JP2012069566A - Thin film solar cell manufacturing method - Google Patents

Thin film solar cell manufacturing method Download PDF

Info

Publication number
JP2012069566A
JP2012069566A JP2010210845A JP2010210845A JP2012069566A JP 2012069566 A JP2012069566 A JP 2012069566A JP 2010210845 A JP2010210845 A JP 2010210845A JP 2010210845 A JP2010210845 A JP 2010210845A JP 2012069566 A JP2012069566 A JP 2012069566A
Authority
JP
Japan
Prior art keywords
resistant resin
resin layer
heat
substrate
laminated film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010210845A
Other languages
Japanese (ja)
Inventor
Hiroya Yamabayashi
弘也 山林
Hidetada Tokioka
秀忠 時岡
Tsutomu Matsuura
努 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010210845A priority Critical patent/JP2012069566A/en
Publication of JP2012069566A publication Critical patent/JP2012069566A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce damage to a glass substrate in a peripheral film removal process of a thin film solar battery, thereby reducing laminate film particles left on the substrate in a peripheral region and preventing shorting between adjacent cells.SOLUTION: A thin film solar battery disposes on a substrate 1 made of glass a plurality of unit cells of a thin film solar battery having a laminate film 7 composed of a first electrode layer 2, a photoelectric conversion layer 4, and a second electrode layer 6 which are laminated one on top of another. The manufacturing method for the thin film solar battery comprises: a process of forming a heat resistant resin layer 8 on the outer periphery of the substrate 1; a process of laminating the laminate film 7 on the substrate 1 which has the heat resistant resin layer 8 formed thereon; a separation groove formation process of forming a plurality of separation grooves (91, 93) which divide the laminate film 7 into plural unit cells continuously until they reach the top of the heat resistant resin layer 8 on the outer periphery of the substrate 1; and an outer peripheral film removal process which includes a process of leaving partially the laminate film 7 on the heat resistant resin layer 8 which has separation grooves formed therein and removing the rest of the laminate film 7 on the outside thereof together with the heat resistant resin layer 8.

Description

本発明は、薄膜太陽電池の製造方法に関するものである。   The present invention relates to a method for manufacturing a thin film solar cell.

従来、1枚のガラス基板に多数の薄膜太陽電池セルを有する集積型の薄膜太陽電池では、透明絶縁基板上に、透明電極層からなる第1電極層、薄膜半導体からなる光電変換層、金属層からなる第2電極層が順に形成される。この隣接する薄膜太陽電池セル間を絶縁分離するための方法として、コスト、および安定性などからレーザビームによる加工が用いられることが多い。   Conventionally, in an integrated thin film solar cell having a large number of thin film solar cells on one glass substrate, a first electrode layer made of a transparent electrode layer, a photoelectric conversion layer made of a thin film semiconductor, a metal layer on a transparent insulating substrate The 2nd electrode layer which consists of is formed in order. As a method for insulating and separating adjacent thin film solar cells, processing by a laser beam is often used because of cost and stability.

このような薄膜太陽電池のモジュールとして、外部との電気的絶縁性を良好とするために基板の周辺の導電膜が除去された構造が一般的である。例えば、特許文献1では薄膜太陽電池はガラス基板の中央に設けられて、周囲領域では基板が露出されるようにされる。透明絶縁基板の周辺部における透明電極層、半導体層および裏面電極層を研磨等の機械的除去手段により除去すると共に、除去した領域より内側にレーザ加工等の手段により透明電極層、半導体層および裏面電極層を除去するものである。このような加工を施すことによって、研磨等の手段により除去した領域の研磨が不十分でも確実に絶縁できる。薄膜太陽電池を保護するために、バックシート等がEVA接着シートなどを使用して取りつけられる。特許文献1ではガラス基板の表面まで機械加工で除去することで、基板の周囲領域をバックシートとの良好な接着・シール面としている。   Such a thin-film solar cell module generally has a structure in which the conductive film around the substrate is removed in order to improve electrical insulation from the outside. For example, in Patent Document 1, the thin-film solar cell is provided at the center of the glass substrate so that the substrate is exposed in the surrounding area. The transparent electrode layer, the semiconductor layer, and the back electrode layer in the periphery of the transparent insulating substrate are removed by mechanical removal means such as polishing, and the transparent electrode layer, semiconductor layer, and back surface are removed by means such as laser processing inside the removed area. The electrode layer is removed. By performing such processing, even if the region removed by means such as polishing is not sufficiently polished, it can be reliably insulated. In order to protect the thin film solar cell, a back sheet or the like is attached using an EVA adhesive sheet or the like. In Patent Document 1, by removing the surface of the glass substrate by machining, the peripheral region of the substrate is used as a good adhesion / seal surface with the back sheet.

また、特許文献2には、工程が簡単で基板が損傷のない電極パターンの形成方法が示されている。電極の形状に抜いたレジストパターンを基板上に形成して、その上に電極膜を形成して、レジストパターンを機械的に剥離して電極を形成する。これによって基板全外周部の電極膜を除去する。   Patent Document 2 discloses a method for forming an electrode pattern with a simple process and no damage to the substrate. A resist pattern extracted in the shape of an electrode is formed on a substrate, an electrode film is formed thereon, and the resist pattern is mechanically peeled to form an electrode. Thus, the electrode film on the entire outer periphery of the substrate is removed.

また、特許文献3には基板の周縁から所定の領域を覆うマスクを設けて、第1電極層、光電変換層、第2電極層を順次堆積して、その後マスクを除去する方法が示されている。   Patent Document 3 discloses a method of providing a mask covering a predetermined region from the periphery of the substrate, sequentially depositing the first electrode layer, the photoelectric conversion layer, and the second electrode layer, and then removing the mask. Yes.

特開2000−150944号公報JP 2000-150944 A 特開平10−275920号公報JP-A-10-275920 特開2008−300732号公報JP 2008-300732 A

特許文献1のように、周辺膜の剥離の際に基板まで機械的に加工すると、基板周辺の傷を起点として基板が破損するなどの問題がある。また、特許文献2や3の方法では、基板の破損は防止できるが、第1電極層、光電変換層および第2電極層を積層する構造に対して適用するとレジストパターンやマスクの端部において積層構造の乱れや破損などが生じて、表面電極層と裏面電極層との接触や隣接するセル間で短絡が生じやすいなどの問題がある。また、基板に直接形成した積層膜をレーザスクライブで周辺膜除去すると積層膜の粒子が基板上に残りやすいといった問題もあった。   As in Patent Document 1, if the substrate is mechanically processed at the time of peeling of the peripheral film, there is a problem that the substrate is damaged starting from scratches around the substrate. In addition, in the methods of Patent Documents 2 and 3, damage to the substrate can be prevented, but when applied to a structure in which the first electrode layer, the photoelectric conversion layer, and the second electrode layer are stacked, the resist pattern and the mask are stacked at the edges. There is a problem that the structure is disturbed or damaged, and the contact between the front electrode layer and the back electrode layer or the short circuit between adjacent cells is likely to occur. In addition, there is a problem that when the laminated film formed directly on the substrate is removed by laser scribing, the particles of the laminated film are likely to remain on the substrate.

そこで、本発明は薄膜太陽電池の周辺膜除去の工程においてガラス基板に対するダメージを低減し、周辺領域の基板上に残る積層膜の粒子を減少し、隣接するセル間の短絡を防止する薄膜太陽電池の製造方法を提供することを目的とする。   Therefore, the present invention reduces the damage to the glass substrate in the step of removing the peripheral film of the thin film solar cell, reduces the number of laminated film particles remaining on the substrate in the peripheral region, and prevents a short circuit between adjacent cells. It aims at providing the manufacturing method of.

本発明の薄膜太陽電池の製造方法は、第1電極層と光電変換層と第2電極層とを積層した積層膜を有する薄膜太陽電池の単位セルがガラス材料からなる基板上に複数配設された薄膜太陽電池の製造方法であって、前記基板の外周部に耐熱樹脂層を形成する工程と、
前記耐熱樹脂層を形成した前記基板に前記積層膜を積層する工程と、前記積層膜を複数の単位セルに分割する複数の分離溝を前記基板の外周部の前記耐熱樹脂層の上まで連続するように形成する分離溝形成工程と、前記分離溝を形成した前記耐熱樹脂層の上の前記積層膜を部分的に残し、その外側の前記積層膜を前記耐熱樹脂層とともに除去する工程を含む外周膜除去工程と、を有する薄膜太陽電池の製造方法、とした。
In the method for producing a thin film solar cell of the present invention, a plurality of unit cells of a thin film solar cell having a laminated film in which a first electrode layer, a photoelectric conversion layer, and a second electrode layer are laminated are arranged on a substrate made of a glass material. A method of manufacturing a thin film solar cell, the step of forming a heat-resistant resin layer on the outer periphery of the substrate,
The step of laminating the laminated film on the substrate on which the heat-resistant resin layer is formed, and a plurality of separation grooves for dividing the laminated film into a plurality of unit cells are continued up to the heat-resistant resin layer on the outer peripheral portion of the substrate. An outer periphery including a step of forming a separation groove and a step of partially leaving the laminated film on the heat-resistant resin layer on which the separation groove is formed and removing the laminated film on the outer side together with the heat-resistant resin layer And a film removal step.

本発明では、外周膜除去工程において、分離溝を形成した耐熱樹脂層の上の前記積層膜を部分的に残し、積層膜は前記耐熱樹脂層とともに除去されるので、ガラス基板に対するダメージを低減し、周辺領域の基板上に残る積層膜の粒子を減少することができる。また、単位セルに分割する複数の分離溝を前記基板の外周部の前記耐熱樹脂層の上まで連続するように形成するので、耐熱樹脂層の端部で発生しやすい隣接するセル間の短絡を防止するができる。   In the present invention, in the outer peripheral film removing step, the laminated film is partially left on the heat resistant resin layer in which the separation groove is formed, and the laminated film is removed together with the heat resistant resin layer, thereby reducing damage to the glass substrate. The particles of the laminated film remaining on the substrate in the peripheral region can be reduced. In addition, since a plurality of separation grooves that are divided into unit cells are formed so as to continue to the top of the heat resistant resin layer on the outer peripheral portion of the substrate, a short circuit between adjacent cells that is likely to occur at the end of the heat resistant resin layer is prevented. Can be prevented.

