WO2023190084A1 - TOPCon型太陽電池電極用導電性アルミニウムペースト組成物及びその焼成物である裏面電極が積層されているTOPCon型太陽電池 - Google Patents

TOPCon型太陽電池電極用導電性アルミニウムペースト組成物及びその焼成物である裏面電極が積層されているTOPCon型太陽電池 Download PDF

Info

Publication number
WO2023190084A1
WO2023190084A1 PCT/JP2023/011647 JP2023011647W WO2023190084A1 WO 2023190084 A1 WO2023190084 A1 WO 2023190084A1 JP 2023011647 W JP2023011647 W JP 2023011647W WO 2023190084 A1 WO2023190084 A1 WO 2023190084A1
Authority
WO
WIPO (PCT)
Prior art keywords
mol
glass powder
paste composition
aluminum paste
conductive aluminum
Prior art date
Application number
PCT/JP2023/011647
Other languages
English (en)
French (fr)
Inventor
孝輔 辻
紹太 鈴木
崇志 黒木
Original Assignee
東洋アルミニウム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋アルミニウム株式会社 filed Critical 東洋アルミニウム株式会社
Publication of WO2023190084A1 publication Critical patent/WO2023190084A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • C03C8/16Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions with vehicle or suspending agents, e.g. slip
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells

