WO2023188480A1 - 半導体製造装置用部材 - Google Patents

半導体製造装置用部材 Download PDF

Info

Publication number
WO2023188480A1
WO2023188480A1 PCT/JP2022/038413 JP2022038413W WO2023188480A1 WO 2023188480 A1 WO2023188480 A1 WO 2023188480A1 JP 2022038413 W JP2022038413 W JP 2022038413W WO 2023188480 A1 WO2023188480 A1 WO 2023188480A1
Authority
WO
WIPO (PCT)
Prior art keywords
surface layer
base material
region
layer region
semiconductor manufacturing
Prior art date
Application number
PCT/JP2022/038413
Other languages
English (en)
French (fr)
Inventor
裕佑 小木曽
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to KR1020237031558A priority Critical patent/KR20230145459A/ko
Priority to CN202280020196.3A priority patent/CN117157744A/zh
Priority to US18/467,882 priority patent/US20240007023A1/en
Publication of WO2023188480A1 publication Critical patent/WO2023188480A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • B23K26/0624Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses using ultrashort pulses, i.e. pulses of 1ns or less
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N13/00Clutches or holding devices using electrostatic attraction, e.g. using Johnson-Rahbek effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68757Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a coating or a hardness or a material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/362Laser etching
    • B23K26/364Laser etching for making a groove or trench, e.g. for scribing a break initiation groove
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • B23K26/402Removing material taking account of the properties of the material involved involving non-metallic material, e.g. isolators
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/0036Laser treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/53After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone involving the removal of at least part of the materials of the treated article, e.g. etching, drying of hardened concrete
    • C04B41/5338Etching
    • C04B41/5346Dry etching
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/91After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics involving the removal of part of the materials of the treated articles, e.g. etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/40Semiconductor devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/52Ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00844Uses not provided for elsewhere in C04B2111/00 for electronic applications
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3865Aluminium nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6582Hydrogen containing atmosphere
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • C04B2235/723Oxygen content
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/75Products with a concentration gradient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/94Products characterised by their shape
    • C04B2235/945Products containing grooves, cuts, recesses or protusions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/95Products characterised by their size, e.g. microceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9661Colour
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering

Definitions

  • the present invention relates to a member for semiconductor manufacturing equipment.
  • members for semiconductor manufacturing equipment that include an AlN ceramic base having a large number of small protrusions on its surface, and a resistance heating element embedded in the AlN ceramic base.
  • the wafer is placed on the surface of the AlN ceramic substrate in contact with a number of small protrusions.
  • the wafer placed on the AlN ceramic substrate must be free from impurities as much as possible.
  • Patent Document 1 proposes that a small protrusion has a plurality of linearly extending laser marks on the side surface thereof. This prevents crystal grains from falling off from the small protrusions and generating particles.
  • the present invention was made to solve such problems, and its main purpose is to effectively prevent the generation of particles.
  • the member for semiconductor manufacturing equipment of the present invention includes: A member for semiconductor manufacturing equipment in which a protrusion for placing a wafer is provided on the surface of an AlN ceramic base, At least a part of the portion of the AlN ceramic base where the protrusion is not provided has a surface layer region extending from the surface to a predetermined depth, and a base material region below the surface layer region, and the predetermined distance is 5 ⁇ m or less, and the oxygen content in the surface layer region is higher than the oxygen content in the base material region.
  • the oxygen content in the surface layer region is higher than the oxygen content in the base material region.
  • the surface layer region provided on at least a portion of the surface of the AlN ceramic substrate where no protrusions are provided becomes harder than the base material region. Therefore, generation of particles can be effectively prevented when processing wafers.
  • the oxygen content in the surface layer region is 2.0 times or more the oxygen content in the base material region. It is preferable that there be.
  • the surface layer region is preferably blackened. In this way, the surface layer region easily absorbs heat and therefore easily emits radiant heat. Therefore, it becomes easier to make the wafer temperature uniform.
  • the mass ratio O/N of the surface layer region is equal to the mass of the base material region. It is preferable that the value is larger than the ratio O/N.
  • the mass ratio O/N of the base material region is 2.2 times or more.
  • the mass ratio Al/N of the surface layer region is equal to the mass of the base material region. It is preferable that the value is larger than the ratio Al/N.
  • the portion of the AlN ceramic base where the protrusion is not provided is It may have a surface layer region and the base material region.
  • FIG. 2 is a plan view of the AlN heater 10. AA sectional view of FIG. 1. A manufacturing process diagram of the AlN heater 10. A manufacturing process diagram of the AlN heater 10. A manufacturing process diagram of the AlN heater 10. An enlarged image of the cross section of the AlN ceramic substrate of Example 1. An enlarged image of the cross section of the AlN ceramic substrate of Example 2.
  • FIG. 1 is a plan view of the AlN heater 10
  • FIG. 2 is a sectional view taken along line AA in FIG.
  • the AlN heater 10 of this embodiment is an example of a member for semiconductor manufacturing equipment of the present invention, and is provided with protrusions (small protrusions 14 and seal bands 15) for placing a wafer on the surface of the AlN ceramic base 12.
  • An electrode 16 is provided inside the base 12 .
  • the AlN ceramic base 12 is a circular sintered body containing AlN as a main component.
  • the size of the AlN ceramic substrate 12 is, for example, 200 to 450 mm in diameter and 10 to 30 mm in thickness.
  • the AlN ceramic base 12 may contain a component derived from a sintering aid in addition to AlN.
  • sintering aids for AlN include rare earth metal oxides.
  • rare earth metal oxides include Y 2 O 3 and Yb 2 O 3 .
  • the term "main component" refers to a component that accounts for 50 volume% or more (preferably 70 volume% or more, more preferably 85 volume% or more) or a component that has the highest volume percentage among all components (the same applies hereinafter). ).
  • the small protrusions 14 are flat cylindrical protrusions that are provided in large numbers at intervals over the entire surface of the AlN ceramic base 12.
  • the size of the small protrusion 14 is, for example, 0.5 to 3 mm in diameter and 10 to 50 ⁇ m in height.
  • the seal band 15 is an annular projection provided on the surface of the AlN ceramic substrate 12 along the outer edge of the AlN ceramic substrate 12.
  • the seal band 15 is provided so as to surround the large number of small protrusions 14.
  • the height of the seal band 15 is the same as the height of the small protrusion 14.
  • the electrode 16 is provided inside the AlN ceramic substrate 12 so as to be parallel to the surface of the AlN ceramic substrate 12.
  • electrode 16 is a heater electrode.
  • the heater electrode is a resistance heating element wired in a single stroke across the entire AlN ceramic substrate 12 from one end to the other end when the AlN ceramic substrate 12 is viewed from above.
  • Examples of the material of the electrode 16 include high melting point metals such as W and Mo, and carbides thereof. Note that "parallel” does not mean that the objects are completely parallel, but even if they are not completely parallel, they are considered to be parallel as long as they are within an allowable error (tolerance, etc.) (the same applies hereinafter).
  • a portion 12A of the AlN ceramic base 12 where no projections (small projections 14 and seal bands 15) are provided includes a surface region 12Aa from the surface to a predetermined depth, and a base material region 12Ab below the surface region 12Aa. has.
  • the predetermined depth is 5 ⁇ m or less (preferably 0.1 to 2.0 ⁇ m).
  • the oxygen content of the surface layer region 12Aa is preferably 2.0 times or more, more preferably 2.9 times or more, the oxygen content of the base material region 12Ab. It is preferable that the surface layer region 12Aa is blackened. It is preferable that no dross be seen in the surface layer region 12Aa.
  • the mass ratio O/N of the surface layer region 12Aa is preferably a larger value than the mass ratio O/N of the base material region 12Ab, and is 2.2 times or more of the mass ratio O/N of the base material region 12Ab. is more preferable, and even more preferably 3.6 times or more.
  • the mass ratio Al/N of the surface layer region 12Aa is preferably a larger value than the mass ratio Al/N of the base material region 12Ab, and is 1.1 times or more the mass ratio Al/N of the base material region 12Ab. is more preferable, and even more preferably 1.2 times or more.
  • the AlN heater 10 is installed in a chamber (not shown). Then, the wafer is placed on the surface of the AlN heater 10. The wafer is supported by the top surfaces of the many small protrusions 14 and the seal band 15. Then, an external heater power source is connected to the electrode 16, which is a heater electrode, and a current is passed through the electrode 16. As a result, the electrode 16 generates heat and heats the wafer to a predetermined temperature.
  • a heat conductive gas for example, He gas