本発明の実施の形態1の薄膜太陽電池の概略構造を示す上面図である。It is a top view which shows schematic structure of the thin film solar cell of Embodiment 1 of this invention. 本発明の実施の形態1の薄膜太陽電池の概略構造を示す断面図である。It is sectional drawing which shows schematic structure of the thin film solar cell of Embodiment 1 of this invention. 本実施の形態1の薄膜太陽電池の製造方法を説明する断面図および上面図である。It is sectional drawing and the top view explaining the manufacturing method of the thin film solar cell of this Embodiment 1. FIG. 本発明の実施の形態1の薄膜太陽電池の製造方法を説明する断面図および上面図である。It is sectional drawing and the top view explaining the manufacturing method of the thin film solar cell of Embodiment 1 of this invention. 本発明の実施の形態1の薄膜太陽電池の製造方法を説明する断面図および上面図である。It is sectional drawing and the top view explaining the manufacturing method of the thin film solar cell of Embodiment 1 of this invention. 本発明の実施の形態1の薄膜太陽電池の製造方法を説明する断面図および上面図である。It is sectional drawing and the top view explaining the manufacturing method of the thin film solar cell of Embodiment 1 of this invention. 本発明の実施の形態1の薄膜太陽電池の製造方法を説明する断面図および上面図である。It is sectional drawing and the top view explaining the manufacturing method of the thin film solar cell of Embodiment 1 of this invention. 本発明の実施の形態1の薄膜太陽電池の製造方法を説明する断面図および上面図である。It is sectional drawing and the top view explaining the manufacturing method of the thin film solar cell of Embodiment 1 of this invention. 本発明の実施の形態1の薄膜太陽電池を用いた太陽電池モジュールの構造を説明する断面図である。It is sectional drawing explaining the structure of the solar cell module using the thin film solar cell of Embodiment 1 of this invention. 本発明の実施の形態2の薄膜太陽電池の概略構造を示す上面図である。It is a top view which shows schematic structure of the thin film solar cell of Embodiment 2 of this invention. 本発明の実施の形態2の薄膜太陽電池の製造工程を説明する断面図である。It is sectional drawing explaining the manufacturing process of the thin film solar cell of Embodiment 2 of this invention. 本発明の実施の形態2の薄膜太陽電池を用いた太陽電池モジュールの構造を説明する断面図である。It is sectional drawing explaining the structure of the solar cell module using the thin film solar cell of Embodiment 2 of this invention. 本発明の実施の形態3の薄膜太陽電池の製造途中を説明する上面図である。It is a top view explaining the middle of manufacture of the thin film solar cell of Embodiment 3 of this invention. 本発明の実施の形態3の薄膜太陽電池の製造途中を説明する断面図である。It is sectional drawing explaining the manufacture middle of the thin film solar cell of Embodiment 3 of this invention.

以下に、本発明にかかる薄膜太陽電池の製造方法の実施の形態を図面を用いて説明する。なお、本発明は以下の記述に限定されるものではなく、本発明の要旨を逸脱しない範囲において適宜変更可能である。また、以下に示す図面においては、理解の容易のため、各部材の縮尺が実際とは異なる場合がある。各図面間においても同様である。さらに、実施の形態において同じ構成要素は同じ符号を付し、ある実施の形態において説明した構成要素については、別の実施の形態においてその詳細な説明を略すものとする。   Embodiments of a method for manufacturing a thin film solar cell according to the present invention will be described below with reference to the drawings. In addition, this invention is not limited to the following description, In the range which does not deviate from the summary of this invention, it can change suitably. In the drawings shown below, the scale of each member may be different from the actual scale for easy understanding. The same applies between the drawings. Further, in the embodiment, the same components are denoted by the same reference numerals, and the detailed description of the components described in one embodiment will be omitted in another embodiment.

<実施の形態1>
図1は本発明の実施の形態1の薄膜太陽電池の概略構造を示す上面図である。図2は本発明の実施の形態1の薄膜太陽電池の概略構造を示す断面図であり、図2(a)は図1のA−A’線間の断面図、図2(b)は図1のB−B’線間の断面図に相当する。本実施の形態1の薄膜太陽電池100は、基板1の上に複数の単位セル10が配設されたものである。単位セル10は第1電極層2と光電変換層4と第2電極層6とを含む積層膜7が分離溝91、93によって複数の単位セル10に分割されて形成されている。積層膜7が形成された基板1の主面の外周領域40は導電性の積層膜7が除去されて、積層膜7が残留する発電領域30を基板1の外縁から電気的絶縁に絶縁する。電気的絶縁性を高めるため、発電領域30と基板1の外縁との間が5mm以上離れるように外周領域40を形成することが望ましい。一方、発電領域30が狭くなると発電量が低下するので発電領域30と基板1の外縁との間は20mm以下とすると良い。
<Embodiment 1>
FIG. 1 is a top view showing a schematic structure of a thin-film solar cell according to Embodiment 1 of the present invention. 2 is a cross-sectional view showing a schematic structure of the thin-film solar cell according to Embodiment 1 of the present invention. FIG. 2 (a) is a cross-sectional view taken along the line AA 'in FIG. 1, and FIG. 1 corresponds to a cross-sectional view taken along line BB ′. A thin film solar cell 100 according to the first embodiment has a plurality of unit cells 10 disposed on a substrate 1. The unit cell 10 is formed by dividing a laminated film 7 including the first electrode layer 2, the photoelectric conversion layer 4, and the second electrode layer 6 into a plurality of unit cells 10 by separation grooves 91 and 93. In the outer peripheral region 40 of the main surface of the substrate 1 on which the laminated film 7 is formed, the conductive laminated film 7 is removed, and the power generation region 30 in which the laminated film 7 remains is electrically insulated from the outer edge of the substrate 1. In order to improve electrical insulation, it is desirable to form the outer peripheral region 40 so that the distance between the power generation region 30 and the outer edge of the substrate 1 is 5 mm or more. On the other hand, since the amount of power generation decreases when the power generation region 30 becomes narrow, the distance between the power generation region 30 and the outer edge of the substrate 1 is preferably 20 mm or less.

図1で発電領域30内であって外周領域40に近い領域には、積層膜7と基板1間に耐熱樹脂層8がある。図1において点線で示した部分は、耐熱樹脂層8の端部29の位置を示し、この端部29より外周側に耐熱樹脂層8が存在する。この耐熱樹脂層8が存在する領域では発電領域30の中央部の大部分である耐熱樹脂層8が形成されなかった領域と比べて積層膜7が基板1から離れている。耐熱樹脂層8は、第1電極層2と光電変換層4と第2電極層6などを形成するプロセス温度に耐える耐熱性を有し、例えば電気的に絶縁性のポリイミド樹脂やポリベンゾイミダゾール樹脂などからなる。   In the region near the outer peripheral region 40 in the power generation region 30 in FIG. 1, there is a heat resistant resin layer 8 between the laminated film 7 and the substrate 1. A portion indicated by a dotted line in FIG. 1 indicates the position of the end portion 29 of the heat resistant resin layer 8, and the heat resistant resin layer 8 exists on the outer peripheral side from the end portion 29. In the region where the heat-resistant resin layer 8 is present, the laminated film 7 is separated from the substrate 1 as compared with the region where the heat-resistant resin layer 8 which is the majority of the central portion of the power generation region 30 is not formed. The heat-resistant resin layer 8 has heat resistance that can withstand the process temperature for forming the first electrode layer 2, the photoelectric conversion layer 4, the second electrode layer 6, and the like. For example, an electrically insulating polyimide resin or polybenzimidazole resin Etc.

この薄膜太陽電池100は、積層膜7と反対側の基板1の主面から光を入射するスーパーストレート型の薄膜太陽電池である。基板1は可視から近赤外領域までの吸収が小さい透明絶縁性のガラス材料からなる。ガラスからなる基板1の上に透明な酸化シリコン(SiO)膜や窒化シリコン(SiN)膜などの下地層が形成されていても良い。第1電極層2は酸化亜鉛(ZnO)、酸化インジウム錫(ITO:Indium Tin Oxide)、酸化スズ(SnO)などを主成分とする透明導電膜からなる。これらの透明導電膜にはアルミニウム(Al)、ガリウム(Ga)、インジウム(In)、ホウ素(B)、イットリウム(Y)、シリコン(Si)、ジルコニウム(Zr)、チタン(Ti)から選択した少なくとも1種類以上の元素がドーパントとして含有されていてもよい。第1電極層2はこれらの複数の材料からなる透明導電膜を積層して形成した層であってもよい。また第1電極層2は表面に凹凸のテクスチャ構造を有していてもよい。このテクスチャ構造は、入射した太陽光を散乱させて光電変換層4での光利用効率を高める。 The thin film solar cell 100 is a super straight type thin film solar cell in which light is incident from the main surface of the substrate 1 opposite to the laminated film 7. The substrate 1 is made of a transparent insulating glass material having a small absorption from the visible region to the near infrared region. An underlayer such as a transparent silicon oxide (SiO 2 ) film or silicon nitride (SiN) film may be formed on the substrate 1 made of glass. The first electrode layer 2 is made of a transparent conductive film mainly composed of zinc oxide (ZnO), indium tin oxide (ITO), tin oxide (SnO 2 ), or the like. These transparent conductive films include at least selected from aluminum (Al), gallium (Ga), indium (In), boron (B), yttrium (Y), silicon (Si), zirconium (Zr), and titanium (Ti). One or more elements may be contained as a dopant. The first electrode layer 2 may be a layer formed by laminating transparent conductive films made of these plural materials. The first electrode layer 2 may have an uneven texture structure on the surface. This texture structure scatters incident sunlight and enhances the light use efficiency in the photoelectric conversion layer 4.

光電変換層4は例えば、非晶質シリコン、非晶質シリコンゲルマニウム、非晶質炭素含有シリコン、微結晶シリコン、微結晶シリコンゲルマニウムなどのシリコンを主成分とする半導体材料からなる。光電変換層4は半導体導電性が異なるp型、i型、n型が積層された半導体接合構造(pin構造)を有し、入射した光を電気に変換する。p型、n型が積層されたpn構造としてもよい。この接合の順序は上下反対のnip構造や、np構造にしても良い。光電変換層4は異なる半導体材料の接合構造が複数積層されたタンデム型の構造を有していても良い。第2電極層6は例えばAgなどの反射率の高い金属からなる電極層とするとよい。また、第2電極層6は光電変換層4の上に透明電極層と金属層とを順次積層した構造としても良い。また、第2電極層6を透明電極層のみとして、その背面に反射材を配置しても良い。   The photoelectric conversion layer 4 is made of, for example, a semiconductor material containing silicon as a main component, such as amorphous silicon, amorphous silicon germanium, amorphous carbon-containing silicon, microcrystalline silicon, or microcrystalline silicon germanium. The photoelectric conversion layer 4 has a semiconductor junction structure (pin structure) in which p-type, i-type, and n-type having different semiconductor conductivity are stacked, and converts incident light into electricity. A pn structure in which p-type and n-type layers are stacked may be employed. The order of the junction may be a nip structure or an np structure that is upside down. The photoelectric conversion layer 4 may have a tandem structure in which a plurality of junction structures of different semiconductor materials are stacked. The second electrode layer 6 may be an electrode layer made of a metal having high reflectivity such as Ag. The second electrode layer 6 may have a structure in which a transparent electrode layer and a metal layer are sequentially laminated on the photoelectric conversion layer 4. Alternatively, the second electrode layer 6 may be only the transparent electrode layer, and a reflective material may be disposed on the back surface thereof.

典型的な基板1の形状は矩形であり、単位セル10は基板1の辺に平行な方向に細長い矩形である。単位セル10は第1電極層2と光電変換層4と第2電極層6とを含む積層膜を溝で分離することで形成される。図2(a)において第1溝91は紙面に垂直方向にのびて単位セル10間の第1電極層2を分離する。また、第2溝92は第1溝91の近傍の位置に形成され、第1溝91と平行にのびる溝である。第2溝92は第1電極層2の上の光電変換層4を除去して形成される。第2溝92の内部に第2電極層6が形成されて、第2溝92の底部では第2電極層6と第1電極層2とが電気的に接続される。なお、第2溝92は必ずしも連続した溝である必要はない。さらに、第3溝93は第2溝92の近傍の第1溝91と反対側の位置に、第1電極層2の上の光電変換層4と第2電極層6とを除去して形成され、単位セル10間の光電変換層4と第2電極層6とを分離する。これによって、隣接する一方の単位セル10の第2電極層6と他方の単位セル10の第1電極層2とが電気的に直列接続される。複数の単位セル10が直列接続されて、それらの両端から電力を外部に取り出して利用される。なお、基板1の上の単位セル10の数、配列形状、接続形態は適宜変更可能である。   The typical shape of the substrate 1 is a rectangle, and the unit cell 10 is a rectangle elongated in a direction parallel to the side of the substrate 1. The unit cell 10 is formed by separating a laminated film including the first electrode layer 2, the photoelectric conversion layer 4, and the second electrode layer 6 with a groove. In FIG. 2A, the first groove 91 extends in the direction perpendicular to the paper surface and separates the first electrode layer 2 between the unit cells 10. The second groove 92 is a groove formed in the vicinity of the first groove 91 and extending in parallel with the first groove 91. The second groove 92 is formed by removing the photoelectric conversion layer 4 on the first electrode layer 2. The second electrode layer 6 is formed inside the second groove 92, and the second electrode layer 6 and the first electrode layer 2 are electrically connected at the bottom of the second groove 92. The second groove 92 is not necessarily a continuous groove. Further, the third groove 93 is formed at a position opposite to the first groove 91 in the vicinity of the second groove 92 by removing the photoelectric conversion layer 4 and the second electrode layer 6 on the first electrode layer 2. The photoelectric conversion layer 4 and the second electrode layer 6 between the unit cells 10 are separated. Thereby, the second electrode layer 6 of one adjacent unit cell 10 and the first electrode layer 2 of the other unit cell 10 are electrically connected in series. A plurality of unit cells 10 are connected in series, and electric power is taken out from both ends and used. The number of unit cells 10 on the substrate 1, the array shape, and the connection form can be changed as appropriate.

