WO2023188566A1 - タイヤの製造方法および製造システム - Google Patents

タイヤの製造方法および製造システム Download PDF

Info

Publication number
WO2023188566A1
WO2023188566A1 PCT/JP2022/045641 JP2022045641W WO2023188566A1 WO 2023188566 A1 WO2023188566 A1 WO 2023188566A1 JP 2022045641 W JP2022045641 W JP 2022045641W WO 2023188566 A1 WO2023188566 A1 WO 2023188566A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
drum body
forming drum
molding
green tire
Prior art date
Application number
PCT/JP2022/045641
Other languages
English (en)
French (fr)
Inventor
雄太 高梨
Original Assignee
横浜ゴム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横浜ゴム株式会社 filed Critical 横浜ゴム株式会社
Priority to CN202280092052.9A priority Critical patent/CN118715119A/zh
Publication of WO2023188566A1 publication Critical patent/WO2023188566A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D30/00Producing pneumatic or solid tyres or parts thereof
    • B29D30/06Pneumatic tyres or parts thereof (e.g. produced by casting, moulding, compression moulding, injection moulding, centrifugal casting)
    • B29D30/08Building tyres

Definitions

  • the present invention relates to a tire manufacturing method and a manufacturing system, and more particularly, the present invention relates to a tire manufacturing method and a manufacturing system, and more specifically, when molding a green tire by sequentially moving a molding drum body to a plurality of work stations, the invention efficiently molds a green tire while keeping a predetermined quality in mind.
  • the present invention relates to a moldable tire manufacturing method and manufacturing system.
  • annular support forming drum body
  • tire components are attached to the annular support at each workstation (for example, (See Patent Document 1).
  • a robotic arm is used to move the annular support to the next workstation, and holding stations are installed between adjacent workstations.
  • a robot arm located at the first workstation temporarily places the annular support on a holding station located between the first and second workstations.
  • the robot arm located at the second workstation picks up the temporarily placed annular support and moves it to the second workstation.
  • a green tire is molded by sequentially moving the annular support to adjacent work stations with the holding station interposed therebetween.
  • the green tire formed in the molding process is vulcanized in the vulcanization process to complete the tire.
  • the longer the time that the forming drum body is temporarily placed in the holding station the lower the productivity of the tire becomes.
  • this temporary placement time it is impossible to reduce this temporary placement time to zero, and a certain amount of temporary placement time is required. Depending on the production plan, this temporary storage time may be longer. Therefore, when molding green tires by sequentially moving the molding drum body to a plurality of work stations, there is room for improvement in efficiently molding green tires while maintaining a predetermined quality.
  • An object of the present invention is to provide a tire manufacturing method and a manufacturing system that can efficiently mold a green tire while ascertaining a predetermined quality when molding a green tire by sequentially moving a molding drum body to a plurality of work stations. It's about doing.
  • the tire manufacturing method of the present invention sequentially moves a forming drum body to a plurality of work stations, and attaches tire constituent members to the forming drum body at each of the work stations, thereby producing a green tire.
  • the molding work at any one of the work stations is completed and the molding drum body to which the tire constituent members are attached is temporarily placed on a mounting device. and, while the forming drum body is temporarily placed in the placement device, a predetermined quality of the green tire formed by the tire constituent members affixed to the forming drum body or after forming is determined. It is characterized by carrying out the following tests.
  • the tire manufacturing system of the present invention includes a forming drum that sequentially moves through a plurality of work stations, a member feeding machine that is disposed at each of the work stations and supplies tire constituent members to the forming drum body, and In a tire manufacturing system having a vulcanizing device in which a molded green tire is vulcanized through a molding operation at one of the work stations, the tire component is pasted after the molding operation at any one of the work stations is completed.
  • the tire comprises a mounting device on which the molded drum body is temporarily placed, and an inspection device, and is formed of the tire constituent member affixed to the molded drum body temporarily placed in the placement device.
  • the present invention is characterized in that the predetermined quality of the green tire during molding or after molding is inspected by the inspection device.
  • the predetermined quality of the green tire that is being formed or has been formed is inspected, thereby making effective use of the temporary placement time. can. Therefore, when a green tire is molded by sequentially moving the molding drum body to a plurality of work stations, the green tire can be molded efficiently while keeping a predetermined quality in mind. This is advantageous in improving tire productivity.
  • FIG. 1 is an explanatory diagram illustrating an embodiment of a tire manufacturing system in a plan view.
  • FIG. 2 is an explanatory diagram illustrating a state in which the gripping claws of the robot arm are positioned above the connecting portion of the forming drum body in a side view.
  • FIG. 3 is an explanatory diagram illustrating the forming drum body of FIG. 2 in a plan view.
  • FIG. 4 is an explanatory diagram illustrating a state in which the molding drum body is held by the robot arm with the gripping claw and the connecting portion shown in FIG. 2 engaged with each other.
  • FIG. 5 is an explanatory diagram illustrating a forming drum body mounting device in a side view.
  • FIG. 6 is an explanatory diagram illustrating the mounting device of FIG. 5 in plan view.
  • FIG. 5 is an explanatory diagram illustrating a forming drum body mounting device in a side view.
  • FIG. 7 is an explanatory diagram illustrating a state in which the forming drum body is temporarily placed on the mounting device of FIG. 5.
  • FIG. 8 is an explanatory diagram showing a modification of the profile sensor shown in FIG. 7.
  • FIG. 9 is an explanatory diagram illustrating a partially enlarged longitudinal cross-sectional view of the green tire vulcanization process.
  • the embodiment of the tire manufacturing system 1 illustrated in FIG. a mounting device 8 , a mass meter 12 , a profile sensor 13 , a control section 14 , and a vulcanization device 15 .
  • the tire molding process has a plurality of work stations S1, S2, and S3.
  • each work station S is shown divided by two-dot chain lines.
  • the number of work stations S is not particularly limited, and necessary work stations S are provided according to tire specifications and the like.
  • a robot arm 6 is installed at each work station S, and a mounting device 8 is installed near the boundary between adjacent work stations S (for example, in an area between the work stations S).
  • a molding drum body 2 is attached to a robot arm 6 that molds a green tire G.
  • the forming drum body 2 functions as a core material when forming a green tire G by laminating various tire constituent members M thereon.
  • the forming drum body 2 for example, various known rigid cores can be used.
