WO2023189906A1 - Solar battery module - Google Patents
Solar battery module Download PDFInfo
- Publication number
- WO2023189906A1 WO2023189906A1 PCT/JP2023/011131 JP2023011131W WO2023189906A1 WO 2023189906 A1 WO2023189906 A1 WO 2023189906A1 JP 2023011131 W JP2023011131 W JP 2023011131W WO 2023189906 A1 WO2023189906 A1 WO 2023189906A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrode layer
- layer
- sub
- receiving surface
- external connection
- Prior art date
Links
- 238000000926 separation method Methods 0.000 claims abstract description 48
- 238000006243 chemical reaction Methods 0.000 claims abstract description 27
- 238000010248 power generation Methods 0.000 claims abstract description 26
- 150000001875 compounds Chemical class 0.000 claims description 12
- 239000010410 layer Substances 0.000 description 124
- 230000032258 transport Effects 0.000 description 25
- 239000000463 material Substances 0.000 description 18
- 239000010408 film Substances 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 239000011295 pitch Substances 0.000 description 6
- 229910003437 indium oxide Inorganic materials 0.000 description 5
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 5
- 239000013545 self-assembled monolayer Substances 0.000 description 5
- 125000004429 atom Chemical group 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 125000005843 halogen group Chemical group 0.000 description 4
- 238000000608 laser ablation Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- -1 polyethylene terephthalate Polymers 0.000 description 4
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical compound C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 229910003472 fullerene Inorganic materials 0.000 description 3
- 238000010030 laminating Methods 0.000 description 3
- 239000002923 metal particle Substances 0.000 description 3
- 239000002094 self assembled monolayer Substances 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- KWVPRPSXBZNOHS-UHFFFAOYSA-N 2,4,6-Trimethylaniline Chemical compound CC1=CC(C)=C(N)C(C)=C1 KWVPRPSXBZNOHS-UHFFFAOYSA-N 0.000 description 2
- XIOYECJFQJFYLM-UHFFFAOYSA-N 2-(3,6-dimethoxycarbazol-9-yl)ethylphosphonic acid Chemical compound COC=1C=CC=2N(C3=CC=C(C=C3C=2C=1)OC)CCP(O)(O)=O XIOYECJFQJFYLM-UHFFFAOYSA-N 0.000 description 2
- KIMPAVBWSFLENS-UHFFFAOYSA-N 2-carbazol-9-ylethylphosphonic acid Chemical compound C1=CC=CC=2C3=CC=CC=C3N(C1=2)CCP(O)(O)=O KIMPAVBWSFLENS-UHFFFAOYSA-N 0.000 description 2
- XDXWNHPWWKGTKO-UHFFFAOYSA-N 207739-72-8 Chemical compound C1=CC(OC)=CC=C1N(C=1C=C2C3(C4=CC(=CC=C4C2=CC=1)N(C=1C=CC(OC)=CC=1)C=1C=CC(OC)=CC=1)C1=CC(=CC=C1C1=CC=C(C=C13)N(C=1C=CC(OC)=CC=1)C=1C=CC(OC)=CC=1)N(C=1C=CC(OC)=CC=1)C=1C=CC(OC)=CC=1)C1=CC=C(OC)C=C1 XDXWNHPWWKGTKO-UHFFFAOYSA-N 0.000 description 2
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 2
- ZNLXWYZMMYDGCE-UHFFFAOYSA-N CC=1C=CC=2N(C3=CC=C(C=C3C=2C=1)C)CCCCP(O)(O)=O Chemical compound CC=1C=CC=2N(C3=CC=C(C=C3C=2C=1)C)CCCCP(O)(O)=O ZNLXWYZMMYDGCE-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 229920001167 Poly(triaryl amine) Polymers 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- MCEWYIDBDVPMES-UHFFFAOYSA-N [60]pcbm Chemical compound C123C(C4=C5C6=C7C8=C9C%10=C%11C%12=C%13C%14=C%15C%16=C%17C%18=C(C=%19C=%20C%18=C%18C%16=C%13C%13=C%11C9=C9C7=C(C=%20C9=C%13%18)C(C7=%19)=C96)C6=C%11C%17=C%15C%13=C%15C%14=C%12C%12=C%10C%10=C85)=C9C7=C6C2=C%11C%13=C2C%15=C%12C%10=C4C23C1(CCCC(=O)OC)C1=CC=CC=C1 MCEWYIDBDVPMES-UHFFFAOYSA-N 0.000 description 2
- 239000012790 adhesive layer Substances 0.000 description 2
- 229940006460 bromide ion Drugs 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- FZHSXDYFFIMBIB-UHFFFAOYSA-L diiodolead;methanamine Chemical compound NC.I[Pb]I FZHSXDYFFIMBIB-UHFFFAOYSA-L 0.000 description 2
- 239000002019 doping agent Substances 0.000 description 2
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- NQMRYBIKMRVZLB-UHFFFAOYSA-N methylamine hydrochloride Chemical compound [Cl-].[NH3+]C NQMRYBIKMRVZLB-UHFFFAOYSA-N 0.000 description 2
- LLWRXQXPJMPHLR-UHFFFAOYSA-N methylazanium;iodide Chemical compound [I-].[NH3+]C LLWRXQXPJMPHLR-UHFFFAOYSA-N 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910000480 nickel oxide Inorganic materials 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 238000003980 solgel method Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 238000001771 vacuum deposition Methods 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- BAVYZALUXZFZLV-UHFFFAOYSA-O Methylammonium ion Chemical compound [NH3+]C BAVYZALUXZFZLV-UHFFFAOYSA-O 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- LBJNMUFDOHXDFG-UHFFFAOYSA-N copper;hydrate Chemical compound O.[Cu].[Cu] LBJNMUFDOHXDFG-UHFFFAOYSA-N 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 230000005525 hole transport Effects 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-M iodide Chemical compound [I-] XMBWDFGMSWQBCA-UHFFFAOYSA-M 0.000 description 1
- 229940006461 iodide ion Drugs 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000002346 layers by function Substances 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/40—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising a p-i-n structure, e.g. having a perovskite absorber between p-type and n-type charge transport layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K39/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
- H10K39/10—Organic photovoltaic [PV] modules; Arrays of single organic PV cells
- H10K39/12—Electrical configurations of PV cells, e.g. series connections or parallel connections
Definitions
- the present invention relates to a solar cell module.
- a solar cell submodule is known in which a plurality of solar cell subcells are electrically connected in series on a single base material.
- the area between the subcells becomes an ineffective area, so the effective area decreases, but it is possible to reduce resistance loss, especially in the electrode on the light receiving surface side. If solar cells are appropriately made into submodules, the reduction in resistance loss will outweigh the reduction in effective area, which will improve photoelectric conversion efficiency.
- the submodule includes a step of laminating a first electrode layer on a base material, a step of cutting the first electrode layer by first laser irradiation, a step of laminating a power generation layer for photoelectric conversion, and a step of irradiating the power generation layer with a second laser.
- the steps of cutting the power generation layer and the second electrode layer by a third laser irradiation are performed in this order, and then the first laser irradiation, the second laser irradiation It can be manufactured by a method of forming a plurality of solar cell subcells electrically connected in series by sequentially shifting the position of third laser irradiation little by little.
- it has also been proposed to form a solar cell module by connecting a plurality of submodules see, for example, Patent Document 1).
- an object of the present invention is to provide a solar cell module with high photoelectric conversion efficiency.
- a solar cell module includes a transparent base sheet, a first electrode layer, a power generation layer, and a second electrode layer in this order from the light-receiving surface side, and the first electrode layer a plurality of first separation grooves extending in a first direction so as to cut the power generation layer; a plurality of second separation grooves extending in the first direction so as to cut the power generation layer; A plurality of third separation grooves are formed extending in the first direction so as to cut the two electrode layers, and one edge in a second direction intersecting the first direction is formed by the first separation groove, and the other edge is a plurality of subcells whose edges are defined by the third separation trench and which are electrically connected in series by the second electrode layer extending into the second separation trench; and one of the subcells in the second direction.
- a plurality of sub-modules each having an ineffective area defined at one end of the side, and an external connection area defined at the other end in the second direction;
- the one end in the two directions is arranged to overlap the light receiving surface side of the other end in the second direction of an adjacent submodule, and the width of the invalid area in the second direction is
- the width of the external connection region in the second direction is less than 20% of the pitch of the plurality of subcells in the second direction, and the width of the external connection region in the second direction is smaller than the pitch of the plurality of subcells in the second direction.
- An overlap width in the second direction with the external connection area may be smaller than a width in the second direction with the external connection area.
- the above solar cell module has the second electrode layer of the subcell at the one end in the second direction of the submodule stacked on the light receiving surface side, and the subcell stacked on the side opposite to the light receiving surface.
- the module may further include a plurality of interconnectors that respectively connect the external connection area of the module to the second electrode layer.
- the power generation layer may include a photoelectric conversion layer containing a perovskite compound.
- a solar cell module with high photoelectric conversion efficiency can be provided.
- FIG. 1 is a schematic cross-sectional view showing the configuration of a solar cell module according to an embodiment of the present invention.
- FIG. 1 is a schematic cross-sectional view showing the configuration of a solar cell module 1 according to an embodiment of the present invention. Note that the dimensions of various members in the drawings have been adjusted for convenience and ease of viewing.