図1のように、隣接する単位セル10間を分離する第1溝91、第3溝93は導電性の積層膜が除去された外周領域40と発電領域30の境界まで達するように形成されている。つまり、第1溝91、第3溝93の各分離溝は端部29より外周側、基板1と積層膜の間に耐熱樹脂層8が存在する部分まで連続して形成される。なお、第2溝92についても耐熱樹脂層8が存在する部分まで連続して形成されるとよいが必須ではない。端部29の内周側において第3溝93は第1電極層2が残るように形成されるが、端部29より外周側では第1電極層2、光電変換層4、第2電極層6の全ての積層膜が除去されていても良い。以上により、端部29より外周側で隣接する単位セル10間が短絡することが防止できる。また、耐熱樹脂層8は外周領域40から端部29に近づくにつれて厚みが薄くなる傾斜面を有している。このため、第1溝91、第3溝93の各分離溝が端部29で途切れることなく連続して形成することが容易である。   As shown in FIG. 1, the first groove 91 and the third groove 93 separating the adjacent unit cells 10 are formed to reach the boundary between the outer peripheral region 40 and the power generation region 30 from which the conductive laminated film is removed. Yes. That is, the separation grooves of the first groove 91 and the third groove 93 are continuously formed from the end portion 29 to the outer peripheral side, up to a portion where the heat resistant resin layer 8 exists between the substrate 1 and the laminated film. The second groove 92 may be formed continuously up to the portion where the heat resistant resin layer 8 exists, but is not essential. The third groove 93 is formed on the inner peripheral side of the end portion 29 so that the first electrode layer 2 remains. On the outer peripheral side of the end portion 29, the first electrode layer 2, the photoelectric conversion layer 4, and the second electrode layer 6 are formed. All the laminated films may be removed. As described above, it is possible to prevent a short circuit between adjacent unit cells 10 on the outer peripheral side from the end portion 29. Further, the heat-resistant resin layer 8 has an inclined surface whose thickness decreases as it approaches the end portion 29 from the outer peripheral region 40. For this reason, it is easy to continuously form the separation grooves of the first groove 91 and the third groove 93 without interruption at the end portion 29.

次に、本実施の形態1の薄膜太陽電池の製造方法を説明する。図3〜図8は本実施の形態1の薄膜太陽電池の製造方法を説明する断面図および上面図である。各図において(b)は上面図で、(a)は(b)の線A−A’部分の断面図に相当する。   Next, the manufacturing method of the thin film solar cell of this Embodiment 1 is demonstrated. 3 to 8 are a cross-sectional view and a top view for explaining the method for manufacturing the thin-film solar cell of the first embodiment. In each figure, (b) is a top view, and (a) corresponds to a cross-sectional view taken along line A-A 'in (b).

まず、図3のようにガラス材料からなる基板1の主面の周辺に耐熱樹脂層8を形成する。耐熱樹脂層8としてポリイミドを使用する場合はポリアミド酸(ポリアミック酸)の溶液を基板1の周辺に塗布して、乾燥後に300〜500℃などの温度で熱処理してイミド化して耐熱樹脂層8を形成する。溶液の塗布方法は凸版印刷法、オフセット印刷法、グラビア印刷法、インクジェット印刷法等の印刷法や、ダイコート法、ディップコート法、吐出コート法、ロールコート法、バーコート法等の塗布法を使用できる。後に形成する耐熱樹脂層8の上の光電変換層4で光電変換する場合や、以後の工程で基板1を介して積層膜にレーザ照射などを行う場合は、耐熱樹脂層8として透明な材料を用いることが望ましい。また、耐熱樹脂層8を形成する前に、密着性を向上させるために、基板1の表面を超音波洗浄処理、コロナ放電処理、プラズマ処理、紫外線照射処理、オゾン処理などの表面処理を施してから形成するとより好ましい。   First, as shown in FIG. 3, the heat-resistant resin layer 8 is formed around the main surface of the substrate 1 made of a glass material. When polyimide is used as the heat resistant resin layer 8, a solution of polyamic acid (polyamic acid) is applied to the periphery of the substrate 1, and after drying, heat-treated at a temperature of 300 to 500 ° C. and imidized to form the heat resistant resin layer 8. Form. Solution coating methods include printing methods such as letterpress printing, offset printing, gravure printing, and inkjet printing, and coating methods such as die coating, dip coating, discharge coating, roll coating, and bar coating. it can. When photoelectric conversion is performed by the photoelectric conversion layer 4 on the heat-resistant resin layer 8 to be formed later, or when the laminated film is subjected to laser irradiation or the like through the substrate 1 in a subsequent process, a transparent material is used as the heat-resistant resin layer 8. It is desirable to use it. Before the heat resistant resin layer 8 is formed, the surface of the substrate 1 is subjected to surface treatment such as ultrasonic cleaning treatment, corona discharge treatment, plasma treatment, ultraviolet irradiation treatment, ozone treatment, etc. in order to improve adhesion. More preferably, it is formed from

耐熱樹脂層8の厚みは、塗布方法、原料となる溶液の成分や粘度で調整可能である。例えば、固形分の成分として5〜30質量%を含み、30℃で0.1〜10パスカル秒の粘度の溶液を塗布すると、熱処理後に1〜40ミクロン程度の耐熱樹脂層8を形成することができる。このように適度の粘性を有する溶液を塗布して形成すると、内側の端部29付近では溶液が少し流れて、基板面に達するなだらかな斜面が耐熱樹脂層8の端部29の近傍に形成される。基板1の主面と端部29付近の傾斜面とがなす角度は例えば20〜70度などであり、45度以下とするとさらによい。   The thickness of the heat-resistant resin layer 8 can be adjusted by the coating method, the component of the solution used as a raw material, and the viscosity. For example, when a solution containing 5 to 30% by mass as a solid component and having a viscosity of 0.1 to 10 Pascal seconds at 30 ° C. is applied, a heat resistant resin layer 8 of about 1 to 40 microns can be formed after the heat treatment. it can. When a solution having an appropriate viscosity is applied and formed in this manner, the solution flows slightly in the vicinity of the inner end portion 29, and a gentle slope reaching the substrate surface is formed in the vicinity of the end portion 29 of the heat resistant resin layer 8. The The angle formed between the main surface of the substrate 1 and the inclined surface near the end portion 29 is, for example, 20 to 70 degrees, and more preferably 45 degrees or less.

端部29と外周領域40との間隔、つまり発電領域30の外周に部分的に残る耐熱樹脂層8の幅は、たとえば0.5〜3mmなどである。耐熱樹脂層8を塗布する基板1の縁からの幅は、外周領域40の基板1の縁からの幅と、部分的に残る耐熱樹脂層8の幅とを加えた幅になり、たとえば5.5〜23mmなどである。耐熱樹脂層8の塗布領域は、図3(a)のように基板1の全周に形成することが望ましいが部分的であっても良い。例えば、後の工程で形成される第1溝91、第3溝93を延長した先にある基板1の対向する2辺に沿った領域のみとしても良い。   The distance between the end portion 29 and the outer peripheral region 40, that is, the width of the heat-resistant resin layer 8 partially remaining on the outer periphery of the power generation region 30 is, for example, 0.5 to 3 mm. The width from the edge of the substrate 1 to which the heat-resistant resin layer 8 is applied is a width obtained by adding the width from the edge of the substrate 1 in the outer peripheral region 40 and the width of the heat-resistant resin layer 8 that remains partially. For example, 5 to 23 mm. The application region of the heat resistant resin layer 8 is preferably formed on the entire periphery of the substrate 1 as shown in FIG. For example, it is good also as only the area | region along two opposing sides of the board | substrate 1 in the tip which extended the 1st groove | channel 91 and the 3rd groove | channel 93 formed at a later process.

次いで、図4のように周辺に耐熱樹脂層8が形成された基板1の上にスパッタ法や蒸着法、CVD法などで、ZnOやSnOなどの第1電極層2を形成して、さらにレーザスクライブ法などで第1電極層2を単位セル10間で分離する第1溝91を形成する。第1電極層2の厚みは0.3〜1ミクロン程度であり、第1電極層2の表面に凹凸が形成されていても良い。凹凸にするためには、塩酸(HCl)などのエッチング水溶液中に浸して粗面化する方法や、CVD法などの製膜時の条件によって粗面化する方法などがある。第1電極層2には第1溝91が基板中央から耐熱樹脂層8の端部29を超えて周辺の耐熱樹脂層8の上まで連続して形成される。耐熱樹脂層8が透明であれば、第1溝91をレーザスクライブで形成する際に膜面と反対側の基板1から光を入射しても良い。また、膜面からレーザを照射するレーザスクライブ法や、レジストマスクを使用したエッチング加工などでも良い。ZnOなどの透明導電材料を加工するにはNd:YAGレーザの基本波(波長1064nm)を用いると良い。 Next, a first electrode layer 2 such as ZnO or SnO 2 is formed on the substrate 1 on which the heat-resistant resin layer 8 is formed in the periphery as shown in FIG. 4 by sputtering, vapor deposition, CVD, or the like. A first groove 91 for separating the first electrode layer 2 between the unit cells 10 is formed by a laser scribing method or the like. The thickness of the first electrode layer 2 is about 0.3 to 1 micron, and irregularities may be formed on the surface of the first electrode layer 2. In order to make the projections and depressions, there are a method of roughening by dipping in an etching aqueous solution such as hydrochloric acid (HCl), a method of roughening according to conditions at the time of film formation such as CVD. In the first electrode layer 2, a first groove 91 is continuously formed from the center of the substrate over the end portion 29 of the heat resistant resin layer 8 and onto the peripheral heat resistant resin layer 8. If the heat-resistant resin layer 8 is transparent, light may be incident from the substrate 1 opposite to the film surface when the first groove 91 is formed by laser scribing. Further, a laser scribing method in which laser is irradiated from the film surface, an etching process using a resist mask, or the like may be used. In order to process a transparent conductive material such as ZnO, it is preferable to use a fundamental wave (wavelength 1064 nm) of an Nd: YAG laser.