  • a rigid core having an outer peripheral surface with the same profile as the inner surface of the tire T to be manufactured is used as the forming drum body 2.
  • the forming drum body 2 illustrated in FIGS. 2 to 4 has a cylindrical portion 3 and a drum shaft 4a extending in the axial direction at the center of the cylindrical portion 3. Note that in FIGS. 2 and 4, the right half of the cylindrical portion 3 is shown in a longitudinal cross-sectional view.
  • the cylindrical portion 3 is configured by assembling segments divided into a plurality of segments in the circumferential direction, and can be disassembled.
  • Disk portions 4b are fixed to both ends of the drum shaft 4a, one disk portion 4b has a connecting portion 4c on its surface, and the other disk portion 4b has a fitting portion 5 on its surface.
  • the connecting portion 4c is held by a gripping claw 6b of a robot arm 6, which will be described later.
  • the fitting portion 5 engages with a guide 9a formed on the mounting table 9.
  • a drive motor 6M is attached to the tip of an arm portion 6a that can be moved to a desired three-dimensional position, and a gripping claw 6b is installed via this drive motor 6M.
  • This gripping claw 6b is attached to and detached from the connecting portion 4c of the forming drum body 2.
  • the drive motor 6M rotationally drives the gripping claw 6b that grips the connecting portion 4c
  • the forming drum body 2 mounted on the robot arm 6 is rotationally driven around the drum shaft 4a.
  • the drive motor 6M can be optionally provided, and if the robot arm 6 does not have the drive motor 6M, the gripping claw 6b is provided directly at the tip of the arm portion 6a.
  • the component supply machine 7 supplies one or more types of tire component members M (M1 to M5) to the forming drum body 2 at each work station S.
  • Various known component feeders 7 can be used.
  • the types of tire component M include an inner liner, a carcass layer, side rubber, a reinforcing layer, and tread rubber.
  • the mounting device 8 is used to temporarily place the forming drum body 2 during the tire forming process.
  • the molding drum body 2 is released from being held by the robot arm 6 and is placed on the placing device 8 in a sideways state.
  • the forming drum body 2 placed and temporarily placed on the placing device 8 is held by the robot arm 6 and moved to another location (such as the next work station S).
  • the mounting device 8 includes a mounting table 9 and a base portion 10 disposed below the mounting table 9.
  • the mounting table 9 is supported by a central shaft 11 erected on a base portion 10 .
  • the central axis 11 is arranged at the center of the mounting table 9 and the base part 10 in plan view.
  • the mounting table 9 on which the forming drum body 2 is mounted has a guide 9a.
  • the mounting table 9 can have various shapes on which the forming drum body 2 can be placed in a horizontally laid state.
  • a circular plate is used as the mounting table 9.
  • the guide 9a is an engaging body that engages with the forming drum body 2.
  • the truncated conical guide 9a protrudes upward from the upper surface of the mounting table 9, and extends across the central axis 11 in plan view. They are placed in two locations facing each other by 180°.
  • the number of guides 9a is not particularly limited, and may be arranged, for example, at three to four locations at equal intervals in the circumferential direction around the central axis 11 in plan view.
  • the base part 10 is fixed at a predetermined installation position in a target area (such as a floor of a molding process).
  • the base part 10 is bolted to the floor, for example.
  • a metal box-shaped frame body is used as the base part 10, but the base part 10 is not limited to this, and various forms can be adopted.
  • a simple metal stand may be used as the base portion 10. It is also possible to provide a traveling mechanism on the base portion 10 to make the mounting device 8 movable.
  • This embodiment includes a mass meter 12 and a profile sensor 13 as the inspection device.
  • the predetermined quality of the green tire G that is in the process of being molded or that has been completely molded is inspected by these inspection devices 12 and 13.
  • the manufacturing system 1 is provided with an inspection device that can inspect a predetermined quality as needed and is suitable for the predetermined quality.
  • the mass meter 12 is installed on the lower surface of the mounting table 9, but various known types may be used.
  • the profile sensor 13 acquires the shape of the outermost peripheral surface of the tire component M attached to the forming drum body 2 in a non-contact manner using laser light or the like.
  • the profile sensor 13 various known types can be used.
  • the central shaft 11 Since the profile sensor 13 acquires the shape of the outermost peripheral surface of the tire component M over the entire circumferential direction of the forming drum body 2, in this embodiment, the central shaft 11 is driven to rotate around its axis. A drive motor 11a is provided. Since the mounting table 9 is fixed to the upper end of the central shaft 11, when the central shaft 11 is rotationally driven, it is rotated together with the central shaft 11. The profile sensor 13 is fixedly installed at a predetermined position apart from the mounting device 8.
  • Detection data from the mass meter 12 and profile sensor 13 is input to the control unit 14.
  • various data are input and stored in the control unit 14, and various calculation processes are performed.
  • the control unit 14 controls the movement of the mounting table 9 (drive motor 11a), the profile sensor 13, and the like.
  • Various computers can be used as the control unit 14.
  • the vulcanizing device 15 vulcanizes the green tire G in a vulcanizing mold 16.
  • Various known vulcanization devices 15 can be used.
  • the robot arm 6 and the mounting device 8 are used to sequentially move the forming drum body 2 to the necessary work stations S (S1, S2, S3) to obtain the necessary tire configuration.
  • a member M is attached to the forming drum body 2.
  • a green tire G is molded through this molding process.
  • the robot arm 6 holds the forming drum body 2 as illustrated in FIG. 4 and moves the forming drum body 2 above the mounting device 8.
  • the molding drum body 2 is held by the robot arm 6 by gripping the connecting portion 4c with the gripping claws 6b.
  • the robot arm 6 directs the extending direction of the drum shaft 4a in the vertical direction so that the fitting part 5 is positioned below, and places the forming drum body 2 in a sideways state.
  • the robot arm 6 moves the forming drum body 2 to a predetermined position Pa above the mounting device 8.
  • This predetermined position Pa is set in advance by a program or teaching, and the robot arm 6 is controlled to move the forming drum body 2 (the axial center position of the drum shaft 4a) to this predetermined position Pa.
  • the robot arm 6 releases its hold on the forming drum body 2.
  • the fitting portion 5 of the forming drum body 2 and the guide 9a of the mounting table 9 engage with each other, and the forming drum body 2 is placed on the mounting table 9 in a sideways state. Temporarily placed.
  • the drum shaft 4a is positioned directly above the central shaft 11.
  • the forming drum body 2 temporarily placed on the mounting table 9 is lifted up from the mounting device 8 by the robot arm 6 disposed at the next work station S2 and moved to the next work station S2. Also at this time, the gripping claw 6b of the robot arm 6 and the connecting portion 4c of the forming drum body 2 are engaged with each other, and the forming drum body 2 is mounted on the robot arm 6.
