WO2023189907A1 - Method for manufacturing solar cell module - Google Patents

Method for manufacturing solar cell module Download PDF

Info

Publication number
WO2023189907A1
WO2023189907A1 PCT/JP2023/011132 JP2023011132W WO2023189907A1 WO 2023189907 A1 WO2023189907 A1 WO 2023189907A1 JP 2023011132 W JP2023011132 W JP 2023011132W WO 2023189907 A1 WO2023189907 A1 WO 2023189907A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
module
solar cell
base material
electrode layer
Prior art date
Application number
PCT/JP2023/011132
Other languages
French (fr)
Japanese (ja)
Inventor
淳一 中村
広平 小島
徹 寺下
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Publication of WO2023189907A1 publication Critical patent/WO2023189907A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/043Mechanically stacked PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/40Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising a p-i-n structure, e.g. having a perovskite absorber between p-type and n-type charge transport layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/10Organic photovoltaic [PV] modules; Arrays of single organic PV cells
    • H10K39/12Electrical configurations of PV cells, e.g. series connections or parallel connections
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar cell module manufacturing method.
  • Solar cell modules made by connecting multiple solar cells are widely used.
  • a method for manufacturing a solar cell module a conductive pattern is formed on a substrate using solder paste, and each solar cell is arranged in accordance with this conductive pattern, thereby obtaining a solar cell module in which a plurality of solar cells are connected.
  • a solar cell module manufacturing method has been proposed (for example, see Patent Document 1).
  • the solar cell is rigid as in Patent Document 1, it can be held in the air (above the substrate) relatively easily by, for example, adsorption with a suction pad. Positioning can be performed with high precision.
  • an object of the present invention is to provide a solar cell module manufacturing method that allows flexible submodules to be placed accurately.
  • a solar cell module manufacturing method includes a sheet-like base material and a plurality of sub-modules that are arranged in line on the base material and each perform photoelectric conversion.
  • the manufacturing method includes a step of forming sub-modules each performing photoelectric conversion on a plurality of transparent support substrates, and repeating the step of shifting the position and disposing the sub-modules one by one on the base material.
  • the step of arranging the sub-modules one by one includes the step of placing the sub-modules together with the supporting substrate on the base material with the supporting substrate facing upward;
  • the method includes the steps of cutting an end of the submodule by irradiating the submodule with a laser through the substrate, and removing the support substrate and the end of the submodule.
  • the end of the submodule is overlapped with the end of the previously disposed submodule, and the submodule is placed on the substrate.
  • the step of cutting the end of the module the end that overlaps the end of the previously disposed sub-module may be cut off.
  • the solar cell module manufacturing method described above may further include a step of disposing a connecting member connecting the sub-modules on the base material.
  • the step of forming the submodule includes a step of forming a transparent resin film on one main surface of the support substrate, and a step of laminating a first electrode layer on the resin film. , forming a first separation groove extending in a first direction and cutting the first electrode layer; laminating a power generation layer that performs photoelectric conversion on the first electrode layer; forming a second separation groove extending in the first direction and cutting the power generation layer on a first side in a second direction intersecting the first direction; and laminating a second electrode layer on the power generation layer.
  • the sub-module in the step of placing the sub-module on the base material, the sub-module is arranged such that the end of the sub-module on the first side in the second direction is placed first. It may be layered on top of the .
  • FIG. 1 is a flowchart showing the steps of a solar cell module manufacturing method according to an embodiment of the present invention.
  • 2 is a schematic cross-sectional view showing the configuration of a solar cell module manufactured by the solar cell module manufacturing method of FIG. 1.
  • FIG. 2 is a schematic cross-sectional view showing the configuration of a submodule formed in the submodule forming step of FIG. 1.
  • FIG. 2 is a flowchart showing a detailed procedure of the submodule forming process of FIG. 1.
  • FIG. 2 is a flowchart showing a detailed procedure of the submodule arrangement process of FIG. 1.
  • FIG. FIG. 6 is a schematic cross-sectional view illustrating the submodule cutting process of FIG. 5.
  • FIG. 1 is a flowchart showing the steps of a solar cell module manufacturing method according to an embodiment of the present invention.
  • the method for manufacturing a solar cell module according to an embodiment of the present invention shown in FIG. This is a method of manufacturing a solar cell module 1 including a plurality of sub-modules 20 that perform the following steps.
  • the solar cell module manufacturing method of the present embodiment includes a step of forming each submodule 20 on a plurality of transparent support substrates S (step S1: submodule forming step), and a step of shifting the position.
  • step S1 submodule forming step
  • step S2 sub-module arrangement step
  • step S3 submodule arrangement confirmation step.
  • the sub-module arrangement process of step S2 is repeated until the required number of sub-modules 20 have been arranged.
  • the solar cell module 1 manufactured by the solar cell module manufacturing method of FIG. A plurality of connection members 30 are provided between the material 10 and the submodules 20 and connect the adjacent submodules 20.
  • the solar cell module 1 converts the energy of light incident from the side opposite to the base material 10 into electric power.
  • the solar cell module 1 may be a submodule that is incorporated into a higher-level module, such as a so-called string in which submodules 20 are connected in a row.
  • the base material 10 is a structural member that supports a plurality of submodules 20.
  • a resin sheet can be used as the base material 10.
  • the sub-modules 20 are formed in a band shape extending in a first direction (depth direction in the paper), are arranged side by side in a second direction (horizontal direction in the paper) intersecting the first direction, and are electrically connected in series. Each cell has a plurality of subcells C.
  • the sub-module 20 has an end on the first side in the second direction (left side in FIG. 2) and a light-receiving surface side (upper side in the paper) of the end on the second side in the second direction (right side in FIG. 2) of the adjacent sub-module 20. are placed on top of each other.
  • each component is increased for ease of understanding, so it appears that the sub-module 20 is inclined with respect to the base material 10, but the actual thickness of each layer is very small, so the sub-module 20 is The module 20 is arranged in close contact with and parallel to the base material 10.
  • the sub-module 20 has a transparent resin film 21, a first electrode layer 22, a power generation layer 23, and a second electrode layer 24 in this order from the light-receiving surface side.
  • the sub-module 20 is constructed by cutting a portion of these layers with a plurality of first separation grooves 25, a plurality of second separation grooves 26, and a plurality of third separation grooves 27 extending in the first direction, respectively.
  • a plurality of subcells C formed in a band shape extending in the direction and lined up in a second direction intersecting the first direction, and a plurality of intermediate connecting portions each formed between the subcells C and electrically connecting adjacent subcells C.
  • the submodule 20 has three subcells C in FIG. 2 shown in a simplified manner, it may actually have a larger number of subcells C.
  • the first separation groove 25, the second separation groove 26, and the third separation groove 27 are formed at equal pitches so that they approach the first side in this order from the second side in the second direction.
  • the first separation groove 25 cuts the first electrode layer 22, the second separation groove 26 cuts the power generation layer 23, and the third separation groove 27 cuts the power generation layer 23 and the second electrode layer 24. Cut 24.
  • the first separation groove 25 defines the edge of the subcell C on the first side in the second direction
  • the third separation groove defines the edge of the effective area of the subcell C on the second side in the second direction.
  • a second isolation trench 26 providing electrical connection between the subcells C by virtue of which a second electrode layer 24 extends therein.
  • the range in which the first electrode layer 22, the power generation layer 23, and the second electrode layer 24 all exist continuously is one subcell C that integrally generates electric power
  • the first separation between the subcells C is An intermediate connection portion M is a region where the groove 25, the second separation groove 26, and the third separation groove 27 are formed close to each other.
  • the invalid region R may not be present, but when cutting the end of the sub-module 20 on the first side in the second direction, the end subcell C on the first side in the second direction may be accidentally cut. It may be provided as a margin to prevent breakage.
  • the external connection area E is a relay for electrically connecting the first electrode layer 22 of the subcell C at the end on the second side in the second direction to the adjacent submodule 20 or the external circuit of the solar cell module 1.
  • a second electrode layer 24 is provided as a terminal.
  • connection member 30 connects the second electrode layer 24 of the subcell C at the end of the first side in the second direction of the submodule 20 that is stacked on the light receiving surface side, and the external connection area of the submodule 20 that is stacked on the side opposite to the light receiving surface. and the second electrode layer 24 of E are connected to each other.
  • the connection member 30 is made of, for example, a conductive adhesive.
  • step S1 the submodule forming step in step S1 of the solar cell module manufacturing method in FIG. formation step), a step of laminating the first electrode layer 22 on the resin film 21 (step S12: first electrode layer lamination step), and a first separation groove 25 extending in the first direction and cutting the first electrode layer 22.
  • step S13 first separation groove forming step
  • step S14 power generation layer lamination step
  • step S15 second separation groove formation step
  • step S16 second electrode layer lamination step
  • step S17 third separation groove forming step
  • a resin film 21 made of a resin such as polyimide, polyamide, polyethylene terephthalate, etc. is laminated on a support substrate S such as a glass plate.
  • the resin film 21 is a structural member that ensures the strength of the solar cell module 1.
  • the resin film 21 is preferably laminated by a method of producing polyimide on the support substrate S, including, for example, a step of applying a polyamic acid solution and a step of heating the coating film of the polyamic acid solution. Thereby, a thin and smooth resin film 21 can be formed.
  • the lower limit of the thickness of the resin film 21 is preferably 3 ⁇ m, more preferably 10 ⁇ m.
  • the upper limit of the thickness of the resin film 21 is preferably 50 ⁇ m, more preferably 30 ⁇ m.
  • the first electrode layer 22 is laminated on the resin film 21 by a method such as a sputtering method or a vacuum evaporation method.
  • the first electrode layer 22 collects the first charge generated in the power generation layer 23 and outputs it to the adjacent subcell C or to the outside.
  • the first electrode layer 22 is formed from transparent conductive oxide (TCO).
  • TCO transparent conductive oxide
  • indium oxide, tin oxide, zinc oxide, titanium oxide, and composite oxides thereof can be used.
  • indium-based composite oxides containing indium oxide as a main component are preferred. Indium oxide is particularly preferred from the viewpoint of high conductivity and transparency.
  • dopants to the indium oxide to ensure reliability or higher conductivity.
  • the dopant include Sn, W, Zn, Ti, Ce, Zr, Mo, Al, Ga, Ge, As, Si, and S.
  • ITO Indium Tin Oxide
  • ITO Indium Tin Oxide
  • the lower limit of the thickness of the first electrode layer 22 is preferably 5 nm, more preferably 10 nm.
  • the upper limit of the thickness of the first electrode layer 22 is preferably 100 nm, more preferably 50 nm.