次いで、図5のように第1電極層2が形成された基板1の上にCVD法などで例えばSiを主成分とする光電変換層4を形成して、さらにレーザスクライブ法などで光電変換層4に第2溝92を形成する。光電変換層4はp層、i層、n層を順にまたは逆順に堆積して半導体接合を形成する。光電変換層4は非晶質シリコン、微結晶シリコン、非晶質シリコンゲルマニウムの材料などからなり、トータルの厚みは0.3〜5ミクロンなどである。透明導電材料からなる第1電極層2を残したままでSiを主成分とする光電変換層4を除去するようにレーザスクライブ加工するにはNd:YAGレーザの2倍波(波長532nm)を用いると良い。第2溝92は第1溝91からわずかにずれた位置で、第1溝91と略平行に形成すると良い。第2溝92も第1溝91と同様に基板中央から周辺の耐熱樹脂層8の上まで連続して第1溝91が形成されるとよい。   Next, for example, a photoelectric conversion layer 4 mainly composed of Si is formed on the substrate 1 on which the first electrode layer 2 is formed as shown in FIG. 5 by a CVD method or the like, and the photoelectric conversion layer is further formed by a laser scribe method or the like. 4, the second groove 92 is formed. The photoelectric conversion layer 4 forms a semiconductor junction by depositing a p-layer, an i-layer, and an n-layer in order or in reverse order. The photoelectric conversion layer 4 is made of a material such as amorphous silicon, microcrystalline silicon, or amorphous silicon germanium, and has a total thickness of 0.3 to 5 microns. When laser scribing is performed so as to remove the photoelectric conversion layer 4 containing Si as a main component while leaving the first electrode layer 2 made of a transparent conductive material, a second harmonic (wavelength: 532 nm) of an Nd: YAG laser is used. good. The second groove 92 is preferably formed at a position slightly shifted from the first groove 91 and substantially parallel to the first groove 91. Similarly to the first groove 91, the second groove 92 may be formed continuously from the center of the substrate to the peripheral heat-resistant resin layer 8.

次いで、図6のように光電変換層4が形成された基板1の上にスパッタ法などで例えばAgを主成分とする第2電極層6を形成して、さらにレーザスクライブ法などで光電変換層4と第2電極層6とに第3溝93を形成する。第1電極層2、光電変換層4、第2電極層6が積層され積層膜7ができる。第2電極層6はZnOなどの透明導電膜とAgなどの金属膜とを順に積層した構造としても良い。第2電極層6は光電変換層4の上から第2溝92の内部に連続して形成され、光電変換層4の上と第1電極層2と電気的に接続する。第3溝93の形成では第1電極層2を残したままで光電変換層4と第2電極層6とを除去するようにレーザスクライブ加工する。その加工には第1電極層2の透過率が高いNd:YAGレーザの2倍波(波長532nm)を用いて、基板1側から照射すると良い。光電変換層4がレーザスクライブで除去されると同時に、その上の第2電極層6も除去される。この第3溝93も第1溝91と同様に基板中央から周辺の耐熱樹脂層8の上まで連続して形成する。   Next, as shown in FIG. 6, a second electrode layer 6 mainly composed of Ag, for example, is formed on the substrate 1 on which the photoelectric conversion layer 4 is formed by sputtering or the like, and further the photoelectric conversion layer is formed by laser scribing or the like. 4 and the second electrode layer 6 are formed with a third groove 93. The first electrode layer 2, the photoelectric conversion layer 4, and the second electrode layer 6 are laminated to form a laminated film 7. The second electrode layer 6 may have a structure in which a transparent conductive film such as ZnO and a metal film such as Ag are sequentially stacked. The second electrode layer 6 is formed continuously from the top of the photoelectric conversion layer 4 to the inside of the second groove 92, and is electrically connected to the top of the photoelectric conversion layer 4 and the first electrode layer 2. In the formation of the third groove 93, laser scribing is performed so as to remove the photoelectric conversion layer 4 and the second electrode layer 6 while leaving the first electrode layer 2. For the processing, the second electrode (wavelength 532 nm) of an Nd: YAG laser having a high transmittance of the first electrode layer 2 is used for irradiation from the substrate 1 side. At the same time as the photoelectric conversion layer 4 is removed by laser scribing, the second electrode layer 6 thereon is also removed. Similarly to the first groove 91, the third groove 93 is also formed continuously from the center of the substrate to above the peripheral heat-resistant resin layer 8.

次いで、外周膜除去工程を説明する。まず図7のように、耐熱樹脂層8の端部29よりも外周側に、積層膜7を除去した外周溝19を形成する。外周溝19は基板1の縁に沿って、単位セル10の複数の分離溝と交差する。この外周溝19は基板1側からレーザを照射するレーザスクライブ法により耐熱樹脂層8を除去することで、その上の積層膜7をともに除去する方法で形成する。耐熱樹脂層8をレーザスクライブ加工するにはNd:YAGレーザの3倍波(波長355nm)やXeFエキシマレーザ(波長353nm)など樹脂加工に適した近紫外〜紫(波長200〜430nm)のレーザを用いると良い。基板1のガラス材料が350nm以下の紫外領域で吸収が大きい材料の場合は、350nmより大きな波長のレーザを使用すると良い。発電領域30の積層膜7の端部がレーザスクライブにより形成されるので、端部に機械的な変形が生じにくく、積層膜7の構造の乱れが少ない。また、外周溝19を形成する際に、Nd:YAGレーザの2倍波(波長532nm)を用いて光電変換層4と第2電極層6とを除去した後に、Nd:YAGレーザの3倍波(波長355nm)を用いて耐熱樹脂層8と第1電極層2とを除去するように2段階としてもよい。除去する層ごとに波長の異なるレーザを使用してレーザスクライブすることによりスクライブ端部における積層膜7の構造の乱れをさらに防止できる。図7(b)で外周溝19は矩形としたが、矩形の各辺のスクライブ線が矩形の角から外側に伸びるまでスクライブ線を長めに延長してもよい。   Next, the outer peripheral film removing step will be described. First, as shown in FIG. 7, an outer peripheral groove 19 from which the laminated film 7 has been removed is formed on the outer peripheral side of the end portion 29 of the heat resistant resin layer 8. The outer peripheral groove 19 intersects the plurality of separation grooves of the unit cell 10 along the edge of the substrate 1. The outer peripheral groove 19 is formed by removing the heat-resistant resin layer 8 by a laser scribing method of irradiating a laser from the substrate 1 side and removing the laminated film 7 thereon. Laser scribing of the heat-resistant resin layer 8 is performed using a near ultraviolet to purple (wavelength 200 to 430 nm) laser suitable for resin processing, such as Nd: YAG laser triple wave (wavelength 355 nm) or XeF excimer laser (wavelength 353 nm). Use it. When the glass material of the substrate 1 is a material having a large absorption in the ultraviolet region of 350 nm or less, it is preferable to use a laser having a wavelength larger than 350 nm. Since the end portion of the laminated film 7 in the power generation region 30 is formed by laser scribing, mechanical deformation is hardly generated at the end portion, and the disorder of the structure of the laminated film 7 is small. Further, when the outer peripheral groove 19 is formed, the photoelectric conversion layer 4 and the second electrode layer 6 are removed using the second harmonic (wavelength 532 nm) of the Nd: YAG laser, and then the third harmonic of the Nd: YAG laser. The heat resistant resin layer 8 and the first electrode layer 2 may be removed in two steps using (wavelength 355 nm). By performing laser scribing using lasers having different wavelengths for each layer to be removed, the disorder of the structure of the laminated film 7 at the scribe end can be further prevented. Although the outer peripheral groove 19 is rectangular in FIG. 7B, the scribe line may be extended longer until the scribe line on each side of the rectangle extends outward from the corner of the rectangle.

なお、耐熱樹脂層8をレーザスクライブ加工すると積層膜の端部に樹脂が分解してできた炭素を主成分とする膜が付着する場合がある。その場合は、酸化ガスを供給しながらレーザスクライブ加工や、加工後に酸素プラズマ処理や酸化処理を行なうことで炭素を主成分とする膜を除去できる。   Note that when the heat-resistant resin layer 8 is subjected to laser scribing, a film composed mainly of carbon formed by decomposition of the resin may adhere to the end of the laminated film. In that case, the film containing carbon as a main component can be removed by performing laser scribing while supplying an oxidizing gas, or performing oxygen plasma treatment or oxidation after the processing.

また、図7(a)の矢印Lで示したように、外周溝19の外側の耐熱樹脂層8に対して近紫外〜紫(波長200〜430nm)の光を基板1と耐熱樹脂層8との界面に照射して、耐熱樹脂層8の接着力を低下させる処理を行う。基板1のガラス材料が350nm以下の紫外領域で吸収が大きい材料の場合は、350nmより大きな波長の光を使用すると良い。そのような光源として例えばNd:YAGレーザの3倍波(波長355nm)を用いることができる。光源としてレーザを使用する場合は外周溝19をレーザ照射で形成する場合に比べて低いパワー密度の条件として、外周溝19の外側の耐熱樹脂層8全てに対して照射を行う。なお、外周溝19より内側の耐熱樹脂層8に対しては照射しないようにする。   Further, as indicated by an arrow L in FIG. 7A, near ultraviolet to purple (wavelength 200 to 430 nm) light is emitted from the substrate 1 and the heat resistant resin layer 8 to the heat resistant resin layer 8 outside the outer peripheral groove 19. Irradiation is performed on the interface of the heat-resistant resin layer 8 to reduce the adhesive strength of the heat-resistant resin layer 8. When the glass material of the substrate 1 is a material having a large absorption in the ultraviolet region of 350 nm or less, light having a wavelength longer than 350 nm may be used. As such a light source, for example, a third harmonic (wavelength 355 nm) of an Nd: YAG laser can be used. When a laser is used as the light source, irradiation is performed on all the heat-resistant resin layers 8 outside the outer circumferential groove 19 as a condition of lower power density than when the outer circumferential groove 19 is formed by laser irradiation. Note that the heat-resistant resin layer 8 inside the outer circumferential groove 19 is not irradiated.

その後、図8のように、外周溝19の外側の積層膜7を接着力が低下した耐熱樹脂層8ごと基板1から剥離する。図のように外周領域40の積層膜7は耐熱樹脂層8とともに連続した剥離膜45として除去される。以上により、図2で示した本実施の形態1の薄膜太陽電池が完成する。   Thereafter, as shown in FIG. 8, the laminated film 7 outside the outer peripheral groove 19 is peeled from the substrate 1 together with the heat-resistant resin layer 8 having a reduced adhesive force. As shown in the figure, the laminated film 7 in the outer peripheral region 40 is removed as a continuous peeling film 45 together with the heat-resistant resin layer 8. Thus, the thin film solar cell of the first embodiment shown in FIG. 2 is completed.