  • a gas passage (not shown) that vertically penetrates the AlN heater 10 into the space surrounded by the surface layer region 12Aa, the large number of small protrusions 14, the seal band 15, and the wafer.
  • the wafer is subjected to various treatments.
  • the electricity supply to the electrode 16 is terminated, and the wafer is removed from the surface of the AlN heater 10.
  • FIG. 3 is a manufacturing process diagram of the AlN heater 10.
  • a disk-shaped AlN ceramic sintered body 21 is prepared, and an electrode paste is printed on the upper surface of this AlN ceramic sintered body 21 in a predetermined electrode pattern to form a heater electrode precursor 26 (Fig. 3A).
  • the electrode paste is prepared by adding an organic solvent and a binder to a mixed powder of an electrode material powder and an AlN powder, and then mixing and kneading the mixture.
  • disk-shaped AlN ceramic molded bodies 22 are stacked to form a laminate 23 so as to cover the heater electrode precursor 26 (FIG. 3B).
  • the heater electrode precursor 26 is sintered to become the electrode 16 (heater electrode), and the AlN ceramic sintered body 21 and AlN
  • the ceramic molded body 22 is sintered and integrated into an AlN ceramic structure 24 (FIG. 3C).
  • the surface of the AlN ceramic structure 24 is polished to a mirror finish, and then a short pulse laser is scanned on the surface other than the area where the small protrusions 14 and the seal band 15 are to be formed to perform ablation processing.
  • a large number of small protrusions 14 and seal bands 15 are formed on the surface of the AlN ceramic structure 24.
  • the AlN ceramic structure 24 becomes the AlN ceramic base 12, and the AlN heater 10 is obtained (FIG. 3D).
  • the top surfaces of the small protrusions 14 and seal band 15 remain mirror-like.
  • ablation processing a substance is removed by cutting interatomic bonds, and the portion from which the substance is removed undergoes a change in crystal structure and is modified.
  • the oxygen content of the surface layer region 12Aa is 2.0 times or more that of the base material region 12Ab, and the mass ratio O/N and Al/N of the surface region 12Aa are different from that of the base material region 12Ab.
  • the value may be larger than the mass ratio O/N or Al/N.
  • the pulse width of the short pulse laser is preferably on the nanosecond level or less (picosecond level or femtosecond level). In ablation processing, the hardness of the laser-processed surface increases due to modification, which suppresses the generation of particles and makes it possible to make the surface black.
  • the formation of dross, which causes the generation of particles, is suppressed, so the generation of particles is suppressed compared to the case where dross is formed. Furthermore, in the ablation process, only the part where the laser is absorbed is removed, so the thermal influence on the small protrusion 14 and the seal band 15 is reduced, and the edges of the small protrusion 14 and the seal band 15 can be made almost vertical. . Thereby, even if the small projections 14 and the seal band 15 are worn out, the contact area between them and the wafer can be kept constant.
  • the oxygen content of the surface layer region 12Aa of the portion of the surface of the AlN ceramic base 12 where no projections (small projections 14 and seal bands 15) are provided is as follows:
  • the oxygen content is 2.0 times or more.
  • the surface layer region 12Aa becomes harder than the base material region 12Ab. Therefore, generation of particles can be effectively prevented when processing wafers.
  • the surface layer region 12Aa is preferably blackened. In this way, the surface layer region 12Aa easily absorbs heat and therefore easily emits radiant heat. Therefore, it becomes easier to make the wafer temperature uniform.
  • the mass ratio O/N of the surface layer region 12Aa is preferably larger than the mass ratio O/N of the base material region 12Ab, and is at least 2.2 times the mass ratio O/N of the base material region. It is more preferable that The mass ratio Al/N of the surface layer region 12Aa is preferably a larger value than the mass ratio Al/N of the base material region 12Ab.
  • the electrode 16 may include an electrostatic electrode or an RF electrode. Further, in addition to the heater electrode, an electrostatic electrode and/or an RF electrode may be included.
  • the surface of the AlN ceramic structure 24 is polished to a mirror finish, and then a short pulse laser is scanned on the surface other than the area where the protrusions (the small protrusions 14 and the seal band 15) are to be formed.
  • the present invention is not limited to this.
  • a protrusion is formed by scanning a region other than the region in which the protrusion is to be formed by ablation processing, and then The surface may be polished to a mirror finish.
  • laser processing may be combined with other processing methods such as blasting. For example, after producing the AlN ceramic structure 24, as shown in FIG.
  • the AlN heater 10 may be obtained by forming the band 15 (FIG. 4B) and modifying the ground region by irradiating the laser with a laser to form the surface layer region 12Aa (FIG. 4C). Furthermore, if the top surface and/or side surface of the protrusion also needs to be modified, the top surface and/or side surface of the protrusion may be irradiated with a laser.
  • the top and side surfaces of the small protrusions 14 and seal band 15 of the AlN heater 10 are ablated by scanning with a short pulse laser (FIG. 5A), and the AlN heater including the small protrusions 14 and the top and side surfaces of the seal band 15 is A surface layer region 12Aa may be formed on the entire surface of the substrate 10 (FIG. 5B). In that case, it is preferable to adjust the laser output so that the protrusion does not disappear.
  • the entire portion 12A of the AlN ceramic substrate 12 where no projections (small projections 14 and seal bands 15) are provided has the surface layer region 12Aa and the base material region 12Ab.
  • part of the portion 12A may include a surface layer region 12Aa and a base material region 12Ab.
  • Such structures are also included within the technical scope of the present invention.
  • if at least a part of the portion 12A in which no protrusions are provided has the surface layer region 12Aa and the base material region 12Ab, it is within the technical scope of the present invention. It may or may not have the base material region 12Ab.
  • the top surface of the projection may have the surface layer region 12Aa and the base material region 12Ab, or the top surface of the projection may not have the surface layer region 12Aa and the base material region 12Ab.
  • at least a part of the side surface of the protrusion may have the surface layer region 12Aa and the base material region 12Ab, or the side surface of the protrusion may not have the surface layer region 12Aa and the base material region 12Ab.
  • a disc-shaped AlN ceramic substrate (base material A, diameter 320 mm, thickness 20 mm) without built-in electrodes was produced as follows. First, 100 parts by mass of aluminum nitride powder (purity 99.7%), 5 parts by mass of yttrium oxide, 2 parts by mass of dispersant (polycarboxylic acid copolymer), and 30 parts by mass of dispersion medium (polybasic acid ester). A ceramic slurry precursor was obtained by mixing the two parts using a ball mill (trommel) for 14 hours.
  • This ceramic slurry precursor 4.5 parts by mass of isocyanate (4,4'-diphenylmethane diisocyanate), 0.1 part by mass of water, and 0.4 parts by mass of catalyst (6-dimethylamino-1-hexanol) were added.
