WO2023189180A1 - 車両制御装置及びプログラム - Google Patents

車両制御装置及びプログラム Download PDF

Info

Publication number
WO2023189180A1
WO2023189180A1 PCT/JP2023/007866 JP2023007866W WO2023189180A1 WO 2023189180 A1 WO2023189180 A1 WO 2023189180A1 JP 2023007866 W JP2023007866 W JP 2023007866W WO 2023189180 A1 WO2023189180 A1 WO 2023189180A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
turning radius
rotational speed
radius
turning
Prior art date
Application number
PCT/JP2023/007866
Other languages
English (en)
French (fr)
Inventor
光浩 金山
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2023189180A1 publication Critical patent/WO2023189180A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/16Electric propulsion with power supply external to the vehicle using ac induction motors
    • B60L9/18Electric propulsion with power supply external to the vehicle using ac induction motors fed from dc supply lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/02Control of vehicle driving stability
    • B60W30/045Improving turning performance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/12Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to parameters of the vehicle itself, e.g. tyre models
    • B60W40/13Load or weight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/06Improving the dynamic response of the control system, e.g. improving the speed of regulation or avoiding hunting or overshoot
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the disclosure in this specification relates to a vehicle control device and a program for controlling the running of a vehicle equipped with a pair of drive wheels that are each driven independently.
  • vehicles used for transporting goods have been known to have a plurality of wheels each equipped with a motor and drive each wheel independently, thereby making it possible to travel along a desired travel route.
  • Patent Document 1 a pair of left and right wheels equipped with wheel motors, and by controlling each wheel individually, the technology allows the vehicle to travel straight, turn to the right, or turn to the left. It is being considered.
  • the present disclosure has been made in view of the above circumstances, and an object of the present disclosure is to provide a vehicle control device and a program capable of appropriately turning a vehicle having a pair of independently driven drive wheels. .
  • Means 1 is Applied to a vehicle equipped with a pair of drive wheels mounted at two positions on the left and right with respect to the vehicle traveling direction, each having a motor and each motor being driven independently,
  • a control device that controls running of the vehicle by controlling driving of each of the drive wheels, a rotation control unit that controls the rotation speed of each of the drive wheels when the vehicle is running; a turning state determination unit that determines that an actual turning radius deviates from a target turning radius when the vehicle turns; an adjustment unit that adjusts the rotational speed of each drive wheel by the rotation control unit based on the deviation in the turning radius; Equipped with
  • control of the pair of drive wheels allows the vehicle to travel straight and turn left and right. Then, when the vehicle is turning, the control device determines that there is a deviation in the actual turning radius from the target turning radius, and adjusts the rotation speed of each drive wheel based on the deviation in the turning radius. I decided to do so. In this case, it becomes possible to appropriately adjust the deviation in the turning radius of the vehicle. As a result, in a vehicle having a pair of independently driven drive wheels, it is possible to appropriately turn the vehicle.
  • Means 2 includes a weight determination unit that acquires the weight of the vehicle and determines whether the weight is heavier than a predetermined reference weight, and the adjustment unit determines whether the turning radius has shifted. In the case where it is determined that the weight is heavier than the reference weight, the turning speed of the vehicle is controlled by adjusting the rotational speed of each of the drive wheels, and if the weight is lighter than the reference weight. If determined, the difference in rotational speed between the pair of drive wheels is controlled.
  • the turning method is applied to a vehicle traveling system in which the vehicle travels on a predetermined travel route, and determines whether or not the target turning radius of a corner portion in the travel route is larger than a predetermined reference radius.
  • a predetermined reference radius comprising a radius determining section, and the adjusting section adjusts the rotation of each driving wheel if it is determined that a deviation in the turning radius has occurred and it is determined that the target turning radius is larger than the reference radius.
  • the turning speed of the vehicle is controlled by adjusting the speed, and if it is determined that the target turning radius is smaller than the reference radius, the difference in rotation speed between the pair of drive wheels is controlled.
  • the centrifugal force during the vehicle turn is adjusted by vehicle speed control to adjust the turning radius of the vehicle to an appropriate value. It is desirable to On the other hand, if there is a deviation in the vehicle's turning radius, and the standard turning radius at the corner is relatively small, the balance between the rotational speeds of the left and right drive wheels can be adjusted to adjust the vehicle's turning radius to an appropriate value. It is desirable to Based on this idea, if it is determined that there is a deviation in the turning radius of the vehicle, and if it is determined that the target turning radius at the corner is larger than the standard radius, the rotational speed of each drive wheel is adjusted.
  • the difference in rotational speed between the pair of drive wheels is controlled. As a result, even if the target turning radii of corners on the travel route vary in size, it is possible to realize appropriate turning of the vehicle.
  • the turning state determination unit determines whether the actual turning radius is larger or smaller than the target turning radius when a deviation of the actual turning radius occurs with respect to the target turning radius.
  • the adjustment section may control the turning speed of the vehicle if it is determined that the actual turning radius is larger than the target turning radius.
  • the rotational speed of each driving wheel is decreased to reduce the turning speed of the vehicle, and if it is determined that the actual turning radius is smaller than the target turning radius, the rotational speed of each driving wheel is increased to reduce the turning speed of the vehicle.
  • the rotation of the pair of driving wheels is increased.
  • the speed difference is increased, and if it is determined that the actual turning radius is smaller than the target turning radius, the rotational speed difference between the pair of drive wheels is decreased.
  • the adjustment unit adjusts the rotational speed of each drive wheel based on the amount of deviation in the turning radius and the weight of the vehicle when it is determined that a deviation in the turning radius has occurred.
  • a first adjustment amount for adjusting the rotational speed of each drive wheel is calculated based on the deviation amount of the turning radius and the target turning radius, and a second adjustment amount is calculated for adjusting the rotational speed of each drive wheel.
  • the rotational speed of each of the drive wheels is adjusted using the larger of the second adjustment amounts.
  • the rotational speed of each drive wheel can be appropriately adjusted while taking into account the size of the vehicle weight and the target turning radius of the travel route.
  • the tread which is the distance between the pair of driving wheels, or the wheel base between each wheel provided on the front side and the rear side in the traveling direction.
  • the adjustment command section is provided to issue a command to adjust the adjustment.
  • the turning radius deviation exceeds a predetermined threshold value, for example, if excessive oversteer occurs when the vehicle turns, it may be possible to deal with the situation by significantly reducing the turning speed of the vehicle. However, there is a concern that the greater the degree of reduction in vehicle speed, the lower the efficiency of transporting articles and the like.
  • a command is issued to adjust the vehicle's tread or wheelbase, thereby suppressing excessive adjustment of the vehicle's turning speed. Appropriate vehicle running can be realized.
  • FIG. 1 is a diagram showing a schematic configuration of a vehicle
  • FIG. 2 is a diagram showing the driving route of vehicles in an automated warehouse
  • FIG. 3 is a diagram illustrating the turning radius when the vehicle turns
  • FIG. 4 is a flowchart showing the processing procedure of vehicle running control
  • FIG. 5 is a diagram illustrating the turning radius when the vehicle turns
  • FIG. 6 is a flowchart showing the processing procedure of vehicle travel control in the second embodiment
  • FIG. 7 is a flowchart showing the processing procedure of vehicle running control in another example
  • FIG. 8 (a) is a relational diagram for determining the first adjustment amount, and (b) is a relational diagram for determining the second adjustment amount.
  • the vehicle in this embodiment is an electric mobility vehicle that can travel automatically by rotating a pair of drive wheels, and can be used, for example, as an automatic guided vehicle for transporting articles. However, it can also be used as a transport vehicle for transporting people, animals, etc.
  • parts that are the same or equivalent to each other are given the same reference numerals in the drawings, and the explanations thereof will be referred to for the parts with the same reference numerals.
  • the vehicle 10 according to this embodiment is an automatic guided vehicle used for transporting articles in an automated warehouse, and its outline is shown in FIG.
  • a vehicle 10 includes a vehicle body 11, a pair of driving wheels 21, 22, and a pair of driven wheels 31, 32.
  • the pair of drive wheels 21 and 22 are wheels that are mounted at two positions (two positions on the left and right) in a direction orthogonal to the traveling direction of the vehicle 10, and are each driven independently.
  • the pair of driven wheels 31 and 32 are wheels that rotate according to the rotation of the respective drive wheels 21 and 22 and can be steered freely.
  • Each drive wheel 21, 22 is a so-called in-wheel motor that has motors 23, 24 as a drive source.
  • inverters 25 and 26 are provided for each motor 23 and 24, respectively.
  • each drive wheel 21, 22 has a structure that integrally includes a motor 23, 24 and an inverter 25, 26.
  • Each motor 23, 24 is driven by power supplied from an on-vehicle battery (not shown). Note that each motor 23, 24 may have a reduction gear.
  • One of the pair of drive wheels 21, 22 and the pair of driven wheels 31, 32 is provided on the front side in the direction of travel of the vehicle 10, and the other is provided on the rear side in the direction of travel of the vehicle 10.
  • a pair of driving wheels 21 and 22 are provided on the front side in the traveling direction
  • a pair of driven wheels 31 and 32 are provided on the rear side in the traveling direction.
  • a pair of driven wheels 31 and 32 may be provided on the front side in the direction of travel
  • a pair of drive wheels 21 and 22 may be provided on the rear side in the direction of travel.
  • the position of each driving wheel 21, 22 and the position of each driven wheel 31, 32 can be changed, and by changing the position of each wheel, the distance between the pair of driving wheels 21, 22 can be changed. It is possible to adjust the tread or the wheelbase between the wheels provided on the front and rear sides in the direction of travel.
  • the vehicle body 11 has a plurality of attachment parts for each of the left and right driving wheels 21 and 22 and the left and right driven wheels 31 and 32, and each wheel is attached to the vehicle body 11. By changing the position, the tread and wheelbase can be adjusted.
  • the vehicle body 11 may have a configuration in which the wheel mounting position can be changed by sliding or the like while each wheel is mounted. Note that of the driving wheels 21, 22 and the driven wheels 31, 32, only the driving wheels 21, 22 may be repositionable.
  • the vehicle 10 can move forward, backward, and turn by driving the drive wheels 21 and 22 independently.
  • the vehicle 10 moves forward when the drive wheels 21 and 22 rotate in the forward direction, and the vehicle 10 moves backward when the drive wheels 21 and 22 rotate in the reverse direction. Furthermore, the vehicle 10 turns by making the rotational speeds of the left and right drive wheels 21 and 22 different.
  • the vehicle body 11 has a loading section (not shown) for loading articles. It is desirable that the loading section has a form that allows for loading and unloading of articles by a robot arm or the like in an automated warehouse.
  • the vehicle 10 includes a control device 40 consisting of a microcomputer, various memories, etc., a sensor 50 that detects the state of the vehicle 10, and a communication device 60 that enables wireless communication with the external device 100.
  • Control device 40 executes various programs stored in memory.