図9は本実施の形態1の薄膜太陽電池を用いた太陽電池モジュールの構造を説明する断面図である。直列接続した単位セル10の両端の電極の上に配線15が取り付けられ、全ての単位セル10を覆うように封止材21が接着層22で接着される。封止材21は例えばポチエチレンテレフタレート(PET)やポリフッ化ビニル(PVF)などのシートであり、接着層22は例えば厚みが0.1〜0.6mmなどのエチレン酢酸ビニル共重合樹脂(EVA)である。配線15は図示しない封止材21の穴などから外部に引き出される。本実施の形態1の薄膜太陽電池では、発電領域30の外周付近に耐熱樹脂層8の厚みの分だけ積層膜7の基板1からの高さが高くなった領域が存在するが、この領域も外周領域40とともに耐熱樹脂層8に比べて十分に厚い接着層22で覆われて、封止材21の裏面側はほぼ平滑となる。このように発電領域30の外周付近で積層膜7がわずかに高くても太陽電池モジュール化の際の影響はほとんどない。図には示さないが、封止材21の上に端子箱、基板1の外周にフレーム等が取り付けられる。   FIG. 9 is a cross-sectional view illustrating the structure of a solar cell module using the thin film solar cell of the first embodiment. Wirings 15 are attached on the electrodes at both ends of the unit cells 10 connected in series, and a sealing material 21 is bonded with an adhesive layer 22 so as to cover all the unit cells 10. The sealing material 21 is a sheet such as polyethylene terephthalate (PET) or polyvinyl fluoride (PVF), and the adhesive layer 22 is an ethylene vinyl acetate copolymer resin (EVA) having a thickness of 0.1 to 0.6 mm, for example. It is. The wiring 15 is drawn out through a hole or the like of the sealing material 21 (not shown). In the thin film solar cell of the first embodiment, there is a region in which the height of the laminated film 7 from the substrate 1 is increased by the thickness of the heat-resistant resin layer 8 in the vicinity of the outer periphery of the power generation region 30. It is covered with the adhesive layer 22 that is sufficiently thicker than the heat-resistant resin layer 8 together with the outer peripheral region 40, and the back surface side of the sealing material 21 becomes almost smooth. Thus, even if the laminated film 7 is slightly higher in the vicinity of the outer periphery of the power generation region 30, there is almost no influence when the solar cell module is formed. Although not shown in the drawing, a terminal box is attached on the sealing material 21, and a frame or the like is attached to the outer periphery of the substrate 1.

以上のように本実施の形態1の薄膜太陽電池は第1電極層2と光電変換層4と第2電極層6とを積層した積層膜7を有する薄膜太陽電池の単位セル10がガラス材料からなる基板1上に複数配設された薄膜太陽電池100である。その製造方法は、基板1の主面の外周部に耐熱樹脂層8を形成する工程と、外周部の耐熱樹脂層8を形成した領域と中央部の耐熱樹脂層8を形成しなかった領域とを覆うように基板1上に積層膜7を積層する工程と、積層膜7を複数の単位セルに分割する複数の分離溝(第1溝91、第3溝93)を基板1の外周部の耐熱樹脂層8の上まで連続するように形成する分離溝形成工程と、分離溝を形成した耐熱樹脂層8の上の積層膜7を部分的に残し、その外側(基板1中心から見て外側で、基板1の縁に近い側)の積層膜7を耐熱樹脂層8とともに除去する工程を含む外周膜除去工程と、を有している。積層膜7が付着する発電領域30のうち、外周領域40に近い外周部付近に、積層膜7と基板1との間に耐熱樹脂層8を有するので、その耐熱樹脂層8の厚みの分、内周部分に比べて積層膜と基板1との間に間隔がある。また、分離溝を形成した耐熱樹脂層8の上の積層膜7を部分的に残し、その外側の積層膜7を耐熱樹脂層8とともに除去するので、外周領域40の積層膜7を除去する工程において、除去される積層膜7は基板1から耐熱樹脂層8の厚み分だけ離れているので、除去加工の影響が基板1の表面に及びにくい。従って基板1にほとんどダメージを与えることなく外周領域40の積層膜7を除去することが容易となる。基板1に傷等が発生しないのでモジュール化の際に接着層22との接着が良好となり、シール性能が向上する。また、積層膜7をレーザスクライブ法により耐熱樹脂層8とともに除去するので、積層膜7の端部に機械的変形が生じにくく、その積層構造が保たれるので端部で短絡が生じにくい。耐熱樹脂層8のない外周領域40に対してレーザスクライブ法により積層膜7を除去すると、積層膜7の微粒子等が基板1に残留しやすいが、本実施の形態1の方法では耐熱樹脂層8とともに除去するので基板1に積層膜7の微粒子等が残留しにくい。このため基板1外部との電気絶縁性も良好にすることができる。また、隣接する単位セル10を電気的に分離する第1溝91、第3溝93は耐熱樹脂層8が形成された領域の積層膜にまで形成されているので、隣接する単位セル10間の短絡が防止できる。   As described above, the unit cell 10 of the thin film solar cell having the laminated film 7 in which the first electrode layer 2, the photoelectric conversion layer 4, and the second electrode layer 6 are laminated is formed from a glass material. A plurality of thin film solar cells 100 disposed on a substrate 1. The manufacturing method includes a step of forming the heat-resistant resin layer 8 on the outer peripheral portion of the main surface of the substrate 1, a region in which the heat-resistant resin layer 8 in the outer peripheral portion is formed, and a region in which the heat-resistant resin layer 8 in the central portion is not formed. A step of laminating the laminated film 7 on the substrate 1 so as to cover the substrate 1 and a plurality of separation grooves (first groove 91, third groove 93) for dividing the laminated film 7 into a plurality of unit cells A separation groove forming step for continuously forming the heat-resistant resin layer 8 and the laminated film 7 on the heat-resistant resin layer 8 on which the separation grooves are formed are partially left and outside (outside as viewed from the center of the substrate 1). The outer peripheral film removing step including the step of removing the laminated film 7 on the side close to the edge of the substrate 1 together with the heat-resistant resin layer 8. Since the heat-resistant resin layer 8 is provided between the laminated film 7 and the substrate 1 in the vicinity of the outer peripheral portion close to the outer peripheral region 40 in the power generation region 30 to which the laminated film 7 adheres, There is a gap between the laminated film and the substrate 1 compared to the inner peripheral portion. In addition, since the laminated film 7 on the heat resistant resin layer 8 in which the separation groove is formed is partially left and the laminated film 7 on the outer side is removed together with the heat resistant resin layer 8, the laminated film 7 in the outer peripheral region 40 is removed. In this case, since the laminated film 7 to be removed is separated from the substrate 1 by the thickness of the heat-resistant resin layer 8, the influence of the removal processing hardly reaches the surface of the substrate 1. Therefore, it becomes easy to remove the laminated film 7 in the outer peripheral region 40 with almost no damage to the substrate 1. Since no damage or the like is generated on the substrate 1, the adhesion with the adhesive layer 22 is improved during modularization, and the sealing performance is improved. Further, since the laminated film 7 is removed together with the heat-resistant resin layer 8 by a laser scribing method, mechanical deformation is unlikely to occur at the end of the laminated film 7, and the laminated structure is maintained, so that short-circuiting is unlikely to occur at the end. When the laminated film 7 is removed by the laser scribing method with respect to the outer peripheral region 40 without the heat resistant resin layer 8, fine particles and the like of the laminated film 7 are likely to remain on the substrate 1, but in the method of the first embodiment, the heat resistant resin layer 8 is removed. At the same time, the fine particles of the laminated film 7 hardly remain on the substrate 1. For this reason, electrical insulation from the outside of the substrate 1 can be improved. Further, the first groove 91 and the third groove 93 that electrically separate the adjacent unit cells 10 are formed up to the laminated film in the region where the heat-resistant resin layer 8 is formed. Short circuit can be prevented.

また、本実施の形態1では、外周膜除去工程は耐熱樹脂層8の内周側の端部29の位置よりも外周側に、積層膜7を除去して分離溝と交差する外周溝19を形成する工程と、その外周溝19より外側の積層膜7を除去する工程とに分けて行うので積層膜7の端部の構造の乱れを防止できる。   In the first embodiment, in the outer peripheral film removing step, the outer peripheral groove 19 intersecting with the separation groove is removed by removing the laminated film 7 on the outer peripheral side from the position of the end portion 29 on the inner peripheral side of the heat-resistant resin layer 8. Since the step of forming and the step of removing the laminated film 7 outside the outer peripheral groove 19 are performed separately, disorder of the structure of the end of the laminated film 7 can be prevented.

また、この外周溝19は耐熱樹脂層8に耐熱樹脂層8が吸収する波長のレーザ光を照射して、耐熱樹脂層8とともに積層膜を除去するレーザスクライブ法を用いたので、無機材料からなる積層膜7のみをレーザ光で除去する場合に比べて低パワー密度のレーザ光で加工が可能であり、積層膜7の端部で熱による劣化が生じにくい。   Further, the outer peripheral groove 19 is made of an inorganic material because the heat-resistant resin layer 8 is irradiated with a laser beam having a wavelength absorbed by the heat-resistant resin layer 8 and the laminated film is removed together with the heat-resistant resin layer 8. Compared with the case where only the laminated film 7 is removed with laser light, processing can be performed with laser light having a low power density, and deterioration due to heat hardly occurs at the end of the laminated film 7.

また、耐熱樹脂層8を形成する工程において、耐熱樹脂層8の端部29は基板1の中心皮になるほど膜厚が薄くなるような傾斜面を有するので、単位セル10間の分離溝(第1溝91、第2溝93)を形成する工程において、レーザスクライブ法によって連続した分離溝を容易に形成することができる。特に傾斜面は基板面に達する傾斜面であると基板1との急激な段差がなくなるので良い。耐熱樹脂層8が端部29までほぼ同じ厚みで形成されて、端部29が基板1の主面と垂直である場合は、その垂直の端部の面にも第1電極層2、光電変換層4、第2電極層6の各膜が付着するので、基板1に垂直な方向で見た各膜の膜厚は端部の高さ分大きくなる。このように局所的に厚い各膜に対して連続した溝を加工することが難しくなる。端部を傾斜面とすると、その上に形成された第1電極層2、光電変換層4、第2電極層6は耐熱樹脂層8の端部29での膜厚変化が小さくなる。このため耐熱樹脂層8の形成されなかった基板中央の領域から耐熱樹脂層8の傾斜面上まで連続して第1溝91、第2溝92、第3溝93を形成することが容易となる。   Further, in the step of forming the heat resistant resin layer 8, the end 29 of the heat resistant resin layer 8 has an inclined surface that becomes thinner as the central skin of the substrate 1 becomes thinner. In the step of forming the first groove 91 and the second groove 93), continuous separation grooves can be easily formed by a laser scribing method. In particular, if the inclined surface is an inclined surface that reaches the substrate surface, a steep step with the substrate 1 may be eliminated. When the heat-resistant resin layer 8 is formed with substantially the same thickness up to the end portion 29 and the end portion 29 is perpendicular to the main surface of the substrate 1, the first electrode layer 2 and the photoelectric conversion are also formed on the surface of the vertical end portion. Since the films of the layer 4 and the second electrode layer 6 are attached, the film thickness of each film viewed in the direction perpendicular to the substrate 1 is increased by the height of the end portion. Thus, it becomes difficult to process a continuous groove for each locally thick film. When the end portion is an inclined surface, the first electrode layer 2, the photoelectric conversion layer 4, and the second electrode layer 6 formed thereon have a small change in film thickness at the end portion 29 of the heat resistant resin layer 8. Therefore, it becomes easy to form the first groove 91, the second groove 92, and the third groove 93 continuously from the central region of the substrate where the heat-resistant resin layer 8 is not formed to the inclined surface of the heat-resistant resin layer 8. .

また、外周溝19よりも外側の積層膜7を耐熱樹脂層8とともに除去する工程は、外周溝19の外側の耐熱樹脂層8に基板1を介して近紫外〜紫(波長200〜430nm)の波長の光を照射して耐熱樹脂層8と基板1との接着力を低下させる工程と、基板1との接着力が低下した耐熱樹脂層8をその耐熱樹脂層8の上の積層膜7とともに基板1から除去する工程とを有する。このため、積層膜7が一括して連続膜として除去でき、導電性の微粒子などのゴミが生じにくい。積層膜7の端部にこのような導電性のゴミが付着して短絡することを防止できる。また、ゴミの発生やその再付着もほとんどなくなるので加工後の洗浄工程も省略したり簡略化したりできる。   Further, the step of removing the laminated film 7 outside the outer peripheral groove 19 together with the heat resistant resin layer 8 is performed in the near ultraviolet to purple (wavelength 200 to 430 nm) through the substrate 1 on the heat resistant resin layer 8 outside the outer peripheral groove 19. The process of reducing the adhesive strength between the heat-resistant resin layer 8 and the substrate 1 by irradiating light of a wavelength, and the heat-resistant resin layer 8 having reduced adhesive strength with the substrate 1 together with the laminated film 7 on the heat-resistant resin layer 8 Removing from the substrate 1. Therefore, the laminated film 7 can be removed as a continuous film all at once, and dust such as conductive fine particles is hardly generated. It is possible to prevent such conductive dust from adhering to the end of the laminated film 7 to cause a short circuit. Further, since generation of dust and reattachment thereof are almost eliminated, a cleaning process after processing can be omitted or simplified.