- the solar cell modules 1 are formed in a band shape extending in a first direction (depth direction in the paper), are arranged side by side in a second direction (horizontal direction in the paper) intersecting the first direction, and are electrically connected in series.
- a plurality of submodules 10 each having a plurality of subcells C, and a plurality of interconnectors 20 connecting between the submodules 10 are provided.
- the plurality of sub-modules 10 are stacked such that the end on one side in the second direction (left side in the paper) overlaps the light-receiving surface side (upper side in the paper) of the end of the adjacent sub-module 10 on the other side in the second direction (right side in the paper).
- the solar cell module 1 may be a submodule that is incorporated into a higher-level module, such as a so-called string in which submodules 10 are connected in a row.
- the sub-module 10 includes a transparent base sheet 11, a first electrode layer 12, a power generation layer 13, and a second electrode layer 14 in this order from the light-receiving surface side.
- the sub-module 10 is constructed by cutting a portion of these layers with a plurality of first separation grooves 15, a plurality of second separation grooves 16, and a plurality of third separation grooves 17 extending in the first direction.
- a plurality of subcells C formed in an extending band shape and lined up in a second direction intersecting the first direction, and a plurality of intermediate connecting portions M formed between the subcells C and electrically connecting adjacent subcells C. , an invalid region R formed at one end in the second direction, and an external connection region E formed at the other end in the second direction.
- the submodule 10 has three subcells C in FIG. 1 shown in a simplified manner, it may actually have a larger number of subcells C.
- the solar cell module 1 by arranging the ends of the sub-modules 10 so as to overlap each other, the effective area of the sub-cells C can be Therefore, the photoelectric conversion efficiency per area of the solar cell module 1 can be improved.
- the first separation groove 15, the second separation groove 16, and the third separation groove 17 are formed at equal pitches so that they approach in this order from the other side to the one side in the second direction.
- the first separation groove 15 cuts the first electrode layer 12
- the second separation groove 16 cuts the power generation layer 13
- the third separation groove 17 cuts the power generation layer 13 and the second electrode layer 14. Cut 14.
- the first separation groove 15 defines the edge of the subcell C on one side in the second direction
- the third separation groove defines the edge of the effective area of the subcell C on the other side in the second direction
- the third separation groove 15 defines the edge of the effective area of the subcell C on the other side in the second direction.
- Grooves 16 provide electrical connections between subcells C by which second electrode layers 14 extend.
- the range in which the first electrode layer 12, the power generation layer 13, and the second electrode layer 14 all exist continuously is one subcell C that integrally generates electric power
- the first separation between the subcells C is
- An intermediate connection portion M is a region where the groove 15, the second separation groove 16, and the third separation groove 17 are formed close to each other.
- the invalid region R is electrically unnecessary, but is provided to protect the sub-cell C at one end in the second direction.
- the width of the invalid region R in the second direction is 20% or less of the pitch of the plurality of subcells C in the second direction (the sum of the width of the subcells C and the width of the intermediate connection portion M).
- the external connection area E is a relay terminal for electrically connecting the first electrode layer 12 of the subcell C at the other end in the second direction to the external circuit of the adjacent submodule 10 or the solar cell module 1.
- the second electrode layer 14 is provided as a.
- the width of the external connection region E in the second direction is smaller than the pitch of the plurality of subcells C in the second direction.
- the overlap width in the second direction between the subcell C at one end in the second direction of the submodule 10 stacked on the light receiving surface side and the external connection area E of the submodule 10 stacked on the opposite side to the light receiving surface is the width of the overlap in the second direction. It is preferable that the width is smaller than the width of the connection region E in the second direction. As a result, the area covered by the sub-module 10 on the other side in the second direction of the sub-module 10 stacked on the side opposite to the light-receiving surface can be reduced, so that the area covered by the sub-module 10 stacked on the light-receiving surface side can be reduced. It is possible to prevent current rate-limiting from occurring due to the subcell C being shielded from light by the submodule 10.
- the base sheet 11 is a structural member that ensures the strength of the submodule 10.
- the base sheet 11 may be made of resin such as polyimide, polyamide, polyethylene terephthalate, or the like. Further, the base sheet 11 may be formed from a flexible resin film in order to form the flexible submodule 10.
- the first electrode layer 12 collects the first charge generated in the power generation layer 13 and outputs it to the adjacent subcell C or to the outside.
- the first electrode layer 12 is a positive electrode that collects holes.
- the first electrode layer 12 is formed from transparent conductive oxide (TCO).
- TCO transparent conductive oxide
- indium oxide, tin oxide, zinc oxide, titanium oxide, and composite oxides thereof can be used.
- indium-based composite oxides containing indium oxide as a main component are preferred.
- Indium oxide is particularly preferred from the viewpoint of high conductivity and transparency.
- the dopant examples include Sn, W, Zn, Ti, Ce, Zr, Mo, Al, Ga, Ge, As, Si, and S.
- ITO Indium Tin Oxide
- the first electrode layer 12 may be laminated by, for example, a sputtering method, a vacuum evaporation method, or the like.
- the lower limit of the thickness of the first electrode layer 12 is preferably 5 nm, more preferably 10 nm.
- the upper limit of the thickness of the first electrode layer 12 is preferably 100 nm, more preferably 50 nm.
- the power generation layer 13 is a layer that converts incident light into electric power, and may have a multilayer structure including a first charge transport layer 131, a photoelectric conversion layer 132, and a second charge transport layer 133.
- the power generation layer 13 may have further functional layers.
- the first charge transport layer 131 is a layer that allows charges of the first polarity generated in the photoelectric conversion layer 132 to pass through, and in this embodiment, is a hole transport layer (HTL) that transports holes to the first electrode layer 12. is planned.
- the first charge transport layer 131 is made of a metal oxide such as nickel oxide (NiO) or copper oxide (Cu 2 O), such as PTAA (Poly(bis(4-phenyl)(2,4,6-trimethylphenyl)amine). ), Spiro-MeOTAD, etc. Further, the first charge transport layer 131 may be formed from self-assembled monolayers (SAM).
- the first charge transport layer 131 made of a self-assembled monolayer is, for example, 2PACz ([2-(9H-Carbazol-9-yl)ethyl]phosphonic Acid), MeO-2PACz ([2-(3,6-Dimethoxy -9H-carbazol-9-yl)ethyl]phosphonic Acid), Me-4PACz ([4-(3,6-Dimethyl-9H-carbazol-9-yl)butyl]phosphonic Acid), and the like.
- the first charge transport layer 131 may be formed by, for example, a sputtering method, a vacuum evaporation method, or the like. Further, when the first charge transport layer 131 contains an organic substance, the first charge transport layer 131 may be formed by, for example, applying a solution of the organic substance and drying it.
- the first charge transport layer 131 made of a self-assembled monolayer is formed by coating and drying a monolayer-forming material solution prepared by dissolving the self-assembled monolayer-forming material in an organic solvent such as ethanol or isopropanol. can be formed.
- the monomolecular film forming material solution is preferably applied by, for example, a spin coating method.
- the thickness of the first charge transport layer 131 can vary greatly depending on its material, the structure of adjacent layers, etc., but can be, for example, 1 nm or more and 200 nm or less, and especially when it is a self-assembled monolayer, the material molecule
- the thickness can be as follows.
- the photoelectric conversion layer 132 absorbs incident light and generates photocarriers (electrons and holes).
- the photoelectric conversion layer 132 preferably contains a perovskite compound.
- the resistance loss of the first electrode layer 12 tends to be relatively large, so it is desirable to reduce the pitch of the subcell C. Therefore, the effect of preventing current rate-limiting from occurring due to the subcell C being shielded from light by the submodule 10 stacked on the light-receiving surface side becomes significant.
- the perovskite compound contained in the photoelectric conversion layer 132 includes an organic atom A containing at least one of a monovalent organic ammonium ion and an amidinium ion, a metal atom B generating a divalent metal ion, and an iodide ion.
- a compound represented by ABX 3 containing a halogen atom X containing at least one of I, bromide ion Br, chloride ion Cl, and fluoride ion F can be used.
- methylammonium MA (CH 3 NH 3 ) is preferable as the organic atom A
- lead Pb is preferable as the metal atom B
- the halogen atom At least one of iodide I, bromide ion Br and chloride ion Cl is preferred.
- preferred perovskite compounds include methylammonium lead halide MAPbX 3 (CH 3 NH 3 PbX 3 ), MAPbI 3 , MAPbBr 3 , MAPbCl 3 and the like.
- the halogen atom X may include a plurality of types. Examples of perovskite compounds containing iodide I and other halogen atoms X include methylammonium lead iodide MAPbI y X (3-y) (CH 3 NH 3 PbI y X (3-y) ), MAPbI y Br ( 3-y) , MAPbI y Cl (3-y) , etc. (y is any positive integer).
- the photoelectric conversion layer 132 includes a lead halide (PbX 2 ) material and halogen. It can be formed by sequentially depositing methylammonium chloride (MAX) materials and reacting thin films of these materials at reaction temperatures.