  • the tire component M is similarly attached to the forming drum body 2.
  • the molding drum body 2 is moved to the next work station S3, the molding drum body 2 is moved to the mounting device in the same way as when moving between the work stations S1 and S2. Temporarily place it at 8.
  • the robot arm 6 may have a specification that functions only to move the forming drum body 2, or may have a specification that allows it to be used for forming operations in addition to this function.
  • the molding drum body 2 held therein can be used for molding work by being driven to rotate around the drum shaft 4a by the drive motor 6M.
  • the green tire G is molded on the outer peripheral surface of the molding drum body 2.
  • the green tire G that has been molded is moved together with the molding drum body 2 to a vulcanization process.
  • the forming drum body 2 is laminated on the outer circumferential surface of the forming drum body 2.
  • a predetermined quality (mass, profile shape) of the green tire G that is currently being molded or the green tire G that has been molded is inspected. Therefore, a predetermined quality inspection is performed during temporary storage time during at least one period during movement from work station S1 to S2, movement from work station S2 to S3, and movement from work station S3 to the vulcanization process. be exposed. It is possible to perform a predetermined quality inspection using the temporary placement time in all periods, or to perform a predetermined quality inspection using the temporary placement time in one or two selected periods.
  • the molding drum body 2 When the molding drum body 2 is temporarily placed on the mounting device 8 while being moved to the vulcanization process after the molding work at the last work station S of the molding process is completed, the molding drum body 2 is molded on the outer peripheral surface of the molding drum body 2. A predetermined quality inspection will be performed on the green tire G for which the process has been completed. On the other hand, when temporarily placing the forming drum body 2 on the mounting device 8 while moving the forming drum body 2 between work stations S1 and S2 or between work stations S2 and S3, the forming drum body 2 is placed in the next operation. Before being moved to the station S, a predetermined quality inspection is performed on the green tire G, which is being formed by the tire component M attached to the forming drum body 2 and is in the process of being formed.
  • control section 14 operates the mass meter 12 and the profile sensor 13 to start the inspection. Inspection of the mass of the green tire G during molding or after molding can be completed immediately.
  • the mounting table 9 when inspecting the profile shape of the green tire G that is being formed or has been formed, the mounting table 9 is rotationally driven together with the central shaft 11 by the drive motor 11a, as illustrated in FIG. Since the fitting portion 5 of the forming drum body 2 and the guide 9a of the mounting table 9 are engaged with each other, the forming drum body 2 rotates around the drum shaft 4a as the mounting table 9 rotates.
  • the forming drum body 2 is rotated about the drum shaft 4a with the profile sensor 13 fixed at a predetermined position on the outer circumferential side of the green tire G that is being formed or has been formed.
  • the profile shape is acquired over the entire circumferential direction of this green tire G using the profile sensor 13.
  • the time required to inspect the profile shape is, for example, within 1 minute or within 30 seconds.
  • the profile sensor 13 illustrated in FIG. 8 can also be used.
  • a cylindrical rotation shaft 13b is extrapolated onto the central axis 11 of the mounting device 8.
  • One end of a connecting arm 13c is connected to this rotating shaft 13b, and the profile sensor 13 is connected to the other end of the connecting arm 13c.
  • a drive motor 13a that rotationally drives a rotating shaft 13b about the central shaft 11 is provided.
  • the control unit 14 when inspecting the profile shape of the green tire G during molding or after molding, rotates the drive motor 13a as illustrated in FIG. 8. Since the profile sensor 13 is connected to the rotation shaft 13b via the connection arm 13c, the rotation of the rotation shaft 13b causes the profile sensor 13 to rotate around the drum shaft 4a.
  • the profile sensor 13 is rotated around the drum shaft 4a of the forming drum body 2 on the outer circumferential side of the forming drum body 2 while the green tire G that is being formed or has been formed is fixed. Thereby, the profile shape is acquired over the entire circumferential direction of this green tire G using the profile sensor 13.
  • the forming drum body 2 temporarily placed on the mounting device 8 is not moved or rotated. This has the advantage that the problem of inadvertent deformation of the tire component M made of sulfur rubber is less likely to occur.
  • Inspection result data of a predetermined quality is input to the control unit 14 and compared with a tolerance range preset for the predetermined quality. If the inspection result data is within the allowable range, the predetermined quality is determined to be acceptable, and the green tire G that is in the middle of being formed or has been formed is transferred to the next work station S (or vulcanization process) together with the forming drum body 2. will be moved to On the other hand, if the inspection result data is outside the allowable range, the predetermined quality is judged to be unacceptable, and the green tire G that is in the middle of being molded or has been molded is moved to the next work station S (or vulcanization process). Instead, measures such as corrections are taken.
  • the green tire G that has been molded is vulcanized by a known method.
  • a green tire G is placed together with a molding drum body 2 in a vulcanizing mold 16 attached to a vulcanizing device 15 . Thereafter, the green tire G is vulcanized in the closed vulcanization mold 16 to complete the tire T.
  • a pneumatic tire T is manufactured in this embodiment, the present invention is not limited to pneumatic tires, but can be applied to manufacturing various other types of tires T.
  • the predetermined quality of the green tire G that is being formed or has been formed is inspected to make effective use of the temporary placement time. can. Therefore, when the forming drum body 2 is sequentially moved to a plurality of work stations S to form the green tire G, the green tire G can be formed efficiently while grasping the predetermined quality, so the productivity of the tire T is improved. It will be advantageous to do so. It is also advantageous to grasp defects in the green tire G that is being molded at an earlier stage. As a result, inappropriate work-in-progress products are reduced, which makes it possible to suppress wastage of materials and working time, and is also advantageous in improving the quality of the tire T.
  • Manufacturing system Molding drum body 3 Cylindrical part 4a Drum shaft 4b Disc part 4c Connecting part 5 Fitting part 6 Robot arm 6a Arm part 6b Gripping claw 6M Drive motor 7 Component feeder 8 Placing device 9 Placing table 9a Guide 10 Base Part 11 Central shaft 11a Drive motor 12 Mass meter (inspection device) 13 Profile sensor (inspection device) 13a Drive motor 13b Rotating shaft 13c Connecting arm 14 Control unit 15 Vulcanizing device 16 Vulcanizing mold M (M1 to M5) Tire component G Green tire T Vulcanized tire S (S1 to S3) Work station