なお、上記の実施の形態1で、外周膜除去工程はレーザスクライブで外周溝19を形成する工程と、その外周溝19より外側の積層膜7を耐熱樹脂層8の剥離とともに除去する工程としたが、全ての外周の積層膜7を耐熱樹脂層8とともにレーザスクライブで除去してもかまわない。例えばNd:YAGレーザの3倍波(波長355nm)を耐熱樹脂層8に照射して、分解蒸発現象を発生させて耐熱樹脂層8ごと積層膜7を除去する。この場合レーザの照射位置を外周領域40で走査して、外周領域40全面の積層膜7を除去する。レーザの走査の順序は適宜変更すればよく、分離溝19の形成は必要ではない。この場合でも、ガラス基板に対するダメージを低減し、周辺領域の基板上に残る積層膜の粒子を減少し、積層膜の端部の短絡を防止する薄膜太陽電池を製造することができる。   In the first embodiment, the outer peripheral film removing step is a step of forming the outer peripheral groove 19 by laser scribing and a step of removing the laminated film 7 outside the outer peripheral groove 19 together with the peeling of the heat resistant resin layer 8. However, all the outer peripheral laminated films 7 may be removed together with the heat-resistant resin layer 8 by laser scribing. For example, the heat-resistant resin layer 8 is irradiated with a third harmonic wave (wavelength 355 nm) of an Nd: YAG laser to generate a decomposition evaporation phenomenon, and the laminated film 7 is removed together with the heat-resistant resin layer 8. In this case, the laser irradiation position is scanned in the outer peripheral region 40 to remove the laminated film 7 on the entire outer peripheral region 40. The order of laser scanning may be changed as appropriate, and formation of the separation groove 19 is not necessary. Even in this case, it is possible to manufacture a thin film solar cell that reduces damage to the glass substrate, reduces particles of the laminated film remaining on the substrate in the peripheral region, and prevents a short circuit at the end of the laminated film.

<実施の形態2>
図10は本発明の実施の形態2の薄膜太陽電池200の上面図である。本実施の形態2の薄膜太陽電池200実施の形態1と同様に、発電領域30の外周付近の積層膜7と基板1との間に耐熱性樹脂8を有する薄膜太陽電池であるが、外周領域40に表面が微細な凹凸を有する耐熱性樹脂48が残留する点で異なる。
<Embodiment 2>
FIG. 10 is a top view of the thin-film solar cell 200 according to Embodiment 2 of the present invention. Thin-film solar cell 200 of the second embodiment is a thin-film solar cell having a heat-resistant resin 8 between the laminated film 7 near the outer periphery of the power generation region 30 and the substrate 1 as in the first embodiment. 40 is different in that the heat-resistant resin 48 having fine irregularities on the surface 40 remains.

本実施の形態2の薄膜太陽電池の製造工程は実施の形態1と同様に基板1の外周部に耐熱樹脂層8を形成する工程と、耐熱樹脂層8を形成した基板1に積層膜7を積層する工程と、積層膜7を複数の単位セルに分割する複数の分離溝(第1溝91、第3溝93)を基板1の外周部の耐熱樹脂層8の上まで連続するように形成する分離溝形成工程と、分離溝を形成した耐熱樹脂層8の上の積層膜7を部分的に残し、その外側の積層膜7をレーザスクライブ法により耐熱樹脂層8とともに除去する工程を含む外周膜除去工程と、を有している。外周膜除去工程はレーザスクライブ法により外周溝19を形成するまでは実施の形態1と同様であるが、外周溝19より外の積層膜7を除去する工程が異なる。   The manufacturing process of the thin-film solar cell according to the second embodiment includes the step of forming the heat-resistant resin layer 8 on the outer periphery of the substrate 1 as in the first embodiment, and the laminated film 7 on the substrate 1 on which the heat-resistant resin layer 8 is formed. A step of laminating and a plurality of separation grooves (first groove 91 and third groove 93) dividing the laminated film 7 into a plurality of unit cells are formed so as to continue up to the heat-resistant resin layer 8 on the outer peripheral portion of the substrate 1. An outer periphery including a separating groove forming step and a step of partially leaving the laminated film 7 on the heat-resistant resin layer 8 on which the separation groove is formed and removing the laminated film 7 on the outer side together with the heat-resistant resin layer 8 by a laser scribing method. And a film removal step. The outer peripheral film removing step is the same as that in the first embodiment until the outer peripheral groove 19 is formed by the laser scribing method, but the step of removing the laminated film 7 outside the outer peripheral groove 19 is different.

図11は本発明の実施の形態2の薄膜太陽電池200の製造工程を説明する断面図であり、外周溝19より外の積層膜7を除去する工程を説明する断面図である。本実施の形態2で、外周溝19よりも外側の積層膜7を耐熱樹脂層8とともに除去する工程は、耐熱樹脂層8の一部が残るように積層膜7を機械的に加工除去ことで行う。ブラスト加工では機械的に加工除去する方法として、たとえば図11(a)に示すブラスト加工を用いる。発電領域30と外周溝19の途中までを、マスク53で覆って保護した状態で、ノズル51から砥粒52を外周領域40に吹きつけて積層膜7を除去する。積層膜7と基板1との間に耐熱樹脂層8があり、耐熱樹脂層8が部分的に削れるまでブラスト処理を行う。これにより外周領域40の積層膜7を完全に除去できる。そして、図11(b)のように外周領域40に表面が微細な凹凸を有する耐熱性樹脂48が残留する。   FIG. 11 is a cross-sectional view illustrating a manufacturing process of the thin-film solar cell 200 according to Embodiment 2 of the present invention, and is a cross-sectional view illustrating a process of removing the laminated film 7 outside the outer peripheral groove 19. In the second embodiment, the step of removing the laminated film 7 outside the outer peripheral groove 19 together with the heat resistant resin layer 8 is performed by mechanically removing the laminated film 7 so that a part of the heat resistant resin layer 8 remains. Do. In the blast processing, for example, blast processing shown in FIG. In a state where the power generation region 30 and the middle of the outer peripheral groove 19 are covered with a mask 53 and protected, abrasive grains 52 are sprayed from the nozzle 51 to the outer peripheral region 40 to remove the laminated film 7. There is a heat resistant resin layer 8 between the laminated film 7 and the substrate 1, and blasting is performed until the heat resistant resin layer 8 is partially scraped. Thereby, the laminated film 7 in the outer peripheral region 40 can be completely removed. Then, as shown in FIG. 11B, the heat-resistant resin 48 having fine irregularities on the surface remains in the outer peripheral region 40.

本実施の形態2では機械的な加工の際に、加工深さが基板1まで達しないように、耐熱樹脂層8の厚みをある程度厚くすることが望ましい。機械的な加工としてブラスト加工を用いる場合、外周溝19よりも外側の耐熱樹脂層8の厚みが20ミクロン以上であることが望ましく、30ミクロン以上とするとより望ましい。また、ブラスト加工の砥粒として絶縁性の材料を使用すると加工後に砥粒が外周領域40の耐熱性樹脂48の表面に在留しても短絡の問題が発生ないので望ましい。絶縁性の砥粒として例えばアルミナ粒子などを使用すると良い。   In the second embodiment, it is desirable to increase the thickness of the heat-resistant resin layer 8 to some extent so that the processing depth does not reach the substrate 1 during mechanical processing. When blasting is used as mechanical processing, the thickness of the heat-resistant resin layer 8 outside the outer peripheral groove 19 is desirably 20 microns or more, and more desirably 30 microns or more. In addition, it is desirable to use an insulating material as abrasive grains for blasting because there is no short circuit problem even if the abrasive grains stay on the surface of the heat-resistant resin 48 in the outer peripheral region 40 after processing. For example, alumina particles may be used as the insulating abrasive grains.

図12は本実施の形態2の外周領域40の耐熱性樹脂48が残留する薄膜太陽電池を用いた太陽電池モジュールの断面図である。実施の形態1の図9で示した太陽電池モジュールと外周部のみ異なる。外周領域40に表面が微細な凹凸を有する耐熱性樹脂48があるため表面積が増加して、平坦な基板1との表面に比べて接着層22との接着力が増す。   FIG. 12 is a cross-sectional view of a solar cell module using a thin film solar cell in which the heat-resistant resin 48 in the outer peripheral region 40 of the second embodiment remains. Only the outer peripheral portion is different from the solar cell module shown in FIG. 9 of the first embodiment. Since there is a heat-resistant resin 48 having irregularities on the surface in the outer peripheral region 40, the surface area is increased, and the adhesive force with the adhesive layer 22 is increased as compared with the surface with the flat substrate 1.

上記は機械的な加工としてブラスト加工を用いたが、ブラシで積層膜7を掻き落とすブラシ加工や砥石による加工なども使用することができる。   In the above, blast processing is used as mechanical processing, but brush processing for scraping the laminated film 7 with a brush, processing with a grindstone, or the like can also be used.

本実施の形態2の薄膜太陽電池の製造方法によればレーザスクライブ法により外周溝19が形成され、その端部の積層構造が保たれているので、端部による短絡が生じにくい。外周溝19より外側の積層膜7を機械的な加工で除去するので、除去速度が早くできる。また、外周溝19よりも外側の積層膜7は基板1との間に耐熱樹脂層8があり、この耐熱樹脂層8によって基板1が保護されているので基板1が受けるダメージが小さい。   According to the method of manufacturing the thin-film solar cell of the second embodiment, the outer peripheral groove 19 is formed by the laser scribing method, and the laminated structure at the end is maintained, so that a short circuit due to the end is less likely to occur. Since the laminated film 7 outside the outer peripheral groove 19 is removed by mechanical processing, the removal speed can be increased. Further, the laminated film 7 outside the outer peripheral groove 19 has a heat-resistant resin layer 8 between the substrate 1 and the substrate 1 is protected by the heat-resistant resin layer 8, so that the substrate 1 is less damaged.

<実施の形態3>
本実施の形態3の薄膜太陽電池も実施の形態1と同様に、発電領域30の外周付近の積層膜7と基板1との間に間隔を有するが、積層膜7と基板1との間の耐熱性樹脂8が一部または全部が除去されている。
<Embodiment 3>
Similarly to the first embodiment, the thin film solar cell of the third embodiment also has a gap between the laminated film 7 and the substrate 1 in the vicinity of the outer periphery of the power generation region 30, but between the laminated film 7 and the substrate 1. Part or all of the heat resistant resin 8 is removed.