  • the sensor 50 includes, for example, a weight sensor that detects the weight of the vehicle, a speed sensor that detects the speed of the vehicle 10, a yaw rate sensor that detects the yaw rate that is lateral acceleration of the vehicle 10, and a sensor that captures an image of the surroundings of the vehicle 10. Contains an image sensor.
  • the weight sensor makes it possible to detect the weight of articles loaded on the vehicle 10.
  • the yaw rate sensor enables detection of the yaw rate (lateral acceleration) when the vehicle 10 turns.
  • each inverter 25, 26 is provided with a current sensor that detects the current flowing through the coil of each motor 23, 24.
  • the control device 40 controls the driving of each motor 23 and 24 in each drive wheel 21 and 22 based on a command signal from the external device 100 that is received by the communication device 60. Specifically, when the vehicle is running, the control device 40 receives a speed command value and a yaw rate command value (turning command value) of the vehicle 10 from the external device 100 via the communication device 60, and receives the speed command value and the yaw rate command value. Based on the command value, the tread of the vehicle 10, and the tire diameter of each drive wheel 21, 22, the target rotational speed of each motor 23, 24 in the left and right drive wheels 21, 22 is calculated. Then, rotational speed feedback control is performed by controlling the inverters 25 and 26 so that the rotational speed of each motor 23 and 24 becomes the target rotational speed.
  • FIG. 2 is a diagram showing the travel route of the vehicle 10 within the automated warehouse.
  • the vehicle 10 travels along a traveling route B1 from a starting point position A1, which is a transport source, toward an end point position A2, which is a transport destination, and then travels along a traveling route B2 from the terminal position A2.
  • the traveling route B1 has, for example, two corner portions C1 and C2, and the radius of curvature R1 and R2 of each of the corner portions C1 and C2 satisfies R1 ⁇ R2.
  • Dotted or linear markers may be provided on the floor of the automated warehouse along the travel routes B1 and B2. Note that the vehicle 10 may shuttle between A1 and A2 on the travel route B1.
  • the weight of the vehicle 10 changes each time the vehicle travels. That is, the vehicle weight is different between when the vehicle 10 runs with articles loaded and when the vehicle 10 runs with no articles loaded. Furthermore, the weight of the vehicle varies depending on the amount of goods loaded. In this case, if the vehicle weight is different, the vehicle running state will be affected, especially when the vehicle 10 turns, an understeer state where the turning radius is larger than the target radius (a state where the turning is insufficient when turning), or It is conceivable that an oversteer condition (a condition in which the vehicle turns excessively when turning) occurs in which the turning radius becomes smaller than the target radius. If the vehicle 10 is unable to turn properly, there is a concern that the vehicle 10 or the loaded object may come into contact with surrounding objects, or that the cargo may collapse.
  • the control device 40 corresponds to a rotation control section, a turning state determination section, an adjustment section, and a weight determination section.
  • FIG. 3(a) is a diagram illustrating an understeer state in which the turning radius is larger than the target radius when the vehicle is turning
  • FIG. 3(b) is a diagram illustrating an understeer state in which the turning radius is smaller than the target radius when the vehicle is turning
  • FIG. 3 is a diagram illustrating an oversteer state. Note that each of these figures shows a right-turning state, and the rotation speed of the left drive wheel 21 is higher than the rotation speed of the right drive wheel 22. Furthermore, in each of these figures, the broken line is the target trajectory, and the solid line is the actual trajectory.
  • the control device 40 controls the rotational speed of each drive wheel 21, 22 in order to reduce the turning radius of the vehicle 10. Specifically, the rotational speed of both drive wheels 21 and 22 is changed to the decreasing side to reduce the turning speed of the vehicle 10, thereby reducing the turning radius of the vehicle 10. Alternatively, in order to increase the rotational speed difference between the left and right driving wheels 21 and 22, the rotational speed of the left driving wheel 21 is changed to the increasing side (or the rotational speed of the right driving wheel 22 is changed to the decreasing side). , reduce the turning radius of the vehicle 10.
  • the control device 40 controls the rotational speed of each drive wheel 21, 22 in order to increase the turning radius of the vehicle 10.
  • the turning radius of the vehicle 10 is increased by changing the rotation speeds of both drive wheels 21 and 22 to the increasing side and increasing the turning speed of the vehicle 10.
  • the rotational speed of the right driving wheel 22 is changed to an increasing side (or the rotational speed of the left driving wheel 21 is changed to a decreasing side). , the turning radius of the vehicle 10 is increased.
  • FIG. 4 is a flowchart showing the processing procedure for vehicle travel control. This process is executed by the control device 40 each time the vehicle 10 starts traveling. For example, in an automated warehouse, when the vehicle 10 starts traveling from the transport source to the transport destination with goods loaded, and when the vehicle 10 returns from the transport destination to the transport source with no goods loaded. This process may be performed at the time of start.
  • step S11 information regarding the weight of the vehicle 10 and the current target turning radius on the vehicle travel route is acquired.
  • the control device 40 acquires the weight detected by, for example, a weight sensor.
  • the control device 40 calculates a target turning radius based on the speed command value and yaw rate command value of the vehicle 10 received from the external device 100.
  • the control device may be configured to receive the target turning radius of the vehicle travel route from the external device 100.
  • step S12 it is determined whether or not there is travel control adjustment data for the weight range to which the current vehicle weight belongs. It is determined whether adjustment data for adjusting the rotational speed) is stored in the memory within the control device 40. Note that the vehicle weight is divided into a plurality of weight ranges, and adjustment data for rotational speed control is stored for each of these weight ranges.
  • step S13 the process advances to step S13 and the adjustment data corresponding to the current vehicle weight is read from the memory. Thereby, when the vehicle 10 is turning, the rotational speed of each drive wheel 21, 22 is appropriately adjusted using the adjustment data.
  • step S14 it is determined whether the vehicle 10 is currently in a turning state. If the vehicle 10 is in a turning state, the process advances to step S15.
  • step S15 it is determined whether or not there is a deviation in the turning radius when the vehicle turns, and the amount of deviation of the actual turning radius from the target turning radius is greater than or equal to a predetermined threshold TH1. That is, the turning radius of the vehicle 10 corresponds to the traveling trajectory when the vehicle turns, and the deviation of the traveling trajectory is determined by determining that the actual turning radius deviates from the target turning radius. .
  • the turning radius of the vehicle 10 is preferably calculated from detection information of a sensor that detects the vehicle speed and yaw rate. Alternatively, a configuration may be adopted in which a marker provided on a travel route is detected from an image acquired by an image sensor, and a turning radius is calculated based on the detected information.
  • step S15 the process proceeds to step S16, and it is determined whether the deviation amount of the turning radius is less than a threshold value TH2, which is larger than the threshold value TH1. If step S16 is YES, the process proceeds to step S17, and if step S16 is NO, the process proceeds to step S24.
  • step S17 it is determined whether the weight of the vehicle 10 is heavier than a predetermined reference weight Ws. If the vehicle weight is heavier than the reference weight Ws, the process proceeds to step S18, and if the vehicle weight is lighter than the reference weight Ws, the process proceeds to step S21.
  • the reference weight Ws may be determined as a weight assuming a standard load (for example, 10 kg, 20 kg..., 100 kg, 200 kg..., etc.). Further, it is also possible to set the weight of the vehicle in an unladen state, that is, in a state without a loaded object, as the reference weight Ws.
  • step S18 it is determined whether the actual turning radius is larger than the target turning radius, that is, whether the vehicle is in an understeer condition. If the understeer condition is present, the process proceeds to step S19, where the rotational speeds of both drive wheels 21 and 22 are reduced to reduce the turning speed of the vehicle 10. If the oversteer condition is present, the process proceeds to step S20, where the rotational speeds of both drive wheels 21 and 22 are increased to increase the turning speed of the vehicle 10. In steps S19 and S20, the adjustment results of the rotational speeds (motor rotational speeds) of the respective drive wheels 21 and 22 are stored in the memory as adjustment data in correspondence with the current vehicle weight.
  • the centrifugal force at the time of vehicle turning is adjusted by the speed control of the vehicle 10.
  • the turning radius of 10 is optimized.
  • step S21 it is determined whether the actual turning radius is larger than the target turning radius, that is, whether the vehicle is in an understeer condition. If the vehicle is in an understeer state, the process proceeds to step S22, where, for example, the rotational speed of the drive wheel on the outside of the turn is increased to increase the rotational speed difference. If the oversteer condition is present, the process proceeds to step S23, where, for example, the rotational speed of the drive wheel on the inside of the turn is increased to reduce the rotational speed difference.
  • the adjustment results of the rotation speeds (motor rotation speeds) of the drive wheels 21 and 22 are stored in the memory as adjustment data in correspondence with the current vehicle weight.
  • steps S21 to S23 in a situation where there is a deviation in the turning radius of the vehicle 10 and the vehicle weight is relatively light, the balance between the rotational speeds of the left and right drive wheels 21 and 22 is adjusted, and the rotational speed of the left and right drive wheels 21, 22 is adjusted.
  • the turning radius is optimized.
  • step S24 a command is issued to adjust either the tread or the wheelbase of the vehicle 10.
  • a tread adjustment command or a wheelbase adjustment command may be transmitted from the control device 40 to the external device 100.
  • the turning speed of the vehicle 10 is controlled, and if it is determined that the vehicle weight is lighter than the reference weight Ws, the difference in rotation speed between the pair of drive wheels 21 and 22 is controlled. Thereby, even if the vehicle weight may be changed, appropriate turning movement of the vehicle 10 can be realized.
  • the rotation speed of each drive wheel 21, 22 is reduced to reduce the turning speed of the vehicle 10, and the target turning radius is If the actual turning radius is smaller than that, the rotational speed of each drive wheel 21, 22 is increased to increase the turning speed of the vehicle.
  • the rotational speed difference between the pair of driving wheels 21 and 22 if the actual turning radius is larger than the target turning radius, the rotational speed difference between the pair of driving wheels 21 and 22 is increased, and the target turning radius is increased. If the actual turning radius is smaller than the radius, the difference in rotational speed between the pair of drive wheels 21 and 22 is made smaller.
  • the rotational speed of each drive wheel 21, 22 can be adjusted appropriately, and as a result, driving on the desired driving route is possible. It becomes possible.
  • the turning radius deviation exceeds a predetermined threshold, for example, if excessive oversteer occurs when the vehicle turns, it may be possible to deal with the situation by significantly reducing the turning speed of the vehicle 10.
  • a predetermined threshold for example, if excessive oversteer occurs when the vehicle turns, it may be possible to deal with the situation by significantly reducing the turning speed of the vehicle 10.
  • a command is issued to adjust the tread or wheelbase of the vehicle 10 when the deviation in the turning radius exceeds a predetermined threshold value, excessive adjustment of the turning speed of the vehicle 10 is suppressed. At the same time, proper vehicle running can be realized.
  • the adjustment of the tread or wheel base of the vehicle 10 may be performed instead of adjusting the rotational speed of each driving wheel 21, 22, or in addition to adjusting the rotational speed of each driving wheel 21, 22. It's okay.
  • the configuration of the second embodiment will be described, mainly focusing on the differences from the first embodiment.
  • the control device 40 also corresponds to a turning radius determination section.