  • a ceramic slurry was obtained by mixing.
  • This ceramic slurry was poured into a mold having a disk-shaped internal space, and an organic binder (urethane resin) was produced by a chemical reaction between isocyanate and water, and then the cured molded body was taken out from the mold.
  • the molded body was dried at 100° C. for 10 hours, and degreased and calcined in a hydrogen atmosphere at a maximum temperature of 1300° C.
  • the ceramic calcined body was hot press fired at 1860° C. for 6 hours at a press pressure of 250 kgf/cm 2 in nitrogen gas to produce an AlN ceramic base.
  • the mass % of N, O, Al, and Y was determined by EDX analysis. Further, the color of the AlN ceramic substrate was visually measured, and the hardness was measured using a Micro Vickers hardness meter HM-211 manufactured by Mitutoyo. The results are shown in Table 1.
  • Example 1 The surface of base material A was subjected to ablation processing using a picosecond laser processing machine.
  • the picosecond laser processing machine performed ablation processing by scanning the substrate surface in parallel at intervals of 5 ⁇ m while driving the galvanometer mirror motor and the stage motor.
  • the processing wavelength, scanning speed, pulse width, and laser output were set to the values shown in Table 1, and the frequency was set to 200 kHz.
  • the number of processing times was two.
  • the mass % of N, O, Al, and Y was determined in the same manner as for the base material A.
  • the ratio of the oxygen content in the surface layer region to the oxygen content in the base material region, the ratio of the mass ratio O/N in the surface layer region to the mass ratio O/N in the base material region, and the ratio of the mass ratio Al/N in the base material region to The mass ratio Al/N of the surface layer region was determined.
  • the color and hardness of the surface layer region were measured in the same manner as for base material A. The results are shown in Table 1.
  • the hardness of the surface layer region was 670 Hv, which was about 1.28 times the hardness of the base material region (523 Hv).
  • the hardness of the surface layer region of Example 1 was harder than that of base material A (Reference Example 1), so the particle suppression effect was improved compared to base material A. Further, when the surface layer region of Example 1 was observed using a scanning electron microscope (SEM), no dross was observed. Therefore, the particle suppression effect is improved compared to Patent Document 1.
  • SEM scanning electron microscope
  • a disc-shaped AlN ceramic substrate (base material B) having the same size as base material A was produced by the same method as base material A.
  • the mass percentages of N, O, Al, and Y were determined in the same manner as for the base material A.
  • Base material B was a different lot from base material A, so the mass percentages of the elements were different.
  • the color and hardness of the AlN ceramic substrate were measured in the same manner as the base material A. The results are shown in Table 1.
  • Example 2 to 4 The surface of base material B was ablated using a nanosecond laser processing machine.
  • the nanosecond laser processing machine performed ablation processing by scanning the substrate surface in parallel at intervals of 5 ⁇ m while driving the galvanometer mirror motor and the stage motor.
  • the processing wavelength, scanning speed, pulse width, and laser output were set to the values shown in Table 1, the frequency was set to 50 kHz, and the number of processing times was one.
  • the cross section of the AlN ceramic substrate was examined after the processing was completed, it was found to be divided into a surface layer region and a base material region below the surface layer region.
  • the surface layer region of Example 2 was a region up to 0.2 ⁇ m from the surface
  • the surface layer region of Example 3 was a region up to 0.3 ⁇ m from the surface
  • the surface layer region of Example 4 was a region up to 0.2 ⁇ m from the surface.
  • the mass % of N, O, Al, and Y was determined in the same manner as for base material A.
  • the ratio of the oxygen content in the surface layer region to the oxygen content in the base material region, the ratio of the mass ratio O/N in the surface layer region to the mass ratio O/N in the base material region, and the ratio of the mass ratio Al/N in the base material region to The mass ratio Al/N of the surface layer region was determined.
  • the hardness of the surface layer region was 650 to 690 Hv, which was approximately 1.16 to 1.23 times the hardness of the base material region (560 Hv).
  • the hardness of each surface layer region of Examples 2 to 4 was harder than that of base material B (reference example 2), so the particle suppression effect was improved compared to base material B.
  • SEM scanning electron microscope
  • a disc-shaped AlN ceramic substrate (base material C) having the same size as base material A was produced by the same method as base material A.
  • the mass percentages of N, O, Al, and Y were determined in the same manner as for the base material A.
  • Base material C was a different lot from base material A, so the mass percentages of the elements were different.
  • the color and hardness of the AlN ceramic substrate were measured in the same manner as the base material A. The results are shown in Table 1.
  • Example 5 The surface of the base material C was subjected to ablation processing using a picosecond laser processing machine.
  • the picosecond laser processing machine performed ablation processing by scanning the substrate surface in parallel at intervals of 5 ⁇ m while driving the galvanometer mirror motor and the stage motor.
  • the processing wavelength, scanning speed, pulse width, and laser output were set to the values shown in Table 1, the frequency was set to 200 kHz, and the number of processing times was one.
  • the cross section of the AlN ceramic substrate was examined after the processing was completed, it was found to be divided into a surface layer region and a base material region below the surface layer region.
  • the surface layer regions of Examples 5 and 6 were both 0.5 ⁇ m from the surface.
  • the mass % of N, O, Al, and Y was determined in the same manner as for base material A.
  • the ratio of the oxygen content in the surface layer region to the oxygen content in the base material region, the ratio of the mass ratio O/N in the surface layer region to the mass ratio O/N in the base material region, and the ratio of the mass ratio Al/N in the base material region to The mass ratio Al/N of the surface layer region was determined.
  • the color and hardness of the surface layer region were measured in the same manner as for base material A. The results are shown in Table 1.
  • the hardness of the surface layer region was 459.9 to 635.9 Hv, which was approximately 1.11 to 1.54 times the hardness of the base material region (413 Hv).
  • FIG. 6 is an enlarged image of the cross section of the AlN ceramic substrate of Example 1
  • FIG. 7 is an enlarged image of the cross section of the AlN ceramic substrate of Example 2.
  • the entire length of the scale (10 divisions) is 1.00 ⁇ m.
  • the present invention can be applied to members for semiconductor manufacturing equipment such as wafer processing equipment that processes wafers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