  • the first separation groove 25 is formed by removing the first electrode layer 22 in a plurality of parallel lines extending in the first direction in plan view using laser ablation.
  • the laser for irradiation for example, a THG (third harmonic) laser or the like can be used.
  • the intensity of the laser beam used to form the first separation grooves 25 is set so that the first electrode layer 22 can be reliably insulated between the subcells C and damage to the resin film 21 can be minimized.
  • the width of the first separation groove 25 is preferably 10 ⁇ m or more and 200 ⁇ m or less, more preferably 20 ⁇ m or more and 100 ⁇ m or less, considering that it is formed by laser ablation. This makes it possible to ensure reliable separation between the solar cell subcells 2 and to ensure the effective area of the solar cell subcells 2.
  • a power generation layer 23 that performs photoelectric conversion is laminated on the first electrode layer 22.
  • the power generation layer 23 may have a multilayer structure including a first charge transport layer, a photoelectric conversion layer, and a second charge transport layer in this order.
  • the power generation layer 23 may have further functional layers.
  • the first charge transport layer is a layer that allows charges of the first polarity generated in the photoelectric conversion layer to pass through, and in this embodiment, a hole transport layer (HTL) that transmits holes to the first electrode layer 22 is intended. has been done.
  • the first charge transport layer which is a hole transport layer, is made of a metal oxide such as nickel oxide (NiO) or copper oxide (Cu 2 O), such as PTAA (Poly(bis(4-phenyl)(2,4,6 -trimethylphenyl)amine)), Spiro-MeOTAD, etc. Further, the first charge transport layer may be formed from self-assembled monolayers (SAM).
  • the first charge transport layer made of a self-assembled monolayer is, for example, 2PACz ([2-(9H-Carbazol-9-yl)ethyl]phosphonic Acid), MeO-2PACz ([2-(3,6-Dimethoxy- 9H-carbazol-9-yl)ethyl]phosphonic Acid), Me-4PACz ([4-(3,6-Dimethyl-9H-carbazol-9-yl)butyl]phosphonic Acid), and the like.
  • the first charge transport layer may be formed by, for example, a sputtering method, a vacuum evaporation method, or the like. Further, when the first charge transport layer contains an organic substance, the first charge transport layer may be formed by, for example, applying a solution of the organic substance and drying the solution.
  • the first charge transport layer consisting of a self-assembled monolayer is formed by coating and drying a monolayer-forming material solution prepared by dissolving the self-assembled monolayer-forming material in an organic solvent such as ethanol or isopropanol. can be done.
  • the monomolecular film forming material solution is preferably applied by, for example, a spin coating method.
  • the thickness of the first charge transport layer can vary greatly depending on its material, the structure of adjacent layers, etc., but can be, for example, 1 nm or more and 200 nm or less, and particularly when it is a self-assembled monolayer, the thickness of the material molecules It can be the thickness.
  • the photoelectric conversion layer absorbs incident light and generates photocarriers (electrons and holes).
  • the photoelectric conversion layer may be formed from a material containing a perovskite compound.
  • the perovskite compound contained in the photoelectric conversion layer includes an organic atom A containing at least one of a monovalent organic ammonium ion and an amidinium ion, a metal atom B generating a divalent metal ion, and an iodide ion I.
  • a halogen atom X containing at least one of bromide ion Br, chloride ion Cl, and fluoride ion F, and represented by ABX 3 can be used.
  • the organic atom A is preferably methylammonium MA (CH 3 NH 3 )
  • the metal atom B is preferably lead Pb
  • the halogen atom X is iodine. At least one of compound I, bromide ion Br and chloride ion Cl is preferred.
  • preferred perovskite compounds include methylammonium lead halide MAPbX 3 (CH 3 NH 3 PbX 3 ), MAPbI 3 , MAPbBr 3 , MAPbCl 3 and the like.
  • the halogen atom X may include a plurality of types. Examples of perovskite compounds containing iodide I and other halogen atoms X include methylammonium lead iodide MAPbI y X (3-y) (CH 3 NH 3 PbI y X (3-y) ), MAPbI y Br ( 3-y) , MAPbI y Cl (3-y) , etc. (y is any positive integer).
  • the photoelectric conversion layer includes a lead halide (PbX 2 ) material and methyl halide. It can be formed by sequentially depositing ammonium (MAX) materials and reacting thin films of these materials at reaction temperatures.
  • MAPbI y X methylammonium lead iodide
  • MAI methylammonium iodide
  • the photoelectric conversion layer can also be formed, for example, by a sol-gel method in which a perovskite compound is synthesized within a liquid phase coating film, or a coating method in which a solution containing a pre-synthesized perovskite compound is applied.
  • the thickness of the photoelectric conversion layer depends on the forming material, etc., it is preferably 100 nm or more and 1000 nm or less in order to increase the light absorption rate and reduce the migration distance of the generated charges.
  • the second charge transport layer is a layer that allows charges of the second polarity generated in the photoelectric conversion layer to pass through, and in this embodiment, an electron transport layer (ETL) that transmits electrons to the second electrode layer 24 is contemplated.
  • ETL electron transport layer
  • main material of the second charge transport layer which is an electron transport layer, include PTAA (Poly(bis(4-phenyl)(2,4,6-trimethylphenyl)amine)), Spiro-MeOTAD, fullerene, etc. .
  • fullerenes include C60, C70, their hydrides, oxides, metal complexes, derivatives with added alkyl groups, etc., such as PCBM ([6,6]-Phenyl-C61-Butyric Acid Methyl Ester). It will be done.
  • PCBM [6,6]-Phenyl-C61-Butyric Acid Methyl Ester
  • the second charge transport layer may have a multilayer structure.
  • the second charge transport layer can be formed, for example, by a sol-gel method, a coating method, or the like.
  • the thickness of the second charge transport layer may vary greatly depending on its material, the structure of adjacent layers, etc., but may be, for example, 3 nm or more and 30 nm or less.
  • the power generation layer lamination process includes a coating process, it is difficult to uniformly form the power generation layer 23 all the way to the edge of the support substrate S. Since the power generation layer 23 having a photoelectric conversion layer containing a perovskite compound does not have a large voltage, it is desirable to reduce the width of the subcell C in the second direction. Therefore, if there is a defect in the subcell C at the end in the second direction due to poor coating, current rate limiting may occur in that subcell C, so it is recommended not to form the subcell C at both ends of the support substrate S in the second direction. desirable.
  • an invalid region R having a constant width is formed at the end of the sub-module 20 on the first side in the second direction, and ultimately, as will be described later, the invalid region R is formed so that the width of the invalid region R is made as small as possible. At least a portion of R is excised.
  • the external connection area E formed at the end of the second side of the submodule 20 in the second direction requires a certain width for electrical connection of the submodule 20, and the power generation layer 23 is free from defects. Since there is no problem even if it exists, it is used without being removed from the submodule 20.
  • a plurality of second separation grooves 26 are formed by removing the power generation layer 23 in a plurality of parallel lines by laser ablation. Thereby, the second electrode layer 24 extends into the second separation groove 26 and is connected to the first electrode layer 22 .
  • the width of the second separation groove 26 may be the same as the width of the first separation groove 25, but in order to ensure the connection of the second electrode layer 24 to the first electrode layer 22, the width of the first separation groove 25 is May be larger than .
  • the second electrode layer 24 is formed by laminating metal materials by a method such as sputtering or plating, or by coating and baking a conductive composition containing metal particles.
  • the second electrode layer 24 is an electrode that makes a pair with the first electrode layer 22.
  • the second electrode layer 24 containing metal can improve photoelectric conversion efficiency by reflecting the light that has passed through the power generation layer 23 and making it enter the power generation layer 23 again.
  • the lower limit of the thickness of the second electrode layer 24 is preferably 10 nm, more preferably 20 nm.
  • the upper limit of the thickness of the second electrode layer 24 is preferably 200 nm, more preferably 100 nm.
  • the thickness of the second electrode layer 24 By setting the thickness of the second electrode layer 24 to be equal to or greater than the lower limit, current collection resistance can be made sufficiently small. Further, by setting the thickness of the second electrode layer 24 to be less than or equal to the above upper limit, the third separation groove 27 can be easily formed.
  • a plurality of third separation grooves 27 are formed by removing the power generation layer 23 and the second electrode layer 24 in a plurality of parallel lines by laser ablation.
  • the width of the third separation groove 27 may be the same as the width of the first separation groove 25.
  • the submodule disposing step in step S2 of the solar cell module manufacturing method in FIG. a step of placing the sub-module 20 together with the supporting substrate S on the base material 10 with the supporting substrate S facing upward (step S22: sub-module mounting step), and a step of applying a laser to the sub-module 20 through the supporting substrate S.
  • a step of cutting the end portion of the sub-module 20 by irradiation (step S23: sub-module cutting step), a step of removing the end portion of the support substrate S and the sub-module 20 (step S24: support substrate removal step), including.
  • the connecting member 30 is disposed on the base material 10 at a position corresponding to the submodule 20 to be disposed next. That is, when disposing the first sub-module 20, the connection members 30 are disposed at positions corresponding to the sub-cell C and the external connection area E at the end on the first side in the second direction, and the subsequent sub-modules 20 are When disposing, the connection member is disposed at a position corresponding to the external connection area E.
  • the subcell C at the end on the first side in the second direction and the external connection area E on the second side in the second direction are placed on the connection member 30 with the support substrate S facing upward.
  • the subcell C at the end of the first side in two directions of the newly placed submodule 20 is placed so as to overlap the external connection area E of the previously placed submodule 20, light can be received in the solar cell module 1.
  • the photoelectric conversion efficiency can be improved by increasing the area of the subcell C.
  • step S23 In the sub-module cutting process of step S23, as shown in FIG.
  • the end portion of the sub-module 20 on the first side in the second direction that is, the end portion of the side overlapped with the lower sub-module 20 is cut.
  • the upper sub-module 20 can be cut relatively easily while preventing damage to the lower sub-module 20.
  • the support substrate removal step of step S24 the support substrate S is removed together with the separated end of the sub-module 20 on the first side in the second direction. Thereby, the ineffective area R of the sub-module 20 can be reduced, the effective area of the solar cell module 1 can be increased, and the photoelectric conversion efficiency can be improved.
  • the submodule 20 is supported by the support substrate S and disposed on the base material 10 and the connection member 30, the flexible submodule 20 is flattened. Since the sub-module 20 can be positioned while being held in this state, the sub-module 20 can be easily and accurately disposed.
  • the present invention is not limited to the embodiments described above, and various changes and modifications can be made.
  • all connection members corresponding to all submodules are arranged on the base material, the submodules are placed, and the ends of the submodules are cut. And the removal of the supporting substrate may be repeated as many times as necessary.
  • only the portion of the submodule to be removed is overlapped with the previously placed submodule, and finally a solar cell module in which the submodules are arranged in a plane without overlapping is manufactured. You may.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Sustainable Development (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

