WO2023188012A1 - 超硬合金 - Google Patents

超硬合金 Download PDF

Info

Publication number
WO2023188012A1
WO2023188012A1 PCT/JP2022/015577 JP2022015577W WO2023188012A1 WO 2023188012 A1 WO2023188012 A1 WO 2023188012A1 JP 2022015577 W JP2022015577 W JP 2022015577W WO 2023188012 A1 WO2023188012 A1 WO 2023188012A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
cemented carbide
particle size
less
phase
Prior art date
Application number
PCT/JP2022/015577
Other languages
English (en)
French (fr)
Inventor
友幸 石田
佑樹 田中
和弘 広瀬
Original Assignee
住友電工ハードメタル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電工ハードメタル株式会社 filed Critical 住友電工ハードメタル株式会社
Priority to JP2022550915A priority Critical patent/JP7367905B1/ja
Priority to EP22935160.6A priority patent/EP4357474A1/en
Priority to CN202280050609.2A priority patent/CN117677723A/zh
Priority to PCT/JP2022/015577 priority patent/WO2023188012A1/ja
Priority to TW112109513A priority patent/TW202346615A/zh
Publication of WO2023188012A1 publication Critical patent/WO2023188012A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/08Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on tungsten carbide

Definitions

  • the present disclosure relates to cemented carbide.
  • cemented carbide comprising a hard phase of tungsten carbide (WC) and a binder phase of cobalt (Co) has been used as a material for cutting tools (Patent Documents 1 to 4).
  • the cemented carbide of the present disclosure is a cemented carbide comprising a hard phase and a binder phase,
  • the hard phase contains tungsten carbide as a main component
  • the bonded phase contains cobalt as a main component
  • the ratio D10/D90 of the 10% cumulative particle size D10 on an area basis to the 90% cumulative particle size D90 on an area basis is 0.30 or more
  • the ratio D10/D90 of the 10% cumulative particle size D10 on an area basis to the 90% cumulative particle size D90 on an area basis is 0.23 or more
  • the average particle size of the binder phase is 0.25 ⁇ m or more and 0.50 ⁇ m or less
  • the average particle size of the hard phase is 0.30 ⁇ m or more and 0.60 ⁇ m or less.
  • FIG. 1 is a photographic diagram showing an image obtained by performing binarization processing on a scanning electron microscope image of a cemented carbide according to the present embodiment.
  • the cemented carbide of the present disclosure is a cemented carbide consisting of a hard phase and a binder phase,
  • the hard phase contains tungsten carbide as a main component
  • the bonded phase contains cobalt as a main component
  • the ratio D10/D90 of the 10% cumulative particle size D10 on an area basis to the 90% cumulative particle size D90 on an area basis is 0.30 or more
  • the ratio D10/D90 of the 10% cumulative particle size D10 on an area basis to the 90% cumulative particle size D90 on an area basis is 0.23 or more
  • the average particle size of the binder phase is 0.25 ⁇ m or more and 0.50 ⁇ m or less
  • the average particle size of the hard phase is 0.30 ⁇ m or more and 0.60 ⁇ m or less.
  • cemented carbide of the present disclosure it is possible to provide a cutting tool with a long tool life even in interrupted machining of titanium-based difficult-to-cut materials.
  • the total content of chromium and vanadium is 0.6% by mass or more and 2.1% by mass or less, and the chromium content is 0.4% by mass or more and 1.5% by mass or less.
  • the vanadium content is preferably 0% by mass or more and 0.6% by mass or less.
  • the total number of vanadium-containing particles and primary chromium-containing particles is 2 or less
  • the particle size of the first vanadium-containing particles is 1 ⁇ m or more
  • the particle size of the first chromium-containing particles is preferably 1 ⁇ m or more.
  • the notation in the format "A to B” means the upper and lower limits of the range (i.e., from A to B), and when there is no unit described in A and only in B, The units of and the units of B are the same.
  • the atomic ratio when a compound or the like is expressed by a chemical formula, unless the atomic ratio is specifically limited, it includes all conventionally known atomic ratios, and should not necessarily be limited to only those in the stoichiometric range.
  • the ratio of the number of atoms constituting WC includes all conventionally known atomic ratios.
  • Embodiment 1 Cemented carbide
  • This embodiment is a cemented carbide comprising a hard phase and a binder phase,
  • the hard phase contains tungsten carbide as a main component
  • the bonded phase contains cobalt as a main component
  • the ratio D10/D90 of the 10% cumulative particle size D10 on an area basis to the 90% cumulative particle size D90 on an area basis is 0.30 or more
  • the ratio D10/D90 of the 10% cumulative particle size D10 on an area basis to the 90% cumulative particle size D90 on an area basis is 0.23 or more
  • the average particle size of the binder phase is 0.25 ⁇ m or more and 0.50 ⁇ m or less
  • the average particle size of the hard phase is 0.30 ⁇ m or more and 0.60 ⁇ m or less.
  • cemented carbide of the present disclosure it is possible to provide a cutting tool with a long tool life even in interrupted machining of titanium-based difficult-to-cut materials. The reason is presumed to be as follows.
  • the ratio D10/D90 of the 10% cumulative particle size D10 on an area basis to the 90% cumulative particle size D90 on an area basis is 0.30 or more, so it constitutes a hard phase. Differences in grain size of crystal grains can be kept small. Therefore, the hard phase can be uniformly dispersed in the cemented carbide.
  • the hard phase is fine as a whole. Therefore, in combination with the above (a), the hard phase can be made fine and uniformly dispersed in the cemented carbide. This prevents the hard phase from partially falling off from the cemented carbide during tool use, and prevents sudden damage to the cemented carbide, so the cutting tool has excellent fracture resistance. Can be done.
  • the ratio D10/D90 of the 10% cumulative particle size D10 on an area basis to the 90% cumulative particle size D90 on an area basis is 0.23 or more. Differences in the grain sizes of the constituent crystal grains can be kept small. Therefore, the binder phase can be uniformly dispersed in the cemented carbide.
  • the binder phase is fine as a whole. Therefore, in combination with the above (c), the binder phase can be made fine and uniformly dispersed in the cemented carbide. As a result, welding of the work material to the cemented carbide during use of the tool is suppressed, and the cutting tool can have excellent welding resistance. Furthermore, since the binder phase is fine and the difference in particle size is small, damage caused by the presence of coarse particles during use of the tool is suppressed, and the tool can have excellent fracture resistance.
  • the hard phase and the binder phase are fine and the hard phase and the binder phase are uniformly dispersed, so that the cemented carbide has excellent welding resistance. It can also have excellent fracture resistance. Therefore, according to the cemented carbide of the present disclosure, it is possible to provide a cutting tool that has a long tool life even in interrupted machining of titanium-based difficult-to-cut materials.
  • the cemented carbide of this embodiment consists of a hard phase and a binder phase. That is, the total content of the hard phase and binder phase of the cemented carbide is 100% by mass.
  • the cemented carbide consists of a hard phase and a binder phase means that the cemented carbide contains unavoidable impurities in addition to the hard phase and the binder phase, as long as the effects of the present disclosure are exhibited. It means that you can.
  • the unavoidable impurities include iron, molybdenum, and sulfur.
  • the content of unavoidable impurities in the cemented carbide is preferably 0% by mass or more and less than 0.1% by mass.
  • the content of inevitable impurities in the cemented carbide is measured by ICP (Inductively Coupled Plasma) emission spectrometry (measuring device: Shimadzu Corporation "ICPS-8100" (trademark)).
  • the lower limit of the hard phase content of the cemented carbide of this embodiment is preferably 84% by mass or more, 85% by mass or more, and 86% by mass or more.
  • the upper limit of the content of the hard phase in the cemented carbide of this embodiment is preferably 92% by mass or less, 91% by mass or less, and 90% by mass or less.
  • the content of the hard phase in the cemented carbide of the present embodiment is preferably 84% by mass or more and 92% by mass or less, 85% by mass or more and 91% by mass or less, and 86% by mass or more and 90% by mass or less.
  • the lower limit of the binder phase content of the cemented carbide of this embodiment is preferably 8% by mass or more, 9% by mass or more, and 10% by mass or more.
  • the upper limit of the binder phase content of the cemented carbide of this embodiment is preferably 16% by mass or less, 15% by mass or less, and 14% by mass or less.
  • the content of the binder phase in the cemented carbide of the present embodiment is preferably 8% by mass or more and 16% by mass or less, 9% by mass or more and 15% by mass or less, and 10% by mass or more and 14% by mass or less.