本発明の半導体製造装置用部材は、AlNセラミック基体の表面にウエハ載置用の突起が設けられたものである。AlNセラミック基体のうち突起の設けられていない部分は、表面から所定深さまでの表層領域と、表層領域よりも下側の母材領域とを有する。所定距離は5μm以下である。表層領域の酸素含有率は、母材領域の酸素含有率よりも高い。

Description

半導体製造装置用部材
 本発明は、半導体製造装置用部材に関する。
 従来、半導体製造装置用部材として、表面に多数の小突起が設けられたAlNセラミック基体と、AlNセラミック基体に埋設された抵抗発熱体とを備えたものが知られている。ウエハは、多数の小突起と接触した状態でAlNセラミック基体の表面に載置される。AlNセラミック基体に載置されるウエハは、できる限り不純物が混入しないようにする必要がある。この点を考慮して、特許文献1では、小突起の側面に線状に延びる複数のレーザ痕を有するようにすることが提案されている。こうすることにより、小突起から結晶粒子が脱粒してパーティクルが発生するのを防止している。
特許第6960260号公報
 しかしながら、特許文献1では、小突起の側面に線状に延びるレーザ痕はいわゆるドロス(一旦溶融した材料が固化した部分)になっているため、ドロスがパーティクルの発生原因になるおそれがあった。
 本発明はこのような課題を解決するためになされたものであり、パーティクルの発生を有効に防止することを主目的とする。
[1]本発明の半導体製造装置用部材は、
AlNセラミック基体の表面にウエハ載置用の突起が設けられた半導体製造装置用部材であって、
 前記AlNセラミック基体のうち前記突起の設けられていない部分の少なくとも一部は、前記表面から所定深さまでの表層領域と、前記表層領域よりも下側の母材領域とを有し、前記所定距離は5μm以下であり、前記表層領域の酸素含有率は、前記母材領域の酸素含有率よりも高いものである。
 この半導体製造装置用部材では、表層領域の酸素含有率は、母材領域の酸素含有率よりも高い。これにより、AlNセラミック基体の表面のうち突起の設けられていない部分の少なくとも一部に設けられた表層領域は、母材領域に比べて硬くなる。そのため、ウエハの処理を行う際にパーティクルの発生を有効に防止することができる。
[2]上述した半導体製造装置用部材(前記[1]に記載の半導体製造装置用部材)において、前記表層領域の酸素含有率は、前記母材領域の酸素含有率の2.0倍以上であることが好ましい。
[3]上述した半導体製造装置用部材(前記[1]又は[2]に記載の半導体製造装置用部材)において、前記表層領域は、黒色化していることが好ましい。こうすれば、表層領域は、熱を吸収しやすいため、輻射熱を放出しやすくなる。そのため、ウエハ温度を均一にしやすくなる。
[4]上述した半導体製造装置用部材(前記[1]~[3]のいずれかに記載の半導体製造装置用部材)において、前記表層領域には、ドロスが見られないことが好ましい。こうすれば、パーティクルの発生原因になり得るドロスが見られないため、パーティクルの発生をより有効に防止することができる。
[5]上述した半導体製造装置用部材(前記[1]~[4]のいずれかに記載の半導体製造装置用部材)において、前記表層領域の質量比O/Nは、前記母材領域の質量比O/Nよりも大きい値であることが好ましい。
[6]上述した半導体製造装置用部材(前記[5]に記載の半導体製造装置用部材)において、前記母材領域の質量比O/Nの2.2倍以上であることがより好ましい。
[7]上述した半導体製造装置用部材(前記[1]~[6]のいずれかに記載の半導体製造装置用部材)において、前記表層領域の質量比Al/Nは、前記母材領域の質量比Al/Nよりも大きい値であることが好ましい。
[8]上述した半導体製造装置用部材(前記[1]~[7]のいずれかに記載の半導体製造装置用部材)において、前記AlNセラミック基体のうち前記突起の設けられていない部分は、前記表層領域と前記母材領域とを有していてもよい。
AlNヒータ10の平面図。 図1のA-A断面図。 AlNヒータ10の製造工程図。 AlNヒータ10の製造工程図。 AlNヒータ10の製造工程図。 実施例1のAlNセラミック基体の断面を拡大した画像。 実施例2のAlNセラミック基体の断面を拡大した画像。
 本発明の好適な実施形態を、図面を参照しながら以下に説明する。図1はAlNヒータ10の平面図、図2は図1のA-A断面図である。
 以下の説明において、「上」「下」は、絶対的な位置関係を表すものではなく、相対的な位置関係を表すものである。そのため、AlNヒータ10の向きによって「上」「下」は「下」「上」になったり「左」「右」になったり「前」「後」になったりする。また、数値範囲を示す「~」は、その前後に記載される数値を下限値及び上限値として含む意味として使用される。
 本実施形態のAlNヒータ10は、本発明の半導体製造装置用部材の一例であり、AlNセラミック基体12の表面にウエハ載置用の突起(小突起14及びシールバンド15)が設けられ、AlNセラミック基体12の内部に電極16が設けられている。
 AlNセラミック基体12は、AlNを主成分とする円形の焼結体である。AlNセラミック基体12のサイズは、例えば直径200~450mm、厚さ10~30mmである。AlNセラミック基体12は、AlN以外に焼結助剤に由来する成分を含んでいてもよい。AlNの焼結助剤としては、例えば希土類金属酸化物が挙げられる。希土類金属酸化物としては、例えばY23やYb23などが挙げられる。なお、「主成分」とは、50体積%以上(好ましくは70体積%以上、より好ましくは85体積%以上)を占める成分又は全成分のうち最も体積割合の高い成分のことをいう(以下同じ)。
 小突起14は、AlNセラミック基体12の表面の全面に間隔を空けて多数設けられた扁平な円柱突起である。小突起14のサイズは、例えば直径0.5~3mm、高さ10~50μmである。
 シールバンド15は、AlNセラミック基体12の表面に、AlNセラミック基体12の外縁に沿って設けられた環状突起である。シールバンド15は、多数の小突起14を取り囲むように設けられている。シールバンド15の高さは、小突起14の高さと同じである。
 電極16は、AlNセラミック基体12の内部にAlNセラミック基体12の表面と平行になるように設けられている。本実施形態では、電極16は、ヒータ電極である。ヒータ電極は、AlNセラミック基体12を上からみたときにAlNセラミック基体12の全体にわたって一端から他端まで一筆書きの要領で抵抗発熱体を配線したものである。電極16の材料としては、例えばW,Moなどの高融点金属やそれらの炭化物が挙げられる。なお、「平行」とは、完全に平行な場合のほか、完全に平行でなくても許容される誤差(公差など)の範囲内であれば平行とみなす(以下同じ)。
 AlNセラミック基体12のうち突起(小突起14及びシールバンド15)の設けられていない部分12Aは、表面から所定深さまでの表層領域12Aaと、その表層領域12Aaよりも下側の母材領域12Abとを有する。所定深さは5μm以下(好ましくは0.1~2.0μm)である。表層領域12Aaの酸素含有率は、母材領域12Abの酸素含有率の2.0倍以上であることが好ましく、2.9倍以上であることがより好ましい。表層領域12Aaは、黒色化していることが好ましい。表層領域12Aaには、ドロスが見られないことが好ましい。表層領域12Aaの質量比O/Nは、母材領域12Abの質量比O/Nよりも大きい値であることが好ましく、母材領域12Abの質量比O/Nの2.2倍以上であることがより好ましく、3.6倍以上であることが更に好ましい。表層領域12Aaの質量比Al/Nは、母材領域12Abの質量比Al/Nよりも大きい値であることが好ましく、母材領域12Abの質量比Al/Nの1.1倍以上であることがより好ましく、1.2倍以上であることが更に好ましい。