A method for manufacturing a solar cell module according to one aspect of the present invention, with which it is possible to accurately arrange flexible sub-modules (20), is a method for manufacturing a solar cell module equipped with a sheet-shaped base material (10) and a plurality of sub-modules (20) that each perform photoelectric conversion and are provided side by side on the base material (10), the method comprising: a step for forming the respective sub-modules (20) on a plurality of transparent support substrates (S); and a step for arranging one at a time, on the base material (10), the sub-modules (20) that perform photoelectric conversion, this step being repeatedly performed while shifting the arrangement position, wherein the step for arranging the sub-modules (20) one at a time includes a step for putting the support substrate (S) on top and placing the sub-module (20) on the base material (10) for each support substrate (S), a step for cutting off an end of the sub-module (20) by irradiating the sub-module (20) with a laser (L) through the support substrate (S), and a step for removing the support substrate (S) and the end of the sub-module (20).

Description

太陽電池モジュール製造方法Solar module manufacturing method
 本発明は、太陽電池モジュール製造方法に関する。 The present invention relates to a solar cell module manufacturing method.
 複数の太陽電池セルを接続してなる太陽電池モジュールが広く利用されている。太陽電池モジュールの製造方法として、基板の上にソルダペーストで導電パターンを形成し、この導電パターンに合わせて各太陽電池セルを配置することによって、複数の太陽電池セルを接続した太陽電池モジュールを得る太陽電池モジュール製造方法が提案されている(例えば、特許文献1参照)。 Solar cell modules made by connecting multiple solar cells are widely used. As a method for manufacturing a solar cell module, a conductive pattern is formed on a substrate using solder paste, and each solar cell is arranged in accordance with this conductive pattern, thereby obtaining a solar cell module in which a plurality of solar cells are connected. A solar cell module manufacturing method has been proposed (for example, see Patent Document 1).
特開2012-502465号公報Japanese Patent Application Publication No. 2012-502465
 ソルダペーストは、一度太陽電池セルに接触すると太陽電池セルに付着してしまうため、太陽電池セルの位置決めをやり直すことができない。特許文献1のように剛性を有する太陽電池セルであれば、例えば吸着パッドで吸着するような方法で比較的容易に空中(基板の上方)に保持することができるので、基板に対して比較的精度よく位置決めを行うことができる。 Once the solder paste comes into contact with the solar cell, it will adhere to the solar cell, making it impossible to reposition the solar cell. If the solar cell is rigid as in Patent Document 1, it can be held in the air (above the substrate) relatively easily by, for example, adsorption with a suction pad. Positioning can be performed with high precision.
 可撓性を有するシートの間に可撓性を有する複数の太陽電池サブモジュールを挟み込んで封止することにより、可撓性を有する太陽電池モジュールを形成することも検討される。しかしながら、可撓性に優れる太陽電池を空中に保持してソルダペースト等に対して位置決めすることは容易ではない。そこで、本発明は、可撓性を有するサブモジュールを正確に配置できる太陽電池モジュール製造方法を提供することを課題とする。 It is also being considered to form a flexible solar cell module by sandwiching and sealing a plurality of flexible solar cell submodules between flexible sheets. However, it is not easy to hold a highly flexible solar cell in the air and position it relative to solder paste or the like. Therefore, an object of the present invention is to provide a solar cell module manufacturing method that allows flexible submodules to be placed accurately.
 本発明の一態様に係る太陽電池モジュール製造方法は、シート状の基材と、前記基材の上に並んで配設され、それぞれ光電変換を行う複数のサブモジュールと、を備える太陽電池モジュールの製造方法であって、複数の透明な支持基板の上にそれぞれ光電変換を行うサブモジュールを形成する工程と、位置をずらして繰り返し行われ、前記基材の上に前記サブモジュールを1枚ずつ配設する工程と、を備え、前記サブモジュールを1枚ずつ配設する工程は、前記サブモジュールを前記支持基板ごと前記支持基板を上にして前記基材の上に載置する工程と、前記支持基板を通して前記サブモジュールにレーザを照射することにより前記サブモジュールの端部を切断する工程と、前記支持基板及び前記サブモジュールの端部を除去する工程と、を含む。 A solar cell module manufacturing method according to one aspect of the present invention includes a sheet-like base material and a plurality of sub-modules that are arranged in line on the base material and each perform photoelectric conversion. The manufacturing method includes a step of forming sub-modules each performing photoelectric conversion on a plurality of transparent support substrates, and repeating the step of shifting the position and disposing the sub-modules one by one on the base material. The step of arranging the sub-modules one by one includes the step of placing the sub-modules together with the supporting substrate on the base material with the supporting substrate facing upward; The method includes the steps of cutting an end of the submodule by irradiating the submodule with a laser through the substrate, and removing the support substrate and the end of the submodule.
 上述の太陽電池モジュール製造方法では、前記サブモジュールを前記基材の上に載置する工程において、前記サブモジュールの端部を先に配設されている前記サブモジュールの端部に重ね、前記サブモジュールの端部を切断する工程において、先に配設されている前記サブモジュールの端部に重ねられている側の端部を切除してもよい。 In the above solar cell module manufacturing method, in the step of placing the submodule on the base material, the end of the submodule is overlapped with the end of the previously disposed submodule, and the submodule is placed on the substrate. In the step of cutting the end of the module, the end that overlaps the end of the previously disposed sub-module may be cut off.
 上述の太陽電池モジュール製造方法は、前記基材の上に前記サブモジュールの間を接続する接続部材を配設する工程をさらに備えてもよい。 The solar cell module manufacturing method described above may further include a step of disposing a connecting member connecting the sub-modules on the base material.
 上述の太陽電池モジュール製造方法において、前記サブモジュールを形成する工程は、前記支持基板の一方の主面に透明な樹脂フィルムを形成する工程と、前記樹脂フィルムに第1電極層を積層する工程と、第1方向に延び、前記第1電極層を切断する第1分離溝を形成する工程と、前記第1電極層に光電変換を行う発電層を積層する工程と、前記第1分離溝の前記第1方向と交差する第2方向第1の側に、前記第1方向に延び、前記発電層を切断する第2分離溝を形成する工程と、前記発電層に第2電極層を積層する工程と前記第2分離溝の前記第2方向第1の側に、前記第1方向に延び、前記発電層及び前記第2電極層のうち少なくとも前記第2電極層を切断する第3分離溝を形成する工程と、を有し、前記サブモジュールを前記基材の上に載置する工程において、前記サブモジュールの前記第2方向第1の側の端部を先に配設されている前記サブモジュールの上に重ねてもよい。 In the solar cell module manufacturing method described above, the step of forming the submodule includes a step of forming a transparent resin film on one main surface of the support substrate, and a step of laminating a first electrode layer on the resin film. , forming a first separation groove extending in a first direction and cutting the first electrode layer; laminating a power generation layer that performs photoelectric conversion on the first electrode layer; forming a second separation groove extending in the first direction and cutting the power generation layer on a first side in a second direction intersecting the first direction; and laminating a second electrode layer on the power generation layer. and a third separation groove extending in the first direction and cutting at least the second electrode layer of the power generation layer and the second electrode layer is formed on the first side of the second separation groove in the second direction. and, in the step of placing the sub-module on the base material, the sub-module is arranged such that the end of the sub-module on the first side in the second direction is placed first. It may be layered on top of the .
 本発明に係る太陽電池モジュール製造方法によれば、可撓性を有するサブモジュールを正確に配置できる。 According to the solar cell module manufacturing method according to the present invention, flexible submodules can be accurately arranged.
本発明の一実施形態に係る太陽電池モジュール製造方法の手順を示すフローチャートである。1 is a flowchart showing the steps of a solar cell module manufacturing method according to an embodiment of the present invention. 図1の太陽電池モジュール製造方法によって製造される太陽電池モジュールの構成を示す模式断面図である。2 is a schematic cross-sectional view showing the configuration of a solar cell module manufactured by the solar cell module manufacturing method of FIG. 1. FIG. 図1のサブモジュール形成工程で形成されるサブモジュールの構成を示す模式断面図である。FIG. 2 is a schematic cross-sectional view showing the configuration of a submodule formed in the submodule forming step of FIG. 1. FIG. 図1のサブモジュール形成工程の詳細な手順を示すフローチャートである。2 is a flowchart showing a detailed procedure of the submodule forming process of FIG. 1. FIG. 図1のサブモジュール配設工程の詳細な手順を示すフローチャートである。2 is a flowchart showing a detailed procedure of the submodule arrangement process of FIG. 1. FIG. 図5のサブモジュール切断工程を説明する模式断面図である。FIG. 6 is a schematic cross-sectional view illustrating the submodule cutting process of FIG. 5. FIG.
 以下、本発明の実施形態について、図面を参照しながら説明する。なお、図面における種々部材の寸法は、便宜上、見やすいように調整されている。図1は、本発明の一実施形態に係る太陽電池モジュール製造方法の手順を示すフローチャートである。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the dimensions of various members in the drawings have been adjusted for convenience and ease of viewing. FIG. 1 is a flowchart showing the steps of a solar cell module manufacturing method according to an embodiment of the present invention.
 図1に示す本発明の一実施形態に係る太陽電池モジュール製造方法は、図2に示すように、シート状の基材10と、基材10の上に並んで配設され、それぞれ光電変換を行う複数のサブモジュール20と、を備える太陽電池モジュール1を製造する方法である。本実施形態の太陽電池モジュール製造方法は、図3に示すように、複数の透明な支持基板Sの上にそれぞれサブモジュール20を形成する工程(ステップS1:サブモジュール形成工程)と、位置をずらして繰り返し行われ、基材の上に光電変換を行うサブモジュール20を1枚ずつ配設する工程(ステップS2:サブモジュール配設工程)と、必要な数のサブモジュール20の配設が完了したか否かを確認する工程(ステップS3:サブモジュール配設確認工程)と、を備える。図1の太陽電池モジュール製造方法は、必要な数のサブモジュール20を配設し終えるまで、ステップS2のサブモジュール配設工程を繰り返す。 As shown in FIG. 2, the method for manufacturing a solar cell module according to an embodiment of the present invention shown in FIG. This is a method of manufacturing a solar cell module 1 including a plurality of sub-modules 20 that perform the following steps. As shown in FIG. 3, the solar cell module manufacturing method of the present embodiment includes a step of forming each submodule 20 on a plurality of transparent support substrates S (step S1: submodule forming step), and a step of shifting the position. The step of arranging the sub-modules 20 that perform photoelectric conversion on the base material one by one (step S2: sub-module arrangement step) and the arrangement of the required number of sub-modules 20 are completed. (step S3: submodule arrangement confirmation step). In the solar cell module manufacturing method of FIG. 1, the sub-module arrangement process of step S2 is repeated until the required number of sub-modules 20 have been arranged.
 図1の太陽電池モジュール製造方法によって製造される太陽電池モジュール1は、図2に示すように、基材10と、基材10の上に並んで配設される複数のサブモジュール20と、基材10とサブモジュール20の間に配設され、隣接するサブモジュール20の間を接続する複数の接続部材30と、を備える。太陽電池モジュール1は、基材10と反対側から入射する光のエネルギを電力に変換する。太陽電池モジュール1は、例えばサブモジュール20を一列に接続したいわゆるストリングのように、より上位のモジュールに組み込まれるサブモジュールであってもよい。 As shown in FIG. 2, the solar cell module 1 manufactured by the solar cell module manufacturing method of FIG. A plurality of connection members 30 are provided between the material 10 and the submodules 20 and connect the adjacent submodules 20. The solar cell module 1 converts the energy of light incident from the side opposite to the base material 10 into electric power. The solar cell module 1 may be a submodule that is incorporated into a higher-level module, such as a so-called string in which submodules 20 are connected in a row.
 基材10は、複数のサブモジュール20を支持する構造部材である。基材10としては、例えば樹脂製シートを用いることができる。 The base material 10 is a structural member that supports a plurality of submodules 20. As the base material 10, for example, a resin sheet can be used.
