WO2023189874A1 - 冷凍装置 - Google Patents

冷凍装置 Download PDF

Info

Publication number
WO2023189874A1
WO2023189874A1 PCT/JP2023/011069 JP2023011069W WO2023189874A1 WO 2023189874 A1 WO2023189874 A1 WO 2023189874A1 JP 2023011069 W JP2023011069 W JP 2023011069W WO 2023189874 A1 WO2023189874 A1 WO 2023189874A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil return
compressor
controller
opening degree
oil
Prior art date
Application number
PCT/JP2023/011069
Other languages
English (en)
French (fr)
Inventor
庸貴 椛島
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2023189874A1 publication Critical patent/WO2023189874A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems

Definitions

  • the present disclosure relates to a refrigeration device.
  • Patent Document 1 discloses a refrigeration device that performs a refrigeration cycle.
  • an oil separator is provided on the discharge side of the compressor.
  • a first temperature sensor is provided in the discharge pipe of the compressor.
  • a capillary tube and a second temperature sensor are provided in a connecting pipe that connects the oil separator and the suction pipe of the compressor.
  • a second temperature sensor is placed downstream of the capillary tube in the connecting tube.
  • the refrigeration system of Patent Document 1 determines that gas refrigerant is mainly flowing through the connecting pipe when the value obtained by subtracting the measured value of the second temperature sensor from the measured value of the first temperature sensor exceeds a predetermined reference value. to decide.
  • the measured value of the first temperature sensor (the temperature of the refrigerant discharged from the compressor), the measured value of the second temperature sensor (the temperature of the fluid that has passed through the capillary tube of the connecting pipe), each varies depending on individual factors. Therefore, the difference between the measured value of the first temperature sensor and the measured value of the second temperature sensor varies depending on factors other than "the state of the fluid flowing through the connecting pipe.” Therefore, simply comparing the difference between the measured value of the first temperature sensor and the measured value of the second temperature sensor with a single reference value cannot determine whether or not gas refrigerant is mainly flowing through the connecting pipe. There was a risk that accurate judgment could not be made.
  • An object of the present disclosure is to improve the accuracy of detecting that gas refrigerant is flowing through an oil return pipe that connects the oil separator to a suction pipe of a compressor in a refrigeration system having an oil separator.
  • a first aspect of the present disclosure includes a refrigerant circuit (15) that has a compressor unit (20) and performs a refrigeration cycle, and the compressor unit (20) has a compression mechanism (20) that compresses and discharges refrigerant.
  • an oil separator (40) that separates refrigerating machine oil from the gas refrigerant discharged by the compressor (30);
  • the temperature of the gas refrigerant discharged by the oil return pipe (45) connected to the suction pipe (35), the oil return valve (46) provided in the oil return pipe (45), and the compression mechanism (32) is A refrigeration system (10) having a discharge temperature sensor (50) for measuring, wherein the opening degree of the oil return valve (46) is reduced, and the above-mentioned temperature sensor before reducing the opening degree of the oil return valve (46).
  • the oil return pipe (45) is adjusted based on the change in the measured value of the discharge temperature sensor (50) after reducing the opening degree of the oil return valve (46) with respect to the measured value of the discharge temperature sensor (50). It includes a controller (60) that performs a detection operation to detect that gas refrigerant is flowing.
  • the controller (60) performs a sensing operation.
  • the controller (60) reduces the opening degree of the oil return valve (46) and compares the measured values of the discharge temperature sensor (50) before and after the change in the opening degree of the oil return valve (46). Based on the change, it is detected that the gas refrigerant is flowing through the oil return pipe (45).
  • the only factor that causes a change in the measured value of the discharge temperature sensor (50) during the detection operation of the controller (60) is "change in the opening degree of the oil return valve (46).” Therefore, according to this aspect, by the controller (60) performing the detection operation, it is possible to accurately detect that the gas refrigerant is flowing through the oil return pipe (45).
  • reducing the opening degree of the oil return valve (46) involves reducing the opening degree of the oil return valve (46) to an opening degree greater than zero, and reducing the opening degree of the oil return valve (46). This includes setting it to zero (fully closed).
  • a second aspect of the present disclosure is that in the refrigeration system (10) of the first aspect, the detection operation performed by the controller (60) is performed when the oil return pipe (45)
  • the first condition includes an operation of determining that gas refrigerant is flowing through the oil return valve (46), and the first condition is that the temperature of the discharge temperature sensor (50) is higher than
  • the condition is that the measured value of the discharge temperature sensor (50) after reducing the opening degree of the oil return valve (46) is lower than a predetermined value.
  • the detection operation of the controller (60) includes an operation of determining that gas refrigerant is flowing through the oil return pipe (45) when the first condition is satisfied.
  • a third aspect of the present disclosure is that in the refrigeration system (10) of the second aspect, when the first condition is satisfied in the detection operation, the controller (60) closes the oil return valve (46). The opening degree is maintained at the reduced opening degree, or the opening degree of the oil return valve (46) is further reduced.
  • the oil return pipe ( 45) can be kept low. Therefore, the amount of refrigerant discharged to the outside of the compressor unit (20) increases compared to before the controller (60) reduces the opening degree of the oil return valve.
  • a fourth aspect of the present disclosure is that in the refrigeration system (10) of the first aspect, the detection operation performed by the controller (60) is performed when the second condition is not satisfied.
  • the second condition includes the operation of determining that the gas refrigerant is flowing, and the second condition is that the temperature is higher than the measured value of the discharge temperature sensor (50) before the opening degree of the oil return valve (46) is reduced.
  • the condition is that the measured value of the discharge temperature sensor (50) after reducing the opening degree of the oil return valve (46) is higher than a predetermined value.
  • the detection operation of the controller (60) includes an operation of determining that gas refrigerant is flowing through the oil return pipe (45) when the second condition is not satisfied.
  • a fifth aspect of the present disclosure is that in the refrigeration system (10) of the fourth aspect, when the second condition is satisfied in the detection operation, the controller (60) closes the oil return valve (46). The opening degree is returned to the opening degree before the reduction, or the opening degree of the oil return valve (46) is increased from the opening degree before the reduction.
  • the controller (60) when the controller (60) returns the opening degree of the oil return valve (46) to the opening degree before reduction, or expands the opening degree of the oil return valve (46) from the opening degree before reduction. , the flow rate of refrigerating machine oil flowing through the oil return pipe (45) becomes equal to or higher than before the controller (60) reduces the opening degree of the oil return valve (46).
  • a sixth aspect of the present disclosure is the refrigeration system (10) according to any one of the first to fifth aspects, wherein the compressor (30) is configured to include an electric motor (33) that drives the compression mechanism (32). and a casing (31) that houses the compression mechanism (32) and the electric motor (33), and the discharge temperature sensor (50) is connected to the internal space of the casing (31) from the compression mechanism (32). The temperature of the gas refrigerant before it is discharged to and passes through the electric motor (33) is measured.
  • the discharge temperature sensor (50) measures the temperature of the gas refrigerant discharged from the compression mechanism (32) into the internal space of the casing (31) before passing through the electric motor (33). Therefore, the difference between the measured value of the discharge temperature sensor (50) and the temperature of the refrigerant actually discharged by the compression mechanism (32) becomes small.
  • a seventh aspect of the present disclosure is that in the refrigeration system (10) according to any one of the first to sixth aspects, the refrigerant circuit (15) is provided with a plurality of the compressor units (20a, 20b).
  • the controller (60) performs the detection operation for each of the plurality of compressor units (20a, 20b).
  • the controller (60) individually performs the detection operation for each of the plurality of compressor units (20a, 20b).
  • An eighth aspect of the present disclosure is that in the refrigeration system (10) of the seventh aspect, the plurality of compressor units provided in the refrigerant circuit (15) are a first compressor unit (20a) and a first compressor unit (20a). 2 compressor units (20b), and the controller (60), in the detection operation, selects the second compressor unit of the first compressor unit (20a) and the second compressor unit (20b). (20b) to transfer refrigerating machine oil from the first compressor unit (20a) to the second compressor unit (20b) when it is determined that gas refrigerant is flowing through the oil return pipe (45). performs the transfer operation.
  • the gas refrigerant when the gas refrigerant is flowing through the oil return pipe (45b) in the second compressor unit (20b), the gas refrigerant stored in the compressor (30b) of the second compressor unit (20b) It is assumed that the amount of refrigerating machine oil is low.
  • the controller (60) when the controller (60) performs the transfer operation, the refrigerating machine oil moves from the first compressor unit (20a) to the second compressor unit (20b), and the compressor ( The amount of refrigeration oil stored in 30b) increases.
  • a ninth aspect of the present disclosure is the refrigeration system (10) according to the eighth aspect, wherein the controller (60) increases the rotational speed of the compressor (30a) of the first compressor unit (20a). As the transfer operation, the rotational speed of the compressor (30b) of the second compressor unit (20b) is reduced.
  • the controller (60) performs the transfer operation.
  • the transfer operation when the controller (60) increases the rotational speed of the compressor (30a) of the first compressor unit (20a), the flow rate of refrigerating machine oil discharged from this compressor (30a) together with the refrigerant increases. do.
  • the controller (60) when the controller (60) reduces the rotational speed of the compressor (30b) of the second compressor unit (20b), the flow rate of refrigerating machine oil discharged from this compressor (30b) together with the refrigerant. decreases.
  • the controller (60) performs the transfer operation, the amount of refrigerating machine oil stored in the compressor (30a) of the first compressor unit (20a) decreases, and the amount of refrigerating machine oil stored in the compressor (30a) of the first compressor unit (20a) decreases, and the The amount of refrigeration oil stored in the machine (30b) increases.
  • a tenth aspect of the present disclosure is that in the refrigeration system (10) according to any one of the first to sixth aspects, the controller (60) controls the rotation speed of the compressor (30) to be equal to or higher than a predetermined value. When it is determined that gas refrigerant is flowing through the oil return pipe (45) in the detection operation, the refrigerating machine oil accumulated outside the compressor unit (20) is removed from the compressor unit (20). ).
  • the controller (60) performs the collection operation. If the rotational speed of the compressor (30) is above a predetermined value and gas refrigerant is flowing through the oil return pipe (45), the amount of refrigerating machine oil stored in the compressor (30) is low. Probability is high. Therefore, in this case, in order to increase the amount of refrigerating machine oil stored in the compressor (30), the controller (60) transfers the refrigerating machine oil accumulated outside the compressor unit (20) to the compressor unit (20). Carry out a recovery operation to return to.
  • An eleventh aspect of the present disclosure is that in the refrigeration system (10) according to any one of the first to sixth aspects, the controller (60) controls the compressor when a predetermined recovery condition is satisfied. While performing a recovery operation to return the refrigerating machine oil accumulated outside the unit (20) to the compressor unit (20), when the rotational speed of the compressor (30) is below a predetermined value, the detection operation If it is not determined that gas refrigerant is flowing through the oil return pipe (45), the recovery operation is not performed even if the recovery conditions are met.
  • the controller (60) performs a collection operation when a predetermined collection condition is satisfied.
  • a predetermined collection condition when the rotational speed of the compressor (30) is low, the amount of refrigerating machine oil flowing out from the compressor (30) together with the refrigerant is small. Therefore, when the rotational speed of the compressor (30) is below a predetermined value, if the detection operation does not determine that gas refrigerant is flowing through the oil return pipe (45), the compressor (30) will receive a sufficient amount of refrigerant. There is a high possibility that refrigeration oil is stored. Therefore, in this case, there is no need to increase the amount of refrigerating machine oil stored in the compressor (30). Therefore, in this case, the controller (60) does not perform the collection operation even if the collection conditions are met.
  • FIG. 1 is a refrigerant circuit diagram showing the configuration of an air conditioner according to the first embodiment.
  • FIG. 2 is a schematic configuration diagram of a compressor included in the air conditioner of Embodiment 1.
  • FIG. 3 is a block diagram showing the configuration of a controller included in the air conditioner according to the first embodiment.
  • FIG. 4 is a flow diagram showing the operation of the controller of Embodiment 1.
  • FIG. 5 is a timing chart showing the state of the oil return valve controlled by the controller of the first embodiment.
  • FIG. 6 is a Mollier diagram for explaining the first condition.
  • FIG. 7 is a flow diagram showing the operation of the controller according to the second embodiment.
  • FIG. 8 is a Mollier diagram for explaining the second condition.
  • FIG. 9 is a refrigerant circuit diagram showing the configuration of an air conditioner according to the third embodiment.
  • Embodiment 1 is an air conditioner (10).
  • This air conditioner (10) is a refrigeration device that performs a refrigeration cycle.
  • the air conditioner (10) includes one outdoor unit (11) and multiple indoor units (12).
  • the air conditioner (10) includes a refrigerant circuit (15).
  • the refrigerant circuit (15) is formed by connecting each indoor unit (12) to the outdoor unit (11) with piping.
  • the plurality of indoor units (12) are connected in parallel to each other.
  • the air conditioner (10) also includes a controller (60).
  • the outdoor unit (11) includes a compressor unit (20), a four-way switching valve (21), an outdoor heat exchanger (22), and an outdoor expansion valve (24).
  • the compressor unit (20) includes a compressor (30) and an oil separator (40).
  • the outdoor unit (11) includes an outdoor fan.
  • the first port of the four-way switching valve (21) is connected to the oil separator (40), and the second port of the four-way switching valve (21) is connected to the compressor (30).
  • the third port of the four-way switching valve (21) is connected to the gas side end of the outdoor heat exchanger (22), and the fourth port of the four-way switching valve (21) is connected to the gas side connecting pipe. (17) to the gas side end of each indoor unit (12).
  • the gas side end of the outdoor heat exchanger (22) is connected to one end of the outdoor expansion valve (24), and the other end of the outdoor expansion valve (24) is connected to the liquid side communication pipe (16). Connect to the liquid side end of each indoor unit (12) via.
  • the four-way switching valve (21) is a switching valve equipped with four ports.
  • the four-way switching valve (21) has a first state in which the first port communicates with the third port and a second port in communication with the fourth port (the state shown by the solid line in FIG. 1), and a state in which the first port communicates with the fourth port.
  • the state is switched to a second state (a state shown by a broken line in FIG. 1) in which the second port communicates with the third port and the second port communicates with the third port.
  • the outdoor heat exchanger (22) is a heat exchanger that exchanges heat between the refrigerant and outdoor air.
  • the outdoor expansion valve (24) is an electric expansion valve.
  • the compressor unit (20) includes a compressor (30) and an oil separator (40).
  • the compressor unit (20) also includes an oil return pipe (45), an oil return valve (46), a capillary tube (47), and a discharge temperature sensor (50).
  • the compressor (30) is a completely hermetic scroll compressor.
  • the format of the compressor (30) is not limited to the scroll type.