  • the cemented carbide of this embodiment preferably consists of a hard phase of 84% by mass or more and 92% by mass or less, and a binder phase of 8% by mass or more and 16% by mass or less. It is preferable that the cemented carbide of this embodiment consists of a hard phase of 85% by mass or more and 91% by mass or less, and a binder phase of 9% by mass or more and 15% by mass or less. It is preferable that the cemented carbide of this embodiment consists of a hard phase of 86% by mass or more and 90% by mass or less and a binder phase of 10% by mass or more and 14% by mass or less.
  • the respective contents of the hard phase and the binder phase of the cemented carbide are measured by ICP emission spectrometry (measuring device: Shimadzu Corporation "ICPS-8100" (trademark)).
  • the hard phase of this embodiment contains tungsten carbide as a main component.
  • "containing tungsten carbide as a main component” means that the hard phase may contain components other than tungsten carbide as long as the effects of the present disclosure are exhibited.
  • the hard phase may contain 80% by mass or more of tungsten carbide.
  • the hard phase may contain 85% by mass or more, 90% by mass or more, or 95% by mass or more of tungsten carbide.
  • the content of tungsten carbide in the hard phase is calculated using the tungsten (W) content measured by ICP emission spectrometry (measuring device: Shimadzu "ICPS-8100" (trademark)). ) It is obtained by converting to content rate.
  • the hard phase may include carbides, nitrides, etc. of at least one element selected from the group consisting of Ti, Cr, V, Mo, Ta, Nb, and Zr, as long as they exhibit the effects of the present disclosure.
  • carbides, nitrides, etc. of at least one element selected from the group consisting of Ti, Cr, V, Mo, Ta, Nb, and Zr, as long as they exhibit the effects of the present disclosure.
  • Carbonitrides, oxides, unavoidable impurity elements mixed in during the manufacturing process of WC, trace impurity elements, etc. can be included. Examples of these impurity elements include molybdenum (Mo) and chromium (Cr).
  • the content of impurity elements in the hard phase is preferably less than 0.1% by mass.
  • the content of impurity elements in the hard phase is measured by ICP emission spectrometry (measuring device: "ICPS-8100" (trademark) manufactured by Shimadzu Corporation).
  • ICPS-8100 measuring device: "ICPS-8100” (trademark) manufactured by Shimadzu Corporation.
  • the presence of trace amounts of impurity elements in the hard phase can be determined by performing elemental mapping on a cross section of the cemented carbide using an energy dispersive X-ray spectrometer (EDS).
  • EDS energy dispersive X-ray spectrometer
  • ⁇ Ratio D10/D90 (hard phase) of 10% cumulative particle size D10 to 90% cumulative particle size D90>
  • the ratio D10/D90 of the 10% cumulative particle size D10 on an area basis to the 90% cumulative particle size D90 on an area basis is 0.30 or more. This allows the hard phase to be uniformly dispersed in the cemented carbide.
  • the lower limit of D10/D90 is preferably 0.31 or more, more preferably 0.32 or more.
  • the upper limit of D10/D90 is preferably 0.50 or less, more preferably 0.45 or less, and even more preferably 0.40 or less.
  • D10/D90 is preferably 0.31 or more and 0.50 or less, more preferably 0.31 or more and 0.45 or less, and 0.32 or more and 0.40 or less. It is even more preferable that there be.
  • D10/D90 is measured according to the following procedures (A1) to (E1).
  • Any surface or cross section of the cemented carbide is mirror-finished.
  • mirror finishing methods include a method of polishing with diamond paste, a method of using a focused ion beam device (FIB device), a method of using a cross section polisher device (CP device), and a method of combining these.
  • FIB device focused ion beam device
  • CP device cross section polisher device
  • (C1) The three backscattered electron images obtained in (B1) above were imported into a computer using image analysis software (ImageJ, version 1.51j8: https://imagej.nih.gov/ij/) and binarized. Perform processing.
  • the binarization process is executed under conditions preset in the image analysis software by pressing the "Make Binary” display on the computer screen after capturing the image.
  • Watershed is executed to determine grain boundaries of crystal grains under conditions preset in the image analysis software. Measure particles of 0.002 ⁇ m 2 or more with Analyze Particle. Note that manual adjustment is also possible for setting the threshold value in the binarization process, but manual adjustment is not adopted in this procedure. In this procedure, as described above, the binarization process is executed by pressing the "Make Binary" display.
  • the hard phase and the bonded phase can be distinguished by the shade of color.
  • the hard phase is shown as a black area
  • the bonded phase is shown as a white area.
  • FIG. 1 shows an image obtained by performing binarization processing on the backscattered electron image using the image analysis software (ImageJ).
  • the average particle size of the hard phase is 0.30 ⁇ m or more and 0.60 ⁇ m or less. This allows the hard phase to be made fine as a whole in the cemented carbide.
  • the lower limit of the average particle size of the hard phase is preferably 0.35 ⁇ m or more, more preferably 0.40 ⁇ m or more.
  • the upper limit of the average particle size of the hard phase is preferably 0.55 ⁇ m or less, and more preferably 0.50 ⁇ m or less.
  • the average particle size of the hard phase is preferably 0.35 ⁇ m or more and 0.55 ⁇ m or less, and more preferably 0.40 ⁇ m or more and 0.50 ⁇ m or less.
  • the average particle diameter of the hard phase is measured by the following procedures (A2) to (B2).
  • (B2) Calculate the 50% cumulative particle size (circle equivalent diameter) D50 on an area basis for all hard phases in the three measurement fields.
  • the D50 corresponds to the average particle size of the hard phase.
  • the binder phase of this embodiment contains cobalt as a main component.
  • containing cobalt as a main component means that the content of cobalt in the binder phase is 80% by mass or more and 100% by mass or less. Note that the cobalt content in the bonded phase is determined by ICP analysis.
  • the binder phase can include iron (Fe), nickel (Ni), and dissolved substances in the alloy (chromium (Cr), tungsten (W), vanadium (V), etc.).
  • the binder phase can include cobalt and at least one member selected from the group consisting of iron, nickel, chromium, tungsten, and vanadium.
  • the binder phase can include cobalt, at least one member selected from the group consisting of iron, nickel, chromium, tungsten, and vanadium, and unavoidable impurities.
  • the unavoidable impurities include manganese (Mn), magnesium (Mg), calcium (Ca), molybdenum (Mo), sulfur (S), titanium (Ti), and aluminum (Al).
  • cemented carbide It can be identified by performing elemental mapping on a cross section of with an energy dispersive X-ray spectrometer (EDS).
  • EDS energy dispersive X-ray spectrometer
  • the ratio D10/D90 of the 10% cumulative particle size D10 on an area basis to the 90% cumulative particle size D90 on an area basis is 0.23 or more. This allows the binder phase to be uniformly dispersed in the cemented carbide.
  • D10/D90 is preferably 0.24 or more, more preferably 0.25 or more.
  • D10/D90 is preferably 0.5 or less, more preferably 0.45 or less, and even more preferably 0.4 or less.
  • D10/D90 is preferably 0.23 or more and 0.5 or less, more preferably 0.24 or more and 0.45 or less, and 0.25 or more and 0.4 or less. It is even more preferable that there be.
  • D10/D90 is measured according to the following procedures (A3) to (C3).
  • a binarized image of the cross section of the cemented carbide is obtained using the same procedure as in (A1) to (C1) described in the method for measuring D10/D90 of the hard phase.
  • the average particle size of the binder phase is 0.25 ⁇ m or more and 0.50 ⁇ m or less. This makes it possible to make the binder phase fine as a whole in the cemented carbide.
  • the average particle size of the binder phase is preferably 0.23 ⁇ m or more, more preferably 0.25 ⁇ m or more. Further, the average particle size of the binder phase is preferably 0.47 ⁇ m or less, more preferably 0.45 ⁇ m or less.
  • the average particle size of the binder phase is preferably 0.23 ⁇ m or more and 0.47 ⁇ m or less, more preferably 0.25 ⁇ m or more and 0.45 ⁇ m or less.
  • the average particle size of the above-mentioned binder phase is measured according to the following procedures (A4) to (B4).
  • (B4) Calculate the 50% cumulative particle size (circle equivalent diameter) D50 on an area basis for all the bonded phases in the three measurement fields.
  • the D50 corresponds to the average particle size of the binder phase.
  • the total content of chromium and vanadium is preferably 0.6% by mass or more and 2.1% by mass or less. Note that here, as long as the chromium content and vanadium content are 0.6% by mass or more and 2.1% by mass or less in total, the ratio between the chromium content and vanadium content does not matter. .