 サブモジュール20は、第1方向(紙面奥行方向)に延在する帯状に形成され、第1方向と交差する第2方向(紙面左右方向)に並んで配設され、電気的に直列に接続される複数のサブセルCをそれぞれ有する。サブモジュール20は、第2方向第1の側(図2左側)の端部を隣接するサブモジュール20の第2方向第2の側(図2右側)の端部の受光面側(紙面上側)に重ねて配置される。なお、図では分かりやすいよう各構成要素の厚みを大きくしているため、サブモジュール20が基材10に対して傾斜しているように見えるが、実際の各層の厚みは非常に小さいため、サブモジュール20は基材10に密着して平行に配置される。 The sub-modules 20 are formed in a band shape extending in a first direction (depth direction in the paper), are arranged side by side in a second direction (horizontal direction in the paper) intersecting the first direction, and are electrically connected in series. Each cell has a plurality of subcells C. The sub-module 20 has an end on the first side in the second direction (left side in FIG. 2) and a light-receiving surface side (upper side in the paper) of the end on the second side in the second direction (right side in FIG. 2) of the adjacent sub-module 20. are placed on top of each other. In addition, in the figure, the thickness of each component is increased for ease of understanding, so it appears that the sub-module 20 is inclined with respect to the base material 10, but the actual thickness of each layer is very small, so the sub-module 20 is The module 20 is arranged in close contact with and parallel to the base material 10.
 サブモジュール20は、透明な樹脂フィルム21と、第1電極層22と、発電層23と、第2電極層24とを受光面側からこの順番に有する。サブモジュール20は、これらの層の一部を第1方向に延びる複数の第1分離溝25、複数の第2分離溝26及び複数の第3分離溝27によって切断することにより、それぞれ第1方向に延在する帯状に形成され、第1方向と交差する第2方向に並ぶ複数のサブセルCと、サブセルCの間にそれぞれ形成され、隣接するサブセルCを電気的に接続する複数の中間接続部Mと、第2方向第1の側の端部に形成される無効領域Rと、第2方向第2の側の端部に形成される外部接続領域Eと、を画定する。なお、簡略化して示す図2において、サブモジュール20が有するサブセルCの数は3つであるが、実際にはより多数のサブセルCを有し得る。 The sub-module 20 has a transparent resin film 21, a first electrode layer 22, a power generation layer 23, and a second electrode layer 24 in this order from the light-receiving surface side. The sub-module 20 is constructed by cutting a portion of these layers with a plurality of first separation grooves 25, a plurality of second separation grooves 26, and a plurality of third separation grooves 27 extending in the first direction, respectively. A plurality of subcells C formed in a band shape extending in the direction and lined up in a second direction intersecting the first direction, and a plurality of intermediate connecting portions each formed between the subcells C and electrically connecting adjacent subcells C. M, an invalid region R formed at the end on the first side in the second direction, and an external connection region E formed at the end on the second side in the second direction. Although the submodule 20 has three subcells C in FIG. 2 shown in a simplified manner, it may actually have a larger number of subcells C.
 より詳しくは、第1分離溝25、第2分離溝26及び第3分離溝27は、第2方向第2の側から第1の側にこの順番で接近するよう、等しいピッチで形成される。第1分離溝25は第1電極層22を切断し、第2分離溝26は発電層23を切断し、第3分離溝27は発電層23及び第2電極層24のうち少なくとも第2電極層24を切断する。これにより、第1分離溝25はサブセルCの第2方向第1の側の端縁を画定し、第3分離溝はサブセルCの有効領域の第2方向第2の側の端縁を画定し、第2分離溝26その中に第2電極層24が延在することによるサブセルC間の電気的接続を提供する。つまり、第1電極層22、発電層23及び第2電極層24の全てが連続して存在する範囲が、一体的に電力を発生させる1つのサブセルCであり、サブセルCの間の第1分離溝25、第2分離溝26及び第3分離溝27が互いに接近して形成される範囲が中間接続部Mである。 More specifically, the first separation groove 25, the second separation groove 26, and the third separation groove 27 are formed at equal pitches so that they approach the first side in this order from the second side in the second direction. The first separation groove 25 cuts the first electrode layer 22, the second separation groove 26 cuts the power generation layer 23, and the third separation groove 27 cuts the power generation layer 23 and the second electrode layer 24. Cut 24. As a result, the first separation groove 25 defines the edge of the subcell C on the first side in the second direction, and the third separation groove defines the edge of the effective area of the subcell C on the second side in the second direction. , a second isolation trench 26 providing electrical connection between the subcells C by virtue of which a second electrode layer 24 extends therein. In other words, the range in which the first electrode layer 22, the power generation layer 23, and the second electrode layer 24 all exist continuously is one subcell C that integrally generates electric power, and the first separation between the subcells C is An intermediate connection portion M is a region where the groove 25, the second separation groove 26, and the third separation groove 27 are formed close to each other.
 サブモジュール20において、無効領域Rは、なくてもよいが、サブモジュール20の第2方向第1の側の端部を切断する際に第2方向第1の側の末端のサブセルCを誤って破断しないためのマージンとして設けられ得る。 In the sub-module 20, the invalid region R may not be present, but when cutting the end of the sub-module 20 on the first side in the second direction, the end subcell C on the first side in the second direction may be accidentally cut. It may be provided as a margin to prevent breakage.
 一方、外部接続領域Eは、第2方向第2の側の端部のサブセルCの第1電極層22を隣接するサブモジュール20又は太陽電池モジュール1の外部回路に電気的に接続するための中継端子として第2電極層24を提供する。 On the other hand, the external connection area E is a relay for electrically connecting the first electrode layer 22 of the subcell C at the end on the second side in the second direction to the adjacent submodule 20 or the external circuit of the solar cell module 1. A second electrode layer 24 is provided as a terminal.
 接続部材30は、受光面側に重ねられるサブモジュール20の第2方向第1の側の末端のサブセルCの第2電極層24と、受光面と反対側に重ねられるサブモジュール20の外部接続領域Eの第2電極層24と、をそれぞれ接続する。接続部材30は、例えば導電性接着剤等により形成される。 The connection member 30 connects the second electrode layer 24 of the subcell C at the end of the first side in the second direction of the submodule 20 that is stacked on the light receiving surface side, and the external connection area of the submodule 20 that is stacked on the side opposite to the light receiving surface. and the second electrode layer 24 of E are connected to each other. The connection member 30 is made of, for example, a conductive adhesive.
 図1の太陽電池モジュール製造方法のステップS1のサブモジュール形成工程は、図4に詳しく示すように、支持基板Sの一方の主面に透明な樹脂フィルム21を形成する工程(ステップS11:樹脂フィルム形成工程)と、樹脂フィルム21に第1電極層22を積層する工程(ステップS12:第1電極層積層工程)と、第1方向に延び、第1電極層22を切断する第1分離溝25を形成する工程(ステップS13:第1分離溝形成工程)と、第1電極層22に光電変換を行う発電層23を積層する工程(ステップS14:発電層積層工程)と、第1分離溝25の第2方向第1の側に、第1方向に延び、発電層23を切断する第2分離溝26を形成する工程(ステップS15:第2分離溝形成工程)と、発電層23に第2電極層24を積層する工程(ステップS16:第2電極層積層工程)と、第2分離溝26の第2方向第1の側に、第1方向に延び、発電層23及び第2電極層24を切断する第3分離溝27を形成する工程(ステップS17:第3分離溝形成工程)と、を有し得る。 As shown in detail in FIG. 4, the submodule forming step in step S1 of the solar cell module manufacturing method in FIG. formation step), a step of laminating the first electrode layer 22 on the resin film 21 (step S12: first electrode layer lamination step), and a first separation groove 25 extending in the first direction and cutting the first electrode layer 22. (step S13: first separation groove forming step), a step of laminating a power generation layer 23 that performs photoelectric conversion on the first electrode layer 22 (step S14: power generation layer lamination step), and a step of forming the first separation groove 25. forming a second separation groove 26 extending in the first direction and cutting the power generation layer 23 on the first side in the second direction (step S15: second separation groove formation step); In the step of laminating the electrode layer 24 (step S16: second electrode layer lamination step), the power generation layer 23 and the second electrode layer 24 are formed on the first side in the second direction of the second separation groove 26 and extend in the first direction. (step S17: third separation groove forming step).
 ステップS11の樹脂フィルム形成工程では、例えばガラス板等の支持基板Sに、例えばポリイミド、ポリアミド、ポリエチレンテレフタレート等の樹脂からなる樹脂フィルム21を積層する。樹脂フィルム21は、太陽電池モジュール1の強度を担保する構造部材である。樹脂フィルム21は、例として、ポリアミド酸溶液を塗工する工程と、前記ポリアミド酸溶液の塗膜を加熱する工程とを含み、支持基板S上でポリイミドを生成する方法によって積層することが好ましい。これにより、厚みが小さく平滑な樹脂フィルム21を形成できる。 In the resin film forming step of step S11, a resin film 21 made of a resin such as polyimide, polyamide, polyethylene terephthalate, etc. is laminated on a support substrate S such as a glass plate. The resin film 21 is a structural member that ensures the strength of the solar cell module 1. The resin film 21 is preferably laminated by a method of producing polyimide on the support substrate S, including, for example, a step of applying a polyamic acid solution and a step of heating the coating film of the polyamic acid solution. Thereby, a thin and smooth resin film 21 can be formed.
 樹脂フィルム21の厚みの下限としては、3μmが好ましく、10μmがより好ましい。一方、樹脂フィルム21の厚みの上限としては、50μmが好ましく、30μmがより好ましい。樹脂フィルム21の厚みを前記下限以上とすることによって、サブモジュール20の強度を担保することができる。また、樹脂フィルム21の厚みを前記上限以下とすることによって、サブモジュール20に可撓性を付与することができる。 The lower limit of the thickness of the resin film 21 is preferably 3 μm, more preferably 10 μm. On the other hand, the upper limit of the thickness of the resin film 21 is preferably 50 μm, more preferably 30 μm. By setting the thickness of the resin film 21 to be equal to or greater than the lower limit, the strength of the submodule 20 can be ensured. Moreover, flexibility can be imparted to the submodule 20 by making the thickness of the resin film 21 less than or equal to the above upper limit.
 ステップS12の第1電極層積層工程では、例えばスパッタリング法、真空蒸着法などの方法により、樹脂フィルム21に第1電極層22を積層する。第1電極層22は、発電層23で生成された第1の電荷を収集して隣接するサブセルC又は外部に出力する。第1電極層22は、透明導電性酸化物(TCO:Transparent Conductive Oxide)から形成される。第1電極層22を形成する透明導電性酸化物としては、例えば、酸化インジウム、酸化スズ、酸化亜鉛、酸化チタン及びそれらの複合酸化物等を用いることができる。これらの中でも、酸化インジウムを主成分とするインジウム系複合酸化物が好ましい。高い導電率と透明性の観点からは、インジウム酸化物が特に好ましい。さらに、信頼性又はより高い導電率を確保するために、インジウム酸化物にドーパントを添加することが好ましい。ドーパントとしては、例えば、Sn、W、Zn、Ti、Ce、Zr、Mo、Al、Ga、Ge、As、Si、S等が挙げられる。特に好適な例として、インジウム酸化物にスズが添加されたITO(Indium Tin Oxide)が広く知られている。 In the first electrode layer lamination step of step S12, the first electrode layer 22 is laminated on the resin film 21 by a method such as a sputtering method or a vacuum evaporation method. The first electrode layer 22 collects the first charge generated in the power generation layer 23 and outputs it to the adjacent subcell C or to the outside. The first electrode layer 22 is formed from transparent conductive oxide (TCO). As the transparent conductive oxide forming the first electrode layer 22, for example, indium oxide, tin oxide, zinc oxide, titanium oxide, and composite oxides thereof can be used. Among these, indium-based composite oxides containing indium oxide as a main component are preferred. Indium oxide is particularly preferred from the viewpoint of high conductivity and transparency. Furthermore, it is preferred to add dopants to the indium oxide to ensure reliability or higher conductivity. Examples of the dopant include Sn, W, Zn, Ti, Ce, Zr, Mo, Al, Ga, Ge, As, Si, and S. As a particularly suitable example, ITO (Indium Tin Oxide), which is indium oxide to which tin is added, is widely known.