  • FIG. 5(a) is a diagram illustrating a turning state when the target turning radius is relatively large (larger than a predetermined reference radius) when the vehicle is turning.
  • FIG. 3 is a diagram illustrating a turning state when the target turning radius is relatively small (smaller than a predetermined reference radius).
  • the control device 40 controls the turning speed of the vehicle 10 by adjusting the rotational speed of each drive wheel 21, 22 when the vehicle 10 is in an understeer or oversteer state. This adjusts the turning radius of the vehicle 10. Specifically, when the vehicle is in an understeer state, the turning speed of the vehicle 10 is reduced by changing the rotational speeds of both drive wheels 21 and 22 to the decreasing side. When the vehicle is in an oversteer state, the turning speed of the vehicle 10 is increased by changing the rotational speed of both drive wheels 21 and 22 to the increasing side.
  • the control device 40 controls the rotational speed difference between the drive wheels 21 and 22 when the vehicle 10 is in an understeer or oversteer state. Adjust the turning radius. Specifically, when the vehicle is in an understeer state, the rotational speed of the left driving wheel 21 is changed to the increasing side, thereby increasing the rotational speed difference between the driving wheels 21 and 22. When the vehicle is in an oversteer state, the rotational speed of the right driving wheel 22 is changed to the increasing side, thereby reducing the rotational speed difference between the driving wheels 21 and 22.
  • FIG. 6 is a flowchart showing the processing procedure for vehicle travel control. This process is executed by the control device 40 in place of the process shown in FIG. 4 described above. In addition, in this process, the same step numbers are given to the processes that overlap with those in FIG. 4, and the description thereof will be omitted.
  • step S14 the vehicle 10 is currently in a turning state (step S14 is YES), and the amount of deviation of the actual turning radius from the target turning radius is greater than or equal to the threshold TH1 and less than the threshold TH2 (steps S15 and S16 are both If the answer is YES), the process advances to step S31.
  • step S31 it is determined whether the current target turning radius is larger than a predetermined reference radius Rs. If the target turning radius is larger than the reference radius Rs, the process proceeds to step S18, and if the target turning radius is smaller than the reference radius Rs, the process proceeds to step S21.
  • the reference radius Rs is preferably determined assuming a standard corner radius on the travel route. It is also possible to set the corner radius with the largest number on the travel route as the reference radius Rs, or to set the average radius of curvature of all corners as the reference radius Rs.
  • steps S18 to S20 in a situation where a shift in the turning radius of the vehicle 10 has occurred and the target turning radius is larger than the reference radius Rs, if the understeer condition is present, the rotational speed of both drive wheels 21 and 22 is determined. is decreased to reduce the turning speed of the vehicle 10 (step S19), and if the oversteer condition is present, the rotational speed of both drive wheels 21 and 22 is increased to increase the turning speed of the vehicle 10 (step S20). ). Thereby, the centrifugal force when the vehicle turns is adjusted by speed control of the vehicle 10, and the turning radius of the vehicle 10 is optimized.
  • steps S21 to S23 if there is a deviation in the turning radius of the vehicle 10 and the target turning radius is smaller than the reference radius Rs, and the vehicle is in an understeer state, for example, the rotational speed of the drive wheel on the outside of the turn is changed.
  • the rotational speed difference is increased by increasing the rotational speed difference (step S22), and if the oversteer condition is present, the rotational speed of the drive wheel on the inside of the turn is increased, for example, to make the rotational speed difference smaller (step S23).
  • the centrifugal force during the vehicle turning is adjusted by speed control of the vehicle 10, and the turning radius of the vehicle 10 is adjusted. It is desirable to optimize the radius.
  • the balance between the rotational speeds of the left and right drive wheels 21 and 22 is adjusted, and the vehicle 10 It is desirable to optimize the turning radius of the vehicle.
  • a second adjustment amount for adjusting the rotational speed of each drive wheel 21, 22 is calculated based on the deviation amount of the turning radius and the target turning radius, and the first adjustment amount and the second adjustment amount are calculated.
  • the rotational speed of each drive wheel 21, 22 may be adjusted based on this.
  • the control device 40 may perform the process shown in FIG. 7 . Note that in FIG. 7, processing for acquiring vehicle weight and turning radius information, processing for determining turning, etc. are omitted.
  • step S41 it is determined whether or not there is a deviation in the turning radius when the vehicle is turning, and in step S42, it is determined whether or not the vehicle is in an understeer state. If both steps S41 and S42 are YES, the process advances to step S43.
  • step S43 a first adjustment amount for adjusting the rotational speed of each drive wheel 21, 22 is calculated based on the deviation amount of the turning radius and the vehicle weight, and in the subsequent step S44, the deviation amount of the turning radius and the vehicle weight are calculated.
  • a second adjustment amount for adjusting the rotational speed of each drive wheel 21, 22 is calculated based on the target turning radius.
  • each of these adjustment amounts includes an adjustment amount of the rotational speed of each driving wheel 21, 22 for changing the turning speed of the vehicle 10, or an adjustment amount for adjusting the rotational speed difference between each driving wheel 21, 22. It's good to have one. The details are as described above. Note that the relationship in FIGS. 8(a) and (b) can be changed as appropriate; for example, in FIG. 8(b), the larger the target turning radius, the larger the value set as the second adjustment amount. You can.
  • step S45 the larger of the adjustment amounts in steps S43 and S44 is finally set as adjustment data and stored in the memory.
  • step S41 is YES and step S42 is NO, the process advances to step S46.
  • steps S46 to S48 the first adjustment amount and the second adjustment amount are calculated and the adjustment data is stored in the memory, similarly to steps S43 to S45.
  • the rotational speed of each drive wheel 21, 22 can be appropriately adjusted while taking into account the size of the vehicle weight and the target turning radius of the travel route.
  • the turning of the vehicle 10 when there is a deviation in the turning radius, the turning of the vehicle 10 is determined based on whether the weight is heavier than the reference weight or whether the target turning radius is larger than the reference radius.
  • the configuration is such that switching is performed between controlling the speed and controlling the rotational speed difference between the drive wheels, this may be changed.
  • the turning speed of the vehicle 10 when a turning radius deviation occurs, the turning speed of the vehicle 10 is controlled regardless of whether the weight is heavier than the reference weight or whether the target turning radius is larger than the reference radius.
  • the difference in rotational speed of each drive wheel can be controlled regardless of whether the weight is heavier than the reference weight or whether the target turning radius is larger than the reference radius. It is also possible to have a configuration in which
  • the configuration may be such that adjustment data for adjusting the rotational speed of each of the drive wheels 21 and 22 is calculated not during actual transport of the article but during simulated travel.
  • the vehicle 10, which is an automatic driving vehicle, may be configured to be used outside of an automatic warehouse.
  • the rotational speed of each drive wheel 21, 22 may be adjusted in consideration of environmental information such as map information and climate information.
  • control device 40 performs the process of determining that the actual turning radius deviates from the target turning radius when the vehicle 10 is turning (processing of the turning state determination unit);
  • the configuration is such that the process of adjusting the rotational speed of each drive wheel 21, 22 (processing of the adjustment section) is carried out based on the deviation of the turning radius, but instead of this, at least one of the above processes can be performed externally
  • the configuration may be implemented by the device 100.
  • the vehicle 10 is a four-wheeled vehicle having a pair of driving wheels 21, 22 and a pair of driven wheels 31, 32, but it may be other than a four-wheeled vehicle.
  • the vehicle may be a three-wheeled vehicle having a pair of driving wheels and one driven wheel.
  • a configuration may be adopted in which all four wheels are driving wheels.
  • control unit and the method described in the present disclosure are implemented by a dedicated computer provided by configuring a processor and memory programmed to perform one or more functions embodied by a computer program. may be done.
  • the controller and techniques described in this disclosure may be implemented by a dedicated computer provided by a processor configured with one or more dedicated hardware logic circuits.
  • the control unit and the method described in the present disclosure may be implemented using a combination of a processor and memory programmed to perform one or more functions and a processor configured by one or more hardware logic circuits. It may be implemented by one or more dedicated computers configured.
  • the computer program may also be stored as instructions executed by a computer on a computer-readable non-transitory tangible storage medium.
  • a control device (40, 100) that controls traveling of the vehicle by controlling driving of each of the drive wheels, a rotation control unit that controls the rotation speed of each of the drive wheels when the vehicle is running; a turning state determination unit that determines that an actual turning radius deviates from a target turning radius when the vehicle turns; an adjustment unit that adjusts the rotational speed of each drive wheel by the rotation control unit based on the deviation in the turning radius;
  • a vehicle control device comprising: [Configuration 2] comprising a weight determination unit that acquires the weight of the vehicle and determines whether the weight is heavier than a predetermined reference weight; If it is determined that the turning radius is deviated and the weight is heavier than the reference weight, the adjustment unit adjusts the rotational speed of each drive wheel to adjust the turning speed of the vehicle.
  • the vehicle control device controls speed, and if it is determined that the weight is lighter than the reference weight, controls the difference in rotational speed between the pair of drive wheels.
  • Configuration 3 Applied to a vehicle travel system in which the vehicle travels on a predetermined travel route, comprising a turning radius determination unit that determines whether the target turning radius of a corner portion in the travel route is larger than a predetermined reference radius; When it is determined that a deviation in the turning radius has occurred and the target turning radius is larger than the reference radius, the adjustment section adjusts the rotational speed of each of the drive wheels to adjust the speed of the vehicle.
  • the vehicle control device according to configuration 1 or 2, wherein the vehicle control device controls a rotational speed difference between the pair of drive wheels if it is determined that the target turning radius is smaller than the reference radius.
  • the turning state determination unit determines whether the actual turning radius is larger or smaller than the target turning radius when there is a deviation between the actual turning radius and the target turning radius,
  • the adjustment section is In the case where the turning speed of the vehicle is controlled by adjusting the rotational speed of each of the driving wheels, if it is determined that the actual turning radius is larger than the target turning radius, the rotational speed of each of the driving wheels is reduced.
  • the adjustment section is When it is determined that a deviation in the turning radius has occurred, calculating a first adjustment amount for adjusting the rotational speed of each drive wheel based on the deviation amount in the turning radius and the weight of the vehicle; , calculating a second adjustment amount for adjusting the rotational speed of each drive wheel based on the deviation amount of the turning radius and the target turning radius;
  • the vehicle control device according to any one of configurations 1 to 4, wherein the rotational speed of each drive wheel is adjusted using the larger of the first adjustment amount and the second adjustment amount.
  • the tread which is the distance between the pair of drive wheels, or the wheel base between the wheels provided on the front and rear sides in the direction of travel is adjusted.
  • the vehicle control device according to any one of configurations 1 to 5, comprising an adjustment command unit that commands.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Mathematical Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

