末を、1200℃以上1450℃以下という広い温度範囲内において、1時間以上5時間以下の条件で焼結させることにより、高強度、高靱性、且つ、高い水熱劣化耐性を有するジルコニア焼結体を得ることができる。
 本発明によれば、高強度且つ高靱性なジルコニア焼結体を得るための焼結温度範囲が広く、且つ、得られるジルコニア焼結体の水熱劣化耐性が高いジルコニア粉末を提供することができる。また、当該ジルコニア粉末を焼結して得られるジルコニア焼結体を提供することができる。また、当該ジルコニア焼結体の製造方法を提供することができる。
本実施形態に係るジルコニア粉末の製造方法を説明するための模式図である。 圧痕長さとクラック長さとを説明するための模式図である。
 以下、本発明の実施形態について説明する。ただし、本発明はこれらの実施形態のみに限定されるものではない。なお、本明細書において、ジルコニア(酸化ジルコニウム)とは一般的なものであり、ハフニアを含めた10質量%以下の不純物金属化合物を含むものである。また、本明細書において、「含有」及び「含む」なる表現については、「含有」、「含む」、「実質的にからなる」及び「のみからなる」という概念を含む。
 以下で示される各成分の含有量の最大値、最小値は、他の成分の含有量に関係なく、それぞれ独立して本発明の好ましい最小値、好ましい最大値である。
 また、以下で示される各種パラメータ(測定値等)の最大値、最小値は、各成分の含有量(組成)に関係なく、それぞれ独立して本発明の好ましい最小値、最大値である。
 [ジルコニア粉末]
 以下、本実施形態に係るジルコニア粉末の一例について説明する。ただし、本発明のジルコニア粉末は、以下の例示に限定されない。
 本実施形態に係るジルコニア粉末は、
 ジルコニアと安定化剤とを含む安定化ジルコニアを含み、
 前記安定化剤は、第1の安定化剤と第2の安定化剤とを含み、
 前記第1の安定化剤は、CaOであり、
 前記第2の安定化剤は、Y、Yb、Er、CeO、Nd、La、及び、Tbからなる群から選ばれる1種以上であり、
 前記安定化ジルコニア中の前記安定化剤の総量が、酸化物換算で2.5mol%以上6.5mol%以下であり、
 [CaOの量(mol%)]/[安定化剤の総量(mol%)]の割合が、50%以上98%以下である。
 前記ジルコニア粉末は、凝集していない一次粒子、及び、一次粒子が凝集した二次粒子を含む。
 ただし、前記ジルコニア粉末において、二次粒子とはならず、凝集しない一次粒子の状態で存在する一次粒子の量はごく微量であり、例えば、一次粒子全体(凝集していない一次粒子と、凝集して二次粒子となった一次粒子との合計)のうちの1質量%未満である。つまり、前記ジルコニア粉末は、凝集していない一次粒子をごく微量含み得るが、大部分が二次粒子で構成されている。
 本実施形態に係るジルコニア粉末は、安定化ジルコニアを含む。
 前記安定化ジルコニアの含有量は、前記ジルコニア粉末全体を100質量%としたときに、好ましくは70質量%以上、より好ましくは75質量%以上、さらに好ましくは80質量%以上、特に好ましくは85質量%以上である。前記安定化ジルコニアの含有量は、前記ジルコニア粉末全体を100質量%としたときに、99質量%以下、95質量%以下等とすることができる。また、前記ジルコニア粉末は、前記安定化ジルコニアのみで構成されていてもよい。この場合、前記安定化ジルコニアの含有量は、前記ジルコニア粉末全体を100質量%としたときに、100質量%となる。
 前記安定化ジルコニアの含有量は、前記ジルコニア粉末全体を100質量%としたときに、好ましくは70質量%以上99質量%以下、より好ましくは75質量%以上95質量%以下である。
 前記安定化ジルコニアは、ジルコニアと安定化剤とを含む。前記安定化剤は、固溶する等の形態にて前記一次粒子に含まれる。
 前記安定化ジルコニア中の、ジルコニアと安定化剤との合計含有量は、前記安定化ジルコニア全体を100質量%としたときに、70質量%以上であることが好ましく、80質量%以上であることがより好ましい。ジルコニアと安定化剤との合計含有量は、前記安定化ジルコニア全体を100質量%としたときに、99質量%以下、95質量%以下等とすることができる。
 前記安定化ジルコニア中の、ジルコニアと安定化剤との合計含有量は、前記安定化ジルコニア全体を100質量%としたときに、70質量%以上99質量%以下であることが好ましく、75質量%以上95質量%以下であることがより好ましい。
 また、前記安定化ジルコニアは、ジルコニアと安定化剤とのみで構成されていてもよい。
 前記安定化剤は、第1の安定化剤と第2の安定化剤とを含む。
 前記第1の安定化剤は、CaOである。前記ジルコニア粉末は、前記第1の安定化剤としてCaOを含むため、水熱劣化耐性に優れる。
 前記第2の安定化剤は、Y、Yb、Er、CeO、Nd、La、及び、Tbからなる群から選ばれる1種以上である。Y、Yb、Er、CeO、Nd、La、Tbは、安定化剤としてCaOのみ使用した安定化ジルコニアに対して添加することにより、臨界結晶粒子径を大きくすることが可能な安定化剤である。前記ジルコニア粉末は、CaO(第1の安定化剤)に加えて、前記第2の安定化剤を含むため、焼結可能温度を広げることができる。
 前記第2の安定化剤は、ジルコニア粉末の臨界結晶粒子径をどの程度とするかの観点で選択すればよい。なかでも、前記第2の安定化剤は、白色の焼結体が得られる観点からは、Y、Yb、Laが好ましい。前記第2の安定化剤は、ピンク色の焼結体が得られる観点からは、Erが好ましい。前記第2の安定化剤は、黄色の焼結体が得られる観点からは、CeOが好ましい。前記第2の安定化剤は、紫色の焼結体が得られる観点からは、Ndが好ましい。前記第2の安定化剤は、オレンジ色の焼結体が得られる観点からは、Tbが好ましい。
 前記ジルコニア粉末は、[CaOの量(mol%)]/[安定化剤の総量(mol%)]の割合が、50%以上98%以下である。第2の安定化剤の添加量が増加すると、得られるジルコニア焼結体の水熱劣化耐性が低下することになるが、[CaOの量(mol%)]/[安定化剤の総量(mol%)]の割合を50%以上とし、第2の安定化剤の添加量を可能な限り少なくしたため、高強度、高靱性を備え、且つ、水熱劣化耐性を高く維持することができる。
 前記[CaOの量(mol%)]/[安定化剤の総量(mol%)]の割合は、より好ましくは55%以上、さらに好ましくは60%以上である。
 前記[CaOの量(mol%)]/[安定化剤の総量(mol%)]の割合は、より好ましくは90%以下、さらに好ましくは80%以下である。
 前記[CaOの量(mol%)]/[安定化剤の総量(mol%)]の割合は、より好ましくは55%以上90%以下、さらに好ましくは60%以上80%以下である。
 前記安定化ジルコニア中の安定化剤の総量は、酸化物換算で2.5mol%以上6.5mol%以下である。安定化剤の総量が、酸化物換算で2.5mol%以上であるため、得られるジルコニア焼結体中の単斜晶相率を少なくすることができ、当該ジルコニア粉末を焼結して得られるジルコニア焼結体に亀裂が生じてしまうことを防止することができる。また、安定化剤の総量が、酸化物換算で6.5mol%以下であるため、機械特性(強度、靱性)の低い立方晶相率を減らし、機械特性の高い正方晶相率を高くすることができる。
 前記安定化剤の総量は、酸化物換算で2.7mol%以上が好ましく、2.9mol%以上がより好ましく、3.0mol%以上がさらに好ましい。
 前記安定化剤の総量は、酸化物換算で6.0mol%以下が好ましく、5.5mol%以下がより好ましく、5.0mol%以下がさらに好ましく、4.5mol%以下が特に好ましい。
 前記安定化剤の総量は、酸化物換算で2.7mol%以上6.0mol%以下が好ましく、2.9mol%以上5.5mol%以下がより好ましく、3.0mol%以上5.0mol%以下がさらに好ましく、3.0mol%以上4.5mol%以下が特に好ましい。
 前記ジルコニア粉末は、前記第2の安定化剤が、Y、Yb、Er、Nd、La、及び、Tbからなる群から選ばれる1種以上である場合、前記安定化ジルコニア中の前記安定化剤の総量が、酸化物換算で2.5mol%以上4.5mol%以下であることが好ましい。
 前記第2の安定化剤が、Y、Yb、Er、Nd、La、及び、Tbからなる群から選ばれる1種以上である場合、前記安定化ジルコニア中の前記安定化剤の総量は、酸化物換算で2.6mol%以上がより好ましく、2.8mol%以上がさらに好ましい。
 前記第2の安定化剤が、Y、Yb、Er、Nd、La、及び、Tbからなる群から選ばれる1種以上である場合、前記安定化ジルコニア中の前記安定化剤の総量は、酸化物換算で4.1mol%以下がより好ましく、3.7mol%以下がさらに好ましい。
 前記第2の安定化剤が、Y、Yb、Er、Nd、La、及び、Tbからなる群から選ばれる1種以上である場合、前記安定化ジルコニア中の前記安定化剤の総量は、酸化物換算で2.6mol%以上4.1mol%以下がより好ましく、
2.8mol%以上3.7mol%以下がさらに好ましい。
 なお、Y、Yb、Er、Nd、La、及び、Tbは、いずれも3価の元素であるため、同様の挙動を示す。すなわち、Y、Yb、Er、Nd、La、及び、Tbは、ジルコニア粉末への添加量が同じであると、同様の挙動を示す。
 前記ジルコニア粉末は、前記第2の安定化剤がCeOである場合、前記安定化ジルコニア中の前記安定化剤の総量が、酸化物換算で4.0mol%以上6.5mol%以下であることが好ましい。
 前記第2の安定化剤がCeOである場合、前記安定化ジルコニア中の前記安定化剤の総量は、酸化物換算で4.3mol%以上がより好ましく、4.5mol%以上がさらに好ましい。
前記第2の安定化剤がCeOである場合、前記安定化ジルコニア中の前記安定化剤の総量は、酸化物換算で6.3mol%以下がより好ましく、6.0mol%以下がさらに好ましい。
 前記第2の安定化剤がCeOである場合、前記安定化ジルコニア中の前記安定化剤の総量は、酸化物換算で4.3mol%以上6.3mol%以下がより好ましく、4.5mol%以上6.0mol%以下がさらに好ましい。
 前記安定化ジルコニア中のジルコニアの含有量は、80質量%以上99質量%以下であることが好ましい。前記安定化ジルコニア中のジルコニアの含有量は、85質量%以上であることがより好ましく、90質量%以上であることがさらに好ましい。前記安定化ジルコニア中のジルコニアの含有量は、98質量%以下であることがより好ましく、97質量%以下であることがさらに好ましい。
 前記安定化ジルコニア中のジルコニアの含有量は、85質量%以上98質量%以下であることがより好ましく、90質量%以上97質量%以下であることがさらに好ましい。
 前記ジルコニア粉末は、成型圧2t/cmで成型し、大気圧で焼結した際に、下記<特性1>、下記<特性2>、下記<特性3>、及び、下記<特性4>を満たす最低の焼結温度を温度A、
 成型圧2t/cmで成型し、大気圧で焼結した際に、下記<特性1>、下記<特性2>、下記<特性3>、及び、下記<特性4>を満たす最高の焼結温度を温度Bとしたときに、
 前記温度Aで焼結した際の平均結晶粒径Aと前記温度Bで焼結した際の平均結晶粒径Bとの差[(平均結晶粒径B)-(平均結晶粒径A)]が、50nm以上であることが好ましい。
<特性1>
 相対焼結密度が98.0%以上である。
<特性2>
 IF法による靭性値が10MPa・m0.5以上である。
<特性3>
 3点曲げ強度が700MPa以上である。
<特性4>
 134℃、0.3MPa、15時間水熱処理後の単斜晶相率が30%以下である。
 前記差[(平均結晶粒径B)-(平均結晶粒径A)]が、50nm以上であるということは、焼結可能温度の最高温度(温度B)と最低温度(温度A)との差が広いことを意味する。従って、前記差[(平均結晶粒径B)-(平均結晶粒径A)]が、50nm以上であれば、焼結可能温度範囲は、特に広いといえる。
 前記差[(平均結晶粒径B)-(平均結晶粒径A)]は、より好ましくは55nm以上であり、さらに好ましくは60nm以上である。
 前記差[(平均結晶粒径B)-(平均結晶粒径A)]は、大きいほど好ましいが、例えば、120nm以下、100nm以下等とすることができる。
 前記差[(平均結晶粒径B)-(平均結晶粒径A)]は、より好ましくは55nm以上120nm以下、さらに好ましくは60nm以上100nm以下である。
 前記IF法による靭性値、前記3点曲げ強度、前記134℃、0.3MPa、15時間水熱処理後の単斜晶相率は、実施例に記載の方法により得られた値をいう。
 なお、本明細書において、水熱処理を行う際の圧力の表記は、絶対圧力である。つまり、特性4は、「134℃、絶対圧力0.3MPa、15時間水熱処理後の単斜晶相率が30%以下」を意味する。