 次に、AlNヒータ10の使用例について説明する。まず、AlNヒータ10を図示しないチャンバ内に設置する。そして、AlNヒータ10の表面にウエハを載置する。ウエハは、多数の小突起14の頂面やシールバンド15の頂面によって支持される。そして、ヒータ電極である電極16に外部ヒータ電源を接続して電極16に電流を流す。これにより、電極16が発熱してウエハを所定温度に加熱する。表層領域12Aaと多数の小突起14とシールバンド15とウエハとによって囲まれた空間には、AlNヒータ10を上下方向に貫通する図示しないガス通路から熱伝導ガス(例えばHeガス)が供給される。この状態でウエハに各種処理を施す。処理終了後、電極16の通電を終了し、ウエハをAlNヒータ10の表面から取り外す。
 次に、AlNヒータ10の製造例について説明する。図3は、AlNヒータ10の製造工程図である。まず、円板状のAlNセラミック焼結体21を用意し、このAlNセラミック焼結体21の上面に所定の電極パターンとなるように電極ペーストを印刷してヒータ電極前駆体26を形成する(図3A)。電極ペーストは、電極材料粉末とAlN粉末との混合粉末に有機溶媒とバインダを加えて混合、混練したものである。続いて、ヒータ電極前駆体26を覆うように、円板状のAlNセラミック成形体22を積層して積層体23とする(図3B)。そして、その積層体23をホットプレス焼成することにより、ヒータ電極前駆体26が焼結して電極16(ヒータ電極)となり、そのヒータ電極前駆体26を挟み込んでいたAlNセラミック焼結体21とAlNセラミック成形体22とが焼結して一体となってAlNセラミック構造体24となる(図3C)。
 続いて、AlNセラミック構造体24の表面を研磨して鏡面に仕上げ、その後、表面のうち小突起14及びシールバンド15を形成する領域以外の領域に短パルスレーザを走査してアブレーション加工する。これにより、AlNセラミック構造体24の表面に多数の小突起14及びシールバンド15が形成される。その結果、AlNセラミック構造体24はAlNセラミック基体12となり、AlNヒータ10が得られる(図3D)。小突起14及びシールバンド15の頂面は鏡面のまま維持される。アブレーション加工では、原子間結合を切断することにより物質が除去され、物質が除去された部分は結晶構造に変化が生じて改質される。これにより、表層領域12Aaの酸素含有率は、母材領域12Abの酸素含有率の2.0倍以上になったり、表層領域12Aaの質量比O/NやAl/Nは、母材領域12Abの質量比O/NやAl/Nよりも大きい値になったりする。短パルスレーザのパルス幅は、ナノ秒レベルかそれ以下(ピコ秒レベルとかフェムト秒レベル)が好ましい。アブレーション加工では、レーザ加工が施された面は改質により硬さが増すため、パーティクルの発生が抑えられるし、表面の色を黒色にすることもできる。また、アブレーション加工では、パーティクルの発生原因になるドロスの形成が抑制されるため、ドロスが形成されている場合に比べてパーティクルの発生が抑えられる。更に、アブレーション加工では、レーザが吸収された部分のみ除去されるため、小突起14及びシールバンド15への熱影響が少なくなり、小突起14及びシールバンド15のエッジをほぼ垂直にすることができる。これにより、小突起14及びシールバンド15がすり減ったとしてもそれらとウエハとの接触面積を一定に保つことができる。
 以上説明した本実施形態のAlNヒータ10では、AlNセラミック基体12の表面のうち突起(小突起14及びシールバンド15)の設けられていない部分の表層領域12Aaの酸素含有率は、母材領域12Abの酸素含有率の2.0倍以上である。これにより、表層領域12Aaは、母材領域12Abに比べて硬くなる。そのため、ウエハの処理を行う際にパーティクルの発生を有効に防止することができる。
 また、表層領域12Aaは、黒色化していることが好ましい。こうすれば、表層領域12Aaは、熱を吸収しやすいため、輻射熱を放出しやすくなる。そのため、ウエハ温度を均一にしやすくなる。
 更に、表層領域12Aaには、ドロスが見られないことが好ましい。こうすれば、パーティクルの発生原因になり得るドロスが見られないため、パーティクルの発生をより有効に防止することができる。
 更にまた、表層領域12Aaの質量比O/Nは、母材領域12Abの質量比O/Nよりも大きい値であることが好ましく、前記母材領域の質量比O/Nの2.2倍以上であることがより好ましい。表層領域12Aaの質量比Al/Nは、母材領域12Abの質量比Al/Nよりも大きい値であることが好ましい。
 なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。
 上述した実施形態では、AlNセラミック基体12に電極16としてヒータ電極を内蔵したものを例示したが、特にこれに限定されない。例えば、電極16として静電電極を内蔵していてもよいし、RF電極を内蔵していてもよい。また、ヒータ電極に加えて静電電極及び/又はRF電極を内蔵していてもよい。
 上述した実施形態では、AlNセラミック構造体24の表面を研磨して鏡面に仕上げ、その後、表面のうち突起(小突起14及びシールバンド15)を形成する領域以外の領域に短パルスレーザを走査してアブレーション加工したが、これに限定されない。例えば、AlNセラミック構造体24を作製した後、その表面を研磨する前に、突起を形成する領域以外の領域に短パルスレーザを走査してアブレーション加工することにより突起を形成し、その後、突起の表面を研磨して鏡面に仕上げてもよい。また、突起の形成をレーザのみで実施する代わりに、ブラスト加工などの他の加工法とレーザ加工とを組み合わせて実施してもよい。例えば、AlNセラミック構造体24を作製した後、図4Aに示すように表面のうち突起を形成する領域以外の領域をブラスト加工(研磨材を表面に打ち付ける処理)により研削して小突起14及びシールバンド15を形成し(図4B)、研削した領域にレーザを照射してその領域を改質して表層領域12Aaを形成してAlNヒータ10を得るようにしてもよい(図4C)。また、突起の頂面及び/又は側面も改質する必要がある場合には、突起の頂面及び/又は側面にレーザを照射してもよい。例えば、AlNヒータ10の小突起14及びシールバンド15の頂面及び側面に短パルスレーザを走査してアブレーション加工し(図5A)、小突起14及びシールバンド15の頂面及び側面を含むAlNヒータ10の表面全面に表層領域12Aaを形成してもよい(図5B)。その場合、突起が消失しないようにレーザの出力を調整するのが好ましい。
 上述した実施形態では、AlNセラミック基体12のうち突起(小突起14及びシールバンド15)の設けられていない部分12Aの全体が表層領域12Aaと母材領域12Abを有していたが、特にこれに限定されない。例えば、部分12Aの一部が表層領域12Aaと母材領域12Abを有していてもよい。こうした構造も本発明の技術的範囲に含まれる。このように、突起の設けられていない部分12Aの少なくとも一部が表層領域12Aaと母材領域12Abを有していれば、本発明の技術的範囲に含まれるため、突起部分は、表層領域12Aaと母材領域12Abを有していても有していなくてもよい。例えば、突起の頂面の少なくとも一部が表層領域12Aaと母材領域12Abを有していてもよいし、突起の頂面が表層領域12Aaと母材領域12Abを有していなくてもよい。また、突起の側面の少なくとも一部が表層領域12Aaと母材領域12Abを有していてもよいし、突起の側面が表層領域12Aaと母材領域12Abを有していなくてもよい。
 以下に、本発明の実施例について説明する。なお、以下の実施例は本発明を何ら限定するものではない。
[参考例1]