  • the total content of chromium and vanadium is more preferably 0.8% by mass or more and 1.9% by mass or less, and even more preferably 1.0% by mass or more and 1.7% by mass or less. . ⁇ Chromium content>
  • the content of chromium in the cemented carbide of this embodiment is preferably 0.4% by mass or more and 1.5% by mass or less.
  • Chromium has the effect of inhibiting grain growth of tungsten carbide particles.
  • the content of chromium is preferably 0.4% by mass or more, more preferably 0.5% by mass or more, and even more preferably 0.6% by mass or more.
  • the content of chromium is preferably 1.5% by mass or less, more preferably 1.4% by mass or less, and even more preferably 1.3% by mass or less.
  • the content of chromium is more preferably 0.5% by mass or more and 1.4% by mass or less, and even more preferably 0.6% by mass or more and 1.3% by mass or less.
  • the above chromium may exist as a solid solution in the binder phase. It can also precipitate as Cr 3 C 2 and exist as a hard phase.
  • the chromium is present as a solid solution in the binder phase.
  • the chromium content of the cemented carbide is measured by ICP emission spectroscopy.
  • the vanadium content is preferably 0% by mass or more and 0.6% by mass or less. Vanadium has a grain growth inhibiting effect on tungsten carbide particles. When the vanadium content is within the above range, the generation of coarse grains can be effectively suppressed, and the welding resistance and fracture resistance of the cemented carbide can be further improved.
  • the content of vanadium is preferably 0.1% by mass or more, more preferably 0.2% by mass or more. Further, the vanadium content is preferably 0.55% by mass or less, more preferably 0.5% by mass or less. Further, the vanadium content is more preferably 0.1% by mass or more and 0.55% by mass or less, and even more preferably 0.2% by mass or more and 0.5% by mass or less. Note that the vanadium described above may exist as a solid solution in the bonded phase. It can also precipitate as VC and exist as a hard phase. Preferably, the vanadium is present as a solid solution in the bonded phase.
  • the vanadium content of the cemented carbide is measured by ICP emission spectrometry.
  • first vanadium-containing particles In a rectangular measurement field of 42.3 ⁇ m x 29.6 ⁇ m set in an image obtained by performing elemental mapping with an energy dispersive
  • the total number of containing particles and primary chromium-containing particles is 2 or less
  • the particle size of the primary vanadium-containing particles is 1 ⁇ m or more
  • the particle size of the primary chromium-containing particles is 1 ⁇ m or more.
  • the first vanadium-containing particles are present as a hard phase in the cemented carbide.
  • the first vanadium-containing particles mainly consist of vanadium and carbon, and may further contain impurities.
  • the impurities include W, Ti, Mo, Ta, Nb, Cr, N, and O.
  • the impurity content of the first vanadium-containing particles can be 30% by mass or less. The content of impurities is measured by ICP emission spectrometry.
  • the first chromium-containing particles exist as a hard phase in the cemented carbide.
  • the first chromium-containing particles mainly consist of chromium and carbon, and may further contain impurities.
  • the impurities include W, Ti, Mo, Ta, Nb, V, N, and O.
  • the impurity content of the first chromium-containing particles can be 30% by mass or less. The content of impurities is measured by ICP emission spectrometry.
  • the total number of containing particles and primary chromium-containing particles is preferably two or less. This is because if a large amount of the first chromium-containing particles or the first vanadium-containing particles are present in the cemented carbide, the fracture resistance of the cemented carbide tends to decrease.
  • the total number of the first vanadium-containing particles and the first chromium-containing particles is more preferably one or less, and even more preferably zero, that is, the first vanadium-containing particles and the first chromium-containing particles are not present.
  • the above measurement is performed for five fields of view arbitrarily set in the above observation image, and the total number of first vanadium-containing particles and first chromium-containing particles is determined in each field of view.
  • the average of the total number of 5 visual fields is calculated. Let this average be the total number of first vanadium-containing particles and first chromium-containing particles in this embodiment.
  • Embodiment 2 Method for manufacturing cemented carbide
  • a method of making the hard phase contained in cemented carbide fine as a whole it is possible to use hard particle powder with a small particle size as a raw material, and to add chromium particles in addition to hard particle powder and cobalt particle powder in the mixing process described later. It is conceivable to mix the powder and vanadium particle powder.
  • simply using hard particle powder with a small particle size as a raw material and mixing chromium particle powder and vanadium particle powder cannot sufficiently reduce the gap between the hard phases in the cemented carbide. There was a tendency for the grains to become coarse.
  • the cemented carbide of this embodiment can typically be manufactured by performing the raw material powder preparation process, mixing process, molding process, sintering process, and cooling process in the above order. Each step will be explained below.
  • the preparation step is a step of preparing all the raw material powders of the materials constituting the cemented carbide.
  • Raw material powders include tungsten carbide powder, which is the raw material for the hard phase, cobalt (Co) powder, which is the raw material for the binder phase, and chromium carbide (Cr 3 C 2 ) powder and vanadium carbide (VC) powder as grain growth inhibitors. Can be mentioned.
  • the particle size of the hard phase composed of ultrafine tungsten carbide particles can be suppressed by the grain growth inhibitor.
  • Commercially available tungsten carbide powder, cobalt powder, chromium carbide powder, and vanadium carbide powder can be used.
  • Tungsten carbide powder (hereinafter also referred to as "WC powder”) includes fine WC powder (average particle size: 0.5 ⁇ m or more and 1.0 ⁇ m or less) and ultrafine WC powder (average particle size: 0.2 ⁇ m). 0.4 ⁇ m or less).
  • WC powder fine WC powder (average particle size: 0.5 ⁇ m or more and 1.0 ⁇ m or less) and ultrafine WC powder (average particle size: 0.2 ⁇ m). 0.4 ⁇ m or less).
  • the hard phase in the cemented carbide can be made into fine particles as a whole.
  • the mean free path of cobalt can be lowered, so the particle size of the binder phase as a whole can be kept small.
  • the present inventors have diligently studied that by preparing the two types of WC powders described above, the hard phase in the cemented carbide can be made into fine particles as a whole, and the particle size of the binder phase can be kept small as a whole. As a result, this is a new finding.
  • the average particle size of the raw material powder means the average particle size measured by the FSSS (Fisher Sub-Sieve Sizer) method.
  • the average particle size is measured using a "Sub-Sieve Sizer Model 95" (trademark) manufactured by Fisher Scientific.
  • the particle size of each WC particle contained in the WC powder is measured using a particle size distribution measuring device manufactured by Microtrac (trade name: MT3300EX).
  • the average particle size of the cobalt powder can be 0.5 ⁇ m or more and 1.5 ⁇ m or less.
  • the average particle size of the chromium carbide powder can be 0.7 ⁇ m or more and 3.5 ⁇ m or less.
  • the average particle size of the vanadium carbide powder can be 0.1 ⁇ m or more and 1.2 ⁇ m or less. These average particle sizes are measured using a "Sub-Sieve Sizer Model 95" (trademark) manufactured by Fisher Scientific.
  • the mixing step is a step of mixing the raw material powders prepared in the preparation step. Through the mixing step, a mixed powder in which each raw material powder is mixed is obtained. The blending amount of each raw material powder in the mixed powder is appropriately adjusted in consideration of the content of each component such as the hard phase and binder phase of the cemented carbide.
  • the blending amount of the fine WC powder in the mixed powder can be, for example, 50.0% by mass or more and 71.0% by mass or less.
  • the blending amount of the ultrafine WC powder in the mixed powder can be, for example, 10% by mass or more and less than 29% by mass.
  • the blending amount of cobalt powder in the mixed powder can be, for example, 6% by mass or more and 16% by mass or less.
  • the content of cobalt powder in the mixed powder is preferably more than 8% by mass and 16% by mass or less.
  • the blending amount of chromium carbide powder in the mixed powder can be, for example, 0.4% by mass or more and 1.5% by mass or less.
  • the blending amount of vanadium carbide powder in the mixed powder can be, for example, 0% by mass or more and 0.7% by mass or less.
  • the blending amount of vanadium carbide powder in the mixed powder is preferably 0% by mass or more and 0.6% by mass or less.
  • the total amount of the chromium carbide powder in the mixed powder and the vanadium carbide powder in the mixed powder is preferably 0.6% by mass or more and 2.1% by mass or less.
  • the mixing method in order to maintain particles with different particle sizes (fine tungsten carbide particles and ultrafine tungsten carbide particles) as they are, a mixing method that suppresses pulverization is used. Specifically, a ball mill, attritor, Karman mixer, etc. are used. Particularly, in a mixing method using a medialess mixer such as a Karman mixer, it is easy to suppress the pulverization of each WC particle in the WC powder.
  • the mixing time can be adjusted as appropriate depending on each mixing method. If the crushing is strong, it becomes difficult to exhibit the advantages of the above composition.