車両(10)は、車両進行方向に対して左右となる2位置に取り付けられ、各々モータ(23,24)を有し当該各モータが独立して駆動される一対の駆動輪(21,22)を備えている。制御装置(40)は、各駆動輪の駆動を制御することで、車両の走行を制御する。制御装置(40)は、車両の走行時において駆動輪ごとに回転速度を制御する回転制御部と、車両の旋回走行時に、目標旋回半径に対して実際の旋回半径のずれが生じていることを判定する旋回状態判定部と、旋回半径のずれに基づいて、回転制御部による各駆動輪の回転速度を調整する調整部と、を備えている。

Description

車両制御装置及びプログラム 関連出願の相互参照
 本出願は、2022年3月28日に出願された日本出願番号2022-052566号に基づくもので、ここにその記載内容を援用する。
 この明細書における開示は、各々独立して駆動される一対の駆動輪を備える車両についてその走行を制御する車両制御装置及びプログラムに関する。
 従来、例えば物品等の搬送に用いられる車両として、複数の車輪にそれぞれモータを組み付け、それら各車輪を独立して駆動することで、所望の走行経路での走行を可能としたものが知られている(例えば特許文献1参照)。また、無人搬送車として、ホイールモータを備える左右一対の車輪を有し、それら各車輪を個別に制御することで、車両を直進、右旋回、左旋回のいずれかの状態で走行させる技術が検討されている。
特開2015-95987号公報
 しかしながら、上記車両を走行させる際には、車両における物品等の積載量が変更されることや、走行経路における走行条件が変わることが考えられる。そのため、車両が旋回走行する際に、所望とする旋回経路よりも意図せず旋回半径が大きくなったり、所望とする旋回経路よりも意図せず旋回半径が小さくなったりすることが懸念される。
 本開示は、上記事情に鑑みてなされたものであり、独立駆動される一対の駆動輪を有する車両において車両を適正に旋回走行させることができる車両制御装置及びプログラムを提供することを目的とする。
 この明細書における開示された複数の態様は、それぞれの目的を達成するために、互いに異なる技術的手段を採用する。この明細書に開示される目的、特徴、および効果は、後続の詳細な説明、および添付の図面を参照することによってより明確になる。
 手段1は、
 車両進行方向に対して左右となる2位置に取り付けられ、各々モータを有し当該各モータが独立して駆動される一対の駆動輪を備える車両に適用され、
 前記各駆動輪の駆動を制御することで、前記車両の走行を制御する制御装置であって、
 前記車両の走行時において前記駆動輪ごとに回転速度を制御する回転制御部と、
 前記車両の旋回走行時に、目標旋回半径に対して実際の旋回半径のずれが生じていることを判定する旋回状態判定部と、
 前記旋回半径のずれに基づいて、前記回転制御部による前記各駆動輪の回転速度を調整する調整部と、
を備える。
 独立駆動される一対の駆動輪を備える車両では、それら一対の駆動輪の制御により、車両の直進及び左右の旋回が可能となる。そして、制御装置において、車両の旋回走行時に、目標旋回半径に対して実際の旋回半径のずれが生じていることを判定し、その旋回半径のずれに基づいて、各駆動輪の回転速度を調整するようにした。この場合、車両における旋回半径のずれを適正に調整することが可能となる。その結果、独立駆動される一対の駆動輪を有する車両において車両を適正に旋回走行させることができる。
 手段2では、前記車両の重量を取得し、その重量が予め定めた基準重量よりも重いか否かを判定する重量判定部を備え、前記調整部は、前記旋回半径のずれが生じていると判定された場合において、前記重量が前記基準重量よりも重いと判定されれば、前記各駆動輪の回転速度の調整により前記車両の旋回速度を制御し、前記重量が前記基準重量よりも軽いと判定されれば、前記一対の駆動輪の回転速度の差を制御する。
 車両の旋回半径のずれが生じている場合において、車両の重量が比較的重ければ、車両の速度制御により車両旋回時の遠心力を調整して、車両の旋回半径を適正化することが望ましい。これに対し、車両の旋回半径のずれが生じている場合において、車両の重量が比較的軽ければ、左右の各駆動輪の回転速度のバランスを調整して、車両の旋回半径を適正化することが望ましい。こうした着想に基づき、車両の旋回半径のずれが生じていると判定された場合において、重量が基準重量よりも重いと判定されれば、各駆動輪の回転速度の調整により車両の旋回速度を制御し、重量が基準重量よりも軽いと判定されれば、一対の駆動輪の回転速度の差を制御するようにした。これにより、車両の重量が変更されることがあっても、車両の適正な旋回走行を実現することができる。
 手段3では、予め定められた走行経路を前記車両が走行する車両走行システムに適用され、前記走行経路においてコーナ部の前記目標旋回半径が予め定めた基準半径よりも大きいか否かを判定する旋回半径判定部を備え、前記調整部は、前記旋回半径のずれが生じていると判定された場合において、前記目標旋回半径が前記基準半径よりも大きいと判定されれば、前記各駆動輪の回転速度の調整により前記車両の旋回速度を制御し、前記目標旋回半径が前記基準半径よりも小さいと判定されれば、前記一対の駆動輪の回転速度の差を制御する。
 車両の旋回半径のずれが生じている場合において、走行経路におけるコーナ部の目標旋回半径が比較的大きければ、車両の速度制御により車両旋回時の遠心力を調整して、車両の旋回半径を適正化することが望ましい。これに対し、車両の旋回半径のずれが生じている場合において、コーナ部の標旋回半径が比較的小さければ、左右の各駆動輪の回転速度のバランスを調整して、車両の旋回半径を適正化することが望ましい。こうした着想に基づき、車両の旋回半径のずれが生じていると判定された場合において、コーナ部の目標旋回半径が基準半径よりも大きいと判定されれば、各駆動輪の回転速度の調整により車両の旋回速度を制御し、コーナ部の目標旋回半径が基準半径よりも小さいと判定されれば、一対の駆動輪の回転速度の差を制御するようにした。これにより、走行経路においてコーナ部の目標旋回半径が大小異なることがあっても、車両の適正な旋回走行を実現することができる。
 手段4では、前記旋回状態判定部は、前記目標旋回半径に対して実際の旋回半径のずれが生じている場合に、前記目標旋回半径に対して実際の旋回半径が大きいか小さいかを判定するものであり、前記調整部は、前記各駆動輪の回転速度の調整により前記車両の旋回速度を制御する場合において、前記目標旋回半径に対して実際の旋回半径が大きいと判定されれば、前記各駆動輪の回転速度を低下させて前記車両の旋回速度を小さくし、前記目標旋回半径に対して実際の旋回半径が小さいと判定されれば、前記各駆動輪の回転速度を増加させて前記車両の旋回速度を大きくし、前記一対の駆動輪の回転速度の差を制御する場合において、前記目標旋回半径に対して実際の旋回半径が大きいと判定されれば、前記一対の駆動輪の回転速度差を大きくし、前記目標旋回半径に対して実際の旋回半径が小さいと判定されれば、前記一対の駆動輪の回転速度差を小さくする。
 これにより、目標旋回半径に対して実際の旋回半径が大きい場合、及び小さい場合のいずれにおいても、各駆動輪の回転速度を適正に調整でき、ひいては所望とする走行経路での走行が可能となる。
 手段5では、前記調整部は、前記旋回半径のずれが生じていると判定された場合において、前記旋回半径のずれ量と前記車両の重量とに基づいて、前記各駆動輪の回転速度を調整する第1調整量を算出するとともに、前記旋回半径のずれ量と前記目標旋回半径とに基づいて、前記各駆動輪の回転速度を調整する第2調整量を算出し、前記第1調整量と前記第2調整量とのうち大きい方を用い、前記各駆動輪の回転速度の調整を実施する。
 上記構成によれば、車両の旋回走行時において、車両重量と走行経路の目標旋回半径との大きさを考慮しつつ、各駆動輪の回転速度を適正に調整することができる。
 手段6では、前記旋回半径のずれが所定の閾値を超えている場合に、前記一対の駆動輪の間隔であるトレッド、又は、進行方向前側及び後側に設けられた各車輪の間のホイールベースを調整する旨を指令する調整指令部を備える。
 旋回半径のずれが所定の閾値を超えている場合として、例えば車両旋回時に過度なオーバステアが生じている場合には、車両の旋回速度を大幅に減少させて対処することが考えられる。ただし、車両の速度減少の程度が大きいほど、物品等の搬送効率が低下することが懸念される。この点、旋回半径のずれが所定の閾値を超えている場合に、車両のトレッド又はホイールベースを調整する旨を指令するようにしたため、車両の旋回速度を過度に調整することを抑制しつつ、適正な車両走行を実現することができる。
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、車両の概略構成を示す図であり、 図2は、自動倉庫内における車両の走行経路を示す図であり、 図3は、車両旋回時の旋回半径を説明する図であり、 図4は、車両走行制御の処理手順を示すフローチャートであり、 図5は、車両旋回時の旋回半径を説明する図であり、 図6は、第2実施形態において車両走行制御の処理手順を示すフローチャートであり、 図7は、別例において車両走行制御の処理手順を示すフローチャートであり、 図8は、(a)は第1調整量を求めるための関係図、(b)は第2調整量を求めるための関係図である。
 以下、実施形態を図面に基づいて説明する。本実施形態における車両は、一対の駆動輪の回転により自動走行可能な電動モビリティであり、例えば物品を搬送する無人搬送車として用いることが可能となっている。ただし、その他に人や動物等の搬送に用いる搬送車として用いることも可能である。なお、以下の各実施形態において、互いに同一又は均等である部分には、図中、同一符号を付しており、同一符号の部分についてはその説明を援用する。
 (第1実施形態)
 本実施形態に係る車両10は、自動倉庫において物品の搬送に用いる無人搬送車であり、その概要を図1に示す。