- MAX methylammonium chloride
- the perovskite compound is methylammonium lead iodide (MAPbI y X (3-y) (CH 3 NH 3 PbI y ) material and methylammonium iodide (MAI) material are sequentially formed into films, and the thin films of these materials are reacted at a reaction temperature.
- the photoelectric conversion layer 132 can also be formed, for example, by a sol-gel method in which a perovskite compound is synthesized within a liquid phase coating film, a coating method in which a solution containing a pre-synthesized perovskite compound is applied, or the like.
- the thickness of the photoelectric conversion layer 132 depends on the forming material, etc., it is preferably 100 nm or more and 1000 nm or less in order to increase the light absorption rate and reduce the migration distance of the generated charges.
- the second charge transport layer 133 is a layer that allows charges of the second polarity generated in the photoelectric conversion layer 132 to pass through, and in this embodiment, is an electron transport layer (ETL) that transmits electrons to the second electrode layer 14.
- ETL electron transport layer
- the main material of the second charge transport layer 133 which is an electron transport layer, include PTAA (Poly(bis(4-phenyl)(2,4,6-trimethylphenyl)amine)), Spiro-MeOTAD, fullerene, etc. It will be done.
- fullerenes include C60, C70, their hydrides, oxides, metal complexes, derivatives with added alkyl groups, etc., such as PCBM ([6,6]-Phenyl-C61-Butyric Acid Methyl Ester). It will be done.
- PCBM [6,6]-Phenyl-C61-Butyric Acid Methyl Ester
- the second charge transport layer 133 may have a multilayer structure.
- the second charge transport layer 133 can be formed, for example, by a sol-gel method, a coating method, or the like.
- the thickness of the second charge transport layer 133 may vary greatly depending on its material, the structure of adjacent layers, etc., but may be, for example, 3 nm or more and 30 nm or less.
- the second electrode layer 14 is an electrode that makes a pair with the first electrode layer 12, and is a negative electrode in this embodiment.
- the second electrode layer 14 may be formed of a transparent conductive oxide, or may be formed of a composition in which metal or metal particles are bound together with a binder.
- the second electrode layer 14 made of metal or a material containing metal particles improves photoelectric conversion efficiency by reflecting light that has passed through the power generation layer 13 and making it enter the power generation layer 13 again.
- the second electrode layer 14 can be formed by laminating metal by a method such as sputtering or plating, or by applying and baking a conductive composition containing metal particles.
- the lower limit of the thickness of the second electrode layer 14 is preferably 10 nm, more preferably 20 nm.
- the upper limit of the thickness of the second electrode layer 14 is preferably 200 nm, more preferably 100 nm.
- the thickness of the second electrode layer 14 is preferably 200 nm, more preferably 100 nm.
- the first separation trench 15 separates the first electrode layer 12 between the subcells C.
- the first separation groove 15 may be formed by laser ablation performed after the first electrode layer 12 is laminated on the base sheet 11 and before the power generation layer 13 is laminated. Considering that it is formed by laser ablation, the width of the first separation groove 15 is preferably 10 ⁇ m or more and 200 ⁇ m or less, and more preferably 20 ⁇ m or more and 100 ⁇ m or less. This makes it possible to reliably separate the subcells C and secure the effective area of the subcells C.
- the second separation groove 16 is formed to electrically connect the first electrode layer 12 and the second electrode layer 14.
- the second separation groove 16 may be formed by laser ablation performed after the power generation layer 13 is laminated on the first electrode layer 12 in which the first separation groove 15 is formed and before the second electrode layer 14 is laminated. Thereby, the second electrode layer 14 extends into the second separation groove 16 and is connected to the first electrode layer 12.
- the width of the second separation groove 16 may be the same as the width of the first separation groove 15.
- the third separation groove 17 separates the first charge transport layer 131, the photoelectric conversion layer 132, the second charge transport layer 133, and the second electrode layer 14 between the subcells C.
- the third separation groove 17 may be formed by laser ablation performed after the second electrode layer 14 is laminated on the power generation layer 13 in which the second separation groove 16 is formed.
- the width of the third separation groove 17 may be the same as the width of the first separation groove 15.
- the interconnector 20 connects the second electrode layer 14 of the subcell C at one end in the second direction of the submodule 10 stacked on the light receiving surface side, and the external connection area E of the submodule 10 stacked on the side opposite to the light receiving surface. and the second electrode layer 14 are connected to each other.
- the interconnector 20 may be formed from a metal material and connected to the second electrode layer 14 by, for example, solder, conductive adhesive, or the like. Further, the interconnector 20 may include a base film and a conductive adhesive layer laminated on the base film, and may electrically connect the submodules 10 by the conductivity of the conductive adhesive layer.
- the solar cell module 1 having the above configuration is arranged such that one end of the sub-module 10 in the second direction overlaps the light-receiving surface side of the other end of the adjacent sub-module 10 in the second direction. At the same time, high photoelectric conversion efficiency can be achieved because current rate limiting is not caused in the subcell C of the submodule 10 on the side opposite to the light receiving surface.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Photovoltaic Devices (AREA)
Abstract
A solar battery module (1) according to one aspect of the present invention has high photoelectric conversion efficiency and comprises a plurality of sub-modules (10), each of which: has a transparent base sheet (11), a first electrode layer (12), a power generation layer (13), and a second electrode layer (14) in the stated order from the light reception surface side; has formed therein a plurality of first separation grooves (15), a plurality of second separation grooves (16), and a plurality of third separation grooves (17), all the grooves extending in a first direction; and has a plurality of sub-cells (C) which are electrically connected in series, an ineffective region (R) demarcated by the end part on one side in a second direction, and an external connection region (E) demarcated by the end part on the other side in the second direction. The plurality of sub-modules (10) are disposed such that the end part on the one side in the second direction of one of the sub-modules (10) overlaps the end part on the other side in the second direction of an adjacent one of the sub-modules (10) on the light reception surface side thereof. The width of the ineffective region (R) in the second direction is at most 20% of the pitch of the plurality of sub-cells (C) in the second direction. The width of the external connection region (E) in the second direction is smaller than the pitch of the plurality of sub-cells (C) in the second direction.
Description
本発明は、太陽電池モジュールに関する。
The present invention relates to a solar cell module.
1枚の基材上に複数の太陽電池サブセルを電気的に直列に接続した状態で形成した太陽電池サブモジュールが知られている。太陽電池をサブモジュール化することにより、サブセル間は無効領域となるため有効面積は低下するが、特に受光面側の電極における抵抗損を軽減できる。太陽電池を適切にサブモジュール化すれば、有効面積の低下よりも抵抗損の軽減による光電変換効率向上効果が上回る。
A solar cell submodule is known in which a plurality of solar cell subcells are electrically connected in series on a single base material. By making a solar cell into a submodule, the area between the subcells becomes an ineffective area, so the effective area decreases, but it is possible to reduce resistance loss, especially in the electrode on the light receiving surface side. If solar cells are appropriately made into submodules, the reduction in resistance loss will outweigh the reduction in effective area, which will improve photoelectric conversion efficiency.
サブモジュールは、基材に第1電極層を積層する工程、第1電極層を第1のレーザ照射により切断する工程、光電変換を行う発電層を積層する工程、発電層を第2のレーザ照射により切断する工程、第2電極層を積層する工程、並びに発電層及び第2電極層を第3のレーザ照射により切断する工程をこの順願に行い、第1のレーザ照射、第2のレーザ照射及び第3のレーザ照射の位置を順番に少しずつずらすことにより、電気的に直列に接続された複数の太陽電池サブセルを形成する方法により製造され得る。さらに、複数のサブモジュールを接続することにより、太陽電池モジュールを形成することも提案されている(例えば特許文献1参照)。
The submodule includes a step of laminating a first electrode layer on a base material, a step of cutting the first electrode layer by first laser irradiation, a step of laminating a power generation layer for photoelectric conversion, and a step of irradiating the power generation layer with a second laser. The steps of cutting the power generation layer and the second electrode layer by a third laser irradiation are performed in this order, and then the first laser irradiation, the second laser irradiation It can be manufactured by a method of forming a plurality of solar cell subcells electrically connected in series by sequentially shifting the position of third laser irradiation little by little. Furthermore, it has also been proposed to form a solar cell module by connecting a plurality of submodules (see, for example, Patent Document 1).
面積の大きいサブモジュールを形成するにはコストがかかるため、比較的小さい多数のサブモジュールを用いて太陽電池モジュールを製造することで、太陽電池モジュールの製造コストを抑制することができる。しかしながら、上述のようなサブモジュールは、端部にも発電に寄与しない無効領域が形成され得る。このため、多数のサブモジュールを用いると、無効領域の面積率が増大し、太陽電池モジュールの光電変換効率を制限する。このため、本発明は、光電変換効率が高い太陽電池モジュールを提供することを課題とする。
Since it is costly to form a submodule with a large area, manufacturing costs of the solar cell module can be suppressed by manufacturing the solar cell module using a large number of relatively small submodules. However, in the sub-module as described above, an ineffective region that does not contribute to power generation may be formed also at the end. Therefore, when a large number of submodules are used, the area ratio of the ineffective region increases, which limits the photoelectric conversion efficiency of the solar cell module. Therefore, an object of the present invention is to provide a solar cell module with high photoelectric conversion efficiency.