  • cobalt is highly malleable and changes into a thin plate-like shape during the mixing process. In order to maintain the above-mentioned form of fine cobalt particles, it is desirable to add the cobalt after at least half of the mixing time has elapsed.
  • the mixed powder may be granulated if necessary.
  • the mixed powder By granulating the mixed powder, it is easy to fill the mixed powder into a die or mold during the forming process described later.
  • a known granulation method can be applied to the granulation, and for example, a commercially available granulation machine such as a spray dryer can be used.
  • the molding step is a step of molding the mixed powder obtained in the mixing step into a predetermined shape to obtain a molded body.
  • the molding method and molding conditions in the molding step are not particularly limited as long as they may be general methods and conditions.
  • Examples of the predetermined shape include a cutting tool shape (for example, the shape of a small diameter drill).
  • the sintering process is a process of sintering the molded body obtained in the molding process to obtain a sintered body.
  • the sintering temperature is 1400° C. or higher. This promotes the flow of the binder phase and the rearrangement of the hard particles, so that the binder phase can be uniformly dispersed in the cemented carbide. If the sintering temperature is less than 1400°C, the binder phase tends to be difficult to disperse uniformly. As a result of extensive research, the present inventors have newly discovered that the binder phase can be uniformly dispersed in the cemented carbide by performing the sintering process at the above sintering temperature. .
  • the sintering temperature is preferably 1500°C or less.
  • the sintering time can be 0.5 hours or more and 2 hours or less after heating and holding.
  • the cooling step is a step of cooling the sintered body.
  • the cooling step is performed at a temperature decreasing rate of 5° C./min or more.
  • the temperature decreasing rate is 5° C./min
  • the temperature decreasing rate is preferably 15° C./min or more.
  • the atmosphere during cooling is not particularly limited, and may be an N 2 gas atmosphere or an inert gas atmosphere such as Ar.
  • the pressure during cooling is not particularly limited, and may be increased or decreased.
  • the pressure during the pressurization may be, for example, 100 kPa or more and 7000 kPa or less.
  • the cooling step includes cooling the sintered body to room temperature in an Ar gas atmosphere.
  • sample No. 1 having the configuration shown in Table 2 and having a round bar shape was obtained.
  • Cemented carbide Nos. 1 to 21, 25, and 27 to 34 were produced.
  • the composition of the cemented carbide (hard phase content, binder phase content), the content of tungsten carbide particles in the hard phase, the cobalt content in the binder phase, the content of cobalt in the hard phase, D10/D90, average particle size of the hard phase, D10/D90 in the binder phase, average particle size of the binder phase, chromium content, vanadium content, in an image of a cross section of the cemented carbide taken with a scanning electron microscope The area percentage of the sum of the area of the first vanadium-containing particles and the area of the first chromium-containing particles was measured.
  • Sample No. Cemented carbide Nos. 1 to 4, 6 to 7, 9 to 14, 18 to 20, 25, 27 to 30, and 34 correspond to Examples.
  • sample No. 5, 8, 15-17, 21, 31-33 correspond to comparative examples.
  • Sample No. Cutting tools made of cemented carbide (Example) of Nos. 1 to 4, 6 to 7, 9 to 14, 18 to 20, 25, 27 to 30, and 34 were sample No.
  • the tool has excellent fracture resistance and long tool life even in interrupted machining of titanium-based difficult-to-cut materials. was confirmed.
  • cemented carbide Nos. 1 to 4, 6 to 7, 9 to 14, 18 to 20, 25, 27 to 30, and 34 have a long tool life even in interrupted machining of titanium-based difficult-to-cut materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

超硬合金は、硬質相と結合相とからなる超硬合金であって、前記硬質相は、炭化タングステンを主成分として含み、前記結合相は、コバルトを主成分として含み、前記硬質相において、面積基準での90%累積粒径D90に対する、面積基準での10%累積粒径D10の割合D10/D90は、0.30以上であり、前記結合相において、面積基準での90%累積粒径D90に対する、面積基準での10%累積粒径D10の割合D10/D90は、0.23以上であり、前記結合相の平均粒径は、0.25μm以上0.50μm以下であり、前記硬質相の平均粒径は、0.30μm以上0.60μm以下である、超硬合金。