  • the compressor (30) includes a casing (31), a compression mechanism (32), an electric motor (33), and a drive shaft (34).
  • the casing (31) is an upright cylindrical member.
  • the compression mechanism (32) is a scroll fluid machine that sucks and compresses refrigerant.
  • the compression mechanism (32) discharges compressed refrigerant from the discharge port (32a) into the internal space of the casing (31).
  • the electric motor (33) is connected to the compression mechanism (32) via a drive shaft (34) and drives the compression mechanism (32).
  • the casing (31) is provided with a suction pipe (35) and a discharge pipe (36).
  • the suction pipe (35) introduces low pressure refrigerant into the compression mechanism (32).
  • the discharge pipe (36) guides the high-pressure refrigerant discharged from the compression mechanism (32) to the outside of the casing (31).
  • Refrigerating machine oil is stored at the bottom of the casing (31) of the compressor (30). This refrigerating machine oil is supplied to the compression mechanism (32) through an oil passage (not shown) formed in the drive shaft (34), and lubricates the compression mechanism (32). A part of the refrigerating machine oil supplied to the compression mechanism (32) is discharged from the compression mechanism (32) together with the compressed refrigerant. Therefore, the gas refrigerant flowing out of the casing (31) through the discharge pipe (36) contains mist-like refrigerating machine oil.
  • the refrigerant compressed in the compression mechanism (32) is discharged into the internal space of the casing (31) through the discharge port (32a).
  • the refrigerant discharged from the compression mechanism (32) into the internal space of the casing (31) is guided below the electric motor (33), then flows upward, and passes through the discharge pipe (36) to the outside of the casing (31). leaks to.
  • the oil separator (40) is a member for separating refrigerating machine oil from the gas refrigerant discharged by the compressor (30).
  • the oil separator (40) is formed in an upright cylindrical shape.
  • a discharge pipe (36) of the compressor (30) is connected to the side of the oil separator (40).
  • the first port of the four-way switching valve (21) is connected to the top of the oil separator (40).
  • One end of an oil return pipe (45) is connected to the bottom of the oil separator (40).
  • refrigeration oil is separated from the gas refrigerant flowing from the compressor (30). Refrigerating machine oil separated from the gas refrigerant falls by gravity and accumulates at the bottom of the oil separator (40).
  • the oil return pipe (45) is a pipe that connects the oil separator (40) and the suction pipe (35) of the compressor (30). One end of the oil return pipe (45) is connected to the bottom of the oil separator (40) and communicates with the internal space of the oil separator (40). The other end of the oil return pipe (45) is connected to the suction pipe (35) of the compressor (30).
  • the oil return pipe (45) is provided with a capillary tube (47) and an oil return valve (46).
  • the capillary tube (47) and the oil return valve (46) are arranged in order from one end of the oil return pipe (45) to the other end.
  • the oil return valve (46) is a solenoid valve that switches between an open state and a closed state.
  • the discharge temperature sensor (50) is a sensor for measuring the temperature of the refrigerant discharged by the compression mechanism (32) of the compressor (30).
  • the discharge temperature sensor (50) is attached to the outer surface of the casing (31) of the compressor (30).
  • the discharge temperature sensor (50) is attached to a portion of the top of the casing (31) that faces the discharge port (32a) of the compression mechanism (32) (see FIG. 2).
  • the measured value of the discharge temperature sensor (50) is substantially the temperature of the refrigerant before it is discharged from the compression mechanism (32) and passes through the electric motor (33).
  • the discharge temperature sensor (50) may be installed in the internal space of the casing (31). In this case, the discharge temperature sensor (50) directly contacts the refrigerant discharged from the compression mechanism (32) and measures the temperature of the refrigerant.
  • Each of the plurality of indoor units (12) includes an indoor heat exchanger (23) and an indoor expansion valve (25).
  • the indoor heat exchanger (23) and the indoor expansion valve (25) are arranged in order from the gas side end to the liquid side end of the indoor unit (12).
  • each indoor unit (12) includes an indoor fan.
  • the indoor heat exchanger (23) is a heat exchanger that exchanges heat between the refrigerant and indoor air.
  • the indoor expansion valve (25) is an electric expansion valve.
  • the controller (60) includes one outdoor controller (61) and a plurality of indoor controllers (64).
  • the outdoor controller (61) is provided in the outdoor unit (11).
  • One indoor controller (64) is provided in each indoor unit (12).
  • the outdoor controller (61) and each indoor controller (64) perform wired communication with each other.
  • the outdoor controller (61) includes a microcomputer (62) mounted on a control board and a memory device (63) that stores software for operating the microcomputer (62). Equipped with The memory device (63) is a semiconductor memory. Measured values of various sensors provided in the outdoor unit (11) are input to the outdoor controller (61). The outdoor controller (61) controls the component devices provided in the outdoor unit (11). In particular, the outdoor controller (61) of this embodiment controls the oil return valve (46) based on the measured value of the discharge temperature sensor (50).
  • the indoor controller (64) like the outdoor controller (61), includes a microcomputer and a memory device. Measured values of various sensors provided in the indoor unit (12) are input to the indoor controller (64). The indoor controller (64) controls the component devices provided in the indoor unit (12).
  • the air conditioner performs cooling operation and heating operation.
  • the four-way switching valve (21) is set to the first state, and a refrigeration cycle is performed in the refrigerant circuit (15).
  • the outdoor heat exchanger (22) functions as a condenser
  • the indoor heat exchanger (23) functions as an evaporator.
  • the indoor unit (12) blows air cooled in the indoor heat exchanger (23) indoors.
  • the four-way switching valve (21) is set to the second state, and a refrigeration cycle is performed in the refrigerant circuit (15).
  • the indoor heat exchanger (23) functions as a condenser
  • the outdoor heat exchanger (22) functions as an evaporator.
  • the indoor unit (12) blows air heated in the indoor heat exchanger (23) indoors.
  • the outdoor controller (61) performs the operation shown in the flowchart of FIG. 4 as an operation to control the oil return valve (46).
  • the outdoor controller (61) repeatedly performs the operation shown in the flowchart of FIG. 4 at predetermined time intervals T1 (15 minutes in this embodiment).
  • step ST10 in FIG. 4 the outdoor controller (61) starts counting up the timer.
  • the outdoor controller (61) acquires the measured value of the discharge temperature sensor (50), and stores the acquired measured value in the memory device (63) as the discharge temperature Td1.
  • the discharge temperature Td1 is a value measured by the discharge temperature sensor (50) before the oil return valve (46) is closed (in other words, when the oil return valve (46) is open).
  • the outdoor controller (61) acquires the measured value of the discharge temperature sensor (50), and stores the acquired measured value in the memory device (63) as the discharge temperature Td2.
  • the discharge temperature Td2 is a value measured by the discharge temperature sensor (50) after the oil return valve (46) is closed.
  • the outdoor controller (61) determines whether the first condition is satisfied or not.
  • the first condition is that the difference between the discharge temperature Td1 and the discharge temperature Td2 (Td1-Td2) exceeds a predetermined value ⁇ Td (Td1-Td2> ⁇ Td).
  • the predetermined value ⁇ Td is, for example, 2°C.
  • the outdoor controller (61) determines whether the time t measured by the timer has reached the predetermined time T2. When the measured time t is less than the time T2 (t ⁇ T2), the outdoor controller (61) performs the process of step ST13. When the measured time t is longer than the time T2 (t ⁇ T2), the outdoor controller (61) performs the process of step ST16.
  • the time T2 is, for example, 10 seconds.
  • a series of processes from step ST10 to step ST15 is a detection operation performed by the outdoor controller (61).
  • This detection operation is performed by reducing the opening degree of the oil return valve (46) and comparing the measured value of the discharge temperature sensor (50) with respect to the value measured by the discharge temperature sensor (50) before reducing the opening degree of the oil return valve (46).
  • This is an operation of detecting that gas refrigerant is flowing through the oil return pipe (45) based on a change in the measured value of the discharge temperature sensor (50) after the opening degree is reduced.
  • step ST15 if the measured time t is longer than the time T2, the temperature difference (Td1-Td2) does not reach ⁇ Td even after the time T2 has passed since the oil return valve (46) was closed, so the oil return valve (46) is closed. It can be determined that gas refrigerant is not flowing through the pipe (45) (in other words, only refrigerating machine oil is substantially flowing through the oil return pipe (45)).
  • the outdoor controller (61) opens the oil return valve (46).
  • the oil return valve (46) opens, the refrigerating machine oil accumulated in the oil separator (40) flows into the compressor (30) through the oil return pipe (45).
  • step ST14 if the first condition is satisfied in the process of step ST14, it can be determined that gas refrigerant is mainly flowing through the oil return pipe (45). In this state, a part of the refrigerant flowing out from the discharge pipe (36) of the compressor (30) flows into the suction pipe (35) of the compressor (30) through the oil return pipe (45). Therefore, the flow rate of refrigerant sent from the compressor unit (20) to the four-way switching valve (21) becomes smaller than the flow rate of refrigerant flowing out from the discharge pipe (36) of the compressor (30).
  • the outdoor controller (61) waits until the measured time t of the timer reaches a predetermined time T3. As a result, the oil return valve (46) is kept closed until the measured time t reaches time T3.
  • the time T3 is, for example, 8 minutes.
  • the outdoor controller (61) When the measurement time t reaches time T3 in the process of step ST17, the outdoor controller (61) performs the process of step ST16. In this way, when the measurement time t reaches time T3, the outdoor controller (61) closes the oil return valve (46) in order to determine again whether or not the gas refrigerant is flowing through the oil return pipe (45). Open it once.
  • the outdoor controller (61) waits until the measured time t of the timer reaches a predetermined time T1.
  • the time T1 is, for example, 15 minutes.
  • the outdoor controller (61) performs the process of step ST19.
  • step ST19 the outdoor controller (61) resets the measurement time t of the timer. After that, the outdoor controller (61) performs the process of step ST10 again.
  • the outdoor controller (61) starts a detection operation.
  • the outdoor controller (61) performs the process of step ST12, thereby closing the oil return valve (46).
  • the first condition was not satisfied in the process of step ST14. Therefore, at time t2, the outdoor controller (61) performs the process of step ST16, thereby opening the oil return valve (46).
  • Time t2 is the time when time T2 has substantially elapsed from time t1.
  • the oil return valve (46) is kept open until time t4 by the outdoor controller (61) performing the process of step ST18.
  • Time t4 is the time when time T1 has substantially elapsed from time t1.
  • the outdoor controller (61) starts the next detection operation.
  • the outdoor controller (61) starts the detection operation.
  • the outdoor controller (61) performs the process of step ST12, thereby closing the oil return valve (46).
  • the oil return valve (46) is maintained in the closed state until time t7 by the outdoor controller performing the process of step ST17.
  • Time t7 is the time when substantially time T3 has elapsed from time t5.
  • the outdoor controller (61) performs the process of step ST16, thereby opening the oil return valve (46).
  • the oil return valve (46) is kept open until time t8 by the outdoor controller (61) performing the process in step ST18.
  • Time t8 is the time when substantially time T1 has elapsed from time t5.
  • the outdoor controller (61) starts the next detection operation.
  • the outdoor controller (61) of the controller (60) performs a collection operation when a predetermined collection condition is met.
  • the recovery operation is an operation of returning refrigerating machine oil that remains outside the compressor unit (20) to the compressor unit (20).
  • the recovery condition is, for example, that the cumulative operating time of the air conditioner (10) reaches a predetermined value (for example, 2 hours).
  • the outdoor controller (61) temporarily increases the rotational speed of the compressor (30) to its maximum value as a recovery operation.
  • this recovery operation is performed by the outdoor controller (61)
  • the flow rate of the refrigerant flowing through the refrigerant circuit (15) increases, and the refrigerant oil accumulated outside the compressor unit (20) is swept away by the refrigerant and together with the refrigerant. Return to the compressor unit (20).
  • the outdoor controller (61) performs an operation to expand the opening of the indoor expansion valve (25) during cooling operation or an operation to expand the opening of the outdoor expansion valve (24) during heating operation as a recovery operation. It may be configured to perform as follows. When the opening of the indoor expansion valve (25) increases during cooling operation, and when the opening of the outdoor expansion valve (24) expands during heating operation, the refrigerant sucked into the compressor (30) becomes damp. Therefore, the refrigerating machine oil that remains outside the compressor unit (20) returns to the compressor unit (20) in a state dissolved in the liquid refrigerant.
  • the outdoor controller (61) of the controller (60) detects when the rotational speed of the compressor (30) is equal to or higher than a predetermined value (e.g., 80% of the maximum rotational speed). If it is determined that gas refrigerant is flowing, the recovery operation is performed even if the recovery conditions are not met.
  • a predetermined value e.g., 80% of the maximum rotational speed
  • the rotational speed of the compressor (30) When the rotational speed of the compressor (30) is relatively high, the amount of refrigerating machine oil that flows out of the compressor (30) together with the refrigerant will normally be relatively large. Therefore, when the rotational speed of the compressor (30) is relatively high, refrigerating machine oil normally flows mainly through the oil return pipe (45). Therefore, if gas refrigerant is mainly flowing through the oil return pipe (45) even though the rotation speed of the compressor (30) is relatively high, the amount of refrigerating machine oil stored in the compressor (30) is There is a high possibility that the number has decreased. Therefore, in this case, in order to promptly increase the amount of refrigerating machine oil stored in the compressor (30), the outdoor controller (61) is operated to A recovery operation is performed to return the accumulated refrigerating machine oil to the compressor unit (20).
  • the outdoor controller (61) of the controller (60) detects when the rotational speed of the compressor (30) is less than or equal to a predetermined value (for example, 30% of the maximum rotational speed). If it is not determined that gas refrigerant is flowing, no recovery operation is performed even if the recovery conditions are met. That is, in this case, the recovery operation of the outdoor controller (61) is prohibited.
  • a predetermined value for example, 30% of the maximum rotational speed
  • the process from point A to point B shows the compression stroke of the compressor (30) when the oil return valve (46) is closed.
  • the compression mechanism (32) of the compressor (30) sucks and compresses the refrigerant in the state of point A, and discharges the refrigerant compressed to the state of point B.
  • the oil return valve (46) is opened and gas refrigerant mainly flows through the oil return pipe (45).
  • the gas refrigerant in the state at point B that flows into the oil return pipe (45) from the oil separator (40) expands adiabatically and becomes the state at point C when passing through the capillary tube (47).
  • the refrigerant at point C is drawn into the compression mechanism (32) together with the refrigerant at point A.
  • the refrigerant obtained by mixing the refrigerant in the state of point A and the refrigerant in the state of point C becomes the state in point D.
  • the compression mechanism (32) sucks in the refrigerant at point D and compresses it.
  • the outdoor controller (61) starts a detection operation and closes the oil return valve (46) while gas refrigerant is mainly flowing through the oil return pipe (45).
  • the compression stroke of the compressor (30) changes from a process from point D to point E to a process from point A to point B. Therefore, the state of the refrigerant discharged from the compressor (30) changes from the state at point E to the state at point B.
  • the temperature of the refrigerant at point B is lower than the temperature of the refrigerant at point E. Therefore, when the outdoor controller (61) starts a detection operation and closes the oil return valve (46) while mainly gas refrigerant is flowing through the oil return pipe (45), the oil is discharged from the compression mechanism (32). The temperature of the refrigerant used decreases.