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tyre Moulding (AREA)

Abstract

成形ドラム体を複数の作業ステーションに順次移動させて成形されるグリーンタイヤの所定品質を把握しつつ効率的に成形できるタイヤの製造方法および製造システムを提供する。作業ステーションS1での成形作業が終了してタイヤ構成部材Mが貼付けられた成形ドラム体2を載置装置8に成形ドラム体2を仮置きし、成形ドラム体2が載置装置8に仮置きされている間に、成形ドラム体2に貼り付けられたタイヤ構成部材Mにより形成されている成形途中または成形が完了したグリーンタイヤGの所定品質として、その質量を質量計12により検査し、そのプロファイル形状をプロファイルセンサ13により検査する。

Description

タイヤの製造方法および製造システム
 本発明は、タイヤの製造方法および製造システムに関し、さらに詳しくは、成形ドラム体を複数の作業ステーションに順次移動させてグリーンタイヤを成形する際に、所定品質を把握しつつ効率的にグリーンタイヤを成形できるタイヤの製造方法および製造システムに関するものである。
 グリーンタイヤを成形する際に、環状支持体(成形ドラム体)を複数のワークステーションに順次移動させ、それぞれのワークステーションで環状支持体にタイヤ構成部材を貼り付ける方法が知られている(例えば、特許文献1参照)。環状支持体を次のワークステーションに移動させるにはロボットアームが使用され、隣接するワークステーションの間には保持ステーションが設置される。最初のワークステーションに配置されているロボットアームは、最初のワークステーションと二番目のワークステーションとの間に設置されている保持ステーションに環状支持体を仮置きする。二番目のワークステーションに配置されているロボットアームは、その仮置きされている環状支持体を取り上げて二番目のワークステーションに移動させる。このように保持ステーションを介在させて環状支持体を隣接するワークステーションに順次移動させてグリーンタイヤが成形される。
 成形工程にて成形されたグリーンタイヤは、加硫工程にて加硫されてタイヤが完成する。この一連のタイヤの製造工程では、グリーンタイヤの所定品質を把握する必要もある。この製造方法では、保持ステーションに成形ドラム体を仮置きしている時間が長くなる程、タイヤの生産性は低下する。しかしながら、この仮置き時間をゼロにすることは不可能であり、ある程度の仮置き時間が必要になる。生産計画によってはこの仮置き時間が長くなることもある。それ故、成形ドラム体を複数の作業ステーションに順次移動させてグリーンタイヤを成形する際に、所定品質を把握しつつ効率的にグリーンタイヤを成形するには改善の余地がある。
日本国特表2003-515474号公報
 本発明の目的は、成形ドラム体を複数の作業ステーションに順次移動させてグリーンタイヤを成形する際に、所定品質を把握しつつ効率的にグリーンタイヤを成形できるタイヤの製造方法および製造システムを提供することにある。
 上記目的を達成するため本発明のタイヤの製造方法は、成形ドラム体を複数の作業ステーションに順次移動させ、それぞれの前記作業ステーションで前記成形ドラム体にタイヤ構成部材を貼り付けることによりグリーンタイヤを成形し、このグリーンタイヤを加硫するタイヤの製造方法において、いずれか1つの前記作業ステーションでの成形作業が終了して前記タイヤ構成部材が貼付けられた前記成形ドラム体を載置装置に仮置きし、前記成形ドラム体が前記載置装置に仮置きされている間に、前記成形ドラム体に貼り付けられた前記タイヤ構成部材により形成されている成形途中または成形が完了したグリーンタイヤの所定品質の検査を行うことを特徴とする。
 本発明のタイヤの製造システムは、複数の作業ステーションを順次移動する成形ドラムと、それぞれの前記作業ステーションに配置されて前記成形ドラム体にタイヤ構成部材を供給する部材供給機と、それぞれの作業ステーションでの成形作業を経て成形されたグリーンタイヤが加硫される加硫装置とを有するタイヤの製造システムにおいて、いずれか1つの前記作業ステーションでの成形作業が終了して前記タイヤ構成部材が貼付けられた前記成形ドラム体が仮置きされる載置装置と、検査装置とを有し、前記載置装置に仮置きされている前記成形ドラム体に貼り付けられた前記タイヤ構成部材により形成されている成形途中または成形が完了したグリーンタイヤの所定品質が、前記検査装置により検査される構成にしたことを特徴とする。
 本発明によれば、前記成形ドラム体が前記載置装置に仮置きされている間に、成形途中または成形が完了したグリーンタイヤの所定品質の検査を行うことで、仮置き時間を有効に利用できる。そのため、成形ドラム体を複数の作業ステーションに順次移動させてグリーンタイヤを成形する際に、所定品質を把握しつつ効率的にグリーンタイヤを成形できる。これに伴い、タイヤの生産性を向上させるには有利になる。
図1はタイヤの製造システムの実施形態を平面視で例示する説明図である。 図2はロボットアームの把持爪を成形ドラム体の連結部の上方に位置決めした状態を側面視で例示する説明図である。 図3は図2の成形ドラム体を平面視で例示する説明図である。 図4は図2の把持爪と連結部とを係合させてロボットアームにより成形ドラム体を保持した状態を例示する説明図である。 図5は成形ドラム体の載置装置を側面視で例示する説明図である。 図6は図5の載置装置を平面視で例示する説明図である。 図7は図5の載置装置に成形ドラム体が仮置きされた状態を例示する説明図である。 図8は図7のプロファイルセンサの変形例を示す説明図である。 図9はグリーンタイヤの加硫工程を一部拡大して縦断面視で例示する説明図である。
 以下、本発明のタイヤの製造方法およびシステムを、図に示した実施形態に基づいて説明する。
 図1に例示するタイヤの製造システム1の実施形態は、複数の作業ステーションS(S1、S2、S3)を順次移動する成形ドラム体2と、それぞれの作業ステーションSに配置される部材供給機7と、載置装置8と、質量計12、プロファイルセンサ13と、制御部14と、加硫装置15とを有している。
 タイヤの成形工程は複数の作業ステーションS1、S2、S3を有している。図1ではそれぞれの作業ステーションSを二点鎖線で区画して示している。作業ステーションSの数は特に限定されず、タイヤ仕様などに応じて必要な作業ステーションSが設けられる。それぞれの作業ステーションSにはロボットアーム6が設置されていて、隣接する作業ステーションSの境界近傍(例えば、作業ステーションSどうしの間の領域)に載置装置8が設置されている。グリーンタイヤGの成形を行うロボットアーム6には成形ドラム体2が装着される。
 成形ドラム体2は、各種のタイヤ構成部材Mが貼付け積層されて、グリーンタイヤGを成形する際に芯材として機能する。成形ドラム体2としては、例えば公知の種々の剛性コアを用いることができる。この実施形態では、製造するタイヤTの内面と同じプロファイルの外周面を有する剛性コアが、成形ドラム体2として使用されている。