Description

超硬合金
 本開示は、超硬合金に関する。
 従来から、炭化タングステン(WC)の硬質相と、コバルト(Co)の結合相とを備える超硬合金は、切削工具の素材として用いられている(特許文献1から特許文献4)。
特開2009-24214号公報 特開2013-60666号公報 国際公開第2018/180911号 特開2021-134364号公報
 本開示の超硬合金は、硬質相と結合相とからなる超硬合金であって、
 該硬質相は、炭化タングステンを主成分として含み、
 該結合相は、コバルトを主成分として含み、
 該硬質相において、面積基準での90%累積粒径D90に対する、面積基準での10%累積粒径D10の割合D10/D90は、0.30以上であり、
 該結合相において、面積基準での90%累積粒径D90に対する、面積基準での10%累積粒径D10の割合D10/D90は、0.23以上であり、
 該結合相の平均粒径は、0.25μm以上0.50μm以下であり、
 該硬質相の平均粒径は、0.30μm以上0.60μm以下である。
図1は、本実施形態の超硬合金の走査型電子顕微鏡撮影画像に対して二値化処理を行って得られた画像を示す写真代用図である。
 [本開示が解決しようとする課題]
 従来から、超硬合金において、結合相を均一に分散させることや、硬質相や結合相の粒度分布を調整することによって、超硬合金の硬度、靱性、耐摩耗性、耐塑性変形性、耐欠損性を高められることが知られていた(例えば、特許文献1から特許文献4)。しかしながら、単に結合相を均一に分散させることや、単に硬質相や結合相の粒度分布を調整することのみでは、特にチタン系難削材の断続加工において、溶着欠損を生じやすい場合があった。よって、工具材料として用いた場合に、チタン系難削材の断続加工においても長い工具寿命を有する切削工具を提供することのできる超硬合金が求められている。
 [本開示の効果]
 本開示の超硬合金によれば、チタン系難削材の断続加工においても、長い工具寿命を有する切削工具を提供することが可能となる。
 [本開示の実施形態の説明]
 最初に本開示の実施態様を列記して説明する。
 (1)本開示の超硬合金は、硬質相と結合相とからなる超硬合金であって、
 該硬質相は、炭化タングステンを主成分として含み、
 該結合相は、コバルトを主成分として含み、
 該硬質相において、面積基準での90%累積粒径D90に対する、面積基準での10%累積粒径D10の割合D10/D90は、0.30以上であり、
 該結合相において、面積基準での90%累積粒径D90に対する、面積基準での10%累積粒径D10の割合D10/D90は、0.23以上であり、
 該結合相の平均粒径は、0.25μm以上0.50μm以下であり、
 該硬質相の平均粒径は、0.30μm以上0.60μm以下である。
 本開示の超硬合金によれば、チタン系難削材の断続加工においても、長い工具寿命を有する切削工具を提供することが可能となる。
 (2)クロムの含有率とバナジウムの含有率とは合計で0.6質量%以上2.1質量%以下であり、クロムの含有率は、0.4質量%以上1.5質量%以下であり、バナジウムの含有率は、0質量%以上0.6質量%以下であることが好ましい。これによって、超硬合金における粒成長を効果的に抑制しながら粗大な析出粒子の発生を抑制できる為、より長い工具寿命を有することができる。
 (3)該超硬合金の断面に対しエネルギー分散型X線分析装置で元素マッピングを実行することにより得られた画像に設定された42.3μm×29.6μmの矩形の測定視野において、第1バナジウム含有粒子および第1クロム含有粒子の合計個数は2個以下であり、
 該第1バナジウム含有粒子の粒径は、1μm以上であり、
 該第1クロム含有粒子の粒径は、1μm以上であることが好ましい。これによって、析出した該第1バナジウム含有粒子および該第1クロム含有粒子を起点とする超硬合金の破壊を抑制できる為、より長い工具寿命を有することができる。
 [本開示の実施形態の詳細]
 本開示の一実施形態(以下、「本実施形態」とも記す。)の切削工具の具体例を、以下に図面を参照しつつ説明する。本開示の図面において、同一の参照符号は、同一部分または相当部分を表すものである。また、長さ、幅、厚さ、深さなどの寸法関係は図面の明瞭化と簡略化のために適宜変更されており、必ずしも実際の寸法関係を表すものではない。
 本明細書において「A~B」という形式の表記は、範囲の上限下限(すなわちA以上B以下)を意味し、Aにおいて単位の記載がなく、Bにおいてのみ単位が記載されている場合、Aの単位とBの単位とは同じである。
 本明細書において化合物などを化学式で表す場合、原子比を特に限定しないときは従来公知のあらゆる原子比を含むものとし、必ずしも化学量論的範囲のもののみに限定されるべきではない。たとえば「WC」と記載されている場合、WCを構成する原子数の比には、従来公知のあらゆる原子比が含まれる。
 [実施形態1:超硬合金]
 本開示の一実施形態(以下、「本実施形態」とも記す。)は、硬質相と結合相とからなる超硬合金であって、
 該硬質相は、炭化タングステンを主成分として含み、
 該結合相は、コバルトを主成分として含み、
 該硬質相において、面積基準での90%累積粒径D90に対する、面積基準での10%累積粒径D10の割合D10/D90は、0.30以上であり、
 該結合相において、面積基準での90%累積粒径D90に対する、面積基準での10%累積粒径D10の割合D10/D90は、0.23以上であり、
 該結合相の平均粒径は、0.25μm以上0.50μm以下であり、
 該硬質相の平均粒径は、0.30μm以上0.60μm以下である。
 本開示の超硬合金によれば、チタン系難削材の断続加工においても、長い工具寿命を有する切削工具を提供することが可能となる。その理由は、以下の通りと推察される。
 (a)上記硬質相において、面積基準での90%累積粒径D90に対する、面積基準での10%累積粒径D10の割合D10/D90は、0.30以上である為、硬質相を構成する結晶粒の粒径の差異を小さく抑えることができる。その為、超硬合金中において、硬質相を均一に分散させることができる。
 (b)また、上記硬質相の平均粒径は、0.30μm以上0.60μm以下である為、上記硬質相は全体として微細である。その為、上記(a)と相俟って、超硬合金において、上記硬質相を微細とし、且つ均一に分散させることができる。これにより、工具使用時における超硬合金からの部分的な硬質相の脱落が抑制され、突発的に発生する超硬合金の損傷が抑制される為、切削工具は優れた耐欠損性を有することができる。
 (c)更に、上記結合相において、面積基準での90%累積粒径D90に対する、面積基準での10%累積粒径D10の割合D10/D90は、0.23以上である為、結合相を構成する結晶粒の粒径の差異を小さく抑えることができる。その為、超硬合金中において、結合相を均一に分散させることができる。
 (d)また、上記結合相の平均粒径は、0.25μm以上0.50μm以下である為、上記結合相は全体として微細である。その為、上記(c)と相俟って、超硬合金において、上記結合相を微細とし、且つ均一に分散させることができる。これにより、工具使用時における超硬合金への被削材の溶着が抑制され、切削工具は優れた耐溶着性を有することができる。また、結合相が微細かつ粒径の差異が小さいため、工具使用時における粗大粒子の存在に起因する損傷の発生が抑制され、工具は優れた耐欠損性を有することができる。
 すなわち、本実施形態に係る本開示の超硬合金において、硬質相および結合相が微細であり、且つ硬質相および結合相が均一に分散していることに起因して、優れた耐溶着性と優れた耐欠損性とを兼備することができる。よって、本開示の超硬合金によれば、チタン系難削材の断続加工においても、長い工具寿命を有する切削工具を提供することが可能となる。
 <超硬合金の組成>
 本実施形態の超硬合金は、硬質相と結合相とからなる。すなわち、超硬合金の硬質相と結合相の合計含有率は、100質量%である。本明細書において、「超硬合金は、硬質相と結合相とからなる」とは、本開示の効果を示す限り、超硬合金が、硬質相と結合相に加えて、不可避不純物を含むことができることを意味する。該不可避不純物としては、例えば、鉄、モリブデン、硫黄が挙げられる。超硬合金の不可避不純物の含有率(不純物が2種類以上の場合は、これらの含有率の合計)は、0質量%以上0.1質量%未満が好ましい。超硬合金の不可避不純物の含有率は、ICP(Inductively Coupled Plasma)発光分析(測定装置:島津製作所「ICPS-8100」(商標))により測定される。
 本実施形態の超硬合金の硬質相の含有率の下限は、84質量%以上、85質量%以上、86質量%以上が好ましい。本実施形態の超硬合金の硬質相の含有率の上限は、92質量%以下、91質量%以下、90質量%以下が好ましい。本実施形態の超硬合金の硬質相の含有率は、84質量%以上92質量%以下、85質量%以上91質量%以下、86質量%以上90質量%以下が好ましい。
 本実施形態の超硬合金の結合相の含有率の下限は、8質量%以上、9質量%以上、10質量%以上が好ましい。本実施形態の超硬合金の結合相の含有率の上限は、16質量%以下、15質量%以下、14質量%以下が好ましい。本実施形態の超硬合金の結合相の含有率は、8質量%以上16質量%以下、9質量%以上15質量%以下、10質量%以上14質量%以下が好ましい。
