WO2023190182A1 - Method for manufacturing perovskite thin film-based solar cell, and perovskite thin film-based solar cell - Google Patents

Method for manufacturing perovskite thin film-based solar cell, and perovskite thin film-based solar cell Download PDF

Info

Publication number
WO2023190182A1
WO2023190182A1 PCT/JP2023/011867 JP2023011867W WO2023190182A1 WO 2023190182 A1 WO2023190182 A1 WO 2023190182A1 JP 2023011867 W JP2023011867 W JP 2023011867W WO 2023190182 A1 WO2023190182 A1 WO 2023190182A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
electrode layer
solar cell
transport layer
perovskite thin
Prior art date
Application number
PCT/JP2023/011867
Other languages
French (fr)
Japanese (ja)
Inventor
暢 入江
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Publication of WO2023190182A1 publication Critical patent/WO2023190182A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/40Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising a p-i-n structure, e.g. having a perovskite absorber between p-type and n-type charge transport layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • H10K30/82Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • H10K30/82Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
    • H10K30/83Transparent electrodes, e.g. indium tin oxide [ITO] electrodes comprising arrangements for extracting the current from the cell, e.g. metal finger grid systems to reduce the serial resistance of transparent electrodes

Definitions

  • the present invention relates to a method for manufacturing a perovskite thin film solar cell and a perovskite thin film solar cell.
  • crystalline silicon solar cells that use a crystalline silicon substrate for the photoelectric conversion part and thin film solar cells that use an inorganic thin film such as an amorphous silicon thin film for the photoelectric conversion part are known.
  • a thin film solar cell a perovskite thin film solar cell is known in which a perovskite thin film, which is an organic thin film (specifically, an organic/inorganic hybrid thin film), is used in the photoelectric conversion portion.
  • Patent Documents 1 and 2 disclose perovskite thin film solar cells.
  • a perovskite thin film solar cell consists of a first electrode layer (anode electrode or cathode electrode), which is a transparent conductive film, and a first carrier transport layer (hole transport film or cathode electrode), which are sequentially formed on a base material such as glass or resin.
  • a transparent conductive oxide (TCO) film for example, an ITO (Indium Tin Oxide) thin film in which tin is added to indium oxide, can be used as the first electrode layer.
  • TCO transparent conductive oxide
  • ITO Indium Tin Oxide
  • the crystallinity of the ITO thin film may be increased by high-temperature film formation or room temperature film formation + annealing.
  • An object of the present invention is to provide a method for manufacturing a perovskite thin film solar cell and a perovskite thin film solar cell that further improves the performance of the perovskite thin film solar cell.
  • the method for manufacturing a perovskite thin film solar cell according to the present invention includes forming a first electrode layer, a first carrier transport layer, a perovskite thin film, a second carrier transport layer, and a second electrode layer on a base material.
  • a crystallized ITO thin film is formed by heating the thin film, and a part of the surface of the crystallized ITO thin film on the first carrier transport layer side is removed to form the first electrode layer.
  • a perovskite thin film solar cell includes a first electrode layer, a first carrier transport layer, a perovskite thin film, a second carrier transport layer, and a second electrode layer on a base material in this order.
  • the first electrode layer is an ITO thin film in which Sn is added to indium oxide, and includes a crystallized ITO thin film, and in the crystallized ITO thin film, the The difference between the ratio of Sn to In in the surface portion up to 3 nm from the surface on the first carrier transport layer side and the ratio of Sn to In in the remaining portion other than the surface portion is 2% or less.
  • FIG. 1 is a cross-sectional view showing an example of a solar cell according to the present embodiment. It is a sectional view showing another example of a solar cell concerning this embodiment. It is a figure which shows the 1st electrode layer formation process in the manufacturing method of the solar cell based on this embodiment. It is a figure which shows the 1st electrode layer formation process in the manufacturing method of the solar cell based on this embodiment. It is a figure which shows the 1st carrier transport layer formation process, the perovskite thin film formation process, the 2nd carrier transport layer formation process, and the 2nd electrode layer formation process in the manufacturing method of the solar cell based on this embodiment. It is a measurement result of Sn/In ratio (ratio of Sn to In, depth profile) with respect to the depth from the surface of the 1st electrode layer (ITO) of an Example and a comparative example.
  • Sn/In ratio ratio of Sn to In, depth profile
  • FIG. 1 is a sectional view showing an example of a solar cell according to this embodiment
  • FIG. 2 is a sectional view showing another example of a solar cell according to this embodiment.
  • the solar cell 1 shown in FIGS. 1 and 2 is a perovskite thin film solar cell that uses a perovskite thin film as a photoelectric conversion thin film.
  • the solar cell 1 includes a base material 10 , a first electrode layer 21 , a first carrier transport layer 31 , a perovskite thin film 40 , a second carrier transport layer 32 , and a second electrode layer 22 .
  • the solar cell 1 shown in FIG. 1 and the solar cell 1 shown in FIG. 2 have different polarities.
  • the first carrier transport layer 31 and the second carrier transport layer 32 are a hole transfer layer (HTL) and an electron transport layer (ETL), respectively.
  • the first electrode layer 21 and the second electrode layer 22 are an anode and a cathode, respectively.
  • the first carrier transport layer 31 and the second carrier transport layer 32 are an electron transport layer (ETL) and a hole transport layer (HTL), respectively
  • the first electrode layer 21 and the The two electrode layers 22 are a cathode and an anode, respectively.
  • the light-receiving surface may be on the base material 10 side, that is, the first electrode layer 21 side, or the light-receiving surface may be on the opposite side to the base material 10, that is, the second electrode layer 22 side. It may be a surface.
  • the base material 10 side and both sides opposite to the base material 10, that is, both sides of the first electrode layer 21 side and the second electrode layer 22 side may function as light receiving surfaces.
  • the base material 10 may be a transparent substrate that is insulating and light-transmissive, or may be a transparent film that is flexible.
  • the transparent substrate include a substrate made of a material such as glass or resin.
  • the transparent film include resin films made of materials such as polyimide, polyethylene naphthalate, and polyethylene terephthalate.
  • the first electrode layer 21 is formed on the base material 10 and functions as an anode (FIG. 1) or a cathode (FIG. 2).
  • the first electrode layer 21 is made of a transparent conductive film (Transparent Conductive Oxides: TCO) that is electrically conductive and optically transparent.
  • TCO Transparent Conductive Oxides
  • transparent conductive metal oxides such as indium oxide, tin oxide, zinc oxide, titanium oxide, and composite oxides thereof are used.
  • indium-based composite oxides containing indium oxide as a main component are preferred. Indium oxide is particularly preferred from the viewpoint of high conductivity and transparency.
  • dopants to the indium oxide to ensure reliability or higher conductivity.
  • Examples of the dopant include Sn, W, Zn, Ti, Ce, Zr, Mo, Al, Ga, Ge, As, Si, and S.
  • ITO Indium Tin Oxide
  • tin (Sn) is added to indium oxide, is particularly preferred.
  • the first electrode layer 21 is composed of an ITO thin film in which tin is added to indium oxide. Furthermore, as will be described later, the first electrode layer 21 includes a crystallized ITO thin film. In the crystallized ITO thin film of the first electrode layer 21, the ratio of Sn to In in the surface part up to 3 nm, preferably up to 2 nm from the surface on the first carrier transport layer 31 side, and the ratio of Sn to In in the remaining part other than the surface part. The difference from the ratio is 2% or less, preferably 1% or less. That is, the ratio of Sn to In in the surface portion of the crystallized ITO thin film of the first electrode layer 21 is approximately equal to the ratio of Sn to In in the remaining portion other than the surface portion.
  • the first electrode layer 21 may include a grid-shaped or slit-shaped metal electrode layer.
  • the first electrode layer 21 may include, for example, a planar metal electrode layer on the base material 10 side. Examples of the material for the metal electrode layer include Ag, Au, and Cu.
  • the first carrier transport layer 31 is formed on the first electrode layer 21 and functions as a hole transport layer (HTL) (FIG. 1) or an electron transport layer (ETL) (FIG. 2).
  • the first carrier transport layer 31 is made of a semiconductor material having optical transparency.
  • the first carrier transport layer 31 transports holes (first carriers) among carriers generated by photoelectric conversion in the perovskite thin film 40 to the first electrode layer 21.
  • the main materials of the first carrier transport layer 31 as a hole transport layer (HTL) include nickel oxide (NiO), copper oxide (Cu 2 O), and PTAA (Poly(bis(4-phenyl)(2,4, 6-trimethylphenyl)amine) or Spiro-MeOTAD.
  • the first carrier transport layer 31 is an electron transport layer (ETL) that transports electrons (first carriers) among carriers generated by photoelectric conversion in the perovskite thin film 40 to the first electrode layer 21.
  • the main material of the first carrier transport layer 31 as an electron transport layer (ETL) includes titanium oxide (TiO 2 ), zinc oxide (ZnO), tin oxide (SnO 2 ), fullerene, and the like.
  • fullerenes include C60, C70, their hydrides, oxides, metal complexes, derivatives with added alkyl groups, etc., such as PCBM ([6,6]-Phenyl-C61-Butyric Acid Methyl Ester). It will be done.
  • PCBM [6,6]-Phenyl-C61-Butyric Acid Methyl Ester
  • the first carrier transport layer 31 is made of, for example, 2PACz ([2-(9H-Carbazol-9-yl)ethyl]phosphonic Acid), MeO-2PACz ([2-(3,6-Dimethoxy-9H-carbazol-9 -yl)ethyl]phosphonic Acid), Me-4PACz ([4-(3,6-Dimethyl-9H-carbazol-9-yl)butyl]phosphonic Acid), etc. Self-Assembled Monolayers). Further, the first carrier transport layer 31 may have a multilayer structure.
  • the perovskite thin film 40 is formed on the first carrier transport layer 31 and functions as a photoelectric conversion layer.
  • the main material of the perovskite thin film 40 includes a compound represented by the following formula containing an organic atom A, a metal atom B, and a halogen atom X.
  • A include organic atoms containing at least one of monovalent organic ammonium ions and amidinium ions.
  • Examples of B include metal atoms containing divalent metal ions.
  • Examples of X include halogen atoms containing at least one of iodide ion I, bromide ion Br, chloride ion Cl, and fluoride ion F.
  • methylammonium MA (CH 3 NH 3 ) is preferable as the organic atom A
  • lead Pb is preferable as the metal atom B
  • iodide I, bromide as the halogen atom
  • At least one of the ion Br and the chloride ion Cl is preferred.
  • the main material of the perovskite thin film 40 includes methylammonium lead halide MAPbX 3 (CH 3 NH 3 PbX 3 ), such as MAPbI 3 , MAPbBr 3 , MAPbCl 3 , and the like.
  • the halogen atom X may include a plurality of types.
  • the main material of the perovskite thin film 40 is methylammonium lead iodide MAPbI y X (3-y) (CH 3 NH 3 PbI y X (3-y) ), for example, MAPbI y Br (3-y) , MAPbI y Cl (3-y), etc. (y is any positive integer).