  • the outdoor controller (61) of the present embodiment detects the oil return valve (46) in comparison with the measured value Td1 of the discharge temperature sensor (50) before closing the oil return valve (46).
  • the first condition that the measured value Td2 of the discharge temperature sensor (50) after closing is lower than a predetermined value ( ⁇ Td) is satisfied, it is determined that the gas refrigerant is flowing through the oil return pipe (45).
  • the outdoor controller (61) of the controller (60) performs the detection operation.
  • the outdoor controller (61) reduces the opening degree of the oil return valve (46), and compares the measured value of the discharge temperature sensor (50) before reducing the opening degree of the oil return valve (46). Based on the change in the measured value of the discharge temperature sensor (50) after the opening degree of the oil return valve (46) is reduced, it is detected that the gas refrigerant is flowing through the oil return pipe (45).
  • the outdoor controller (61) detects the oil return pipe based on the relative change in the measured value of the discharge temperature sensor (50) before and after the change in the opening degree of the oil return valve (46). Detects that gas refrigerant is flowing through (45).
  • the only factor that causes a change in the measured value of the discharge temperature sensor (50) during the detection operation of the outdoor controller (61) is "a change in the opening degree of the oil return valve (46).” Therefore, according to the present embodiment, by the outdoor controller (61) performing the detection operation, it is possible to accurately detect that the gas refrigerant is flowing through the oil return pipe (45).
  • Embodiment 1 (2)- In the air conditioner (10) of the present embodiment, when the outdoor controller (61) of the controller (60) determines that gas refrigerant is flowing through the oil return pipe (45) in the detection operation, the oil return valve ( 46) is held closed for a predetermined period of time. When the oil return valve (46) is in the closed state, all of the refrigerant discharged by the compressor (30) flows out from the compressor unit (20) toward the four-way switching valve (21). Therefore, according to the present embodiment, the flow rate of the refrigerant flowing out from the compressor unit (20) and circulating through the refrigerant circuit (15) can be kept high, and the air conditioning capacity of the air conditioner (10) can be kept high. I can do it.
  • the outdoor controller (61) of the controller (60) detects the oil return pipe (45) when the rotation speed of the compressor (30) is relatively high. If it is determined that gas refrigerant is flowing, a recovery operation is performed even if the recovery conditions are not met. Therefore, the amount of refrigerating machine oil stored in the compressor (30) can be quickly increased, and damage to the compressor (30) due to poor lubrication can be prevented.
  • the outdoor controller (61) of the controller (60) detects the oil return pipe (45) when the rotation speed of the compressor (30) is relatively low. If it is not determined that the gas refrigerant is flowing, no recovery operation is performed even if the recovery conditions are met. Therefore, execution of wasteful collection operations can be prevented.
  • Embodiment 2 will be described.
  • the air conditioner (10) of this embodiment is a modification of the controller (60) of the air conditioner (10) of the first embodiment.
  • the controller (60) of this embodiment differs from the controller (60) of Embodiment 1 in the control of the oil return valve (46) performed by the outdoor controller (61).
  • the control of the oil return valve (46) performed by the outdoor controller (61) of this embodiment will be explained with reference to the flowchart of FIG. 7.
  • the outdoor controller (61) repeatedly performs the operation shown in the flowchart of FIG. 7 at every predetermined time T1 (15 minutes in this embodiment).
  • step ST20 to step ST23 in the flow diagram of FIG. 7 is the same as the processing from step ST10 to step ST13 in the flow diagram of FIG. 4, respectively. Further, the processes in step ST28 and step ST29 in the flow diagram of FIG. 7 are the same as the processes in step ST18 and step ST19 in the flow diagram of FIG. 4, respectively.
  • step ST24 to step ST27 will be explained.
  • the outdoor controller (61) determines whether the second condition is satisfied or not.
  • the second condition is that the difference between the discharge temperature Td2 and the discharge temperature Td1 (Td2-Td1) exceeds a predetermined value ⁇ Td (Td2-Td1> ⁇ Td).
  • the predetermined value ⁇ Td is, for example, 2°C.
  • step ST24 If the second condition is satisfied in the process of step ST24, it is determined that the gas refrigerant is not flowing through the oil return pipe (45) (in other words, only refrigeration oil is substantially flowing through the oil return pipe (45)). I can judge.
  • the outdoor controller (61) opens the oil return valve (46).
  • the oil return valve (46) opens, the refrigerating machine oil accumulated in the oil separator (40) flows into the compressor (30) through the oil return pipe (45).
  • the outdoor controller (61) determines whether the time t measured by the timer has reached the predetermined time T2. When the measured time t is less than the time T2 (t ⁇ T2), the outdoor controller (61) performs the process of step ST23. When the measured time t is longer than the time T2 (t ⁇ T2), the outdoor controller (61) performs the process of step ST27.
  • the time T2 is, for example, 10 seconds.
  • step ST25 if the measured time t is longer than the time T2, the temperature difference (Td2 - Td1) does not reach ⁇ Td even after the time T2 has passed since the oil return valve (46) was closed, so the oil return valve (46) is closed. It can be determined that gas refrigerant is flowing through the pipe (45).
  • step ST27 the outdoor controller (61) waits until the time t measured by the timer reaches the predetermined time T3. As a result, the oil return valve (46) is kept closed until the measured time t reaches time T3.
  • the time T3 is, for example, 8 minutes.
  • the outdoor controller (61) When the measurement time t reaches time T3 in the process of step ST27, the outdoor controller (61) performs the process of step ST26. In this way, when the measurement time t reaches time T3, the outdoor controller (61) closes the oil return valve (46) in order to determine again whether or not the gas refrigerant is flowing through the oil return pipe (45). Open it once.
  • the process from point A to point B shows the compression stroke of the compressor (30) when the oil return valve (46) is closed.
  • the compression mechanism (32) takes in and compresses the refrigerant at point A, and discharges the compressed refrigerant at point B.
  • the oil return valve (46) is opened and refrigerating machine oil mainly flows through the oil return pipe (45).
  • the temperature of the refrigerating machine oil flowing into the oil return pipe (45) from the oil separator (40) is substantially equal to the temperature of the refrigerant discharged from the compressor (30) (that is, the refrigerant in the state at point B).
  • Refrigerating machine oil does not expand adiabatically when passing through the capillary tube (47). Therefore, the temperature of the refrigeration oil does not drop during the process of the refrigeration oil passing through the capillary tube (47).
  • the refrigerant becomes in the state at point F.
  • the compression mechanism (32) sucks in the refrigerant at point F and compresses it.
  • the refrigerant in the state of point F is compressed in the compression mechanism (32) and becomes the state in point G.
  • the compression stroke of the compression mechanism (32) the refrigerating machine oil receives no compression work. Therefore, part of the heat held by the compressed refrigerant is used to raise the temperature of the refrigerating machine oil. Therefore, the refrigerant at point G has a lower specific enthalpy than the refrigerant at point B.
  • the oil return valve (46) is open and refrigeration oil mainly flows through the oil return pipe (45)
  • the compression stroke of the compressor (30) is the process from point F to point G (as indicated by the broken line). process).
  • the outdoor controller (61) starts a detection operation and closes the oil return valve (46) while refrigeration oil is mainly flowing through the oil return pipe (45).
  • the compression stroke of the compressor (30) changes from a process from point F to point G to a process from point A to point B. Therefore, the state of the refrigerant discharged from the compression mechanism (32) changes from the state at point G to the state at point B.
  • the temperature of the refrigerant at point B is higher than the temperature of the refrigerant at point G. Therefore, when the outdoor controller (61) starts a detection operation and closes the oil return valve (46) while mainly refrigerating machine oil is flowing through the oil return pipe (45), the oil is discharged from the compression mechanism (32). The temperature of the refrigerant increases.
  • the outdoor controller (61) of the present embodiment detects the oil return valve (46) in comparison with the measured value Td1 of the discharge temperature sensor (50) before closing the oil return valve (46). If the second condition that the measured value Td2 of the discharge temperature sensor (50) after closing is higher than a predetermined value ( ⁇ Td) is not satisfied, it is determined that the gas refrigerant is flowing through the oil return pipe (45).
  • Embodiment 3 will be described. Here, the differences between the air conditioner (10) of this embodiment and the air conditioner (10) of Embodiment 1 will be explained.
  • the air conditioner (10) of this embodiment includes two outdoor units (11a, 11b).
  • the two outdoor units (11a, 11b) are connected in parallel to each other.
  • the configuration of each outdoor unit (11a, 11b) is the same as the configuration of the outdoor unit (11) of the first embodiment.
  • Each outdoor unit (11a, 11b) is equipped with one compressor unit (20a, 20b).
  • the first outdoor unit (11a) includes a first compressor unit (20a), and the second outdoor unit (11b) includes a second compressor unit (20b).
  • each compressor unit (20a, 20b) is the same as the configuration of the compressor unit (20) of the first embodiment.
  • Each compressor unit (20a, 20b) includes a compressor (30a, 30b), an oil separator (40a, 40b), an oil return pipe (45a, 45b), and a discharge temperature sensor (50a, 50b). Be prepared.
  • the oil return pipe (45a, 45b) of each compressor unit (20a, 20b) is provided with a capillary tube (47a, 47b) and an oil return valve (46a, 46b).
  • each outdoor unit (11a, 11b) includes one outdoor controller (61a, 61b).
  • the controller (60) of this embodiment is configured by an outdoor controller (61a, 61b) of each outdoor unit (11a, 11b) and an indoor controller (64) of each indoor unit (12).
  • Each outdoor controller (61a, 61b) performs the operation shown in the flowchart of FIG. 4 for the corresponding compressor unit (20a, 20b).
  • the outdoor controller (61a) performs the operation shown in the flowchart of FIG. 4 for the first compressor unit (20a).
  • This outdoor controller (61a) performs a detection operation using the measured value of the discharge temperature sensor (50a).
  • the outdoor controller (61b) performs the operation shown in the flowchart of FIG. 4 for the second compressor unit (20b).
  • This outdoor controller (61b) performs a detection operation using the measured value of the discharge temperature sensor (50b).
  • the controller (60) of this embodiment performs a transfer operation.
  • the transfer operation is an operation of transferring refrigerating machine oil from the compressor unit (20a, 20b), which has a relatively large amount of stored refrigerating machine oil, to the compressor unit (20a, 20b), which has a relatively small amount of stored refrigerating machine oil. .
  • the controller (60) A transfer operation is performed to transfer the refrigerating machine oil from the first compressor unit (20a) to the second compressor unit (20b). Further, when the amount of stored refrigeration oil in the second compressor unit (20b) is relatively large and the amount of stored refrigeration oil in the first compressor unit (20a) is relatively small, the controller (60) A transfer operation is performed to transfer the refrigerating machine oil in the compressor unit (20b) to the first compressor unit (20a).
  • the controller (60) is assumed to have a relatively large amount of refrigeration oil stored in the first compressor unit (20a) and a relatively small amount of refrigeration oil stored in the second compressor unit (20b). The transfer operation will be explained.
  • the outdoor controller (61b) of the second outdoor unit (11b) performs a detection operation based on the measured value of the discharge temperature sensor (50b), and the oil return pipe (45b) of the second compressor unit (20b) ), it is determined that gas refrigerant is mainly flowing. Then, the outdoor controller (61b) outputs an oil shortage signal.
  • the outdoor controller (61a) of the first outdoor unit (11a) performs a detection operation based on the measured value of the discharge temperature sensor (50a), and the oil return pipe of the first compressor unit (20a) It is determined that gas refrigerant is not flowing at (45a).
  • This outdoor controller (61a) performs a transfer operation upon receiving the oil shortage signal output by the outdoor controller (61b) of the second outdoor unit (11b).
  • the outdoor controller (61a) of the first outdoor unit (11a) increases the rotation speed of the compressor (30a) of the first compressor unit (20a) by a predetermined value.
  • the outdoor controller (61a) also controls the rotational speed of the compressor (30b) of the second compressor unit (20b) relative to the outdoor controller (61b) of the second outdoor unit (11b). Sends a command signal to lower the The outdoor controller (61b) that receives this command signal reduces the rotational speed of the compressor (30b) of the second compressor unit (20b) by a predetermined value.
  • the controller (60) performs the transfer operation, the amount of refrigerating machine oil stored in the compressor (30a) of the first compressor unit (20a) decreases, and the amount of refrigerating machine oil stored in the compressor (30a) of the first compressor unit (20a) decreases, and the The amount of refrigeration oil stored in the machine (30b) increases.
  • the rotational speed of the compressor (30a) of the first compressor unit (20a) increases, while the rotational speed of the compressor (30b) of the second compressor unit (20b) decreases. Therefore, the flow rate of the refrigerant circulating through the refrigerant circuit (15) during execution of the transfer operation is equal to the flow rate of the refrigerant circulating through the refrigerant circuit (15) before the start of the transfer operation. Therefore, the air conditioning capacity exhibited by the air conditioner (10) during execution of the transfer operation is maintained equal to the air conditioning capacity exhibited by the air conditioner (10) before the start of the transfer operation.
  • the controller (60) performs the transfer operation to transfer the amount of stored refrigerating machine oil from the compressor units (20a, 20b), which have a relatively large amount of stored refrigerating machine oil.
  • Refrigerating machine oil can be transferred to a relatively small number of compressor units (20a, 20b). Therefore, the amount of refrigerating machine oil stored in all compressor units (20a, 20b) can be equalized, and the reliability of the compressor (30a, 30b) of each compressor unit (20a, 20b) can be ensured. I can do it.
  • the oil return valve (46) may be an electrically operated valve with a variable opening degree.
  • the air conditioner (10) of this modified example will be explained using an example in which this modified example is applied to the air conditioner (10) of Embodiment 1.
  • the outdoor controller (61) provided in the air conditioner (10) of this modification changes the opening degree of the oil return valve (46) from the maximum opening degree (fully open) to the minimum opening degree in the process of step ST12 in FIG. (fully closed), or the opening degree of the oil return valve (46) may be reduced from the first opening degree to the second opening degree.
  • the first opening degree and the second opening degree satisfy the relationship (minimum opening degree ⁇ second opening degree ⁇ first opening degree ⁇ maximum opening degree).
  • the outdoor controller (61) reduces the opening degree of the oil return valve (46) from the first opening degree to the second opening degree in the process of step ST12
  • the outdoor controller (61) reduces the opening degree of the oil return valve (46) from the first opening degree to the second opening degree.
  • the opening degree of the oil return valve (46) may be expanded from the second opening degree to the third opening degree.
  • the third opening degree is larger than the first opening degree.
  • the first opening degree and the third opening degree satisfy the relationship (first opening degree ⁇ third opening degree ⁇ maximum opening degree).
  • step ST12 when the outdoor controller (61) reduces the opening degree of the oil return valve (46) from the first opening degree to the second opening degree, the outdoor controller (61) reduces the opening degree of the oil return valve (46) from the first opening degree to the second opening degree.
  • the process in step ST17 may be performed after reducing the opening degree of the oil return valve (46) from the second opening degree to the fourth opening degree.
  • the second opening degree and the fourth opening degree satisfy the relationship (minimum opening degree ⁇ fourth opening degree ⁇ second opening degree).
  • the present disclosure is useful for air conditioners.
  • Air conditioner (refrigeration equipment) 15 Refrigerant circuit 20 Compressor unit 20a First compressor unit 20b Second compressor unit 30 Compressor 31 Casing 32 Compression mechanism 33 Electric motor 35 Suction pipe 40 Oil separator 45 Oil return pipe 46 Oil return valve 50 Discharge temperature sensor 60 Control vessel