本実施の形態3の薄膜太陽電池の製造方法は実施の形態1と同様に基板1の外周部に耐熱樹脂層8を形成する工程と、耐熱樹脂層8を形成した基板1に積層膜7を積層する工程と、積層膜7を複数の単位セルに分割する複数の分離溝(第1溝91、第3溝93)を基板1の外周部の耐熱樹脂層8の上まで連続するように形成する分離溝形成工程と、分離溝を形成した耐熱樹脂層8の上の積層膜7を部分的に残し、その外側の積層膜7をレーザスクライブ法により耐熱樹脂層8とともに除去する工程を含む外周膜除去工程と、を有している。外周膜除去工程はレーザスクライブ法により外周溝19を形成するまでは実施の形態1と同様であるが、外周溝19より外の積層膜7を除去する工程が異なる。   The manufacturing method of the thin film solar cell of the third embodiment is similar to the first embodiment in the step of forming the heat resistant resin layer 8 on the outer peripheral portion of the substrate 1 and the laminated film 7 on the substrate 1 on which the heat resistant resin layer 8 is formed. A step of laminating and a plurality of separation grooves (first groove 91 and third groove 93) dividing the laminated film 7 into a plurality of unit cells are formed so as to continue up to the heat-resistant resin layer 8 on the outer peripheral portion of the substrate 1. An outer periphery including a separating groove forming step and a step of partially leaving the laminated film 7 on the heat-resistant resin layer 8 on which the separation groove is formed and removing the laminated film 7 on the outer side together with the heat-resistant resin layer 8 by a laser scribing method. And a film removal step. The outer peripheral film removing step is the same as that in the first embodiment until the outer peripheral groove 19 is formed by the laser scribing method, but the step of removing the laminated film 7 outside the outer peripheral groove 19 is different.

本実施の形態3では耐熱樹脂層8をエッチングすることで外周溝19より外の積層膜7を除去する。図13は本実施の形態3の薄膜太陽電池の製造途中を説明する上面図であり、外周溝19より外の積層膜7を除去する工程でエッチング処理前の上面図である。図13のように外周部には断続的な溝61が複数本形成されている。   In the third embodiment, the heat-resistant resin layer 8 is etched to remove the laminated film 7 outside the outer peripheral groove 19. FIG. 13 is a top view for explaining the manufacturing process of the thin-film solar cell of Embodiment 3, and is a top view before the etching process in the step of removing the laminated film 7 outside the outer peripheral groove 19. As shown in FIG. 13, a plurality of intermittent grooves 61 are formed in the outer peripheral portion.

図14は本実施の形態3の薄膜太陽電池の製造途中を説明する断面図であり、図14(a)は図13の基板周辺部の構造を示している。図14(a)のように、外周部の断続的な溝61は、外周溝19と同様な方法で耐熱樹脂層8と積層膜7とが除去されて形成されている。そして、図14(b)のように、耐熱樹脂層8を外周溝19または複数の溝61を介してエッチングすると、その上の積層膜7が剥離して除去できる。なお、実施の形態1と異なり、本実施の形態3では基板1の側面11にも耐熱樹脂層8が形成されているので側面11の積層膜7も容易に除去できる。このように基板1の側面11に積層膜7が形成されてしまう場合には耐熱樹脂層8を形成する工程において、基板1の側面11にも耐熱樹脂層8を形成しておくと良い。基板1の側面11に積層膜7が形成されない場合には基板1の側面11の耐熱樹脂層8も不要である。   FIG. 14 is a cross-sectional view for explaining the production process of the thin-film solar cell according to Embodiment 3, and FIG. 14 (a) shows the structure of the peripheral portion of the substrate in FIG. As shown in FIG. 14A, the intermittent groove 61 in the outer peripheral portion is formed by removing the heat resistant resin layer 8 and the laminated film 7 in the same manner as the outer peripheral groove 19. 14B, when the heat-resistant resin layer 8 is etched through the outer peripheral groove 19 or the plurality of grooves 61, the laminated film 7 thereon can be peeled off and removed. Unlike the first embodiment, in the third embodiment, the heat-resistant resin layer 8 is also formed on the side surface 11 of the substrate 1, so that the laminated film 7 on the side surface 11 can be easily removed. Thus, when the laminated film 7 is formed on the side surface 11 of the substrate 1, it is preferable to form the heat resistant resin layer 8 on the side surface 11 of the substrate 1 in the step of forming the heat resistant resin layer 8. When the laminated film 7 is not formed on the side surface 11 of the substrate 1, the heat resistant resin layer 8 on the side surface 11 of the substrate 1 is not necessary.

エッチングは例えば酸素プラズマなどを使用することができる。耐熱樹脂層8が酸化されて気体となって除去される。エッチングに用いるガスや薬品は耐熱樹脂層8の材料により適宜選択すればよく、たとえば、耐熱樹脂層8がアクリル樹脂、ポリイミド樹脂、エポキシ樹脂、オレフィン樹脂、シリコン樹脂の何れか一種以上を含む有機物材料である場合に、四フッ化メタン(CF)、トリフルオロメタン(CHF)、六フッ化エタン(C)、八フッ化プロパン(C)、四塩化炭素(CCl)、六フッ化硫黄(SF)、フッ素(F)系ガス、塩素(Cl)系ガスのいずれかと酸素(O)との混合ガスをエッチングガスとして用いてもよい。これらのドライエッチング法として平行平板型RIE法や常圧プラズマ法を用いることができる。耐熱樹脂層8がポリイミド樹脂のような有機材料の場合は、酸素ガスの供給ガス比を調整することによりエッチングレートを容易に調整することが可能であり制御性が良い。また、エッチング後に高圧水洗浄、メガソニック洗浄、あるいはブラシ洗浄等のウエット洗浄をしてもよい。耐熱樹脂層8と基板1との間に他の材料、例えば、酸化亜鉛、酸化インジウム錫を含む透過性膜を有して、耐熱樹脂層8をエッチングする際に下地の透過性膜が同時にエッチングされるようにしても良い。また基板や透過性膜の表面に微細な凸凹を形成するなど、下地に微細な凸凹があると耐熱樹脂層8の接着力が良好となり、外周膜除去工程前に耐熱樹脂層8が剥離することを防止できる。 For example, oxygen plasma can be used for the etching. The heat-resistant resin layer 8 is oxidized and removed as a gas. Gases and chemicals used for etching may be appropriately selected depending on the material of the heat resistant resin layer 8. For example, the organic material in which the heat resistant resin layer 8 includes one or more of acrylic resin, polyimide resin, epoxy resin, olefin resin, and silicon resin. , Tetrafluoromethane (CF 4 ), trifluoromethane (CHF 3 ), hexafluoroethane (C 2 F 6 ), propane octafluoride (C 3 F 8 ), carbon tetrachloride (CCl 4 ) A mixed gas of oxygen (O 2 ) and any of sulfur hexafluoride (SF 6 ), fluorine (F) -based gas, and chlorine (Cl) -based gas may be used as an etching gas. As these dry etching methods, a parallel plate RIE method or an atmospheric pressure plasma method can be used. When the heat-resistant resin layer 8 is an organic material such as polyimide resin, the etching rate can be easily adjusted by adjusting the supply gas ratio of oxygen gas, and the controllability is good. Further, wet cleaning such as high pressure water cleaning, megasonic cleaning, or brush cleaning may be performed after etching. A permeable film containing another material, for example, zinc oxide or indium tin oxide, is provided between the heat resistant resin layer 8 and the substrate 1, and the underlying permeable film is simultaneously etched when the heat resistant resin layer 8 is etched. You may be made to do. Also, if there are fine irregularities in the substrate, such as forming fine irregularities on the surface of the substrate or the permeable membrane, the adhesive strength of the heat resistant resin layer 8 will be good, and the heat resistant resin layer 8 will be peeled off before the outer peripheral film removing step. Can be prevented.

断続的な溝61はエッチング剤やエッチングガスが耐熱樹脂層8に達しやすくする開口部であり、形状は溝でなくても良い。外周溝19自体がエッチング開口部となるので、溝61は必須ではないが、図14(a)のように溝61を多数形成すると耐熱樹脂層8を除去する時間を大幅に低減できる。また、図13のように開口部である複数の溝61を断続的に形成したので、外周領域40の積層膜7が連続した剥離膜46として除去でき、剥離した積層膜7の除去作業が容易となる。なお、複数の溝61は針を使用するスクライブ法などメカニカルパターニングで形成してもよい。また、断続的な溝に限らず、相互に網目状に繋がった溝としてもかまわない。   The intermittent groove 61 is an opening that makes it easy for an etching agent or etching gas to reach the heat-resistant resin layer 8, and the shape may not be a groove. Since the outer peripheral groove 19 itself becomes an etching opening, the groove 61 is not essential. However, when a large number of the grooves 61 are formed as shown in FIG. 14A, the time for removing the heat-resistant resin layer 8 can be greatly reduced. Further, since the plurality of grooves 61 that are openings are formed intermittently as shown in FIG. 13, the laminated film 7 in the outer peripheral region 40 can be removed as a continuous peeling film 46, and the removal work of the peeled laminated film 7 is easy. It becomes. The plurality of grooves 61 may be formed by mechanical patterning such as a scribing method using a needle. Further, the grooves are not limited to intermittent grooves, and may be grooves connected to each other in a mesh shape.

上記の実施の形態1〜3では発電領域30の単位セル10の端部を耐熱樹脂層8の端部29としたが、端部29よりも少し内側に積層膜7を除去した分離溝を設けて、その部位分を単位セル10の端部としても良い。その場合、耐熱樹脂層8の上の積層膜7は発電に寄与しなくなるが、この場合でもガラス基板に対するダメージを低減し、周辺領域の基板上に残る積層膜の粒子を減少し、積層膜の端部の短絡を防止するという効果が得られる。多数が直列接続する単位セル10間の端部のすぐ近傍に連続した導電膜があると、この導電膜を介して単位セル10間で短絡が起こりやすいが、本発明によれば耐熱樹脂層8の上の積層膜7には単位セル10の分離溝に連続する分離溝が形成されているので、耐熱樹脂層8の上の積層膜7を介した短絡が生じにくい。   In the first to third embodiments described above, the end portion of the unit cell 10 in the power generation region 30 is the end portion 29 of the heat-resistant resin layer 8, but a separation groove in which the laminated film 7 is removed is provided slightly inside the end portion 29. Thus, the portion may be the end of the unit cell 10. In that case, the laminated film 7 on the heat-resistant resin layer 8 does not contribute to power generation. However, even in this case, damage to the glass substrate is reduced, and particles of the laminated film remaining on the substrate in the peripheral region are reduced. The effect of preventing the end short circuit is obtained. If there is a continuous conductive film in the immediate vicinity of the end portion between the unit cells 10 that are connected in series, a short circuit is likely to occur between the unit cells 10 through the conductive film. Since the separation film that is continuous with the separation groove of the unit cell 10 is formed in the laminated film 7 on the upper layer, a short circuit through the laminated film 7 on the heat resistant resin layer 8 is unlikely to occur.

以上の各実施の形態で形成された薄膜太陽電池は、基板の外周に取り付けた金属製のフレームと薄膜太陽電池に接続した取り出し配線との間の絶縁抵抗は1000Mオーム以上であり、良好な絶縁特性が確認できた。また、モジュール化後に浸水しても絶縁特性に変化がなく、良好な封止性能を示した。   In the thin film solar cell formed in each of the above embodiments, the insulation resistance between the metal frame attached to the outer periphery of the substrate and the take-out wiring connected to the thin film solar cell is 1000 M ohm or more, and good insulation The characteristics were confirmed. Moreover, even if it was immersed in water after modularization, there was no change in the insulation characteristics, and good sealing performance was shown.

本発明の製造方法によれば信頼性の高い薄膜太陽電池を容易に製造できる。   According to the manufacturing method of the present invention, a highly reliable thin film solar cell can be easily manufactured.