  • a methylammonium lead halide MAPbX 3 (CH 3 NH 3 PbX 3 ) thin film is produced by sequentially forming a lead halide PbX 2 material and a methylammonium halide MAX material into a film, and then reacting the thin film of these materials at a reaction temperature. It is formed. Furthermore, the methylammonium lead iodide MAPbI y X (3-y) ( CH 3 NH 3 PbI y However, they are formed by reacting thin films of these materials at reaction temperatures.
  • a methylammonium lead iodide MAPbI 3 (CH 3 NH 3 PbI 3 ) thin film is produced by sequentially forming a lead iodide PbI 2 material and a methylammonium iodide MAI material, and It is formed by reacting a thin film at a reaction temperature.
  • the second carrier transport layer 32 is formed on the perovskite thin film 40 and functions as an electron transport layer (ETL) (FIG. 1) or a hole transport layer (HTL) (FIG. 2).
  • the second carrier transport layer 32 is made of a semiconductor material having optical transparency.
  • the second carrier transport layer 32 is an electron transport layer that transports electrons (second carriers) among carriers generated by photoelectric conversion in the perovskite thin film 40 to the second electrode layer 22.
  • Main materials for the second carrier transport layer 32 as an electron transport layer (ETL) include titanium oxide (TiO 2 ), zinc oxide (ZnO), tin oxide (SnO 2 ), fullerene, and the like.
  • fullerenes include, for example, C60, C70, their hydrides, oxides, metal complexes, derivatives with added alkyl groups, etc., such as PCBM ([6,6]-Phenyl-C61-Butyric Acid Methyl Ester), etc.
  • PCBM [6,6]-Phenyl-C61-Butyric Acid Methyl Ester
  • the second carrier transport layer 32 is an electron transport layer (ETL)
  • ETL electron transport layer
  • a hole blocking layer may be provided.
  • the material for the hole blocking layer include bathocuproine (BCP), SnO formed by atomic layer deposition (ALD), which causes relatively little damage to the adhered layer, and the like.
  • the second carrier transport layer 32 is an electron transport layer (ETL)
  • ETL electron transport layer
  • an electron extraction layer may be provided.
  • the material for the electron extraction layer include lithium (Li), lithium fluoride (LiF), and the like.
  • the second carrier transport layer 32 is a hole transport layer (second carrier) that transports holes (second carriers) among carriers generated by photoelectric conversion in the perovskite thin film 40 to the second electrode layer 22.
  • the main materials of the second carrier transport layer 32 as a hole transport layer (HTL) include nickel oxide (NiO), copper oxide (Cu 2 O), and PTAA (Poly(bis(4-phenyl)(2,4, 6-trimethylphenyl)amine) or Spiro-MeOTAD.
  • the second electrode layer 22 is formed on the second carrier transport layer 32 and functions as a cathode (FIG. 1) or an anode (FIG. 2).
  • the second electrode layer 22 may include, for example, a planar metal electrode layer on the base material 10 side.
  • the second electrode layer 22 includes a transparent conductive oxide (TCO) that is electrically conductive and transparent. Furthermore, it may include a grid-like or slit-like metal electrode layer.
  • transparent conductive metal oxides such as indium oxide, tin oxide, zinc oxide, titanium oxide, and composite oxides thereof are used.
  • indium-based composite oxides containing indium oxide as a main component are preferred.
  • Indium oxide is particularly preferred from the viewpoint of high conductivity and transparency.
  • dopants include Sn, W, Zn, Ti, Ce, Zr, Mo, Al, Ga, Ge, As, Si, and S.
  • ITO Indium Tin Oxide
  • tin (Sn) is added to indium oxide
  • the material for the metal electrode layer include Ag, Au, and Cu.
  • the solar cell 1 generates a current according to light incident from the base material 10 side, that is, the first electrode layer 21 side, or the side opposite to the base material 10, that is, the second electrode layer 22 side. , is output to the first electrode layer 21 and the second electrode layer 22.
  • FIGS. 3A to 3C are diagrams showing a first electrode layer forming step in the solar cell manufacturing method according to the present embodiment
  • FIG. 3C is a diagram showing the first carrier transport layer in the solar cell manufacturing method according to the present embodiment. It is a figure which shows a formation process, a perovskite thin film formation process, a 2nd carrier transport layer formation process, and a 2nd electrode layer formation process.
  • an ITO thin film in which tin is added to indium oxide is formed on the base material 10, and the formed ITO thin film is heated to form a crystallized ITO thin film 21Z.
  • first electrode layer forming step The method for forming the transparent conductive film is not particularly limited, but a CVD method (chemical vapor deposition method) using a vacuum chamber, a PVD method (physical vapor deposition method), a sputtering method, or the like can be used.
  • the crystallinity of the ITO thin film is increased by high temperature film formation or room temperature film formation + annealing.
  • Sn which is a doping component, may segregate on the surface of the crystallized ITO thin film 21Z. Therefore, the surface becomes highly resistive, the interfacial resistance between the first electrode layer and the first carrier transport layer increases, and the effect of reducing electrical resistance (that is, improving the performance of the solar cell) due to crystallization is reduced.
  • the first electrode layer 21 is formed by removing part 21S of the surface of the crystallized ITO thin film 21Z on the first carrier transport layer side (first electrode layer forming step). . Specifically, a portion 21S of the surface of the crystallized ITO thin film 21Z is etched by acid treatment. The portion 21S to be removed is up to 3 nm, preferably up to 2 nm from the surface of the crystallized ITO thin film 21Z. Examples of solutions for acid treatment include hydrochloric acid HCl, ferric chloride FeCl3, and the like.
  • the first carrier transport layer 31 is formed on the first electrode layer 21 (first carrier transport layer forming step).
  • the method for forming the first carrier transport layer 31 is not particularly limited, and includes, for example, a dry process such as a CVD method, a PVD method, or a sputtering method, or a wet process such as a coating method or a printing method. Among these, the sputtering method is preferred from the viewpoint of forming a dense film.
  • a perovskite thin film 40 is formed on the first carrier transport layer 31 (perovskite thin film forming step). For example, after forming a lead iodide PbI 2 material film, a methylammonium iodide MAI material film is formed, and by reacting the lead iodide PbI 2 material film and the methylammonium iodide MAI material film, methyl A perovskite thin film made of ammonium lead iodide MAPbI 3 is formed.
  • Methods for forming the perovskite thin film 40 include, but are not particularly limited to, dry processes such as vapor deposition, wet processes such as printing, coating, and solution methods.
  • the second carrier transport layer 32 is formed on the perovskite thin film 40 (second carrier transport layer forming step).
  • the method for forming the second carrier transport layer 32 is not particularly limited, but includes, for example, a CVD method, a PVD method, a sputtering method, a dry process such as a vapor deposition method, or a wet process such as a coating method or a printing method.
  • the second electrode layer 22 is formed on the second carrier transport layer 32.
  • the method for forming the second electrode layer 22 is not particularly limited, but includes, for example, a CVD method using a vacuum chamber, a PVD method, a sputtering method, a dry process such as a vapor deposition method, or a wet process such as a printing method or a coating method. Can be mentioned. Among these, sputtering method is preferred.
  • the perovskite thin film solar cell 1 of this embodiment shown in FIG. 1 or 2 is obtained.
  • the formed ITO thin film is heated to form the crystallized ITO thin film 21Z.
  • the crystallinity of the ITO thin film can be improved, the electrical resistance of the ITO thin film can be reduced, and the transmittance of the ITO thin film can be improved.
  • the performance of the solar cell 1 can be improved.
  • a part 21S of the surface of the crystallized ITO thin film 21Z where Sn, which is a doping component, segregates during crystallization of the ITO thin film is removed.
  • the present invention is not limited to the embodiments described above, and various changes and modifications can be made.
  • the embodiments described above can also be applied to the production of a perovskite thin film solar cell in a so-called tandem solar cell that combines a crystalline silicon solar cell or an amorphous silicon thin film solar cell and a perovskite thin film solar cell. .
  • Example 1 In the method for manufacturing a perovskite thin film solar cell of this embodiment, a first electrode layer after acid treatment shown in FIG. 3B was produced as Example 1.
  • the method for forming the first electrode layer of Example 1 is as follows. - First, as shown in FIG. 3A, an ITO thin film in which tin is added to indium oxide is formed on the base material 10 (sputtering method), and the formed ITO thin film is heated (at 180 degrees). 1 hour), a crystallized ITO thin film 21Z was formed (film thickness: 122 nm). - Next, as shown in FIG. 3B, a part 21S (2 nm from the surface) of the surface of the crystallized ITO thin film 21Z was removed by acid treatment (HCl) to form a first electrode layer.
  • HCl acid treatment
  • Comparative example 1 In the method for manufacturing a perovskite thin film solar cell of this embodiment, a first electrode layer before acid treatment shown in FIG. 3A was produced as Comparative Example 1.
  • the method for forming the first electrode layer of Comparative Example 1 is as follows. ⁇ As shown in FIG. 3A, an ITO thin film in which tin is added to indium oxide is formed on the base material 10 (sputtering method), and the formed ITO thin film is heated (at 180 degrees for 1 hour). ), a crystallized ITO thin film 21Z, that is, a crystallized ITO thin film 21Z whose surface part 21S was not removed, was formed as the first electrode layer (film thickness: 120 nm).
  • the Sn/In ratio (ratio of Sn to In) with respect to the depth from the surface of the first electrode layer (ITO) (the surface on the first carrier transport layer side) was measured as a depth profile.
  • the depth profile from the surface of the first electrode layer (ITO) was measured by combining etching of the surface of ITO using a sputtering method and XPS measurement. Any known sputtering device may be used as the sputtering device, and the sputtering rate is approximately 1.25 nm/min. And so.
  • XPS measurement VersaProbeII manufactured by ULVAC-PHI Inc./model PHI5000 was used. The measurement results of this depth profile are shown in FIG.
  • the horizontal axis is the sputtering time, that is, the depth from the surface of the first electrode layer (ITO), and the vertical axis is the Sn/In ratio (ratio of Sn to In).
  • the solid line is the depth profile of the first electrode layer (ITO) with acid treatment in Example 1
  • the broken line is the depth profile of the first electrode layer (ITO) without acid treatment in Comparative Example 1.
  • Perovskite thin film solar cell 10
  • Base material 21
  • Second electrode layer (cathode or anode) 31
  • First carrier transport layer (hole transport layer or electron transport layer) 32
  • Second carrier transport layer (electron transport layer or hole transport layer) 40 Perovskite thin film

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Provided is a method for manufacturing a perovskite thin film-based solar cell with which further improvements in the performance of the perovskite thin film-based solar cell are achieved. According to the method for manufacturing a perovskite thin film-based solar cell, a first electrode layer 21, a first carrier transport layer 31, a perovskite thin film 40, a second carrier transport layer 32, and a second electrode layer 22 are formed in this order on a substrate 10. A first electrode layer forming step involves: forming an ITO thin film, in which Sn is added to indium oxide, on the substrate 10, and heating the ITO thin film to crystallize the ITO thin film; and removing a portion of the surface of the crystalized ITO thin film on the first carrier transport layer side to form the first electrode layer 21.