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

冷媒回路(15)の圧縮機ユニット(20)は、圧縮機(30)と、油分離器(40)と、油戻し管(45)と、油戻し弁(46)と、吐出温度センサ(50)とを備える。冷凍装置(10)は、制御器(60)を備える。制御器(60)は、検知動作を行う。検知動作は、油戻し弁(46)の開度を縮小し、油戻し弁(46)の開度を縮小する前の吐出温度センサ(50)の計測値に対する、油戻し弁(46)の開度を縮小した後における吐出温度センサ(50)の計測値の変化に基づいて、油戻し管(45)をガス冷媒が流れていることを検知する動作である。

Description

冷凍装置
 本開示は、冷凍装置に関するものである。
 特許文献1には、冷凍サイクルを行う冷凍装置が開示されている。この冷凍装置の冷媒回路では、圧縮機の吐出側に油分離器が設けられる。圧縮機の吐出管には、第1の温度センサが設けられる。また、油分離器と圧縮機の吸入管を繋ぐ接続管には、毛細管と第2の温度センサとが設けられる。第2の温度センサは、接続管における毛細管の下流に配置される。特許文献1の冷凍装置は、第1の温度センサの計測値から第2の温度センサの計測値を減じた値が所定の基準値を超えると、接続管を主にガス冷媒が流れていると判断する。
特開0211-153784号公報
 特許文献1の冷凍装置において、第1の温度センサの計測値(圧縮機から吐出された冷媒の温度)と、第2の温度センサの計測値(接続管の毛細管を通過した流体の温度)とは、それぞれが個別の要因によって変化する。従って、第1の温度センサの計測値と第2の温度センサの計測値との差は、“接続管を流れる流体の状態”以外の要因によっても変動する。そのため、第1の温度センサの計測値と第2の温度センサの計測値との差を単一の基準値と比較するだけでは、接続管を主にガス冷媒が流れる状態であるか否かを正確に判断できないおそれがあった。
 本開示の目的は、油分離器を有する冷凍装置において、油分離器と圧縮機の吸入管に接続する油戻し管をガス冷媒が流れていることの検知精度を高めることにある。
 本開示の第1の態様は、圧縮機ユニット(20)を有して冷凍サイクルを行う冷媒回路(15)を備え、上記圧縮機ユニット(20)は、冷媒を圧縮して吐出する圧縮機構(32)を有する圧縮機(30)と、上記圧縮機(30)が吐出したガス冷媒から冷凍機油を分離する油分離器(40)と、上記油分離器(40)を上記圧縮機(30)の吸入管(35)に接続する油戻し管(45)と、上記油戻し管(45)に設けられた油戻し弁(46)と、上記圧縮機構(32)が吐出したガス冷媒の温度を計測する吐出温度センサ(50)とを有する冷凍装置(10)であって、上記油戻し弁(46)の開度を縮小し、該油戻し弁(46)の開度を縮小する前の上記吐出温度センサ(50)の計測値に対する、該油戻し弁(46)の開度を縮小した後における上記吐出温度センサ(50)の計測値の変化に基づいて、上記油戻し管(45)をガス冷媒が流れていることを検知する検知動作を行う制御器(60)を備える。
 第1の態様では、制御器(60)が検知動作を行う。検知動作において、制御器(60)は、油戻し弁(46)の開度を縮小し、油戻し弁(46)の開度変化の前後における吐出温度センサ(50)の計測値の相対的な変化に基づいて、油戻し管(45)をガス冷媒が流れていることを検知する。制御器(60)の検知動作における吐出温度センサ(50)の計測値の変化の要因は、実質的に“油戻し弁(46)の開度変化”だけである。従って、この態様によれば、制御器(60)が検知動作を行うことによって、油戻し管(45)をガス冷媒が流れていることを正確に検知できる。なお、油戻し弁(46)の開度を縮小することには、油戻し弁(46)の開度をゼロよりも大きい開度にまで減らすことと、油戻し弁(46)の開度をゼロにする(全閉にする)こととが含まれる。
 本開示の第2の態様は、上記第1の態様の冷凍装置(10)において、上記制御器(60)が行う上記検知動作は、第1条件が成立したときに上記油戻し管(45)をガス冷媒が流れていると判断する動作を含み、上記第1条件は、上記油戻し弁(46)の開度を縮小する前の上記吐出温度センサ(50)の計測値に比べて、上記油戻し弁(46)の開度を縮小した後の上記吐出温度センサ(50)の計測値が所定値以上低い、という条件である。
 第2の態様では、第1条件が成立したときに油戻し管(45)をガス冷媒が流れていると判断する動作が、制御器(60)の検知動作に含まれる。
 本開示の第3の態様は、上記第2の態様の冷凍装置(10)において、上記制御器(60)は、上記検知動作において上記第1条件が成立すると、上記油戻し弁(46)の開度を縮小後の開度に保持し、又は上記油戻し弁(46)の開度を更に縮小する。
 第3の態様において、制御器(60)が油戻し弁(46)の開度を縮小後の開度に保持し、又は油戻し弁(46)の開度を更に縮小すると、油戻し管(45)を流れるガス冷媒の流量が低く抑えられる。そのため、圧縮機ユニット(20)の外部へ吐出される冷媒の量は、制御器(60)が油戻し弁の開度を縮小する前に比べて、増加する。
 本開示の第4の態様は、上記第1の態様の冷凍装置(10)において、上記制御器(60)が行う上記検知動作は、第2条件が成立しないときに上記油戻し管(45)をガス冷媒が流れていると判断する動作を含み、上記第2条件は、上記油戻し弁(46)の開度を縮小する前の上記吐出温度センサ(50)の計測値に比べて、上記油戻し弁(46)の開度を縮小した後の上記吐出温度センサ(50)の計測値が所定値以上高い、という条件である。
 第4の態様では、第2条件が成立しないときに油戻し管(45)をガス冷媒が流れていると判断する動作が、制御器(60)の検知動作に含まれる。
 本開示の第5の態様は、上記第4の態様の冷凍装置(10)において、上記制御器(60)は、上記検知動作において上記第2条件が成立すると、上記油戻し弁(46)の開度を縮小前の開度に戻し、又は上記油戻し弁(46)の開度を縮小前の開度よりも拡大する。
 第5の態様において、制御器(60)が油戻し弁(46)の開度を縮小前の開度に戻し、又は油戻し弁(46)の開度を縮小前の開度よりも拡大すると、油戻し管(45)を流れる冷凍機油の流量が、制御器(60)が油戻し弁(46)の開度を縮小する前と同等かそれ以上になる。
 本開示の第6の態様は、上記第1~第5のいずれか一つの態様の冷凍装置(10)において、上記圧縮機(30)は、上記圧縮機構(32)を駆動する電動機(33)と、上記圧縮機構(32)及び上記電動機(33)を収容するケーシング(31)とを有し、上記吐出温度センサ(50)は、上記圧縮機構(32)から上記ケーシング(31)の内部空間へ吐出されて上記電動機(33)を通過する前のガス冷媒の温度を計測する。
 第6の態様において、吐出温度センサ(50)は、圧縮機構(32)からケーシング(31)の内部空間へ吐出されて電動機(33)を通過する前のガス冷媒の温度を計測する。そのため、吐出温度センサ(50)の計測値と、実際に圧縮機構(32)が吐出する冷媒の温度との差が小さくなる。
 本開示の第7の態様は、上記第1~第6のいずれか一つの態様の冷凍装置(10)において、上記冷媒回路(15)には、上記圧縮機ユニット(20a,20b)が複数設けられ、上記制御器(60)は、複数の上記圧縮機ユニット(20a,20b)のそれぞれについて上記検知動作を行う。
 第7の態様では、複数の圧縮機ユニット(20a,20b)のそれぞれについて、制御器(60)が個別に検知動作を行う。
 本開示の第8の態様は、上記第7の態様の冷凍装置(10)において、上記冷媒回路(15)に設けられた複数の上記圧縮機ユニットは、第1圧縮機ユニット(20a)と第2圧縮機ユニット(20b)を含み、上記制御器(60)は、上記検知動作において、上記第1圧縮機ユニット(20a)と上記第2圧縮機ユニット(20b)のうち上記第2圧縮機ユニット(20b)だけにおいて上記油戻し管(45)をガス冷媒が流れていると判断した場合に、上記第1圧縮機ユニット(20a)から上記第2圧縮機ユニット(20b)へ冷凍機油を移すための移送動作を行う。
 第8の態様では、第2圧縮機ユニット(20b)において油戻し管(45b)をガス冷媒が流れている場合には、第2圧縮機ユニット(20b)の圧縮機(30b)に貯留された冷凍機油の量が少なくなっていることが推測される。一方、制御器(60)が移送動作を行うと、第1圧縮機ユニット(20a)から第2圧縮機ユニット(20b)へ冷凍機油が移動し、第2圧縮機ユニット(20b)の圧縮機(30b)に貯留された冷凍機油の量が増加する。
 本開示の第9の態様は、上記第8の態様の冷凍装置(10)において、上記制御器(60)は、上記第1圧縮機ユニット(20a)の圧縮機(30a)の回転速度を上昇させ、上記第2圧縮機ユニット(20b)の圧縮機(30b)の回転速度を低下させる動作を、上記移送動作として行う。
 第9の態様では、制御器(60)が移送動作を行う。移送動作において、制御器(60)が第1圧縮機ユニット(20a)の圧縮機(30a)の回転速度を上昇させると、この圧縮機(30a)から冷媒と共に吐出される冷凍機油の流量が増加する。また、移送動作において、制御器(60)が第2圧縮機ユニット(20b)の圧縮機(30b)の回転速度を低下させると、この圧縮機(30b)から冷媒と共に吐出される冷凍機油の流量が減少する。そのため、制御器(60)が移送動作を行うと、第1圧縮機ユニット(20a)の圧縮機(30a)に貯留された冷凍機油の量が減少し、第2圧縮機ユニット(20b)の圧縮機(30b)に貯留された冷凍機油の量が増加する。
 本開示の第10の態様は、上記第1~第6のいずれか一つの態様の冷凍装置(10)において、上記制御器(60)は、上記圧縮機(30)の回転速度が所定値以上であるときに、上記検知動作において上記油戻し管(45)をガス冷媒が流れていると判断した場合に、上記圧縮機ユニット(20)の外部に滞留する冷凍機油を該圧縮機ユニット(20)へ戻す回収動作を行う。
 第10の態様では、制御器(60)が回収動作を行う。圧縮機(30)の回転速度が所定値以上であって、油戻し管(45)をガス冷媒が流れている場合は、圧縮機(30)に貯留された冷凍機油の量が少なくなっている可能性が高い。そこで、この場合、制御器(60)は、圧縮機(30)に貯留された冷凍機油の量を増やすために、圧縮機ユニット(20)の外部に滞留する冷凍機油を圧縮機ユニット(20)へ戻す回収動作を行う。
 本開示の第11の態様は、上記第1~第6のいずれか一つの態様の冷凍装置(10)において、上記制御器(60)は、所定の回収条件が成立した場合に、上記圧縮機ユニット(20)の外部に滞留する冷凍機油を該圧縮機ユニット(20)へ戻す回収動作を行う一方、上記圧縮機(30)の回転速度が所定値以下であるときに、上記検知動作において上記油戻し管(45)をガス冷媒が流れていると判断しない場合は、上記回収条件が成立しても上記回収動作を行わない。
 第11の態様において、制御器(60)は、所定の回収条件が成立すると、回収動作を行う。ここで、圧縮機(30)の回転速度が低いときは、圧縮機(30)から冷媒と共に流出する冷凍機油の量が少ない。そのため、圧縮機(30)の回転速度が所定値以下であるときに、検知動作において油戻し管(45)をガス冷媒が流れていると判断しない場合は、圧縮機(30)に充分な量の冷凍機油が貯留されている可能性が高い。従って、この場合は、圧縮機(30)に貯留された冷凍機油の量を増やす必要が無い。そこで、この場合、制御器(60)は、回収条件が成立しても回収動作を行わない。
図1は、実施形態1の空気調和機の構成を示す冷媒回路図である。 図2は、実施形態1の空気調和機が備える圧縮機の概略構成図である。 図3は、実施形態1の空気調和機が備える制御器の構成を示すブロック図である。 図4は、実施形態1の制御器の動作を示すフロー図である 図5は、実施形態1の制御器によって制御された油戻し弁の状態を示すタイミングチャートである。 図6は、第1条件を説明するためのモリエル線図である。 図7は、実施形態2の制御器の動作を示すフロー図である 図8は、第2条件を説明するためのモリエル線図である。 図9は、実施形態3の空気調和機の構成を示す冷媒回路図である。
 《実施形態1》
 実施形態1について説明する。実施形態1は、空気調和機(10)である。この空気調和機(10)は、冷凍サイクルを行う冷凍装置である。
  -空気調和機の構成-