Definitions

  • the present invention relates to a TOPCon type solar cell in which a conductive aluminum paste composition for a TOPCon type solar cell electrode and a back electrode which is a fired product thereof are laminated.
  • a solar cell element employing a TOPCon (Tunnel Oxide Passivated Contact) structure has been devised as one of the technologies for improving the efficiency, reliability, etc. of solar cells.
  • TOPCon Tel Oxide Passivated Contact
  • a solar cell employing this structure will be referred to as a "TOPCon type solar cell.”
  • the TOPCon structure in order to reduce recombination loss between the n-type silicon substrate serving as the base substrate and the back electrode made of silver, aluminum, etc., a few nanometers of silicon oxide is placed between the base substrate and the back electrode. A thin tunnel oxide layer, a semiconductor layer (microcrystalline n + silicon layer) doped with high concentrations of phosphorus, boron, etc., and a passivation film made of Si 3 N 4 , Al 2 O 3, etc. are formed. There is.
  • This structure is characterized in that carrier loss at the interface between the n-type silicon substrate and the microcrystalline n + silicon layer is suppressed by the generation of a tunnel effect by the oxide layer.
  • Patent Document 1 discusses the use of a conductive aluminum paste composition containing aluminum-silicon alloy particles, an organic vehicle, and glass powder.
  • a back electrode containing aluminum powder, lead glass powder, and an organic vehicle for p-type silicon substrates is used as an aluminum paste with fire-through properties that allows the back electrode to be formed without forming an LCO.
  • Patent Document 2 a paste for back electrodes containing aluminum powder, lead-free glass powder, and an organic vehicle is known (Patent Document 3).
  • the paste when forming the back electrode of a TOPCon type solar cell, the paste itself has the fire-through property of a passivation film, so there is no need to form an LCO, and furthermore, there is no need to form an alloy layer with an n-type silicon substrate. It is an object of the present invention to provide a conductive aluminum paste composition that can obtain good ohmic contact. Another object of the present invention is to provide a TOPCon type solar cell in which a back electrode, which is a fired product thereof, is laminated.
  • the present inventors have discovered that the above object can be achieved by using a conductive aluminum paste composition containing a specific composition of aluminum-silicon alloy powder and glass powder. , we have completed the present invention.
  • a conductive aluminum paste composition comprising an aluminum-silicon alloy powder, an organic vehicle, and a glass powder, the composition comprising: (1) The aluminum-silicon alloy powder has a silicon concentration of 30% by mass or more and 40% by mass or less, (2) the glass powder contains a first glass powder and a second glass powder, The first glass powder contains PbO from 45% to 71%, B 2 O 3 from 5% to 35%, and SiO 2 from 0.1% to 25.0%, expressed as oxide mol%.
  • the second glass powder contains B 2 O 3 in an amount of 35.0% to 55.0%, SiO 2 in an amount of 5.0% to 10.0%, and BaO 1.0% in terms of oxide mol%. 20.0% or more, CaO 5.0% or more and 25.0% or less, K 2 O 3.0% or more and 30.0% or less, and does not substantially contain PbO.
  • a conductive aluminum paste composition for a TOPCon type solar cell electrode characterized in that: 2. 2.
  • the conductive aluminum paste composition according to item 1 wherein the first glass powder contains a total of 1% or more and 10% or less of Al 2 O 3 and/or ZnO expressed as oxide mole %. 3.
  • the conductive aluminum paste composition according to item 1 or 2 wherein the second glass powder contains 1.0% or more and 10.0% or less of SrO expressed as oxide mole %. 4.
  • a TOPCon type solar cell in which a back electrode which is a fired product of the conductive aluminum paste composition according to any one of items 1 to 3 above is laminated on a silicon semiconductor substrate.
  • the conductive aluminum paste composition of the present invention contains aluminum-silicon alloy powder and glass powder having a specific composition, so that the paste itself has fire-through properties of the passivation film in forming the back electrode of a TOPCon solar cell. Therefore, it is not necessary to form an LCO, and furthermore, good ohmic contact can be obtained without forming an alloy layer with the n-type silicon substrate. Note that not forming an alloy layer with the n-type silicon substrate means that there is no erosion of the microcrystalline n + silicon layer, and being able to obtain good ohmic contact means that the contact resistance is 10 m ⁇ as an indicator of high conversion efficiency. cm 2 or less.
  • FIG. 1 is a schematic cross-sectional view showing an example of the structure of a TOPCon type solar cell.
  • FIG. 3 is a diagram showing the printing width when a conductive aluminum paste composition is screen printed on the surface of a microcrystalline n + silicon layer in Examples and Comparative Examples. Specifically, it shows that the print width is 1 mm, the length is 10 mm, and the print intervals are set to be parallel to each other under the conditions of 1.2 mm, 1.4 mm, 1.6 mm, 1.8 mm, and 2.0 mm. There is.
  • the conductive aluminum paste composition for a TOPCon type solar cell electrode of the present invention and a TOPCon type solar cell using the same will be explained in detail.
  • the numerical range indicated by “ ⁇ ” indicates “more than or equal to, less than or equal to” unless otherwise specified. That is, “A to B” indicates a range of A or more and B or less.
  • the conductive aluminum paste composition of the present invention is for use in a TOPCon type solar cell electrode, and the conductive aluminum paste composition contains an aluminum-silicon alloy powder, an organic vehicle, and a glass powder. As long as the aluminum-silicon alloy powder and the glass powder have a predetermined specific composition, other requirements may be those of known TOPCon type solar cells.
  • FIG. 1 is a schematic cross-sectional view showing an example of the structure of a TOPCon type solar cell.
  • the TOPCon type solar cell shown in FIG. 1 has a p-type impurity layer 2 formed on the light-receiving surface side of an n-type silicon semiconductor substrate 1 as a base substrate, and a back electrode 6 on the back side of the n-type silicon semiconductor substrate 1. , an extremely thin oxide layer 3 between an n-type silicon semiconductor substrate 1 and a back electrode 6, and a microcrystalline n + silicon layer 4 doped with a dopant at a high concentration.
  • the TOPCon type solar cell has a tunneling effect caused by the oxide layer 3, which connects the n-type silicon semiconductor substrate 1 (n - silicon layer) and the microcrystalline n + silicon layer 4 (n + silicon layer). Carrier loss at the interface can be suppressed.
  • silicon oxide is applied, for example.
  • the thickness of the oxide layer 3 is not limited, and can be, for example, 1 to 10 nm, preferably 3 to 8 nm.
  • the thickness of the oxide layer 3 is 1 to 10 nm, the above-mentioned tunnel effect tends to occur, and carriers easily move to the back side of the solar cell, resulting in an increase in conversion efficiency.
  • the thickness of the oxide layer 3 is 1 to 10 nm, carrier loss at the interface between the n ⁇ silicon layer and the n + silicon layer is easily suppressed, so that reduction in conversion efficiency is less likely to occur.
  • silicon semiconductor substrates used, for example, in semiconductor applications or solar cell applications can be widely applied.
  • a passivation film 5 is provided between the microcrystalline n + silicon layer 4 and the back electrode 6 . Since the conductive aluminum paste composition of the present invention has the fire-through property of the passivation film 5, there is no need to form an LCO (opening) in the passivation film 5 in forming the back electrode 6.
  • a finger electrode (not shown in FIG. 1) is formed on the opposite side of the back electrode 6 of the n-type silicon semiconductor substrate 1 via a p-type impurity layer.
  • the finger electrodes are made of silver, aluminum, or the like, for example.
  • the back electrode 6 is formed from the conductive aluminum paste composition of the present invention.
  • the conductive aluminum paste composition of the present invention contains aluminum-silicon alloy powder and glass powder of a specific composition, so that the paste itself forms a passivation film when forming the back electrode 6 of a TOPCon solar cell. 5, it is not necessary to form an LCO, and further, good ohmic contact can be obtained without forming an alloy layer with the n-type silicon semiconductor substrate 1.
  • the coating film before firing of the back electrode 6 can be easily formed in that a known printing method such as a screen printing method can be employed.
  • the conductive aluminum paste composition of the present invention is for use in TOPCon type solar cell electrodes, and in particular is used to form back electrodes.
  • the paste composition contains an aluminum-silicon alloy powder, an organic vehicle, and a glass powder, (1)
  • the aluminum-silicon alloy powder has a silicon concentration of 30% by mass or more and 40% by mass or less, (2) the glass powder contains a first glass powder and a second glass powder,
  • the first glass powder contains PbO from 45% to 71%, B 2 O 3 from 5% to 35%, and SiO 2 from 0.1% to 25.0%, expressed as oxide mole%.
  • the second glass powder contains B 2 O 3 in an amount of 35.0% to 55.0%, SiO 2 in an amount of 5.0% to 10.0%, and BaO 1.0% in terms of oxide mol%. 20.0% or more, CaO 5.0% or more and 25.0% or less, K 2 O 3.0% or more and 30.0% or less, and does not substantially contain PbO. It is characterized by
  • the paste itself has fire-through properties of a passivation film in forming the back electrode of a TOPCon type solar cell, and there is no need to form an LCO.
  • Good ohmic contact can be obtained without forming an alloy layer with the n-type silicon substrate.
  • not forming an alloy layer with the n-type silicon substrate means that there is no erosion of the microcrystalline n + silicon layer, and being able to obtain good ohmic contact means that the contact resistance is 10 m ⁇ as an indicator of high conversion efficiency. cm 2 or less.
  • aluminum-silicon alloy powder is a component that can play a role in providing conductivity.
  • aluminum-silicon alloy powder having a silicon concentration of 30% by mass or more and 40% by mass or less (preferably 35% by mass or more and 40% by mass or less) is used.
  • migration of the electrode material does not occur and the risk of short circuit is reduced compared to silver.
  • the silicon concentration is 30% by mass or more and 40% by mass or less, it becomes difficult for the conductive aluminum paste composition to melt with the microcrystalline n + silicon layer in the firing process, and as a result, the conductive aluminum paste composition and the microcrystalline It becomes difficult to form an aluminum-silicon alloy layer with the n + silicon layer. As a result, reduction in cell conversion efficiency due to carrier loss is suppressed.
  • the silicon concentration is less than 30% by mass, a p + layer is formed, which may cause a decrease in conversion efficiency. If the silicon concentration exceeds 40% by mass, the resistance may increase and it may become difficult to produce an aluminum-silicon alloy powder. Therefore, in the present invention, a material having a silicon concentration of 30% by mass or more and 40% by mass or less is used.
  • the particle size of the aluminum-silicon alloy powder is not particularly limited.
  • the volume average particle diameter D50 of the aluminum-silicon alloy powder (particles) can be set to 1 to 10 ⁇ m.
  • the volume average particle diameter D50 is preferably 5 to 8 ⁇ m.
  • the volume average particle diameter D50 of the aluminum-silicon alloy powder in this specification is a value measured by a laser diffraction method.