1 基板、2 第1電極層、4 光電変換層、6 第2電極層、7 積層膜、8 耐熱樹脂層、10 単位セル、11 (基板の)側面、15 配線、19 外周溝、21 封止材、22接着層、29 (耐熱樹脂層の)端部、30 発電領域、40 外周領域、45、46 剥離膜、48 耐熱樹脂層、51 ノズル、52 砥粒、53 マスク、61 溝、91 第1溝、92 第2溝、93 第3溝、100、200 薄膜太陽電池。 DESCRIPTION OF SYMBOLS 1 Board | substrate, 2 1st electrode layer, 4 Photoelectric conversion layer, 6 2nd electrode layer, 7 Laminate film, 8 Heat-resistant resin layer, 10 Unit cell, 11 (Substrate) side surface, 15 Wiring, 19 Outer peripheral groove, 21 Sealing Material, 22 adhesive layer, 29 end of (heat-resistant resin layer), 30 power generation region, 40 outer peripheral region, 45, 46 release film, 48 heat-resistant resin layer, 51 nozzle, 52 abrasive grain, 53 mask, 61 groove, 91 first 1 groove, 92 2nd groove, 93 3rd groove, 100, 200 Thin film solar cell.

Claims (8)

第1電極層と光電変換層と第2電極層とを積層した積層膜を有する薄膜太陽電池の単位セルがガラス材料からなる基板上に複数配設された薄膜太陽電池の製造方法であって、
前記基板の外周部に耐熱樹脂層を形成する工程と、
前記耐熱樹脂層を形成した前記基板に前記積層膜を積層する工程と、
前記積層膜を複数の単位セルに分割する複数の分離溝を前記外周部の前記耐熱樹脂層の上まで延長して形成する分離溝形成工程と、
前記分離溝を形成した前記耐熱樹脂層の上の前記積層膜を部分的に残し、その外側の前記積層膜を前記耐熱樹脂層とともに除去する外周膜除去工程と、
を有する薄膜太陽電池の製造方法。
A thin-film solar cell manufacturing method in which a plurality of unit cells of a thin-film solar cell having a laminated film obtained by laminating a first electrode layer, a photoelectric conversion layer, and a second electrode layer are disposed on a substrate made of a glass material,
Forming a heat-resistant resin layer on the outer periphery of the substrate;
Laminating the laminated film on the substrate on which the heat-resistant resin layer is formed;
A separation groove forming step of forming a plurality of separation grooves that divide the laminated film into a plurality of unit cells extending above the heat-resistant resin layer of the outer peripheral portion;
A peripheral film removing step of partially leaving the laminated film on the heat-resistant resin layer in which the separation groove is formed, and removing the laminated film on the outside together with the heat-resistant resin layer;
The manufacturing method of the thin film solar cell which has this.
請求項1に記載の薄膜太陽電池の製造方法であって、
前記外周膜除去工程は
前記分離溝を形成した前記耐熱樹脂層の上の前記積層膜を前記耐熱樹脂層とともに除去して前記分離溝と交差する外周溝を形成する第1工程と、
前記外周溝よりも外側の前記積層膜を前記耐熱樹脂層とともに除去する第2工程と、を有する薄膜太陽電池の製造方法。
It is a manufacturing method of the thin film solar cell of Claim 1,
The outer peripheral film removing step includes a first step of forming the outer peripheral groove intersecting the separation groove by removing the laminated film on the heat resistant resin layer in which the separation groove is formed together with the heat resistant resin layer;
And a second step of removing the laminated film outside the outer peripheral groove together with the heat-resistant resin layer.
請求項2に記載の薄膜太陽電池の製造方法であって、
前記第1工程において前記外周溝は、前記積層膜を前記耐熱樹脂層とともに除去するレーザスクライブ法で形成することを特徴とする薄膜太陽電池の製造方法。
It is a manufacturing method of the thin film solar cell of Claim 2,
In the first step, the outer peripheral groove is formed by a laser scribing method in which the laminated film is removed together with the heat-resistant resin layer.
請求項1から3のいずれか1項に記載の薄膜太陽電池の製造方法であって、
前記耐熱樹脂層を形成する工程において、前記耐熱樹脂層の端部に傾斜面を形成し、
前記分離溝形成工程において前記分離溝は前記耐熱樹脂層の形成されなかった領域から前記耐熱樹脂層の前記傾斜面上まで連続して形成されることを特徴とする薄膜太陽電池の製造方法。
It is a manufacturing method of the thin film solar cell of any one of Claim 1 to 3,
In the step of forming the heat resistant resin layer, an inclined surface is formed at an end of the heat resistant resin layer,
In the separation groove forming step, the separation groove is continuously formed from a region where the heat resistant resin layer is not formed to the inclined surface of the heat resistant resin layer.
請求項1または4に記載の薄膜太陽電池の製造方法であって、
前記外周膜除去工程は、前記基板を介して前記耐熱樹脂層が吸収するレーザ光を照射して、前記耐熱樹脂層とともに前記積層膜を除去することを特徴とする薄膜太陽電池の製造方法。
It is a manufacturing method of the thin film solar cell of Claim 1 or 4,
In the method for manufacturing a thin-film solar cell, the outer peripheral film removing step irradiates a laser beam absorbed by the heat-resistant resin layer through the substrate to remove the laminated film together with the heat-resistant resin layer.
請求項2から4のいずれか1項に記載の薄膜太陽電池の製造方法であって、
前記第2工程は、前記外周溝の外側の前記耐熱樹脂層に前記基板を介して光を照射して前記耐熱樹脂層と前記基板との接着力を低下させる工程と、前記基板との接着力が低下した前記耐熱樹脂層をその上の前記積層膜とともに前記基板から除去する工程と、を有することを特徴とする薄膜太陽電池の製造方法。
It is a manufacturing method of the thin film solar cell of any one of Claim 2 to 4,
In the second step, the heat-resistant resin layer outside the outer peripheral groove is irradiated with light through the substrate to reduce the adhesive force between the heat-resistant resin layer and the substrate, and the adhesive force between the substrate and the substrate. Removing the heat-resistant resin layer having a reduced temperature from the substrate together with the laminated film thereon.
請求項2から4のいずれか1項に記載の薄膜太陽電池の製造方法であって、
前記第2工程は、前記耐熱樹脂層の一部が残るように前記積層膜を機械的に加工除去することを特徴とする薄膜太陽電池の製造方法。
It is a manufacturing method of the thin film solar cell of any one of Claim 2 to 4,
In the second step, the laminated film is mechanically processed and removed so that a part of the heat-resistant resin layer remains.
請求項2から4のいずれかに1項に記載の薄膜太陽電池の製造方法であって、
前記第2工程は、前記耐熱樹脂層をエッチングして、前記耐熱樹脂層の上部の前記積層膜を除去することを特徴とする薄膜太陽電池の製造方法。
It is a manufacturing method of the thin film solar cell according to any one of claims 2 to 4,
In the second step, the heat-resistant resin layer is etched to remove the laminated film on the heat-resistant resin layer.
JP2010210845A 2010-09-21 2010-09-21 Thin film solar cell manufacturing method Pending JP2012069566A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010210845A JP2012069566A (en) 2010-09-21 2010-09-21 Thin film solar cell manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010210845A JP2012069566A (en) 2010-09-21 2010-09-21 Thin film solar cell manufacturing method

Publications (1)

Publication Number Publication Date
JP2012069566A true JP2012069566A (en) 2012-04-05

Family

ID=46166526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010210845A Pending JP2012069566A (en) 2010-09-21 2010-09-21 Thin film solar cell manufacturing method

Country Status (1)

Country Link
JP (1) JP2012069566A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014132312A1 (en) * 2013-02-26 2014-09-04 三洋電機株式会社 Solar cell module, and solar cell module production method
JPWO2015045243A1 (en) * 2013-09-30 2017-03-09 パナソニックIpマネジメント株式会社 Solar cell module and method for manufacturing solar cell module
CN113649701A (en) * 2021-08-13 2021-11-16 苏州迈为科技股份有限公司 Solar cell laser edge cleaning method and device
WO2023015937A1 (en) * 2021-08-13 2023-02-16 苏州迈为科技股份有限公司 Laser edge deletion machine for solar cell and edge deletion method
WO2023189907A1 (en) * 2022-03-31 2023-10-05 株式会社カネカ Method for manufacturing solar cell module

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014132312A1 (en) * 2013-02-26 2014-09-04 三洋電機株式会社 Solar cell module, and solar cell module production method
JPWO2014132312A1 (en) * 2013-02-26 2017-02-02 パナソニックIpマネジメント株式会社 Solar cell module and method for manufacturing solar cell module
JP2018113462A (en) * 2013-02-26 2018-07-19 パナソニックIpマネジメント株式会社 Solar cell module
US10840393B2 (en) 2013-02-26 2020-11-17 Panasonic Intellectual Property Management Co., Ltd. Solar cell module and solar cell module manufacturing method
JPWO2015045243A1 (en) * 2013-09-30 2017-03-09 パナソニックIpマネジメント株式会社 Solar cell module and method for manufacturing solar cell module
CN113649701A (en) * 2021-08-13 2021-11-16 苏州迈为科技股份有限公司 Solar cell laser edge cleaning method and device
WO2023015937A1 (en) * 2021-08-13 2023-02-16 苏州迈为科技股份有限公司 Laser edge deletion machine for solar cell and edge deletion method
WO2023015936A1 (en) * 2021-08-13 2023-02-16 苏州迈为科技股份有限公司 Method and apparatus for laser edge trimming for solar cell
CN113649701B (en) * 2021-08-13 2024-03-15 苏州迈为科技股份有限公司 Laser edge cleaning method and device for solar cell
WO2023189907A1 (en) * 2022-03-31 2023-10-05 株式会社カネカ Method for manufacturing solar cell module

Similar Documents

Publication Publication Date Title
AU2004204637B2 (en) Transparent thin-film solar cell module and its manufacturing method
EP0827212B1 (en) Method of fabricating integrated thin film solar cells
JP6746187B2 (en) Solar cell manufacturing method
JP6055787B2 (en) Solar cell and manufacturing method thereof
JP2010157687A (en) Thin film type solar cell and method of manufacturing the same
WO2010097975A1 (en) Photoelectric conversion device
CN102239571B (en) Method for manufacturing thin-film photoelectric conversion device
JP2012069566A (en) Thin film solar cell manufacturing method
JP2014232818A (en) Solar battery, manufacturing method for the same, and solar battery module
JP6164939B2 (en) SOLAR CELL, MANUFACTURING METHOD THEREOF, AND SOLAR CELL MODULE
US8541680B2 (en) Photovoltaic cells including peaks and methods of manufacture
JP5771759B2 (en) SOLAR CELL, SOLAR CELL MODULE, SOLAR CELL MANUFACTURING METHOD, AND SOLAR CELL MODULE MANUFACTURING METHOD
JP4889779B2 (en) Photoelectric conversion module
KR101047170B1 (en) Solar cell and manufacturing method
WO2019227804A1 (en) Solar cell and preparation method therefor
JP3746410B2 (en) Method for manufacturing thin film solar cell
JP2006237100A (en) Photovoltaic apparatus and its manufacturing method
JP5516435B2 (en) Method for manufacturing thin film solar cell
JP4951699B2 (en) Solar cell module and manufacturing method thereof
TWI774397B (en) Thin film photovoltaic structure
JP2004214565A (en) Method for manufacturing integrated thin-film solar cell and integrated thin-film solar cell
JP2011035132A (en) Method of manufacturing photoelectric conversion device, photoelectric conversion device having substrate with transparent conductive film, substrate with transparent conductive film, photoelectric conversion device, and apparatus for manufacturing photoelectric conversion device
JP2022154445A (en) Solar cell panel and manufacturing method thereof
JP5957102B2 (en) Manufacturing method of solar cell
JP6350981B2 (en) Solar cell