Description

ペロブスカイト薄膜系太陽電池の製造方法およびペロブスカイト薄膜系太陽電池Manufacturing method of perovskite thin film solar cell and perovskite thin film solar cell
 本発明は、ペロブスカイト薄膜系太陽電池の製造方法およびペロブスカイト薄膜系太陽電池に関する。 The present invention relates to a method for manufacturing a perovskite thin film solar cell and a perovskite thin film solar cell.
 太陽電池として、光電変換部に結晶シリコン基板を用いた結晶シリコン系太陽電池、光電変換部にアモルファスシリコン薄膜等の無機系薄膜を用いた薄膜系太陽電池が知られている。また、薄膜系太陽電池として、光電変換部に有機系薄膜(詳細には、有機/無機ハイブリット系薄膜)であるペロブスカイト薄膜を用いたペロブスカイト薄膜系太陽電池が知られている。特許文献1および2には、ペロブスカイト薄膜系太陽電池が開示されている。 As solar cells, crystalline silicon solar cells that use a crystalline silicon substrate for the photoelectric conversion part and thin film solar cells that use an inorganic thin film such as an amorphous silicon thin film for the photoelectric conversion part are known. Further, as a thin film solar cell, a perovskite thin film solar cell is known in which a perovskite thin film, which is an organic thin film (specifically, an organic/inorganic hybrid thin film), is used in the photoelectric conversion portion. Patent Documents 1 and 2 disclose perovskite thin film solar cells.
 ペロブスカイト薄膜系太陽電池は、ガラスまたは樹脂等の基材上に順に形成された、透明導電膜である第1電極層(陽極電極または陰極電極)と、第1キャリア輸送層(正孔輸送膜または電子輸送膜)と、ペロブスカイト薄膜と、第2キャリア輸送層(電子輸送膜または正孔輸送膜)と、第2電極層(陰極電極または陽極電極)とを備える。 A perovskite thin film solar cell consists of a first electrode layer (anode electrode or cathode electrode), which is a transparent conductive film, and a first carrier transport layer (hole transport film or cathode electrode), which are sequentially formed on a base material such as glass or resin. An electron transport film), a perovskite thin film, a second carrier transport layer (electron transport film or hole transport film), and a second electrode layer (cathode electrode or anode electrode).
特開2017-135379号公報Japanese Patent Application Publication No. 2017-135379 特開2018-164020号公報Japanese Patent Application Publication No. 2018-164020
 このようなペロブスカイト薄膜系太陽電池において、第1電極層として、透明導電膜(Transparent Conductive Oxide:TCO)、例えばインジウム酸化物にスズSnが添加されたITO(Indium Tin Oxide)薄膜が用いられることがある。この場合、ITO薄膜の電気抵抗の低減または透過率の向上(すなわち、太陽電池の性能向上)のために、高温製膜または室温製膜+アニールにより、ITO薄膜の結晶性を高めることがある。 In such a perovskite thin film solar cell, a transparent conductive oxide (TCO) film, for example, an ITO (Indium Tin Oxide) thin film in which tin is added to indium oxide, can be used as the first electrode layer. be. In this case, in order to reduce the electrical resistance or improve the transmittance of the ITO thin film (that is, to improve the performance of the solar cell), the crystallinity of the ITO thin film may be increased by high-temperature film formation or room temperature film formation + annealing.
 しかし、この結晶化の際、結晶化ITO薄膜の表面に、ドープ成分であるSnが偏析してしまうことがある。そのため、表面が高抵抗化し、第1電極層と第1キャリア輸送層との界面抵抗が増加し、結晶化による電気抵抗の低減(すなわち、太陽電池の性能向上)の効果を低下させてしまう。 However, during this crystallization, Sn, which is a doping component, may segregate on the surface of the crystallized ITO thin film. Therefore, the surface becomes highly resistive, the interfacial resistance between the first electrode layer and the first carrier transport layer increases, and the effect of reducing electrical resistance (that is, improving the performance of the solar cell) due to crystallization is reduced.
 本発明は、ペロブスカイト薄膜系太陽電池の更なる性能向上を図るペロブスカイト薄膜系太陽電池の製造方法およびペロブスカイト薄膜系太陽電池を提供することを目的とする。 An object of the present invention is to provide a method for manufacturing a perovskite thin film solar cell and a perovskite thin film solar cell that further improves the performance of the perovskite thin film solar cell.
 本発明に係るペロブスカイト薄膜系太陽電池の製造方法は、基材上に、第1電極層と、第1キャリア輸送層と、ペロブスカイト薄膜と、第2キャリア輸送層と、第2電極層とをこの順番に形成するペロブスカイト薄膜系太陽電池の製造方法であって、前記第1電極層の形成工程では、前記基材上に、インジウム酸化物にSnが添加されたITO薄膜を製膜し、前記ITO薄膜を加熱することによって、結晶化ITO薄膜を形成し、前記結晶化ITO薄膜の前記第1キャリア輸送層側の表面の一部を除去することによって、前記第1電極層を形成する。 The method for manufacturing a perovskite thin film solar cell according to the present invention includes forming a first electrode layer, a first carrier transport layer, a perovskite thin film, a second carrier transport layer, and a second electrode layer on a base material. A method of manufacturing a perovskite thin film solar cell in which the first electrode layer is formed in the step of forming an ITO thin film in which Sn is added to indium oxide on the base material; A crystallized ITO thin film is formed by heating the thin film, and a part of the surface of the crystallized ITO thin film on the first carrier transport layer side is removed to form the first electrode layer.
 本発明に係るペロブスカイト薄膜系太陽電池は、基材上に、第1電極層と、第1キャリア輸送層と、ペロブスカイト薄膜と、第2キャリア輸送層と、第2電極層とをこの順番に備えるペロブスカイト薄膜系太陽電池であって、前記第1電極層は、インジウム酸化物にSnが添加されたITO薄膜であって、結晶化された結晶化ITO薄膜を含み、前記結晶化ITO薄膜において、前記第1キャリア輸送層側の表面から3nmまでの表面部分におけるInに対するSnの割合と、前記表面部分以外の残り部分におけるInに対するSnの割合との差が、2%以下である。 A perovskite thin film solar cell according to the present invention includes a first electrode layer, a first carrier transport layer, a perovskite thin film, a second carrier transport layer, and a second electrode layer on a base material in this order. In the perovskite thin film solar cell, the first electrode layer is an ITO thin film in which Sn is added to indium oxide, and includes a crystallized ITO thin film, and in the crystallized ITO thin film, the The difference between the ratio of Sn to In in the surface portion up to 3 nm from the surface on the first carrier transport layer side and the ratio of Sn to In in the remaining portion other than the surface portion is 2% or less.
 本発明によれば、ペロブスカイト薄膜系太陽電池の更なる性能向上を図ることができる。 According to the present invention, it is possible to further improve the performance of perovskite thin film solar cells.
本実施形態に係る太陽電池の一例を示す断面図である。FIG. 1 is a cross-sectional view showing an example of a solar cell according to the present embodiment. 本実施形態に係る太陽電池の他の一例を示す断面図である。It is a sectional view showing another example of a solar cell concerning this embodiment. 本実施形態に係る太陽電池の製造方法における第1電極層形成工程を示す図である。It is a figure which shows the 1st electrode layer formation process in the manufacturing method of the solar cell based on this embodiment. 本実施形態に係る太陽電池の製造方法における第1電極層形成工程を示す図である。It is a figure which shows the 1st electrode layer formation process in the manufacturing method of the solar cell based on this embodiment. 本実施形態に係る太陽電池の製造方法における第1キャリア輸送層形成工程、ペロブスカイト薄膜形成工程、第2キャリア輸送層形成工程および第2電極層形成工程を示す図である。It is a figure which shows the 1st carrier transport layer formation process, the perovskite thin film formation process, the 2nd carrier transport layer formation process, and the 2nd electrode layer formation process in the manufacturing method of the solar cell based on this embodiment. 実施例および比較例の第1電極層(ITO)の表面からの深さに対するSn/In割合(Inに対するSnの割合、デプスプロファイル)の測定結果である。It is a measurement result of Sn/In ratio (ratio of Sn to In, depth profile) with respect to the depth from the surface of the 1st electrode layer (ITO) of an Example and a comparative example.
 以下、添付の図面を参照して本発明の実施形態の一例について説明する。なお、各図面において同一または相当の部分に対しては同一の符号を附すこととする。また、便宜上、ハッチングや部材符号等を省略する場合もあるが、かかる場合、他の図面を参照するものとする。 Hereinafter, an example of an embodiment of the present invention will be described with reference to the accompanying drawings. In addition, the same reference numerals are given to the same or corresponding parts in each drawing. Further, for convenience, hatching, member symbols, etc. may be omitted, but in such cases, other drawings shall be referred to.
(太陽電池)
 図1は、本実施形態に係る太陽電池の一例を示す断面図であり、図2は、本実施形態に係る太陽電池の他の一例を示す断面図である。図1および図2に示す太陽電池1は、光電変換薄膜としてペロブスカイト薄膜を用いたペロブスカイト薄膜系の太陽電池である。太陽電池1は、基材10と、第1電極層21と、第1キャリア輸送層31と、ペロブスカイト薄膜40と、第2キャリア輸送層32と、第2電極層22とを備える。
(solar cell)
FIG. 1 is a sectional view showing an example of a solar cell according to this embodiment, and FIG. 2 is a sectional view showing another example of a solar cell according to this embodiment. The solar cell 1 shown in FIGS. 1 and 2 is a perovskite thin film solar cell that uses a perovskite thin film as a photoelectric conversion thin film. The solar cell 1 includes a base material 10 , a first electrode layer 21 , a first carrier transport layer 31 , a perovskite thin film 40 , a second carrier transport layer 32 , and a second electrode layer 22 .
 なお、図1に示す太陽電池1と図2に示す太陽電池1とでは、極性が異なる。具体的には、図1に示す太陽電池1では、第1キャリア輸送層31および第2キャリア輸送層32がそれぞれ正孔輸送層(Hole Transfer Layer:HTL)および電子輸送層(Electron Transport Layer:ETL)であり、第1電極層21および第2電極層22がそれぞれ陽極および陰極である。一方、図2に示す太陽電池1では、第1キャリア輸送層31および第2キャリア輸送層32がそれぞれ電子輸送層(ETL)および正孔輸送層(HTL)であり、第1電極層21および第2電極層22がそれぞれ陰極および陽極である。 Note that the solar cell 1 shown in FIG. 1 and the solar cell 1 shown in FIG. 2 have different polarities. Specifically, in the solar cell 1 shown in FIG. 1, the first carrier transport layer 31 and the second carrier transport layer 32 are a hole transfer layer (HTL) and an electron transport layer (ETL), respectively. ), and the first electrode layer 21 and the second electrode layer 22 are an anode and a cathode, respectively. On the other hand, in the solar cell 1 shown in FIG. 2, the first carrier transport layer 31 and the second carrier transport layer 32 are an electron transport layer (ETL) and a hole transport layer (HTL), respectively, and the first electrode layer 21 and the The two electrode layers 22 are a cathode and an anode, respectively.
 また、図1および図2に示す太陽電池1は、基材10側、すなわち第1電極層21側が受光面であってもよいし、基材10と反対側、すなわち第2電極層22側が受光面であってもよい。或いは、基材10側および基材10と反対側の両側、すなわち第1電極層21側および第2電極層22側の両側が受光面として機能してもよい。 In the solar cell 1 shown in FIGS. 1 and 2, the light-receiving surface may be on the base material 10 side, that is, the first electrode layer 21 side, or the light-receiving surface may be on the opposite side to the base material 10, that is, the second electrode layer 22 side. It may be a surface. Alternatively, the base material 10 side and both sides opposite to the base material 10, that is, both sides of the first electrode layer 21 side and the second electrode layer 22 side may function as light receiving surfaces.