本発明の一態様に係る太陽電池モジュールは、透明な基材シートと、第1電極層と、発電層と、第2電極層とを受光面側からこの順番に有し、前記第1電極層を切断するよう第1方向に延びる複数の第1分離溝、前記発電層を切断するよう第1方向に延びる複数の第2分離溝、並びに前記発電層及び前記第2電極層のうち少なくとも前記第2電極層を切断するよう第1方向に延びる複数の第3分離溝が形成され、前記第1方向と交差する第2方向の一方側の端縁が前記第1分離溝により、他方側の端縁が前記第3分離溝により画定され、前記第2電極層が前記第2分離溝の中に延在することによって電気的に直列に接続される複数のサブセルと、前記第2方向の前記一方側の端部に画定される無効領域と、前記第2方向の前記他方側の端部に画定される外部接続領域と、をそれぞれ有する複数のサブモジュールを備え、複数のサブモジュールは、前記第2方向の前記一方側の端部を隣接するサブモジュールの前記第2方向の前記他方側の端部の前記受光面側に重ねて配置され、前記無効領域の前記第2方向の幅は、前記複数のサブセルの前記第2方向のピッチの20%以下であり、前記外部接続領域の前記第2方向の幅は、前記複数のサブセルの前記第2方向のピッチよりも小さい。
A solar cell module according to one aspect of the present invention includes a transparent base sheet, a first electrode layer, a power generation layer, and a second electrode layer in this order from the light-receiving surface side, and the first electrode layer a plurality of first separation grooves extending in a first direction so as to cut the power generation layer; a plurality of second separation grooves extending in the first direction so as to cut the power generation layer; A plurality of third separation grooves are formed extending in the first direction so as to cut the two electrode layers, and one edge in a second direction intersecting the first direction is formed by the first separation groove, and the other edge is a plurality of subcells whose edges are defined by the third separation trench and which are electrically connected in series by the second electrode layer extending into the second separation trench; and one of the subcells in the second direction. a plurality of sub-modules each having an ineffective area defined at one end of the side, and an external connection area defined at the other end in the second direction; The one end in the two directions is arranged to overlap the light receiving surface side of the other end in the second direction of an adjacent submodule, and the width of the invalid area in the second direction is The width of the external connection region in the second direction is less than 20% of the pitch of the plurality of subcells in the second direction, and the width of the external connection region in the second direction is smaller than the pitch of the plurality of subcells in the second direction.
上述の太陽電池モジュールにおいて、前記受光面側に重ねられる前記サブモジュールの前記第2方向の前記一方側の末端の前記サブセルと、前記受光面と反対側に重ねられる前記サブモジュールの前記外部接続領域との前記第2方向の重複幅は、前記外部接続領域との前記第2方向の幅よりも小さくてもよい。
In the above-described solar cell module, the subcell at the one end in the second direction of the submodule stacked on the light receiving surface side, and the external connection area of the submodule stacked on the side opposite to the light receiving surface. An overlap width in the second direction with the external connection area may be smaller than a width in the second direction with the external connection area.
上述の太陽電池モジュールは、前記受光面側に重ねられる前記サブモジュールの前記第2方向の前記一方側の末端の前記サブセルの前記第2電極層と、前記受光面と反対側に重ねられる前記サブモジュールの前記外部接続領域の前記第2電極層と、をそれぞれ接続する複数のインターコネクタをさらに備えてもよい。
The above solar cell module has the second electrode layer of the subcell at the one end in the second direction of the submodule stacked on the light receiving surface side, and the subcell stacked on the side opposite to the light receiving surface. The module may further include a plurality of interconnectors that respectively connect the external connection area of the module to the second electrode layer.
上述の太陽電池モジュールにおいて、前記発電層は、ペロブスカイト化合物を含む光電変換層を含んでもよい。
In the solar cell module described above, the power generation layer may include a photoelectric conversion layer containing a perovskite compound.
本発明によれば、光電変換効率が高い太陽電池モジュールを提供できる。
According to the present invention, a solar cell module with high photoelectric conversion efficiency can be provided.
以下、本発明の実施形態について、図面を参照しながら説明する。図1は、本発明の一実施形態に係る太陽電池モジュール1の構成を示す模式断面図である。なお、図面における種々部材の寸法は、便宜上、見やすいように調整されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic cross-sectional view showing the configuration of a solar cell module 1 according to an embodiment of the present invention. Note that the dimensions of various members in the drawings have been adjusted for convenience and ease of viewing.
太陽電池モジュール1は、第1方向(紙面奥行方向)に延在する帯状に形成され、第1方向と交差する第2方向(紙面左右方向)に並んで配設され、電気的に直列に接続される複数のサブセルCをそれぞれ有する複数のサブモジュール10と、サブモジュール10の間を接続する複数のインターコネクタ20と、を備える。複数のサブモジュール10は、第2方向の一方側(紙面左側)の端部を隣接するサブモジュール10の第2方向の他方側(紙面右側)の端部の受光面側(紙面上側)に重ねて配置される。なお、太陽電池モジュール1は、例えばサブモジュール10を一列に接続したいわゆるストリングのように、より上位のモジュールに組み込まれるサブモジュールであってもよい。
The solar cell modules 1 are formed in a band shape extending in a first direction (depth direction in the paper), are arranged side by side in a second direction (horizontal direction in the paper) intersecting the first direction, and are electrically connected in series. A plurality of submodules 10 each having a plurality of subcells C, and a plurality of interconnectors 20 connecting between the submodules 10 are provided. The plurality of sub-modules 10 are stacked such that the end on one side in the second direction (left side in the paper) overlaps the light-receiving surface side (upper side in the paper) of the end of the adjacent sub-module 10 on the other side in the second direction (right side in the paper). will be placed. Note that the solar cell module 1 may be a submodule that is incorporated into a higher-level module, such as a so-called string in which submodules 10 are connected in a row.
サブモジュール10は、透明な基材シート11と、第1電極層12と、発電層13と、第2電極層14とを受光面側からこの順番に有する。サブモジュール10は、これらの層の一部を第1方向に延びる複数の第1分離溝15、複数の第2分離溝16及び複数の第3分離溝17によって切断することにより、それぞれ1方向に延在する帯状に形成され、第1方向と交差する第2方向に並ぶ複数のサブセルCと、サブセルCの間にそれぞれ形成され、隣接するサブセルCを電気的に接続する複数の中間接続部Mと、第2方向の一方側の端部に形成される無効領域Rと、第2方向の他方側の端部に形成される外部接続領域Eと、を画定する。なお、簡略化して示す図1において、サブモジュール10が有するサブセルCの数は3つであるが、実際にはより多数のサブセルCを有し得る。太陽電池モジュール1では、サブモジュール10の端部を重ねて配置することによって、外部接続領域Eの受光面側に隣接するサブモジュール10のサブセルCを配置することで、実効的なサブセルCの面積率、ひいては太陽電池モジュール1の面積当たりの光電変換効率を向上することができる。
The sub-module 10 includes a transparent base sheet 11, a first electrode layer 12, a power generation layer 13, and a second electrode layer 14 in this order from the light-receiving surface side. The sub-module 10 is constructed by cutting a portion of these layers with a plurality of first separation grooves 15, a plurality of second separation grooves 16, and a plurality of third separation grooves 17 extending in the first direction. A plurality of subcells C formed in an extending band shape and lined up in a second direction intersecting the first direction, and a plurality of intermediate connecting portions M formed between the subcells C and electrically connecting adjacent subcells C. , an invalid region R formed at one end in the second direction, and an external connection region E formed at the other end in the second direction. Although the submodule 10 has three subcells C in FIG. 1 shown in a simplified manner, it may actually have a larger number of subcells C. In the solar cell module 1, by arranging the ends of the sub-modules 10 so as to overlap each other, the effective area of the sub-cells C can be Therefore, the photoelectric conversion efficiency per area of the solar cell module 1 can be improved.
より詳しくは、第1分離溝15、第2分離溝16及び第3分離溝17は、第2方向他方側から一方側にこの順番で接近するよう、等しいピッチで形成される。第1分離溝15は第1電極層12を切断し、第2分離溝16は発電層13を切断し、第3分離溝17は発電層13及び第2電極層14のうち少なくとも第2電極層14を切断する。これにより、第1分離溝15はサブセルCの第2方向一方側の端縁を画定し、第3分離溝はサブセルCの有効領域の第2方向他方側の端縁を画定し、第2分離溝16その中に第2電極層14が延在することによるサブセルC間の電気的接続を提供する。つまり、第1電極層12、発電層13及び第2電極層14の全てが連続して存在する範囲が、一体的に電力を発生させる1つのサブセルCであり、サブセルCの間の第1分離溝15、第2分離溝16及び第3分離溝17が互いに接近して形成される範囲が中間接続部Mである。
More specifically, the first separation groove 15, the second separation groove 16, and the third separation groove 17 are formed at equal pitches so that they approach in this order from the other side to the one side in the second direction. The first separation groove 15 cuts the first electrode layer 12, the second separation groove 16 cuts the power generation layer 13, and the third separation groove 17 cuts the power generation layer 13 and the second electrode layer 14. Cut 14. As a result, the first separation groove 15 defines the edge of the subcell C on one side in the second direction, the third separation groove defines the edge of the effective area of the subcell C on the other side in the second direction, and the third separation groove 15 defines the edge of the effective area of the subcell C on the other side in the second direction. Grooves 16 provide electrical connections between subcells C by which second electrode layers 14 extend. In other words, the range in which the first electrode layer 12, the power generation layer 13, and the second electrode layer 14 all exist continuously is one subcell C that integrally generates electric power, and the first separation between the subcells C is An intermediate connection portion M is a region where the groove 15, the second separation groove 16, and the third separation groove 17 are formed close to each other.