 図1において、車両10は、車体11と、一対の駆動輪21,22と、一対の従動輪31,32とを備えている。一対の駆動輪21,22は、車両10の進行方向に対して直交する方向の2位置(左右2位置)に取り付けられ、各々独立して駆動される車輪である。一対の従動輪31,32は、各駆動輪21,22の回転に応じて回転し、かつ自由に転舵可能な車輪である。
 各駆動輪21,22は、駆動源としてモータ23,24を有する、いわゆるインホイールモータである。車両10では、モータ23,24ごとにインバータ25,26が設けられている。各駆動輪21,22は、モータ23,24とインバータ25,26とを一体的に有する構成であるとよい。各モータ23,24は、不図示の車載バッテリからの給電により駆動される。なお、各モータ23,24は減速ギアを有するものであってもよい。
 一対の駆動輪21,22及び一対の従動輪31,32は、そのうち一方が車両10の進行方向前側に設けられ、他方が車両10の進行方向後側に設けられている。本実施形態では、進行方向前側に一対の駆動輪21,22が設けられ、進行方向後側に一対の従動輪31,32が設けられた構成としている。ただし、進行方向前側に一対の従動輪31,32を設け、進行方向後側に一対の駆動輪21,22を設ける構成としてもよい。
 車両10において、各駆動輪21,22の位置、及び各従動輪31,32の位置はそれぞれ変更可能となっており、これら各車輪の位置変更により、一対の駆動輪21,22の間隔であるトレッド、又は、進行方向前側及び後側に設けられた各車輪の間のホイールベースの調整が可能となっている。具体的には、車体11は、左右の各駆動輪21,22及び左右の各従動輪31,32について各々の車輪ごとに複数の被取付部を有しており、車体11における各車輪の取付位置を変更することにより、トレッドやホイールベースの調整が可能となっている。車体11において、各車輪が取り付けられた状態で、そのスライド等により車輪取付位置が変更できる構成であってもよい。なお、駆動輪21,22及び従動輪31,32のうち駆動輪21,22のみが位置変更可能であってもよい。
 車両10は、各駆動輪21,22が各々独立して駆動されることにより前進、後退、旋回が可能となっている。各駆動輪21,22が共に正回転することにより車両10が前進し、各駆動輪21,22が共に逆回転することにより車両10が後退する。また、左右の各駆動輪21,22の回転速度を相違させることで、車両10が旋回する。
 車体11は、物品を積載する不図示の積載部を有している。積載部は、自動倉庫においてロボットアーム等による物品の積み降ろしが可能な形態であることが望ましい。
 車両10は、マイコンや各種メモリ等からなる制御装置40と、車両10の状態を検出するセンサ50と、外部装置100との無線通信を可能とする通信装置60とを備えている。制御装置40は、メモリに記憶されている各種プログラムを実行する。センサ50には、例えば、車両重量を検出する重量センサや、車両10の速度を検出する速度センサ、車両10の左右方向の横加速度であるヨーレートを検出するヨーレートセンサ、車両10の周囲を撮像する画像センサが含まれている。重量センサにより、車両10に積載された物品の重量の検出が可能となっている。また、ヨーレートセンサにより、車両10が旋回する際のヨーレート(横加速度)の検出が可能となっている。また、各インバータ25,26には、各モータ23,24のコイルに流れる電流を検出する電流センサが設けられている。
 制御装置40は、通信装置60により受信される外部装置100からの指令信号に基づいて、各駆動輪21,22における各モータ23,24の駆動を制御する。具体的には、制御装置40は、車両走行に際し、通信装置60を介して外部装置100から車両10の速度指令値とヨーレート指令値(旋回指令値)とを受信し、それら速度指令値及びヨーレート指令値や、車両10のトレッド、各駆動輪21,22のタイヤ径に基づいて、左右の駆動輪21,22における各モータ23,24の目標回転速度を算出する。そして、各モータ23,24の回転速度が目標回転速度となるように、インバータ25,26の制御により回転速度フィードバック制御を実施する。
 図2は、自動倉庫内における車両10の走行経路を示す図である。図2に示すように、車両10は、搬送元である始点位置A1から搬送先である終点位置A2に向けて走行経路B1に沿って走行し、その後、終点位置A2から走行経路B2に沿って走行することで始点位置A1に戻る。この場合、走行経路B1は、例えば2つのコーナ部C1,C2を有しており、それら各コーナ部C1,C2の曲率半径R1,R2はR1<R2となっている。自動倉庫内の床面には、走行経路B1,B2に沿って、点状又は線状のマーカが設けられているとよい。なお、車両10は、走行経路B1においてA1とA2との間を往復するものであってもよい。
 自動倉庫内において走行経路を車両10が走行する際には、車両走行の都度、車両10の重量、すなわち積載物を含む車両10の全重量が変動していることが考えられる。すなわち、物品を積載した状態で車両10が走行する場合と、物品を積載しない状態で車両10が走行する場合とでは車両重量が相違する。また、物品の積載量などに応じて車両重量が相違する。この場合、車両重量が相違すると、車両走行状態に影響が及ぶことになり、特に車両10の旋回時において、旋回半径が目標半径よりも大きくなるアンダステア状態(旋回時に曲がりが不足する状態)、又は旋回半径が目標半径よりも小さくなるオーバステア状態(旋回時に過剰に曲がる状態)になることが考えられる。そして、車両10が適正に旋回できなくなることで、車両10や積載物が周囲の物体に接触したり、物品の荷崩れが生じたりすることが懸念される。
 そこで本実施形態では、車両10の旋回走行時に、目標旋回半径に対して実際の旋回半径のずれが生じていることを判定し、その旋回半径のずれに基づいて、各駆動輪21,22の回転速度を調整するようにしている。なお本実施形態では、制御装置40が回転制御部、旋回状態判定部、調整部、重量判定部に相当する。
 各駆動輪21,22の回転速度を調整する処理について説明する。図3(a)は、車両旋回時において、旋回半径が目標半径よりも大きくなるアンダステア状態を説明する図であり、図3(b)は、車両旋回時において、旋回半径が目標半径よりも小さくなるオーバステア状態を説明する図である。なお、これら各図では右旋回の状態を示しており、左側の駆動輪21の回転速度が、右側の駆動輪22の回転速度よりも高回転となっている。また、これら各図において破線が目標軌跡であり、実線が実軌跡である。
 図3(a)に示すアンダステア状態では、制御装置40は、車両10の旋回半径を小さくするべく、各駆動輪21,22の回転速度を制御する。具体的には、両方の駆動輪21,22の回転速度を減少側に変更し、車両10の旋回速度を低下させることにより、車両10の旋回半径を小さくする。又は、左右の駆動輪21,22の回転速度差を大きくするために左側の駆動輪21の回転速度を増加側に変更し(若しくは、右側の駆動輪22の回転速度を減少側に変更し)、車両10の旋回半径を小さくする。
 また、図3(b)に示すオーバステア状態では、制御装置40は、車両10の旋回半径を大きくするべく、各駆動輪21,22の回転速度を制御する。具体的には、両方の駆動輪21,22の回転速度を増加側に変更し、車両10の旋回速度を上昇させることにより、車両10の旋回半径を大きくする。又は、左右の駆動輪21,22の回転速度差を小さくするために右側の駆動輪22の回転速度を増加側に変更し(若しくは、左側の駆動輪21の回転速度を減少側に変更し)、車両10の旋回半径を大きくする。
 図4は、車両走行制御の処理手順を示すフローチャートである。本処理は、車両10の走行が開始される都度、制御装置40により実施される。例えば自動倉庫において、物品を積載した状態で車両10が搬送元から搬送先に走行する際の走行開始時、及び物品を積載していない状態で車両10が搬送先から搬送元に戻る際の走行開始時に、本処理が実施されるとよい。
 図4において、ステップS11では、車両10の重量と、車両走行経路における現時点の目標旋回半径に関する情報とを取得する。このとき、制御装置40は、例えば重量センサにより検出された重量を取得する。また、制御装置40は、外部装置100から受信した車両10の速度指令値やヨーレート指令値に基づいて目標旋回半径を算出する。又は、制御装置が、外部装置100から車両走行経路の目標旋回半径を受信する構成であってもよい。
 その後、ステップS12では、今回の車両重量が属する重量範囲について走行制御の調整データがあるか否か、すなわち、現時点よりも前に、現時点の車両重量に関して各駆動輪21,22の回転速度(モータ回転速度)を調整する調整データが、制御装置40内のメモリに記憶されているか否かを判定する。なお、車両重量は複数の重量範囲で区分けされており、それら重量範囲ごとに、回転速度制御の調整データが記憶されるようになっている。
 そして、走行制御の調整データがあれば、ステップS13に進み、現時点の車両重量に対応する調整データをメモリから読み出す。これにより、車両10が旋回走行する際において調整データを用いて各駆動輪21,22の回転速度が適宜調整される。
 また、走行制御の調整データがなければ、ステップS14に進み、今現在、車両10が旋回状態になっているか否かを判定する。車両10が旋回状態になっていれば、ステップS15に進む。
 ステップS15では、車両旋回時における旋回半径にずれが生じている状態であり、かつ目標旋回半径に対する実際の旋回半径のずれ量が所定の閾値TH1以上であるか否かを判定する。すなわち、車両10の旋回半径は、車両旋回時の走行軌跡に即したものであり、走行軌跡のずれ判定として、目標旋回半径に対して実際の旋回半径のずれが生じていることが判定される。このとき、車両10の旋回半径は、車両速度やヨーレートを検出するセンサの検出情報から算出されるとよい。また、画像センサにより取得された画像から走行経路に設けられたマーカを検知し、その検知情報に基づいて旋回半径が算出される構成であってもよい。
 ステップS15がYESであれば、ステップS16に進み、旋回半径のずれ量が閾値TH1よりも大きい閾値TH2未満であるか否かを判定する。そして、ステップS16がYESであれば、ステップS17に進み、ステップS16がNOであれば、ステップS24に進む。