  • the aluminum-silicon alloy powder may contain strontium as a third component. That is, as the conductive powder containing strontium, in addition to aluminum-silicon-strontium (Al-Si-Sr) alloy powder, a combination of aluminum-silicon alloy powder and aluminum-silicon-strontium alloy powder may be used.
  • the amount of strontium contained in the conductive powder containing strontium is not particularly limited, but can be 0.01 to 1% by mass.
  • the addition of strontium to the conductive powder has the effect of increasing the amount of liquid phase composition during firing when the silicon concentration is high, promoting sintering, and reducing surface resistance.
  • the type of organic vehicle is not particularly limited, and for example, a wide range of known organic vehicles used for forming back electrodes of solar cells can be used.
  • the organic vehicle include materials in which a resin is dissolved in a solvent.
  • the organic vehicle may be solvent-free and the resin itself may be used.
  • the type of solvent is not limited, and examples include diethylene glycol monobutyl ether, diethylene glycol monobutyl ether acetate, dipropylene glycol monomethyl ether, and the like.
  • the organic vehicle may contain one or more kinds of solvents.
  • the resin examples include various known resins, including ethyl cellulose resin, nitrocellulose resin, polyvinyl butyral resin, phenol resin, melamine resin, urea resin, xylene resin, alkyd resin, and unsaturated resin.
  • Polyester resin acrylic resin, polyimide resin, furan resin, urethane resin, isocyanate compound, cyanate compound, polyethylene resin, polypropylene resin, polystyrene resin, ABS resin, polymethyl methacrylate resin, polyvinyl chloride resin, polyvinylidene chloride resin, poly Vinyl acetate resin, polyvinyl alcohol resin, polyacetal resin, polycarbonate resin, polyethylene terephthalate resin, polybutylene terephthalate resin, polyphenylene oxide resin, polysulfone resin, polyimide resin, polyether sulfone resin, polyarylate resin, polyether ether ketone resin, poly Examples include tetrafluoroethylene resin and silicone resin.
  • the organic vehicle may contain one or more resins.
  • the organic vehicle can also contain various additives as necessary.
  • additives include antioxidants, corrosion inhibitors, antifoaming agents, thickeners, dispersants, tackifiers, coupling agents, electrostatic agents, polymerization inhibitors, thixotropic agents, antisettling agents, etc. can be mentioned.
  • polyethylene glycol ester compounds polyethylene glycol ether compounds, polyoxyethylene sorbitan ester compounds, sorbitan alkyl ester compounds, aliphatic polycarboxylic acid compounds, phosphoric acid ester compounds, amide amine salts of polyester acids, and polyethylene oxide compounds.
  • fatty acid amide wax, alkaline earth metal salts of stearic acid, and the like are examples of additives.
  • the proportions of the resin, solvent, and various additives contained in the organic vehicle can be adjusted as desired, and for example, the proportions of the components can be the same as those of known organic vehicles.
  • the content of the organic vehicle is not particularly limited, but for example, from the viewpoint of having good coating properties (printability), it is 10 parts by mass or more and 500 parts by mass or less with respect to 100 parts by mass of the aluminum-silicon alloy powder. It is preferably 20 parts by mass or more and 45 parts by mass or less.
  • the glass powder contained in the conductive aluminum paste composition of the present invention is a vitreous frit (powder).
  • the glass powder contains a first glass powder (lead-containing glass) and a second glass powder (borosilicate glass that does not substantially contain lead),
  • the first glass powder contains PbO from 45% to 71%, B 2 O 3 from 5% to 35%, and SiO 2 from 0.1% to 25.0%, expressed as oxide mol%.
  • the content of B 2 O 3 is x mol %
  • the content of SiO 2 is y mol %
  • the content of PbO is z mol %
  • the value of [(x+y)/z] is 0.40.
  • the second glass powder contains B 2 O 3 in an amount of 35.0% to 55.0%, SiO 2 in an amount of 5.0% to 10.0%, and BaO 1.0% in terms of oxide mol%. 20.0% or more, CaO 5.0% or more and 25.0% or less, K 2 O 3.0% or more and 30.0% or less, and does not substantially contain PbO. It is characterized by the use of glass powder with a specific composition.
  • the passivation film has excellent fire-through properties and forms an alloy layer (aluminum-silicon alloy layer) with the n-type silicon semiconductor substrate. (that is, the erosion of the microcrystalline n + silicon layer during the firing process is suppressed), and good ohmic contact can be obtained. As a result, the conversion efficiency of the solar cell can be increased.
  • the first glass powder is a lead-containing glass, and contains PbO of 45% to 71%, B 2 O 3 of 5% to 35%, and SiO 2 of 0.1% to 25%, expressed as oxide mole %. 0% or less, and the content of B 2 O 3 is x mol %, the content of SiO 2 is y mol %, the content of PbO is z mol %, and [(x+y)/z] The value is in the range of 0.40 or more and 1.00 or less.
  • the PbO content of the first glass powder can be set to 50% or more and 71% or less, and can be set to 60% or more and 71% or more.
  • the content of B 2 O 3 can be set at 10% or more and 32% or less, and can be set at 20% or more and 32% or less.
  • the content of SiO 2 can be set at 1.0% or more and 23.0% or less, and can be set at 8.0% or more and 23.0% or less.
  • the value of [(x+y)/z] can be set to 0.40 or more and 0.90 or less, and can be set to 0.43 or more and 0.86 or less.
  • the first glass powder may contain a total of 1% or more and 10% or less of Al 2 O 3 and/or ZnO expressed as oxide mole %. By containing these components, the weather resistance of the first glass powder can be improved and the paste viscosity can be stabilized.
  • the content of Al 2 O 3 can be set, for example, to 1% or more and 7% or less.
  • the content of ZnO can be set, for example, to 2% or more and 5% or less, and can be set to 3% or more and 4% or less.
  • the second glass powder is borosilicate glass that does not substantially contain lead, and contains 35.0% or more of B 2 O 3 and 55.0% or less and SiO 2 of 5.0% or more in terms of oxide mole%. 10.0% or less, BaO from 1.0% to 20.0%, CaO from 5.0% to 25.0%, K 2 O from 3.0% to 30.0%, and Contains substantially no PbO.
  • the content of B 2 O 3 in the second glass powder can be set to 40.0% or more and 53.0% or less, and can be set to 41.2% or more and 45.5% or less.
  • the content of SiO 2 can be set at 6.5% or more and 9.0% or less, and can be set at 6.9% or more and 7.6% or less.
  • the content of BaO can be set at 10.0% or more and 20.0% or less, and can be set at 15.1% or more and 18.4% or less.
  • the content of CaO can be set at 6.0% or more and 20.0% or less, and can be set at 6.4% or more and 19.0% or less.
  • the content of K 2 O can be set to 10.0% or more and 30.0% or less, and can be set to 11.4% or more and 20.1% or less.
  • the second glass powder does not substantially contain a lead component (PbO), which means that the lead component is below the detection limit according to component analysis, or the content can be considered as an inevitable impurity.
  • PbO lead component
  • the second glass powder may contain 1.0% or more and 10.0% or less of SrO expressed in oxide mole%.
  • the content of SrO can be set to 3.0% or more and 6.0% or less.
  • the weather resistance of the second glass powder can be improved and the paste viscosity can be stabilized.
  • the second glass powder may contain ZnO in an amount of 0.0% (including an embodiment in which it does not substantially contain) to 25.0% in terms of oxide mole %.
  • the content of ZnO can be set at 1.0% or more and 25.0% or less, and can be set at 5.0% or more and 25.0% or less.
  • the content of the glass powder is not particularly limited, but for example, from the viewpoint of the balance between the adhesion to the n-type silicon semiconductor substrate and the electrical resistance of the back electrode, the content of the first glass is added to 100 parts by mass of the aluminum-silicon alloy powder.
  • the total amount of the powder and the second glass powder is preferably 0.5 parts by mass or more and 40 parts by mass or less, and more preferably 4 parts by mass or more and 15 parts by mass or less.
  • the softening point of each glass powder is preferably 650° C. or lower, and the volume average particle diameter D50 of the glass particles constituting each glass powder is preferably 1 to 3 ⁇ m.
  • the conductive aluminum paste composition of the present invention is useful as a paste composition for the back electrode of the TOPCon solar cell described at the beginning.
  • the present invention also includes the invention of a TOPCon type solar cell characterized in that a back electrode which is a fired product of a conductive aluminum paste composition is laminated.
  • the firing temperature when firing the coating film of the conductive aluminum paste composition is not limited as long as the desired back electrode is formed, but the firing temperature is preferably 700°C or higher. This prevents the conductive aluminum paste composition and the microcrystalline n + silicon layer from forming an alloy layer (aluminum-silicon alloy layer), making it easier to form a desired back electrode.
  • the upper limit of the firing temperature is preferably lower than the melting point of the aluminum-silicon alloy powder contained in the conductive aluminum paste composition, and in this case, the conductive aluminum paste composition and the microcrystalline n + silicon layer form an alloy layer. It becomes even more difficult to form. From this point of view, the firing temperature is preferably 900°C or lower, more preferably 850°C or lower, and particularly preferably 800°C or lower.
  • the firing time of the coating film can be determined as appropriate depending on the firing temperature.
  • the time can be 1 minute or more and 300 minutes or less, and preferably 1 minute or more and 5 minutes or less.
  • Firing may be performed in either an air atmosphere or a nitrogen atmosphere.
  • the firing method is not particularly limited either, and, for example, the firing process can be performed using a known heating furnace.
  • Example 1 Aluminum-silicon alloy powder was produced by gas atomization.
  • the aluminum-silicon alloy powder was produced so that the silicon concentration was 36% by mass and the volume average particle diameter D50 was 6.0 ⁇ m.
  • the first glass powder is a lead-containing glass powder (abbreviation P1) consisting of PbO: 50.00 mol%, SiO 2 : 23.00 mol%, B 2 O 3 : 20.00 mol%, Al 2 O 3 : 7.00 mol%.
  • the second glass powder B 2 O 3 45.50 mol %, SiO 2 : 7.60 mol %, CaO: 19.00 mol %, BaO: 15.90 mol %, K 2 O: 12.00 mol %.
  • a mixed glass powder was prepared by mixing acid glass powder (abbreviation B1) at a mass ratio of 1:1.
  • a resin solution with a concentration of 10% by mass in which ethyl cellulose was dissolved in butyl diglycol was prepared as an organic vehicle.
  • Example 2 The first glass powder is lead consisting of PbO: 54.40 mol%, SiO 2 : 12.80 mol%, B 2 O 3 : 23.50 mol%, Al 2 O 3 : 5.70 mol%, ZnO: 3.60 mol%.
  • a conductive aluminum paste composition was obtained in the same manner as in Example 1, except that the containing glass powder (P2) was used.
  • Example 3 The first glass powder composition consists of PbO: 45.00 mol%, SiO 2 : 15.00 mol%, B 2 O 3 : 30.00 mol%, Al 2 O 3 : 7.00 mol%, ZnO: 3.00 mol%.
  • a conductive aluminum paste composition was obtained in the same manner as in Example 1, except that lead-containing glass powder (P3) was used.
  • the first glass powder is a lead-containing glass powder (P4) consisting of PbO: 60.00 mol%, SiO 2 : 14.00 mol%, B 2 O 3 : 22.00 mol%, Al 2 O 3 : 4.00 mol%.
  • P4 lead-containing glass powder
  • a conductive aluminum paste composition was obtained in the same manner as in Example 1 except that .