 第1電極層22の厚みの下限としては、5nmが好ましく、10nmがより好ましい。一方、第1電極層22の厚みの上限としては、100nmが好ましく、50nmがより好ましい。第1電極層22の厚みを前記下限以上とすることによって、電気抵抗を小さくすることができるのでサブモジュール20光電変換効率を向上できる。また、第1電極層22の厚みを前記上限以下とすることによって、不必要なコスト増や可撓性の低下を防止できる。第1電極層22は、例えば多結晶ITO層と非晶質ITO層との積層構造等の多層構造を有してもよい。 The lower limit of the thickness of the first electrode layer 22 is preferably 5 nm, more preferably 10 nm. On the other hand, the upper limit of the thickness of the first electrode layer 22 is preferably 100 nm, more preferably 50 nm. By setting the thickness of the first electrode layer 22 to be equal to or greater than the lower limit, the electrical resistance can be reduced, and the photoelectric conversion efficiency of the submodule 20 can be improved. Further, by setting the thickness of the first electrode layer 22 to be equal to or less than the upper limit, unnecessary increases in cost and decreases in flexibility can be prevented. The first electrode layer 22 may have a multilayer structure, such as a stacked structure of a polycrystalline ITO layer and an amorphous ITO layer, for example.
 ステップS13の第1分離溝形成工程では、レーザアブレーションにより第1電極層22を平面視で第1方向に延びる複数の平行な線状に除去することによって、第1分離溝25を形成する。照射するレーザとしては、例えばTHG(第3高調波)レーザ等を用いることができる。第1分離溝25を形成するレーザの強度は、第1電極層22をサブセルC間で確実に絶縁でき、且つ樹脂フィルム21のダメージをできるだけ小さくできるように設定される。 In the first separation groove forming step of step S13, the first separation groove 25 is formed by removing the first electrode layer 22 in a plurality of parallel lines extending in the first direction in plan view using laser ablation. As the laser for irradiation, for example, a THG (third harmonic) laser or the like can be used. The intensity of the laser beam used to form the first separation grooves 25 is set so that the first electrode layer 22 can be reliably insulated between the subcells C and damage to the resin film 21 can be minimized.
 第1分離溝25の幅としては、レーザアブレーションにより形成することを考慮すると、10μm以上200μm以下とされることが好ましく、20μm以上100μm以下とされることがより好ましい。これにより、太陽電池サブセル2間の確実な分離と太陽電池サブセル2の有効面積の確保とが可能となる。 The width of the first separation groove 25 is preferably 10 μm or more and 200 μm or less, more preferably 20 μm or more and 100 μm or less, considering that it is formed by laser ablation. This makes it possible to ensure reliable separation between the solar cell subcells 2 and to ensure the effective area of the solar cell subcells 2.
 ステップS14の発電層積層工程では、第1電極層22に光電変換を行う発電層23を積層する。発電層23は、第1電荷輸送層と、光電変換層と、第2電荷輸送層とをこの順番に有する多層構造とされ得る。発電層23は、さらなる機能層を有してもよい。 In the power generation layer lamination step of step S14, a power generation layer 23 that performs photoelectric conversion is laminated on the first electrode layer 22. The power generation layer 23 may have a multilayer structure including a first charge transport layer, a photoelectric conversion layer, and a second charge transport layer in this order. The power generation layer 23 may have further functional layers.
 第1電荷輸送層は、光電変換層で発生する第1の極性の電荷を通過させる層であり、本実施形態では正孔を第1電極層22に伝達する正孔輸送層(HTL)が企図されている。正孔輸送層である第1電荷輸送層は、例えば酸化ニッケル(NiO)、酸化銅(CuO)等の金属酸化物、例えばPTAA(Poly(bis(4-phenyl)(2,4,6-trimethylphenyl)amine))、Spiro-MeOTAD等の有機物から生成され得る。また、第1電荷輸送層は、自己組織化単分子膜(SAM:Self-Assembled Monolayers)から形成されてもよい。自己組織化単分子膜からなる第1電荷輸送層は、例えば2PACz([2-(9H-Carbazol-9-yl)ethyl]phosphonic Acid)、MeO-2PACz([2-(3,6-Dimethoxy-9H-carbazol-9-yl)ethyl]phosphonic Acid)、Me-4PACz([4-(3,6-Dimethyl-9H-carbazol-9-yl)butyl]phosphonic Acid)等によって形成され得る。 The first charge transport layer is a layer that allows charges of the first polarity generated in the photoelectric conversion layer to pass through, and in this embodiment, a hole transport layer (HTL) that transmits holes to the first electrode layer 22 is intended. has been done. The first charge transport layer, which is a hole transport layer, is made of a metal oxide such as nickel oxide (NiO) or copper oxide (Cu 2 O), such as PTAA (Poly(bis(4-phenyl)(2,4,6 -trimethylphenyl)amine)), Spiro-MeOTAD, etc. Further, the first charge transport layer may be formed from self-assembled monolayers (SAM). The first charge transport layer made of a self-assembled monolayer is, for example, 2PACz ([2-(9H-Carbazol-9-yl)ethyl]phosphonic Acid), MeO-2PACz ([2-(3,6-Dimethoxy- 9H-carbazol-9-yl)ethyl]phosphonic Acid), Me-4PACz ([4-(3,6-Dimethyl-9H-carbazol-9-yl)butyl]phosphonic Acid), and the like.
 第1電荷輸送層は、例えばスパッタリング法、真空蒸着法などの方法により形成され得る。また、第1電荷輸送層が有機物を含む場合、第1電荷輸送層は例えば有機物の溶液の塗工及び乾燥等の方法により形成され得る。自己組織化単分子膜からなる第1電荷輸送層は、自己組織化単分子膜形成材料を例えばエタノール、イソプロパノール等の有機溶媒に溶解してなる単分子膜形成材料溶液の塗工及び乾燥によって形成され得る。単分子膜形成材料溶液の塗工は、例えばスピンコート法等によって行うことが好ましい。第1電荷輸送層の厚みは、その材料、隣接する層の構成等により大きく異なり得るが、例えば1nm以上200nm以下とすることができ、特に自己組織化単分子膜である場合には材料分子の厚みとされ得る。 The first charge transport layer may be formed by, for example, a sputtering method, a vacuum evaporation method, or the like. Further, when the first charge transport layer contains an organic substance, the first charge transport layer may be formed by, for example, applying a solution of the organic substance and drying the solution. The first charge transport layer consisting of a self-assembled monolayer is formed by coating and drying a monolayer-forming material solution prepared by dissolving the self-assembled monolayer-forming material in an organic solvent such as ethanol or isopropanol. can be done. The monomolecular film forming material solution is preferably applied by, for example, a spin coating method. The thickness of the first charge transport layer can vary greatly depending on its material, the structure of adjacent layers, etc., but can be, for example, 1 nm or more and 200 nm or less, and particularly when it is a self-assembled monolayer, the thickness of the material molecules It can be the thickness.
 光電変換層は、入射光を吸収して光キャリア(電子及び正孔)を生成する。光電変換層は、ペロブスカイト化合物を含む材料から形成され得る。光電変換層に含まれるペロブスカイト化合物としては、1価の有機アンモニウムイオン及びアミジニウム系イオンのうちの少なくとも1種を含む有機原子A、2価の金属イオンを生成する金属原子B、及びヨウ化物イオンI、臭化物イオンBr、塩化物イオンCl、及びフッ化物イオンFのうちの少なくとも1種を含むハロゲン原子Xを含み、ABXで表される化合物を用いることができる。中でも、光電変換層を蒸着法(ドライプロセス)により形成する場合、有機原子AとしてはメチルアンモニウムMA(CHNH)が好ましく、金属原子Bとしては鉛Pbが好ましく、ハロゲン原子Xとしてはヨウ化物I、臭化物イオンBr及び塩化物イオンClのうちの少なくとも1つが好ましい。 The photoelectric conversion layer absorbs incident light and generates photocarriers (electrons and holes). The photoelectric conversion layer may be formed from a material containing a perovskite compound. The perovskite compound contained in the photoelectric conversion layer includes an organic atom A containing at least one of a monovalent organic ammonium ion and an amidinium ion, a metal atom B generating a divalent metal ion, and an iodide ion I. , a halogen atom X containing at least one of bromide ion Br, chloride ion Cl, and fluoride ion F, and represented by ABX 3 can be used. Among these, when forming the photoelectric conversion layer by vapor deposition (dry process), the organic atom A is preferably methylammonium MA (CH 3 NH 3 ), the metal atom B is preferably lead Pb, and the halogen atom X is iodine. At least one of compound I, bromide ion Br and chloride ion Cl is preferred.
 具体的に、好ましいペロブスカイト化合物としては、メチルアンモニウムハロゲン化鉛MAPbX(CHNHPbX)、MAPbI、MAPbBr、MAPbCl等が挙げられる。なお、ハロゲン原子Xとしては複数種類を含んでもよい。ヨウ化物Iと他のハロゲン原子Xとを含むペロブスカイト化合物としては、例えばメチルアンモニウムヨウ化鉛MAPbI(3-y)(CHNHPbI(3-y))、MAPbIBr(3-y)、MAPbICl(3-y)等が挙げられる(yは任意の正の整数)。 Specifically, preferred perovskite compounds include methylammonium lead halide MAPbX 3 (CH 3 NH 3 PbX 3 ), MAPbI 3 , MAPbBr 3 , MAPbCl 3 and the like. Note that the halogen atom X may include a plurality of types. Examples of perovskite compounds containing iodide I and other halogen atoms X include methylammonium lead iodide MAPbI y X (3-y) (CH 3 NH 3 PbI y X (3-y) ), MAPbI y Br ( 3-y) , MAPbI y Cl (3-y) , etc. (y is any positive integer).
 ペロブスカイト化合物を含む光電変換層は、ペロブスカイト化合物がメチルアンモニウムハロゲン化鉛(MAPbX(CHNHPbX))である場合、光電変換層は、ハロゲン化鉛(PbX)材料及びハロゲン化メチルアンモニウム(MAX)材料を順に製膜し、これらの材料の薄膜を反応温度で反応させることにより形成され得る。例えば、ペロブスカイト化合物がメチルアンモニウムヨウ化鉛(MAPbI(3-y)(CHNHPbI(3-y)))である場合、光電変換層は、例えばハロゲン化鉛(PbX2)材料及びヨウ化メチルアンモニウム(MAI)材料を順に製膜し、これらの材料の薄膜を反応温度で反応させることにより形成される。また、光電変換層は、例えば液相の塗膜内でペロブスカイト化合物を合成するゾルゲル法、予め合成されたペロブスカイト化合物を含む溶液を塗布する塗布法等の方法によっても形成され得る。 When the perovskite compound is methylammonium lead halide (MAPbX 3 (CH 3 NH 3 PbX 3 )), the photoelectric conversion layer includes a lead halide (PbX 2 ) material and methyl halide. It can be formed by sequentially depositing ammonium (MAX) materials and reacting thin films of these materials at reaction temperatures. For example, when the perovskite compound is methylammonium lead iodide (MAPbI y X (3-y) ( CH 3 NH 3 PbI y It is formed by sequentially depositing a material and a methylammonium iodide (MAI) material and reacting the thin films of these materials at a reaction temperature. The photoelectric conversion layer can also be formed, for example, by a sol-gel method in which a perovskite compound is synthesized within a liquid phase coating film, or a coating method in which a solution containing a pre-synthesized perovskite compound is applied.
 光電変換層の厚みとしては、形成材料等にもよるが、光の吸収率を大きくしつつ、生成する電荷の移動距離を小さくするために、100nm以上1000nm以下とすることが好ましい。 Although the thickness of the photoelectric conversion layer depends on the forming material, etc., it is preferably 100 nm or more and 1000 nm or less in order to increase the light absorption rate and reduce the migration distance of the generated charges.
 第2電荷輸送層は、光電変換層で発生する第2の極性の電荷を通過させる層であり、本実施形態では電子を第2電極層24に伝達する電子輸送層(ETL)が企図される。電子輸送層である第2電荷輸送層の主材料としては、例えば、PTAA(Poly(bis(4-phenyl)(2,4,6-trimethylphenyl)amine))、Spiro-MeOTAD、フラーレン等が挙げられる。フラーレンとしては、例えばC60、C70、これらの水素化物、酸化物、金属錯体、アルキル基等を付加した誘導体、例えば、PCBM([6,6]-Phenyl-C61-Butyric Acid Methyl Ester)などが挙げられる。特に第2電荷輸送層をリチウムLiを内包させたフラーレンを含む材料から形成することにより、電子の輸送効率を向上することができる。また、第2電荷輸送層は、多層構造を有してもよい。 The second charge transport layer is a layer that allows charges of the second polarity generated in the photoelectric conversion layer to pass through, and in this embodiment, an electron transport layer (ETL) that transmits electrons to the second electrode layer 24 is contemplated. . Examples of the main material of the second charge transport layer, which is an electron transport layer, include PTAA (Poly(bis(4-phenyl)(2,4,6-trimethylphenyl)amine)), Spiro-MeOTAD, fullerene, etc. . Examples of fullerenes include C60, C70, their hydrides, oxides, metal complexes, derivatives with added alkyl groups, etc., such as PCBM ([6,6]-Phenyl-C61-Butyric Acid Methyl Ester). It will be done. In particular, by forming the second charge transport layer from a material containing fullerene containing lithium Li, electron transport efficiency can be improved. Further, the second charge transport layer may have a multilayer structure.
 第2電荷輸送層は、例えばゾルゲル法、塗布法等の方法により形成され得る。第2電荷輸送層の厚みとしては、その材料、隣接する層の構成等により大きく異なり得るが、例えば3nm以上30nm以下とされ得る。 The second charge transport layer can be formed, for example, by a sol-gel method, a coating method, or the like. The thickness of the second charge transport layer may vary greatly depending on its material, the structure of adjacent layers, etc., but may be, for example, 3 nm or more and 30 nm or less.