 <比表面積>
 前記ジルコニア粉末の比表面積は、10m/g以上40m/g以下であることが好ましい。前記比表面積が10m/g以上であると、焼結性に優れる。従って、低い温度での焼結でも、相対焼結密度を高くすることができ、高強度且つ高靱性な焼結体を得ることができる。このように比表面積が10m/g以上であると、焼結可能温度範囲の下限を低くすることができ、焼結可能温度範囲をより広くすることができる。
 前記比表面積は、より好ましくは15m/g以上、さらに好ましくは20m/g以上である。前記比表面積は、好ましくは37m/g以下、より好ましくは35m/g以下、さらに好ましくは30m/g以下である。
 前記比表面積は、より好ましくは15m/g以上37m/g以下、さらに好ましくは20m/g以上35m/g以下、特に好ましくは20m/g以上30m/g以下である。
 前記比表面積は、実施例に記載の方法により得られた値をいう。
 <粒子径D50
 前記ジルコニア粉末の粒子径D50は、0.10μm以上0.80μm以下であることが好ましい。前記粒子径D50が0.80μm以下であると、より焼結性に優れる。従って、低い温度での焼結でも、相対焼結密度を高くすることができ、高強度且つ高靱性な焼結体を得ることができる。このように粒子径D50が0.80μm以下であると、焼結可能温度範囲の下限を低くすることができ、焼結可能温度範囲をより広くすることができる。
 前記粒子径D50は、より好ましくは0.15μm以上、さらに好ましくは0.20μm以上である。前記粒子径D50は、より好ましくは0.70μm以下、さらに好ましくは0.60μm以下である。
 前記粒子径D50は、より好ましくは0.15μm以上0.70μm以下、さらに好ましくは0.20μm以上0.60μm以下である。
 前記粒子径D50は、実施例に記載の方法により得られた値をいう。
 なお、前記粒子径D50は、測定する際に、二次粒子のみならず、凝集していない一次粒子も含まれ得るが、前記ジルコニア粉末に含まれ得る凝集していない一次粒子の量はごく微量である。従って、前記粒子径D50は、二次粒子の粒子径D50、すなわち、二次粒子の平均粒子径を表しているとみなしてよい。
 <結晶子径>
 前記ジルコニア粉末の結晶子径は、10nm以上60nm以下であることが好ましい。前記結晶子径が60nm以下であると、より焼結性に優れる。従って、低い温度での焼結でも、相対焼結密度を高くすることができ、高強度且つ高靱性な焼結体を得ることができる。このように結晶子径が60nm以下であると、焼結可能温度範囲の下限を低くすることができ、焼結可能温度範囲をより広くすることができる。
 <細孔分布>
 1.一次粒子間隙のピークトップ径
 前記ジルコニア粉末は、水銀圧入法に基づく細孔分布における10nm以上200nm以下の範囲において、細孔容積分布のピークトップ径が20nm以上120nm以下であることが好ましい。前記ピークトップ径は、好ましくは30nm以上、より好ましくは35nm以上、さらに好ましくは40nm以上、特に好ましくは45nm以上である。前記ピークトップ径は、好ましくは110nm以下、より好ましくは100nm以下、さらに好ましくは90nm以下、特に好ましくは80nm以下である。
 前記ピークトップ径は、好ましくは30nm以上110nm以下、より好ましくは35nm以上100nm以下、さらに好ましくは40nm以上90nm以下、特に好ましくは45nm以上80nm以下である。
 なお、細孔分布の10nm以上200nm以下の範囲に複数のピークが存在する場合、本明細書でいう「細孔容積分布のピークトップ径が20nm以上120nm以下である」とは、細孔分布の10nm以上200nm以下の範囲におけるすべてのピークトップ径が20nm以上120nm以下の範囲内にあることをいう。
 2.一次粒子間隙の細孔分布幅
 前記ジルコニア粉末は、水銀圧入法に基づく細孔分布における10nm以上200nm以下の範囲において、細孔分布幅が30nm以上170nm以下であることが好ましい。前記細孔分布幅は、好ましくは40nm以上、より好ましくは46nm以上、さらに好ましくは50nm以上、特に好ましくは60nm以上である。前記細孔分布幅は、好ましくは120nm以下、より好ましくは110nm以下、さらに好ましくは100nm以下、特に好ましくは95nm以下、特別に好ましくは90nm以下である。
 前記細孔分布幅は、好ましくは40nm以上120nm以下、より好ましくは46nm以上110nm以下、さらに好ましくは50nm以上100nm以下、特に好ましくは60nm以上95nm以下、特別に60nm以上90nm以下である。
 ここで、細孔分布幅は、log微分細孔容積が0.1ml/g以上となるピークの幅をいう。
 なお、細孔分布の10nm以上200nm以下の範囲に複数のピークが存在する場合、本明細書でいう「細孔分布幅が30nm以上170nm以下である」とは、横軸を細孔径、縦軸をlog微分細孔容積とした細孔分布を示すグラフにおいて、細孔径が小さい方から見て初めてlog微分細孔容積0.1ml/gと交差した点(上昇しながら交差した点)を最小径とし、log微分細孔容積0.1ml/gと再び交差した点(下降しながら交差した点)を最大径とし、その最大径と最小径の差が30nm以上170nm以下であることをいう。
 3.一次粒子間隙の細孔容積
前記ジルコニア粉末は、水銀圧入法に基づく細孔分布における10nm以上200nm以下の範囲において、細孔容積が0.2ml/g以上0.5ml/g未満であることが好ましい。前記細孔容積は、好ましくは0.22ml/g以上、より好ましくは0.25ml/g以上、さらに好ましくは0.3ml/g以上、特に好ましくは0.33ml/g以上、特別に好ましくは0.35ml/g以上である。前記細孔容積は、好ましくは0.48ml/g以下、より好ましくは0.46ml/g以下、さらに好ましくは0.44ml/g以下である。
 前記細孔容積は、好ましくは0.22ml/g以上0.48ml/g以下、より好ましくは0.25ml/g以上0.46ml/g以下、さらに好ましくは0.30ml/g以上0.44ml/g以下、特に好ましくは0.33ml/g以上0.44ml/g以下、特別に好ましくは0.35ml/g以上0.44ml/g以下である。
 前記ピークトップ径、前記細孔容積、及び、前記細孔分布幅を前記数値範囲内に制御すると、より低温焼結が可能となる。前記ピークトップ径、前記細孔分布幅、前記細孔容積は、実施例に記載の方法により得られた値をいう。
 前記ジルコニア粉末は、添加剤を含有していてもよい。本明細書において、添加剤とは、ジルコニア粒子に対して、混合物として添加されるものをいう。前記添加剤としては、焼結助剤、着色剤等が挙げられる。前記添加剤としては、焼結助剤としてのみ機能するもの、着色剤としてのみ機能するもの、焼結助剤として機能し、且つ、着色剤として機能するものがある。以下、焼結助剤、着色剤について説明する。
 前記ジルコニア粉末は、ジルコニア粉末全体に対してAl(アルミナ)を3質量%以下の範囲内で含むことが好ましい。アルミナを3質量%以下の範囲内で含むと、焼結助剤として働き、低い温度での焼結でも、相対焼結密度を高くすることができる。従って、低い温度での焼結でも、高強度且つ高靱性な焼結体を得ることができる。このように、アルミナを3質量%以下の範囲内で含むと、焼結可能温度範囲の下限を低くすることができ、焼結可能温度範囲をより広くすることができる。また、前記ジルコニア粉末がアルミナを含有することで、ジルコニア焼結体の靭性の低下を抑制しやすい。さらに、アルミナの含有量を調節すれば、ジルコニア焼結体の透光性を向上させることができる。
 前記ジルコニア粉末がAlを含む場合、前記Alの含有量は、焼結助剤として好適に機能させる観点から、より好ましくは2.0質量%以下、さらに好ましくは1.0質量%以下である。
 前記ジルコニア粉末がAlを含む場合、前記Alの含有量は、焼結助剤として好適に機能させる観点から、より好ましくは0.05質量%以上、さらに好ましくは0.10質量%以上である。
 前記ジルコニア粉末がAlを含む場合、前記Alの含有量は、より好ましくは0.05質量%以上2.0質量%以下、さらに好ましくは0.10質量%以上1.0質量%以下である。
 アルミナの形態は特に限定されないが、ジルコニア粉末の調製時の(ジルコニア粒子に混合、分散させる際の)ハンドリング性や不純物残存を低減するという観点から、アルミナ粉末が好ましい。
 アルミナの形態が粉末である場合、アルミナの一次粒子の平均粒子径に特に制限はないが、例えば、0.02~0.4μm、好ましくは0.05~0.3μm、より好ましくは0.07~0.2μmである。
 なお、前記ジルコニア粉末は、焼結可能温度範囲が広く、得られる焼結体の水熱劣化耐性が高いため、Al(アルミナ)を含まなくても構わない。
 前記ジルコニア粉末は、アルミナ以外にも、強度等の特性の向上を目的として、焼結可能なセラミックスや熱硬化性樹脂等を含んでも構わない。
 前記ジルコニア粉末は、Fe、V、Mn、Co、Zn、Cu、及び、Tiからなる群より選ばれる1種以上を含んでいてもよい。Fe、V、Mn、Co、Zn、Cu、及び、Tiからなる群より選ばれる1種以上を着色元素として含むと、当該ジルコニア粉末を焼結させることにより得られるジルコニア焼結体を好適に着色することができる。
 前記着色元素の形態は特に限定されず、酸化物、塩化物などの形態で添加することができる。前記着色元素を含む着色剤としては、具体的には、例えば、Fe、V、MnO、CoO、ZnO、CuO、TiO等が挙げられる。前記着色剤は、前記ジルコニア粉末に混合物として添加されていることが好ましい。
 前記着色剤としてFeを含む場合、前記着色剤の含有量は、ジルコニア粉末全体を100質量%としたときに、0.005質量%以上1質量%以下が好ましく、0.05質量%以上0.5質量%以下がより好ましい。前記着色剤の含有量が0.005質量%以上であると、意図した着色が得やすい。すなわち、色調の調整が容易となる。
 前記着色剤としてVを含む場合、ジルコニア粉末全体を100質量%としたときに、0.005質量%以上0.5質量%以下が好ましく、0.01質量%以上0.1質量%以下がより好ましい。前記着色剤の含有量が0.005質量%以上であると、意図した着色が得やすい。すなわち、色調の調整が容易となる。
 前記着色剤としてMnOを含む場合、ジルコニア粉末全体を100質量%としたときに、0.005質量%以上2質量%以下が好ましく、0.1質量%以上1.1質量%以下がより好ましい。前記着色剤の含有量が0.005質量%以上であると、意図した着色が得やすい。すなわち、色調の調整が容易となる。
 前記着色剤としてCoOを含む場合、前記着色剤の含有量は、ジルコニア粉末全体を100質量%としたときに、0.005質量%以上2質量%以下が好ましく、0.01質量%以上1.5質量%以下がより好ましい。前記着色剤の含有量が0.005質量%以上であると、意図した着色が得やすい。すなわち、色調の調整が容易となる。
 前記着色剤としてZnOを含む場合、前記着色剤の含有量は、ジルコニア粉末全体を100質量%としたときに、0.005質量%以上1質量%以下が好ましく、0.1質量%以上0.5質量%以下がより好ましい。前記着色剤の含有量が0.005質量%以上であると、意図した着色が得やすい。すなわち、色調の調整が容易となる。
 前記着色剤としてCuOを含む場合、前記着色剤の含有量は、ジルコニア粉末全体を100質量%としたときに、0.005質量%以上1質量%以下が好ましく、0.05質量%以上0.6質量%以下がより好ましい。前記着色剤の含有量が0.005質量%以上であると、意図した着色が得やすい。すなわち、色調の調整が容易となる。
 前記着色剤としてTiOを含む場合、前記着色剤の含有量は、ジルコニア粉末全体を100質量%としたときに、0.005質量%以上2質量%以下が好ましく、0.01質量%以上1質量%以下がより好ましく、0.1質量%以上0.3質量%以下がさらに好ましい。前記着色剤の含有量が0.005質量%以上であると、意図した着色が得やすい。すなわち、色調の調整が容易となる。
 <相対成型密度>
 前記ジルコニア粉末は、成型圧2t/cmで成型した場合の相対成型密度が43~51%であることが好ましい。ここで、相対成型密度は下記式によって算出される値である。
相対成型密度(%)=(成型密度/理論焼結密度)×100・・・(4)
 ここで、理論焼結密度(ρとする)は、後に、ジルコニア焼結体の相対焼結密度の測定方法として説明する式(2-1)によって算出される値である。前記相対成型密度の下限値は44.5%以上が好ましく、45%以上がより好ましい。その上限値は50.5%以下が好ましく、49.5%以下がより好ましく、48.5%以下がさらに好ましく、48%以下が特に好ましい。