 図2~図4に例示する成形ドラム体2は、円筒部3と、円筒部3の中心部で筒軸方向に延在するドラム軸4aとを有している。尚、図2、図4では円筒部3の右側半分を縦断面視で示している。円筒部3は、周方向に複数に分割されたセグメントを組み付けて構成されていて分解可能になっている。
 ドラム軸4aの両端部には円盤部4bが固定されていて、一方の円盤部4bは表面に連結部4cを有し、他方の円盤部4bは表面に嵌合部5を有している。連結部4cは、後述するロボットアーム6の把持爪6bによって把持される。嵌合部5は、載置台9に形成されているガイド9aに係合する。
 ロボットアーム6は、プログラムやティーチングなどに基づいて制御されて所望の動きをする公知の種々のタイプ(いわゆる、産業用ロボットのアーム)を用いることができる。この実施形態のロボットアーム6は、三次元の所望位置に移動可能なアーム部6aの先端に駆動モータ6Mが取り付けられていて、この駆動モータ6Mを介して把持爪6bが設置されている。この把持爪6bは、成形ドラム体2の連結部4cに対して着脱する。
 駆動モータ6Mが、連結部4cを把持している把持爪6bを回転駆動すると、ロボットアーム6に装着された成形ドラム体2はドラム軸4aを中心にして回転駆動される。駆動モータ6Mは任意で設けることができ、ロボットアーム6が駆動モータ6Mを有していない仕様の場合は、把持爪6bはアーム部6aの先端部に直接的に設けられる。
 部材供給機7は、成形ドラム体2に対して、それぞれの作業ステーションSでタイヤ構成部材M(M1~M5)のいずれか1種類以上を供給する。公知の種々の部材供給機7を用いることができる。タイヤ構成部材Mの種類としては、インナーライナ、カーカス層、サイドゴム、補強層、トレッドゴムなどが例示できる。
 載置装置8は、タイヤの成形工程で成形ドラム体2を仮置きするために使用される。成形ドラム体2は、ロボットアーム6による保持が解除されて、載置装置8に横倒し状態で載置される。載置装置8に載置されて仮置きされた成形ドラム体2は、ロボットアーム6により保持されて別の場所(次の作業ステーションSなど)に移動される。
 図5、図6に例示するように、載置装置8は、載置台9と、載置台9の下方に配置されるベース部10とを備えている。載置台9はベース部10に立設された中心軸11によって支持されている。中心軸11は、平面視で載置台9およびベース部10の中心に配置されている。
 成形ドラム体2が載置される載置台9はガイド9aを有している。載置台9は、横倒し状態で成形ドラム体2を載置できる種々の形状を用いることができる。この実施形態では、円形状プレートが載置台9として使用されている。ガイド9aは、成形ドラム体2に係合する係合体であり、この実施形態では、円錐台形状のガイド9aが載置台9の上面で上方に突出していて、平面視で中心軸11を挟んで180°対向した2箇所に配置されている。ガイド9aの数は特に限定されず、例えば平面視で中心軸11を中心にして周方向に等間隔で3箇所~4箇所に配置することができる。
 ベース部10は、対象領域(成形工程のフロアなど)の所定の設置位置に固定される。ベース部10は例えば、フロアにボルト止めされる。この実施形態では、金属製の箱状フレーム体がベース部10として用いられているが、これに限定されず種々の形態を採用できる。例えば、単純な金属台をベース部10として採用することもできる。ベース部10に走行機構を設けて載置装置8を移動可能な構成にすることもできる。
 この実施形態では、検査装置として質量計12およびプロファイルセンサ13を有している。成形途中または成形が完了したグリーンタイヤGの所定品質が、これらの検査装置12、13によりを検査される。その他、必要に応じた所定品質を検査することができ、その所定品質に適した検査装置が製造システム1に設けられる。この実施形態では、質量計12は載置台9の下面に設置されているが公知の種々のタイプを用いることができる。
 プロファイルセンサ13は、成形ドラム体2に貼り付けられているタイヤ構成部材Mの最外周表面の形状を、レーザ光などを用いて非接触で取得する。プロファイルセンサ13としては、公知の種々のタイプを用いることができる。
 プロファイルセンサ13は成形ドラム体2の周方向全周に渡って、このタイヤ構成部材Mの最外周表面の形状を取得するので、この実施形態では、中心軸11をその軸心まわりに回転駆動する駆動モータ11aが設けられている。載置台9は中心軸11の上端に固定されているので、中心軸11が回転駆動されると、中心軸11とともに回転駆動される。プロファイルセンサ13は、載置装置8から離れた所定位置に固定されて設置されている。
 制御部14は、質量計12やプロファイルセンサ13による検知データが入力される。制御部14にはその他、種々のデータが入力、記憶されて種々の演算処理を行う。また、制御部14は、載置台9(駆動モータ11a)やプロファイルセンサ13などの動きを制御する。制御部14としては種々のコンピュータを用いることができる。
 加硫装置15は、加硫用モールド16の中でグリーンタイヤGを加硫する。公知の種々の加硫装置15を用いることができる。
 次に、この製造システム1を用いてタイヤを製造する手順の一例を説明する。
 図1に例示するタイヤの成形工程では、ロボットアーム6および載置装置8を使用して、成形ドラム体2を必要な作業ステーションS(S1、S2、S3)に順次移動させて必要なタイヤ構成部材Mが成形ドラム体2に貼り付けられる。この成形工程によってグリーンタイヤGが成形される。
 最初の作業ステーションS1での成形作業が終了すると、この成形ドラム体2を次の作業ステーションS2に移動させる。そこでロボットアーム6は、図4に例示するように成形ドラム体2を保持して、この成形ドラム体2を載置装置8の上方に移動させる。把持爪6bによって連結部4cを把持することで、成形ドラム体2はロボットアーム6により保持される。ロボットアーム6は、嵌合部5が下方に位置するようにドラム軸4aの延在方向を鉛直方向に向けて、成形ドラム体2を横倒し状態にする。
 次いで、ロボットアーム6は、成形ドラム体2を載置装置8の上方の所定位置Paに移動させる。この所定位置Paは、プログラムやティーチングなどによって予め設定されていて、ロボットアーム6は成形ドラム体2(ドラム軸4aの軸心位置)をこの所定位置Paに移動させるように制御される。
 その後、ロボットアーム6は成形ドラム体2に対する保持を解除する。これにより、図7に例示するように成形ドラム体2の嵌合部5と、載置台9のガイド9aとが係合して、成形ドラム体2は載置台9に横倒し状態で載置されて仮置きされる。ドラム軸4aは中心軸11の真上に位置決めされた状態になる。
 載置台9に仮置きされた成形ドラム体2は、次の作業ステーションS2に配置されているロボットアーム6によって載置装置8から引き上げられて、次の作業ステーションS2に移動される。この時も、ロボットアーム6の把持爪6bと成形ドラム体2の連結部4cとを係合させて成形ドラム体2がロボットアーム6に装着される。
 次の作業ステーションS2でも同様に成形ドラム体2には、タイヤ構成部材Mが貼り付けられる。作業ステーションS2での成形作業が終了して成形ドラム体2を次の作業ステーションS3に移動させる際にも、作業ステーションS1、S2の間での移動と同様に、成形ドラム体2を載置装置8に仮置きする。