 基材10は、絶縁性かつ光透過性を有する透明基板であってもよいし、更にフレキシブル性を有する透明フィルムであってもよい。透明基板としては、ガラスまたは樹脂等の材料で構成された基板が挙げられる。透明フィルムとしては、ポリイミド、ポリエチレンナフタレート、ポリエチレンテレフタレート等の材料で構成された樹脂フィルムが挙げられる。 The base material 10 may be a transparent substrate that is insulating and light-transmissive, or may be a transparent film that is flexible. Examples of the transparent substrate include a substrate made of a material such as glass or resin. Examples of the transparent film include resin films made of materials such as polyimide, polyethylene naphthalate, and polyethylene terephthalate.
 第1電極層21は、基材10上に形成されており、陽極(図1)または陰極(図2)として機能する。第1電極層21は、導電性かつ光透過性を有する透明導電膜(Transparent Conductive Oxides:TCO)からなる。第1電極層21の材料としては、透明導電性金属酸化物、例えば、酸化インジウム、酸化スズ、酸化亜鉛、酸化チタンおよびそれらの複合酸化物等が用いられる。これらの中でも、酸化インジウムを主成分とするインジウム系複合酸化物が好ましい。高い導電率と透明性の観点からは、インジウム酸化物が特に好ましい。更に、信頼性またはより高い導電率を確保するため、インジウム酸化物にドーパントを添加すると好ましい。ドーパントとしては、例えば、Sn、W、Zn、Ti、Ce、Zr、Mo、Al、Ga、Ge、As、Si、またはS等が挙げられる。これらの中でも、インジウム酸化物にスズ(Sn)が添加されたITO(Indium Tin Oxide)が特に好ましい。 The first electrode layer 21 is formed on the base material 10 and functions as an anode (FIG. 1) or a cathode (FIG. 2). The first electrode layer 21 is made of a transparent conductive film (Transparent Conductive Oxides: TCO) that is electrically conductive and optically transparent. As the material for the first electrode layer 21, transparent conductive metal oxides such as indium oxide, tin oxide, zinc oxide, titanium oxide, and composite oxides thereof are used. Among these, indium-based composite oxides containing indium oxide as a main component are preferred. Indium oxide is particularly preferred from the viewpoint of high conductivity and transparency. Furthermore, it is preferable to add dopants to the indium oxide to ensure reliability or higher conductivity. Examples of the dopant include Sn, W, Zn, Ti, Ce, Zr, Mo, Al, Ga, Ge, As, Si, and S. Among these, ITO (Indium Tin Oxide), in which tin (Sn) is added to indium oxide, is particularly preferred.
 すなわち、第1電極層21は、インジウム酸化物にスズSnが添加されたITO薄膜で構成される。更に、後述するように、第1電極層21は、結晶化された結晶化ITO薄膜を含む。
 第1電極層21の結晶化ITO薄膜において、第1キャリア輸送層31側の表面から3nmまで、好ましくは2nmまでの表面部分におけるInに対するSnの割合と、表面部分以外の残り部分におけるInに対するSnの割合との差は、2%以下、好ましくは1%以下である。すなわち、第1電極層21の結晶化ITO薄膜の表面部分におけるInに対するSnの割合は、表面部分以外の残り部分におけるInに対するSnの割合と略等しい。
That is, the first electrode layer 21 is composed of an ITO thin film in which tin is added to indium oxide. Furthermore, as will be described later, the first electrode layer 21 includes a crystallized ITO thin film.
In the crystallized ITO thin film of the first electrode layer 21, the ratio of Sn to In in the surface part up to 3 nm, preferably up to 2 nm from the surface on the first carrier transport layer 31 side, and the ratio of Sn to In in the remaining part other than the surface part. The difference from the ratio is 2% or less, preferably 1% or less. That is, the ratio of Sn to In in the surface portion of the crystallized ITO thin film of the first electrode layer 21 is approximately equal to the ratio of Sn to In in the remaining portion other than the surface portion.
 なお、基材10側、すなわち第1電極層21側が受光面である場合、第1電極層21は、グリッド状またはスリット状の金属電極層を含んでいてもよい。或いは、基材10と反対側、すなわち第2電極層22側が受光面である場合、第1電極層21は、例えば基材10側に、面状の金属電極層を含んでいてもよい。金属電極層の材料としては、Ag、Au、Cu等が挙げられる。 Note that when the base material 10 side, that is, the first electrode layer 21 side is the light-receiving surface, the first electrode layer 21 may include a grid-shaped or slit-shaped metal electrode layer. Alternatively, when the light-receiving surface is on the side opposite to the base material 10, that is, on the second electrode layer 22 side, the first electrode layer 21 may include, for example, a planar metal electrode layer on the base material 10 side. Examples of the material for the metal electrode layer include Ag, Au, and Cu.
 第1キャリア輸送層31は、第1電極層21上に形成されており、正孔輸送層(HTL)(図1)または電子輸送層(ETL)(図2)として機能する。第1キャリア輸送層31は、光透過性を有する半導体材料からなる。 The first carrier transport layer 31 is formed on the first electrode layer 21 and functions as a hole transport layer (HTL) (FIG. 1) or an electron transport layer (ETL) (FIG. 2). The first carrier transport layer 31 is made of a semiconductor material having optical transparency.
 具体的には、図1では、第1キャリア輸送層31は、ペロブスカイト薄膜40で光電変換されて生成されたキャリアのうちの正孔(第1キャリア)を第1電極層21に輸送する正孔輸送層(HTL)として機能する。正孔輸送層(HTL)としての第1キャリア輸送層31の主材料としては、酸化ニッケル(NiO)、酸化銅(CuO)、PTAA(Poly(bis(4-phenyl)(2,4,6-trimethylphenyl)amine))、または、Spiro-MeOTAD等が挙げられる。 Specifically, in FIG. 1, the first carrier transport layer 31 transports holes (first carriers) among carriers generated by photoelectric conversion in the perovskite thin film 40 to the first electrode layer 21. Functions as a transport layer (HTL). The main materials of the first carrier transport layer 31 as a hole transport layer (HTL) include nickel oxide (NiO), copper oxide (Cu 2 O), and PTAA (Poly(bis(4-phenyl)(2,4, 6-trimethylphenyl)amine) or Spiro-MeOTAD.
 一方、図2では、第1キャリア輸送層31は、ペロブスカイト薄膜40で光電変換されて生成されたキャリアのうちの電子(第1キャリア)を第1電極層21に輸送する電子輸送層(ETL)として機能する。電子輸送層(ETL)としての第1キャリア輸送層31の主材料としては、酸化チタン(TiO)、酸化亜鉛(ZnO)、酸化スズ(SnO)、または、フラーレン等が挙げられる。 On the other hand, in FIG. 2, the first carrier transport layer 31 is an electron transport layer (ETL) that transports electrons (first carriers) among carriers generated by photoelectric conversion in the perovskite thin film 40 to the first electrode layer 21. functions as The main material of the first carrier transport layer 31 as an electron transport layer (ETL) includes titanium oxide (TiO 2 ), zinc oxide (ZnO), tin oxide (SnO 2 ), fullerene, and the like.
 フラーレンとしては、例えばC60、C70、これらの水素化物、酸化物、金属錯体、アルキル基等を付加した誘導体、例えば、PCBM([6,6]-Phenyl-C61-Butyric Acid Methyl Ester)などが挙げられる。第2キャリア輸送層32をリチウムLiを内包させたフラーレンを含む材料から形成することにより、電子の輸送効率を向上することができる。 Examples of fullerenes include C60, C70, their hydrides, oxides, metal complexes, derivatives with added alkyl groups, etc., such as PCBM ([6,6]-Phenyl-C61-Butyric Acid Methyl Ester). It will be done. By forming the second carrier transport layer 32 from a material containing fullerene containing lithium Li, electron transport efficiency can be improved.
 また、第1キャリア輸送層31は、例えば2PACz([2-(9H-Carbazol-9-yl)ethyl]phosphonic Acid)、MeO-2PACz([2-(3,6-Dimethoxy-9H-carbazol-9-yl)ethyl]phosphonic Acid)、Me-4PACz([4-(3,6-Dimethyl-9H-carbazol-9-yl)butyl]phosphonic Acid)等により形成される自己組織化単分子膜(SAM:Self-Assembled Monolayers)であってもよい。また、第1キャリア輸送層31は、多層構造を有してもよい。 Further, the first carrier transport layer 31 is made of, for example, 2PACz ([2-(9H-Carbazol-9-yl)ethyl]phosphonic Acid), MeO-2PACz ([2-(3,6-Dimethoxy-9H-carbazol-9 -yl)ethyl]phosphonic Acid), Me-4PACz ([4-(3,6-Dimethyl-9H-carbazol-9-yl)butyl]phosphonic Acid), etc. Self-Assembled Monolayers). Further, the first carrier transport layer 31 may have a multilayer structure.
 ペロブスカイト薄膜40は、第1キャリア輸送層31上に形成されており、光電変換層として機能する。ペロブスカイト薄膜40の主材料としては、有機原子A、金属原子B、およびハロゲン原子Xを含む下記式で表される化合物が挙げられる。
ABX
Aとしては、1価の有機アンモニウムイオンおよびアミジニウム系イオンのうちの少なくとも1種を含む有機原子が挙げられる。Bとしては、2価の金属イオンを含む金属原子が挙げられる。Xとしては、ヨウ化物イオンI、臭化物イオンBr、塩化物イオンCl、およびフッ化物イオンFのうちの少なくとも1種を含むハロゲン原子が挙げられる。
The perovskite thin film 40 is formed on the first carrier transport layer 31 and functions as a photoelectric conversion layer. The main material of the perovskite thin film 40 includes a compound represented by the following formula containing an organic atom A, a metal atom B, and a halogen atom X.
ABX 3
Examples of A include organic atoms containing at least one of monovalent organic ammonium ions and amidinium ions. Examples of B include metal atoms containing divalent metal ions. Examples of X include halogen atoms containing at least one of iodide ion I, bromide ion Br, chloride ion Cl, and fluoride ion F.
 これらの中でも、蒸着法(ドライプロセス)の場合、有機原子AとしてはメチルアンモニウムMA(CHNH)が好ましく、金属原子Bとしては鉛Pbが好ましく、ハロゲン原子Xとしてはヨウ化物I、臭化物イオンBrおよび塩化物イオンClのうちの少なくとも1つが好ましい。すなわち、蒸着法等のドライプロセスの場合、ペロブスカイト薄膜40の主材料としては、メチルアンモニウムハロゲン化鉛MAPbX(CHNHPbX)、例えばMAPbI、MAPbBr、MAPbCl等が挙げられる。なお、ハロゲン原子Xとしては複数種類を含んでもよい。例えばヨウ化物Iと他のハロゲン原子Xとを含む場合、ペロブスカイト薄膜40の主材料としては、メチルアンモニウムヨウ化鉛MAPbI(3-y)(CHNHPbI(3-y))、例えばMAPbIBr(3-y)、MAPbICl(3-y)等が挙げられる(yは任意の正の整数)。 Among these, in the case of vapor deposition method (dry process), methylammonium MA (CH 3 NH 3 ) is preferable as the organic atom A, lead Pb is preferable as the metal atom B, and iodide I, bromide as the halogen atom At least one of the ion Br and the chloride ion Cl is preferred. That is, in the case of a dry process such as a vapor deposition method, the main material of the perovskite thin film 40 includes methylammonium lead halide MAPbX 3 (CH 3 NH 3 PbX 3 ), such as MAPbI 3 , MAPbBr 3 , MAPbCl 3 , and the like. Note that the halogen atom X may include a plurality of types. For example, when containing iodide I and other halogen atoms X, the main material of the perovskite thin film 40 is methylammonium lead iodide MAPbI y X (3-y) (CH 3 NH 3 PbI y X (3-y) ), for example, MAPbI y Br (3-y) , MAPbI y Cl (3-y), etc. (y is any positive integer).
 メチルアンモニウムハロゲン化鉛MAPbX(CHNHPbX)薄膜は、ハロゲン化鉛PbX材料およびハロゲン化メチルアンモニウムMAX材料を順に製膜し、これらの材料の薄膜を反応温度で反応させることにより形成される。また、メチルアンモニウムヨウ化鉛MAPbI(3-y)(CHNHPbI(3-y))薄膜は、例えばハロゲン化鉛PbX材料およびヨウ化メチルアンモニウムMAI材料を順に製膜し、これらの材料の薄膜を反応温度で反応させることにより形成される。更に具体的な一例によれば、メチルアンモニウムヨウ化鉛MAPbI(CHNHPbI)薄膜は、ヨウ化鉛PbI材料およびヨウ化メチルアンモニウムMAI材料を順に製膜し、これらの材料の薄膜を反応温度で反応させることにより形成される。 A methylammonium lead halide MAPbX 3 (CH 3 NH 3 PbX 3 ) thin film is produced by sequentially forming a lead halide PbX 2 material and a methylammonium halide MAX material into a film, and then reacting the thin film of these materials at a reaction temperature. It is formed. Furthermore, the methylammonium lead iodide MAPbI y X (3-y) ( CH 3 NH 3 PbI y However, they are formed by reacting thin films of these materials at reaction temperatures. According to a more specific example, a methylammonium lead iodide MAPbI 3 (CH 3 NH 3 PbI 3 ) thin film is produced by sequentially forming a lead iodide PbI 2 material and a methylammonium iodide MAI material, and It is formed by reacting a thin film at a reaction temperature.