 前記相対成型密度は、44.5%以上50.5%以下が好ましく、45%以上49.5%以下がより好ましく、45%以上48.5%以下がさらに好ましく、45%以上48%以下が特に好ましい。
 以上、本実施形態に係るジルコニア粉末について説明した。
 [ジルコニア粉末の製造方法]
 以下、ジルコニア粉末の製造方法の一例について説明する。ただし、ジルコニア粉末の製造方法は、以下の例示に限定されない。
 本実施形態に係るジルコニア粉末の製造方法は、
 ジルコニウム塩溶液及び硫酸塩化剤溶液をそれぞれ別々に95℃以上100℃以下に加熱する工程1、
 前記加熱後のジルコニウム塩溶液と前記加熱後の硫酸塩化剤溶液とを、接触開始から終了までの間に混合液の濃度が変化しないように接触させることにより、混合液として塩基性硫酸ジルコニウム含有反応液を得る工程2、
 工程2で得られた塩基性硫酸ジルコニウム含有反応液を、95℃以上で3時間以上熟成する工程3、
 工程3で得られた熟成後の塩基性硫酸ジルコニウム含有反応液に安定化剤を添加する工程4、
 工程4で得られた塩基性硫酸ジルコニウム含有反応液にアルカリを添加することにより、ジルコニウム含有水酸化物を得る工程5、
 工程5で得られたジルコニウム含有水酸化物を熱処理することにより、ジルコニア粉末を得る工程6
を含み、
  前記工程2では、当該接触開始から終了まで、混合液中のSO 2-/ZrO重量比率を0.3~0.8の範囲に維持するとともに、混合液の温度を95℃以上に維持する。
 以下、工程ごとに詳細に説明する。
 <工程1>
 工程1では、出発原料であるジルコニウム塩溶液及び硫酸塩化剤溶液をそれぞれ別々に95℃以上100℃以下に加熱する。
 前記ジルコニウム塩溶液を作製するために用いるジルコニウム塩としては、ジルコニウムイオンを供給するものであればよく、例えば、オキシ硝酸ジルコニウム、オキシ塩化ジルコニウム、硝酸ジルコニウム等を使用できる。これらは1種又は2種以上で使用できる。この中でも、工業的規模での生産性が高い点でオキシ塩化ジルコニウムが好ましい。
 前記ジルコニウム塩溶液を作製するために用いる溶媒としては、ジルコニウム塩の種類等に応じて選択すればよい。通常は水(純水、イオン交換水、以下同様)が好ましい。
 前記ジルコニウム塩溶液の濃度は、特に制限されないが、一般的には溶媒1000gに対して酸化ジルコニウム(ZrO)換算で5~250g含有されることが好ましく、20~150g含有されることがより好ましい。
 硫酸塩化剤としては、ジルコニウムイオンと反応して硫酸塩を生成させるもの(すなわち、硫酸塩化させる試薬)であればよく、例えば、硫酸ナトリウム、硫酸カリウム、硫酸アンモニウム、硫酸水素カリウム、硫酸水素ナトリウム、二硫酸カリウム、二硫酸ナトリウム、三酸化硫黄等が例示される。硫酸塩化剤は、粉末状、溶液状等のいずれの形態でもよいが、溶液(特に水溶液)が好ましい。溶媒については、前記ジルコニウム塩溶液を作製するために用いる溶媒と同様のものを使用することができる。
 前記ジルコニウム塩溶液の酸濃度は0.1~2.0Nとすることが好ましい。酸濃度を上記範囲に設定することによって、ジルコニア粉末を構成する粒子の凝集状態を好適な状態に制御することができる。酸濃度の調整は、例えば、塩酸、硝酸、水酸化ナトリウム等を用いることにより実施することができる。
 前記硫酸塩化剤(前記硫酸塩化剤溶液)の濃度は、特に制限されないが、一般的には溶媒1000gに対して硫酸塩化剤を5~250g、特に20~150gとすることが好ましい。
 前記ジルコニウム塩溶液及び前記硫酸塩化剤溶液を調製する容器は、前記ジルコニウム塩溶液及び前記硫酸塩化剤溶液をそれぞれ十分攪拌できる容量を備えていれば、材質は特に限定されない。ただし、各溶液の温度が95℃を下回らないように適宜加熱できる設備を有していることが好ましい。
 前記ジルコニウム塩溶液及び前記硫酸塩化剤溶液の加熱温度は、95℃以上100℃以下であればよく、好ましくは97℃以上である。前記ジルコニウム塩溶液及び前記硫酸塩化剤溶液の温度が95℃未満のまま工程2を実施すると、ジルコニウム塩溶液と硫酸塩化剤とが充分に反応せず、収率が低下する。
 <工程2>
 工程2では、前記加熱後のジルコニウム塩溶液と前記加熱後の硫酸塩化剤溶液とを、接触開始から終了までの間に混合液の濃度が変化しないように接触させることにより、混合液として塩基性硫酸ジルコニウム含有反応液を得る。ここで、当該接触開始から終了まで、混合液中のSO 2-/ZrO重量比率を0.3~0.8の範囲に維持するとともに、混合液の温度を95℃以上に維持する。
 以下、工程2について、図面を参照しつつ、説明する。
 図1は、本実施形態に係るジルコニア粉末の製造方法を説明するための模式図である。図1に示すように、容器10は、バルブ12を介してT字管20の上方の一端(図1では左側)に接続されている。容器30は、バルブ32を介してT字管20の上方の他端(図1では右側)に接続されている。容器10には、95℃以上100℃以下に加熱されたジルコニウム溶液が貯蓄されている。容器30には、95℃以上100℃以下に加熱された硫酸塩化剤溶液が貯蓄されている。
 工程2では、バルブ12を開くとともにバルブ32を開くことにより、ジルコニウム溶液と硫酸塩化剤溶液とを接触させる。接触することにより得られた混合液(塩基性硫酸ジルコニウム含有反応液)は、T字管20の下方から直ちに熟成用容器40に流入する。工程2では、このような手法により、ジルコニウム溶液と硫酸塩化剤溶液との接触を開始してから終了するまでの間に反応液の濃度(T字管20内における反応液の濃度)が変化しないようにしている。工程2では、接触開始時から終了時までのSO 2-/ZrOの濃度変化を抑制しているため、均一な反応物が得られる。このような工程(工程2)を採用することにより、一次粒子のピークトップ径、細孔容積、細孔分布幅を制御することができる。すなわち、二次粒子内の一次粒子間隙由来の細孔の大きさを小さく、且つ、分布をシャープにでき、さらに、一次粒子間隙由来の細孔容積も小さくすることができる。
 工程2における混合液中のSO 2-/ZrO重量比率は、0.3~0.8の範囲内が好ましく、より好ましくは0.4~0.7、さらに好ましくは0.45~0.65である。混合液中のSO 2-/ZrO重量比率を0.3以上とすることにより、反応生成物である塩基性硫酸ジルコニウムの収率を高めることができる。また、混合液中のSO 2-/ZrO重量比率を0.8以下とすることにより、硫酸ジルコニウムの可溶性塩が生成することを抑制し、塩基性硫酸ジルコニウムの収率が低下することを抑制することができる。
 工程2では、混合液の温度を95℃以上に維持するために、各溶液を供給する配管(例えば、T字管20)等にヒーターを設置することが好ましい。
 以下、工程2の一例につき具体的に説明する。
 T字管20として、上方の一端(図1では左側)の管径L1が10mm、上方の多端(図1では右側)の管径L2が10mm、下方の管径L3が15mmのT字管を用い、25質量%硫酸ナトリウム水溶液213gと、ZrO換算で16質量%オキシ塩化ジルコニウム水溶液450gとを接触させる場合、接触開始から接触終了まで(容器10内の塩化ジルコニウム水溶液及び容器30内の硫酸塩化剤溶液がなくなるまで)の時間(接触時間)としては、好ましくは30秒~300秒、より好ましくは60秒~200秒、さらに好ましくは90秒~150秒である。
 <工程3>
 工程3では、工程2で得られた塩基性硫酸ジルコニウム含有反応液を、95℃以上で3時間以上熟成する。工程3では、例えば、熟成用容器40に流入した塩基性硫酸ジルコニウム含有反応液を攪拌機42で攪拌しつつ、95℃以上で3時間以上熟成する。熟成時間の上限は特に制限されないが、例えば、7時間以下である。工程3における混合液(塩基性硫酸ジルコニウム含有反応液)の温度(熟成温度)は、好ましくは95℃以上、より好ましくは97℃以上100℃以下である。熟成温度を95℃以上且つ熟成時間を3時間以上とすることにより、塩基性硫酸ジルコニウムが充分に生成し、収率を高めることができる。
 なお、上記混合液は、塩基性硫酸ジルコニウムを主成分として含んでおり、塩基性硫酸ジルコニウムスラリーである。
 <工程4>
 工程4では、工程3で得られた熟成後の塩基性硫酸ジルコニウム含有反応液に安定化剤を添加する。安定化剤の添加の順番は特に限定されない。第1の安定化剤を先に添加し、その後、第2の安定化剤を添加してもよく、第2の安定化剤を先に添加し、その後、第1の安定化剤を添加してもよく、第1の安定化剤と第2の安定化剤とを同時に添加してもよい。
 <工程5>
 工程5では、工程4で得られた塩基性硫酸ジルコニウム含有反応液にアルカリを添加し、中和反応を行う。中和により、ジルコニウム含有水酸化物が生成する。
 アルカリとしては限定されず、例えば、苛性ソーダ、炭酸ソーダ、アンモニア、ヒドラジン炭酸水素アンモニウム等が挙げられる。アルカリの濃度は特に限定されないが、水で希釈し、通常5~30%のものが用いられる。
 アルカリの添加方法としては、(1)塩基性硫酸ジルコニウム含有反応液にアルカリ溶液を添加する、(2)アルカリ溶液に塩基性硫酸ジルコニウム含有反応液を添加する、の2つの方法があるが、特に限定されず、どちらの方法を用いてもよい。
 中和後、スラリーを濾過することにより、ジルコニウム含有水酸化物が得られる。このジルコニウム含有水酸化物は、必要に応じて、純水等で水洗することにより、不純物を除去することが好ましい。水洗後は、必要に応じて乾燥等を行うことができる。
 <工程6>
 工程6では、工程5で得られたジルコニウム含有水酸化物を熱処理(焼成)することにより、ジルコニウム含有水酸化物を酸化し、ジルコニア粉末を得る。
 ジルコニウム含有水酸化物の熱処理温度(焼成温度)、及び、熱処理時間(焼成時間)は、特に限定されないが、通常は600~1200℃程度で1時間~10時間行う。前記焼成温度は、650℃以上1100℃以下であることがより好ましく、700℃以上1000℃以下であることがさらに好ましい。前記焼成温度は、2時間~6時間がより好ましく、2時間~4時間がさらに好ましい。熱処理温度を600℃以上1200℃以下とすることにより、得られるジルコニア粉末の比表面積を好適な範囲とすることができる。また、熱処理温度を600℃以上1200℃以下とすることにより、得られるジルコニア粉末の細孔分布を好適な範囲とすることができる。熱処理雰囲気は、特に限定されないが、通常は大気中又は酸化性雰囲気中とすればよい。
 <工程7>
 工程6の後、必要に応じて、得られたジルコニア粉末を粉砕してスラリー化してもよい。その際、成型性を向上させるためにバインダーを添加してもよい。スラリー化しない場合(粉砕しない場合)は、バインダーとジルコニア粉末とを混練機で均一に混合してもよい。
 前記バインダーとしては、有機系バインダーが好ましい。有機系バインダーは、酸化雰囲気の加熱炉にて成型体から除去しやすく、脱脂体を得ることができるので、最終的に焼結体中に不純物が残存しにくくなる。
 前記有機バインダーとしては、アルコールに対して溶解するもの、又は、アルコール、水、脂肪族ケトン及び芳香族炭化水素からなる群より選ばれる2種以上の混合液に対して溶解するものが挙げられる。前記有機バインダーとしては、例えば、ポリエチレングリコール、グリコール脂肪酸エステル、グリセリン脂肪酸エステル、ポリビニルブチラール、ポリビニルメチルエーテル、ポリビニルエチルエーテル及びプロピオン酸ビニルからなる群より選ばれる少なくとも1種以上が挙げられる。前記有機バインダーは、さらに、アルコールもしくは上記混合液に対して不溶である1種以上の熱可塑性樹脂を含んでもよい。
 前記有機バインダー添加した後は、公知の方法を適用して乾燥、粉砕等の処理をすることにより、目的とするジルコニア粉末を得ることができる。
 工程7の粉砕により、ジルコニア粉末の粒子径D50をコントロールすることができる。
 焼結助剤や、着色剤等を添加する場合、前記工程6の後に添加、混合することにより、焼結助剤、着色剤等を含むジルコニア粉末を得ることができる。混合のより詳細な方法としては、純水等に分散させてスラリー化して湿式混合することが好ましい。
 また、前記工程7を行う場合には、工程7を行う際に、焼結助剤や、着色剤等を添加してもよい。
 以上、本実施形態に係るジルコニア粉末について説明した。
 [ジルコニア焼結体の製造方法]
 以下、ジルコニア焼結体の製造方法の一例について説明する。ただし、本発明のジルコニア焼結体の製造方法は、以下の例示に限定されない。
 本実施形態に係るジルコニア焼結体の製造方法は、
 前記ジルコニア粉末を成型し、成型体を得る工程Xと、
 前記工程Xの後、前記成型体を1200℃以上1450℃以下、1時間以上5時間以下の条件で焼結する工程Yとを有する。