  • Example 5 The first glass powder is lead consisting of PbO: 63.00 mol%, SiO 2 : 8.00 mol%, B 2 O 3 : 22.00 mol%, Al 2 O 3 : 3.00 mol%, ZnO: 4.00 mol%.
  • a conductive aluminum paste composition was obtained in the same manner as in Example 1, except that the containing glass powder (P5) was used.
  • Example 6 A lead-containing glass powder (P6) consisting of PbO: 66.00 mol%, SiO 2 : 1.00 mol%, B 2 O 3 : 32.00 mol%, Al 2 O 3 : 1.00 mol% was used as the first glass powder.
  • a conductive aluminum paste composition was obtained in the same manner as in Example 1, except for using the same method as in Example 1.
  • Example 7 A lead-containing glass powder (P7) consisting of PbO: 71.00 mol%, SiO 2 : 16.00 mol%, and B 2 O 3 : 13.00 mol% was used as the first glass powder, and B as the second glass powder.
  • Borosilicate consisting of 2 O 3 : 43.70 mol%, SiO 2 : 7.10 mol%, CaO: 18.00 mol%, BaO: 15.10 mol%, SrO: 4.70 mol%, K 2 O: 11.40 mol%
  • a conductive aluminum paste composition was obtained in the same manner as in Example 1 except that glass powder (B2) was used.
  • Example 8 As the second glass powder, borosilicate consisting of B 2 O 3 : 52.60 mol%, SiO 2 : 8.70 mol%, CaO: 6.40 mol%, BaO: 18.40 mol%, K 2 O: 13.90 mol% A conductive aluminum paste composition was obtained in the same manner as in Example 1 except that glass powder (B3) was used.
  • Example 9 As the second glass powder, borosilicate consisting of B 2 O 3 : 41.20 mol%, SiO 2 : 6.90 mol%, CaO: 17.30 mol%, BaO: 14.50 mol%, K 2 O: 20.10 mol% A conductive aluminum paste composition was obtained in the same manner as in Example 5, except that glass powder (B4) was used.
  • Example 10 A conductive aluminum paste composition was obtained in the same manner as in Example 3, except that an aluminum-silicon alloy powder having a D50 of 6.0 ⁇ m and a silicon concentration of 30% by mass, which was produced by a gas atomization method, was used.
  • Example 11 A conductive aluminum paste composition was obtained in the same manner as in Example 3, except that an aluminum-silicon alloy powder having a D50 of 6.0 ⁇ m and a silicon concentration of 40% by mass, which was produced by a gas atomization method, was used.
  • Comparative example 1 A conductive aluminum paste composition was obtained in the same manner as in Example 1, except that aluminum powder having a D50 of 6.0 ⁇ m (silicon concentration was 0% by mass) manufactured by the gas atomization method was used.
  • Comparative example 2 A conductive aluminum paste composition was obtained in the same manner as in Example 1, except that an aluminum-silicon alloy powder having a D50 of 6.0 ⁇ m and a silicon concentration of 25% by mass, which was produced by a gas atomization method, was used.
  • Comparative example 3 Except that a lead-containing glass powder (P8) consisting of PbO: 13.00 mol%, SiO 2 : 5.00 mol%, B 2 O 3 : 28.00 mol%, and ZnO: 54.00 mol% was used as the first glass powder.
  • a conductive aluminum paste composition was obtained in the same manner as in Example 1.
  • Comparative example 4 Lead consisting of PbO: 34.00 mol%, SiO 2 : 57.00 mol%, B 2 O 3 : 5.00 mol%, Al 2 O 3 : 2.00 mol%, ZnO: 2.00 mol% as the first glass powder.
  • a conductive aluminum paste composition was obtained in the same manner as in Example 1, except that the containing glass powder (P9) was used.
  • Comparative example 6 A lead-containing glass powder (P11) consisting of PbO: 47.00 mol%, SiO 2 : 42.00 mol%, B 2 O 3 : 8.00 mol%, Al 2 O 3: 3.00 mol% was used as the first glass powder.
  • a conductive aluminum paste composition was obtained in the same manner as in Example 8, except that it was used.
  • the first glass powder is lead consisting of PbO: 54.00 mol%, SiO 2 : 15.00 mol%, B 2 O 3 : 4.00 mol%, Al 2 O 3 : 6.00 mol%, ZnO: 21.00 mol%.
  • a conductive aluminum paste composition was obtained in the same manner as in Example 1, except that the containing glass powder (P12) was used.
  • Comparative example 8 Same as Example 1 except that lead-containing glass powder (P13) consisting of PbO: 74.00 mol%, SiO 2 : 16.00 mol%, and B 2 O 3 : 10.00 mol% was used as the first glass powder.
  • a conductive aluminum paste composition was obtained by the method described above.
  • Comparative example 9 A lead-containing glass powder (P14) consisting of PbO: 76.00 mol%, SiO 2 : 16.00 mol%, B 2 O 3 : 4.00 mol%, Al 2 O 3 : 4.00 mol% was used as the first glass powder.
  • a conductive aluminum paste composition was obtained in the same manner as in Example 8, except that it was used.
  • Comparative example 10 Conductive aluminum paste composition was prepared in the same manner as in Example 8, except that a lead-containing glass powder (P15) consisting of PbO: 80.00 mol% and B 2 O 3 : 20.00 mol% was used as the first glass powder. I got something.
  • P15 lead-containing glass powder
  • Comparative example 11 Except for using borosilicate glass powder (B5) consisting of B 2 O 3 : 52.10 mol%, SiO 2 : 8.50 mol%, CaO: 21.50 mol%, BaO: 17.90 mol% as the second glass powder.
  • B5 borosilicate glass powder
  • SiO 2 : 8.50 mol%
  • CaO 21.50 mol%
  • BaO 17.90 mol%
  • a conductive aluminum paste composition was obtained in the same manner as in Example 1.
  • the second glass powder is a borosilicate glass powder consisting of B2O3 : 47.40 mol%, SiO2 : 7.70 mol%, CaO: 19.50 mol%, BaO: 16.30 mol%, PbO: 9.10 mol%.
  • a conductive aluminum paste composition was obtained in the same manner as in Example 1 except that (B6) was used.
  • Comparative example 15 As the second glass powder, B 2 O 3 : 54.10 mol%, SiO 2 : 4.50 mol%, CaO: 6.00 mol%, BaO: 18.40 mol%, SrO: 4.80 mol%, K 2 O: 5 A conductive aluminum paste composition was obtained in the same manner as in Example 1, except that borosilicate glass powder (B9) consisting of ZnO: .50 mol% and ZnO: 6.70 mol% was used.
  • Comparative example 16 As the second glass powder, borosilicate consisting of B 2 O 3 : 38.90 mol%, SiO 2 : 30.70 mol%, CaO: 6.40 mol%, BaO: 12.80 mol%, K 2 O: 11.20 mol% A conductive aluminum paste composition was obtained in the same manner as in Example 1 except that glass powder (B10) was used.
  • Comparative example 18 As the second glass powder, borosilicate consisting of B 2 O 3 : 43.40 mol%, SiO 2 : 8.70 mol%, CaO: 7.90 mol%, BaO: 30.00 mol%, K 2 O: 10.00 mol% A conductive aluminum paste composition was obtained in the same manner as in Example 1 except that glass powder (B12) was used.
  • Borosilicate glass powder (B13) consisting of B 2 O 3 : 45.50 mol%, SiO 2 : 9.90 mol%, BaO: 18.40 mol%, K 2 O: 26.20 mol% was used as the second glass powder.
  • a conductive aluminum paste composition was obtained in the same manner as in Example 1 except for the following.
  • B 2 O 3 32.00 mol%, SiO 2 : 7.60 mol%, CaO: 35.10 mol%, BaO: 10.00 mol%, SrO: 3.30 mol%, K 2 O: 2
  • a conductive aluminum paste composition was obtained in the same manner as in Example 1, except that borosilicate glass powder (B14) consisting of ZnO: .00 mol% and ZnO: 10.00 mol% was used.
  • Example 12 The second glass powder composition consists of B 2 O 3 : 36.00 mol%, SiO 2 : 10.00 mol%, CaO: 19.00 mol%, BaO: 15.00 mol%, K 2 O: 20.00 mol%.
  • a conductive aluminum paste composition was obtained in the same manner as in Example 4, except that acid glass powder (B16) was used.
  • Example 13 The second glass powder composition consists of B 2 O 3 : 43.50 mol%, SiO 2 : 7.10 mol%, CaO: 23.00 mol%, BaO: 15.00 mol%, K 2 O: 11.40 mol%.
  • a conductive aluminum paste composition was obtained in the same manner as in Example 4, except that acid glass powder (B18) was used.
  • Example 14 The second glass powder composition consists of B 2 O 3 : 48.50 mol%, SiO 2 : 7.50 mol%, CaO: 18.90 mol%, BaO: 3.20 mol%, K 2 O: 21.90 mol%.
  • a conductive aluminum paste composition was obtained in the same manner as in Example 4, except that acid glass powder (B20) was used.
  • Example 15 The second glass powder composition is B 2 O 3 : 43.70 mol%, SiO 2 : 9.90 mol%, CaO: 9.00 mol%, BaO: 4.70 mol%, SrO: 5.30 mol%, K 2 O: A conductive aluminum paste composition was obtained in the same manner as in Example 4, except that borosilicate glass powder (B22) consisting of 3.10 mol% and 24.30 mol% of ZnO was used.
  • Example 16 The second glass powder composition is B 2 O 3 : 40.20 mol%, SiO 2 : 9.50 mol%, CaO: 5.00 mol%, BaO: 5.80 mol%, SrO: 3.30 mol%, K 2 O: A conductive aluminum paste composition was obtained in the same manner as in Example 4, except that borosilicate glass powder (B23) consisting of 28.50 mol% and 7.70 mol% of ZnO was used.
  • B23 borosilicate glass powder
  • the first glass powder composition consists of PbO: 45.00 mol%, SiO 2 : 27.00 mol%, B 2 O 3 : 20.00 mol%, Al 2 O 3 : 2.00 mol%, ZnO: 6.00 mol%.
  • a conductive aluminum paste composition was obtained in the same manner as in Example 8, except that lead-containing glass powder (P16) was used.
  • Comparative example 23 Lead-containing glass powder (P17) whose first glass powder composition is PbO: 45.00 mol%, SiO 2 : 16.00 mol%, B 2 O 3 : 38.00 mol%, Al 2 O 3 : 1.00 mol%.
  • a conductive aluminum paste composition was obtained in the same manner as in Example 8, except that .
  • the second glass powder composition is B 2 O 3 : 40.00 mol%, SiO 2 : 11.00 mol%, CaO: 15.00 mol%, BaO: 20.00 mol%, K 2 O: 4.00 mol%, ZnO:
  • a conductive aluminum paste composition was obtained in the same manner as in Example 4, except that borosilicate glass powder (B17) containing 10.00 mol% was used.
  • the second glass powder composition is B2O3 : 36.10 mol%, SiO2 : 8.70 mol%, CaO: 27.10 mol%, BaO: 8.90 mol%, K2O : 9.80 mol%, ZnO:
  • a conductive aluminum paste composition was obtained in the same manner as in Example 4, except that borosilicate glass powder (B19) containing 9.40 mol % was used.
  • the second glass powder composition is B 2 O 3 : 38.70 mol%, SiO 2 : 9.70 mol%, CaO: 8.80 mol%, BaO: 22.20 mol%, K 2 O: 9.50 mol%, ZnO:
  • a conductive aluminum paste composition was obtained in the same manner as in Example 4, except that borosilicate glass powder (B21) containing 11.10 mol % was used.
  • an oxide (silicon oxide) layer 3 with a thickness of 5 nm A wafer in which a microcrystalline n + silicon layer 4 and a passivation film 5 having a thickness of 200 nm were stacked was prepared.
  • the conductive aluminum paste compositions prepared in Examples and Comparative Examples were printed to a thickness of 20 to 30 ⁇ m, a width of 1 mm, a length of 10 mm, and a printing interval of 1.2 mm and 1.4 mm. , 1.6 mm, 1.8 mm, and 2.0 mm were set in parallel and screen printing was performed.
  • the printed laminate was placed in an infrared belt furnace set at 700° C. and fired at this temperature to form the back electrode 6. As a result, a fired substrate for evaluation was manufactured.
  • the electrical resistance of the obtained fired substrate for evaluation was measured using a resistance measuring device manufactured by Hioki Electric Co., Ltd. (product name: Milliohm HiTESTER HiTESTER 3540), and the back electrode 6 was measured using the TLM (Transmission line method) method.
  • the contact resistance between the microcrystalline n + silicon layer 4 and the microcrystalline n + silicon layer 4 was calculated.
  • the contact resistance at which good ohmic contact can be obtained is 10 m ⁇ cm 2 or less.
  • the conductive aluminum paste composition prepared in Examples and Comparative Examples was printed on the back side of the wafer in a comb pattern at a rate of 0.2 to 0.3 g/cell, and then printed on the light-receiving surface of the wafer.
  • a silver paste for forming finger electrodes was printed, and a back electrode and finger electrodes were formed using an infrared belt furnace set at 800°C. In this way, a solar cell was produced.
  • the paste itself has fire-through properties of the passivation film in forming the back electrode of the TOPCon type solar cell. It was confirmed that it is possible to obtain good ohmic contact without the need to form an LCO and also without forming an alloy layer with the n-type silicon substrate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Sustainable Development (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Conductive Materials (AREA)