 本実施形態の超硬合金は、84質量%以上92質量%以下の硬質相と、8質量%以上16質量%以下の結合相とからなることが好ましい。本実施形態の超硬合金は、85質量%以上91質量%以下の硬質相と、9質量%以上15質量%以下の結合相とからなることが好ましい。本実施形態の超硬合金は、86質量%以上90質量%以下の硬質相と、10質量%以上14質量%以下の結合相とからなることが好ましい。
 超硬合金の硬質相及び結合相のそれぞれの含有率は、ICP発光分析(測定装置:島津製作所「ICPS-8100」(商標))により測定される。
 ≪硬質相≫
 本実施形態の硬質相は、炭化タングステンを主成分として含む。ここで、「炭化タングステンを主成分として含む」とは、本開示の効果を示す限りにおいて、硬質相が炭化タングステン以外の成分を含み得ることを意味する。硬質相が炭化タングステン以外の成分を含む場合、硬質相は、炭化タングステンを80質量%以上含んでいても良い。硬質相は、炭化タングステンを85質量%以上、90質量%以上、あるいは95質量%以上含んでいても良い。なお、硬質相中の炭化タングステンの含有率は、ICP発光分光分析法(測定装置:島津製作所「ICPS-8100」(商標))により測定したタングステン(W)含有率を用いて、炭化タングステン(WC)含有率に換算することにより求められる。
 上記硬質相は、炭化タングステン以外にも、本開示の効果を示す限りにおいて、Ti、Cr、V、Mo、Ta、Nb、Zrからなる群より選択される少なくとも一種の元素の炭化物、窒化物、炭窒化物、酸化物、WCの製造過程で混入する不可避不純物元素及び微量の不純物元素等を含むことができる。これらの不純物元素としては、例えば、モリブデン(Mo)及びクロム(Cr)が挙げられる。該硬質相中の不純物元素の含有率(不純物元素が2種類以上の場合は、合計含有率)は、0.1質量%未満であることが好ましい。該硬質相中の不純物元素の含有率は、ICP発光分析(測定装置:島津製作所製「ICPS-8100」(商標))により測定される。なお、Ti、Cr、V、Mo、Ta、Nb、Zrからなる群より選択される少なくとも一種の元素の炭化物、窒化物、炭窒化物、酸化物、WCの製造過程で混入する不可避不純物元素及び微量の不純物元素等が硬質相中に含まれることは、超硬合金の断面に対しエネルギー分散型X線分析装置(EDS)で元素マッピングを実行することにより特定できる。
 <90%累積粒径D90に対する、10%累積粒径D10の割合D10/D90(硬質相)>
 上記硬質相において、面積基準での90%累積粒径D90に対する、面積基準での10%累積粒径D10の割合D10/D90は、0.30以上である。これによって、超硬合金中において、硬質相を均一に分散させることができる。上記硬質相において、D10/D90の下限は、0.31以上であることが好ましく、0.32以上であることがより好ましい。また、上記硬質相において、D10/D90の上限は、0.50以下であることが好ましく、0.45以下であることがより好ましく、0.40以下であることが更に好ましい。また、上記硬質相において、D10/D90は、0.31以上0.50以下であることが好ましく、0.31以上0.45以下であることがより好ましく、0.32以上0.40以下であることが更に好ましい。
 なお、上記硬質相において、D10/D90は、下記(A1)~(E1)の手順で測定される。
 (A1)超硬合金の任意の表面又は任意の断面を鏡面加工する。鏡面加工の方法としては、例えば、ダイヤモンドペーストで研磨する方法、集束イオンビーム装置(FIB装置)を用いる方法、クロスセクションポリッシャー装置(CP装置)を用いる方法、及びこれらを組み合わせる方法等が挙げられる。
 (B1)超硬合金の加工面を走査型電子顕微鏡(株式会社日立ハイテクノロジーズ製「S-3400N」)で撮影する。該撮影画像を3枚準備する。3枚の画像の撮影領域はそれぞれ異なる。撮影箇所は任意に設定することができる。条件は、観察倍率3000倍、加速電圧10kV、反射電子像とする。
 (C1)上記(B1)で得られた3枚の反射電子像を画像解析ソフトウェア(ImageJ、version 1.51j8:https://imagej.nih.gov/ij/)でコンピュータに取り込み、二値化処理を行う。二値化処理は、画像を取り込んだのちに、コンピュータ画面上の「Make Binary」との表示を押すことにより、上記画像解析ソフトウェアに予め設定された条件で実行される。更に、ノイズを除去するため、Despeckleを1回実施した後、Watershedを実施することで結晶粒の粒界も上記画像解析ソフトウェアに予め設定された条件で判別される。Analyze Particleで0.002μm以上の粒子を測定する。なお、二値化処理における閾値の設定は手動調整も可能であるが、本手順では手動調整は採用しない。本手順では上記の通り、「Make Binary」との表示を押すことにより二値化処理が実行される。
 二値化処理後の画像において、硬質相と、結合相とは、色の濃淡で識別できる。例えば、二値化処理後の画像において、硬質相は黒色領域で示され、結合相は白色領域で示される。上記反射電子像に対して上記画像解析ソフトウェア(ImageJ)により二値化処理を行って得られた画像を図1に示す。
 (D1)3枚の二値化処理後の各画像中に縦960pixel×幅1280pixelの矩形の測定視野を設定する。上記画像解析ソフトウェアを用いて、3つの測定視野中の全ての硬質相(黒色領域)のそれぞれについて、円相当径(Heywood径:等面積円相当径)を測定する。
 (E1)3つの測定視野中の全ての硬質相に対して、面積基準での10%累積粒径(円相当径)D10、および90%累積粒径(円相当径)D90を算出する。次いで、該D10を該D90で除することにより、D10/D90(硬質相)を求める。
 出願人が測定した限りでは、同一の試料において測定する限りにおいては、上記測定を、測定視野の選択個所を変更して複数回行っても、測定結果のばらつきは少なく、任意に測定視野を設定しても恣意的にはならないことが確認された。
 <硬質相の平均粒径>
 上記硬質相の平均粒径は、0.30μm以上0.60μm以下である。これによって、超硬合金中において全体として硬質相を微細にすることができる。上記硬質相の平均粒径の下限は、0.35μm以上であることが好ましく、0.40μm以上であることがより好ましい。また、上記硬質相の平均粒径の上限は、0.55μm以下であることが好ましく0.50μm以下であることがより好ましい。また、上記硬質相の平均粒径は、0.35μm以上0.55μm以下であることが好ましく、0.40μm以上0.50μm以下であることが更に好ましい。
 なお、上記硬質相の平均粒径は、下記(A2)~(B2)の手順で測定される。
 (A2)上記のD10/D90(硬質相)の測定方法の(A1)~(D1)の手順に従い、3つの測定視野中の全ての硬質相(黒色領域)のそれぞれについて、円相当径(Heywood径:等面積円相当径)を測定する。
 (B2)3つの測定視野中の全ての硬質相に対して、面積基準での50%累積粒径(円相当径)D50を算出する。該D50は、硬質相の平均粒径に該当する。
 出願人が測定した限りでは、同一の試料において測定する限りにおいては、上記測定を、測定視野の選択個所を変更して複数回行っても、測定結果のばらつきは少なく、任意に測定視野を設定しても恣意的にはならないことが確認された。
 ≪結合相≫
 本実施形態の結合相は、コバルトを主成分として含む。ここで、「コバルトを主成分として含む」とは、結合相中のコバルトの含有率80質量%以上100質量%以下であることを意味する。なお、結合相中のコバルトの含有率は、ICP分析することにより求められる。
 上記結合相は、コバルトに加えて、鉄(Fe)、ニッケル(Ni)、合金中の溶解物(クロム(Cr)、タングステン(W)、バナジウム(V)等)を含むことができる。該結合相は、コバルトと、鉄、ニッケル、クロム、タングステン及びバナジウムからなる群より選ばれる少なくとも1種と、からなることができる。該結合相は、コバルトと、鉄、ニッケル、クロム、タングステン及びバナジウムからなる群より選ばれる少なくとも1種と、不可避不純物と、からなることができる。該不可避不純物としては、例えば、マンガン(Mn)、マグネシウム(Mg)、カルシウム(Ca)、モリブデン(Mo)、硫黄(S)、チタン(Ti)、アルミニウム(Al)などが挙げられる。なお、鉄(Fe)、ニッケル(Ni)、合金中の溶解物(クロム(Cr)、タングステン(W)、バナジウム(V)等)、不可避不純物が結合相中に含まれることは、超硬合金の断面に対しエネルギー分散型X線分析装置(EDS)で元素マッピングを実行することにより特定できる。
 <90%累積粒径D90に対する、10%累積粒径D10の割合D10/D90(結合相)>
 上記結合相において、面積基準での90%累積粒径D90に対する、面積基準での10%累積粒径D10の割合D10/D90は、0.23以上である。これによって、超硬合金中において、結合相を均一に分散させることができる。上記結合相において、D10/D90は、0.24以上であることが好ましく、0.25以上であることがより好ましい。また、上記結合相において、D10/D90は、0.5以下であることが好ましく、0.45以下であることがより好ましく、0.4以下であることが更に好ましい。また、上記結合相において、D10/D90は、0.23以上0.5以下であることが好ましく、0.24以上0.45以下であることがより好ましく、0.25以上0.4以下であることが更に好ましい。
 なお、上記結合相において、D10/D90は、下記(A3)~(C3)の手順で測定される。
 (A3)硬質相のD10/D90の測定方法に記載の(A1)~(C1)と同一の手順で超硬合金の断面の二値化処理後の画像を得る。
 (B3)得られた3枚の二値化処理後の各画像中に縦960pixel×幅1280pixelの矩形の測定視野を設定する。上記画像解析ソフトウェアを用いて、3つの測定視野中の全ての結合相(白色領域)のそれぞれについて、円相当径(Heywood径:等面積円相当径)を測定する。