 本実施形態に係るジルコニア焼結体の製造方法においては、まず、ジルコニア粉末を準備する。前記ジルコニア粉末としては、[ジルコニア粉末]の項で説明したものを用いることができる。
 次に、前記ジルコニア粉末を成型し、成型体を得る(工程X)。成型は、市販の金型成型機や冷間等方圧加圧法(CIP)を採用できる。また、一旦、ジルコニア粉末を金型成型機で仮成型した後、プレス成型で本成型してもよい。プレス成型は通常、0.1t~3t/cmの範囲でよい。好ましくは、0.5t~2.5t/cm、より好ましくは0.8t~2.2t/cm、さらに好ましくは1t~2t/cmである。
 次に、前記成型体を1200℃以上1450℃以下、1時間以上5時間以下の条件で焼結する(工程Y)。本実施形態では、前記ジルコニア粉末が、CaO(第1の安定化剤)に加えて、前記第2の安定化剤を含み、安定化剤の総量が酸化物換算で2.5mol%以上6.5mol%以下であり、[CaOの量(mol%)]/[安定化剤の総量(mol%)]の割合が50%以上であるため、高強度且つ高靱性な焼結体を得るための焼結温度範囲(焼結可能温度範囲)を広くすることができる。そのため、1200℃以上1450℃以下の範囲内で焼結を行えばよい。
 焼結温度は、広いほど好ましいが、例えば、より好ましくは1200℃以上1300℃以下とすることができる。焼結時の保持時間も特に限定されないが、例えば、より好ましくは1時間~3時間である。焼結雰囲気は、大気中又は酸化性雰囲気中とすることができる。焼結は、常圧下でよく、加圧は特に必要ない。ただし、加圧してもよい。
 本実施形態のジルコニア焼結体の製造方法によれば、前記ジルコニア粉末を、1200℃以上1450℃以下という広い温度範囲内において、1時間以上5時間以下の条件で焼結させることにより、高強度、高靱性、且つ、高い水熱劣化耐性を有するジルコニア焼結体を得ることができる。
 以上、本実施形態に係る安定化ジルコニア焼結体の製造方法について説明した。
 [ジルコニア焼結体]
 以下、本実施形態に係るジルコニア焼結体の一例について説明する。ただし、本発明のジルコニア焼結体は、以下の例示に限定されない。
 本実施形態に係るジルコニア焼結体は、
 ジルコニアと安定化剤とを含む安定化ジルコニアを含み、
 前記安定化剤は、第1の安定化剤と第2の安定化剤とを含み、
 前記第1の安定化剤は、CaOであり、
 前記第2の安定化剤は、Y、Yb、Er、CeO、Nd、La、及び、Tbからなる群から選ばれる1種以上であり、
 前記安定化ジルコニア中の前記安定化剤の総量が、酸化物換算で2.5mol%以上6.5mol%以下であり、
 [CaOの量(mol%)]/[安定化剤の総量(mol%)]の割合が、50%以上98%以下である。
 上述の通り、本実施形態に係るジルコニア焼結体は、安定化ジルコニアを含む。
 前記安定化ジルコニアの含有量は、前記ジルコニア焼結体全体を100質量%としたときに、好ましくは70質量%以上、より好ましくは75質量%以上、さらに好ましくは80質量%以上、特に好ましくは85質量%以上である。前記安定化ジルコニアの含有量は、前記ジルコニア焼結体全体を100質量%としたときに、99質量%以下、95質量%以下等とすることができる。また、前記ジルコニア焼結体は、前記安定化ジルコニアのみで構成されていてもよい。つまり、前記ジルコニア焼結体は、前記安定化ジルコニアのみを焼結させた構成であってもよい。この場合、前記安定化ジルコニアの含有量は、前記ジルコニア焼結体全体を100質量%としたときに、100質量%となる。
 前記安定化ジルコニアの含有量は、前記ジルコニア焼結体全体を100質量%としたときに、好ましくは70質量%以上99質量%以下、より好ましくは75質量%以上95質量%以下、さらに好ましくは80質量%以上95質量%以下、特に好ましくは85質量%以上95質量%以下である。
 前記ジルコニア焼結体は、ジルコニアと安定化剤を含む。
 前記安定化ジルコニア中の、ジルコニアと安定化剤との合計含有量は、前記安定化ジルコニア全体を100質量%としたときに、70質量%以上であることが好ましく、80質量%以上であることがより好ましい。ジルコニアと安定化剤との合計含有量は、前記安定化ジルコニア全体を100質量%としたときに、99質量%以下、95質量%以下等とすることができる。
 前記安定化ジルコニア中の、ジルコニアと安定化剤との合計含有量は、前記安定化ジルコニア全体を100質量%としたときに、70質量%以上99質量%以下であることが好ましく、80質量%以上95質量%以下であることがより好ましい。
 また、前記安定化ジルコニアは、ジルコニアと安定化剤とのみで構成されていてもよい。
 前記安定化剤は、第1の安定化剤と第2の安定化剤とを含む。
 前記第1の安定化剤は、CaOである。前記ジルコニア粉末は、前記第1の安定化剤としてCaOを含むため、水熱劣化耐性に優れる。
 前記第2の安定化剤は、Y、Yb、Er、CeO、Nd、La、及び、Tbからなる群から選ばれる1種以上である。前記ジルコニア焼結体は、CaO(第1の安定化剤)に加えて、前記第2の安定化剤を含むため、焼結可能温度が広げられている。
 前記第2の安定化剤は、臨界結晶粒子径をどの程度とするかの観点で選択すればよい。なかでも、前記第2の安定化剤は、白色の焼結体が得られる観点からは、Y、Yb、Laが好ましい。前記第2の安定化剤は、ピンク色の焼結体が得られる観点からは、Erが好ましい。前記第2の安定化剤は、黄色の焼結体が得られる観点からは、CeOが好ましい。前記第2の安定化剤は、紫色の焼結体が得られる観点からは、Ndが好ましい。前記第2の安定化剤は、オレンジ色の焼結体が得られる観点からは、Tbが好ましい。
 前記ジルコニア焼結体は、[CaOの量(mol%)]/[安定化剤の総量(mol%)]の割合が、50%以上98%以下である。第2の安定化剤の添加量が増加すると、水熱劣化耐性が低下することになるが、[CaOの量(mol%)]/[安定化剤の総量(mol%)]の割合を50%以上とし、第2の安定化剤の添加量を可能な限り少なくしたため、高強度、高靱性を備え、且つ、水熱劣化耐性を高く維持することができる。
 前記[CaOの量(mol%)]/[安定化剤の総量(mol%)]の割合は、より好ましくは55%以上、さらに好ましくは60%以上である。
 前記[CaOの量(mol%)]/[安定化剤の総量(mol%)]の割合は、より好ましくは90%以下、さらに好ましくは80%以下である。
 前記[CaOの量(mol%)]/[安定化剤の総量(mol%)]の割合は、より好ましくは55%以上90%以下、さらに好ましくは60%以上80%以下である。
 前記安定化ジルコニア中の安定化剤の総量は、酸化物換算で2.5mol%以上6.5mol%以下である。安定化剤の総量が、酸化物換算で2.5mol%以上であるため、単斜晶相率を少なくすることができ、亀裂が生じてしまうことを防止することができる。また、安定化剤の総量が、酸化物換算で6.5mol%以下であるため、機械特性(強度、靱性)の低い立方晶相率を減らし、機械特性の高い正方晶相率を高くすることができる。
 前記安定化剤の総量は、酸化物換算で2.7mol%以上が好ましく、2.9mol%以上がより好ましく、3.0mol%以上がさらに好ましい。
 前記安定化剤の総量は、酸化物換算で6.0mol%以下が好ましく、5.5mol%以下がより好ましく、5.0mol%以下がさらに好ましく、4.5mol%以下が特に好ましい。
 前記安定化剤の総量は、酸化物換算で2.7mol%以上6.0mol%以下が好ましく、2.9mol%以上5.5mol%以下がより好ましく、3.0mol%以上5.0mol%以下がさらに好ましく、3.0mol%以上4.5mol%以下が特に好ましい。
 前記ジルコニア焼結体は、前記第2の安定化剤が、Y、Yb、Er、Nd、La、及び、Tbからなる群から選ばれる1種以上である場合、前記安定化ジルコニア中の前記安定化剤の総量が、酸化物換算で2.5mol%以上4.5mol%以下であることが好ましい。
 前記第2の安定化剤が、Y、Yb、Er、Nd、La、及び、Tbからなる群から選ばれる1種以上である場合、前記安定化ジルコニア中の前記安定化剤の総量は、酸化物換算で2.6mol%以上がより好ましく、2.8mol%以上がさらに好ましい。
前記第2の安定化剤が、Y、Yb、Er、Nd、La、及び、Tbからなる群から選ばれる1種以上である場合、前記安定化ジルコニア中の前記安定化剤の総量は、酸化物換算で4.1mol%以下がより好ましく、3.7mol%以下がさらに好ましい。
 前記第2の安定化剤が、Y、Yb、Er、Nd、La、及び、Tbからなる群から選ばれる1種以上である場合、前記安定化ジルコニア中の前記安定化剤の総量は、酸化物換算で2.6mol%以上4.1mol%以下がより好ましく、2.8mol%以上3.7mol%以下がさらに好ましい。
 なお、Y、Yb、Er、Nd、La、及び、Tbは、いずれも3価の元素であるため、同様の挙動を示す。すなわち、Y、Yb、Er、Nd、La、及び、Tbは、ジルコニア焼結体への添加量が同じであると、同様の挙動を示す。
 前記ジルコニア焼結体は、前記第2の安定化剤がCeOである場合、前記安定化ジルコニア中の前記安定化剤の総量が、酸化物換算で4.0mol%以上6.5mol%以下であることが好ましい。
 前記第2の安定化剤がCeOである場合、前記安定化ジルコニア中の前記安定化剤の総量は、酸化物換算で4.3mol%以上がより好ましく、4.5mol%以上がさらに好ましい。
前記第2の安定化剤がCeOである場合、前記安定化ジルコニア中の前記安定化剤の総量は、酸化物換算で6.3mol%以下がより好ましく、6.0mol%以下がさらに好ましい。
 前記第2の安定化剤がCeOである場合、前記安定化ジルコニア中の前記安定化剤の総量は、酸化物換算で4.3mol%以上6.3mol%以下がより好ましく、4.5mol%以上6.0mol%以下がさらに好ましい。
 前記安定化ジルコニア中のジルコニアの含有量は、80質量%以上99質量%以下であることが好ましい。前記安定化ジルコニア中のジルコニアの含有量は、85質量%以上であることがより好ましく、90質量%以上であることがさらに好ましい。前記安定化ジルコニア中のジルコニアの含有量は、98質量%以下であることがより好ましく、97質量%以下であることがさらに好ましい。
 前記安定化ジルコニア中のジルコニアの含有量は、85質量%以上98質量%以下であることがより好ましく、90質量%以上97質量%以下であることがさらに好ましい。
 前記ジルコニア焼結体の結晶相に含まれる単斜晶相率(水熱処理前の単斜晶相率)は、0.2%以上7.0%以下であることが好ましい。前記単斜晶相率は、より好ましくは0.3%以上、さらに好ましくは0.5%以上である。前記単斜晶相率は、より好ましくは5.0%以下、さらに好ましくは4.0%以下である。
 前記ジルコニア焼結体の結晶相に含まれる単斜晶相率(水熱処理前の単斜晶相率)は、0.3%以上5.0%以下であることがより好ましく、0.5%以上4.0%以下であることがさらに好ましい。
 前記単斜晶相率が0.2%以上7.0%以下であると、より高強度であり、且つ、より高靱性とすることができる。前記単斜晶相率は、例えば、前記第1の安定化剤、前記第2の安定化剤の含有量、含有比率、焼結温度等により制御することができる。
 前記単斜晶相率の求め方は、実施例に記載の方法による。
 前記ジルコニア焼結体の結晶相に含まれる立方晶相率(水熱処理前の立方晶相率)は、3.0%以下であることが好ましい。前記立方晶相率が3.0%以下であると、機械特性(強度、靱性)の低い立方晶相率が少ないといえる。
 なお、前記ジルコニア焼結体は、単斜晶、立方晶、正方晶以外の結晶相を実質的に含まない。
<水熱劣化耐性1>
 前記ジルコニア焼結体は、134℃、0.3MPa(絶対圧力0.3MPa)、15時間水熱処理後の単斜晶相率が30%以下であることが好ましい。前記水熱処理後の単斜晶相率が30%以下であると、より水熱劣化耐性に優れるといえる。前記水熱処理後の単斜晶相率は、例えば、前記第1の安定化剤、前記第2の安定化剤の含有量、含有比率、焼結温度等により制御することができる。
 前記水熱処理後の単斜晶相率は、より好ましくは20%以下、さらに好ましくは10%以下である。前記水熱処理後の単斜晶相率は、小さいほど好ましいが、例えば、0.5%以上、1%以上である。
 前記水熱処理後の単斜晶相率は、より好ましくは0.5%以上20%以下、さらに好ましくは1%以上10%以下である。
<水熱劣化耐性2>
 前記ジルコニア焼結体は、水熱処理前の単斜晶相率が7.0%以下であり、134℃、0.3MPa(絶対圧力0.3MPa)、15時間水熱処理後の単斜晶相率から、水熱劣化前の単斜晶相率を引いた値が20%以下であることが好ましい。