Abstract

本発明は、アルミニウム-シリコン合金粉末、有機ビヒクル及びガラス粉末を含有し、下記(1)及び(2)を満たすTOPCon型太陽電池電極用導電性アルミニウムペースト組成物に関する。 (1)前記アルミニウム-シリコン合金粉末のシリコン濃度が30~40質量% (2)前記ガラス粉末は、酸化物モル%表記でPbOを45~71%、B2O3を5~35%、SiO2を0.1~25.0%含有し、且つ前記B2O3がx%、前記SiO2がy%、前記PbOがz%含有されるとした場合の〔(x+y)/z〕の値が0.40~1.00である第一のガラス粉末、及び、酸化物モル%表記でB2O3を35.0~55.0%、SiO2を5.0~10.0%、BaOを1.0~20.0%、CaOを5.0~25.0%、K2Oを3.0~30.0%以下含有し、PbOを実質的に含有しない第二のガラス粉末を含有する

Description

TOPCon型太陽電池電極用導電性アルミニウムペースト組成物及びその焼成物である裏面電極が積層されているTOPCon型太陽電池
 本発明は、TOPCon型太陽電池電極用導電性アルミニウムペースト組成物及びその焼成物である裏面電極が積層されているTOPCon型太陽電池に関する。
 従来、太陽電池の効率、信頼性等を向上する技術の一つとして、TOPCon(Tunnel Oxide Passivated Contact)構造を採用した太陽電池素子が考案されている。以下、本明細書において、当該構造を採用した太陽電池を「TOPCon型太陽電池」と称する。
 TOPCon構造では、ベース基板となるn型シリコン基板と銀、アルミニウム等を用いた裏面電極との間の再結合損失を減らすために、ベース基板と裏面電極との間に、酸化シリコンからなる数nm程度の薄いトンネル酸化物層と、高濃度のリン、ホウ素等をドーピングした半導体層(微結晶nシリコン層)と、Si、Al等からなるパッシベーション膜とが形成されている。この構造では、酸化物層によりトンネル効果が生じることにより、n型シリコン基板と微結晶nシリコン層との界面でのキャリアロスが抑制されることを特徴としている。
 TOPCon型太陽電池において、銀ペーストを用いて裏面電極を形成する場合には、パッシベーション膜に銀ペーストを塗布した後に熱処理することにより、ファイヤースルーによりパッシベーション膜を部分的に貫通して裏面電極を形成することができる。これに対して、アルミニウムペーストを用いて裏面電極を形成する場合には、パッシベーション膜をファイヤースルーできないため、n型シリコン基板とのコンタクト部分に予めレーザー処理等によりn型シリコン基板が露出した開口部(LCO:Laser contact opening)を形成し、開口部に重なるようにアルミニウムペーストを塗布した後に熱処理することにより裏面電極を形成している(特許文献1)。特許文献1では、アルミニウム-シリコン合金粒子と、有機ビヒクルと、ガラス粉末とを含有した導電性アルミニウムペースト組成物を用いる検討がなされている。
 TOPCon型太陽電池以外では、LCOを形成せずに裏面電極を形成できるファイヤースルー性を有するアルミニウムペーストとして、p型シリコン基板向けにアルミニウム粉末と、鉛ガラス粉末と、有機ビヒクルとを含有する裏面電極用ペーストが知られており(特許文献2)、鉛フリーの態様としてはアルミニウム粉末と、鉛フリーのガラス粉末と、有機ビヒクルとを含有する裏面電極用ペーストが知られている(特許文献3)。
特開2021-2460号公報 特開2019-127404号公報 特開2020-198380号公報
 しかしながら、TOPCon型太陽電池においてアルミニウムペーストを用いて裏面電極を形成する場合には、LCO(開口部)を形成し、アルミニウムペーストがLCOに重なるように塗布(印刷)する必要があるため、高いアライメント技術が必要となる上、銀ペーストを用いる場合と比べてLCOを形成する必要がある点でコストダウンの要望に応えにくい。一方、LCOを形成せずに、特許文献1のようなアルミニウムペーストを適用するだけでは、前述の通りアルミニウムペーストの塗膜を焼成する際にパッシベーション膜をファイヤースルー(貫通)できず、微結晶nシリコン層に到達できないため、セルの変換効率が大幅に低下してしまう。
 また、特許文献2、3のようなp型シリコン基板向けのアルミニウムペーストをTOPCon型太陽電池に適用すると、ファイヤースルーできたとしてもn型シリコン基板とアルミニウムとの反応により合金層(アルミニウム-シリコン合金層)が生じるため、形成されたp層と微結晶nシリコン層とがシャントしてしまい、やはりセルの変換効率が大幅に低下してしまう。
 よって、本発明は、TOPCon型太陽電池の裏面電極の形成においてペースト自身がパッシベーション膜のファイヤースルー性を有していてLCOを形成する必要がなく、更にn型シリコン基板と合金層を形成せず良好なオーミックコンタクトを得ることができる導電性アルミニウムペースト組成物を提供することを目的とする。また、その焼成物である裏面電極が積層されているTOPCon型太陽電池を提供することも目的とする。
 本発明者らは上記目的を達成すべく鋭意研究を重ねた結果、特定組成のアルミニウム-シリコン合金粉末とガラス粉末とを含有する導電性アルミニウムペースト組成物を用いることにより上記目的を達成できることを見出し、本発明を完成するに至った。
 すなわち、本発明は、下記のTOPCon型太陽電池電極用導電性アルミニウムペースト組成物及びそれを用いたTOPCon型太陽電池に関する。
1. アルミニウム-シリコン合金粉末と、有機ビヒクルと、ガラス粉末とを含有する導電性アルミニウムペースト組成物であって、
(1)前記アルミニウム-シリコン合金粉末は、シリコン濃度が30質量%以上40質量%以下であり、
(2)前記ガラス粉末は、第一のガラス粉末と第二のガラス粉末とを含有し、
 前記第一のガラス粉末は、酸化物モル%表記でPbOを45%以上71%以下、Bを5%以上35%以下、SiOを0.1%以上25.0%以下含有し、且つ前記Bの含有量をxモル%、前記SiOの含有量をyモル%、前記PbOの含有量をzモル%とし、〔(x+y)/z〕の値が0.40以上1.00以下の範囲であり、
 前記第二のガラス粉末は、酸化物モル%表記でBを35.0%以上55.0%以下、SiOを5.0%以上10.0%以下、BaOを1.0%以上20.0%以下、CaOを5.0%以上25.0%以下、KOを3.0%以上30.0%以下含有し、且つPbOを実質的に含有しない、
ことを特徴とするTOPCon型太陽電池電極用導電性アルミニウムペースト組成物。
2.前記第一のガラス粉末は、酸化物モル%表記でAl及び/又はZnOを合計で1%以上10%以下含有する、上記項1に記載の導電性アルミニウムペースト組成物。
3.前記第二のガラス粉末は、酸化物モル%表記でSrOを1.0%以上10.0%以下含有する、上記項1又は2に記載の導電性アルミニウムペースト組成物。
4.シリコン半導体基板に、上記項1~3のいずれかに記載の導電性アルミニウムペースト組成物の焼成物である裏面電極が積層されているTOPCon型太陽電池。
 本発明の導電性アルミニウムペースト組成物は、特定組成のアルミニウム-シリコン合金粉末とガラス粉末とを含有することにより、TOPCon型太陽電池の裏面電極の形成においてペースト自身がパッシベーション膜のファイヤースルー性を有していてLCOを形成する必要がなく、更にn型シリコン基板と合金層を形成せず良好なオーミックコンタクトを得ることができる。なお、n型シリコン基板と合金層を形成しないことは微結晶nシリコン層に侵食がないことを意味し、良好なオーミックコンタクトを得ることができることは高変換効率の指標として接触抵抗が10mΩ・cm以下であることを意味する。
TOPCon型太陽電池の構造の一例を示す断面模式図である。 実施例及び比較例において、微結晶nシリコン層の表面に導電性アルミニウムペースト組成物をスクリーン印刷した際の印刷幅を示す図である。具体的には、印刷幅が1mm、長さが10mm、印刷間隔が1.2mm、1.4mm、1.6mm、1.8mm及び2.0mmの条件で並列するように設定したことを示している。
 以下、本発明のTOPCon型太陽電池電極用導電性アルミニウムペースト組成物及びそれを用いたTOPCon型太陽電池について詳細に説明する。なお、本明細書において、「~」で示される数値範囲は特に断らない限り「以上、以下」を示す。つまり、「A~B」は、A以上B以下の範囲を示す。
1.TOPCon型太陽電池
 本発明の導電性アルミニウムペースト組成物はTOPCon型太陽電池電極用であるが、導電性アルミニウムペースト組成物がアルミニウム-シリコン合金粉末と、有機ビヒクルと、ガラス粉末とを含有し、特にアルミニウム-シリコン合金粉末とガラス粉末とが所定の特定組成を有する限り、他の要件は公知のTOPCon型太陽電池の要件を適用することができる。
 図1は、TOPCon型太陽電池の構造の一例を示す断面模式図である。図1に示すTOPCon型太陽電池は、ベース基板のn型シリコン半導体基板1の受光面側にp型不純物層2が形成されており、n型シリコン半導体基板1の裏面側に裏面電極6を備え、n型シリコン半導体基板1と裏面電極6との間に極めて薄い酸化物層3と、高濃度にドーパントがドープされた微結晶nシリコン層4とを備える。詳細には、n型シリコン半導体基板1と裏面電極6との間に、酸化物層3がn型シリコン半導体基板1側に、微結晶nシリコン層4が裏面電極6側に備わる。この構造を有することにより、TOPCon型太陽電池は、酸化物層3によりトンネル効果が生じてn型シリコン半導体基板1(nシリコン層)と微結晶nシリコン層4(nシリコン層)との界面でのキャリアロスが抑制できる。
 酸化物層3としては、例えば酸化ケイ素が適用される。酸化物層3の厚さは限定されず、例えば1~10nmとすることができ、3~8nmとすることが好ましい。酸化物層3の厚さが1~10nmであることで、前述のトンネル効果が起こりやすく、キャリアが太陽電池の裏面側へ移動し易くなるので、変換効率の増大がもたらされる。また、酸化物層3の厚さが1~10nmであれば、nシリコン層とnシリコン層との界面でのキャリアロスも抑制され易いので、変換効率の低減が起こりにくい。
 n型シリコン半導体基板1としては、例えば半導体用途又は太陽電池用途で使われるシリコン半導体基板を広く適用することができる。
 本発明のTOPCon型太陽電池では、微結晶nシリコン層4と裏面電極6との間にはパッシベーション膜5が備えられる。本発明の導電性アルミニウムペースト組成物はパッシベーション膜5のファイヤースルー性を有しているため、裏面電極6の形成においてパッシベーション膜5にLCO(開口部)を形成する必要がない。n型シリコン半導体基板1の裏面電極6と逆側の面にはp型不純物層を介してフィンガー電極(図1では図示なし)が形成される。フィンガー電極は、例えば銀やアルミニウム等で形成される。
 裏面電極6は、本発明の導電性アルミニウムペースト組成物によって形成する。詳細は後述するが、本発明の導電性アルミニウムペースト組成物は特定組成のアルミニウム-シリコン合金粉末とガラス粉末とを含有することにより、TOPCon型太陽電池の裏面電極6の形成においてペースト自身がパッシベーション膜5のファイヤースルー性を有していてLCOを形成する必要がなく、更にn型シリコン半導体基板1と合金層を形成せず良好なオーミックコンタクトを得ることができる。また、導電性アルミニウムペースト組成物であることにより、スクリーン印刷法等の公知の印刷法を採用できる点で裏面電極6の焼成前塗膜を簡便に形成することができる。
2.導電性アルミニウムペースト組成物
 本発明の導電性アルミニウムペースト組成物は、TOPCon型太陽電池電極用であり、詳細には裏面電極の形成に使用される。当該ペースト組成物は、アルミニウム-シリコン合金粉末と、有機ビヒクルと、ガラス粉末とを含有し、
(1)前記アルミニウム-シリコン合金粉末は、シリコン濃度が30質量%以上40質量%以下であり、
(2)前記ガラス粉末は、第一のガラス粉末と第二のガラス粉末とを含有し、
 前記第一のガラス粉末は、酸化物モル%表記でPbOを45%以上71%以下、Bを5%以上35%以下、SiOを0.1%以上25.0%以下含有し、且つ前記Bの含有量をxモル%、前記SiOの含有量をyモル%、前記PbOの含有量をzモル%とし、〔(x+y)/z〕の値が0.40以上1.00以下の範囲であり、
 前記第二のガラス粉末は、酸化物モル%表記でBを35.0%以上55.0%以下、SiOを5.0%以上10.0%以下、BaOを1.0%以上20.0%以下、CaOを5.0%以上25.0%以下、KOを3.0%以上30.0%以下含有し、且つPbOを実質的に含有しない、
ことを特徴とする。
 上記特徴を有する本発明の導電性アルミニウムペースト組成物によれば、TOPCon型太陽電池の裏面電極の形成においてペースト自身がパッシベーション膜のファイヤースルー性を有していてLCOを形成する必要がなく、更にn型シリコン基板と合金層を形成せず良好なオーミックコンタクトを得ることができる。なお、n型シリコン基板と合金層を形成しないことは微結晶nシリコン層に侵食がないことを意味し、良好なオーミックコンタクトを得ることができることは高変換効率の指標として接触抵抗が10mΩ・cm以下であることを意味する。
 以下、本発明の導電性アルミニウムペースト組成物の各成分について詳述する。
 <アルミニウム-シリコン合金粉末>
 導電性アルミニウムペースト組成物において、アルミニウム-シリコン合金粉末は導電性をもたらす役割を果たし得る成分である。本発明の導電性アルミニウムペースト組成物では、アルミニウム-シリコン合金粉末としてシリコン濃度が30質量%以上40質量%以下(好ましくは35質量%以上40質量%以下)であるものを用いる。本発明では、導電性成分としてアルミニウム-シリコン合金粉末を用いることにより、銀と比較して電極材料のマイグレーションが生じることがなく短絡のおそれが低減されている。
 シリコン濃度が30質量%以上40質量%以下であることにより、焼成工程において、導電性アルミニウムペースト組成物が微結晶nシリコン層と溶融し難くなり、これにより導電性アルミニウムペースト組成物と微結晶nシリコン層とがアルミニウム-シリコン合金層を形成し難くなる。この結果、キャリアの損失に起因するセルの変換効率低下が抑制される。シリコン濃度が30質量%を下回ると、p層が形成されるので変換効率低下が引き起こされるおそれがある。シリコン濃度が40質量%を超えると抵抗が高くなり且つアルミニウム-シリコン合金粉末の製造が難しくなるおそれがある。よって、本発明ではシリコン濃度が30質量%以上40質量%以下のものを用いる。