 第2キャリア輸送層32は、ペロブスカイト薄膜40上に形成されており、電子輸送層(ETL)(図1)または正孔輸送層(HTL)(図2)として機能する。第2キャリア輸送層32は、光透過性を有する半導体材料からなる。 The second carrier transport layer 32 is formed on the perovskite thin film 40 and functions as an electron transport layer (ETL) (FIG. 1) or a hole transport layer (HTL) (FIG. 2). The second carrier transport layer 32 is made of a semiconductor material having optical transparency.
 具体的には、図1では、第2キャリア輸送層32は、ペロブスカイト薄膜40で光電変換されて生成されたキャリアのうちの電子(第2キャリア)を第2電極層22に輸送する電子輸送層(ETL)として機能する。電子輸送層(ETL)としての第2キャリア輸送層32の主材料としては、酸化チタン(TiO)、酸化亜鉛(ZnO)、酸化スズ(SnO)、または、フラーレン等が挙げられる。 Specifically, in FIG. 1, the second carrier transport layer 32 is an electron transport layer that transports electrons (second carriers) among carriers generated by photoelectric conversion in the perovskite thin film 40 to the second electrode layer 22. (ETL). Main materials for the second carrier transport layer 32 as an electron transport layer (ETL) include titanium oxide (TiO 2 ), zinc oxide (ZnO), tin oxide (SnO 2 ), fullerene, and the like.
 上述したように、フラーレンとしては、例えばC60、C70、これらの水素化物、酸化物、金属錯体、アルキル基等を付加した誘導体、例えば、PCBM([6,6]-Phenyl-C61-Butyric Acid Methyl Ester)などが挙げられる。第2キャリア輸送層32をリチウムLiを内包させたフラーレンを含む材料から形成することにより、電子の輸送効率を向上することができる。 As mentioned above, fullerenes include, for example, C60, C70, their hydrides, oxides, metal complexes, derivatives with added alkyl groups, etc., such as PCBM ([6,6]-Phenyl-C61-Butyric Acid Methyl Ester), etc. By forming the second carrier transport layer 32 from a material containing fullerene containing lithium Li, electron transport efficiency can be improved.
 なお、第2キャリア輸送層32が電子輸送層(ETL)の場合、第2キャリア輸送層32と第2電極層22との間、または、第2キャリア輸送層32とペロブスカイト薄膜40との間に、正孔阻止層が設けられていてもよい。正孔阻止層の材料としては、例えば、バソクプロイン(BCP)、被着層へのダメージが比較的小さい原子層堆積(ALD:Atomic Layer Deposition)により形成されたSnO等が挙げられる。 Note that when the second carrier transport layer 32 is an electron transport layer (ETL), there is a gap between the second carrier transport layer 32 and the second electrode layer 22 or between the second carrier transport layer 32 and the perovskite thin film 40. , a hole blocking layer may be provided. Examples of the material for the hole blocking layer include bathocuproine (BCP), SnO formed by atomic layer deposition (ALD), which causes relatively little damage to the adhered layer, and the like.
 また、第2キャリア輸送層32が電子輸送層(ETL)の場合、第2キャリア輸送層32と第2電極層22との間、または、第2キャリア輸送層32とペロブスカイト薄膜40との間に、電子抽出層が設けられていてもよい。電子抽出層の材料としては、例えば、リチウム(Li)、フッ化リチウム(LiF)等が挙げられる。 In addition, when the second carrier transport layer 32 is an electron transport layer (ETL), there may be a gap between the second carrier transport layer 32 and the second electrode layer 22 or between the second carrier transport layer 32 and the perovskite thin film 40. , an electron extraction layer may be provided. Examples of the material for the electron extraction layer include lithium (Li), lithium fluoride (LiF), and the like.
 一方、図2では、第2キャリア輸送層32は、ペロブスカイト薄膜40で光電変換されて生成されたキャリアのうちの正孔(第2キャリア)を第2電極層22に輸送する正孔輸送層(HTL)として機能する。正孔輸送層(HTL)としての第2キャリア輸送層32の主材料としては、酸化ニッケル(NiO)、酸化銅(CuO)、PTAA(Poly(bis(4-phenyl)(2,4,6-trimethylphenyl)amine))、または、Spiro-MeOTAD等が挙げられる。 On the other hand, in FIG. 2, the second carrier transport layer 32 is a hole transport layer (second carrier) that transports holes (second carriers) among carriers generated by photoelectric conversion in the perovskite thin film 40 to the second electrode layer 22. HTL). The main materials of the second carrier transport layer 32 as a hole transport layer (HTL) include nickel oxide (NiO), copper oxide (Cu 2 O), and PTAA (Poly(bis(4-phenyl)(2,4, 6-trimethylphenyl)amine) or Spiro-MeOTAD.
 第2電極層22は、第2キャリア輸送層32上に形成されており、陰極(図1)または陽極(図2)として機能する。基材10側、すなわち第1電極層21側が受光面である場合、第2電極層22は、例えば基材10側に、面状の金属電極層を含んでいてもよい。或いは、基材10と反対側、すなわち第2電極層22側が受光面である場合、第2電極層22は、導電性かつ光透過性を有する透明導電膜(Transparent Conductive Oxide:TCO)を含んでいてもよく、更には、グリッド状またはスリット状の金属電極層を含んでいてもよい。 The second electrode layer 22 is formed on the second carrier transport layer 32 and functions as a cathode (FIG. 1) or an anode (FIG. 2). When the base material 10 side, that is, the first electrode layer 21 side is the light-receiving surface, the second electrode layer 22 may include, for example, a planar metal electrode layer on the base material 10 side. Alternatively, when the side opposite to the base material 10, that is, the second electrode layer 22 side is the light-receiving surface, the second electrode layer 22 includes a transparent conductive oxide (TCO) that is electrically conductive and transparent. Furthermore, it may include a grid-like or slit-like metal electrode layer.
 透明導電膜TCOの材料としては、透明導電性金属酸化物、例えば、酸化インジウム、酸化スズ、酸化亜鉛、酸化チタンおよびそれらの複合酸化物等が用いられる。これらの中でも、酸化インジウムを主成分とするインジウム系複合酸化物が好ましい。高い導電率と透明性の観点からは、インジウム酸化物が特に好ましい。更に、信頼性またはより高い導電率を確保するため、インジウム酸化物にドーパントを添加すると好ましい。ドーパントとしては、例えば、Sn、W、Zn、Ti、Ce、Zr、Mo、Al、Ga、Ge、As、Si、またはS等が挙げられる。これらの中でも、インジウム酸化物にスズ(Sn)が添加されたITO(Indium Tin Oxide)が特に好ましい。
 金属電極層の材料としては、Ag、Au、Cu等が挙げられる。
As the material for the transparent conductive film TCO, transparent conductive metal oxides such as indium oxide, tin oxide, zinc oxide, titanium oxide, and composite oxides thereof are used. Among these, indium-based composite oxides containing indium oxide as a main component are preferred. Indium oxide is particularly preferred from the viewpoint of high conductivity and transparency. Furthermore, it is preferable to add dopants to the indium oxide to ensure reliability or higher conductivity. Examples of the dopant include Sn, W, Zn, Ti, Ce, Zr, Mo, Al, Ga, Ge, As, Si, and S. Among these, ITO (Indium Tin Oxide), in which tin (Sn) is added to indium oxide, is particularly preferred.
Examples of the material for the metal electrode layer include Ag, Au, and Cu.
 このような構成により、太陽電池1は、基材10側、すなわち第1電極層21側、または基材10と反対側、すなわち第2電極層22側から入射する光に応じた電流を生成し、第1電極層21および第2電極層22に出力する。 With this configuration, the solar cell 1 generates a current according to light incident from the base material 10 side, that is, the first electrode layer 21 side, or the side opposite to the base material 10, that is, the second electrode layer 22 side. , is output to the first electrode layer 21 and the second electrode layer 22.
(太陽電池の製造方法)
 次に、図3A~図3Cを参照して、本実施形態の太陽電池の製造方法について説明する。図3Aおよび図3Bは、本実施形態に係る太陽電池の製造方法における第1電極層形成工程を示す図であり、図3Cは、本実施形態に係る太陽電池の製造方法における第1キャリア輸送層形成工程、ペロブスカイト薄膜形成工程、第2キャリア輸送層形成工程および第2電極層形成工程を示す図である。
(Method for manufacturing solar cells)
Next, a method for manufacturing a solar cell according to this embodiment will be described with reference to FIGS. 3A to 3C. 3A and 3B are diagrams showing a first electrode layer forming step in the solar cell manufacturing method according to the present embodiment, and FIG. 3C is a diagram showing the first carrier transport layer in the solar cell manufacturing method according to the present embodiment. It is a figure which shows a formation process, a perovskite thin film formation process, a 2nd carrier transport layer formation process, and a 2nd electrode layer formation process.
 まず、図3Aに示すように、基材10上に、インジウム酸化物にスズSnが添加されたITO薄膜を製膜し、製膜したITO薄膜を加熱することによって、結晶化ITO薄膜21Zを形成する(第1電極層形成工程)。透明導電膜の形成方法としては、特に限定されないが、真空チャンバを用いたCVD法(化学気相堆積法)、PVD法(物理気相堆積法)またはスパッタリング法等が用いられる。 First, as shown in FIG. 3A, an ITO thin film in which tin is added to indium oxide is formed on the base material 10, and the formed ITO thin film is heated to form a crystallized ITO thin film 21Z. (first electrode layer forming step). The method for forming the transparent conductive film is not particularly limited, but a CVD method (chemical vapor deposition method) using a vacuum chamber, a PVD method (physical vapor deposition method), a sputtering method, or the like can be used.
 このとき、ITO薄膜の電気抵抗の低減または透過率の向上(すなわち、太陽電池の性能向上)のために、高温製膜または室温製膜+アニールにより、ITO薄膜の結晶性を高める。しかし、この結晶化の際、結晶化ITO薄膜21Zの表面に、ドープ成分であるSnが偏析してしまうことがある。そのため、表面が高抵抗化し、第1電極層と第1キャリア輸送層との界面抵抗が増加し、結晶化による電気抵抗の低減(すなわち、太陽電池の性能向上)の効果を低下させてしまう。 At this time, in order to reduce the electrical resistance or improve the transmittance of the ITO thin film (that is, to improve the performance of the solar cell), the crystallinity of the ITO thin film is increased by high temperature film formation or room temperature film formation + annealing. However, during this crystallization, Sn, which is a doping component, may segregate on the surface of the crystallized ITO thin film 21Z. Therefore, the surface becomes highly resistive, the interfacial resistance between the first electrode layer and the first carrier transport layer increases, and the effect of reducing electrical resistance (that is, improving the performance of the solar cell) due to crystallization is reduced.
 次に、図3Bに示すように、結晶化ITO薄膜21Zの第1キャリア輸送層側の表面の一部21Sを除去することによって、第1電極層21を形成する(第1電極層形成工程)。具体的には、酸処理によって、結晶化ITO薄膜21Zの表面の一部21Sをエッチングする。除去する一部21Sは、結晶化ITO薄膜21Zの表面から3nmまで、好ましくは2nmまでの部分である。酸処理の溶液としては、塩酸HCl、塩化第二鉄FeCl3等が挙げられる。 Next, as shown in FIG. 3B, the first electrode layer 21 is formed by removing part 21S of the surface of the crystallized ITO thin film 21Z on the first carrier transport layer side (first electrode layer forming step). . Specifically, a portion 21S of the surface of the crystallized ITO thin film 21Z is etched by acid treatment. The portion 21S to be removed is up to 3 nm, preferably up to 2 nm from the surface of the crystallized ITO thin film 21Z. Examples of solutions for acid treatment include hydrochloric acid HCl, ferric chloride FeCl3, and the like.
 これにより、結晶化ITO薄膜21Zの表面の高抵抗化を抑制し、第1電極層と第1キャリア輸送層との界面抵抗の増加を抑制し、結晶化による電気抵抗の低減効果の低下(すなわち、太陽電池の性能向上)の効果の低下を抑制する。 This suppresses an increase in the surface resistance of the crystallized ITO thin film 21Z, suppresses an increase in the interfacial resistance between the first electrode layer and the first carrier transport layer, and reduces the effect of reducing electrical resistance due to crystallization (i.e. , the performance improvement of solar cells).