 水熱処理前の単斜晶相率が7.0%以下であり、134℃、0.3MPa、15時間水熱処理後の単斜晶相率から、水熱劣化前の単斜晶相率を引いた値が20%以下であると、水熱処理前の単斜晶相率が少なく、且つ、水熱処理前後での単斜晶相率の変化量が少ないため、水熱処理後の単斜晶相率は少ないといえる。従って、より水熱劣化耐性に優れるといえる。
 134℃、0.3MPa、15時間水熱処理後の単斜晶相率から、水熱劣化前の単斜晶相率を引いた値は、より好ましくは15%以下、さらに好ましくは10%以下である。
<水熱劣化耐性3>
 前記ジルコニア焼結体は、300℃、8MPa(絶対圧力8MPa)、5時間水熱処理後の単斜晶相率が30%以下であることが好ましい。前記水熱処理後の単斜晶相率が30%以下であると、より水熱劣化耐性に優れるといえる。前記水熱処理後の単斜晶相率は、例えば、前記第1の安定化剤、前記第2の安定化剤の含有量、含有比率、焼結温度等により制御することができる。
 前記水熱処理後の単斜晶相率は、より好ましくは20%以下、さらに好ましくは15%以下である。前記水熱処理後の単斜晶相率は、小さいほど好ましいが、例えば、0.5%以上、1.0%以上である。
 前記水熱処理後の単斜晶相率は、より好ましくは0.5%以上20%以下、さらに好ましくは1.0%以上10%以下である。
<水熱劣化耐性4>
 前記ジルコニア焼結体は、400℃、30MPa(絶対圧力30MPa)、5時間水熱処理後の単斜晶相率が30%以下であることが好ましい。前記水熱処理後の単斜晶相率が30%以下であると、さらに水熱劣化耐性に優れるといえる。前記水熱処理後の単斜晶相率は、例えば、前記第1の安定化剤、前記第2の安定化剤の含有量、含有比率、焼結温度等により制御することができる。
 前記水熱処理後の単斜晶相率は、より好ましくは25%以下、さらに好ましくは20%以下である。前記水熱処理後の単斜晶相率は、小さいほど好ましいが、例えば、0.5%以上、1.0%以上である。
 前記水熱処理後の単斜晶相率は、より好ましくは0.5%以上25%以下、さらに好ましくは1.0%以上20%以下である。
<水熱劣化耐性5>
 前記ジルコニア焼結体は、水熱処理前の単斜晶相率が7.0%以下であり、400℃、30MPa(絶対圧力30MPa)、5時間水熱処理後の単斜晶相率から、水熱劣化前の単斜晶相率を引いた値が20%以下であることが好ましい。
 水熱処理前の単斜晶相率が7.0%以下であり、400℃、30MPa(絶対圧力30MPa)、5時間水熱処理後の単斜晶相率から、水熱劣化前の単斜晶相率を引いた値が20%以下であると、水熱処理前の単斜晶相率が少なく、且つ、水熱処理前後での単斜晶相率の変化量が少ないため、水熱処理後の単斜晶相率は少ないといえる。従って、より水熱劣化耐性に優れるといえる。
 400℃、30MPa(絶対圧力30MPa)、5時間水熱処理後の単斜晶相率から、水熱劣化前の単斜晶相率を引いた値は、より好ましくは15%以下、さらに好ましくは10%以下である。
<機械強度>
 前記ジルコニア焼結体は、3点曲げ強度が700MPa以上1500MPa以下であることが好ましい。
 前記3点曲げ強度は、より好ましくは800MPa以上、さらに好ましくは900MPa以上である。前記3点曲げ強度は、大きいほど好ましいが、例えば、1400MPa以下、1300MPa以下等とすることができる。
 前記3点曲げ強度は、より好ましくは800MPa以上1400MPa以下、さらに好ましくは900MPa以上1300MPa以下である。
 前記3点曲げ強度が700MPa以上であると、より高強度であるいえる。前記3点曲げ強度の求め方は、実施例に記載の方法による。
<靱性>
 前記ジルコニア焼結体は、IF法による靭性値が10MPa・m0.5以上40MPa・m0.5以下であることが好ましい。
 前記靭性値は、より好ましくは13MPa・m0.5以上、さらに好ましくは15MPa・m0.5以上である。前記靭性値は、大きいほど好ましいが、例えば、35MPa・m0.5以下、27MPa・m0.5以下等とすることができる。
 前記靭性値は、より好ましくは13MPa・m0.5以上35MPa・m0.5以下、さらに好ましくは15MPa・m0.5以上27MPa・m0.5以下である。
 前記靭性値が10MPa・m0.5以上であると、より高靱性であるといえる。前記靭性値の求め方は、実施例に記載の方法による。
 <相対焼結密度>
 前記ジルコニア焼結体の相対焼結密度は、98%以上であることが好ましく、98.5%以上であることがより好ましい。前記相対焼結密度が98%以上であると、当該ジルコニア焼結体は、焼結が充分に行われているといえる。また、前記相対焼結密度が98%以上であると、当該ジルコニア焼結体は、より高強度といえる。
 <ジルコニア焼結体の相対焼結密度の測定方法>
 前記相対焼結密度は、下記式(1)で表される相対焼結密度のことをいう。
  相対焼結密度(%)=(焼結密度/理論焼結密度)×100・・・(1)
 ここで、理論焼結密度(ρとする)は、下記式(2-1)によって算出される値である。
 ρ=100/[(A/3.99)+(100-A)/ρz]・・・(2-1)
  ただし、Aはアルミナ濃度(重量%)、ρzは、下記式(2-2)によって算出される値である。
  ρz=-0.0400(CaOのモル濃度)+6.1700・・・(2-2)
 アルミナ以外のその他成分(安定化剤および着色剤)を含む場合の理論焼結密度(ρとする)は、下記式(2-3)によって算出される値である。
 ρ=100/[(Z/V)+(100-Z)/ρ]・・・(2-3)
 Zはアルミナ以外のその他成分濃度(重量%)、Vはその他成分理論密度(g/cm)である。
 アルミナ以外のその他成分が2種類含まれる場合の理論焼結密度(ρとする)は、下記式(2-4)によって算出される値である。
 ρ=100/[(Z1/V1)+(Z2/V2)+(100-Z1-Z2)/ρ]・・・(2-4)
 Z1はアルミナ以外の一つ目のその他成分濃度(重量%)、Z2はアルミナ以外の二つ目のその他成分濃度(重量%)、V1は一つ目のその他成分理論密度(g/cm)、V2は二つ目のその他成分理論密度(g/cm)である。
 その他成分理論密度は、Yが5.01g/cm、Erが8.64g/cm、CeOが7.22g/cm、Ndが7.24g/cm、Laが6.51g/cm、Tbが7.81g/cm、Ybが9.17g/cm、Feが5.24g/cm、ZnOが5.61g/cm、MnOが5.03g/cm、CoOが6.10g/cm、TiOが4.23g/cm、CuOが6.31g/cmとする。
 また、焼結密度は、アルキメデス法にて計測する。
 前記ジルコニア焼結体は、ジルコニア焼結体全体に対してAl(アルミナ)を3質量%以下の範囲内で含むことが好ましい。アルミナを3質量%以下の範囲内で含むと、前記ジルコニア粉末を焼結して当該ジルコニア焼結体を得る際に、焼結助剤として働く。従って、当該ジルコニア焼結体は、焼結可能温度範囲のより広い前記ジルコニア粉末を焼結して得られたものであるといえる。
 前記ジルコニア焼結体がAlを含む場合、前記Alの含有量は、焼結助剤として好適に機能させる観点から、より好ましくは2.0質量%以下、さらに好ましくは1.0質量%以下である。
 前記ジルコニア焼結体がAlを含む場合、前記Alの含有量は、焼結助剤として好適に機能させる観点から、より好ましくは0.05質量%以上、さらに好ましくは0.1質量%以上である。
 前記ジルコニア焼結体がAlを含む場合、前記Alの含有量は、より好ましくは0.05質量%以上2.0質量%以下、さらに好ましくは0.1質量%以上1.0質量%以下である。
 なお、前記ジルコニア粉末は、焼結可能温度範囲が広く、得られる焼結体の水熱劣化耐性が高いため、前記ジルコニア粉末は、Al(アルミナ)を含まなくても構わない。焼結前のジルコニア粉末がAl(アルミナ)を含まない場合、当該ジルコニア粉末を焼結して得られるジルコニア焼結体は、Al(アルミナ)を含まないことになる。
 前記ジルコニア焼結体は、アルミナ以外にも、強度等の特性の向上を目的として、焼結可能なセラミックスや熱硬化性樹脂等を含んでも構わない。
 前記ジルコニア焼結体は、Fe、V、Mn、Co、Zn、Cu及び、Tiからなる群より選ばれる1種以上を含んでいてもよい。Fe、V、Mn、Co、Zn、Cu及び、Tiからなる群より選ばれる1種以上を含むと、好適に着色することができる。
 前記元素の形態は特に限定されず、酸化物、塩化物などの形態で添加することができる。前記元素を含む酸化物としては、具体的には、例えば、Fe、V、MnO、CoO、ZnO、CuO、TiO等が挙げられる。
 前記Feを含む場合、前記Feの含有量は、ジルコニア粉末全体を100質量%としたときに、0.005質量%以上1質量%以下が好ましく、0.05質量%以上0.5質量%以下がより好ましい。前記Feの含有量が0.005質量%以上であると、意図した着色が得やすい。すなわち、色調の調整が容易となる。
 前記Vを含む場合、前記Vの含有量は、ジルコニア粉末全体を100質量%としたときに、0.005質量%以上0.5質量%以下が好ましく、0.01質量%以上0.1質量%以下がより好ましい。前記Vの含有量が0.005質量%以上であると、意図した着色が得やすい。すなわち、色調の調整が容易となる。
 前記MnOを含む場合、前記MnOの含有量は、ジルコニア粉末全体を100質量%としたときに、0.005質量%以上2質量%以下が好ましく、0.1質量%以上1.1質量%以下がより好ましい。前記MnOの含有量が0.005質量%以上であると、意図した着色が得やすい。すなわち、色調の調整が容易となる。
 前記CoOを含む場合、前記CoOの含有量は、ジルコニア粉末全体を100質量%としたときに、0.005質量%以上2質量%以下が好ましく、0.01質量%以上1.5質量%以下がより好ましい。前記CoOの含有量が0.005質量%以上であると、意図した着色が得やすい。すなわち、色調の調整が容易となる。
 前記ZnOを含む場合、前記ZnOの含有量は、ジルコニア粉末全体を100質量%としたときに、0.005質量%以上1質量%以下が好ましく、0.1質量%以上0.5質量%以下がより好ましい。前記ZnOの含有量が0.005質量%以上であると、意図した着色が得やすい。すなわち、色調の調整が容易となる。
 前記着色剤としてCuOを含む場合、前記着色剤の含有量は、ジルコニア粉末全体を100質量%としたときに、0.005質量%以上1質量%以下が好ましく、0.05質量%以上0.6質量%以下がより好ましく、0.1質量%以上0.3質量%以下がさらに好ましい。前記着色剤の含有量が0.005質量%以上であると、意図した着色が得やすい。すなわち、色調の調整が容易となる。
 前記TiOを含む場合、前記TiOの含有量は、ジルコニア粉末全体を100質量%としたときに、0.005質量%以上2質量%以下が好ましく、0.01質量%以上1質量%以下がより好ましい。前記TiOの含有量が0.005質量%以上であると、意図した着色が得やすい。すなわち、色調の調整が容易となる。
 本実施形態に係るジルコニア焼結体は、前記のジルコニア粉末を用いて、常圧焼結して得ることができる。具体的には、例えば、前記ジルコニア焼結体の製造方法により得ることができる。
 本実施形態に係るジルコニア焼結体は、産業部品、審美性部品、歯科材料として使用することができる。より具体的には、宝飾品、時計用部品、時計の文字盤、人工歯、成型加工用部材、耐摩耗部材、耐薬品部材等に使用することができる。
 以下、本発明に関し実施例を用いて詳細に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。なお、実施例及び比較例におけるジルコニア粉末、及び、ジルコニア焼結体には、不可避不純物として酸化ハフニウムを酸化ジルコニウムに対して1.3~2.5質量%含有(下記式(X)にて算出)している。
<式(X)>
 ([酸化ハフニウムの質量]/([酸化ジルコニウムの質量]+[酸化ハフニウムの質量]))×100(%)
[ジルコニア粉末の作製]
 (実施例1)
 25質量%硫酸ナトリウム水溶液213g及びZrO換算で16質量%となるオキシ塩化ジルコニウム水溶液450g(酸濃度:1N)をそれぞれ別々に95℃に加熱した(工程1)。その後、混合液のSO 2-/ZrO質量比率が0.50となるように、2分間かけて、加熱された水溶液同士を接触させた(工程2)。
 次に、得られた塩基性硫酸ジルコニウム含有反応液を、95℃で4時間保持して熟成し、塩基性硫酸ジルコニウムを得た(工程3)。
 次に、熟成された溶液を室温まで冷却した後、Y換算で10質量%の塩化イットリウム水溶液を、Yが0.1mol%となるように添加し、均一に混合した(工程4)。