 電極を内蔵しない円板状のAlNセラミック基体(母材A,直径320mm、厚さ20mm)を以下のようにして作製した。まず、窒化アルミニウム粉末(純度99.7%)100質量部と、酸化イットリウム5質量部と、分散剤(ポリカルボン酸系共重合体)2質量部と、分散媒(多塩基酸エステル)30質量部とを、ボールミル(トロンメル)を用いて14時間混合することにより、セラミックスラリー前駆体を得た。このセラミックスラリー前駆体に対して、イソシアネート(4,4’-ジフェニルメタンジイソシアネート)4.5質量部、水0.1質量部、触媒(6-ジメチルアミノ-1-ヘキサノール)0.4質量部を加えて混合することにより、セラミックスラリーを得た。このセラミックスラリーを円板形状の内部空間を有する成形型に流し込み、イソシアネートと水との化学反応により有機バインダ(ウレタン樹脂)を生成させたあと、成形型から硬化した成形体を取り出した。その成形体を100℃で10時間乾燥し、脱脂及び仮焼を水素雰囲気下、最高温度1300℃で行い、セラミック仮焼体を得た。そのセラミック仮焼体を、窒素ガス中、プレス圧力250kgf/cm2 、1860℃で6時間、ホットプレス焼成することによりAlNセラミック基体を作製した。得られたAlNセラミック基体について、EDX分析によりN,O,Al,Yの質量%を求めた。また、AlNセラミック基体の色を目視で測定し、硬さをミツトヨ製マイクロビッカース硬さ測定機HM-211で測定した。それらの結果を表1に示す。
[実施例1]
 母材Aの表面をピコ秒レーザ加工機を利用してアブレーション加工した。ピコ秒レーザ加工機は、ガルバノミラーのモータとステージのモータを駆動させながら、基体表面を5μm間隔で平行に走査してアブレーション加工を行った。加工波長、走査速度、パルス幅及びレーザ出力は表1に示す値に設定し、周波数は200kHzに設定した。加工回数は2回とした。加工終了後、AlNセラミック基体の断面を調べたところ、表層領域(表面から0.5μmまでの黒く変質した領域)とその表層領域の下側の母材領域とに分かれていた。表層領域について、母材Aと同様にしてN,O,Al,Yの質量%を求めた。また、母材領域の酸素含有率に対する表層領域の酸素含有率の割合、母材領域の質量比O/Nに対する表層領域の質量比O/Nの割合、母材領域の質量比Al/Nに対する表層領域の質量比Al/Nの割合を求めた。更に、表層領域の色及び硬さを母材Aと同様にして測定した。それらの結果を表1に示す。表層領域の硬さは670Hvであり、母材領域の硬さ(523Hv)に比べて約1.28倍であった。このように実施例1の表層領域の硬さは母材A(参考例1)よりも硬くなったため、母材Aに比べてパーティクル抑制効果が向上する。また、実施例1の表層領域を走査電子顕微鏡(SEM)で観察したところ、ドロスは見られなかった。そのため、特許文献1に比べてパーティクル抑制効果が向上する。
[参考例2]
 母材Aと同じサイズの円板状のAlNセラミック基体(母材B)を、母材Aと同じ方法で作製した。得られたAlNセラミック基体について、母材Aと同様にしてN,O,Al,Yの質量%を求めた。母材Bは、母材Aとはロットが異なるため元素の質量%が異なっていた。また、AlNセラミック基体の色及び硬さを母材Aと同様にして測定した。それらの結果を表1に示す。
[実施例2~4]
 母材Bの表面をナノ秒レーザ加工機を利用してアブレーション加工した。ナノ秒レーザ加工機は、ガルバノミラーのモータとステージのモータを駆動させながら、基体表面を5μm間隔で平行に走査してアブレーション加工を行った。実施例2~4では、加工波長、走査速度、パルス幅及びレーザ出力をそれぞれ表1に示す値に設定し、周波数を50kHzに設定し、加工回数は1回とした。加工終了後、AlNセラミック基体の断面を調べたところ、表層領域とその表層領域の下側の母材領域とに分かれていた。実施例2の表層領域は表面から0.2μmまでの領域、実施例3の表層領域は表面から0.3μmまでの領域、実施例4の表層領域は表面から0.2μmまでの領域であった。実施例2~4の各表層領域について、母材Aと同様にしてN,O,Al,Yの質量%を求めた。また、母材領域の酸素含有率に対する表層領域の酸素含有率の割合、母材領域の質量比O/Nに対する表層領域の質量比O/Nの割合、母材領域の質量比Al/Nに対する表層領域の質量比Al/Nの割合を求めた。更に、表層領域の色及び硬さを母材Aと同様にして測定した。それらの結果を表1に示す。表層領域の硬さは650~690Hvであり、母材領域の硬さ(560Hv)に比べて約1.16~1.23倍であった。このように実施例2~4の各表層領域の硬さが母材B(参考例2)よりも硬くなったため、母材Bに比べてパーティクル抑制効果が向上する。また、実施例2~4の各表層領域を走査電子顕微鏡(SEM)で観察したところ、ドロスが見られなかった。そのため、特許文献1に比べてパーティクル抑制効果が向上する。
[参考例3]
 母材Aと同じサイズの円板状のAlNセラミック基体(母材C)を、母材Aと同じ方法で作製した。得られたAlNセラミック基体について、母材Aと同様にしてN,O,Al,Yの質量%を求めた。母材Cは、母材Aとはロットが異なるため元素の質量%が異なっていた。また、AlNセラミック基体の色及び硬さを母材Aと同様にして測定した。それらの結果を表1に示す。
[実施例5,6]
 母材Cの表面をピコ秒レーザ加工機を利用してアブレーション加工した。ピコ秒レーザ加工機は、ガルバノミラーのモータとステージのモータを駆動させながら、基体表面を5μm間隔で平行に走査してアブレーション加工を行った。実施例5,6では、加工波長、走査速度、パルス幅及びレーザ出力をそれぞれ表1に示す値に設定し、周波数を200kHzに設定し、加工回数は1回とした。加工終了後、AlNセラミック基体の断面を調べたところ、表層領域とその表層領域の下側の母材領域とに分かれていた。実施例5,6の表層領域はいずれも表面から0.5μmまでの領域であった。実施例5,6の各表層領域について、母材Aと同様にしてN,O,Al,Yの質量%を求めた。また、母材領域の酸素含有率に対する表層領域の酸素含有率の割合、母材領域の質量比O/Nに対する表層領域の質量比O/Nの割合、母材領域の質量比Al/Nに対する表層領域の質量比Al/Nの割合を求めた。更に、表層領域の色及び硬さを母材Aと同様にして測定した。それらの結果を表1に示す。表層領域の硬さは459.9~635.9Hvであり、母材領域の硬さ(413Hv)に比べて約1.11~1.54倍であった。このように実施例5,6の各表層領域の硬さが母材Cよりも硬くなったため、母材Cに比べてパーティクル抑制効果が向上する。また、実施例5,6の各表層領域を走査電子顕微鏡(SEM)で観察したところ、ドロスが見られなかった。そのため、特許文献1に比べてパーティクル抑制効果が向上する。
Figure JPOXMLDOC01-appb-T000001
 図6は、実施例1のAlNセラミック基体の断面を拡大した画像であり、図7は、実施例2のAlNセラミック基体の断面を拡大した画像である。図6及び図7において、スケールの全体(10目盛り分)の長さが1.00μmである。
  本出願は、2022年3月30日に出願された日本国特許出願第2022-055112号を優先権主張の基礎としており、引用によりその内容の全てが本明細書に含まれる。
 本発明は、ウエハを処理するウエハ処理装置などの半導体製造装置用部材に利用可能である。
10 AlNヒータ、12 AlNセラミック基体、12A 突起の設けられていない部分、12Aa 表層領域、12Ab 母材領域、14 小突起、15 シールバンド、16 電極、21 AlNセラミック焼結体、22 AlNセラミック成形体、23 積層体、24 AlNセラミック構造体、26 ヒータ電極前駆体。