 発電層積層工程が塗工工程を含む場合、支持基板Sの端部まで均一に発電層23を形成することが難しい。ペロブスカイト化合物を含む光電変換層を有する発電層23は、電圧が大きくないため、サブセルCの第2方向の幅を小さくすることが望まれる。このため、第2方向の末端のサブセルCに塗工不良による欠陥があると、そのサブセルCにおいて電流律速を生じ得るため、支持基板Sの第2方向の両端にはサブセルCを形成しないことが望ましい。このため、サブモジュール20の第2方向第1の側の端部は一定の幅の無効領域Rが形成され、最終的には、後述するように無効領域Rの幅をできるだけ小さくするよう無効領域Rの少なくとも一部が切除される。一方、サブモジュール20の第2方向第2の側の端部に形成される外部接続領域Eは、サブモジュール20の電気的接続のために一定の幅が必要であり、発電層23に欠陥があっても問題がないため、サブモジュール20から切除されることなく使用される。 When the power generation layer lamination process includes a coating process, it is difficult to uniformly form the power generation layer 23 all the way to the edge of the support substrate S. Since the power generation layer 23 having a photoelectric conversion layer containing a perovskite compound does not have a large voltage, it is desirable to reduce the width of the subcell C in the second direction. Therefore, if there is a defect in the subcell C at the end in the second direction due to poor coating, current rate limiting may occur in that subcell C, so it is recommended not to form the subcell C at both ends of the support substrate S in the second direction. desirable. Therefore, an invalid region R having a constant width is formed at the end of the sub-module 20 on the first side in the second direction, and ultimately, as will be described later, the invalid region R is formed so that the width of the invalid region R is made as small as possible. At least a portion of R is excised. On the other hand, the external connection area E formed at the end of the second side of the submodule 20 in the second direction requires a certain width for electrical connection of the submodule 20, and the power generation layer 23 is free from defects. Since there is no problem even if it exists, it is used without being removed from the submodule 20.
 ステップS15の第2分離溝形成工程では、レーザアブレーションにより、発電層23を複数の平行な線状に除去することによって複数の第2分離溝26を形成する。これにより、第2電極層24が第2分離溝26の中に延在し、第1電極層22と接続される。第2分離溝26の幅は、第1分離溝25の幅と同様とされ得るが、第1電極層22への第2電極層24の接続を確実にするために第1分離溝25の幅よりも大きくてもよい。 In the second separation groove forming step of step S15, a plurality of second separation grooves 26 are formed by removing the power generation layer 23 in a plurality of parallel lines by laser ablation. Thereby, the second electrode layer 24 extends into the second separation groove 26 and is connected to the first electrode layer 22 . The width of the second separation groove 26 may be the same as the width of the first separation groove 25, but in order to ensure the connection of the second electrode layer 24 to the first electrode layer 22, the width of the first separation groove 25 is May be larger than .
 ステップS16の第2電極層積層工程では、スパッタリング、めっき等の方法により金属材料を積層することによって、又は金属粒子を含む導電性組成物の塗工及び焼成によって第2電極層24を形成する。第2電極層24は、第1電極層22と対をなす電極である。金属を含む第2電極層24は、発電層23を透過した光を反射して発電層23に再度入射させることにより光電変換効率を向上し得る。第2電極層24の厚みの下限としては、10nmが好ましく、20nmがより好ましい。一方、第2電極層24の厚みの上限としては、200nmが好ましく、100nmがより好ましい。第2電極層24の厚みを前記下限以上とすることによって、集電抵抗を十分に小さくできる。また、第2電極層24の厚みを前記上限以下とすることによって、第3分離溝27の形成が容易となる。 In the second electrode layer lamination step of step S16, the second electrode layer 24 is formed by laminating metal materials by a method such as sputtering or plating, or by coating and baking a conductive composition containing metal particles. The second electrode layer 24 is an electrode that makes a pair with the first electrode layer 22. The second electrode layer 24 containing metal can improve photoelectric conversion efficiency by reflecting the light that has passed through the power generation layer 23 and making it enter the power generation layer 23 again. The lower limit of the thickness of the second electrode layer 24 is preferably 10 nm, more preferably 20 nm. On the other hand, the upper limit of the thickness of the second electrode layer 24 is preferably 200 nm, more preferably 100 nm. By setting the thickness of the second electrode layer 24 to be equal to or greater than the lower limit, current collection resistance can be made sufficiently small. Further, by setting the thickness of the second electrode layer 24 to be less than or equal to the above upper limit, the third separation groove 27 can be easily formed.
 ステップS17の第3分離溝形成工程では、レーザアブレーションにより、発電層23及び第2電極層24を複数の平行な線状に除去することによって、複数の第3分離溝27を形成する。第3分離溝27の幅は、第1分離溝25の幅と同様とされ得る。 In the third separation groove forming step of step S17, a plurality of third separation grooves 27 are formed by removing the power generation layer 23 and the second electrode layer 24 in a plurality of parallel lines by laser ablation. The width of the third separation groove 27 may be the same as the width of the first separation groove 25.
 図1の太陽電池モジュール製造方法のステップS2のサブモジュール配設工程は、図5に詳しく示すように、基材10の上に接続部材30を配設する工程(ステップS21:接続部材配設工程)と、サブモジュール20を支持基板Sごと支持基板Sを上にして基材10の上に載置する工程(ステップS22:サブモジュール載置工程)と、支持基板Sを通してサブモジュール20にレーザを照射することによりサブモジュール20の端部を切断する工程(ステップS23:サブモジュール切断工程)と、支持基板S及びサブモジュール20の端部を除去する工程(ステップS24:支持基板除去工程)と、を含む。 As shown in detail in FIG. 5, the submodule disposing step in step S2 of the solar cell module manufacturing method in FIG. ), a step of placing the sub-module 20 together with the supporting substrate S on the base material 10 with the supporting substrate S facing upward (step S22: sub-module mounting step), and a step of applying a laser to the sub-module 20 through the supporting substrate S. A step of cutting the end portion of the sub-module 20 by irradiation (step S23: sub-module cutting step), a step of removing the end portion of the support substrate S and the sub-module 20 (step S24: support substrate removal step), including.
 ステップS21の接続部材配設工程では、基材10の上に、次に配設するサブモジュール20に対応する位置に、接続部材30を配設する。つまり、最初のサブモジュール20を配設するときには第2方向第1の側の端部のサブセルC及び外部接続領域Eに対応する位置にそれぞれ接続部材30を配設し、以降のサブモジュール20を配設するときには外部接続領域Eに対応する位置に接続部材を配設する。 In the connecting member disposing step of step S21, the connecting member 30 is disposed on the base material 10 at a position corresponding to the submodule 20 to be disposed next. That is, when disposing the first sub-module 20, the connection members 30 are disposed at positions corresponding to the sub-cell C and the external connection area E at the end on the first side in the second direction, and the subsequent sub-modules 20 are When disposing, the connection member is disposed at a position corresponding to the external connection area E.
 ステップS22のサブモジュール載置工程では、支持基板Sを上にして第2方向第1の側の末端のサブセルC及び第2方向第2の側の外部接続領域Eが接続部材30の上に配置されるようサブモジュール20を載置する。ここで、サブモジュール20の端部を先に配設されているサブモジュール20の端部に重ねることによって、ステップS24の支持基板除去工程で除去すべき無効領域Rが接続部材30に接着されて除去できなくなることを防止できる。さらに、新しく載置するサブモジュール20の2方向第1の側の末端のサブセルCが先に配置されているサブモジュール20の外部接続領域Eに重なるよう配置すれば、太陽電池モジュール1において受光可能なサブセルCの面積を増大して光電変換効率を向上できる。 In the submodule mounting step of step S22, the subcell C at the end on the first side in the second direction and the external connection area E on the second side in the second direction are placed on the connection member 30 with the support substrate S facing upward. Place the sub-module 20 so that the Here, by overlapping the end of the sub-module 20 with the end of the previously disposed sub-module 20, the ineffective area R to be removed in the support substrate removal step of step S24 is adhered to the connection member 30. This can prevent the problem from becoming impossible to remove. Furthermore, if the subcell C at the end of the first side in two directions of the newly placed submodule 20 is placed so as to overlap the external connection area E of the previously placed submodule 20, light can be received in the solar cell module 1. The photoelectric conversion efficiency can be improved by increasing the area of the subcell C.
 ステップS23のサブモジュール切断工程では、図6に示すように、サブモジュール20の第二方向第1の側の末端のサブセルCよりもさらに第2方向第1の側に支持基板Sを通してレーザLを照射することにより、サブモジュール20の第2方向第1の側の端部、つまり下側のサブモジュール20に重ねられている側の端部を切断する。このレーザLの照射を第3分離溝27の上に行えば、下側のサブモジュール20へのダメージを防止しつつ、上側のサブモジュール20を比較的容易に切断できる。 In the sub-module cutting process of step S23, as shown in FIG. By irradiating, the end portion of the sub-module 20 on the first side in the second direction, that is, the end portion of the side overlapped with the lower sub-module 20 is cut. By irradiating the third separation groove 27 with the laser L, the upper sub-module 20 can be cut relatively easily while preventing damage to the lower sub-module 20.
 ステップS24の支持基板除去工程では、サブモジュール20の切り離された第2方向第1の側の端部とともに、支持基板Sを除去する。これにより、サブモジュール20の無効領域Rを小さくし、太陽電池モジュール1の有効面積を増大して光電変換効率を向上できる。 In the support substrate removal step of step S24, the support substrate S is removed together with the separated end of the sub-module 20 on the first side in the second direction. Thereby, the ineffective area R of the sub-module 20 can be reduced, the effective area of the solar cell module 1 can be increased, and the photoelectric conversion efficiency can be improved.
 本実施形態に係る太陽電池モジュール製造方法は、サブモジュール20を支持基板Sで支持する状態で基材10及び接続部材30の上に配設するため、可撓性を有するサブモジュール20を平坦な状態に保持した状態で位置決めできるので、サブモジュール20を容易且つ正確に配設することができる。 In the solar cell module manufacturing method according to the present embodiment, since the submodule 20 is supported by the support substrate S and disposed on the base material 10 and the connection member 30, the flexible submodule 20 is flattened. Since the sub-module 20 can be positioned while being held in this state, the sub-module 20 can be easily and accurately disposed.
 以上、本発明の実施形態について説明したが、本発明は上述した実施形態に限定されることなく、種々の変更及び変形が可能である。例として、本実施形態に係る太陽電池モジュール製造方法では、基材上に全てのサブモジュールに対応する全ての接続部材をまとめて配設し、サブモジュールの載置、サブモジュールの端部の切断及び支持基板の除去を必要な回数だけ繰り返してもよい。また、実施形態に係る太陽電池モジュール製造方法では、サブモジュールの切除される部分だけを先に配置したサブモジュールに重ねて、最終的に重複なく平面的にサブモジュールを並べた太陽電池モジュールを製造してもよい。 Although the embodiments of the present invention have been described above, the present invention is not limited to the embodiments described above, and various changes and modifications can be made. For example, in the solar cell module manufacturing method according to the present embodiment, all connection members corresponding to all submodules are arranged on the base material, the submodules are placed, and the ends of the submodules are cut. And the removal of the supporting substrate may be repeated as many times as necessary. In addition, in the solar cell module manufacturing method according to the embodiment, only the portion of the submodule to be removed is overlapped with the previously placed submodule, and finally a solar cell module in which the submodules are arranged in a plane without overlapping is manufactured. You may.
 1 太陽電池モジュール
 10 基材
 20 サブモジュール
 30 接続部材
 21 樹脂フィルム
 22 第1電極層
 23 発電層
 24 第2電極層
 25 第1分離溝
 26 第2分離溝
 27 複数の第3分離溝
 C サブセル
 E 外部接続領域
 L レーザ
 M 中間接続部
 R 無効領域
 S 支持基板
1 Solar cell module 10 Base material 20 Submodule 30 Connection member 21 Resin film 22 First electrode layer 23 Power generation layer 24 Second electrode layer 25 First separation groove 26 Second separation groove 27 Multiple third separation grooves C Subcell E External Connection area L Laser M Intermediate connection area R Ineffective area S Support board