 次に、図3Cに示すように、第1電極層21上に、第1キャリア輸送層31を形成する(第1キャリア輸送層形成工程)。第1キャリア輸送層31の形成方法としては、特に限定されないが、例えばCVD法、PVD法またはスパッタリング法等のドライプロセス、或いは塗布法、印刷法等のウエットプロセスが挙げられる。これらの中でも、緻密な膜の製膜の観点から、スパッタリング法が好ましい。 Next, as shown in FIG. 3C, the first carrier transport layer 31 is formed on the first electrode layer 21 (first carrier transport layer forming step). The method for forming the first carrier transport layer 31 is not particularly limited, and includes, for example, a dry process such as a CVD method, a PVD method, or a sputtering method, or a wet process such as a coating method or a printing method. Among these, the sputtering method is preferred from the viewpoint of forming a dense film.
 次に、第1キャリア輸送層31上に、ペロブスカイト薄膜40を形成する(ペロブスカイト薄膜形成工程)。例えば、ヨウ化鉛PbI材料膜を製膜した後、ヨウ化メチルアンモニウムMAI材料膜を製膜し、ヨウ化鉛PbI材料膜とヨウ化メチルアンモニウムMAI材料膜とを反応させることにより、メチルアンモニウムヨウ化鉛MAPbIからなるペロブスカイト薄膜を形成する。ペロブスカイト薄膜40の形成方法としては、特に限定されないが、蒸着法等のドライプロセス、或いは印刷法、塗布法または溶液法等のウエットプロセスが挙げられる。 Next, a perovskite thin film 40 is formed on the first carrier transport layer 31 (perovskite thin film forming step). For example, after forming a lead iodide PbI 2 material film, a methylammonium iodide MAI material film is formed, and by reacting the lead iodide PbI 2 material film and the methylammonium iodide MAI material film, methyl A perovskite thin film made of ammonium lead iodide MAPbI 3 is formed. Methods for forming the perovskite thin film 40 include, but are not particularly limited to, dry processes such as vapor deposition, wet processes such as printing, coating, and solution methods.
 次に、ペロブスカイト薄膜40上に、第2キャリア輸送層32を形成する(第2キャリア輸送層形成工程)。第2キャリア輸送層32の形成方法としては、特に限定されないが、例えばCVD法、PVD法またはスパッタリング法、あるいは蒸着法等のドライプロセス、或いは塗布法、印刷法等のウエットプロセスが挙げられる。 Next, the second carrier transport layer 32 is formed on the perovskite thin film 40 (second carrier transport layer forming step). The method for forming the second carrier transport layer 32 is not particularly limited, but includes, for example, a CVD method, a PVD method, a sputtering method, a dry process such as a vapor deposition method, or a wet process such as a coating method or a printing method.
 次に、第2キャリア輸送層32上に、第2電極層22を形成する。第2電極層22の形成方法としては、特に限定されないが、例えば真空チャンバを用いたCVD法、PVD法またはスパッタリング法、あるいは蒸着法等のドライプロセス、或いは印刷法または塗布法等のウエットプロセスが挙げられる。これらの中でも、スパッタリング法が好ましい。
 以上により、図1または図2に示す本実施形態のペロブスカイト薄膜系の太陽電池1が得られる。
Next, the second electrode layer 22 is formed on the second carrier transport layer 32. The method for forming the second electrode layer 22 is not particularly limited, but includes, for example, a CVD method using a vacuum chamber, a PVD method, a sputtering method, a dry process such as a vapor deposition method, or a wet process such as a printing method or a coating method. Can be mentioned. Among these, sputtering method is preferred.
Through the above steps, the perovskite thin film solar cell 1 of this embodiment shown in FIG. 1 or 2 is obtained.
 以上説明したように、本実施形態の太陽電池の製造方法によれば、第1電極層形成工程において、製膜したITO薄膜を加熱して結晶化ITO薄膜21Zを形成する。これにより、ITO薄膜の結晶性を高め、ITO薄膜の電気抵抗を低減し、ITO薄膜の透過率を向上することができる。その結果、太陽電池1の性能向上を図ることができる。 As explained above, according to the solar cell manufacturing method of this embodiment, in the first electrode layer forming step, the formed ITO thin film is heated to form the crystallized ITO thin film 21Z. Thereby, the crystallinity of the ITO thin film can be improved, the electrical resistance of the ITO thin film can be reduced, and the transmittance of the ITO thin film can be improved. As a result, the performance of the solar cell 1 can be improved.
 更に、第1電極層形成工程において、ITO薄膜の結晶化の際に、ドープ成分であるSnが偏析する結晶化ITO薄膜21Zの表面の一部21Sを除去する。これにより、結晶化ITO薄膜21Zの表面の高抵抗化を抑制することができ、第1電極層と第1キャリア輸送層との界面抵抗の増加を抑制することができ、結晶化による電気抵抗の低減効果の低下を抑制することができる。その結果、太陽電池1の更なる性能向上を図ることができる。 Furthermore, in the first electrode layer forming step, a part 21S of the surface of the crystallized ITO thin film 21Z where Sn, which is a doping component, segregates during crystallization of the ITO thin film is removed. Thereby, it is possible to suppress an increase in the surface resistance of the crystallized ITO thin film 21Z, and it is possible to suppress an increase in the interfacial resistance between the first electrode layer and the first carrier transport layer, and to reduce the electrical resistance due to crystallization. Deterioration of the reduction effect can be suppressed. As a result, the performance of the solar cell 1 can be further improved.
 以上、本発明の実施形態について説明したが、本発明は上述した実施形態に限定されることなく、種々の変更および変形が可能である。例えば、上述した実施形態では、結晶シリコン系太陽電池またはアモルファスシリコン薄膜系太陽電池と、ペロブスカイト薄膜系太陽電池とを組み合わせたいわゆるタンデム型太陽電池におけるペロブスカイト薄膜系太陽電池の製造にも適用可能である。 Although the embodiments of the present invention have been described above, the present invention is not limited to the embodiments described above, and various changes and modifications can be made. For example, the embodiments described above can also be applied to the production of a perovskite thin film solar cell in a so-called tandem solar cell that combines a crystalline silicon solar cell or an amorphous silicon thin film solar cell and a perovskite thin film solar cell. .
 以下、実施例に基づいて本発明を具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be specifically explained based on Examples, but the present invention is not limited to the following Examples.
(実施例1)
 本実施形態のペロブスカイト薄膜系太陽電池の製造方法において、図3Bに示す酸処理後の第1電極層を実施例1として作製した。実施例1の第1電極層の形成方法は以下の通りである。
・まず、図3Aに示すように、基材10上に、インジウム酸化物にスズSnが添加されたITO薄膜を製膜し(スパッタリング法)、製膜したITO薄膜を加熱して(180度で1時間)、結晶化ITO薄膜21Zを形成した(膜厚122nm)。
・次に、図3Bに示すように、結晶化ITO薄膜21Zの表面の一部21S(表面から2nmの部分)を酸処理(HCl)によって除去して第1電極層を形成した。
(Example 1)
In the method for manufacturing a perovskite thin film solar cell of this embodiment, a first electrode layer after acid treatment shown in FIG. 3B was produced as Example 1. The method for forming the first electrode layer of Example 1 is as follows.
- First, as shown in FIG. 3A, an ITO thin film in which tin is added to indium oxide is formed on the base material 10 (sputtering method), and the formed ITO thin film is heated (at 180 degrees). 1 hour), a crystallized ITO thin film 21Z was formed (film thickness: 122 nm).
- Next, as shown in FIG. 3B, a part 21S (2 nm from the surface) of the surface of the crystallized ITO thin film 21Z was removed by acid treatment (HCl) to form a first electrode layer.
(比較例1)
 本実施形態のペロブスカイト薄膜系太陽電池の製造方法において、図3Aに示す酸処理前の第1電極層を比較例1として作製した。比較例1の第1電極層の形成方法は以下の通りである。
・図3Aに示すように、基材10上に、インジウム酸化物にスズSnが添加されたITO薄膜を製膜し(スパッタリング法)、製膜したITO薄膜を加熱して(180度で1時間)、結晶化ITO薄膜21Zを、すなわち表面の一部21Sを除去しない結晶化ITO薄膜21Zを、第1電極層として形成した(膜厚120nm)。
(Comparative example 1)
In the method for manufacturing a perovskite thin film solar cell of this embodiment, a first electrode layer before acid treatment shown in FIG. 3A was produced as Comparative Example 1. The method for forming the first electrode layer of Comparative Example 1 is as follows.
・As shown in FIG. 3A, an ITO thin film in which tin is added to indium oxide is formed on the base material 10 (sputtering method), and the formed ITO thin film is heated (at 180 degrees for 1 hour). ), a crystallized ITO thin film 21Z, that is, a crystallized ITO thin film 21Z whose surface part 21S was not removed, was formed as the first electrode layer (film thickness: 120 nm).
(評価)
 第1電極層(ITO)の表面(第1キャリア輸送層側の表面)からの深さに対するSn/In割合(Inに対するSnの割合)を、デプスプロファイルとして測定した。具体的には、スパッタリング法を用いたITOの表面のエッチングと、XPS測定とを組み合わせることにより、第1電極層(ITO)の表面からのデプスプロファイルを測定した。スパッタ装置としては公知のスパッタ装置であればよく、スパッタレートは約1.25nm/min.とした。XPS測定としては、アルバック・ファイ社製/型格PHI5000 VersaProbeIIを使用した。このデプスプロファイルの測定結果を図4に示す。
(evaluation)
The Sn/In ratio (ratio of Sn to In) with respect to the depth from the surface of the first electrode layer (ITO) (the surface on the first carrier transport layer side) was measured as a depth profile. Specifically, the depth profile from the surface of the first electrode layer (ITO) was measured by combining etching of the surface of ITO using a sputtering method and XPS measurement. Any known sputtering device may be used as the sputtering device, and the sputtering rate is approximately 1.25 nm/min. And so. For the XPS measurement, VersaProbeII manufactured by ULVAC-PHI Inc./model PHI5000 was used. The measurement results of this depth profile are shown in FIG.
 図4において、横軸がスパッタ時間、すなわち第1電極層(ITO)の表面からの深さであり、縦軸がSn/In割合(Inに対するSnの割合)である。また、実線が実施例1の酸処理有の第1電極層(ITO)のデプスプロファイルであり、破線が比較例1の酸処理無の第1電極層(ITO)のデプスプロファイルである。 In FIG. 4, the horizontal axis is the sputtering time, that is, the depth from the surface of the first electrode layer (ITO), and the vertical axis is the Sn/In ratio (ratio of Sn to In). Further, the solid line is the depth profile of the first electrode layer (ITO) with acid treatment in Example 1, and the broken line is the depth profile of the first electrode layer (ITO) without acid treatment in Comparative Example 1.
 図4に示すように、比較例1、すなわち酸処理無では、第1電極層(ITO)の表面から1.25nmまでの部分において、Inに対するSnの割合が大きい。これに対して、実施例1、すなわち酸処理有では、第1電極層(ITO)の表面から、Inに対するSnの割合を低減できた。 As shown in FIG. 4, in Comparative Example 1, that is, without acid treatment, the ratio of Sn to In was large in the portion up to 1.25 nm from the surface of the first electrode layer (ITO). On the other hand, in Example 1, that is, with acid treatment, the ratio of Sn to In could be reduced from the surface of the first electrode layer (ITO).
 1 ペロブスカイト薄膜系太陽電池
 10 基材
 21 第1電極層(陽極または陰極)
 21S 結晶化ITO薄膜の表面の一部
 21Z 結晶化ITO薄膜
 22 第2電極層(陰極または陽極)
 31 第1キャリア輸送層(正孔輸送層または電子輸送層)
 32 第2キャリア輸送層(電子輸送層または正孔輸送層)
 40 ペロブスカイト薄膜
1 Perovskite thin film solar cell 10 Base material 21 First electrode layer (anode or cathode)
21S Part of surface of crystallized ITO thin film 21Z Crystallized ITO thin film 22 Second electrode layer (cathode or anode)
31 First carrier transport layer (hole transport layer or electron transport layer)
32 Second carrier transport layer (electron transport layer or hole transport layer)
40 Perovskite thin film