サブモジュール10において、無効領域Rは、電気的には不必要であるが、第2方向の一方側の端部のサブセルCを保護するために設けられる。無効領域Rの第2方向の幅は、複数のサブセルCの第2方向のピッチ(サブセルCの幅と中間接続部Mの幅の和)の20%以下とされる。これにより、受光面と反対側に重ねられるサブモジュール10のサブセルCの遮光面積を小さくし、無効領域Rに遮光されるサブセルCに起因して電流律速が生じることを防止できる。
In the sub-module 10, the invalid region R is electrically unnecessary, but is provided to protect the sub-cell C at one end in the second direction. The width of the invalid region R in the second direction is 20% or less of the pitch of the plurality of subcells C in the second direction (the sum of the width of the subcells C and the width of the intermediate connection portion M). Thereby, the light-blocking area of the sub-cells C of the sub-module 10 stacked on the side opposite to the light-receiving surface can be reduced, and current rate-limiting can be prevented from occurring due to the sub-cells C being light-blocked by the ineffective region R.
一方、外部接続領域Eは、第2方向の他方側の端部のサブセルCの第1電極層12を隣接するサブモジュール10又は太陽電池モジュール1の外部回路に電気的に接続するための中継端子として第2電極層14を提供する。外部接続領域Eの第2方向の幅は、複数のサブセルCの第2方向のピッチよりも小さい。これにより、受光面側に重ねられる太陽電池モジュール1の第1方向一方側の端部のサブセルCの第2電極層14と受光面と反対側に重ねられる太陽電池モジュール1の外部接続領域Eの第2電極層14とに跨ってインターコネクタ20を配置することができる。
On the other hand, the external connection area E is a relay terminal for electrically connecting the first electrode layer 12 of the subcell C at the other end in the second direction to the external circuit of the adjacent submodule 10 or the solar cell module 1. The second electrode layer 14 is provided as a. The width of the external connection region E in the second direction is smaller than the pitch of the plurality of subcells C in the second direction. Thereby, the second electrode layer 14 of the subcell C at one end in the first direction of the solar cell module 1 stacked on the light receiving surface side and the external connection area E of the solar cell module 1 stacked on the side opposite to the light receiving surface. The interconnector 20 can be placed across the second electrode layer 14.
受光面側に重ねられるサブモジュール10の第2方向の一方側の末端のサブセルCと、受光面と反対側に重ねられるサブモジュール10の外部接続領域Eとの第2方向の重複幅は、外部接続領域Eの第2方向の幅よりも小さいことが好ましい。これにより、受光面と反対側に重ねられるサブモジュール10の第2方向の他方側の末端のサブセルCが受光面側に重ねられるサブモジュール10によって覆われる面積を小さくできるので、受光面側に重ねられるサブモジュール10に遮光されるサブセルCに起因して電流律速が生じることを防止できる。
The overlap width in the second direction between the subcell C at one end in the second direction of the submodule 10 stacked on the light receiving surface side and the external connection area E of the submodule 10 stacked on the opposite side to the light receiving surface is the width of the overlap in the second direction. It is preferable that the width is smaller than the width of the connection region E in the second direction. As a result, the area covered by the sub-module 10 on the other side in the second direction of the sub-module 10 stacked on the side opposite to the light-receiving surface can be reduced, so that the area covered by the sub-module 10 stacked on the light-receiving surface side can be reduced. It is possible to prevent current rate-limiting from occurring due to the subcell C being shielded from light by the submodule 10.
基材シート11は、サブモジュール10の強度を担保する構造部材である。本実施形態において、基材シート11は、例えばポリイミド、ポリアミド、ポリエチレンテレフタレート等の樹脂から形成され得る。また、基材シート11は、可撓性を有するサブモジュール10を形成するために、可撓性を有する樹脂フィルムから形成されてもよい。
The base sheet 11 is a structural member that ensures the strength of the submodule 10. In this embodiment, the base sheet 11 may be made of resin such as polyimide, polyamide, polyethylene terephthalate, or the like. Further, the base sheet 11 may be formed from a flexible resin film in order to form the flexible submodule 10.
第1電極層12は、発電層13で生成された第1の電荷を収集して隣接するサブセルC又は外部に出力する。本実施形態において、第1電極層12は、正孔を収集する正極である。第1電極層12は、透明導電性酸化物(TCO:Transparent Conductive Oxide)から形成される。第1電極層12を形成する透明導電性酸化物としては、例えば、酸化インジウム、酸化スズ、酸化亜鉛、酸化チタン及びそれらの複合酸化物等を用いることができる。これらの中でも、酸化インジウムを主成分とするインジウム系複合酸化物が好ましい。高い導電率と透明性の観点からは、インジウム酸化物が特に好ましい。さらに、信頼性又はより高い導電率を確保するために、インジウム酸化物にドーパントを添加することが好ましい。ドーパントとしては、例えば、Sn、W、Zn、Ti、Ce、Zr、Mo、Al、Ga、Ge、As、Si、S等が挙げられる。特に好適な例として、インジウム酸化物にスズが添加されたITO(Indium Tin Oxide)が広く知られている。第1電極層12は、例えばスパッタリング法、真空蒸着法などの方法で積層され得る。
The first electrode layer 12 collects the first charge generated in the power generation layer 13 and outputs it to the adjacent subcell C or to the outside. In this embodiment, the first electrode layer 12 is a positive electrode that collects holes. The first electrode layer 12 is formed from transparent conductive oxide (TCO). As the transparent conductive oxide forming the first electrode layer 12, for example, indium oxide, tin oxide, zinc oxide, titanium oxide, and composite oxides thereof can be used. Among these, indium-based composite oxides containing indium oxide as a main component are preferred. Indium oxide is particularly preferred from the viewpoint of high conductivity and transparency. Furthermore, it is preferred to add dopants to the indium oxide to ensure reliability or higher conductivity. Examples of the dopant include Sn, W, Zn, Ti, Ce, Zr, Mo, Al, Ga, Ge, As, Si, and S. As a particularly suitable example, ITO (Indium Tin Oxide), which is indium oxide to which tin is added, is widely known. The first electrode layer 12 may be laminated by, for example, a sputtering method, a vacuum evaporation method, or the like.
第1電極層12の厚みの下限としては、5nmが好ましく、10nmがより好ましい。一方、第1電極層12の厚みの上限としては、100nmが好ましく、50nmがより好ましい。第1電極層12の厚みを前記下限以上とすることによって、電気抵抗を小さくすることができるのでサブモジュール10光電変換効率を向上できる。また、第1電極層12の厚みを前記上限以下とすることによって、不必要なコスト増や可撓性の低下を防止できる。第1電極層12は、例えば多結晶ITO層と非晶質ITO層との積層構造等の多層構造を有してもよい。
The lower limit of the thickness of the first electrode layer 12 is preferably 5 nm, more preferably 10 nm. On the other hand, the upper limit of the thickness of the first electrode layer 12 is preferably 100 nm, more preferably 50 nm. By setting the thickness of the first electrode layer 12 to be equal to or greater than the lower limit, the electrical resistance can be reduced, and the photoelectric conversion efficiency of the submodule 10 can be improved. Moreover, by making the thickness of the first electrode layer 12 below the above-mentioned upper limit, unnecessary increase in cost and decrease in flexibility can be prevented. The first electrode layer 12 may have a multilayer structure, such as a stacked structure of a polycrystalline ITO layer and an amorphous ITO layer, for example.
発電層13は、入射した光を電力に変換する層であり、第1電荷輸送層131と、光電変換層132と、第2電荷輸送層133とを有する多層構造とされ得る。発電層13は、さらなる機能層を有してもよい。
The power generation layer 13 is a layer that converts incident light into electric power, and may have a multilayer structure including a first charge transport layer 131, a photoelectric conversion layer 132, and a second charge transport layer 133. The power generation layer 13 may have further functional layers.