 アルミニウム-シリコン合金粉末の粒子の大きさは特に限定されない。例えば、アルミニウム-シリコン合金粉末(粒子)の体積平均粒子径D50は、1~10μmとすることができる。この中でも、体積平均粒子径D50は、5~8μmであることが好ましい。なお、本明細書におけるアルミニウム-シリコン合金粉末の体積平均粒子径D50は、レーザー回折法により測定される値である。
 また、アルミニウム-シリコン合金粉末は、第3成分としてストロンチウムを含んでいてもよい。すなわち、ストロンチウムを含む導電性粉末としては、アルミニウム-シリコン-ストロンチウム(Al-Si-Sr)合金粉末のほか、アルミニウム-シリコン合金粉末とアルミニウム-シリコン-ストロンチウム合金粉末との併用でもよい。
 ストロンチウムを含む導電性粉末に含まれるストロンチウムの量は特に限定されないが、0.01~1質量%とすることができる。導電性粉末にストロンチウムが加わることにより、シリコン濃度が高い場合に焼成中の液相組成量が増し、焼結が促進されて表面抵抗が低下するという効果がある。
<有機ビヒクル>
 本発明の導電性アルミニウムペースト組成物において、有機ビヒクルの種類は特に限定されず、例えば、太陽電池の裏面電極を形成するために用いられる公知の有機ビヒクルを広く適用することができる。有機ビヒクルとして、溶剤に樹脂が溶解した材料を挙げることができる。又は、有機ビヒクルは、溶剤を含まず、樹脂そのものを使用してもよい。
 溶剤の種類は限定的ではなく、例えば、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノブチルエーテルアセテート、ジプロピレングリコールモノメチルエーテル等を挙げることができる。有機ビヒクルに含まれる溶剤は、1種又は2種以上とすることができる。
 樹脂としては、例えば、公知の各種樹脂を挙げることができ、具体的には、エチルセルロース樹脂、ニトロセルロース樹脂、ポリビニールブチラール樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂、キシレン樹脂、アルキッド樹脂、不飽和ポリエステル樹脂、アクリル樹脂、ポリイミド樹脂、フラン樹脂、ウレタン樹脂、イソシアネート化合物、シアネート化合物、ポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、ABS樹脂、ポリメタクリル酸メチル樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリ酢酸ビニル樹脂、ポリビニルアルコール樹脂、ポリアセタール樹脂、ポリカーボネート樹脂、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリフェニレンオキサイド樹脂、ポリスルフォン樹脂、ポリイミド樹脂、ポリエーテルスルフォン樹脂、ポリアリレート樹脂、ポリエーテルエーテルケトン樹脂、ポリ4フッ化エチレン樹脂、シリコン樹脂等を挙げることができる。有機ビヒクルに含まれる樹脂は、1種又は2種以上とすることができる。
 有機ビヒクルは必要に応じて各種添加剤を含むこともできる。添加剤としては、例えば、酸化防止剤、腐食抑制剤、消泡剤、増粘剤、分散剤、タックファイヤー、カップリング剤、静電付与剤、重合禁止剤、チキソトロピー剤、沈降防止剤等を挙げることができる。具体的には、ポリエチレングリコールエステル化合物、ポリエチレングリコールエーテル化合物、ポリオキシエチレンソルビタンエステル化合物、ソルビタンアルキルエステル化合物、脂肪族多価カルボン酸化合物、燐酸エステル化合物、ポリエステル酸のアマイドアミン塩、酸化ポリエチレン系化合物、脂肪酸アマイドワックス、ステアリン酸のアルカリ土類金属塩等を挙げることができる。
 有機ビヒクルに含まれる樹脂、溶剤及び各種添加剤の割合は任意に調整することができ、例えば、公知の有機ビヒクルと同様の成分比とすることができる。
 有機ビヒクルの含有量は特に限定されないが、例えば、良好な塗布性(印刷性)を有するという観点から、前記アルミニウム-シリコン合金粉末100質量部に対して、10質量部以上500質量部以下であることが好ましく、20質量部以上45質量部以下であることがより好ましい。
<ガラス粉末>
 本発明の導電性アルミニウムペースト組成物に含まれるガラス粉末とは、ガラス質のフリット(粉末)である。特に本発明では、ガラス粉末として第一のガラス粉末(鉛含有ガラス)と第二のガラス粉末(実質的に鉛を含有しないホウケイ酸ガラス)とを含有し、
 前記第一のガラス粉末は、酸化物モル%表記でPbOを45%以上71%以下、Bを5%以上35%以下、SiOを0.1%以上25.0%以下含有し、且つ前記Bの含有量をxモル%、前記SiOの含有量をyモル%、前記PbOの含有量をzモル%とし、〔(x+y)/z〕の値が0.40以上1.00以下の範囲であり、
 前記第二のガラス粉末は、酸化物モル%表記でBを35.0%以上55.0%以下、SiOを5.0%以上10.0%以下、BaOを1.0%以上20.0%以下、CaOを5.0%以上25.0%以下、KOを3.0%以上30.0%以下含有し、且つPbOを実質的に含有しない、
特定組成のガラス粉末を採用することを特徴とする。
 本発明では、第一のガラス粉末と第二のガラス粉末の二種類を組み合わせることにより、パッシベーション膜のファイヤースルー性に優れるとともに、n型シリコン半導体基板と合金層(アルミニウム-シリコン合金層)を形成せず(つまり、焼成過程での微結晶nシリコン層への侵食が抑制されている)、良好なオーミックコンタクトを得ることができる。その結果、太陽電池セルの変換効率を高めることができる。
 第一のガラス粉末は、鉛含有ガラスであり、酸化物モル%表記でPbOを45%以上71%以下、Bを5%以上35%以下、SiOを0.1%以上25.0%以下含有し、且つ前記Bの含有量をxモル%、前記SiOの含有量をyモル%、前記PbOの含有量をzモル%とし、〔(x+y)/z〕の値が0.40以上1.00以下の範囲である。
 第一のガラス粉末は、PbOの含有量は50%以上71%以下と設定することができ、60%以上71%以上と設定することができる。Bの含有量は10%以上32%以下と設定することができ、20%以上32%以下と設定することができる。SiOの含有量は1.0%以上23.0%以下と設定することができ、8.0%以上23.0%以下と設定することができる。また、〔(x+y)/z〕の値は0.40以上0.90以下と設定することができ、0.43以上0.86以下と設定することができる。
 第一のガラス粉末は、酸化物モル%表記でAl及び/又はZnOを合計で1%以上10%以下含有してもよい。これらの成分を含有することにより、第一のガラス粉末の耐候性を向上させるとともにペースト粘度を安定化することができる。Alの含有量は、例えば1%以上7%以下と設定することができる。また、ZnOの含有量は、例えば2%以上5%以下と設定することができ、3%以上4%以下と設定することができる。
 第二のガラス粉末は、実質的に鉛を含有しないホウケイ酸ガラスであり、酸化物モル%表記でBを35.0%以上55.0%以下、SiOを5.0%以上10.0%以下、BaOを1.0%以上20.0%以下、CaOを5.0%以上25.0%以下、KOを3.0%以上30.0%以下含有し、且つPbOを実質的に含有しない。
 第二のガラス粉末は、Bの含有量は40.0%以上53.0%以下と設定することができ、41.2%以上45.5%以下と設定することができる。SiOの含有量は6.5%以上9.0%以下と設定することができ、6.9%以上7.6%以下と設定することができる。BaOの含有量は10.0%以上20.0%以下と設定することができ、15.1%以上18.4%以下と設定することができる。CaOの含有量は6.0%以上20.0%以下と設定することができ、6.4%以上19.0%以下と設定することができる。また、KOの含有量は10.0%以上30.0%以下と設定することができ、11.4%以上20.1%以下と設定することができる。なお、第二のガラス粉末は鉛成分(PbO)を実質的に含有しないが、これは成分分析により鉛成分が検出限界未満であるか又は不可避不純物と同視できる含有量であることを意味する。
 第二のガラス粉末は、酸化物モル%表記でSrOを1.0%以上10.0%以下含有してもよい。SrOの含有量は3.0%以上6.0%以下と設定することができる。SrOを含有することにより、第二のガラス粉末の耐候性を向上させるとともにペースト粘度を安定化することができる。また、第二のガラス粉末は、酸化物モル%表記でZnOを0.0%(実質的に含有しない態様を含む)以上25.0%以下含有してもよい。ZnOの含有量は1.0%以上25.0%以下と設定することができ、5.0%以上25.0%以下と設定することができる。第二のガラス粉末にZnOを上記範囲で含有することにより、ガラスの耐候性を上げてペースト粘度を安定化することができる。
 ガラス粉末の含有量は特に限定されないが、例えば、n型シリコン半導体基板に対する密着性と裏面電極の電気抵抗のバランスの観点から、前記アルミニウム-シリコン合金粉末100質量部に対して、第一のガラス粉末と第二のガラス粉末との合計で0.5質量部以上40質量部以下であることが好ましく、4質量部以上15質量部以下であることがより好ましい。また、第一のガラス粉末と第二のガラス粉末との混合比率としては、第二のガラス粉:第二のガラス粉末(質量比)=1:3~3:1の範囲内が好ましい。更に、各ガラス粉末の軟化点は650℃以下であることが好ましく、各ガラス粉末を構成するガラス粒子の体積平均粒子径D50は1~3μmであることが好ましい。
 本発明の導電性アルミニウムペースト組成物は、冒頭で説明したTOPCon型太陽電池の裏面電極用ペースト組成物として有用である。本発明は、導電性アルミニウムペースト組成物の発明に加えて、導電性アルミニウムペースト組成物の焼成物である裏面電極が積層されていることを特徴とするTOPCon型太陽電池の発明も包含する。
 導電性アルミニウムペースト組成物の塗膜を焼成する際の焼成温度は、所望の裏面電極が形成される限り限定的ではないが、焼成温度は700℃以上とすることが好ましい。これにより、導電性アルミニウムペースト組成物と微結晶nシリコン層とが合金層(アルミニウム-シリコン合金層)を形成することを抑制して所望の裏面電極を形成し易くなる。焼成温度の上限は、例えば導電性アルミニウムペースト組成物に含まれるアルミニウム-シリコン合金粉末の融点より低いことが好ましく、この場合、導電性アルミニウムペースト組成物と微結晶nシリコン層とが合金層を更に形成し難くなる。この点から、焼成温度は900℃以下であることが好ましく、850℃以下であることがより好ましく、800℃以下であることが特に好ましい。
 塗膜の焼成時間は、焼成温度に応じて適宜決定できる。例えば1分以上300分以下とすることができ、1分以上5分以下であることが好ましい。焼成は、空気雰囲気、窒素雰囲気のいずれで行ってもよい。焼成方法も特に限定されず、例えば、公知の加熱炉を用いて焼成処理を行うことができる。
 以下に実施例及び比較例を示して本発明を具体的に説明する。但し、本発明は実施例に限定されない。
 実施例1
 ガスアトマイズ法により、アルミニウム-シリコン合金粉末を製造した。アルミニウム-シリコン合金粉末は、シリコン濃度が36質量%、体積平均粒子径D50が6.0μmとなるように製造した。第一のガラス粉末としてPbO:50.00mol%、SiO:23.00mol%、B:20.00mol%、Al:7.00mol%からなる鉛含有ガラス粉末(略号P1)、第二のガラス粉末としてB:45.50mol%、SiO:7.60mol%、CaO:19.00mol%、BaO:15.90mol%、KO:12.00mol%からなるホウケイ酸ガラス粉末(略号B1)を質量比1:1で混合した混合ガラス粉末を準備した。また、有機ビヒクルとしてエチルセルロースがブチルジグリコールに溶解した10質量%濃度の樹脂溶液を準備した。
 次にアルミニウム-シリコン合金粒子100質量部、及び混合ガラス粉末5質量部を、分散装置(ディスパー)を用いて有機ビヒクル30質量部に分散させ、導電性アルミニウムペースト組成物を得た。
 実施例2
 第一のガラス粉末としてPbO:54.40mol%、SiO:12.80mol%、B:23.50mol%、Al:5.70mol%、ZnO:3.60mol%からなる鉛含有ガラス粉末(P2)を使用した以外は、実施例1と同様の方法で導電性アルミニウムペースト組成物を得た。
 実施例3
 第一のガラス粉末組成がPbO:45.00mol%、SiO:15.00mol%、B:30.00mol%、Al:7.00mol%、ZnO:3.00mol%からなる鉛含有ガラス粉末(P3)を使用した以外は、実施例1と同様の方法で導電性アルミニウムペースト組成物を得た。
 実施例4
 第一のガラス粉末としてがPbO:60.00mol%、SiO:14.00mol%、B:22.00mol%、Al:4.00mol%からなる鉛含有ガラス粉末(P4)を使用した以外は、実施例1と同様の方法で導電性アルミニウムペースト組成物を得た。
 実施例5
 第一のガラス粉末としてPbO:63.00mol%、SiO:8.00mol%、B:22.00mol%、Al:3.00mol%、ZnO:4.00mol%からなる鉛含有ガラス粉末(P5)を使用した以外は、実施例1と同様の方法で導電性アルミニウムペースト組成物を得た。
 実施例6
 第一のガラス粉末としてPbO:66.00mol%、SiO:1.00mol%、B:32.00mol%、Al:1.00mol%からなる鉛含有ガラス粉末(P6)を使用した以外は、実施例1と同様の方法で導電性アルミニウムペースト組成物を得た。
 実施例7
 第一のガラス粉末としてPbO:71.00mol%、SiO:16.00mol%、B:13.00mol%からなる鉛含有ガラス粉末(P7)を使用し、第二のガラス粉末としてB:43.70mol%、SiO:7.10mol%、CaO:18.00mol%、BaO:15.10mol%、SrO:4.70mol%、KO:11.40mol%からなるホウケイ酸ガラス粉末(B2)を使用した以外は、実施例1と同様の方法で導電性アルミニウムペースト組成物を得た。