Claims (8)

  1.  基材上に、第1電極層と、第1キャリア輸送層と、ペロブスカイト薄膜と、第2キャリア輸送層と、第2電極層とをこの順番に形成するペロブスカイト薄膜系太陽電池の製造方法であって、
     前記第1電極層の形成工程では、
     前記基材上に、インジウム酸化物にSnが添加されたITO薄膜を製膜し、前記ITO薄膜を加熱することによって、結晶化ITO薄膜を形成し、
     前記結晶化ITO薄膜の前記第1キャリア輸送層側の表面の一部を除去することによって、前記第1電極層を形成する、
    ペロブスカイト薄膜系太陽電池の製造方法。
    A method for manufacturing a perovskite thin film solar cell, comprising forming a first electrode layer, a first carrier transport layer, a perovskite thin film, a second carrier transport layer, and a second electrode layer in this order on a base material. hand,
    In the step of forming the first electrode layer,
    Forming an ITO thin film in which Sn is added to indium oxide on the base material and heating the ITO thin film to form a crystallized ITO thin film,
    forming the first electrode layer by removing a part of the surface of the crystallized ITO thin film on the first carrier transport layer side;
    A method for manufacturing perovskite thin film solar cells.
  2.  前記結晶化ITO薄膜の表面の一部を除去する工程では、酸処理によって、前記結晶化ITO薄膜の表面の一部をエッチングする、請求項1に記載のペロブスカイト薄膜系太陽電池の製造方法。 The method for manufacturing a perovskite thin film solar cell according to claim 1, wherein in the step of removing a part of the surface of the crystallized ITO thin film, a part of the surface of the crystallized ITO thin film is etched by acid treatment.
  3.  前記結晶化ITO薄膜の表面の一部を除去する工程では、前記結晶化ITO薄膜の表面から3nmまでの部分を除去する、請求項1または2に記載のペロブスカイト薄膜系太陽電池の製造方法。 The method for manufacturing a perovskite thin film solar cell according to claim 1 or 2, wherein in the step of removing a part of the surface of the crystallized ITO thin film, a portion up to 3 nm from the surface of the crystallized ITO thin film is removed.
  4.  基材上に、第1電極層と、第1キャリア輸送層と、ペロブスカイト薄膜と、第2キャリア輸送層と、第2電極層とをこの順番に備えるペロブスカイト薄膜系太陽電池であって、
     前記第1電極層は、インジウム酸化物にSnが添加されたITO薄膜であって、結晶化された結晶化ITO薄膜を含み、
     前記結晶化ITO薄膜において、前記第1キャリア輸送層側の表面から3nmまでの表面部分におけるInに対するSnの割合と、前記表面部分以外の残り部分におけるInに対するSnの割合との差が、2%以下である、
    ペロブスカイト薄膜系太陽電池。
    A perovskite thin film solar cell comprising a first electrode layer, a first carrier transport layer, a perovskite thin film, a second carrier transport layer, and a second electrode layer in this order on a base material,
    The first electrode layer is an ITO thin film in which Sn is added to indium oxide, and includes a crystallized ITO thin film,
    In the crystallized ITO thin film, the difference between the ratio of Sn to In in the surface part up to 3 nm from the surface on the first carrier transport layer side and the ratio of Sn to In in the remaining part other than the surface part is 2%. The following is
    Perovskite thin film solar cells.
  5.  前記基材側が受光面であり、
     前記基材は光透過性を有し、
     前記第1電極層は、前記結晶化ITO薄膜を含み、または、前記結晶化ITO薄膜と、グリッド状またはスリット状の金属電極層を含み、
     前記第2電極層は、面状の金属電極層を含む、
    請求項4に記載のペロブスカイト薄膜系太陽電池。
    The base material side is a light-receiving surface,
    The base material has light transmittance,
    The first electrode layer includes the crystallized ITO thin film, or includes the crystallized ITO thin film and a grid-shaped or slit-shaped metal electrode layer,
    The second electrode layer includes a planar metal electrode layer.
    The perovskite thin film solar cell according to claim 4.
  6.  前記第2電極層側が受光面であり、
     前記第2電極層は、透明導電膜を含み、または、透明導電膜と、グリッド状またはスリット状の金属電極層を含み、
     前記第1電極層は、面状の金属電極層を更に含む、
    請求項4に記載のペロブスカイト薄膜系太陽電池。
    The second electrode layer side is a light-receiving surface,
    The second electrode layer includes a transparent conductive film, or includes a transparent conductive film and a grid-shaped or slit-shaped metal electrode layer,
    The first electrode layer further includes a planar metal electrode layer.
    The perovskite thin film solar cell according to claim 4.
  7.  前記基材側および前記第2電極層側の両側が受光面であり、
     前記基材は光透過性を有し、
     前記第1電極層は、前記結晶化ITO薄膜を含み、または、前記結晶化ITO薄膜と、グリッド状またはスリット状の金属電極層を含み、
     前記第2電極層は、透明導電膜を含み、または、透明導電膜と、グリッド状またはスリット状の金属電極層を含む、
    請求項4に記載のペロブスカイト薄膜系太陽電池。
    Both sides of the base material side and the second electrode layer side are light receiving surfaces,
    The base material has light transmittance,
    The first electrode layer includes the crystallized ITO thin film, or includes the crystallized ITO thin film and a grid-shaped or slit-shaped metal electrode layer,
    The second electrode layer includes a transparent conductive film, or includes a transparent conductive film and a grid-shaped or slit-shaped metal electrode layer.
    The perovskite thin film solar cell according to claim 4.
  8.  前記基材はフィルム状の基材である、請求項4~7のいずれか1項に記載のペロブスカイト薄膜系太陽電池。 The perovskite thin film solar cell according to any one of claims 4 to 7, wherein the base material is a film-like base material.
PCT/JP2023/011867 2022-03-30 2023-03-24 Method for manufacturing perovskite thin film-based solar cell, and perovskite thin film-based solar cell WO2023190182A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-055996 2022-03-30
JP2022055996 2022-03-30