Claims (8)

  1.  AlNセラミック基体の表面にウエハ載置用の突起が設けられた半導体製造装置用部材であって、
     前記AlNセラミック基体のうち前記突起の設けられていない部分の少なくとも一部は、前記表面から所定深さまでの表層領域と、前記表層領域よりも下側の母材領域とを有し、前記所定距離は5μm以下であり、前記表層領域の酸素含有率は、前記母材領域の酸素含有率よりも高い、
     半導体製造装置用部材。
  2.  前記表層領域の酸素含有率は、前記母材領域の酸素含有率の2.0倍以上である、
     請求項1に記載の半導体製造装置用部材。
  3.  前記表層領域は、黒色化している、
     請求項1又は2に記載の半導体製造装置用部材。
  4.  前記表層領域には、ドロスが見られない、
     請求項1~3のいずれか1項に記載の半導体製造装置用部材。
  5.  前記表層領域の質量比O/Nは、前記母材領域の質量比O/Nよりも大きい値である、
     請求項1~4のいずれか1項に記載の半導体製造装置用部材。
  6.  前記表層領域の質量比O/Nは、前記母材領域の質量比O/Nの2.2倍以上である、
     請求項5に記載の半導体製造装置用部材。
  7.  前記表層領域の質量比Al/Nは、前記母材領域の質量比Al/Nよりも大きい値である、
     請求項1~6のいずれか1項に記載の半導体製造装置用部材。
  8.  前記AlNセラミック基体のうち前記突起の設けられていない部分は、前記表層領域と前記母材領域とを有する、
     請求項1~7のいずれか1項に記載の半導体製造装置用部材。
PCT/JP2022/038413 2022-03-30 2022-10-14 半導体製造装置用部材 WO2023188480A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020237031558A KR20230145459A (ko) 2022-03-30 2022-10-14 반도체 제조 장치용 부재
CN202280020196.3A CN117157744A (zh) 2022-03-30 2022-10-14 半导体制造装置用部件
US18/467,882 US20240007023A1 (en) 2022-03-30 2023-09-15 Member for semiconductor manufacturing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022055112 2022-03-30
JP2022-055112 2022-03-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/467,882 Continuation US20240007023A1 (en) 2022-03-30 2023-09-15 Member for semiconductor manufacturing apparatus

Publications (1)

Publication Number Publication Date
WO2023188480A1 true WO2023188480A1 (ja) 2023-10-05

Family

ID=88200660

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/038413 WO2023188480A1 (ja) 2022-03-30 2022-10-14 半導体製造装置用部材

Country Status (4)

Country Link
US (1) US20240007023A1 (ja)
KR (1) KR20230145459A (ja)
CN (1) CN117157744A (ja)
WO (1) WO2023188480A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006064992A (ja) * 2004-08-26 2006-03-09 Kyocera Corp 液晶基板保持盤とその製造方法
JP2012119378A (ja) * 2010-11-29 2012-06-21 Kyocera Corp 載置用部材およびその製造方法
JP6960260B2 (ja) * 2017-06-27 2021-11-05 日本特殊陶業株式会社 基板保持装置及びその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006064992A (ja) * 2004-08-26 2006-03-09 Kyocera Corp 液晶基板保持盤とその製造方法
JP2012119378A (ja) * 2010-11-29 2012-06-21 Kyocera Corp 載置用部材およびその製造方法
JP6960260B2 (ja) * 2017-06-27 2021-11-05 日本特殊陶業株式会社 基板保持装置及びその製造方法

Also Published As

Publication number Publication date
US20240007023A1 (en) 2024-01-04
CN117157744A (zh) 2023-12-01
KR20230145459A (ko) 2023-10-17
TW202347570A (zh) 2023-12-01

Similar Documents

Publication Publication Date Title
TWI501684B (zh) 陶瓷加熱器及其製造方法
KR102027128B1 (ko) Yof계 분말의 제조방법
US11107719B2 (en) Electrostatic chuck device and method for manufacturing electrostatic chuck device
TWI807438B (zh) 大尺寸的燒結陶瓷體及製造方法
CN110709367B (zh) 复合烧结体、静电卡盘部件及静电卡盘装置
US7338723B2 (en) Aluminum nitride substrate and production method
US7175714B2 (en) Electrode-built-in susceptor and a manufacturing method therefor
JP2008047885A (ja) 静電チャックヒータ
TWI709546B (zh) 複合燒結體、半導體製造裝置構件及複合燒結體之製造方法
WO2019189600A1 (ja) セラミックス基体およびサセプタ
CN107135560B (zh) 陶瓷结构体、其制法及半导体制造装置用部件
DE60316746T2 (de) Keramischer Suszeptor
JP2009218322A (ja) 窒化珪素基板及びその製造方法並びにそれを使用した窒化珪素回路基板及び半導体モジュール
KR20230138005A (ko) 질화규소 기판
WO2023188480A1 (ja) 半導体製造装置用部材
CN111886213A (zh) 复合烧结体、静电卡盘部件、静电卡盘装置及复合烧结体的制造方法
JP2005203734A (ja) 金属部材埋設セラミックス品とその製造方法
KR101692219B1 (ko) 진공척용 복합체 및 그 제조방법
CN1308259C (zh) 氮化铝烧结坯、金属化基片、加热器、夹具以及制造氮化铝烧结坯的方法
TWI839171B (zh) 半導體製造裝置用構件
CN114180942B (zh) 复合烧结体、半导体制造装置构件及复合烧结体的制造方法
JP7211549B2 (ja) 窒化珪素基板
KR20140047607A (ko) AlN 기판 및 그 제조 방법
KR101195009B1 (ko) 질화알루미늄 소재의 제조방법
CN110294630B (zh) 复合烧结体、半导体制造装置部件和复合烧结体的制造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023556747

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20237031558

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237031558

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22935611

Country of ref document: EP

Kind code of ref document: A1