Claims (4)

  1.  シート状の基材と、前記基材の上に並んで配設され、それぞれ光電変換を行う複数のサブモジュールと、を備える太陽電池モジュールの製造方法であって、
     複数の透明な支持基板の上にそれぞれ光電変換を行うサブモジュールを形成する工程と、
     位置をずらして繰り返し行われ、前記基材の上に前記サブモジュールを1枚ずつ配設する工程と、
    を備え、
     前記サブモジュールを1枚ずつ配設する工程は、
     前記サブモジュールを前記支持基板ごと前記支持基板を上にして前記基材の上に載置する工程と、
     前記支持基板を通して前記サブモジュールにレーザを照射することにより前記サブモジュールの端部を切断する工程と、
     前記支持基板及び前記サブモジュールの端部を除去する工程と、
    を含む、太陽電池モジュール製造方法。
    A method for manufacturing a solar cell module, comprising: a sheet-like base material; and a plurality of sub-modules arranged side by side on the base material, each of which performs photoelectric conversion,
    forming submodules each performing photoelectric conversion on a plurality of transparent support substrates;
    a step of repeatedly disposing the sub-modules one by one on the base material by shifting their positions;
    Equipped with
    The step of arranging the sub-modules one by one includes:
    placing the sub-module together with the support substrate on the base material with the support substrate facing upward;
    cutting an end of the sub-module by irradiating the sub-module with a laser through the support substrate;
    removing edges of the support substrate and the submodule;
    A solar cell module manufacturing method, including:
  2.  前記サブモジュールを前記基材の上に載置する工程において、前記サブモジュールの端部を先に配設されている前記サブモジュールの端部に重ね、
     前記サブモジュールの端部を切断する工程において、先に配設されている前記サブモジュールの端部に重ねられている側の端部を切除する、請求項1に記載の太陽電池モジュール製造方法。
    In the step of placing the submodule on the base material, an end of the submodule is overlapped with an end of the previously disposed submodule,
    2. The solar cell module manufacturing method according to claim 1, wherein in the step of cutting the end portion of the sub-module, the end portion of the sub-module that overlaps the end portion of the previously disposed sub-module is cut off.
  3.  前記基材の上に前記サブモジュールの間を接続する接続部材を配設する工程をさらに備える、請求項1又は2に記載の太陽電池モジュール製造方法。 The solar cell module manufacturing method according to claim 1 or 2, further comprising the step of disposing a connecting member connecting between the sub-modules on the base material.
  4.  前記サブモジュールを形成する工程は、
     前記支持基板の一方の主面に透明な樹脂フィルムを形成する工程と、
     前記樹脂フィルムに第1電極層を積層する工程と、
     第1方向に延び、前記第1電極層を切断する第1分離溝を形成する工程と、
     前記第1電極層に光電変換を行う発電層を積層する工程と、
     前記第1分離溝の前記第1方向と交差する第2方向第1の側に、前記第1方向に延び、前記発電層を切断する第2分離溝を形成する工程と、
     前記発電層に第2電極層を積層する工程と
     前記第2分離溝の前記第2方向第1の側に、前記第1方向に延び、前記発電層及び前記第2電極層のうち少なくとも前記第2電極層を切断する第3分離溝を形成する工程と、
    を有し、
     前記サブモジュールを前記基材の上に載置する工程において、前記サブモジュールの前記第2方向第1の側の端部を先に配設されている前記サブモジュールの上に重ねる、請求項1から3のいずれかに記載の太陽電池モジュール製造方法。
    The step of forming the submodule includes:
    forming a transparent resin film on one main surface of the supporting substrate;
    laminating a first electrode layer on the resin film;
    forming a first separation groove extending in a first direction and cutting the first electrode layer;
    laminating a power generation layer that performs photoelectric conversion on the first electrode layer;
    forming a second separation groove extending in the first direction and cutting the power generation layer on a first side of the first separation groove in a second direction intersecting the first direction;
    laminating a second electrode layer on the power generation layer; forming a third separation groove for cutting the two electrode layers;
    has
    Claim 1: In the step of placing the sub-module on the base material, an end portion of the sub-module on the first side in the second direction is overlapped on the previously disposed sub-module. 3. The method for manufacturing a solar cell module according to any one of 3 to 3.
PCT/JP2023/011132 2022-03-31 2023-03-22 Method for manufacturing solar cell module WO2023189907A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-058921 2022-03-31
JP2022058921 2022-03-31