第1電荷輸送層131は、光電変換層132で発生する第1の極性の電荷を通過させる層であり、本実施形態では正孔を第1電極層12に伝達する正孔輸送層(HTL)が企図されている。第1電荷輸送層131は、例えば酸化ニッケル(NiO)、酸化銅(Cu2O)等の金属酸化物、例えばPTAA(Poly(bis(4-phenyl)(2,4,6-trimethylphenyl)amine))、Spiro-MeOTAD等の有機物から生成され得る。また、第1電荷輸送層131は、自己組織化単分子膜(SAM:Self-Assembled Monolayers)から形成されてもよい。自己組織化単分子膜からなる第1電荷輸送層131は、例えば2PACz([2-(9H-Carbazol-9-yl)ethyl]phosphonic Acid)、MeO-2PACz([2-(3,6-Dimethoxy-9H-carbazol-9-yl)ethyl]phosphonic Acid)、Me-4PACz([4-(3,6-Dimethyl-9H-carbazol-9-yl)butyl]phosphonic Acid)等によって形成され得る。
The first charge transport layer 131 is a layer that allows charges of the first polarity generated in the photoelectric conversion layer 132 to pass through, and in this embodiment, is a hole transport layer (HTL) that transports holes to the first electrode layer 12. is planned. The first charge transport layer 131 is made of a metal oxide such as nickel oxide (NiO) or copper oxide (Cu 2 O), such as PTAA (Poly(bis(4-phenyl)(2,4,6-trimethylphenyl)amine). ), Spiro-MeOTAD, etc. Further, the first charge transport layer 131 may be formed from self-assembled monolayers (SAM). The first charge transport layer 131 made of a self-assembled monolayer is, for example, 2PACz ([2-(9H-Carbazol-9-yl)ethyl]phosphonic Acid), MeO-2PACz ([2-(3,6-Dimethoxy -9H-carbazol-9-yl)ethyl]phosphonic Acid), Me-4PACz ([4-(3,6-Dimethyl-9H-carbazol-9-yl)butyl]phosphonic Acid), and the like.
第1電荷輸送層131は、例えばスパッタリング法、真空蒸着法などの方法により形成され得る。また、第1電荷輸送層131が有機物を含む場合、第1電荷輸送層131は例えば有機物の溶液の塗工及び乾燥等の方法により形成され得る。自己組織化単分子膜からなる第1電荷輸送層131は、自己組織化単分子膜形成材料を例えばエタノール、イソプロパノール等の有機溶媒に溶解してなる単分子膜形成材料溶液の塗工及び乾燥によって形成され得る。単分子膜形成材料溶液の塗工は、例えばスピンコート法等によって行うことが好ましい。第1電荷輸送層131の厚みは、その材料、隣接する層の構成等により大きく異なり得るが、例えば1nm以上200nm以下とすることができ、特に自己組織化単分子膜である場合には材料分子の厚みとされ得る。
The first charge transport layer 131 may be formed by, for example, a sputtering method, a vacuum evaporation method, or the like. Further, when the first charge transport layer 131 contains an organic substance, the first charge transport layer 131 may be formed by, for example, applying a solution of the organic substance and drying it. The first charge transport layer 131 made of a self-assembled monolayer is formed by coating and drying a monolayer-forming material solution prepared by dissolving the self-assembled monolayer-forming material in an organic solvent such as ethanol or isopropanol. can be formed. The monomolecular film forming material solution is preferably applied by, for example, a spin coating method. The thickness of the first charge transport layer 131 can vary greatly depending on its material, the structure of adjacent layers, etc., but can be, for example, 1 nm or more and 200 nm or less, and especially when it is a self-assembled monolayer, the material molecule The thickness can be as follows.
光電変換層132は、入射光を吸収して光キャリア(電子及び正孔)を生成する。光電変換層132は、ペロブスカイト化合物を含むことが好ましい。ペロブスカイト化合物を含む光電変換層132を有するサブセルCでは、相対的に第1電極層12の抵抗損が大きくなりやすいため、サブセルCのピッチを小さくすることが望まれる。このため、受光面側に重ねられるサブモジュール10に遮光されるサブセルCに起因して電流律速が生じることを防止する効果が顕著となる。
The photoelectric conversion layer 132 absorbs incident light and generates photocarriers (electrons and holes). The photoelectric conversion layer 132 preferably contains a perovskite compound. In the subcell C having the photoelectric conversion layer 132 containing a perovskite compound, the resistance loss of the first electrode layer 12 tends to be relatively large, so it is desirable to reduce the pitch of the subcell C. Therefore, the effect of preventing current rate-limiting from occurring due to the subcell C being shielded from light by the submodule 10 stacked on the light-receiving surface side becomes significant.
光電変換層132に含まれるペロブスカイト化合物としては、1価の有機アンモニウムイオン及びアミジニウム系イオンのうちの少なくとも1種を含む有機原子A、2価の金属イオンを生成する金属原子B、及びヨウ化物イオンI、臭化物イオンBr、塩化物イオンCl、及びフッ化物イオンFのうちの少なくとも1種を含むハロゲン原子Xを含み、ABX3で表される化合物を用いることができる。中でも、光電変換層132を蒸着法(ドライプロセス)により形成する場合、有機原子AとしてはメチルアンモニウムMA(CH3NH3)が好ましく、金属原子Bとしては鉛Pbが好ましく、ハロゲン原子Xとしてはヨウ化物I、臭化物イオンBr及び塩化物イオンClのうちの少なくとも1つが好ましい。
The perovskite compound contained in the photoelectric conversion layer 132 includes an organic atom A containing at least one of a monovalent organic ammonium ion and an amidinium ion, a metal atom B generating a divalent metal ion, and an iodide ion. A compound represented by ABX 3 containing a halogen atom X containing at least one of I, bromide ion Br, chloride ion Cl, and fluoride ion F can be used. Among them, when the photoelectric conversion layer 132 is formed by a vapor deposition method (dry process), methylammonium MA (CH 3 NH 3 ) is preferable as the organic atom A, lead Pb is preferable as the metal atom B, and as the halogen atom At least one of iodide I, bromide ion Br and chloride ion Cl is preferred.
具体的に、好ましいペロブスカイト化合物としては、メチルアンモニウムハロゲン化鉛MAPbX3(CH3NH3PbX3)、MAPbI3、MAPbBr3、MAPbCl3等が挙げられる。なお、ハロゲン原子Xとしては複数種類を含んでもよい。ヨウ化物Iと他のハロゲン原子Xとを含むペロブスカイト化合物としては、例えばメチルアンモニウムヨウ化鉛MAPbIyX(3-y)(CH3NH3PbIyX(3-y))、MAPbIyBr(3-y)、MAPbIyCl(3-y)等が挙げられる(yは任意の正の整数)。
Specifically, preferred perovskite compounds include methylammonium lead halide MAPbX 3 (CH 3 NH 3 PbX 3 ), MAPbI 3 , MAPbBr 3 , MAPbCl 3 and the like. Note that the halogen atom X may include a plurality of types. Examples of perovskite compounds containing iodide I and other halogen atoms X include methylammonium lead iodide MAPbI y X (3-y) (CH 3 NH 3 PbI y X (3-y) ), MAPbI y Br ( 3-y) , MAPbI y Cl (3-y) , etc. (y is any positive integer).
ペロブスカイト化合物を含む光電変換層132は、ペロブスカイト化合物がメチルアンモニウムハロゲン化鉛(MAPbX3(CH3NH3PbX3))である場合、光電変換層132は、ハロゲン化鉛(PbX2)材料及びハロゲン化メチルアンモニウム(MAX)材料を順に製膜し、これらの材料の薄膜を反応温度で反応させることにより形成され得る。例えば、ペロブスカイト化合物がメチルアンモニウムヨウ化鉛(MAPbIyX(3-y)(CH3NH3PbIyX(3-y)))である場合、光電変換層132は、例えばハロゲン化鉛(PbX2)材料及びヨウ化メチルアンモニウム(MAI)材料を順に製膜し、これらの材料の薄膜を反応温度で反応させることにより形成される。また、光電変換層132は、例えば液相の塗膜内でペロブスカイト化合物を合成するゾルゲル法、予め合成されたペロブスカイト化合物を含む溶液を塗布する塗布法等の方法によっても形成され得る。
When the perovskite compound is methylammonium lead halide (MAPbX 3 (CH 3 NH 3 PbX 3 )), the photoelectric conversion layer 132 includes a lead halide (PbX 2 ) material and halogen. It can be formed by sequentially depositing methylammonium chloride (MAX) materials and reacting thin films of these materials at reaction temperatures. For example, when the perovskite compound is methylammonium lead iodide (MAPbI y X (3-y) (CH 3 NH 3 PbI y ) material and methylammonium iodide (MAI) material are sequentially formed into films, and the thin films of these materials are reacted at a reaction temperature. The photoelectric conversion layer 132 can also be formed, for example, by a sol-gel method in which a perovskite compound is synthesized within a liquid phase coating film, a coating method in which a solution containing a pre-synthesized perovskite compound is applied, or the like.
光電変換層132の厚みとしては、形成材料等にもよるが、光の吸収率を大きくしつつ、生成する電荷の移動距離を小さくするために、100nm以上1000nm以下とすることが好ましい。
Although the thickness of the photoelectric conversion layer 132 depends on the forming material, etc., it is preferably 100 nm or more and 1000 nm or less in order to increase the light absorption rate and reduce the migration distance of the generated charges.