 図1に示すように、空気調和機(10)は、一台の室外ユニット(11)と、複数台の室内ユニット(12)とを備える。空気調和機(10)は、冷媒回路(15)を備える。冷媒回路(15)は、室外ユニット(11)に各室内ユニット(12)を配管で接続することによって形成される。冷媒回路(15)において、複数台の室内ユニット(12)は、互いに並列に接続される。また、空気調和機(10)は、制御器(60)を備える。
   〈室外ユニット〉
 室外ユニット(11)は、圧縮機ユニット(20)と、四方切換弁(21)と、室外熱交換器(22)と、室外膨張弁(24)とを備える。圧縮機ユニット(20)は、圧縮機(30)と、油分離器(40)とを備える。また、図示は省略するが、室外ユニット(11)は室外ファンを備える。
 冷媒回路(15)では、四方切換弁(21)の第1ポートが油分離器(40)に接続し、四方切換弁(21)の第2ポートが圧縮機(30)に接続する。また、冷媒回路(15)では、四方切換弁(21)の第3ポートが室外熱交換器(22)のガス側端に接続し、四方切換弁(21)の第4ポートがガス側連絡管(17)を介して各室内ユニット(12)のガス側端に接続する。また、冷媒回路(15)では、室外熱交換器(22)のガス側端が室外膨張弁(24)の一端に接続し、室外膨張弁(24)の他端が液側連絡管(16)を介して各室内ユニット(12)の液側端に接続する。
 四方切換弁(21)は、四つのポートを備える切換弁である。四方切換弁(21)は、第1ポートが第3ポートと連通し且つ第2ポートが第4ポートと連通する第1状態(図1に実線で示す状態)と、第1ポートが第4ポートと連通し且つ第2ポートが第3ポートと連通する第2状態(図1に破線で示す状態)とに切り換わる。室外熱交換器(22)は、冷媒を室外空気と熱交換させる熱交換器である。室外膨張弁(24)は、電動式の膨張弁である。
   〈圧縮機ユニット〉
 上述したように、圧縮機ユニット(20)は、圧縮機(30)と、油分離器(40)とを備える。また、圧縮機ユニット(20)は、油戻し管(45)と、油戻し弁(46)と、キャピラリチューブ(47)と、吐出温度センサ(50)とを備える。
   〈圧縮機〉
 圧縮機(30)は、全密閉型のスクロール圧縮機である。ただし、圧縮機(30)の形式は、スクロール型に限定されない。
 図2に示すように、圧縮機(30)は、ケーシング(31)と、圧縮機構(32)と、電動機(33)と、駆動軸(34)とを備える。ケーシング(31)は、起立した円筒状の部材である。圧縮機構(32)は、冷媒を吸入して圧縮するスクロール流体機械である。圧縮機構(32)は、圧縮した冷媒を、吐出ポート(32a)からケーシング(31)の内部空間に吐出する。電動機(33)は、駆動軸(34)を介して圧縮機構(32)に連結され、圧縮機構(32)を駆動する。ケーシング(31)には、吸入管(35)と吐出管(36)とが設けられる。吸入管(35)は、低圧冷媒を圧縮機構(32)へ導入する。吐出管(36)は、圧縮機構(32)から吐出された高圧冷媒を、ケーシング(31)の外部へ導出する。
 圧縮機(30)のケーシング(31)の底部には、冷凍機油が貯留されている。この冷凍機油は、駆動軸(34)に形成された油通路(図示せず)を通って圧縮機構(32)へ供給され、圧縮機構(32)を潤滑する。圧縮機構(32)へ供給された冷凍機油の一部は、圧縮された冷媒と共に圧縮機構(32)から吐出される。そのため、吐出管(36)を通ってケーシング(31)の外部へ流出するガス冷媒には、ミスト状の冷凍機油が含まれる。
 圧縮機構(32)において圧縮された冷媒は、吐出ポート(32a)を通ってケーシング(31)の内部空間に吐出される。圧縮機構(32)からケーシング(31)の内部空間に吐出された冷媒は、電動機(33)の下方へ導かれ、その後に上方へ流れ、吐出管(36)を通ってケーシング(31)の外部へ流出する。
   〈油分離器〉
 油分離器(40)は、圧縮機(30)が吐出したガス冷媒から冷凍機油を分離するための部材である。油分離器(40)は、起立した円筒状に形成される。油分離器(40)の側部には、圧縮機(30)の吐出管(36)が接続する。油分離器(40)の頂部には、四方切換弁(21)の第1ポートが接続する。油分離器(40)の底部には、油戻し管(45)の一端が接続する。油分離器(40)の内部では、圧縮機(30)から流入したガス冷媒から冷凍機油が分離される。ガス冷媒から分離された冷凍機油は、重力によって落下し、油分離器(40)の底部に溜まる。
   〈油戻し管〉
 油戻し管(45)は、油分離器(40)と圧縮機(30)の吸入管(35)とを接続する配管である。油戻し管(45)の一端は、油分離器(40)の底部に接続し、油分離器(40)の内部空間に連通する。油戻し管(45)の他端は、圧縮機(30)の吸入管(35)に接続する。
 油戻し管(45)には、キャピラリチューブ(47)と、油戻し弁(46)とが設けられる。キャピラリチューブ(47)と油戻し弁(46)は、油戻し管(45)の一端から他端へ向かって順に配置される。油戻し弁(46)は、開状態と閉状態に切り換わる電磁弁である。
   〈吐出温度センサ〉
 吐出温度センサ(50)は、圧縮機(30)の圧縮機構(32)が吐出した冷媒の温度を計測するためのセンサである。吐出温度センサ(50)は、圧縮機(30)のケーシング(31)の外面に取り付けられる。吐出温度センサ(50)は、ケーシング(31)の頂部のうち圧縮機構(32)の吐出ポート(32a)と対向する部分に取り付けられる(図2を参照)。吐出温度センサ(50)の計測値は、実質的に、圧縮機構(32)が吐出されて電動機(33)を通過する前の冷媒の温度である。
 なお、吐出温度センサ(50)は、ケーシング(31)の内部空間に設置されていてもよい。この場合、吐出温度センサ(50)は、圧縮機構(32)から吐出された冷媒と直接に接触し、その冷媒の温度を計測する。
   〈室内ユニット〉
 複数の室内ユニット(12)のそれぞれは、室内熱交換器(23)と室内膨張弁(25)とを備える。室内熱交換器(23)と室内膨張弁(25)は、室内ユニット(12)のガス側端から液側端へ向かって順に配置される。また、図示は省略するが、各室内ユニット(12)は室内ファンを備える。
 室内熱交換器(23)は、冷媒を室内空気と熱交換させる熱交換器である。室内膨張弁(25)は、電動式の膨張弁である。
   〈制御器〉
 制御器(60)は、一つの室外制御器(61)と、複数の室内制御器(64)とを備える。室外制御器(61)は、室外ユニット(11)に設けられる。室内制御器(64)は、各室内ユニット(12)に一つずつ設けられる。室外制御器(61)と各室内制御器(64)とは、互いに有線通信を行う。
 図3に示すように、室外制御器(61)は、制御基板上に搭載されたマイクロコンピュータ(62)と、マイクロコンピュータ(62)を動作させるためのソフトウエアを格納するメモリーデバイス(63)とを備える。メモリーデバイス(63)は、半導体メモリである。室外制御器(61)には、室外ユニット(11)に設けられた各種のセンサの計測値が入力される。室外制御器(61)は、室外ユニット(11)に設けられた構成機器を制御する。特に、本実施形態の室外制御器(61)は、吐出温度センサ(50)の計測値に基づいて、油戻し弁(46)を制御する。
 図示は省略するが、室内制御器(64)は、室外制御器(61)と同様に、マイクロコンピュータとメモリーデバイスとを備える。室内制御器(64)には、室内ユニット(12)に設けられた各種のセンサの計測値が入力される。室内制御器(64)は、室内ユニット(12)に設けられた構成機器を制御する。
  -空気調和機の運転動作-
 空気調和機は、冷房運転と暖房運転とを行う。
 冷房運転では、四方切換弁(21)が第1状態に設定され、冷媒回路(15)において冷凍サイクルが行われる。冷房運転中の冷媒回路(15)では、室外熱交換器(22)が凝縮器として機能し、室内熱交換器(23)が蒸発器として機能する。室内ユニット(12)は、室内熱交換器(23)において冷却された空気を室内へ吹き出す。
 暖房運転では、四方切換弁(21)が第2状態に設定され、冷媒回路(15)において冷凍サイクルが行われる。暖房運転中の冷媒回路(15)では、室内熱交換器(23)が凝縮器として機能し、室外熱交換器(22)が蒸発器として機能する。室内ユニット(12)は、室内熱交換器(23)において加熱された空気を室内へ吹き出す。
  -制御器による油戻し弁の制御-
 制御器(60)の室外制御器(61)が行う油戻し弁(46)の制御について説明する。
 室外制御器(61)は、油戻し弁(46)を制御する動作として、図4のフロー図に示す動作を行う。室外制御器(61)は、図4のフロー図に示す動作を、所定の時間T1(本実施形態では、15分)毎に繰り返し行う。
 図4のステップST10の処理において、室外制御器(61)は、タイマーのカウントアップを開始させる。
 次のステップST11の処理において、室外制御器(61)は、吐出温度センサ(50)の計測値を取得し、取得した計測値を吐出温度Td1としてメモリーデバイス(63)に記憶させる。吐出温度Td1は、油戻し弁(46)を閉じる前(言い換えると、油戻し弁(46)が開いている状態)における吐出温度センサ(50)の計測値である。
 次のステップST12の処理において、室外制御器(61)は、油戻し弁(46)を閉じる。
 次のステップST13の処理において、室外制御器(61)は、吐出温度センサ(50)の計測値を取得し、取得した計測値を吐出温度Td2としてメモリーデバイス(63)に記憶させる。吐出温度Td2は、油戻し弁(46)を閉じた後における吐出温度センサ(50)の計測値である。
 次のステップST14の処理において、室外制御器(61)は、第1条件の成否を判断する。第1条件は、吐出温度Td1と吐出温度Td2の差(Td1-Td2)が所定値ΔTdを上回る(Td1-Td2>ΔTd)、という条件である。所定値ΔTdは、例えば2℃である。第1条件が成立する場合、室外制御器(61)は、ステップST17の処理を行う。第1条件が成立しない場合、室外制御器(61)は、ステップST15の処理を行う。
 ステップST15の処理において、室外制御器(61)は、タイマーの計測時間tが所定の時間T2に達したか否かを判断する。計測時間tが時間T2未満(t<T2)の場合、室外制御器(61)は、ステップST13の処理を行う。計測時間tが時間T2以上(t≧T2)の場合、室外制御器(61)は、ステップST16の処理を行う。時間T2は、例えば10秒である。
 ステップST10からステップST15までの一連の処理は、室外制御器(61)が行う検知動作である。この検知動作は、油戻し弁(46)の開度を縮小し、油戻し弁(46)の開度を縮小する前の吐出温度センサ(50)の計測値に対する、油戻し弁(46)の開度を縮小した後における吐出温度センサ(50)の計測値の変化に基づいて、油戻し管(45)をガス冷媒が流れていることを検知する動作である。
 ステップST15の処理において計測時間tが時間T2以上である場合は、油戻し弁(46)を閉じてから時間T2が経過しても温度差(Td1-Td2)がΔTdに達しないので、油戻し管(45)をガス冷媒が流れていない(言い換えると、油戻し管(45)を実質的に冷凍機油だけが流れている)と判断できる。
 そこで、ステップST16の処理において、室外制御器(61)は、油戻し弁(46)を開く。油戻し弁(46)が開くと、油分離器(40)に溜まった冷凍機油が、油戻し管(45)を通って圧縮機(30)へ流入する。
 一方、ステップST14の処理において第1条件が成立した場合は、油戻し管(45)を主にガス冷媒が流れていると判断できる。この状態では、圧縮機(30)の吐出管(36)から流出した冷媒の一部が、油戻し管(45)を通って圧縮機(30)の吸入管(35)へ流入する。そのため、圧縮機ユニット(20)から四方切換弁(21)へ送られる冷媒の流量が、圧縮機(30)の吐出管(36)から流出する冷媒の流量よりも少なくなる。
 そこで、ステップST17の処理において、室外制御器(61)は、タイマーの計測時間tが所定の時間T3に達するまで待機する。その結果、計測時間tが時間T3に達するまでの間、油戻し弁(46)が閉じた状態に保持される。時間T3は、例えば8分である。