 ロボットアーム6は、成形ドラム体2を移動させるためだけに機能する仕様でもよく、この機能に加えて成形作業にも利用できる仕様でもよい。例えば、この実施形態にように、保持した成形ドラム体2を駆動モータ6Mによってドラム軸4aを中心にして回転駆動する仕様にすることで、成形作業に利用することができる。
 この成形工程によって、成形ドラム体2の外周面にはグリーンタイヤGが成形される。成形が完了したグリーンタイヤGは、成形ドラム体2とともに加硫工程に移動される。
 この成形工程では、いずれか1つの作業ステーションSでの成形作業が終了して、成形ドラム体2が載置装置8に仮置きされている間に、この成形ドラム体2の外周面に積層されている成形途中のグリーンタイヤG、または、成形が完了したグリーンタイヤGの所定品質(質量、プロファイル形状)の検査を行う。したがって、作業ステーションS1からS2に移動する間、作業ステーションS2からS3に移動する間、作業ステーションS3から加硫工程に移動する間の少なくとも1つ期間での仮置き時間で所定品質の検査が行われる。すべての期間での仮置き時間で所定品質の検査を行うことも、選択された1つまたは2つの期間での仮置き時間で所定品質の検査を行うこともできる。
 成形工程の最後の作業ステーションSでの成形作業が終了した後、成形ドラム体2を加硫工程に移動する間に載置装置8に仮置きする場合は、成形ドラム体2の外周面で成形が完了したグリーンタイヤGに対して所定品質の検査が行われることになる。一方、作業ステーションS1とS2との間、または、作業ステーションS2とS3との間で成形ドラム体2を移動する間に載置装置8に仮置きする場合は、成形ドラム体2を次の作業ステーションSに移動させる前に、成形ドラム体2に貼り付けられたタイヤ構成部材Mにより形成されている成形途中のグリーンタイヤGに対して所定品質の検査が行われることになる。
 そこで、成形ドラム体2が載置装置8に仮置きされると、制御部14は質量計12およびプロファイルセンサ13を稼働させて検査を開始する。成形途中または成形が完了したグリーンタイヤGの質量の検査は即座に完了させることができる。
 この実施形態では、成形途中または成形が完了したグリーンタイヤGのプロファイル形状を検査する際に、図7に例示するように、駆動モータ11aにより中心軸11とともに載置台9を回転駆動する。成形ドラム体2の嵌合部5と載置台9のガイド9aとが係合しているので、載置台9が回転することで、成形ドラム体2はドラム軸4aを中心にして回転する。
 このようにして、成形途中または成形が完了したグリーンタイヤGの外周側の所定位置にプロファイルセンサ13が固定された状態で、ドラム軸4aを中心にして成形ドラム体2を回転させる。これにより、プロファイルセンサ13を用いて、このグリーンタイヤGの周方向全周に渡ってプロファイル形状が取得される。プロファイル形状の検査に要する時間は例えば、1分以内、或いは、30秒以内である。この実施形態では、プロファイル形状の検査を行う際に、プロファイルセンサ13を移動させることなく、載置装置8に仮置きされている成形ドラム体2を回転させればよいので、検査に必要なスペースが小さくて済むメリットがある。
 図8に例示するプロファイルセンサ13を用いることもできる。このプロファイルセンサ13を備えた製造システム1の実施形態では、載置装置8の中心軸11に円筒状の回転軸13bが外挿されている。この回転軸13bには連結アーム13cの一端が接合されていて、連結アーム13cの他端にはプロファイルセンサ13が接合されている。そして、中心軸11を中心にして回転軸13bを回転駆動する駆動モータ13aが備わっている。
 この実施形態では、成形途中または成形が完了したグリーンタイヤGのプロファイル形状を検査する際に、制御部14により、図8に例示するように駆動モータ13aを回転駆動させる。プロファイルセンサ13は、連結アーム13cを介して回転軸13bに連結されているので、回転軸13bが回転することで、プロファイルセンサ13はドラム軸4aを中心にして回転する。
 このようにして、成形途中または成形が完了したグリーンタイヤGを固定した状態で、プロフィルセンサ13を成形ドラム体2のドラム軸4aを中心にして、成形ドラム体2の外周側を回転移動させる。これによって、プロファイルセンサ13を用いて、このグリーンタイヤGの周方向全周に渡ってプロファイル形状が取得される。この実施形態では、プロファイル形状の検査を行う際に、載置装置8に仮置きされている成形ドラム体2を移動、回転させることがないので、成形ドラム体2に貼り付けられている未加硫ゴムのタイヤ構成部材Mが不用意に変形する不具合が生じ難くなるメリットがある。
 所定品質の検査結果データは制御部14に入力されて、所定品質に対して予め設定されている許容範囲と比較される。検査結果データが許容範囲内であれば、その所定品質は合格と判断されて、その成形途中または成形が完了したグリーンタイヤGは成形ドラム体2とともに、次の作業ステーションS(または加硫工程)に移動される。一方、検査結果データが許容範囲外であれば、その所定品質は不合格と判断されて、その成形途中または成形が完了したグリーンタイヤGは、次の作業ステーションS(または加硫工程)に移動されずに、修正などの対策が行われる。
 図9に例示する加硫工程では、成形が完了したグリーンタイヤGが公知の方法で加硫される。加硫装置15に装着された加硫用モールド16の中に、グリーンタイヤGが成形ドラム体2とともに配置される。その後、閉型した加硫用モールド16の中でグリーンタイヤGが加硫されてタイヤTが完成する。この実施形態では空気入りタイヤTが製造されているが、本発明は空気入りタイヤに限らず、その他の種々のタイプのタイヤTを製造する際に適用することができる。
 上述したように、成形ドラム体2が載置装置8に仮置きされている間に、成形途中または成形が完了したグリーンタイヤGの所定品質の検査を行うことで、仮置き時間を有効に利用できる。そのため、成形ドラム体2を複数の作業ステーションSに順次移動させてグリーンタイヤGを成形する際に、所定品質を把握しつつ効率的にグリーンタイヤGを成形できるので、タイヤTの生産性を向上させるには有利になる。また、より早い段階で成形しているグリーンタイヤGの不具合を把握するにも有利になる。これに伴い、不適切な仕掛かり品が削減されるので、使用材料および作業時間の浪費を抑制することができ、また、タイヤTの品質を向上させるにも有利になる。
1 製造システム
2 成形ドラム体
3 円筒部
4a ドラム軸
4b 円盤部
4c 連結部
5 嵌合部
6 ロボットアーム
6a アーム部
6b 把持爪
6M 駆動モータ
7 部材供給機
8 載置装置
9 載置台
9a ガイド
10 ベース部
11 中心軸
11a 駆動モータ
12 質量計(検査装置)
13 プロファイルセンサ(検査装置)
13a 駆動モータ
13b 回転軸
13c 連結アーム
14 制御部
15 加硫装置
16 加硫用モールド
M(M1~M5) タイヤ構成部材
G グリーンタイヤ
T 加硫済みタイヤ
S(S1~S3) 作業ステーション