第2電荷輸送層133は、光電変換層132で発生する第2の極性の電荷を通過させる層であり、本実施形態では電子を第2電極層14に伝達する電子輸送層(ETL)である。電子輸送層である第2電荷輸送層133の主材料としては、例えば、PTAA(Poly(bis(4-phenyl)(2,4,6-trimethylphenyl)amine))、Spiro-MeOTAD、フラーレン等が挙げられる。フラーレンとしては、例えばC60、C70、これらの水素化物、酸化物、金属錯体、アルキル基等を付加した誘導体、例えば、PCBM([6,6]-Phenyl-C61-Butyric Acid Methyl Ester)などが挙げられる。特に第2電荷輸送層133をリチウムLiを内包させたフラーレンを含む材料から形成することにより、電子の輸送効率を向上することができる。また、第2電荷輸送層133は、多層構造を有してもよい。
The second charge transport layer 133 is a layer that allows charges of the second polarity generated in the photoelectric conversion layer 132 to pass through, and in this embodiment, is an electron transport layer (ETL) that transmits electrons to the second electrode layer 14. . Examples of the main material of the second charge transport layer 133, which is an electron transport layer, include PTAA (Poly(bis(4-phenyl)(2,4,6-trimethylphenyl)amine)), Spiro-MeOTAD, fullerene, etc. It will be done. Examples of fullerenes include C60, C70, their hydrides, oxides, metal complexes, derivatives with added alkyl groups, etc., such as PCBM ([6,6]-Phenyl-C61-Butyric Acid Methyl Ester). It will be done. In particular, by forming the second charge transport layer 133 from a material containing fullerene containing lithium Li, electron transport efficiency can be improved. Further, the second charge transport layer 133 may have a multilayer structure.
第2電荷輸送層133は、例えばゾルゲル法、塗布法等の方法により形成され得る。第2電荷輸送層133の厚みとしては、その材料、隣接する層の構成等により大きく異なり得るが、例えば3nm以上30nm以下とされ得る。
The second charge transport layer 133 can be formed, for example, by a sol-gel method, a coating method, or the like. The thickness of the second charge transport layer 133 may vary greatly depending on its material, the structure of adjacent layers, etc., but may be, for example, 3 nm or more and 30 nm or less.
第2電極層14は、第1電極層12と対をなす電極であり、本実施形態では負極である。第2電極層14は、透明導電性酸化物によって形成されてもよく、金属又は金属粒子をバインダで結合した組成物から形成されてもよい。金属又は金属粒子を含む材料から形成される第2電極層14は、発電層13を透過した光を反射して発電層13に再度入射させることにより光電変換効率を向上する。第2電極層14は、スパッタリング、めっき等の方法により金属を積層することによって、又は金属粒子を含む導電性組成物の塗工及び焼成によって形成することができる。第2電極層14の厚みの下限としては、10nmが好ましく、20nmがより好ましい。一方、第2電極層14の厚みの上限としては、200nmが好ましく、100nmがより好ましい。第2電極層14の厚みを前記下限以上とすることによって、集電抵抗を十分に小さくできる。また、第2電極層14の厚みを前記上限以下とすることによって、第3分離溝17の形成が容易となる。
The second electrode layer 14 is an electrode that makes a pair with the first electrode layer 12, and is a negative electrode in this embodiment. The second electrode layer 14 may be formed of a transparent conductive oxide, or may be formed of a composition in which metal or metal particles are bound together with a binder. The second electrode layer 14 made of metal or a material containing metal particles improves photoelectric conversion efficiency by reflecting light that has passed through the power generation layer 13 and making it enter the power generation layer 13 again. The second electrode layer 14 can be formed by laminating metal by a method such as sputtering or plating, or by applying and baking a conductive composition containing metal particles. The lower limit of the thickness of the second electrode layer 14 is preferably 10 nm, more preferably 20 nm. On the other hand, the upper limit of the thickness of the second electrode layer 14 is preferably 200 nm, more preferably 100 nm. By setting the thickness of the second electrode layer 14 to be equal to or greater than the lower limit, current collection resistance can be made sufficiently small. Further, by setting the thickness of the second electrode layer 14 to be less than or equal to the upper limit, the third separation groove 17 can be easily formed.
第1分離溝15は、サブセルCの間で第1電極層12を分離する。第1分離溝15は、基材シート11に第1電極層12を積層した後、発電層13を積層する前に行われるレーザアブレーションによって形成され得る。第1分離溝15の幅としては、レーザアブレーションにより形成することを考慮すると、10μm以上200μm以下とされることが好ましく、20μm以上100μm以下とされることがより好ましい。これにより、サブセルC間の確実な分離とサブセルCの有効面積の確保とが可能となる。
The first separation trench 15 separates the first electrode layer 12 between the subcells C. The first separation groove 15 may be formed by laser ablation performed after the first electrode layer 12 is laminated on the base sheet 11 and before the power generation layer 13 is laminated. Considering that it is formed by laser ablation, the width of the first separation groove 15 is preferably 10 μm or more and 200 μm or less, and more preferably 20 μm or more and 100 μm or less. This makes it possible to reliably separate the subcells C and secure the effective area of the subcells C.
第2分離溝16は、第1電極層12と第2電極層14とを電気的に接続するために形成される。第2分離溝16は、第1分離溝15が形成された第1電極層12に発電層13を積層した後、第2電極層14を積層する前に行われるレーザアブレーションによって形成され得る。これにより、第2電極層14が第2分離溝16の中に延在し、第1電極層12と接続される。第2分離溝16の幅は、第1分離溝15の幅と同様とされ得る。
The second separation groove 16 is formed to electrically connect the first electrode layer 12 and the second electrode layer 14. The second separation groove 16 may be formed by laser ablation performed after the power generation layer 13 is laminated on the first electrode layer 12 in which the first separation groove 15 is formed and before the second electrode layer 14 is laminated. Thereby, the second electrode layer 14 extends into the second separation groove 16 and is connected to the first electrode layer 12. The width of the second separation groove 16 may be the same as the width of the first separation groove 15.
第3分離溝17は、サブセルCの間で第1電荷輸送層131、光電変換層132、第2電荷輸送層133及び第2電極層14を分離する。第3分離溝17は、第2分離溝16が形成された発電層13に第2電極層14を積層した後に行われるレーザアブレーションによって形成され得る。第3分離溝17の幅は、第1分離溝15の幅と同様とされ得る。
The third separation groove 17 separates the first charge transport layer 131, the photoelectric conversion layer 132, the second charge transport layer 133, and the second electrode layer 14 between the subcells C. The third separation groove 17 may be formed by laser ablation performed after the second electrode layer 14 is laminated on the power generation layer 13 in which the second separation groove 16 is formed. The width of the third separation groove 17 may be the same as the width of the first separation groove 15.
インターコネクタ20は、受光面側に重ねられるサブモジュール10の第2方向の一方側の末端のサブセルCの第2電極層14と、受光面と反対側に重ねられるサブモジュール10の外部接続領域Eの第2電極層14と、をそれぞれ接続する。インターコネクタ20は、金属材料から形成され、例えば半田、導電性接着剤等により第2電極層14に接続されてもよい。また、インターコネクタ20は、基材フィルムと基材フィルムに積層される導電性接着剤層とを有し、導電性接着剤層の導電性によりサブモジュール10を電気的に接続してもよい。
The interconnector 20 connects the second electrode layer 14 of the subcell C at one end in the second direction of the submodule 10 stacked on the light receiving surface side, and the external connection area E of the submodule 10 stacked on the side opposite to the light receiving surface. and the second electrode layer 14 are connected to each other. The interconnector 20 may be formed from a metal material and connected to the second electrode layer 14 by, for example, solder, conductive adhesive, or the like. Further, the interconnector 20 may include a base film and a conductive adhesive layer laminated on the base film, and may electrically connect the submodules 10 by the conductivity of the conductive adhesive layer.
以上のような構成を有する太陽電池モジュール1は、サブモジュール10の第2方向の一方側の端部を隣接するサブモジュール10の第2方向の他方側の端部の受光面側に重ねて配置しつつ、受光面と反対側のサブモジュール10のサブセルCに電流律速を生じさせないようにしたため、高い光電変換効率を実現できる。
The solar cell module 1 having the above configuration is arranged such that one end of the sub-module 10 in the second direction overlaps the light-receiving surface side of the other end of the adjacent sub-module 10 in the second direction. At the same time, high photoelectric conversion efficiency can be achieved because current rate limiting is not caused in the subcell C of the submodule 10 on the side opposite to the light receiving surface.
以上、本発明の実施形態について説明したが、本発明は上述した実施形態に限定されることなく、種々の変更及び変形が可能である。
Although the embodiments of the present invention have been described above, the present invention is not limited to the embodiments described above, and various changes and modifications can be made.