 ステップS17では、車両10の重量が予め定めた基準重量Wsよりも重いか否かを判定する。そして、車両重量が基準重量Wsよりも重ければ、ステップS18に進み、車両重量が基準重量Wsよりも軽ければ、ステップS21に進む。基準重量Wsは、標準的な積載物を想定した重量(例えば10kg,20kg…,100kg,200kg…など)として定められているとよい。また、空荷の状態、すなわち積載物の無い状態の車両重量を基準重量Wsとすることも可能である。
 ステップS18では、目標旋回半径に対して実際の旋回半径が大きい状態であるか否か、すなわちアンダステア状態になっているか否かを判定する。そして、アンダステア状態になっていれば、ステップS19に進み、両方の駆動輪21,22の回転速度を低下させて車両10の旋回速度を小さくする。また、オーバステア状態になっていれば、ステップS20に進み、両方の駆動輪21,22の回転速度を増加させて車両10の旋回速度を大きくする。ステップS19,S20では、各駆動輪21,22の回転速度(モータ回転速度)の調整結果が、調整データとして、現時点の車両重量に対応させてメモリに記憶される。ステップS18~S20によれば、車両10の旋回半径のずれが生じており、かつ車両重量が比較的重い状況において、車両10の速度制御により車両旋回時の遠心力が調整され、これにより、車両10の旋回半径が適正化される。
 また、ステップS21では、目標旋回半径に対して実際の旋回半径が大きい状態であるか否か、すなわちアンダステア状態になっているか否かを判定する。そして、アンダステア状態になっていれば、ステップS22に進み、例えば旋回外側の駆動輪の回転速度を増加させて回転速度差を大きくする。また、オーバステア状態になっていれば、ステップS23に進み、例えば旋回内側の駆動輪の回転速度を増加させて回転速度差を小さくする。ステップS22,S23では、各駆動輪21,22の回転速度(モータ回転速度)の調整結果が、調整データとして、現時点の車両重量に対応させてメモリに記憶される。ステップS21~S23によれば、車両10の旋回半径のずれが生じており、かつ車両重量が比較的軽い状況において、左右の各駆動輪21,22の回転速度のバランスが調整され、車両10の旋回半径が適正化される。
 ステップS24では、車両10のトレッド及びホイールベースのいずれかを調整する旨を指令する。このとき、トレッドの調整指令又はホイールベースの調整指令が、制御装置40から外部装置100に送信されるとよい。
 トレッドの調整として具体的には、旋回半径が目標旋回半径よりも大きくなるアンダステアが生じていれば、トレッドを大きくする旨の調整を指令し、旋回半径が目標旋回半径よりも小さくなるオーバステアが生じていれば、トレッドを小さくする旨の調整を指令するとよい。また、ホイールベースの調整として具体的には、旋回半径が目標旋回半径よりも大きくなるアンダステアが生じていれば、ホイールベースを小さくする旨の調整を指令し、旋回半径が目標旋回半径よりも小さくなるオーバステアが生じていれば、ホイールベースを大きくする旨の調整を指令するとよい。
 以上詳述した本実施形態によれば、以下の優れた効果が得られる。
 車両10の旋回走行時に、目標旋回半径に対して実際の旋回半径のずれが生じていることを判定し、その旋回半径のずれに基づいて、各駆動輪21,22の回転速度を調整するようにした。この場合、車両10における旋回半径のずれを適正に調整することが可能となる。その結果、独立駆動される一対の駆動輪21,22を有する車両10において車両10を適正に旋回走行させることができる。
 車両10の旋回半径のずれが生じている場合において、車両重量が比較的重ければ、車両10の速度制御により車両旋回時の遠心力を調整して、車両10の旋回半径を適正化することが望ましい。これに対し、車両10の旋回半径のずれが生じている場合において、車両重量が比較的軽ければ、左右の各駆動輪21,22の回転速度のバランスを調整して、車両10の旋回半径を適正化することが望ましい。こうした着想に基づき、車両10の旋回半径のずれが生じていると判定された場合において、車両重量が基準重量Wsよりも重いと判定されれば、各駆動輪21,22の回転速度の調整により車両10の旋回速度を制御し、車両重量が基準重量Wsよりも軽いと判定されれば、一対の駆動輪21,22の回転速度の差を制御するようにした。これにより、車両重量が変更されることがあっても、車両10の適正な旋回走行を実現することができる。
 車両10の旋回速度を制御する場合において、目標旋回半径に対して実際の旋回半径が大きければ、各駆動輪21,22の回転速度を低下させて車両10の旋回速度を小さくし、目標旋回半径に対して実際の旋回半径が小さければ、各駆動輪21,22の回転速度を増加させて車両の旋回速度を大きくするようにした。また、一対の駆動輪21,22の回転速度差を制御する場合において、目標旋回半径に対して実際の旋回半径が大きければ、一対の駆動輪21,22の回転速度差を大きくし、目標旋回半径に対して実際の旋回半径が小さければ、一対の駆動輪21,22の回転速度差を小さくするようにした。これにより、目標旋回半径に対して実際の旋回半径が大きい場合、及び小さい場合のいずれにおいても、各駆動輪21,22の回転速度を適正に調整でき、ひいては所望とする走行経路での走行が可能となる。
 旋回半径のずれが所定の閾値を超えている場合として、例えば車両旋回時に過度なオーバステアが生じている場合には、車両10の旋回速度を大幅に減少させて対処することが考えられる。ただし、車両10の速度減少の程度が大きいほど、物品等の搬送効率が低下することが懸念される。この点、旋回半径のずれが所定の閾値を超えている場合に、車両10のトレッド又はホイールベースを調整する旨を指令するようにしたため、車両10の旋回速度を過度に調整することを抑制しつつ、適正な車両走行を実現することができる。
 なお、車両10のトレッド又はホイールベースの調整は、各駆動輪21,22の回転速度の調整に代えて実施されてもよいし、各駆動輪21,22の回転速度の調整に加えて実施されてもよい。
 (第2実施形態)
 次に、第2実施形態の構成について、第1実施形態と相違点を主として説明する。本実施形態では、旋回半径のずれが生じていると判定された場合において、車両10の走行経路におけるコーナ部の目標旋回半径が予め定めた基準半径よりも大きいか否かを判定し、目標旋回半径が基準半径よりも大きければ、両方の駆動輪21,22の回転速度の調整により車両10の旋回速度を制御し、目標旋回半径が基準半径よりも小さければ、各駆動輪21,22の回転速度の差を制御することとしている。本実施形態では、制御装置40が旋回半径判定部にも相当する。
 各駆動輪21,22の回転速度を調整する処理について説明する。図5(a)は、車両旋回時において、目標旋回半径が比較的大きい場合(予め定めた基準半径よりも大きい場合)の旋回状態を説明する図であり、図5(b)は、車両旋回時において、目標旋回半径が比較的小さい場合(予め定めた基準半径よりも小さい場合)の旋回状態を説明する図である。
 図5(a)に示す状態では、制御装置40は、車両10がアンダステア又はオーバステアの状態となっている場合に、各駆動輪21,22の回転速度の調整により車両10の旋回速度を制御することで、車両10の旋回半径を調整する。具体的には、アンダステア状態である場合に、両方の駆動輪21,22の回転速度を減少側に変更することにより、車両10の旋回速度を低下させる。オーバステア状態である場合に、両方の駆動輪21,22の回転速度を増加側に変更することにより、車両10の旋回速度を上昇させる。
 また、図5(b)に示す状態では、制御装置40は、車両10がアンダステア又はオーバステアの状態となっている場合に、各駆動輪21,22の回転速度差を制御することで、車両10の旋回半径を調整する。具体的には、アンダステア状態である場合に、左側の駆動輪21の回転速度を増加側に変更することにより、各駆動輪21,22の回転速度差を増加させる。オーバステア状態である場合に、右側の駆動輪22の回転速度を増加側に変更することにより、各駆動輪21,22の回転速度差を減少させる。
 図6は、車両走行制御の処理手順を示すフローチャートである。本処理は、既述の図4の処理に代えて制御装置40により実施される。なお、本処理において、図4と重複する処理については同じステップ番号を付して説明を省略する。
 図6では、今現在、車両10が旋回状態であり(ステップS14がYES)、目標旋回半径に対する実際の旋回半径のずれ量が閾値TH1以上、かつ閾値TH2未満であり(ステップS15,S16が共にYES)である場合にステップS31に進む。ステップS31では、現時点の目標旋回半径が予め定めた基準半径Rsよりも大きいか否かを判定する。そして、目標旋回半径が基準半径Rsよりも大きければ、ステップS18に進み、目標旋回半径が基準半径Rsよりも小さければ、ステップS21に進む。基準半径Rsは、走行経路における標準的なコーナ半径を想定して定められているとよい。走行経路において数が最多となるコーナ半径を基準半径Rsとしたり、全コーナ部の曲率半径の平均を基準半径Rsとしたりすることも可能である。
 ステップS18~S20では、車両10の旋回半径のずれが生じており、かつ目標旋回半径が基準半径Rsよりも大きい状況において、アンダステア状態になっていれば、両方の駆動輪21,22の回転速度を低下させて車両10の旋回速度を小さくし(ステップS19)、オーバステア状態になっていれば、両方の駆動輪21,22の回転速度を増加させて車両10の旋回速度を大きくする(ステップS20)。これにより、車両10の速度制御により車両旋回時の遠心力が調整され、車両10の旋回半径が適正化される。
 ステップS21~S23では、車両10の旋回半径のずれが生じており、かつ目標旋回半径が基準半径Rsよりも小さい状況において、アンダステア状態になっていれば、例えば旋回外側の駆動輪の回転速度を増加させて回転速度差を大きくし(ステップS22)、オーバステア状態になっていれば、例えば旋回内側の駆動輪の回転速度を増加させて回転速度差を小さくする(ステップS23)。これにより、左右の各駆動輪21,22の回転速度のバランスが調整され、車両10の旋回半径が適正化される。