 実施例8
 第二のガラス粉末としてB:52.60mol%、SiO:8.70mol%、CaO:6.40mol%、BaO:18.40mol%、KO:13.90mol%からなるホウケイ酸ガラス粉末(B3)を使用した以外は、実施例1と同様の方法で導電性アルミニウムペースト組成物を得た。
 実施例9
 第二のガラス粉末としてB:41.20mol%、SiO:6.90mol%、CaO:17.30mol%、BaO:14.50mol%、KO:20.10mol%からなるホウケイ酸ガラス粉末(B4)を使用した以外は、実施例5と同様の方法で導電性アルミニウムペースト組成物を得た。
 実施例10
 ガスアトマイズ法により製造した、D50が6.0μm、シリコン濃度が30質量%のアルミニウム-シリコン合金粉末を使用した以外は、実施例3と同様の方法で導電性アルミニウムペースト組成物を得た。
 実施例11
 ガスアトマイズ法により製造した、D50が6.0μm、シリコン濃度が40質量%のアルミニウム-シリコン合金粉末を使用した以外は、実施例3と同様の方法で導電性アルミニウムペースト組成物を得た。
 比較例1
 ガスアトマイズ法により製造した、D50が6.0μmのアルミニウム粉末(シリコン濃度は0質量%)を使用した以外は、実施例1と同様にして導電性アルミニウムペースト組成物を得た。
 比較例2
 ガスアトマイズ法により製造した、D50が6.0μm、シリコン濃度が25質量%のアルミニウム-シリコン合金粉末を使用した以外は、実施例1と同様にして導電性アルミニウムペースト組成物を得た。
 比較例3
 第一のガラス粉末としてPbO:13.00mol%、SiO:5.00mol%、B:28.00mol%、ZnO:54.00mol%からなる鉛含有ガラス粉末(P8)を使用した以外は、実施例1と同様の方法で導電性アルミニウムペースト組成物を得た。
 比較例4
 第一のガラス粉末としてPbO:34.00mol%、SiO:57.00mol%、B:5.00mol%、Al:2.00mol%、ZnO:2.00mol%からなる鉛含有ガラス粉末(P9)を使用した以外は、実施例1と同様の方法で導電性アルミニウムペースト組成物を得た。
 比較例5
 第一のガラス粉末としてPbO:40.00mol%、B:60.00mol%からなる鉛含有ガラス粉末(P10)を使用した以外は、実施例8と同様の方法で導電性アルミニウムペースト組成物を得た。
 比較例6
 第一のガラス粉末としてPbO:47.00mol%、SiO:42.00mol%、B:8.00mol%、Al3:3.00mol%からなる鉛含有ガラス粉末(P11)を使用した以外は、実施例8と同様の方法で導電性アルミニウムペースト組成物を得た。
 比較例7
 第一のガラス粉末としてPbO:54.00mol%、SiO:15.00mol%、B:4.00mol%、Al:6.00mol%、ZnO:21.00mol%からなる鉛含有ガラス粉末(P12)を使用した以外は、実施例1と同様の方法で導電性アルミニウムペースト組成物を得た。
 比較例8
 第一のガラス粉末としてPbO:74.00mol%、SiO:16.00mol%、B:10.00mol%からなる鉛含有ガラス粉末(P13)を使用した以外は、実施例1と同様の方法で導電性アルミニウムペースト組成物を得た。
 比較例9
 第一のガラス粉末としてPbO:76.00mol%、SiO:16.00mol%、B:4.00mol%、Al:4.00mol%からなる鉛含有ガラス粉末(P14)を使用した以外は、実施例8と同様の方法で導電性アルミニウムペースト組成物を得た。
 比較例10
 第一のガラス粉末としてPbO:80.00mol%、B:20.00mol%からなる鉛含有ガラス粉末(P15)を使用した以外は、実施例8と同様の方法で導電性アルミニウムペースト組成物を得た。
 比較例11
 第二のガラス粉末としてB:52.10mol%、SiO:8.50mol%、CaO:21.50mol%、BaO:17.90mol%からなるホウケイ酸ガラス粉末(B5)を使用した以外は、実施例1と同様の方法で導電性アルミニウムペースト組成物を得た。
 比較例12
 第二のガラス粉末としてB:47.40mol%、SiO:7.70mol%、CaO:19.50mol%、BaO:16.30mol%、PbO:9.10mol%からなるホウケイ酸ガラス粉末(B6)を使用した以外は、実施例1と同様の方法で導電性アルミニウムペースト組成物を得た。
 比較例13
 第二のガラス粉末としてB:22.10mol%、SiO:8.60mol%、CaO:11.40mol%、BaO:19.60mol%、KO:6.70mol%、ZnO:31.60mol%からなるホウケイ酸ガラス粉末(B7)を使用した以外は、実施例1と同様の方法で導電性アルミニウムペースト組成物を得た。
 比較例14
 第二のガラス粉末としてB:55.20mol%、SiO:8.80mol%、CaO:5.30mol%、BaO:15.90mol%、KO:9.00mol%、ZnO:5.80mol%からなるホウケイ酸ガラス粉末(B8)を使用した以外は、実施例1と同様の方法で導電性アルミニウムペースト組成物を得た。
 比較例15
 第二のガラス粉末としてB:54.10mol%、SiO:4.50mol%、CaO:6.00mol%、BaO:18.40mol%、SrO:4.80mol%、KO:5.50mol%、ZnO:6.70mol%からなるホウケイ酸ガラス粉末(B9)を使用した以外は、実施例1と同様の方法で導電性アルミニウムペースト組成物を得た。
 比較例16
 第二のガラス粉末としてB:38.90mol%、SiO:30.70mol%、CaO:6.40mol%、BaO:12.80mol%、KO:11.20mol%からなるホウケイ酸ガラス粉末(B10)を使用した以外は、実施例1と同様の方法で導電性アルミニウムペースト組成物を得た。
 比較例17
 第二のガラス粉末としてB:45.50mol%、SiO:8.90mol%、CaO:20.00mol%、BaO:0.40mol%、SrO:4.20mol%、KO:14.50mol%、ZnO:6.50mol%からなるホウケイ酸ガラス粉末(B11)を使用した以外は、実施例1と同様の方法で導電性アルミニウムペースト組成物を得た。
 比較例18
 第二のガラス粉末としてB:43.40mol%、SiO:8.70mol%、CaO:7.90mol%、BaO:30.00mol%、KO:10.00mol%からなるホウケイ酸ガラス粉末(B12)を使用した以外は、実施例1と同様の方法で導電性アルミニウムペースト組成物を得た。
 比較例19
 第二のガラス粉末としてB:45.50mol%、SiO:9.90mol%、BaO:18.40mol%、KO:26.20mol%からなるホウケイ酸ガラス粉末(B13)を使用した以外は、実施例1と同様の方法で導電性アルミニウムペースト組成物を得た。
 比較例20
 第二のガラス粉末としてB:32.00mol%、SiO:7.60mol%、CaO:35.10mol%、BaO:10.00mol%、SrO:3.30mol%、KO:2.00mol%、ZnO:10.00mol%からなるホウケイ酸ガラス粉末(B14)を使用した以外は、実施例1と同様の方法で導電性アルミニウムペースト組成物を得た。
 比較例21
 第二のガラス粉末としてB:39.50mol%、SiO:7.60mol%、CaO:5.50mol%、BaO:9.80mol%、KO:35.60mol%、ZnO:2.09mol%からなるホウケイ酸ガラス粉末(B15)を使用した以外は、実施例1と同様の方法で導電性アルミニウムペースト組成物を得た。
 実施例12
 第二のガラス粉末組成がB:36.00mol%、SiO:10.00mol%、CaO:19.00mol%、BaO:15.00mol%、KO:20.00mol%からなるホウケイ酸ガラス粉末(B16)を使用した以外は、実施例4と同様の方法で導電性アルミニウムペースト組成物を得た。
 実施例13
 第二のガラス粉末組成がB:43.50mol%、SiO:7.10mol%、CaO:23.00mol%、BaO:15.00mol%、KO:11.40mol%からなるホウケイ酸ガラス粉末(B18)を使用した以外は、実施例4と同様の方法で導電性アルミニウムペースト組成物を得た。
 実施例14
 第二のガラス粉末組成がB:48.50mol%、SiO:7.50mol%、CaO:18.90mol%、BaO:3.20mol%、KO:21.90mol%からなるホウケイ酸ガラス粉末(B20)を使用した以外は、実施例4と同様の方法で導電性アルミニウムペースト組成物を得た。
 実施例15
 第二のガラス粉末組成がB:43.70mol%、SiO:9.90mol%、CaO:9.00mol%、BaO:4.70mol%、SrO:5.30mol%、KO:3.10mol%、ZnO:24.30mol%からなるホウケイ酸ガラス粉末(B22)を使用した以外は、実施例4と同様の方法で導電性アルミニウムペースト組成物を得た。
 実施例16
 第二のガラス粉末組成がB:40.20mol%、SiO:9.50mol%、CaO:5.00mol%、BaO:5.80mol%、SrO:3.30mol%、KO:28.50mol%、ZnO:7.70mol%からなるホウケイ酸ガラス粉末(B23)を使用した以外は、実施例4と同様の方法で導電性アルミニウムペースト組成物を得た。
 比較例22
 第一のガラス粉末組成がPbO:45.00mol%、SiO:27.00mol%、B:20.00mol%、Al:2.00mol%、ZnO:6.00mol%からなる鉛含有ガラス粉末(P16)を使用した以外は、実施例8と同様の方法で導電性アルミニウムペースト組成物を得た。
 比較例23
 第一のガラス粉末組成がPbO:45.00mol%、SiO:16.00mol%、B:38.00mol%、Al:1.00mol%からなる鉛含有ガラス粉末(P17)を使用した以外は、実施例8と同様の方法で導電性アルミニウムペースト組成物を得た。
 比較例24
 第二のガラス粉末組成がB:40.00mol%、SiO:11.00mol%、CaO:15.00mol%、BaO:20.00mol%、KO:4.00mol%、ZnO:10.00mol%からなるホウケイ酸ガラス粉末(B17)を使用した以外は、実施例4と同様の方法で導電性アルミニウムペースト組成物を得た。
 比較例25
 第二のガラス粉末組成がB:36.10mol%、SiO:8.70mol%、CaO:27.10mol%、BaO:8.90mol%、KO:9.80mol%、ZnO:9.40mol%からなるホウケイ酸ガラス粉末(B19)を使用した以外は、実施例4と同様の方法で導電性アルミニウムペースト組成物を得た。
 比較例26
 第二のガラス粉末組成がB:38.70mol%、SiO:9.70mol%、CaO:8.80mol%、BaO:22.20mol%、KO:9.50mol%、ZnO:11.10mol%からなるホウケイ酸ガラス粉末(B21)を使用した以外は、実施例4と同様の方法で導電性アルミニウムペースト組成物を得た。
(接触抵抗評価用の焼成基板の作製)
 図1、図2に示す様に、n型シリコン半導体基板1にp型不純物層2を設けた面とは反対側の面に、内側から順に厚さ5nmの酸化物(酸化ケイ素)層3、厚さ200nmの微結晶nシリコン層4及びパッシベーション膜5が積層されたウェハを準備した。このウェハの裏面に、実施例及び比較例で調製した導電性アルミニウムペースト組成物を、印刷後の厚みが20~30μm、幅が1mm、長さが10mm、印刷間隔が1.2mm、1.4mm、1.6mm、1.8mm及び2.0mmの条件で並列するように設定してスクリーン印刷した。次に印刷後の積層体を700℃に設定した赤外ベルト炉に設置し、この温度で焼成することにより裏面電極6の形成を行った。これにより、評価用の焼成基板を製作した。
(接触抵抗の測定及び評価)
 日置電機株式会社製の抵抗測定器(製品名:ミリオームハイテスタHiTESTER 3540)を用いて、得られた評価用の焼成基板の電気抵抗を測定し、TLM(Transmission line method)法により、裏面電極6と微結晶nシリコン層4との接触抵抗を算出した。良好なオーミックコンタクトを得ることができる接触抵抗は10mΩ・cm以下である。
(太陽電池セルの作製)
 前記ウェハの裏面に、実施例及び比較例で調製した導電性アルミニウムペースト組成物を0.2~0.3g/1セルになるように櫛歯パターンに印刷し、次に前記ウェハの受光面にフィンガー電極形成用銀ペーストを印刷し、800℃に設定した赤外ベルト炉を用いて裏面電極及びフィンガー電極を形成した。これにより、太陽電池セルを作製した。
(パッシベーション膜の貫通の有無及び微結晶nシリコン層4への侵食の評価)
 太陽電池セルに形成された裏面電極6を、常温の塩酸水溶液に60分間浸すことで除去した後、光学顕微鏡により観察し、パッシベーション膜5の貫通の有無を確認した。パッシベーション膜を5を貫通している(ファイヤースルーしている)ものを「A」、パッシベーション膜5を貫通していなかったものを「B」と評価した。また、パッシベーション膜5を貫通しているものについては、走査型電子顕微鏡(SEM)により観察し、微結晶nシリコン層4の侵食の有無を確認した。微結晶nシリコン層4を侵食していなかったものを「A」、侵食していたものを「B」として評価した。パッシベーション膜5を貫通していないものは微結晶nシリコン層4の侵食の有無は確認できないため「-」と表記した。
 以上の結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すとおり、本発明所定の特定組成のアルミニウム-シリコン合金粉末とガラス粉末とを含有することにより、TOPCon型太陽電池の裏面電極の形成においてペースト自身がパッシベーション膜のファイヤースルー性を有していてLCOを形成する必要がなく、更にn型シリコン基板と合金層を形成せず良好なオーミックコンタクトを得ることができることが確認された。
1.n型シリコン半導体基板
2.p型不純物層
3.酸化物層
4.微結晶nシリコン層
5.パッシベーション膜
6.導電性アルミニウムペースト組成物の焼成物(裏面電極)