 ステップST17の処理において計測時間tが時間T3に達すると、室外制御器(61)は、ステップST16の処理を行う。このように、計測時間tが時間T3に達すると、室外制御器(61)は、油戻し管(45)をガス冷媒が流れているか否かを再び判断するために、油戻し弁(46)を一旦開く。
 次のステップST18の処理において、室外制御器(61)は、タイマーの計測時間tが所定の時間T1に達するまで待機する。上述したように、時間T1は、例えば15分である。計測時間tが時間T1に達すると、室外制御器(61)は、ステップST19の処理を行う。
 ステップST19の処理において、室外制御器(61)は、タイマーの計測時間tをリセットする。その後、室外制御器(61)は、ステップST10の処理を再び行う。
  -油戻し弁の動作-
 室外制御器(61)によって制御された油戻し弁(46)の動作について、図5を参照しながら説明する。
 時刻t1において、室外制御器(61)が検知動作を開始する。時刻t1では、室外制御器(61)がステップST12の処理を行うことによって、油戻し弁(46)が閉じる。今回の検知動作では、ステップST14の処理において第1条件が成立しなかった。そのため、時刻t2では、室外制御器(61)がステップST16の処理を行うことによって、油戻し弁(46)が開く。時刻t2は、時刻t1から実質的に時間T2が経過した時刻である。油戻し弁(46)は、室外制御器(61)がステップST18の処理を行うことによって、時刻t4まで開状態に保持される。時刻t4は、時刻t1から実質的に時間T1が経過した時刻である。時刻t4では、室外制御器(61)が次回の検知動作を開始する。
 時刻t5において、室外制御器(61)が検知動作を開始する。時刻t5では、室外制御器(61)がステップST12の処理を行うことによって、油戻し弁(46)が閉じる。今回の検知動作では、ステップST14の処理において第1条件が成立した。そのため、油戻し弁(46)は、室外制御器がステップST17の処理を行うことによって、時刻t7まで閉状態に保持される。時刻t7は、時刻t5から実質的に時間T3が経過した時刻である。時刻t7では、室外制御器(61)がステップST16の処理を行うことによって、油戻し弁(46)が開く。油戻し弁(46)は、室外制御器(61)がステップST18の処理を行うことによって、時刻t8まで開状態に保持される。時刻t8は、時刻t5から実質的に時間T1が経過した時刻である。時刻t8では、室外制御器(61)が次回の検知動作を開始する。
   -制御器の回収動作-
 制御器(60)の室外制御器(61)は、所定の回収条件が成立すると、回収動作を行う。回収動作は、圧縮機ユニット(20)の外部に滞留する冷凍機油を圧縮機ユニット(20)へ戻す動作である。回収条件は、例えば空気調和機(10)の積算運転時間が所定値(例えば、2時間)に達する、という条件である。
   〈回収動作〉
 室外制御器(61)は、圧縮機(30)の回転速度を一時的に最大値にする動作を、回収動作として行う。この回収動作を室外制御器(61)が行うと、冷媒回路(15)を流れる冷媒の流速が高くなり、圧縮機ユニット(20)の外部に滞留する冷凍機油が、冷媒によって押し流され、冷媒と共に圧縮機ユニット(20)へ戻ってくる。
 なお、室外制御器(61)は、冷房運転中に室内膨張弁(25)の開度を拡大する動作、または暖房運転中に室外膨張弁(24)の開度を拡大する動作を、回収動作として行うように構成されていてもよい。冷房運転中に室内膨張弁(25)の開度が拡大した場合と、暖房運転中に室外膨張弁(24)の開度が拡大した場合には、圧縮機(30)へ吸入される冷媒が湿り状態になる。そのため、圧縮機ユニット(20)の外部に滞留する冷凍機油が、液冷媒に溶け込んだ状態で圧縮機ユニット(20)へ戻ってくる。
   〈回収動作の強制的な実行〉
 制御器(60)の室外制御器(61)は、圧縮機(30)の回転速度が所定値(例えば、最大回転速度の80%)以上であるときに、検知動作において油戻し管(45)をガス冷媒が流れていると判断した場合に、回収条件が成立していなくても回収動作を行う。
 圧縮機(30)の回転速度が比較的高いときには、通常であれば、圧縮機(30)から冷媒と共に流出する冷凍機油の量が比較的多くなる。従って、圧縮機(30)の回転速度が比較的高いときには、通常であれば、油戻し管(45)を主に冷凍機油が流れる。そのため、圧縮機(30)の回転速度が比較的高いにもかかわらず油戻し管(45)を主にガス冷媒が流れている場合は、圧縮機(30)に貯留された冷凍機油の量が少なくなっている可能性が高い。そこで、この場合、室外制御器(61)は、圧縮機(30)に貯留された冷凍機油の量を速やかに増やすために、回収条件の成否にかかわらず、圧縮機ユニット(20)の外部に滞留する冷凍機油を圧縮機ユニット(20)へ戻す回収動作を行う。
   〈回収動作の禁止〉
 制御器(60)の室外制御器(61)は、圧縮機(30)の回転速度が所定値(例えば、最大回転速度の30%)以下であるときに、検知動作において油戻し管(45)をガス冷媒が流れていると判断しない場合は、回収条件が成立しても回収動作を行わない。つまり、この場合は、室外制御器(61)の回収動作が禁止される。
 圧縮機(30)の回転速度が比較的低いときは、圧縮機(30)から冷媒と共に流出する冷凍機油の量が少ない。そのため、圧縮機(30)の回転速度が所定値以下であるときに、油戻し管(45)をガス冷媒が流れていない(つまり、油戻し管(45)を主に冷凍機油が流れている)場合は、圧縮機(30)に充分な量の冷凍機油が貯留されている可能性が高い。従って、この場合は、圧縮機(30)に貯留された冷凍機油の量を増やす必要が無い。そこで、この場合、室外制御器(61)は、回収条件が成立しても回収動作を行わない。
  -第1条件-
 第1条件が成立した場合に油戻し管(45)をガス冷媒が流れていると判断できる理由を、図6のモリエル線図(圧力-エンタルピ線図)を参照しながら説明する。
 図6において、点Aから点Bに至る過程(実線で示す過程)は、油戻し弁(46)が閉じているときの圧縮機(30)の圧縮行程を示す。この状態において、圧縮機(30)の圧縮機構(32)は、点Aの状態の冷媒を吸入して圧縮し、圧縮されて点Bの状態になった冷媒を吐出する。
 この状態において、油戻し弁(46)が開き、油戻し管(45)を主にガス冷媒が流れたと仮定する。この場合、油分離器(40)から油戻し管(45)へ流入した点Bの状態のガス冷媒は、キャピラリチューブ(47)を通過する際に断熱膨張して点Cの状態になる。点Cの状態の冷媒は、点Aの状態の冷媒と共に圧縮機構(32)へ吸入される。点Aの状態の冷媒と、点Cの状態の冷媒とが混ざり合った冷媒は、点Dの状態になる。圧縮機構(32)は、点Dの状態の冷媒を吸入して圧縮する。点Dの状態の冷媒は、圧縮機構(32)において圧縮されて点Eの状態になる。このように、油戻し弁(46)が開いて油戻し管(45)を主にガス冷媒が流れる状態では、圧縮機(30)の圧縮行程が、点Dから点Eに至る過程(破線で示す過程)になる。
 ここで、油戻し管(45)を主にガス冷媒が流れている状態において、室外制御器(61)が検知動作を開始して油戻し弁(46)を閉じたとする。そうすると、圧縮機(30)の圧縮行程は、点Dから点Eに至る過程から、点Aから点Bに至る過程へと変化する。そのため、圧縮機(30)から吐出される冷媒の状態は、点Eの状態から点Bの状態に変化する。点Bの状態の冷媒の温度は、点Eの状態の冷媒の温度よりも低い。従って、油戻し管(45)を主にガス冷媒が流れている状態において、室外制御器(61)が検知動作を開始して油戻し弁(46)を閉じると、圧縮機構(32)から吐出される冷媒の温度が低下する。
 そこで、本実施形態の室外制御器(61)は、検知動作において、“油戻し弁(46)を閉じる前の吐出温度センサ(50)の計測値Td1に比べて、油戻し弁(46)を閉じた後の吐出温度センサ(50)の計測値Td2が所定値(ΔTd)以上低い”という第1条件が成立する場合に、油戻し管(45)をガス冷媒が流れていると判断する。
  -実施形態1の特徴(1)-
 本実施形態の空気調和機(10)では、制御器(60)の室外制御器(61)が検知動作を行う。検知動作において、室外制御器(61)は、油戻し弁(46)の開度を縮小し、油戻し弁(46)の開度を縮小する前の吐出温度センサ(50)の計測値に対する、油戻し弁(46)の開度を縮小した後における吐出温度センサ(50)の計測値の変化に基づいて、油戻し管(45)をガス冷媒が流れていることを検知する。
 このように、検知動作において、室外制御器(61)は、油戻し弁(46)の開度変化の前後における吐出温度センサ(50)の計測値の相対的な変化に基づいて、油戻し管(45)をガス冷媒が流れていることを検知する。室外制御器(61)の検知動作における吐出温度センサ(50)の計測値の変化の要因は、実質的に“油戻し弁(46)の開度変化”だけである。従って、本実施形態によれば、室外制御器(61)が検知動作を行うことによって、油戻し管(45)をガス冷媒が流れていることを正確に検知できる。
  -実施形態1の特徴(2)-
 本実施形態の空気調和機(10)において、制御器(60)の室外制御器(61)は、検知動作において油戻し管(45)をガス冷媒が流れていると判断すると、油戻し弁(46)を所定時間にわたって閉状態に保持する。油戻し弁(46)が閉状態である場合は、圧縮機(30)が吐出した冷媒の全てが圧縮機ユニット(20)から四方切換弁(21)へ向けて流出する。従って、本実施形態によれば、圧縮機ユニット(20)から流出して冷媒回路(15)を循環する冷媒の流量を高く保つことができ、空気調和機(10)の空調能力を高く保つことができる。
  -実施形態1の特徴(3)-
 本実施形態の空気調和機(10)において、制御器(60)の室外制御器(61)は、圧縮機(30)の回転速度が比較的高いときに、検知動作において油戻し管(45)をガス冷媒が流れていると判断すると、回収条件が成立していなくても回収動作を行う。そのため、圧縮機(30)に貯留された冷凍機油の量を速やかに増やすことができ、潤滑不良に起因する圧縮機(30)の損傷を未然に防ぐことができる。
  -実施形態1の特徴(4)-
 本実施形態の空気調和機(10)において、制御器(60)の室外制御器(61)は、圧縮機(30)の回転速度が比較的低いときに検知動作において油戻し管(45)をガス冷媒が流れていると判断しない場合は、回収条件が成立しても回収動作を行わない。そのため、無駄な回収動作の実行を未然に防ぐことができる。
 《実施形態2》
 実施形態2について説明する。本実施形態の空気調和機(10)は、上記実施形態1の空気調和機(10)の制御器(60)を変更したものである。
  -制御器による油戻し弁の制御-
 本実施形態の制御器(60)は、室外制御器(61)が行う油戻し弁(46)の制御が、実施形態1の制御器(60)と異なる。ここでは、本実施形態の室外制御器(61)が行う油戻し弁(46)の制御について、図7のフロー図を参照しながら説明する。
 室外制御器(61)は、図7のフロー図に示す動作を、所定の時間T1(本実施形態では、15分)毎に繰り返し行う。
 図7のフロー図におけるステップST20からステップST23までの処理は、それぞれ図4のフロー図におけるステップST10からステップST13までの処理と同じである。また、図7のフロー図におけるステップST28とステップST29の処理は、それぞれ図4のフロー図におけるステップST18とステップST19の処理と同じである。ここでは、ステップST24からステップST27までの処理について説明する。
 ステップST24の処理において、室外制御器(61)は、第2条件の成否を判断する。第2条件は、吐出温度Td2と吐出温度Td1の差(Td2-Td1)が所定値ΔTdを上回る(Td2-Td1>ΔTd)、という条件である。所定値ΔTdは、例えば2℃である。第2条件が成立する場合、室外制御器(61)は、ステップST26の処理を行う。第2条件が成立しない場合、室外制御器(61)は、ステップST25の処理を行う。
 ステップST24の処理において第2条件が成立した場合は、油戻し管(45)をガス冷媒が流れていない(言い換えると、油戻し管(45)を実質的に冷凍機油だけが流れている)と判断できる。
 そこで、ステップST26の処理において、室外制御器(61)は、油戻し弁(46)を開く。油戻し弁(46)が開くと、油分離器(40)に溜まった冷凍機油が、油戻し管(45)を通って圧縮機(30)へ流入する。