 次に、得られた混合溶液に、CaO換算で10質量%の塩化カルシウム水溶液を、CaOが4.0mol%となるように添加し、均一に混合した(工程5)。
 次に、得られた混合溶液に25質量%水酸化ナトリウム水溶液を添加し、pHが13以上になるまで中和し、水酸化物沈澱を生成させた(工程6)。
 得られた水酸化物沈澱をろ過・水洗し、105℃,24時間乾燥させた。乾燥させた水酸化物を大気中950℃(焼成温度)で2時間熱処理し、未粉砕のジルコニア系粉末(カルシアイットリア安定化ジルコニア系粉末)を得た(工程7)。
 得られた未粉砕のカルシアイットリア安定化ジルコニア系粉末に一次粒子の平均粒子径0.1μmのアルミナ粉末を、カルシアイットリア安定化ジルコニア系粉末に対して0.25質量%加え、水を分散媒とした湿式ボールミルにて40時間粉砕混合した。粉砕にはジルコニアビーズφ5mmを用いた。粉砕後に得られたジルコニアスラリーを110℃にて乾燥させ、実施例1に係るジルコニア粉末を得た。
 上記操作は、具体的には、図1を用いて説明したような装置にて行った。
 (実施例2~実施例7、実施例16、比較例1~比較例2)
 CaOの添加量が表1に記載された量となるように塩化カルシウム水溶液の添加量を変更したこと、Yの添加量が表1に記載された量となるように塩化イットリウム水溶液の添加量を変更したこと、及び、アルミナ粉末の添加量を表1に記載された量に変更したこと以外は、実施例1と同様の方法で実施例2~実施例7、実施例16、比較例1~比較例2に係るジルコニア粉末を得た。なお、実施例6では、上記の変更に加えて、さらに、水酸化物の焼成温度を950℃から1100℃に変更して、実施例6に係るジルコニア粉末を得た。
 表1中、「-」は、添加していないこと(すなわち、添加量が0であること)を意味する。
 (実施例8)
 CaOの添加量が表1に記載された量となるように塩化カルシウム水溶液の添加量を変更したこと、塩化イットリウム水溶液を添加する代わりにEr換算で10質量%の塩化エルビウム水溶液をErが1.0mol%となるように添加したこと以外は、実施例1と同様にして実施例8に係るジルコニア粉末を得た。
 (実施例9)
 塩化イットリウム水溶液を添加する代わりにCeO換算で10質量%の塩化セリウム水溶液をCeOが0.5mol%となるように添加したこと以外は、実施例1と同様にして実施例9に係るジルコニア粉末を得た。
 (実施例10)
 CaOの添加量が表1に記載された量となるように塩化カルシウム水溶液の添加量を変更したこと、塩化イットリウム水溶液を添加する代わりにCeO換算で10質量%の塩化セリウム水溶液をCeOが2.5mol%となるように添加したこと以外は、実施例1と同様にして実施例10に係るジルコニア粉末を得た。
 (実施例11)
 CaOの添加量が表1に記載された量となるように塩化カルシウム水溶液の添加量を変更したこと、塩化イットリウム水溶液を添加する代わりにNd換算で10質量%の塩化ネオジム水溶液をNdが0.6mol%となるように添加したこと以外は、実施例1と同様にして実施例11に係るジルコニア粉末を得た。
 (実施例12)
 CaOの添加量が表1に記載された量となるように塩化カルシウム水溶液の添加量を変更したこと、塩化イットリウム水溶液を添加する代わりにLa換算で10質量%の塩化ランタン水溶液をLaが0.6mol%となるように添加したこと以外は、実施例1と同様にして実施例12に係るジルコニア粉末を得た。
 (実施例13)
 CaOの添加量が表1に記載された量となるように塩化カルシウム水溶液の添加量を変更したこと、及び、塩化イットリウム水溶液を添加する代わりにTb換算で10質量%の塩化テルビウム水溶液をTbが0.4mol%となるように添加したこと以外は、実施例1と同様にして実施例13に係るジルコニア粉末を得た。
 (実施例14)
 CaOの添加量が表1に記載された量となるように塩化カルシウム水溶液の添加量を変更したこと、及び、塩化イットリウム水溶液を添加する代わりにYb換算で10質量%の塩化イッテルビウム水溶液をYbが0.9mol%となるように添加したこと以外は、実施例1と同様にして実施例14に係るジルコニア粉末を得た。
 (実施例15)
 CaOの添加量が表1に記載された量となるように塩化カルシウム水溶液の添加量を変更したこと、及び、Y換算で10質量%の塩化イットリウム水溶液をYが0.5mol%となるように添加し、更にEr換算で10質量%の塩化エルビウム水溶液をErが0.3mol%となるように添加したこと以外は、実施例1と同様にして実施例15に係るジルコニア粉末を得た。
 (実施例17)
 CaOの添加量が表1に記載された量となるように塩化カルシウム水溶液の添加量を変更したこと、塩化イットリウム水溶液を添加する代わりにEr換算で10質量%の塩化エルビウム水溶液をErが0.8mol%となるように添加したこと以外は、実施例1と同様にして実施例17に係るジルコニア粉末を得た。
 (実施例18)
 CaOの添加量が表1に記載された量となるように塩化カルシウム水溶液の添加量を変更したこと、及び、塩化イットリウム水溶液を添加する代わりにYb換算で10質量%の塩化イッテルビウム水溶液をYbが0.6mol%となるように添加したこと以外は、実施例1と同様にして実施例18に係るジルコニア粉末を得た。
[比表面積測定]
 実施例、比較例のジルコニア粉末の比表面積を、比表面積計(「マックソーブ」マウンテック製)を用いてBET法にて測定した。結果を表2に示す。
[粒子径D50の測定]
 実施例、比較例のジルコニア粉末0.15gと40mlの0.2%ヘキサメタリン酸ナトリウム水溶液とを50mlビーカーに投入し、超音波ホモジナイザー「ソニファイアーS-450D」(日本エマソン株式会社)で2分間分散した後、装置(レーザー回折式粒子径分布測定装置(「SALD-2300」島津製作所社製))に投入し測定した。結果を表2に示す。
[結晶子径の測定]
 実施例、比較例のジルコニア粉末の結晶子径を、X線回折装置「RINT-2500」(リガク製)を用いて測定した結果を次のScherrerの式に当てはめ、算出する。
   Dp=(K×λ)/βcosθ
 ここで、Dpは蛍光剤の結晶子径、λはX線の波長、θは回折角、Kは形状因子とよばれる定数、βは装置による回折線の広がりを補正した後のピーク幅である。
[細孔容積の測定]
  実施例、比較例のジルコニア粉末について、細孔分布測定装置(「オートポアIV9500」マイクロメリティクス製)を用い、水銀圧入法にて細孔分布を得た。測定条件は下記の通りとした。
<測定条件>
測定装置:細孔分布測定装置(マイクロメリティクス製オートポアIV9500)
測定範囲:0.0036~10.3μm
測定点数:120点
水銀接触角:140degrees
水銀表面張力:480dyne/cm
 得られた細孔分布を用い、10nm以上200nm以下の範囲におけるピークトップ径、細孔容積、及び、細孔分布幅を求めた。結果を表2に示す。
 ここで、細孔分布幅は、log微分細孔容積が0.1ml/g以上となるピークの幅をいう。
[組成測定]
 実施例、比較例のジルコニア粉末の組成(酸化物換算)を、ICP-AES(「ULTIMA-2」HORIBA製)を用いて分析した。結果を表1に示す。
[焼結温度の違いによる平均結晶粒径差]
 まず、実施例、比較例のジルコニア粉末を成型圧2t/cmで成型した。次に、成型体を大気圧下で2時間加熱して焼結させた。焼結温度は、表3、表4に記載の通りとした。
 次に、各焼結温度での焼結物(焼結体)の平均結晶粒径を測定した。平均結晶粒径は、以下の方法により測定した。結果を表3、表4に示す。
<平均結晶粒径の測定方法>
 走査型電子顕微鏡観察により得られた焼結体試料のSEM観察図を使用し、平均結晶粒径を求めた。SEM観察用の試料は、JIS R1633に基づいて調整した。SEM観察図は1視野に結晶粒子数が150個以上となるようにした。SEM観察図中に任意の大きさの長方形を描き、その長方形の辺上ならびに対角線上に存在する粒子の個数を算出した。長方形の各辺は視野の8割以上の長さとなるように設定した。長方形の縦、横の長さの比は、横:縦=1.47:1となるようにした。粒子の個数と長方形の四辺ならびに対角線の長さから平均結晶粒径を算出した。
 平均結晶粒径は、具体的には、以下の式により算出した。
 (平均結晶粒径)={[X/(x1+x2)]+[Y/(y1+y2)]+[D/(d1+d2)]}×2/3
  なお、式中、X、x1、x2、Y、y1、y2、D、d1、d2は、以下を表す。
   X(μm):長方形の長辺の長さ
   Y(μm):長方形の短辺の長さ
   D(μm):長方形の対角線の長さ
   x1(個):一方の長辺上の粒子個数
   x2(個):他方の長辺上の粒子個数
   y1(個):一方の短辺上の粒子個数
   y2(個):他方の短辺上の粒子個数
   d1(個):一方の対角線上の粒子個数
   d2(個):他方の対角線上の粒子個数
 同様の操作を各水準3視野ずつ行い、3視野の平均結晶粒径を、最終的な平均結晶粒径とした。
 なお、測定に先立ち、焼結体試料は鏡面研磨した後、熱エッチング処理を施すことで前処理とした。鏡面研磨は、平面研削盤で焼結体表面を削った後に、鏡面研磨装置で平均粒径9μm、6μm及び、3μmのダイヤモンド砥粒を順番に用いて研摩した。
 次に、結晶粒子径を測定した各実施例、比較例の焼結物(焼結体)について、下記<特性1>、下記<特性2>、下記<特性3>、及び、下記<特性4>を満たす最低の焼結温度(温度A)と、下記<特性1>、下記<特性2>、下記<特性3>及び、下記<特性4>を満たす最高の焼結温度(温度B)とを決定した。なお、<特性1>、<特性2>、<特性3>、及び、<特性4>の測定方法は、後述するジルコニア焼結体の相対焼結密度、靱性値、3点曲げ強度、134℃、0.3MPa、15時間水熱処理後の単斜晶相率と同じとした。
<特性1>
 相対焼結密度が98.0%以上である。
<特性2>
 IF法による靭性値が10MPa・m0.5以上である。
<特性3>
 3点曲げ強度が700MPa以上である。
<特性4>
 134℃、0.3MPa(絶対圧力0.3MPa)、15時間水熱処理後の単斜晶相率が30%以下である。
 例えば、実施例1では焼結温度1250℃で相対焼結密度が99.7%であり、靭性値が17MPa・m0.5であり、3点曲げ強度が800MPaであり、134℃、0.3MPa、15時間水熱処理後の単斜晶相率が0.6%であるので、焼結温度1250℃を温度Aと決定した。また、実施例1では焼結温度1325℃で、<特性1>、<特性2>、<特性3>、及び、<特性4>を満たすので、焼結温度1325℃を温度Bと決定した。
 その後、温度Bで焼結した際の平均結晶粒径Bと温度Aで焼結した際の平均結晶粒径Aとの差[(平均結晶粒径B)-(平均結晶粒径A)]を求めた。結果を表2に示す。例えば、実施例1では、温度B(1325℃)で焼結した際の平均結晶粒径A(122nm)と温度A(1250℃)で焼結した際の平均結晶粒径A(66nm)との差[(平均結晶粒径B)-(平均結晶粒径A)]は、56nmであった。
 同様にして、実施例2では、温度Aを1200℃、温度Bを1325℃と決定した。差[(平均結晶粒径B)-(平均結晶粒径A)]は、70nmであった。
 実施例3では、温度A1200℃、温度Bを1350℃と決定した。差[(平均結晶粒径B)-(平均結晶粒径A)]は、78nmであった。
 実施例4では、温度A1200℃、温度Bを1350℃と決定した。差[(平均結晶粒径B)-(平均結晶粒径A)]は、77nmであった。
 実施例5では、温度A1200℃、温度Bを1350℃と決定した。差[(平均結晶粒径B)-(平均結晶粒径A)]は、74nmであった。
 実施例6では、温度A1250℃、温度Bを1375℃と決定した。差[(平均結晶粒径B)-(平均結晶粒径A)]は、59nmであった。
 実施例7では、温度A1250℃、温度Bを1400℃と決定した。差[(平均結晶粒径B)-(平均結晶粒径A)]は、65nmであった。
 実施例8では、温度A1250℃、温度Bを1350℃と決定した。差[(平均結晶粒径B)-(平均結晶粒径A)]は、63nmであった。
 実施例9では、温度A1200℃、温度Bを1325℃と決定した。差[(平均結晶粒径B)-(平均結晶粒径A)]は、70nmであった。
 実施例10では、温度A1200℃、温度Bを1350℃と決定した。差[(平均結晶粒径B)-(平均結晶粒径A)]は、73nmであった。
 実施例11では、温度A1200℃、温度Bを1350℃と決定した。差[(平均結晶粒径B)-(平均結晶粒径A)]は、85nmであった。
 実施例12では、温度A1200℃、温度Bを1350℃と決定した。差[(平均結晶粒径B)-(平均結晶粒径A)]は、78nmであった。