Claims (4)

  1.  アルミニウム-シリコン合金粉末と、有機ビヒクルと、ガラス粉末とを含有する導電性アルミニウムペースト組成物であって、
    (1)前記アルミニウム-シリコン合金粉末は、シリコン濃度が30質量%以上40質量%以下であり、
    (2)前記ガラス粉末は、第一のガラス粉末と第二のガラス粉末とを含有し、
     前記第一のガラス粉末は、酸化物モル%表記でPbOを45%以上71%以下、Bを5%以上35%以下、SiOを0.1%以上25.0%以下含有し、且つ前記Bの含有量をxモル%、前記SiOの含有量をyモル%、前記PbOの含有量をzモル%とし、〔(x+y)/z〕の値が0.40以上1.00以下の範囲であり、
     前記第二のガラス粉末は、酸化物モル%表記でBを35.0%以上55.0%以下、SiOを5.0%以上10.0%以下、BaOを1.0%以上20.0%以下、CaOを5.0%以上25.0%以下、KOを3.0%以上30.0%以下含有し、且つPbOを実質的に含有しない、
    ことを特徴とするTOPCon型太陽電池電極用導電性アルミニウムペースト組成物。
  2.  前記第一のガラス粉末は、酸化物モル%表記でAl及び/又はZnOを合計で1%以上10%以下含有する、請求項1に記載の導電性アルミニウムペースト組成物。
  3.  前記第二のガラス粉末は、酸化物モル%表記でSrOを1.0%以上10.0%以下含有する、請求項1に記載の導電性アルミニウムペースト組成物。
  4.  シリコン半導体基板に、請求項1~3のいずれかに記載の導電性アルミニウムペースト組成物の焼成物である裏面電極が積層されているTOPCon型太陽電池。
PCT/JP2023/011647 2022-03-28 2023-03-23 TOPCon型太陽電池電極用導電性アルミニウムペースト組成物及びその焼成物である裏面電極が積層されているTOPCon型太陽電池 WO2023190084A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-052385 2022-03-28
JP2022052385 2022-03-28

Publications (1)

Publication Number Publication Date
WO2023190084A1 true WO2023190084A1 (ja) 2023-10-05

Family

ID=88202145

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/011647 WO2023190084A1 (ja) 2022-03-28 2023-03-23 TOPCon型太陽電池電極用導電性アルミニウムペースト組成物及びその焼成物である裏面電極が積層されているTOPCon型太陽電池

Country Status (2)

Country Link
TW (1) TW202345171A (ja)
WO (1) WO2023190084A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130042392A (ko) * 2011-10-18 2013-04-26 동우 화인켐 주식회사 알루미늄 페이스트 조성물 및 이를 이용한 태양전지 소자
JP2016213284A (ja) * 2015-05-01 2016-12-15 東洋アルミニウム株式会社 Perc型太陽電池用アルミニウムペースト組成物
JP2019127404A (ja) * 2018-01-23 2019-08-01 Agc株式会社 ガラス、ガラスの製造方法、導電ペーストおよび太陽電池
JP2021002460A (ja) * 2019-06-21 2021-01-07 東洋アルミニウム株式会社 導電性ペースト及びTOPCon型太陽電池の製造方法
CN114203335A (zh) * 2021-11-30 2022-03-18 江苏正能电子科技有限公司 一种适用于N型TOPCon电池的正面铝浆及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130042392A (ko) * 2011-10-18 2013-04-26 동우 화인켐 주식회사 알루미늄 페이스트 조성물 및 이를 이용한 태양전지 소자
JP2016213284A (ja) * 2015-05-01 2016-12-15 東洋アルミニウム株式会社 Perc型太陽電池用アルミニウムペースト組成物
JP2019127404A (ja) * 2018-01-23 2019-08-01 Agc株式会社 ガラス、ガラスの製造方法、導電ペーストおよび太陽電池
JP2021002460A (ja) * 2019-06-21 2021-01-07 東洋アルミニウム株式会社 導電性ペースト及びTOPCon型太陽電池の製造方法
CN114203335A (zh) * 2021-11-30 2022-03-18 江苏正能电子科技有限公司 一种适用于N型TOPCon电池的正面铝浆及其制备方法

Also Published As

Publication number Publication date
TW202345171A (zh) 2023-11-16

Similar Documents

Publication Publication Date Title
KR101226861B1 (ko) 태양전지 전극 형성용 도전성 페이스트
KR100837994B1 (ko) 전도성 조성물 및 반도체 소자의 제조에 사용하는 방법
KR100775733B1 (ko) 반도체 소자의 제조 방법 및 그에 사용되는 전도성 조성물
JP5362946B2 (ja) 半導体デバイスの製造方法、およびそこで使用される導電性組成物
EP2315728B1 (en) Glass compositions used in conductors for photovoltaic cells
KR101765986B1 (ko) 도전성 페이스트
US20090301553A1 (en) Glass compositions used in conductors for photovoltaic cells
JP2011502330A (ja) 鉛フリーの伝導性組成物、および半導体デバイスの製造における使用方法:Mg含有添加剤
JP2011503772A (ja) 伝導性組成物、および半導体デバイスの製造における使用方法:Mg含有添加剤
JP2014032946A (ja) 鉛−バナジウムをベースとする酸化物を含有する厚膜ペースト、および半導体デバイスの製造におけるその使用
JP2011502345A (ja) 伝導性組成物、および半導体デバイスの製造における使用方法:複数の母線
KR20130051422A (ko) 후막 전도성 조성물 및 이의 용도
KR20170129121A (ko) 태양 전지 전극 형성용 도전성 페이스트
JP2005504409A (ja) 銀導体組成物
WO2018221578A1 (ja) 太陽電池用ペースト組成物
WO2023190084A1 (ja) TOPCon型太陽電池電極用導電性アルミニウムペースト組成物及びその焼成物である裏面電極が積層されているTOPCon型太陽電池
JP5540810B2 (ja) 導電性組成物及びそれを用いた太陽電池の製造方法並びに太陽電池
WO2011031726A1 (en) Conductors for photovoltaic cells
JP2023129974A (ja) TOPCon型太陽電池電極用導電性アルミニウムペースト組成物及びその焼成物である電極が積層されているTOPCon型太陽電池
JP7433776B2 (ja) 導電性ペースト組成物及びそれを用いた結晶系シリコン太陽電池セル
TWI778141B (zh) 太陽電池電極形成用導電性糊膏
JP5540811B2 (ja) 導電性組成物及びそれを用いた太陽電池の製造方法並びに太陽電池
JP5293348B2 (ja) 導電性組成物及びそれを用いた太陽電池の製造方法並びに太陽電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23780094

Country of ref document: EP

Kind code of ref document: A1