1 太陽電池モジュール
10 サブモジュール
20 インターコネクタ
11 基材シート
12 第1電極層
13 発電層
131 第1電荷輸送層
132 光電変換層
133 第2電荷輸送層
14 第2電極層
15 第1分離溝
16 第2分離溝
17 第3分離溝
C サブセル
E 外部接続領域
M 中間接続部
R 無効領域 1Solar cell module 10 Submodule 20 Interconnector 11 Base sheet 12 First electrode layer 13 Power generation layer 131 First charge transport layer 132 Photoelectric conversion layer 133 Second charge transport layer 14 Second electrode layer 15 First separation groove 16 2 separation groove 17 3rd separation groove C Subcell E External connection area M Intermediate connection area R Invalid area
10 サブモジュール
20 インターコネクタ
11 基材シート
12 第1電極層
13 発電層
131 第1電荷輸送層
132 光電変換層
133 第2電荷輸送層
14 第2電極層
15 第1分離溝
16 第2分離溝
17 第3分離溝
C サブセル
E 外部接続領域
M 中間接続部
R 無効領域 1
Claims (4)
- 透明な基材シートと、第1電極層と、発電層と、第2電極層とを受光面側からこの順番に有し、
前記第1電極層を切断するよう第1方向に延びる複数の第1分離溝、前記発電層を切断するよう第1方向に延びる複数の第2分離溝、並びに前記発電層及び前記第2電極層のうち少なくとも前記第2電極層を切断するよう第1方向に延びる複数の第3分離溝が形成され、
前記第1方向と交差する第2方向の一方側の端縁が前記第1分離溝により、他方側の端縁が前記第3分離溝により画定され、前記第2電極層が前記第2分離溝の中に延在することによって電気的に直列に接続される複数のサブセルと、
前記第2方向の前記一方側の端部に画定される無効領域と、前記第2方向の前記他方側の端部に画定される外部接続領域と、
をそれぞれ有する複数のサブモジュールを備え、
複数のサブモジュールは、前記第2方向の前記一方側の端部を隣接するサブモジュールの前記第2方向の前記他方側の端部の前記受光面側に重ねて配置され、
前記無効領域の前記第2方向の幅は、前記複数のサブセルの前記第2方向のピッチの20%以下であり、
前記外部接続領域の前記第2方向の幅は、前記複数のサブセルの前記第2方向のピッチよりも小さい、太陽電池モジュール。 It has a transparent base sheet, a first electrode layer, a power generation layer, and a second electrode layer in this order from the light receiving surface side,
A plurality of first separation grooves extending in a first direction so as to cut the first electrode layer, a plurality of second separation grooves extending in the first direction so as to cut the power generation layer, and the power generation layer and the second electrode layer. A plurality of third separation grooves extending in the first direction are formed to cut at least the second electrode layer,
One edge in a second direction intersecting the first direction is defined by the first separation groove, and the other edge is defined by the third separation groove, and the second electrode layer is defined by the second separation groove. a plurality of subcells electrically connected in series by extending into the subcells;
an invalid area defined at the one end in the second direction; an external connection area defined at the other end in the second direction;
It has multiple submodules each having
The plurality of sub-modules are arranged such that the one end in the second direction overlaps the light-receiving surface side of the other end in the second direction of an adjacent sub-module,
The width of the invalid area in the second direction is 20% or less of the pitch of the plurality of subcells in the second direction,
In the solar cell module, the width of the external connection area in the second direction is smaller than the pitch of the plurality of subcells in the second direction. - 前記受光面側に重ねられる前記サブモジュールの前記第2方向の前記一方側の末端の前記サブセルと、前記受光面と反対側に重ねられる前記サブモジュールの前記外部接続領域との前記第2方向の重複幅は、前記外部接続領域との前記第2方向の幅よりも小さい、請求項1に記載の太陽電池モジュール。 the subcell at the end of the one side in the second direction of the submodule stacked on the light receiving surface side, and the external connection area of the submodule stacked on the opposite side to the light receiving surface in the second direction; The solar cell module according to claim 1, wherein an overlapping width is smaller than a width in the second direction with the external connection area.
- 前記受光面側に重ねられる前記サブモジュールの前記第2方向の前記一方側の末端の前記サブセルの前記第2電極層と、前記受光面と反対側に重ねられる前記サブモジュールの前記外部接続領域の前記第2電極層と、をそれぞれ接続する複数のインターコネクタをさらに備える、請求項1又は2に記載の太陽電池モジュール。 the second electrode layer of the subcell at the one end in the second direction of the submodule stacked on the light receiving surface side; and the external connection region of the submodule stacked on the side opposite to the light receiving surface. The solar cell module according to claim 1 or 2, further comprising a plurality of interconnectors that respectively connect the second electrode layer.
- 前記発電層は、ペロブスカイト化合物を含む光電変換層を含む、請求項1から3のいずれかに記載の太陽電池モジュール。 The solar cell module according to any one of claims 1 to 3, wherein the power generation layer includes a photoelectric conversion layer containing a perovskite compound.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202380016899.3A CN118542083A (en) | 2022-03-31 | 2023-03-22 | Solar cell module |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-058920 | 2022-03-31 | ||
JP2022058920 | 2022-03-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023189906A1 true WO2023189906A1 (en) | 2023-10-05 |
Family
ID=88201217
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/011131 WO2023189906A1 (en) | 2022-03-31 | 2023-03-22 | Solar battery module |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN118542083A (en) |
WO (1) | WO2023189906A1 (en) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0745852A (en) * | 1993-07-28 | 1995-02-14 | Fuji Electric Co Ltd | Roof for solar power generation |
JPH07217087A (en) * | 1994-01-28 | 1995-08-15 | Fuji Electric Co Ltd | Sunlight generating house |
JP2001036125A (en) * | 1999-07-23 | 2001-02-09 | Sanyo Electric Co Ltd | Photovoltaic power generation device |
JP2001111087A (en) * | 1999-10-07 | 2001-04-20 | Kanegafuchi Chem Ind Co Ltd | Solar battery module |
JP2001111083A (en) * | 1999-10-07 | 2001-04-20 | Kubota Corp | Solar cell module |
JP2009158864A (en) * | 2007-12-27 | 2009-07-16 | Sanyo Electric Co Ltd | Solar cell module, and manufacturing method of the same |
WO2010029880A1 (en) * | 2008-09-10 | 2010-03-18 | 三洋電機株式会社 | Photovoltaic device and photovoltaic device manufacturing method |
JP2011166038A (en) * | 2010-02-13 | 2011-08-25 | Kaneka Corp | Solar cell module and roof structure |
US20190115487A1 (en) * | 2017-10-18 | 2019-04-18 | Cpc Corporation, Taiwan | Perovskite solar cell module and fabrication method thereof |
-
2023
- 2023-03-22 CN CN202380016899.3A patent/CN118542083A/en active Pending
- 2023-03-22 WO PCT/JP2023/011131 patent/WO2023189906A1/en unknown
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0745852A (en) * | 1993-07-28 | 1995-02-14 | Fuji Electric Co Ltd | Roof for solar power generation |
JPH07217087A (en) * | 1994-01-28 | 1995-08-15 | Fuji Electric Co Ltd | Sunlight generating house |
JP2001036125A (en) * | 1999-07-23 | 2001-02-09 | Sanyo Electric Co Ltd | Photovoltaic power generation device |
JP2001111087A (en) * | 1999-10-07 | 2001-04-20 | Kanegafuchi Chem Ind Co Ltd | Solar battery module |
JP2001111083A (en) * | 1999-10-07 | 2001-04-20 | Kubota Corp | Solar cell module |
JP2009158864A (en) * | 2007-12-27 | 2009-07-16 | Sanyo Electric Co Ltd | Solar cell module, and manufacturing method of the same |
WO2010029880A1 (en) * | 2008-09-10 | 2010-03-18 | 三洋電機株式会社 | Photovoltaic device and photovoltaic device manufacturing method |
JP2011166038A (en) * | 2010-02-13 | 2011-08-25 | Kaneka Corp | Solar cell module and roof structure |
US20190115487A1 (en) * | 2017-10-18 | 2019-04-18 | Cpc Corporation, Taiwan | Perovskite solar cell module and fabrication method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN118542083A (en) | 2024-08-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4966653B2 (en) | Tandem photovoltaic cell with shared organic electrode and method for manufacturing the same | |
Pan et al. | Interface engineering for high-efficiency perovskite solar cells | |
US20160307704A1 (en) | Photovoltaic architectures incorporating organic-inorganic hybrid perovskite absorber | |
JP2011526737A (en) | Multijunction solar cell module and process thereof | |
CN211789098U (en) | Crystalline silicon-perovskite component | |
CN116072752A (en) | Thin film solar cell, preparation method thereof, photovoltaic module and power generation equipment | |
JP4299960B2 (en) | Photoelectric conversion element and solar cell | |
KR20240067896A (en) | Photoelectric conversion elements and compounds | |
CN216980609U (en) | Perovskite solar cell | |
CN118139436A (en) | Perovskite solar cell and preparation method thereof | |
US20240032314A1 (en) | Solar cell and solar cell module including the same | |
WO2023189906A1 (en) | Solar battery module | |
Li et al. | Key Roles of Interfaces in Inverted Metal-Halide Perovskite Solar Cells | |
EP4333588A1 (en) | Solar cell and manufacturing method thereof, and photovoltaic module | |
WO2023190182A1 (en) | Method for manufacturing perovskite thin film-based solar cell, and perovskite thin film-based solar cell | |
CN112086559A (en) | Perovskite battery and preparation method thereof | |
JP2001185743A (en) | Photoelectric conversion element and solar cell | |
US20120012158A1 (en) | Photoelectric conversion module and method of manufacturing the same | |
WO2023190570A1 (en) | Solar cell sub module and method for manufacturing solar cell sub module | |
WO2023189907A1 (en) | Method for manufacturing solar cell module | |
EP4145551A1 (en) | Solar cell | |
JP2023147362A (en) | Method for manufacturing solar cell module | |
WO2023182421A1 (en) | Method for manufacturing solar battery submodule | |
JP2023150009A (en) | Solar battery submodule and solar battery submodule manufacturing method | |
WO2024185837A1 (en) | Solar battery module and method for manufacturing solar battery module |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23779918 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2024511933 Country of ref document: JP Kind code of ref document: A |