 ステップST25の処理において、室外制御器(61)は、タイマーの計測時間tが所定の時間T2に達したか否かを判断する。計測時間tが時間T2未満(t<T2)の場合、室外制御器(61)は、ステップST23の処理を行う。計測時間tが時間T2以上(t≧T2)の場合、室外制御器(61)は、ステップST27の処理を行う。時間T2は、例えば10秒である。
 ステップST25の処理において計測時間tが時間T2以上である場合は、油戻し弁(46)を閉じてから時間T2が経過しても温度差(Td2-Td1)がΔTdに達しないので、油戻し管(45)をガス冷媒が流れていると判断できる。
 そこで、ステップST27の処理において、室外制御器(61)は、タイマーの計測時間tが所定の時間T3に達するまで待機する。その結果、計測時間tが時間T3に達するまでの間、油戻し弁(46)が閉じた状態に保持される。時間T3は、例えば8分である。
 ステップST27の処理において計測時間tが時間T3に達すると、室外制御器(61)は、ステップST26の処理を行う。このように、計測時間tが時間T3に達すると、室外制御器(61)は、油戻し管(45)をガス冷媒が流れているか否かを再び判断するために、油戻し弁(46)を一旦開く。
  -第2条件-
 第2条件が成立しない場合に油戻し管(45)をガス冷媒が流れていると判断できる理由を、図8のモリエル線図(圧力-エンタルピ線図)を参照しながら説明する。
 図8において、点Aから点Bに至る過程(実線で示す過程)は、油戻し弁(46)が閉じているときの圧縮機(30)の圧縮行程を示す。この状態において、圧縮機構(32)は、点Aの状態の冷媒を吸入して圧縮し、圧縮されて点Bの状態になった冷媒を吐出する。
 この状態において、油戻し弁(46)が開き、油戻し管(45)を主に冷凍機油が流れたと仮定する。油分離器(40)から油戻し管(45)へ流入する冷凍機油の温度は、圧縮機(30)から吐出された冷媒(つまり、点Bの状態の冷媒)の温度と実質的に等しい。冷凍機油は、キャピラリチューブ(47)を通過する際に断熱膨張しない。そのため、冷凍機油がキャピラリチューブ(47)を通過する過程で、冷凍機油の温度は低下しない。点Aの状態の冷媒に、油戻し管(45)を通過した高温の冷凍機油が合流すると、冷媒は点Fの状態になる。圧縮機構(32)は、点Fの状態の冷媒を吸入して圧縮する。
 点Fの状態の冷媒は、圧縮機構(32)において圧縮されて点Gの状態になる。圧縮機構(32)の圧縮行程において、冷凍機油は圧縮仕事を受けない。そのため、圧縮された冷媒が保有する熱の一部が、冷凍機油の温度を上昇させるために費やされる。従って、点Gの状態の冷媒は、点Bの状態の冷媒に比べて比エンタルピが低くなる。このように、油戻し弁(46)が開いて油戻し管(45)を主に冷凍機油が流れる状態では、圧縮機(30)の圧縮行程が、点Fから点Gに至る過程(破線で示す過程)になる。
 ここで、油戻し管(45)を主に冷凍機油が流れている状態において、室外制御器(61)が検知動作を開始して油戻し弁(46)を閉じたとする。そうすると、圧縮機(30)の圧縮行程は、点Fから点Gに至る過程から、点Aから点Bに至る過程へと変化する。そのため、圧縮機構(32)から吐出される冷媒の状態は、点Gの状態から点Bの状態に変化する。点Bの状態の冷媒の温度は、点Gの状態の冷媒の温度よりも高い。従って、油戻し管(45)を主に冷凍機油が流れている状態において、室外制御器(61)が検知動作を開始して油戻し弁(46)を閉じると、圧縮機構(32)から吐出される冷媒の温度が上昇する。
 そこで、本実施形態の室外制御器(61)は、検知動作において、“油戻し弁(46)を閉じる前の吐出温度センサ(50)の計測値Td1に比べて、油戻し弁(46)を閉じた後の吐出温度センサ(50)の計測値Td2が所定値(ΔTd)以上高い”という第2条件が成立しない場合に、油戻し管(45)をガス冷媒が流れていると判断する。
 《実施形態3》
 実施形態3について説明する。ここでは、本実施形態の空気調和機(10)について、実施形態1の空気調和機(10)と異なる点を説明する。
 図9に示すように、本実施形態の空気調和機(10)は、二台の室外ユニット(11a,11b)を備える。冷媒回路(15)において、二台の室外ユニット(11a,11b)は、互いに並列に接続される。各室外ユニット(11a,11b)の構成は、実施形態1の室外ユニット(11)の構成と同じである。
 各室外ユニット(11a,11b)は、圧縮機ユニット(20a,20b)を一つずつ備える。第1室外ユニット(11a)は第1圧縮機ユニット(20a)を備え、第2室外ユニット(11b)は第2圧縮機ユニット(20b)を備える。
 各圧縮機ユニット(20a,20b)の構成は、実施形態1の圧縮機ユニット(20)の構成と同じである。各圧縮機ユニット(20a,20b)は、圧縮機(30a,30b)と、油分離器(40a,40b)と、油戻し管(45a,45b)と、吐出温度センサ(50a,50b)とを備える。各圧縮機ユニット(20a,20b)の油戻し管(45a,45b)には、キャピラリチューブ(47a,47b)と油戻し弁(46a,46b)とが設けられる。
 また、各室外ユニット(11a,11b)は、室外制御器(61a,61b)を一つずつ備える。本実施形態の制御器(60)は、各室外ユニット(11a,11b)の室外制御器(61a,61b)と、各室内ユニット(12)の室内制御器(64)とによって構成される。
 各室外制御器(61a,61b)は、対応する圧縮機ユニット(20a,20b)を対象として、図4のフロー図に示す動作を行う。第1室外ユニット(11a)では、室外制御器(61a)が、第1圧縮機ユニット(20a)を対象として、図4のフロー図に示す動作を行う。この室外制御器(61a)は、吐出温度センサ(50a)の計測値を用いて検知動作を行う。一方、第2室外ユニット(11b)では、室外制御器(61b)が、第2圧縮機ユニット(20b)を対象として、図4のフロー図に示す動作を行う。この室外制御器(61b)は、吐出温度センサ(50b)の計測値を用いて検知動作を行う。
  -制御器の移送動作-
 本実施形態の制御器(60)は、移送動作を行う。移送動作は、冷凍機油の貯留量が比較的多い圧縮機ユニット(20a,20b)から、冷凍機油の貯留量が比較的少ない圧縮機ユニット(20a,20b)へ、冷凍機油を移送する動作である。
 具体的に、第1圧縮機ユニット(20a)の冷凍機油の貯留量が比較的多く、第2圧縮機ユニット(20b)の冷凍機油の貯留量が比較的少ない場合、制御器(60)は、第1圧縮機ユニット(20a)の冷凍機油を第2圧縮機ユニット(20b)へ移送する移送動作を行う。また、第2圧縮機ユニット(20b)の冷凍機油の貯留量が比較的多く、第1圧縮機ユニット(20a)の冷凍機油の貯留量が比較的少ない場合、制御器(60)は、第2圧縮機ユニット(20b)の冷凍機油を第1圧縮機ユニット(20a)へ移送する移送動作を行う。
 ここでは、第1圧縮機ユニット(20a)の冷凍機油の貯留量が比較的多く、第2圧縮機ユニット(20b)の冷凍機油の貯留量が比較的少ない場合を例に、制御器(60)の移送動作を説明する。
 この場合、第2室外ユニット(11b)の室外制御器(61b)は、吐出温度センサ(50b)の計測値に基づいて検知動作を行い、第2圧縮機ユニット(20b)の油戻し管(45b)を主にガス冷媒が流れていると判断する。そして、室外制御器(61b)は、油不足信号を出力する。
 また、この場合、第1室外ユニット(11a)の室外制御器(61a)は、吐出温度センサ(50a)の計測値に基づいて検知動作を行い、第1圧縮機ユニット(20a)の油戻し管(45a)をガス冷媒が流れていないと判断する。この室外制御器(61a)は、第2室外ユニット(11b)の室外制御器(61b)が出力した油不足信号を受信すると、移送動作を行う。
 移送動作において、第1室外ユニット(11a)の室外制御器(61a)は、第1圧縮機ユニット(20a)の圧縮機(30a)の回転速度を所定値だけ引き上げる。また、移送動作において、この室外制御器(61a)は、第2室外ユニット(11b)の室外制御器(61b)に対して、第2圧縮機ユニット(20b)の圧縮機(30b)の回転速度を引き下げる指令信号を送る。この指令信号を受けた室外制御器(61b)は、第2圧縮機ユニット(20b)の圧縮機(30b)の回転速度を所定値だけ引き下げる。
 移送動作において、制御器(60)が第1圧縮機ユニット(20a)の圧縮機(30a)の回転速度を上昇させると、この圧縮機(30a)から冷媒と共に吐出される冷凍機油の流量が増加する。また、移送動作において、制御器(60)が第2圧縮機ユニット(20b)の圧縮機(30b)の回転速度を低下させると、この圧縮機(30b)から冷媒と共に吐出される冷凍機油の流量が減少する。そのため、制御器(60)が移送動作を行うと、第1圧縮機ユニット(20a)の圧縮機(30a)に貯留された冷凍機油の量が減少し、第2圧縮機ユニット(20b)の圧縮機(30b)に貯留された冷凍機油の量が増加する。
 この移送動作では、第1圧縮機ユニット(20a)の圧縮機(30a)の回転速度が上昇する一方、第2圧縮機ユニット(20b)の圧縮機(30b)の回転速度が低下する。そのため、移送動作の実行中に冷媒回路(15)を循環する冷媒の流量は、移送動作の開始前に冷媒回路(15)を循環していた冷媒の流量と同等になる。従って、移送動作の実行中に空気調和機(10)が発揮する空調能力は、移送動作の開始前に空気調和機(10)が発揮していた空調能力と同等に保たれる。
  -実施形態3の特徴-
 本実施形態の空気調和機(10)では、制御器(60)が移送動作を行うことによって、冷凍機油の貯留量が比較的多い圧縮機ユニット(20a,20b)から、冷凍機油の貯留量が比較的少ない圧縮機ユニット(20a,20b)へ、冷凍機油を移送することができる。そのため、全ての圧縮機ユニット(20a,20b)における冷凍機油の貯留量を均一化することができ、各圧縮機ユニット(20a,20b)の圧縮機(30a,30b)の信頼性を確保することができる。
 《その他の実施形態》
 実施形態1~3の空気調和機(10)において、油戻し弁(46)は、開度可変の電動弁であってもよい。本変形例の空気調和機(10)について、本変形例を実施形態1の空気調和機(10)に適用した場合を例に説明する。
 本変形例の空気調和機(10)に設けられた室外制御器(61)は、図4のステップST12の処理において、油戻し弁(46)の開度を最大開度(全開)から最小開度(全閉)に変更してもよいし、油戻し弁(46)の開度を第1開度から第2開度に縮小してもよい。第1開度と第2開度は、(最小開度<第2開度<第1開度<最大開度)の関係を満たす。
 ステップST12の処理において室外制御器(61)が油戻し弁(46)の開度を第1開度から第2開度に縮小する場合、室外制御器(61)は、図4のステップST16の処理において、油戻し弁(46)の開度を第2開度から第3開度に拡大してもよい。第3開度は、第1開度よりも大きい。第1開度と第3開度は、(第1開度<第3開度≦最大開度)の関係を満たす。
 また、ステップST12の処理において室外制御器(61)が油戻し弁(46)の開度を第1開度から第2開度に縮小する場合、室外制御器(61)は、図4のステップST14において第1条件が成立したときに、油戻し弁(46)の開度を第2開度から第4開度に縮小した後にステップST17の処理を行ってもよい。第2開度と第4開度は、(最小開度≦第4開度<第2開度)の関係を満たす。
 以上、実施形態および変形例を説明したが、特許請求の範囲の趣旨および範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。また、以上の実施形態、変形例、その他の実施形態に係る要素を適宜組み合わせたり、置換したりしてもよい。また、明細書および特許請求の範囲の「第1」、「第2」、「第3」…という記載は、これらの記載が付与された語句を区別するために用いられており、その語句の数や順序までも限定するものではない。
 以上説明したように、本開示は、空気調和機について有用である。
 10  空気調和機(冷凍装置)
 15  冷媒回路
 20  圧縮機ユニット
 20a  第1圧縮機ユニット
 20b  第2圧縮機ユニット
 30  圧縮機
 31  ケーシング
 32  圧縮機構
 33  電動機
 35  吸入管
 40  油分離器
 45  油戻し管
 46  油戻し弁
 50  吐出温度センサ
 60  制御器