 車両10の旋回半径のずれが生じている場合において、走行経路におけるコーナ部の目標旋回半径が比較的大きければ、車両10の速度制御により車両旋回時の遠心力を調整して、車両10の旋回半径を適正化することが望ましい。これに対し、車両10の旋回半径のずれが生じている場合において、コーナ部の標旋回半径が比較的小さければ、左右の各駆動輪21,22の回転速度のバランスを調整して、車両10の旋回半径を適正化することが望ましい。こうした着想に基づき、車両10の旋回半径のずれが生じていると判定された場合において、コーナ部の目標旋回半径が基準半径Rsよりも大きいと判定されれば、各駆動輪21,22の回転速度の調整により車両10の旋回速度を制御し、コーナ部の目標旋回半径が基準半径Rsよりも小さいと判定されれば、一対の駆動輪21,22の回転速度の差を制御するようにした。これにより、走行経路においてコーナ部の目標旋回半径が大小異なることがあっても、車両10の適正な旋回走行を実現することができる。
 (他の実施形態)
 上記実施形態を例えば次のように変更してもよい。
 ・車両旋回時における旋回半径にずれが生じていると判定された場合において、旋回半径のずれ量と車両10の重量とに基づいて、各駆動輪21,22の回転速度を調整する第1調整量を算出するとともに、旋回半径のずれ量と目標旋回半径とに基づいて、各駆動輪21,22の回転速度を調整する第2調整量を算出し、それら第1調整量と第2調整量とに基づいて、各駆動輪21,22の回転速度を調整する構成としてもよい。具体的には、制御装置40は、図7の処理を実施するとよい。なお、図7において、車両重量や旋回半径情報の取得の処理、旋回判定の処理等については割愛している。
 図7において、ステップS41では、車両旋回時において旋回半径にずれが生じている状態であるか否かを判定し、ステップS42では、アンダステア状態になっているか否かを判定する。そして、ステップS41,S42が共にYESであれば、ステップS43に進む。ステップS43では、旋回半径のずれ量と車両重量とに基づいて、各駆動輪21,22の回転速度を調整するための第1調整量を算出し、続くステップS44では、旋回半径のずれ量と目標旋回半径とに基づいて、各駆動輪21,22の回転速度を調整するための第2調整量を算出する。
 これら各調整量の算出について具体的には、例えば図8(a)の関係を用い、旋回半径のずれ量が大きいほど又は重量が大きいほど、第1調整量として大きい値を設定する。また、例えば図8(b)の関係を用い、旋回半径のずれ量が大きいほど又は目標旋回半径が小さいほど、第2調整量として大きい値を設定する。これら各調整量には、車両10の旋回速度を変更するための各駆動輪21,22の回転速度の調整量、又は、各駆動輪21,22の回転速度差を調整する調整量が含まれているとよい。その詳細は既述のとおりである。なお、図8(a),(b)の関係は適宜の変更が可能であり、例えば図8(b)において、目標旋回半径が大きいほど、第2調整量として大きい値を設定するものであってもよい。
 その後、ステップS45では、ステップS43,S44の各調整量のうち大きい方を最終的に調整データとし、メモリに記憶する。
 また、ステップS41がYES、ステップS42がNOであれば、ステップS46に進む。ステップS46~S48では、ステップS43~S45と同様に、第1調整量及び第2調整量の算出と調整データのメモリ記憶とを実施する。
 上記構成によれば、車両10の旋回走行時において、車両重量と走行経路の目標旋回半径との大きさを考慮しつつ、各駆動輪21,22の回転速度を適正に調整することができる。
 ・上記各実施形態では、旋回半径のずれが生じている場合において、重量が基準重量よりも重いか否か、又は目標旋回半径が基準半径よりも大きいか否かに基づいて、車両10の旋回速度を制御するか、各駆動輪の回転速度差を制御するかを切り替える構成としたが、これを変更してもよい。例えば、旋回半径のずれが生じている場合において、重量が基準重量よりも重いか否か、又は目標旋回半径が基準半径よりも大きいか否かに関係なく、車両10の旋回速度を制御する構成としてもよい。又は、旋回半径のずれが生じている場合において、重量が基準重量よりも重いか否か、又は目標旋回半径が基準半径よりも大きいか否かに関係なく、各駆動輪の回転速度差を制御する構成としてもよい。
 ・実際の物品の搬送時でなく、模擬走行において、各駆動輪21,22の回転速度を調整する調整データを算出する構成であってもよい。
 ・自動走行車である車両10を、自動倉庫以外で用いる構成であってもよい。例えば屋外での使用を想定する場合には、地図情報や気候情報などの環境情報を加味して、各駆動輪21,22の回転速度の調整を行うとよい。
 ・上記実施形態では、制御装置40が、車両10の旋回走行時に、目標旋回半径に対して実際の旋回半径のずれが生じていることを判定する処理(旋回状態判定部の処理)と、その旋回半径のずれに基づいて、各駆動輪21,22の回転速度を調整する処理(調整部の処理)とを実施する構成としたが、これに代えて、上記各処理の少なくとも一方を、外部装置100が実施する構成であってもよい。
 ・上記実施形態では、車両10を、一対の駆動輪21,22と一対の従動輪31,32とを有する4輪車両としたが、4輪車両以外としてもよい。例えば一対の駆動輪と1つの従動輪とを有する3輪車両としてもよい。また、4輪全てを駆動輪とする構成であってもよい。
 本開示に記載の制御部及びその手法は、コンピュータプログラムにより具体化された一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリを構成することによって提供された専用コンピュータにより、実現されてもよい。あるいは、本開示に記載の制御部及びその手法は、一つ以上の専用ハードウエア論理回路によってプロセッサを構成することによって提供された専用コンピュータにより、実現されてもよい。もしくは、本開示に記載の制御部及びその手法は、一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリと一つ以上のハードウエア論理回路によって構成されたプロセッサとの組み合わせにより構成された一つ以上の専用コンピュータにより、実現されてもよい。また、コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されていてもよい。
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。
 上述の実施形態から抽出される技術思想を以下に記載する。
[構成1]
 車両進行方向に対して左右となる2位置に取り付けられ、各々モータ(23,24)を有し当該各モータが独立して駆動される一対の駆動輪(21,22)を備える車両(10)に適用され、
 前記各駆動輪の駆動を制御することで、前記車両の走行を制御する制御装置(40,100)であって、
 前記車両の走行時において前記駆動輪ごとに回転速度を制御する回転制御部と、
 前記車両の旋回走行時に、目標旋回半径に対して実際の旋回半径のずれが生じていることを判定する旋回状態判定部と、
 前記旋回半径のずれに基づいて、前記回転制御部による前記各駆動輪の回転速度を調整する調整部と、
を備える車両制御装置。
[構成2]
 前記車両の重量を取得し、その重量が予め定めた基準重量よりも重いか否かを判定する重量判定部を備え、
 前記調整部は、前記旋回半径のずれが生じていると判定された場合において、前記重量が前記基準重量よりも重いと判定されれば、前記各駆動輪の回転速度の調整により前記車両の旋回速度を制御し、前記重量が前記基準重量よりも軽いと判定されれば、前記一対の駆動輪の回転速度の差を制御する、構成1に記載の車両制御装置。
[構成3]
 予め定められた走行経路を前記車両が走行する車両走行システムに適用され、
 前記走行経路においてコーナ部の前記目標旋回半径が予め定めた基準半径よりも大きいか否かを判定する旋回半径判定部を備え、
 前記調整部は、前記旋回半径のずれが生じていると判定された場合において、前記目標旋回半径が前記基準半径よりも大きいと判定されれば、前記各駆動輪の回転速度の調整により前記車両の旋回速度を制御し、前記目標旋回半径が前記基準半径よりも小さいと判定されれば、前記一対の駆動輪の回転速度の差を制御する、構成1又は2に記載の車両制御装置。
[構成4]
 前記旋回状態判定部は、前記目標旋回半径に対して実際の旋回半径のずれが生じている場合に、前記目標旋回半径に対して実際の旋回半径が大きいか小さいかを判定するものであり、
 前記調整部は、
 前記各駆動輪の回転速度の調整により前記車両の旋回速度を制御する場合において、前記目標旋回半径に対して実際の旋回半径が大きいと判定されれば、前記各駆動輪の回転速度を低下させて前記車両の旋回速度を小さくし、前記目標旋回半径に対して実際の旋回半径が小さいと判定されれば、前記各駆動輪の回転速度を増加させて前記車両の旋回速度を大きくし、
 前記一対の駆動輪の回転速度の差を制御する場合において、前記目標旋回半径に対して実際の旋回半径が大きいと判定されれば、前記一対の駆動輪の回転速度差を大きくし、前記目標旋回半径に対して実際の旋回半径が小さいと判定されれば、前記一対の駆動輪の回転速度差を小さくする、構成2又は3に記載の車両制御装置。
[構成5]
 前記調整部は、
 前記旋回半径のずれが生じていると判定された場合において、前記旋回半径のずれ量と前記車両の重量とに基づいて、前記各駆動輪の回転速度を調整する第1調整量を算出するとともに、前記旋回半径のずれ量と前記目標旋回半径とに基づいて、前記各駆動輪の回転速度を調整する第2調整量を算出し、
 前記第1調整量と前記第2調整量とのうち大きい方を用い、前記各駆動輪の回転速度の調整を実施する、構成1~4のいずれか1つに記載の車両制御装置。
[構成6]
 前記旋回半径のずれが所定の閾値を超えている場合に、前記一対の駆動輪の間隔であるトレッド、又は、進行方向前側及び後側に設けられた各車輪の間のホイールベースを調整する旨を指令する調整指令部を備える、構成1~5のいずれか1つに記載の車両制御装置。