Claims (6)

  1.  成形ドラム体を複数の作業ステーションに順次移動させ、それぞれの前記作業ステーションで前記成形ドラム体にタイヤ構成部材を貼り付けることによりグリーンタイヤを成形し、このグリーンタイヤを加硫するタイヤの製造方法において、
     いずれか1つの前記作業ステーションでの成形作業が終了して前記タイヤ構成部材が貼付けられた前記成形ドラム体を載置装置に仮置きし、前記成形ドラム体が前記載置装置に仮置きされている間に、前記成形ドラム体に貼り付けられた前記タイヤ構成部材により形成されている成形途中または成形が完了したグリーンタイヤの所定品質の検査を行うタイヤの製造方法。
  2.  前記載置装置に仮置きされている前記成形ドラム体を次の前記作業ステーションに移動させる前に、成形途中の前記グリーンタイヤの前記所定品質の検査を行う請求項1にタイヤの製造方法。
  3.  前記所定品質が、前記グリーンタイヤの質量またはプロファイル形状の少なくとも一方である請求項1または2に記載のタイヤの製造方法。
  4.  前記グリーンタイヤのプロファイル形状を検査する際に、プロフィルセンサを前記成形ドラム体のドラム軸を中心にして前記グリーンタイヤの外周側を回転移動させる請求項3に記載のタイヤの製造方法。
  5.  前記グリーンタイヤのプロファイル形状を検査する際に、プロフィルセンサを前記グリーンタイヤの外周側に配置して、前記成形ドラム体をドラム軸を中心にして回転させる請求項3に記載のタイヤの製造方法。
  6.  複数の作業ステーションを順次移動する成形ドラムと、それぞれの前記作業ステーションに配置されて前記成形ドラム体にタイヤ構成部材を供給する部材供給機と、それぞれの作業ステーションでの成形作業を経て成形されたグリーンタイヤが加硫される加硫装置とを有するタイヤの製造システムにおいて、
     いずれか1つの前記作業ステーションでの成形作業が終了して前記タイヤ構成部材が貼付けられた前記成形ドラム体が仮置きされる載置装置と、検査装置とを有し、前記載置装置に仮置きされている前記成形ドラム体に貼り付けられた前記タイヤ構成部材により形成されている成形途中または成形が完了したグリーンタイヤの所定品質が、前記検査装置により検査される構成にしたタイヤの製造システム。
PCT/JP2022/045641 2022-04-01 2022-12-12 タイヤの製造方法および製造システム WO2023188566A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280092052.9A CN118715119A (zh) 2022-04-01 2022-12-12 轮胎的制造方法以及制造系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022061796A JP7323835B1 (ja) 2022-04-01 2022-04-01 タイヤの製造方法および製造システム
JP2022-061796 2022-04-01