Claims (11)

  1.  圧縮機ユニット(20)を有して冷凍サイクルを行う冷媒回路(15)を備え、
     上記圧縮機ユニット(20)は、冷媒を圧縮して吐出する圧縮機構(32)を有する圧縮機(30)と、上記圧縮機(30)が吐出したガス冷媒から冷凍機油を分離する油分離器(40)と、上記油分離器(40)を上記圧縮機(30)の吸入管(35)に接続する油戻し管(45)と、上記油戻し管(45)に設けられた油戻し弁(46)と、上記圧縮機構(32)が吐出したガス冷媒の温度を計測する吐出温度センサ(50)とを有する
    冷凍装置(10)であって、
     上記油戻し弁(46)の開度を縮小し、該油戻し弁(46)の開度を縮小する前の上記吐出温度センサ(50)の計測値に対する、該油戻し弁(46)の開度を縮小した後における上記吐出温度センサ(50)の計測値の変化に基づいて、上記油戻し管(45)をガス冷媒が流れていることを検知する検知動作を行う制御器(60)を備える
    冷凍装置。
  2.  請求項1に記載の冷凍装置(10)において、
     上記制御器(60)が行う上記検知動作は、第1条件が成立したときに上記油戻し管(45)をガス冷媒が流れていると判断する動作を含み、
     上記第1条件は、上記油戻し弁(46)の開度を縮小する前の上記吐出温度センサ(50)の計測値に比べて、上記油戻し弁(46)の開度を縮小した後の上記吐出温度センサ(50)の計測値が所定値以上低い、という条件である
    冷凍装置。
  3.  請求項2に記載の冷凍装置(10)において、
     上記制御器(60)は、上記検知動作において上記第1条件が成立すると、上記油戻し弁(46)の開度を縮小後の開度に保持し、又は上記油戻し弁(46)の開度を更に縮小する
    冷凍装置。
  4.  請求項1に記載の冷凍装置(10)において、
     上記制御器(60)が行う上記検知動作は、第2条件が成立しないときに上記油戻し管(45)をガス冷媒が流れていると判断する動作を含み、
     上記第2条件は、上記油戻し弁(46)の開度を縮小する前の上記吐出温度センサ(50)の計測値に比べて、上記油戻し弁(46)の開度を縮小した後の上記吐出温度センサ(50)の計測値が所定値以上高い、という条件である
    冷凍装置。
  5.  請求項4に記載の冷凍装置(10)において、
     上記制御器(60)は、上記検知動作において上記第2条件が成立すると、上記油戻し弁(46)の開度を縮小前の開度に戻し、又は上記油戻し弁(46)の開度を縮小前の開度よりも拡大する
    冷凍装置。
  6.  請求項1~5のいずれか一つに記載の冷凍装置(10)において、
     上記圧縮機(30)は、上記圧縮機構(32)を駆動する電動機(33)と、上記圧縮機構(32)及び上記電動機(33)を収容するケーシング(31)とを有し、
     上記吐出温度センサ(50)は、上記圧縮機構(32)から上記ケーシング(31)の内部空間へ吐出されて上記電動機(33)を通過する前のガス冷媒の温度を計測する
    冷凍装置。
  7.  請求項1~6のいずれか一つに記載の冷凍装置(10)において、
     上記冷媒回路(15)には、上記圧縮機ユニット(20a,20b)が複数設けられ、
     上記制御器(60)は、複数の上記圧縮機ユニット(20a,20b)のそれぞれについて上記検知動作を行う
    冷凍装置。
  8.  請求項7に記載の冷凍装置(10)において、
     上記冷媒回路(15)に設けられた複数の上記圧縮機ユニットは、第1圧縮機ユニット(20a)と第2圧縮機ユニット(20b)を含み、
     上記制御器(60)は、上記検知動作において、上記第1圧縮機ユニット(20a)と上記第2圧縮機ユニット(20b)のうち上記第2圧縮機ユニット(20b)だけにおいて上記油戻し管(45)をガス冷媒が流れていると判断した場合に、上記第1圧縮機ユニット(20a)から上記第2圧縮機ユニット(20b)へ冷凍機油を移すための移送動作を行う
    冷凍装置。
  9.  請求項8に記載の冷凍装置において、
     上記制御器(60)は、上記第1圧縮機ユニット(20a)の圧縮機(30a)の回転速度を上昇させ、上記第2圧縮機ユニット(20b)の圧縮機(30b)の回転速度を低下させる動作を、上記移送動作として行う
    冷凍装置。
  10.  請求項1~6のいずれか一つに記載の冷凍装置(10)において、
     上記制御器(60)は、上記圧縮機(30)の回転速度が所定値以上であるときに、上記検知動作において上記油戻し管(45)をガス冷媒が流れていると判断した場合に、上記圧縮機ユニット(20)の外部に滞留する冷凍機油を該圧縮機ユニット(20)へ戻す回収動作を行う
    冷凍装置。
  11.  請求項1~6のいずれか一つに記載の冷凍装置(10)において、
     上記制御器(60)は、
      所定の回収条件が成立した場合に、上記圧縮機ユニット(20)の外部に滞留する冷凍機油を該圧縮機ユニット(20)へ戻す回収動作を行う一方、
      上記圧縮機(30)の回転速度が所定値以下であるときに、上記検知動作において上記油戻し管(45)をガス冷媒が流れていると判断しない場合は、上記回収条件が成立しても上記回収動作を行わない
    冷凍装置。
PCT/JP2023/011069 2022-03-31 2023-03-22 冷凍装置 WO2023189874A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-059480 2022-03-31
JP2022059480A JP7299540B1 (ja) 2022-03-31 2022-03-31 冷凍装置

Publications (1)

Publication Number Publication Date
WO2023189874A1 true WO2023189874A1 (ja) 2023-10-05

Family

ID=86900699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/011069 WO2023189874A1 (ja) 2022-03-31 2023-03-22 冷凍装置

Country Status (2)

Country Link
JP (1) JP7299540B1 (ja)
WO (1) WO2023189874A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006207917A (ja) * 2005-01-27 2006-08-10 Mitsubishi Heavy Ind Ltd 空気調和装置およびその運転方法
JP2006214602A (ja) * 2005-02-01 2006-08-17 Matsushita Electric Ind Co Ltd 冷凍サイクル装置
WO2020241622A1 (ja) * 2019-05-31 2020-12-03 ダイキン工業株式会社 冷凍装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5418253B2 (ja) * 2010-01-28 2014-02-19 パナソニック株式会社 冷凍サイクル装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006207917A (ja) * 2005-01-27 2006-08-10 Mitsubishi Heavy Ind Ltd 空気調和装置およびその運転方法
JP2006214602A (ja) * 2005-02-01 2006-08-17 Matsushita Electric Ind Co Ltd 冷凍サイクル装置
WO2020241622A1 (ja) * 2019-05-31 2020-12-03 ダイキン工業株式会社 冷凍装置

Also Published As

Publication number Publication date
JP7299540B1 (ja) 2023-06-28
JP2023150385A (ja) 2023-10-16

Similar Documents

Publication Publication Date Title
EP3279580B1 (en) Air-conditioning device
EP1942306B1 (en) Air-conditioning apparatus, method of refrigerant filling in air-conditioning apparatus, method of judging state of refrigerant filling in air-conditioning apparatus, and method of refrigerant filling/piping cleaning for air-conditioning apparatus
EP2204621B1 (en) Air conditioner and method for detecting malfunction thereof
EP2354724B1 (en) Air conditioner and method for controlling air conditioner
EP3885670B1 (en) Refrigeration cycle apparatus
EP2320159A1 (en) Refrigerating device
US11874039B2 (en) Refrigeration cycle apparatus
US20190331374A1 (en) Air conditioner
JP7174299B2 (ja) 冷凍装置
KR20070017269A (ko) 멀티 에어컨시스템의 배관점검운전방법 및 배관점검방법
US8205463B2 (en) Air conditioner and method of controlling the same
CN108954501B (zh) 空调机
KR100743720B1 (ko) 멀티형 공기조화기 과냉각장치의 전자팽창밸브 불량감지방법
KR100614364B1 (ko) 냉동 장치
JPH05288438A (ja) 冷凍装置の冷媒充填量検知装置
WO2023189874A1 (ja) 冷凍装置
KR20190041091A (ko) 공기조화기
KR101240765B1 (ko) 멀티형 공기 조화기
KR101527214B1 (ko) 공기 조화기 및 그의 제어방법
JP2893844B2 (ja) 空気調和機
JPWO2017094172A1 (ja) 空気調和装置
JP7447625B2 (ja) 空気調和装置
US20230314038A1 (en) Refrigeration cycle apparatus
KR101000050B1 (ko) 멀티 공기조화기의 냉매량 부족방지제어방법
KR100471430B1 (ko) 멀티형 에어컨 및 그 제어방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23779888

Country of ref document: EP

Kind code of ref document: A1