Publications (1)

Publication Number Publication Date
WO2023189907A1 true WO2023189907A1 (en) 2023-10-05

Family

ID=88201302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/011132 WO2023189907A1 (en) 2022-03-31 2023-03-22 Method for manufacturing solar cell module

Country Status (1)

Country Link
WO (1) WO2023189907A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001036125A (en) * 1999-07-23 2001-02-09 Sanyo Electric Co Ltd Photovoltaic power generation device
JP2001111087A (en) * 1999-10-07 2001-04-20 Kanegafuchi Chem Ind Co Ltd Solar battery module
JP2009010355A (en) * 2007-05-29 2009-01-15 Toray Eng Co Ltd Solar battery module
JP2012069566A (en) * 2010-09-21 2012-04-05 Mitsubishi Electric Corp Thin film solar cell manufacturing method
JP2013207112A (en) * 2012-03-28 2013-10-07 Toray Eng Co Ltd Solar battery module manufacturing apparatus and manufacturing method
JP2019515483A (en) * 2016-05-06 2019-06-06 アプライド マテリアルズ イタリア エス. アール. エル. Apparatus for manufacturing at least two solar cell configurations, system for manufacturing at least two tiled solar cells, and method for manufacturing at least two solar cell configurations
EP3648173A1 (en) * 2018-10-30 2020-05-06 IMEC vzw Thin-film photovoltaic module with integrated electronics and methods for manufacturing thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001036125A (en) * 1999-07-23 2001-02-09 Sanyo Electric Co Ltd Photovoltaic power generation device
JP2001111087A (en) * 1999-10-07 2001-04-20 Kanegafuchi Chem Ind Co Ltd Solar battery module
JP2009010355A (en) * 2007-05-29 2009-01-15 Toray Eng Co Ltd Solar battery module
JP2012069566A (en) * 2010-09-21 2012-04-05 Mitsubishi Electric Corp Thin film solar cell manufacturing method
JP2013207112A (en) * 2012-03-28 2013-10-07 Toray Eng Co Ltd Solar battery module manufacturing apparatus and manufacturing method
JP2019515483A (en) * 2016-05-06 2019-06-06 アプライド マテリアルズ イタリア エス. アール. エル. Apparatus for manufacturing at least two solar cell configurations, system for manufacturing at least two tiled solar cells, and method for manufacturing at least two solar cell configurations
EP3648173A1 (en) * 2018-10-30 2020-05-06 IMEC vzw Thin-film photovoltaic module with integrated electronics and methods for manufacturing thereof

Similar Documents

Publication Publication Date Title
JP4759286B2 (en) Organic solar cell module and manufacturing method thereof
US20100078060A1 (en) Dye-sensitized solar cell module and production method thereof
US20120042930A1 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
JPH03239377A (en) Solar cell module
TWI690099B (en) Method for manufacturing perovskite solar cell module and perovskite solar cell module
JPS6146993B2 (en)
WO2023189907A1 (en) Method for manufacturing solar cell module
US20240032314A1 (en) Solar cell and solar cell module including the same
CN211789098U (en) Crystalline silicon-perovskite component
CN112086559A (en) Perovskite battery and preparation method thereof
US20120012158A1 (en) Photoelectric conversion module and method of manufacturing the same
WO2023189906A1 (en) Solar battery module
JP2021531658A (en) Photoelectric device and its manufacturing method
TWI619263B (en) A photovoltaic apparatus and method of assembling a photovoltaic apparatus
WO2010042170A2 (en) Interconnection of adjacent devices
JP2023147362A (en) Method for manufacturing solar cell module
JP2023148126A (en) Method for manufacturing perovskite thin film-based solar cell, and perovskite thin film-based solar cell
WO2023182421A1 (en) Method for manufacturing solar battery submodule
US20140076393A1 (en) Flexible solar cell and manufacturing method thereof
CN112186056A (en) Preparation method of solar cell module
WO2023190570A1 (en) Solar cell sub module and method for manufacturing solar cell sub module
JP2023150009A (en) Solar battery submodule and solar battery submodule manufacturing method
CN109728170B (en) Perovskite solar cell and preparation method thereof, perovskite solar cell pack and preparation method thereof
WO2017175491A1 (en) Method for manufacturing multijunction photoelectric conversion device
WO2023224005A1 (en) Solar cell module and method for manufacturing solar cell module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23779919

Country of ref document: EP

Kind code of ref document: A1