Claims (7)

  1.  車両進行方向に対して左右となる2位置に取り付けられ、各々モータ(23,24)を有し当該各モータが独立して駆動される一対の駆動輪(21,22)を備える車両(10)に適用され、
     前記各駆動輪の駆動を制御することで、前記車両の走行を制御する制御装置(40,100)であって、
     前記車両の走行時において前記駆動輪ごとに回転速度を制御する回転制御部と、
     前記車両の旋回走行時に、目標旋回半径に対して実際の旋回半径のずれが生じていることを判定する旋回状態判定部と、
     前記旋回半径のずれに基づいて、前記回転制御部による前記各駆動輪の回転速度を調整する調整部と、
    を備える車両制御装置。
  2.  前記車両の重量を取得し、その重量が予め定めた基準重量よりも重いか否かを判定する重量判定部を備え、
     前記調整部は、前記旋回半径のずれが生じていると判定された場合において、前記重量が前記基準重量よりも重いと判定されれば、前記各駆動輪の回転速度の調整により前記車両の旋回速度を制御し、前記重量が前記基準重量よりも軽いと判定されれば、前記一対の駆動輪の回転速度の差を制御する、請求項1に記載の車両制御装置。
  3.  予め定められた走行経路を前記車両が走行する車両走行システムに適用され、
     前記走行経路においてコーナ部の前記目標旋回半径が予め定めた基準半径よりも大きいか否かを判定する旋回半径判定部を備え、
     前記調整部は、前記旋回半径のずれが生じていると判定された場合において、前記目標旋回半径が前記基準半径よりも大きいと判定されれば、前記各駆動輪の回転速度の調整により前記車両の旋回速度を制御し、前記目標旋回半径が前記基準半径よりも小さいと判定されれば、前記一対の駆動輪の回転速度の差を制御する、請求項1に記載の車両制御装置。
  4.  前記旋回状態判定部は、前記目標旋回半径に対して実際の旋回半径のずれが生じている場合に、前記目標旋回半径に対して実際の旋回半径が大きいか小さいかを判定するものであり、
     前記調整部は、
     前記各駆動輪の回転速度の調整により前記車両の旋回速度を制御する場合において、前記目標旋回半径に対して実際の旋回半径が大きいと判定されれば、前記各駆動輪の回転速度を低下させて前記車両の旋回速度を小さくし、前記目標旋回半径に対して実際の旋回半径が小さいと判定されれば、前記各駆動輪の回転速度を増加させて前記車両の旋回速度を大きくし、
     前記一対の駆動輪の回転速度の差を制御する場合において、前記目標旋回半径に対して実際の旋回半径が大きいと判定されれば、前記一対の駆動輪の回転速度差を大きくし、前記目標旋回半径に対して実際の旋回半径が小さいと判定されれば、前記一対の駆動輪の回転速度差を小さくする、請求項2又は3に記載の車両制御装置。
  5.  前記調整部は、
     前記旋回半径のずれが生じていると判定された場合において、前記旋回半径のずれ量と前記車両の重量とに基づいて、前記各駆動輪の回転速度を調整する第1調整量を算出するとともに、前記旋回半径のずれ量と前記目標旋回半径とに基づいて、前記各駆動輪の回転速度を調整する第2調整量を算出し、
     前記第1調整量と前記第2調整量とのうち大きい方を用い、前記各駆動輪の回転速度の調整を実施する、請求項1に記載の車両制御装置。
  6.  前記旋回半径のずれが所定の閾値を超えている場合に、前記一対の駆動輪の間隔であるトレッド、又は、進行方向前側及び後側に設けられた各車輪の間のホイールベースを調整する旨を指令する調整指令部を備える、請求項1に記載の車両制御装置。
  7.  車両進行方向に対して左右となる2位置に取り付けられ、各々モータ(23,24)を有し当該各モータが独立して駆動される一対の駆動輪(21,22)を備える車両(10)に適用され、
     制御装置(40,100)により実行可能であり、前記各駆動輪の駆動を制御することで、前記車両の走行を制御するプログラムであって、
     前記車両の走行時において前記駆動輪ごとに回転速度を制御する回転制御ステップと、
     前記車両の旋回走行時に、目標旋回半径に対して実際の旋回半径のずれが生じていることを判定する旋回状態判定ステップと、
     前記旋回半径のずれに基づいて、前記回転制御ステップによる前記各駆動輪の回転速度を調整する調整ステップと、
    を備えるプログラム。
PCT/JP2023/007866 2022-03-28 2023-03-02 車両制御装置及びプログラム WO2023189180A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-052566 2022-03-28
JP2022052566A JP2023145208A (ja) 2022-03-28 2022-03-28 車両制御装置及びプログラム

Publications (1)

Publication Number Publication Date
WO2023189180A1 true WO2023189180A1 (ja) 2023-10-05

Family

ID=88201213

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/007866 WO2023189180A1 (ja) 2022-03-28 2023-03-02 車両制御装置及びプログラム

Country Status (2)

Country Link
JP (1) JP2023145208A (ja)
WO (1) WO2023189180A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59141405U (ja) * 1983-03-09 1984-09-21 日産自動車株式会社 電気自動車
JPH05185859A (ja) * 1992-01-09 1993-07-27 Nissan Motor Co Ltd 車両用駆動系クラッチ制御装置
JPH06281471A (ja) * 1993-03-26 1994-10-07 Honda Motor Co Ltd 車両の通過可否判定装置及び車両の通過可能車速設定装置
JP2011046275A (ja) * 2009-08-27 2011-03-10 Equos Research Co Ltd 車両
WO2017179204A1 (ja) * 2016-04-15 2017-10-19 三菱電機株式会社 搬送装置、搬送装置の速度制御方法及び搬送装置の制御プログラム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59141405U (ja) * 1983-03-09 1984-09-21 日産自動車株式会社 電気自動車
JPH05185859A (ja) * 1992-01-09 1993-07-27 Nissan Motor Co Ltd 車両用駆動系クラッチ制御装置
JPH06281471A (ja) * 1993-03-26 1994-10-07 Honda Motor Co Ltd 車両の通過可否判定装置及び車両の通過可能車速設定装置
JP2011046275A (ja) * 2009-08-27 2011-03-10 Equos Research Co Ltd 車両
WO2017179204A1 (ja) * 2016-04-15 2017-10-19 三菱電機株式会社 搬送装置、搬送装置の速度制御方法及び搬送装置の制御プログラム

Also Published As

Publication number Publication date
JP2023145208A (ja) 2023-10-11

Similar Documents

Publication Publication Date Title
EP3932761A1 (en) Vehicle abnormal lane change control method, device and system
US10843683B2 (en) Vehicle control device and method
JP2009202606A (ja) 車両用操舵装置
CN104703861A (zh) 车辆用行驶辅助装置
CN111712410B (zh) 驾驶辅助装置、驾驶辅助方法及驾驶辅助系统
CN111629943B (zh) 驾驶辅助装置、驾驶辅助方法及驾驶辅助系统
JP7398454B2 (ja) 車両用サスペンション、及び仮想ステアリングピボットを用いた駆動機構
JP5157306B2 (ja) 車輪位置可変車両
US20220089218A1 (en) Steering control device
WO2023189180A1 (ja) 車両制御装置及びプログラム
CN112477848A (zh) 辅助车辆转向的方法和系统及包括该系统的车辆、介质
US20230278625A1 (en) Method for controlling steering of a vehicle arrangement
US20220144266A1 (en) Methods, systems, and apparatuses for scenario-based path and intervention adaptation for lane-keeping assist systems
JP3933085B2 (ja) 車両用自動操舵装置
US11975775B2 (en) Steering control device and steering control method
JP4599835B2 (ja) 車両用自動操舵制御装置
CN114407880B (zh) 一种无人驾驶紧急避障路径跟踪方法
CN114397883A (zh) 全向多轴重载agv小车的控制系统
WO2023189181A1 (ja) 車両制御装置及びプログラム
KR20220044280A (ko) 화물을 수송하기 위한 차량
JP5962074B2 (ja) 車両用舵角制御装置
JP2005071128A (ja) 無人搬送車およびこの無人搬送車の走行制御方法
JP7365619B2 (ja) 台車および乗り物
JPS61259307A (ja) 無人搬送車
JP2022106255A (ja) 車両の前後輪転舵角制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23779209

Country of ref document: EP

Kind code of ref document: A1