Publications (1)

Publication Number Publication Date
WO2023190182A1 true WO2023190182A1 (en) 2023-10-05

Family

ID=88201475

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/011867 WO2023190182A1 (en) 2022-03-30 2023-03-24 Method for manufacturing perovskite thin film-based solar cell, and perovskite thin film-based solar cell

Country Status (1)

Country Link
WO (1) WO2023190182A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117568935A (en) * 2023-10-27 2024-02-20 深圳技术大学 Rare earth doped polycrystalline perovskite film and preparation method of photoelectric detector thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002170666A (en) * 2000-11-29 2002-06-14 Idemitsu Kosan Co Ltd Organic electroluminescent element and its manufacturing method
WO2003045115A1 (en) * 2001-11-22 2003-05-30 Nippon Soda Co.,Ltd. El device
JP2004356626A (en) * 2003-05-07 2004-12-16 Kyoto Univ Polymer thin film having interlaminated structure, and photoelectric element and solar cell using the film
JP2006526872A (en) * 2003-05-23 2006-11-24 エルジー・ケム・リミテッド Nitrogen plasma treated ITO film and organic light emitting device using the same as anode
JP2007165611A (en) * 2005-12-14 2007-06-28 Showa Denko Kk Gallium-nitride compound semiconductor light-emitting element and manufacturing method therefor
JP2011181904A (en) * 2010-02-05 2011-09-15 Dainippon Printing Co Ltd Substrate for solar cell, solar cell, organic thin film solar cell, process for production of substrate for solar cell, and process for production of organic thin film solar cell
JP2018120922A (en) * 2017-01-24 2018-08-02 株式会社東芝 Photoelectric conversion element and method of manufacturing the same
JP2018190928A (en) * 2017-05-11 2018-11-29 国立研究開発法人物質・材料研究機構 Perovskite solar battery and manufacturing method therefor
WO2019188716A1 (en) * 2018-03-29 2019-10-03 株式会社カネカ Solar cell and manufacturing method therefor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002170666A (en) * 2000-11-29 2002-06-14 Idemitsu Kosan Co Ltd Organic electroluminescent element and its manufacturing method
WO2003045115A1 (en) * 2001-11-22 2003-05-30 Nippon Soda Co.,Ltd. El device
JP2004356626A (en) * 2003-05-07 2004-12-16 Kyoto Univ Polymer thin film having interlaminated structure, and photoelectric element and solar cell using the film
JP2006526872A (en) * 2003-05-23 2006-11-24 エルジー・ケム・リミテッド Nitrogen plasma treated ITO film and organic light emitting device using the same as anode
JP2007165611A (en) * 2005-12-14 2007-06-28 Showa Denko Kk Gallium-nitride compound semiconductor light-emitting element and manufacturing method therefor
JP2011181904A (en) * 2010-02-05 2011-09-15 Dainippon Printing Co Ltd Substrate for solar cell, solar cell, organic thin film solar cell, process for production of substrate for solar cell, and process for production of organic thin film solar cell
JP2018120922A (en) * 2017-01-24 2018-08-02 株式会社東芝 Photoelectric conversion element and method of manufacturing the same
JP2018190928A (en) * 2017-05-11 2018-11-29 国立研究開発法人物質・材料研究機構 Perovskite solar battery and manufacturing method therefor
WO2019188716A1 (en) * 2018-03-29 2019-10-03 株式会社カネカ Solar cell and manufacturing method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117568935A (en) * 2023-10-27 2024-02-20 深圳技术大学 Rare earth doped polycrystalline perovskite film and preparation method of photoelectric detector thereof

Similar Documents

Publication Publication Date Title
US10944017B2 (en) Stacked photoelectric conversion device and method for producing same
US20160240797A1 (en) Solar cell and method for manufacturing the same
JP2021099997A (en) Transparent electrode and method for producing the same, and electronic device using the transparent electrode
KR20110014168A (en) Photovoltaic cell and substrate for same
Yang et al. Highly transparent and conductive double-layer oxide thin films as anodes for organic light-emitting diodes
WO2023190182A1 (en) Method for manufacturing perovskite thin film-based solar cell, and perovskite thin film-based solar cell
JP2023148126A (en) Method for manufacturing perovskite thin film-based solar cell, and perovskite thin film-based solar cell
JP5729595B2 (en) Transparent conductive film for solar cell and method for producing the same
US20220181569A1 (en) Transparent electrode, method of producing transparent electrode, and electronic device
KR20200075640A (en) Tandem solar cell
JP2016186968A (en) Photoelectric conversion device and manufacturing method therefor
KR101693192B1 (en) Perovskite solar cell and preparation method thereof
KR102467639B1 (en) Semi-transparent perovskite solar cell having amorphous oxide top electrode with high transparency and Method for manufacturing the same
US11942575B2 (en) Transparent electrode, method of producing transparent electrode, and electronic device
JP2008077924A (en) Photoelectric converter
WO2022071302A1 (en) Perovskite thin film solar cell production method
CN116671276A (en) Method for manufacturing perovskite thin film solar cell
WO2023048117A1 (en) Solar cell
TW201521210A (en) Photovoltaic element and method of manufacturing the same
JP7514956B2 (en) Manufacturing method for perovskite thin-film solar cells
WO2023190007A1 (en) Flexible perovskite solar cell and manufacturing method thereof
WO2024009411A1 (en) Transparent electrode, manufacturing method therefor, and electronic device employing transparent electrode
US20240222535A1 (en) Transparent electrode, producing method thereof, and electronic device using transparent electrode
WO2023042614A1 (en) Solar cell
US20240224550A1 (en) Solar cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23780192

Country of ref document: EP

Kind code of ref document: A1