 (C3)3つの測定視野中の全ての結合相に対して、10%累積粒径(円相当径)D10、および90%累積粒径(円相当径)D90を算出する。次いで、該D10を該D90で除することにより、D10/D90(結合相)を求める。
 出願人が測定した限りでは、同一の試料において測定する限りにおいては、上記測定を、測定視野の選択個所を変更して複数回行っても、測定結果のばらつきは少なく、任意に測定視野を設定しても恣意的にはならないことが確認された。
 <結合相の平均粒径>
 上記結合相の平均粒径は、0.25μm以上0.50μm以下である。これによって、超硬合金中において全体として結合相を微細にすることができる。上記結合相の平均粒径は、0.23μm以上であることが好ましく、0.25μm以上であることがより好ましい。また、上記結合相の平均粒径は、0.47μm以下であることが好ましく、0.45μm以下であることがより好ましい。上記結合相の平均粒径は、0.23μm以上0.47μm以下であることが好ましく、0.25μm以上0.45μm以下であることがより好ましい。
 なお、上記結合相の平均粒径は、下記(A4)~(B4)の手順で測定される。
 (A4)上記のD10/D90(結合相)の測定方法の(A3)~(B3)の手順に従い、3つの測定視野中の全ての識別相(白色領域)のそれぞれについて、円相当径(Heywood径:等面積円相当径)を測定する。
 (B4)3つの測定視野中の全ての結合相に対して、面積基準での50%累積粒径(円相当径)D50を算出する。該D50は、結合相の平均粒径に該当する。
 出願人が測定した限りでは、同一の試料において測定する限りにおいては、上記測定を、測定視野の選択個所を変更して複数回行っても、測定結果のばらつきは少なく、任意に測定視野を設定しても恣意的にはならないことが確認された。
 ≪クロムの含有率およびバナジウムの含有率≫
 クロムの含有率とバナジウムの含有率とは合計で0.6質量%以上2.1質量%以下であることが好ましい。なお、ここで、クロムの含有率とバナジウムの含有率とは合計で0.6質量%以上2.1質量%以下である限りにおいて、クロムの含有率とバナジウムの含有率との比率は問わない。クロムの含有率とバナジウムの含有率とは合計で0.8質量%以上1.9質量%以下であることがより好ましく、1.0質量%以上1.7質量%以下であることが更に好ましい。
 <クロムの含有率>
 本実施形態の超硬合金のクロムの含有率は、0.4質量%以上1.5質量%以下であることが好ましい。クロムは炭化タングステン粒子の粒成長抑制作用を有する。クロムの含有率が前記の範囲であると、粗大粒の発生を効果的に抑制でき、超硬合金の耐溶着性と耐欠損性とを更に向上することができる。クロムの含有率は、0.4質量%以上であることが好ましく、0.5質量%以上であることがより好ましく、0.6質量%以上であることが更に好ましい。また、クロムの含有率は、1.5質量%以下であることが好ましく、1.4質量%以下であることがより好ましく1.3質量%以下であることが更に好ましい。また、クロムの含有率は、0.5質量%以上1.4質量%以下であることがより好ましく、0.6質量%以上1.3質量%以下であることが更に好ましい。なお、上記クロムは、結合相中に固溶体として存在し得る。また、Crとして析出し、硬質相として存在し得る。上記クロムは、結合相中に固溶体として存在することが好ましい。
 超硬合金のクロム含有率は、ICP発光分光分析法により測定される。
 <バナジウムの含有率>
 バナジウムの含有率は、0質量%以上0.6質量%以下であることが好ましい。バナジウムは炭化タングステン粒子の粒成長抑制作用を有する。バナジウムの含有率が前記の範囲であると粗大粒の発生を効果的に抑制でき、超硬合金の耐溶着性と耐欠損性とを更に向上することができる。バナジウムの含有率は、0.1質量%以上であることが好ましく、0.2質量%以上であることがより好ましい。また、バナジウムの含有率は、0.55質量%以下であることが好ましく、0.5質量%以下であることがより好ましい。また、バナジウムの含有率は、0.1質量%以上0.55質量%以下であることがより好ましく、0.2質量%以上0.5質量%以下であることが更に好ましい。なお、上記バナジウムは、結合相中に固溶体として存在し得る。またVCとして析出し、硬質相として存在し得る。上記バナジウムは、結合相中に固溶体として存在することが好ましい。
 超硬合金のバナジウムの含有率は、ICP発光分光分析法により測定される。
 ≪第1バナジウム含有粒子の第1クロム含有粒子の粒子数≫
 本開示の超硬合金の断面に対しエネルギー分散型X線分析装置で元素マッピングを実行することにより得られた画像に設定された42.3μm×29.6μmの矩形の測定視野において、第1バナジウム含有粒子および第1クロム含有粒子の合計個数は2個以下であり、該第1バナジウム含有粒子の粒径は、1μm以上であり、該第1クロム含有粒子の粒径は、1μm以上であることが好ましい。
 該第1バナジウム含有粒子は、超硬合金中の硬質相として存在する。第1バナジウム含有粒子は、主にバナジウムと炭素からなり、更に不純物を含むことができる。該不純物としては、W、Ti、Mo、Ta、Nb、Cr、N、Oが挙げられる。第1バナジウム含有粒子の不純物の含有率は30質量%以下とすることができる。該不純物の含有率はICP発光分光分析法により測定される。
 該第1クロム含有粒子は、超硬合金中の硬質相として存在する。第1クロム含有粒子は、主にクロムと炭素からなり、更に不純物を含むことができる。該不純物としては、W、Ti、Mo、Ta、Nb、V、N、Oが挙げられる。第1クロム含有粒子の不純物の含有率は30質量%以下とすることができる。該不純物の含有率はICP発光分光分析法により測定される。
 本開示の超硬合金の断面に対しエネルギー分散型X線分析装置で元素マッピングを実行することにより得られた画像に設定された42.3μm×29.6μmの矩形の測定視野において、第1バナジウム含有粒子および第1クロム含有粒子の合計個数は2個以下であることが好ましい。第1クロム含有粒子、または第1バナジウム含有粒子が超硬合金中に多く存在すると、超硬合金の耐欠損性が低下する傾向がある為である。第1バナジウム含有粒子および第1クロム含有粒子の粒子数は合計で、1個以下がより好ましく、0個、すなわち、第1バナジウム含有粒子および第1クロム含有粒子が存在しないことが更に好ましい。
 超硬合金の断面に対しエネルギー分散型X線分析装置(EDS)で元素マッピングを実行することにより得られた画像に設定された42.3μm×29.6μmの矩形の測定視野において、第1バナジウム含有粒子の個数および第1クロム含有粒子の個数は、以下の手順で測定される。すなわち、任意の超硬合金の断面に対し、電子顕微鏡を用いて3000倍の倍率の観察画像を得る。次いで、該観察画像中における42.3μm×29.6μm矩形の任意の一視野において、第1クロム含有粒子の数量と、第1バナジウム含有粒子の個数とをカウントすることにより、第1クロム含有粒子の個数と、第1バナジウム含有粒子の個数とを得ることができる。
 上記の測定を、上記観察画像中に任意に設定された5視野について行い、それぞれの視野において第1バナジウム含有粒子および第1クロム含有粒子の合計個数を求める。5視野の該合計個数の平均を算出する。該平均を本実施形態における第1バナジウム含有粒子および第1クロム含有粒子の合計個数とする。
 出願人が測定した限りでは、同一の試料において測定する限りにおいては、上記測定を、測定視野の選択個所を変更して複数回行っても、測定結果のばらつきは少なく、任意に測定視野を設定しても恣意的にはならないことが確認された。
 [実施形態2:超硬合金の製造方法]
 超硬合金に含まれる硬質相を全体として微細にする方法として、原料として粒径の小さい硬質粒子粉末を用いることと、後述する混合工程において硬質粒子粉末とコバルト粒子粉末とに加えて、クロム粒子粉末およびバナジウム粒子粉末を混合することとが考えられる。しかし、単に原料として粒径の小さい硬質粒子粉末を用い、且つクロム粒子粉末およびバナジウム粒子粉末を混合するだけでは、超硬合金中において硬質相間の隙間を十分に小さく抑えることができない為、結合相が粗粒になり易い傾向があった。また、この様な場合、超硬合金中においてクロム粒子とバナジウム粒子とが析出することに起因して、超硬合金に含まれる結合相を分散させることが困難な場合があった。本発明者等は、本実施形態の超硬合金を得るための製造条件を鋭意検討の結果、最適な製造条件を新たに見出した。本実施形態の超硬合金の製造方法の詳細について、以下に説明する。
 本実施形態の超硬合金は、代表的には、原料粉末の準備工程、混合工程、成形工程、焼結工程、冷却工程を前記の順で行うことにより製造することができる。以下、各工程について説明する。
 ≪準備工程≫
 準備工程は、超硬合金を構成する材料の全ての原料粉末を準備する工程である。原料粉末としては、硬質相の原料である炭化タングステン粉末、結合相の原料であるコバルト(Co)粉末、粒成長抑制剤として、炭化クロム(Cr)粉末および炭化バナジウム(VC)粉末が挙げられる。該粒成長抑制剤によって超微粒の炭化タングステン粒子により構成される硬質相の粒径を小さく抑えることができる。炭化タングステン粉末、コバルト粉末、炭化クロム粉末、炭化バナジウム粉末は、市販のものを用いることができる。