Publications (1)

Publication Number Publication Date
WO2023188566A1 true WO2023188566A1 (ja) 2023-10-05

Family

ID=87519475

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/045641 WO2023188566A1 (ja) 2022-04-01 2022-12-12 タイヤの製造方法および製造システム

Country Status (3)

Country Link
JP (1) JP7323835B1 (ja)
CN (1) CN118715119A (ja)
WO (1) WO2023188566A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003515474A (ja) 1999-12-01 2003-05-07 ピレリ・プネウマティチ・ソチエタ・ペル・アツィオーニ 異種タイヤの同時製造用プラント
US20100032864A1 (en) * 2006-10-12 2010-02-11 Pirelli Tyre S.P.A. Process for Manufacturing a Pneumatic Tyre, Related Manufacturing Line and Assembling Apparatus
JP2012512072A (ja) * 2008-12-17 2012-05-31 ピレリ・タイヤ・ソチエタ・ペル・アツィオーニ 車両ホイール用の未加工タイヤを製造するための方法およびプラント
JP2015536259A (ja) * 2012-10-17 2015-12-21 ピレリ・タイヤ・ソチエタ・ペル・アツィオーニ 車両ホイール用のタイヤを構築する方法およびプラント
US20170190128A1 (en) * 2014-06-20 2017-07-06 Pirelli Tyre S.P.A. Process and plant for building green tyres for vehicle wheels
JP2017533836A (ja) * 2014-11-14 2017-11-16 ピレリ・タイヤ・ソチエタ・ペル・アツィオーニ タイヤを構築するプロセスおよびプラント
JP2020037205A (ja) * 2018-09-03 2020-03-12 横浜ゴム株式会社 タイヤ成形体の形状測定方法および装置並びにタイヤの製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003515474A (ja) 1999-12-01 2003-05-07 ピレリ・プネウマティチ・ソチエタ・ペル・アツィオーニ 異種タイヤの同時製造用プラント
US20100032864A1 (en) * 2006-10-12 2010-02-11 Pirelli Tyre S.P.A. Process for Manufacturing a Pneumatic Tyre, Related Manufacturing Line and Assembling Apparatus
JP2012512072A (ja) * 2008-12-17 2012-05-31 ピレリ・タイヤ・ソチエタ・ペル・アツィオーニ 車両ホイール用の未加工タイヤを製造するための方法およびプラント
JP2015536259A (ja) * 2012-10-17 2015-12-21 ピレリ・タイヤ・ソチエタ・ペル・アツィオーニ 車両ホイール用のタイヤを構築する方法およびプラント
US20170190128A1 (en) * 2014-06-20 2017-07-06 Pirelli Tyre S.P.A. Process and plant for building green tyres for vehicle wheels
JP2017533836A (ja) * 2014-11-14 2017-11-16 ピレリ・タイヤ・ソチエタ・ペル・アツィオーニ タイヤを構築するプロセスおよびプラント
JP2020037205A (ja) * 2018-09-03 2020-03-12 横浜ゴム株式会社 タイヤ成形体の形状測定方法および装置並びにタイヤの製造方法

Also Published As

Publication number Publication date
JP2023151921A (ja) 2023-10-16
CN118715119A (zh) 2024-09-27
JP7323835B1 (ja) 2023-08-09

Similar Documents

Publication Publication Date Title
EP3289330B1 (en) Process and apparatus for controlling tyres, in a process and plant for manufacturing tyres for vehicle wheels
KR101334003B1 (ko) 타이어 구성 요소 제조 조립체 및 타이어 구성 요소 제조 방법
KR20160100331A (ko) 차륜용 타이어의 품질 제어 방법
CN111465488A (zh) 用于在硫化轮胎内构造附加部件的处理和设备
CN109070392B (zh) 用于将降噪元件施加至用于车辆车轮的轮胎的方法和设备及设有这种降噪元件的轮胎
WO2023188566A1 (ja) タイヤの製造方法および製造システム
RU2638856C2 (ru) Способ для проверки правильного формирования бортов в процессе и установке для сборки шин для колес транспортных средств
JP6912002B2 (ja) タイヤの製造方法および装置
US11772345B2 (en) Process and apparatus for handling green tyres for bicycles
WO2023188565A1 (ja) タイヤの製造方法および製造システム
JP3912490B2 (ja) タイヤ成形機におけるビード自動挿入装置
JP7251314B2 (ja) 測定装置及び測定方法
JP2023142814A (ja) 成形ドラム体の載置装置およびタイヤの製造方法
JP2023025869A (ja) タイヤの搬送方法、縦置きタイヤの横置き方法及び姿勢変化装置
JP6740825B2 (ja) タイヤの製造方法
CN218227489U (zh) 胎面装卸自动定位机构及胎面硫化机
JP7209131B2 (ja) 車両ホイール用タイヤのベルトアセンブリを構築するための方法
JP7194316B2 (ja) 車両ホイール用タイヤを製造するためのプロセスおよびプラント
CN114728483B (zh) 用于制造车辆车轮用轮胎的组装机和用于更换组装机中的成型鼓的工艺
KR101824141B1 (ko) 그린타이어 검사장치
CN118284508A (zh) 用于处理自行车用生胎的方法和设备
KR200447708Y1 (ko) 이형제 자동도포장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22935695

Country of ref document: EP

Kind code of ref document: A1