 実施例13では、温度A1200℃、温度Bを1350℃と決定した。差[(平均結晶粒径B)-(平均結晶粒径A)]は、73nmであった。
 実施例14では、温度A1200℃、温度Bを1350℃と決定した。差[(平均結晶粒径B)-(平均結晶粒径A)]は、66nmであった。
 実施例15では、温度A1200℃、温度Bを1350℃と決定した。差[(平均結晶粒径B)-(平均結晶粒径A)]は、73nmであった。
 実施例16では、温度A1200℃、温度Bを1350℃と決定した。差[(平均結晶粒径B)-(平均結晶粒径A)]は、66nmであった。
 実施例17では、温度A1200℃、温度Bを1350℃と決定した。差[(平均結晶粒径B)-(平均結晶粒径A)]は、56nmであった。
 実施例18では、温度A1200℃、温度Bを1350℃と決定した。差[(平均結晶粒径B)-(平均結晶粒径A)]は、65nmであった。
 比較例1では、温度A1225℃、温度Bを1275℃と決定した。差[(平均結晶粒径B)-(平均結晶粒径A)]は、24nmであった。
 比較例2では、温度A1250℃、温度Bを1300℃と決定した。差[(平均結晶粒径B)-(平均結晶粒径A)]は、32nmであった。
 なお、例えば、実施例1では焼結温度1250℃で相対焼結密度が99.7%であるので、実際に相対焼結密度が98%となる温度は、焼結温度1250℃よりも低い。
 また、実施例1では焼結温度1250℃で靭性値が17MPa・m0.5であるので、実際に靭性値が10MPa・m0.5以上となる温度は、焼結温度1250℃よりも低い。
 また、実施例1では焼結温度1250℃で3点曲げ強度が800MPaであるので、実際に3点曲げ強度が700MPa以上となる温度は、焼結温度1250℃よりも低い。
 また、実施例1では焼結温度1250℃で134℃、0.3MPa、15時間水熱処理後の単斜晶相率が0.6%であるので、実際に134℃、0.3MPa、15時間水熱処理後の単斜晶相率が30%以下となる温度は、焼結温度1250℃よりも低い。
 つまり、実施例1では実際の温度Aは1250℃よりも低い。しかしながら、本測定では、差[(平均結晶粒径B)-(平均結晶粒径A)]が、50nm以上となるか否かを確認できる範囲で行っている。
 そのため、実験の便宜上、実施例1では、1250℃を温度A(<特性1>、<特性2>、<特性3>、及び、<特性4>を満たす最低の焼結温度)として扱っている。1250℃を温度Aとして扱っても、差[(平均結晶粒径B)-(平均結晶粒径A)]が50nm以上となるのであれば、実際に<特性1>、<特性2>、<特性3>、及び、<特性4>を満たす最低の焼結温度を用いたとしても、かならず、差[(平均結晶粒径B)-(平均結晶粒径A)]は50nm以上となるからである。
 また、例えば、比較例1では、焼結温度1200℃で相対焼結密度が97.9%であるので、実際に相対焼結密度が98%となる温度は、焼結温度1200℃よりも高い。
 つまり、比較例1では実際の温度Aは1200℃よりも高い。しかしながら、実験の便宜上、比較例1では、1200℃を温度A(<特性1>、<特性2>、<特性3>、及び、<特性4>を満たす最低の焼結温度)として扱っている。1200℃を温度Aとして扱っても、差[(平均結晶粒径B)-(平均結晶粒径A)]が50nm未満となるのであれば、実際に<特性1>、<特性2>、<特性3>、及び、<特性4>を満たす最低の焼結温度を用いたとしても、かならず、差[(平均結晶粒径B)-(平均結晶粒径A)]は50nm未満となるからである。
 以上より、実施例1-実施例18のジルコニア粉末は、差[(平均結晶粒径B)-(平均結晶粒径A)]が50nm以上であることが確認できた。一方、比較例1-2のジルコニア粉末は、差[(平均結晶粒径B)-(平均結晶粒径A)]が50nm未満であることが確認できた。
 [ジルコニア焼結体の作製]
 まず、実施例、比較例のジルコニア粉末を冷間等方圧加圧法(CIP)にて、成型体を得た。成型圧は、2t/cmとした。
 次に、前記成型体を、表3に記載の温度(焼結温度)にて2時間の条件で焼結をさせ、ジルコニア焼結体を得た。
[ジルコニア焼結体の結晶相に含まれる単斜晶相率(水熱劣化前)]
 実施例、比較例のジルコニア焼結体を鏡面研磨し、結晶相に含まれる単斜晶相率(水熱劣化前)を求めた。鏡面研磨は、平面研削盤で焼結体表面を削った後に、鏡面研磨装置で平均粒径9μm、6μm、及び3μmのダイヤモンド砥粒を番順に用いて研磨した。結果を表3、表4に示す。なお、表3、表4には示していないが、すべての実施例において立方晶相率は3%以下であった。
 具体的に、各実施例、比較例のジルコニア焼結体の単斜晶相率は、以下の[結晶相の同定]の通りにして求めた。
[結晶相の同定]
 ジルコニア焼結体について、X線回折装置(「RINT2500」リガク製)を用い、X線回折スペクトルを得た。測定条件は下記の通りとした。
<測定条件>
  測定装置:X線回折装置(リガク製、RINT2500)
  線源:CuKα線源
  サンプリング間隔:0.02°
  スキャン速度:2θ=1.0°/分
  発散スリット(DS):1°
  発散縦制限スリット:5mm
  散乱スリット(SS):1°
  受光スリット(RS):0.3mm
  モノクロ受光スリット:0.8mm
  管電圧:50kV
  管電流:300mA
  走査速度:2θ=26~36°:4°/分
       2θ=72~76°:1°/分
 その後、X線回折スペクトルから、結晶相の同定を行った。ジルコニア粉末、ジルコニア焼結体に含まれる結晶相の各相率は、以下の計算式で求めた。
 単斜晶相率(%)=(Im(111)+Im(11-1))/(Im(111)+Im(11-1)+It(101)+Ic(111))×100
 正方晶相率(%)=(100%-単斜晶相(%))×((It(004)+It(220)/(It(004)+It(220)+Ic(004))×100
 立方晶相率(%)=(100%-単斜晶相(%))×((Ic(004)/(It(004)+It(220)+Ic(004))×100
 ここで、Im(111)は単斜晶相の(111)の回折強度、Im(11-1)は単斜晶相の(11-1)の回折強度である。
 It(101)は正方晶相の(101)の回折強度、It(220)は正方晶相の(220)の回折強度、It(004)は正方晶相の(004)の回折強度である。
 Ic(004)は立方晶相の(004)の回折強度、Ic(111)は立方晶相の(111)の回折強度である。
 ジルコニアの単斜晶相と、正方晶相及び立方晶相との判別はXRDスペクトルの2θ=26~36°付近で行った。正方晶相と立方晶相との判別はXRDスペクトルの2θ=72~76°付近で行った。立方晶相は安定化剤の添加量や製法によって歪むことがあり、ピーク位置がシフトする場合があるが、本実施例では正方晶相の(004)と(220)の間のピークを立方晶相のピークと捉え算出した。
[134℃、0.3MPa、15時間水熱処理後の単斜晶相率]
 まず、実施例、比較例のジルコニア焼結体を、134℃、絶対圧力0.3MPa(水中雰囲気下)、15時間水熱処理した。その後、水熱処理後のジルコニア焼結体の結晶相に含まれる単斜晶相率を求めた。水熱処理後のジルコニア焼結体の単斜晶相率の求め方は、[ジルコニア粉末の結晶相に含まれる単斜晶相率]の項で説明したのと同様とした。結果を表3、表4に示す。
 また、表3、表4には、水熱劣化前後での単斜晶相比率変化(水熱処理後の単斜晶相率から水熱処理前の単斜晶相率を引いた値)も合わせて示した。
[300℃、8MPa、5時間水熱処理後の単斜晶相率]
 まず、実施例2-4、9-13、17-18、比較例2のジルコニア焼結体を、300℃、絶対圧力8MPa(水中雰囲気下)、5時間水熱処理した。その後、水熱処理後のジルコニア焼結体の結晶相に含まれる単斜晶相率を求めた。水熱処理後のジルコニア焼結体の単斜晶相率の求め方は、[ジルコニア粉末の結晶相に含まれる単斜晶相率]の項で説明したのと同様とした。結果を表5に示す。
[400℃、30MPa、5時間水熱処理後の単斜晶相率]
 まず、実施例2-4、9-13、17-18、比較例2のジルコニア焼結体を、400℃、絶対圧力30MPa(水中雰囲気下)、5時間水熱処理した。その後、水熱処理後のジルコニア焼結体の結晶相に含まれる単斜晶相率を求めた。水熱処理後のジルコニア焼結体の単斜晶相率の求め方は、[ジルコニア粉末の結晶相に含まれる単斜晶相率]の項で説明したのと同様とした。結果を表5に示す。
 また、表5には、400℃、30MPa、5時間水熱劣化前後での単斜晶相比率変化(水熱処理後の単斜晶相率から水熱処理前の単斜晶相率を引いた値)も合わせて示した。
[3点曲げ強度]
 上記で得られた実施例、比較例のジルコニア焼結体の3点曲げ強度を、JIS R 1601の3点曲げ強さに準拠して測定した。結果を表3、表4に示す。
<靱性>
 IF法による靭性測定において加重を30kgf(294.2N)とし、JIS R1607(ファインセラミックスの室温破壊じん(靱)性試験方法)に準拠した方法で行った。ビッカース硬度計を用いて、圧痕の形が四角形である圧痕を7点選定して靭性を求め、それらのうち、値の最も小さいものと、値の最も大きいものを除外した5点の靭性の平均値を靭性値とした。ただし測定する圧痕は、圧痕からのクラックが伸びない場合は無効とし、四角形先端部から4か所亀裂が伸びた圧痕を採用した。
 各靭性値は、下記式にて算出した。
 Kc=0.018×Hv×a0.5×[(c-a)/a]-0.5×(Hv/E)-0.4
  Kc、Hv、a、c、Eは以下を意味する。a、cを求める際のX,Y軸の圧痕長さ、X,Y軸のクラック長さは、図2参照の通りである。
       Kc:靭性値[MPa・m0.5
       Hv:ビッカース硬度[GPa]
       a:X,Y軸の圧痕長さの平均値の半分[μm]
       c:X,Y軸のクラック長さの平均値の半分[μm]
       E:ヤング率[GPa]
 ビッカース硬度は、JIS R 1610 (ファインセラミックスの硬さ試験方法)に準拠して求めた。ビッカース硬度は、下記式にて算出した。
 Hv=0.001854×[F/dSv]
  F、dは以下を意味する。dを求める際のX軸圧痕長さとY軸圧痕長さは、図2参照の通りである。
       Hv:ビッカース硬度[GPa]
       F:試験力[N]
       d:X軸圧痕長さとY軸圧痕長さとの平均値[mm]
 ヤング率は、一般的なイットリア安定化ジルコニアの値として知られている210GPaを使用した。
 [相対焼結密度]
 得られたジルコニア焼結体の相対焼結密度を下記により求めた。結果を表3、表4に示す。
  相対焼結密度(%)=(焼結密度/理論焼結密度)×100・・・(1)
 ここで、理論焼結密度(ρとする)は、下記式(2-1)によって算出される値である。
 ρ=100/[(A/3.99)+(100-A)/ρz]・・・(2-1)
  ただし、Aはアルミナ濃度(重量%)、ρzは、下記式(2-2)によって算出される値である。
  ρz=-0.0400(CaOのモル濃度)+6.1700・・・(2-2)
 アルミナ以外のその他成分(安定化剤および着色剤)を含む場合の理論焼結密度(ρとする)は、下記式(2-3)によって算出される値である。
 ρ=100/[(Z/V)+(100-Z)/ρ]・・・(2-3)
 Zはアルミナ以外のその他成分濃度(重量%)、Vはその他成分理論密度(g/cm)である。
 アルミナ以外のその他成分が2種類含まれる場合の理論焼結密度(ρとする)は、下記式(2-4)によって算出される値である。
 ρ=100/[(Z1/V1)+(Z2/V2)+(100-Z1-Z2)/ρ]・・・(2-4)
 Z1はアルミナ以外の一つ目のその他成分濃度(重量%)、Z2はアルミナ以外の二つ目のその他成分濃度(重量%)、V1は一つ目のその他成分理論密度(g/cm)、V2は二つ目のその他成分理論密度(g/cm)である。
 その他成分理論密度は、Yが5.01g/cm、Erが8.64g/cm、CeOが7.22g/cm、Ndが7.24g/cm、Laが6.51g/cm、Tbが7.81g/cm、Ybが9.17g/cm、Feが5.24g/cm、ZnOが5.61g/cm、MnOが5.03g/cm、CoOが6.10g/cm、TiOが4.23g/cm、CuOが6.31g/cmとする。
 焼結密度は、アルキメデス法にて計測した。
 <相対成型密度>
 相対成型密度(%)=(成型密度/理論焼結密度)×100・・・(4)
 ここで、理論焼結密度(ρとする)は、上記式(2-1)によって算出される値である。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005

Claims (18)

  1.  ジルコニアと安定化剤とを含む安定化ジルコニアを含み、
     前記安定化剤は、第1の安定化剤と第2の安定化剤とを含み、
     前記第1の安定化剤は、CaOであり、
     前記第2の安定化剤は、Y、Yb、Er、CeO、Nd、La、及び、Tbからなる群から選ばれる1種以上であり、
     前記安定化ジルコニア中の前記安定化剤の総量が、酸化物換算で2.5mol%以上6.5mol%以下であり、
     [CaOの量(mol%)]/[安定化剤の総量(mol%)]の割合が、50%以上98%以下であることを特徴とするジルコニア粉末。
  2.  前記第2の安定化剤が、Y、Yb、Er、Nd、La、及び、Tbからなる群から選ばれる1種以上であり、
     前記安定化ジルコニア中の前記安定化剤の総量が、酸化物換算で2.5mol%以上4.5mol%以下であることを特徴とする請求項1に記載のジルコニア粉末。
  3.  前記第2の安定化剤が、CeOであり、
     前記安定化ジルコニア中の前記安定化剤の総量が、酸化物換算で4.0mol%以上6.5mol%以下であることを特徴とする請求項1に記載のジルコニア粉末。
  4.  ジルコニア粉末全体に対してAlを3質量%以下の範囲内で含むことを特徴とする請求項1~3のいずれか1に記載のジルコニア粉末。
  5.  成型圧2t/cmで成型し、大気圧で焼結した際に、下記<特性1>、下記<特性2>、下記<特性3>、及び、下記<特性4>を満たす最低の焼結温度を温度A、
     成型圧2t/cmで成型し、大気圧で焼結した際に、下記<特性1>、下記<特性2>、下記<特性3>、及び、下記<特性4>を満たす最高の焼結温度を温度Bとしたときに、
     前記温度Aで焼結した際の平均結晶粒径Aと前記温度Bで焼結した際の平均結晶粒径Bとの差[(平均結晶粒径B)-(平均結晶粒径A)]が、50nm以上であることを特徴とする請求項1~4のいずれか1に記載のジルコニア粉末。
    <特性1>
     相対焼結密度が98.0%以上である。
    <特性2>
     IF法による靭性値が10MPa・m0.5以上である。
    <特性3>
     3点曲げ強度が700MPa以上である。
    <特性4>
     134℃、0.3MPa、15時間水熱処理後の単斜晶相率が30%以下である。
  6.  比表面積が10m/g以上40m/g以下であることを特徴とする請求項1~5のいずれか1に記載のジルコニア粉末。
  7.  粒子径D50が0.10μm以上0.80μm以下であることを特徴とする請求項1~6のいずれか1に記載のジルコニア粉末。
  8.  ジルコニアと安定化剤とを含む安定化ジルコニアを含み、
     前記安定化剤は、第1の安定化剤と第2の安定化剤とを含み、
     前記第1の安定化剤は、CaOであり、
     前記第2の安定化剤は、Y、Yb、Er、CeO、Nd、La、及び、Tbからなる群から選ばれる1種以上であり、
     前記安定化ジルコニア中の前記安定化剤の総量が、酸化物換算で2.5mol%以上6.5mol%以下であり、
     [CaOの量(mol%)]/[安定化剤の総量(mol%)]の割合が、50%以上98%以下であることを特徴とするジルコニア焼結体。
  9.  前記第2の安定化剤が、Y、Yb、Er、Nd、La、及び、Tbからなる群から選ばれる1種以上であり、
     前記安定化ジルコニア中の前記安定化剤の総量が、酸化物換算で2.5mol%以上4.5mol%以下であることを特徴とする請求項8に記載のジルコニア焼結体。
  10.  前記第2の安定化剤が、CeOであり、
     前記安定化ジルコニア中の前記安定化剤の総量が、酸化物換算で4.0mol%以上6.5mol%以下であることを特徴とする請求項8に記載のジルコニア焼結体。
  11.  ジルコニア焼結体全体に対してAlを3質量%以下の範囲内で含むことを特徴とする請求項8~10のいずれか1に記載のジルコニア焼結体。
  12.  134℃、0.3MPa、15時間水熱処理後の単斜晶相率が30%以下であることを特徴とする請求項8~11のいずれか1に記載のジルコニア焼結体。
  13.  水熱処理前の単斜晶相率が7.0%以下であり、
     134℃、0.3MPa、15時間水熱処理後の単斜晶相率から、水熱劣化前の単斜晶相率を引いた値が20%以下であることを特徴とする請求項8~12のいずれか1に記載のジルコニア焼結体。
  14.  3点曲げ強度が700MPa以上1500MPa以下であることを特徴とする請求項8~13のいずれか1に記載のジルコニア焼結体。
  15.  IF法による靭性値が10MPa・m0.5以上40MPa・m0.5以下であることを特徴とする請求項8~14のいずれか1に記載のジルコニア焼結体。
  16.  400℃、30MPa、5時間水熱処理後の単斜晶相率が30%以下であることを特徴とする請求項8~15のいずれか1に記載のジルコニア焼結体。
  17.  水熱処理前の単斜晶相率が7.0%以下であり、
     400℃、30MPa、5時間水熱処理後の単斜晶相率から、水熱劣化前の単斜晶相率を引いた値が20%以下であることを特徴とする請求項8~16のいずれか1に記載のジルコニア焼結体。
  18.  請求項1~7のいずれか1に記載のジルコニア粉末を成型し、成型体を得る工程Xと、
     前記工程Xの後、前記成型体を、1200℃以上1450℃以下、1時間以上5時間以下の条件で焼結する工程Yとを有することを特徴とするジルコニア焼結体の製造方法。
PCT/JP2023/011743 2022-03-31 2023-03-24 ジルコニア粉末、ジルコニア焼結体、及び、ジルコニア焼結体の製造方法 WO2023190119A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-058612 2022-03-31
JP2022058612 2022-03-31

Publications (1)

Publication Number Publication Date
WO2023190119A1 true WO2023190119A1 (ja) 2023-10-05

Family

ID=88201369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/011743 WO2023190119A1 (ja) 2022-03-31 2023-03-24 ジルコニア粉末、ジルコニア焼結体、及び、ジルコニア焼結体の製造方法

Country Status (1)

Country Link
WO (1) WO2023190119A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4619817A (en) * 1985-03-27 1986-10-28 Battelle Memorial Institute Hydrothermal method for producing stabilized zirconia
JPS6278113A (ja) * 1985-10-02 1987-04-10 Kawasaki Steel Corp 安定化ジルコニア粉末の製造方法
JPH02157157A (ja) * 1988-12-12 1990-06-15 Tosoh Corp 耐食性および耐熱水性に優れたジルコニア焼結体
JPH03159960A (ja) * 1989-11-16 1991-07-09 Osaka Cement Co Ltd ジルコニア微粉末およびジルコニア焼結体
JPH05254933A (ja) * 1992-03-09 1993-10-05 Tosoh Corp ジルコニア焼結体及びその製造方法
JPH10194831A (ja) * 1997-01-07 1998-07-28 Toshiba Ceramics Co Ltd ジルコニア−黒鉛質耐火物
JP2015137187A (ja) * 2014-01-20 2015-07-30 株式会社ニッカトー 歯科用ジルコニア質焼結体、クラウン用フレーム、ブリッジ用フレーム
WO2021153211A1 (ja) * 2020-01-27 2021-08-05 第一稀元素化学工業株式会社 安定化ジルコニア焼結体、及び、ジルコニア粉末

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4619817A (en) * 1985-03-27 1986-10-28 Battelle Memorial Institute Hydrothermal method for producing stabilized zirconia
JPS6278113A (ja) * 1985-10-02 1987-04-10 Kawasaki Steel Corp 安定化ジルコニア粉末の製造方法
JPH02157157A (ja) * 1988-12-12 1990-06-15 Tosoh Corp 耐食性および耐熱水性に優れたジルコニア焼結体
JPH03159960A (ja) * 1989-11-16 1991-07-09 Osaka Cement Co Ltd ジルコニア微粉末およびジルコニア焼結体
JPH05254933A (ja) * 1992-03-09 1993-10-05 Tosoh Corp ジルコニア焼結体及びその製造方法
JPH10194831A (ja) * 1997-01-07 1998-07-28 Toshiba Ceramics Co Ltd ジルコニア−黒鉛質耐火物
JP2015137187A (ja) * 2014-01-20 2015-07-30 株式会社ニッカトー 歯科用ジルコニア質焼結体、クラウン用フレーム、ブリッジ用フレーム
WO2021153211A1 (ja) * 2020-01-27 2021-08-05 第一稀元素化学工業株式会社 安定化ジルコニア焼結体、及び、ジルコニア粉末

Similar Documents

Publication Publication Date Title
KR101297281B1 (ko) 흑색 지르코니아 소결체용 분말과 그의 제조방법 및 그의소결체
JP6713113B2 (ja) ZrO2−Al2O3系セラミックス焼結体及びその作製法
JP5366398B2 (ja) 複合セラミックス及びその製法
JP5158298B2 (ja) 黒色ジルコニア焼結体、その原料粉末ならびにそれらの製造方法
CN107922272B (zh) 红色氧化锆烧结体及其制造方法
Zhang et al. Co-precipitation synthesis and vacuum sintering of Nd: YAG powders for transparent ceramics
JP7195481B2 (ja) ジルコニア粉末、ジルコニア焼結体、及び、ジルコニア焼結体の製造方法
JP7110484B2 (ja) ジルコニア粉末、ジルコニア粉末の製造方法、ジルコニア焼結体の製造方法、及び、ジルコニア焼結体
CN111511702B (zh) 适合于牙科用途的氧化锆预煅烧体
JP2005289721A (ja) 着色ジルコニア焼結体及びその製造方法
JP2005082459A (ja) 複合セラミックスおよびその製法
JP5000934B2 (ja) 透光性希土類ガリウムガーネット焼結体及びその製造方法と光学デバイス
JP7195482B2 (ja) ジルコニア粉末、ジルコニア焼結体、及び、ジルコニア焼結体の製造方法
WO2023190119A1 (ja) ジルコニア粉末、ジルコニア焼結体、及び、ジルコニア焼結体の製造方法
JP4162599B2 (ja) セリウム系複合酸化物、その焼結体及び製造法
WO2021153211A1 (ja) 安定化ジルコニア焼結体、及び、ジルコニア粉末
JP2017214266A (ja) 透光性ジルコニア焼結体及びその製造方法並びにその用途
WO2023171542A1 (ja) ジルコニア焼結体、ジルコニア粉末、及び、ジルコニア焼結体の製造方法
CN114195514A (zh) 氧化锆粉末、氧化锆烧结体的制造方法、氧化锆烧结体
WO2023042893A1 (ja) 粉末組成物、仮焼体、焼結体及びその製造方法
JP7444327B1 (ja) ジルコニア組成物及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23780129

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024512326

Country of ref document: JP

Kind code of ref document: A