 炭化タングステン粉末(以下、「WC粉末」とも記す。)としては、微粒のWC粉末(平均粒径:0.5μm以上1.0μm以下)と、超微粒のWC粉末(平均粒径:0.2μm以上0.4μm以下)とを準備する。これによって、超硬合金中の硬質相を全体として微粒にすることができる。また、微粒の炭化タングステン粒子間の隙間を超微粒の炭化タングステン粒子が埋めることによって、コバルトの平均自由行路を低下させることができる為、全体として結合相の粒径を小さく抑えることができる。上記のような2種類のWC粉末を準備することにより、超硬合金中の硬質相を全体として微粒にし、且つ全体として結合相の粒径を小さく抑えられることは、本発明者らが鋭意検討の結果、新たに知見したものである。
 本明細書において、原料粉末の平均粒径とは、FSSS(Fisher Sub-Sieve Sizer)法により測定される平均粒径を意味する。該平均粒径は、Fisher Scientific社製の「Sub-Sieve Sizer モデル95」(商標)を用いて測定される。WC粉末に含まれる各WC粒子の粒径は、マイクロトラック社製の粒度分布測定装置(商品名:MT3300EX)を用いて測定される。
 コバルト粉末の平均粒径は、0.5μm以上1.5μm以下とすることができる。炭化クロム粉末の平均粒径は、0.7μm以上3.5μm以下とすることができる。炭化バナジウム粉末の平均粒径は、0.1μm以上1.2μm以下とすることができる。これらの平均粒径は、Fisher Scientific社製の「Sub-Sieve Sizer モデル95」(商標)を用いて測定される。
 ≪混合工程≫
 混合工程は、準備工程で準備した各原料粉末を混合する工程である。混合工程により、各原料粉末が混合された混合粉末が得られる。混合粉末における各原料粉末の配合量は、超硬合金の硬質相、結合相などの各成分の含有率を考慮して、適宜調整される。
 混合粉末における微粒のWC粉末の配合量は、例えば、50.0質量%以上71.0質量%以下とすることができる。
 混合粉末における超微粒のWC粉末の配合量は、例えば、10質量%以上29質量%未満とすることができる。
 混合粉末におけるコバルト粉末の配合量は、例えば、6質量%以上16質量%以下とすることができる。混合粉末におけるコバルト粉末の配合量は、8質量%超16質量%以下とすることが好ましい。
 混合粉末における炭化クロム粉末の配合量は、例えば、0.4質量%以上1.5質量%以下とすることができる。
 混合粉末における炭化バナジウム粉末の配合量は、例えば、0質量%以上0.7質量%以下とすることができる。混合粉末における炭化バナジウム粉末の配合量は、0質量%以上0.6質量%以下とすることが好ましい。また、混合粉末における炭化クロム粉末の配合量と、混合粉末における炭化バナジウム粉末の配合量との合計は、0.6質量%以上2.1質量%以下であることが好ましい。
 混合方法としては、粒径が異なる粒子(微粒の炭化タングステン粒子および超微粒の炭化タングステン粒子)をそのまま維持するため、粉砕を抑えた混合方式を用いる。具体的には、ボールミル、アトライター、カルマンミキサーなどを用いる。特に、カルマンミキサーのようなメディアレス混合機による混合方法では、WC粉末中の各WC粒子の粉砕を抑制し易い。混合時間は、各混合方法によって適宜調整することができる。粉砕が強い場合、上記組成の利点を発揮しづらくなる。
 また、コバルトは展延性に富み、混合過程で薄い板状の形状に変化する。上記の微粒のコバルトの形態を維持するため、少なくとも混合時間の半分が経過した後に投入することが望ましい。
 混合工程の後、必要に応じて混合粉末を造粒してもよい。混合粉末を造粒することで、後述する成形工程の際にダイ又は金型へ混合粉末を充填し易い。造粒には、公知の造粒方法が適用でき、例えば、スプレードライヤー等の市販の造粒機を用いることができる。
 ≪成形工程≫
 成形工程は、混合工程で得られた混合粉末を所定の形状に成形して、成形体を得る工程である。成形工程における成形方法及び成形条件は、一般的な方法及び条件を採用すればよく、特に問わない。所定の形状としては、例えば、切削工具形状(例えば、小径ドリルの形状)とすることが挙げられる。
 ≪焼結工程≫
 焼結工程は、成形工程で得られた成形体を焼結して、焼結体を得る工程である。本開示の超硬合金の製造方法においては、焼結温度は1400℃以上とする。これによって、結合相の流動が促進され、また硬質粒子の再配列が促進される為、結合相を超硬合金中に均一に分散させることができる。焼結温度が1400℃未満であると、結合相が均一に分散しにくい傾向がある。上記のような焼結温度で焼結工程を実行することにより、結合相を超硬合金中に均一に分散させられることは、本発明者らが鋭意検討の結果、新たに知見したものである。
 また、焼結温度は1500℃以下とすることが好ましい。焼結温度が1500℃を超えると、硬質相の粒成長が生じ易い傾向がある。また、本開示の超硬合金の製造方法においては、焼結時間は加熱保持後0.5時間以上2時間以下とすることができる。
 ≪冷却工程≫
 冷却工程は、上記焼結体を冷却する工程である。本開示の超硬合金の製造方法においては、冷却工程は5℃/分以上の降温速度で実行される。これによって、結合相への固溶量を高く保つことができる為、CrとVとの析出を抑制することができる。なお、ここで、「降温速度が5℃/分である」とは、毎分5℃の速度で温度が低下することを意味する。上記のような降温速度で冷却工程を実行することにより、CrとVとの析出を抑制できることは、本発明者らが鋭意検討の結果、新たに知見したものである。降温速度は、15℃/分以上であることが好ましい。
 冷却時の雰囲気は、特に限定されず、Nガス雰囲気又はAr等の不活性ガス雰囲気とすることが挙げられる。冷却時の圧力は、特に限定されず、加圧してもよいし減圧してもよい。上記加圧のときの圧力は、例えば、100kPa以上7000kPa以下とすることが挙げられる。本実施形態の一側面において、上記冷却工程は、Arガス雰囲気中で、上記焼結体を常温にまで冷却することが挙げられる。
 本実施の形態を実施例によりさらに具体的に説明する。ただし、これらの実施例により本実施の形態が限定されるものではない。
 ≪超硬合金の作製≫
 <準備工程>
 試料No.1~21、25、27~34の超硬合金を作製するため、原料粉末として、表1の「混合粉末の組成」欄に示す平均粒径を有する原料粉末(すなわち、炭化タングステン(WC)粉末、コバルト(Co)粉末、炭化クロム(Cr)粉末、炭化バナジウム(VC)粉末)を準備した。
 <混合工程>
 各原料粉末を表1及び表2に示される配合量で混合し、混合粉末を作製した。表1及び表2の「配合量[質量%]」とは、混合粉末の合計質量に対する、各原料粉末の割合を示す。混合は、表1及び表2に記載の混合時間で、ボールミルを用いて実行した。得られた混合粉末をスプレードライ乾燥して造粒粉末とした。
 <成形工程>
 得られた造粒粉末をプレス成形して、φ6mmの丸棒形状の成形体を作製した。
 <焼結工程>
 成形体を焼結炉に入れ、真空中、表1及び表2の「焼結温度[℃]」欄に示される温度、表1の「焼結時間[h]」欄に示される時間の条件で焼結することにより、焼結体を得た。
 <冷却工程>
 焼結完了後、該焼結体をアルゴン(Ar)ガス雰囲気中、表1及び表2に記載の降温速度で冷却することにより、超硬合金を得た。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 以上の工程を実行することにより、表2に示した構成を有し且つ丸棒形状の試料No.1~21、25、27~34の超硬合金を作製した。
 ≪評価≫
 各試料の超硬合金について、超硬合金の組成(硬質相の含有率、結合相の含有率)、硬質相中の炭化タングステン粒子の含有率、結合相中のコバルトの含有率、硬質相におけるD10/D90、硬質相の平均粒径、結合相におけるD10/D90、結合相の平均粒径、クロムの含有率、バナジウムの含有率、超硬合金の断面を走査型電子顕微鏡で撮像した画像における第1バナジウム含有粒子の面積および第1クロム含有粒子の面積の合計の面積百分率を測定した。
 <超硬合金の組成(硬質相の含有率、結合相の含有率)の特定>
 試料No.1~21、25、27~34の超硬合金について、硬質相の含有率を実施形態1に記載の方法により求めた。得られた結果をそれぞれ表3及び表4の「硬質相の含有率[体積%]」の項に記す。また、試料No.1~21、25、27~34の超硬合金について、結合相の含有率を実施形態1に記載の方法により求めた。得られた結果をそれぞれ表3及び表4の「結合相の含有率[体積%]」の項に記す。
 <硬質相中の炭化タングステン粒子の含有率及び結合相中のコバルトの含有率の測定>
 試料No.1~21、25、27~34の超硬合金について、硬質相中の炭化タングステン粒子の含有率を、実施形態1に記載の方法により求めた。得られた結果をそれぞれ表3及び表4の「硬質相中WC粒子含有率[質量%]」の項に記す。また、試料No.1~21、25、27~34の超硬合金について、結合相中のコバルトの含有率を、実施形態1に記載の方法により求めた。得られた結果をそれぞれ表3及び表4の「結合相中Co含有率[質量%]」の項に記す。
 <硬質相におけるD10/D90、及び結合相におけるD10/D90の測定>
 試料No.1~21、25、27~34の超硬合金について、硬質相におけるD10/D90を、実施形態1に記載の方法により求めた。得られた結果をそれぞれ表3及び表4の「D10/D90(硬質相)」の項に記す。また、試料No.1~21、25、27~34の超硬合金について、結合相におけるD10/D90を、実施形態1に記載の方法により求めた。得られた結果をそれぞれ表3及び表4の「D10/D90(結合相)」の項に記す。
 <硬質相の平均粒径、及び結合相の平均粒径の測定>
 試料No.1~21、25、27~34の超硬合金について、硬質相の平均粒径を、実施形態1に記載の方法により求めた。得られた結果をそれぞれ表3及び表4の「硬質相の平均粒径[μm]」の項に記す。また、試料No.1~21、25、27~34の超硬合金について、結合相の平均粒径を、実施形態1に記載の方法により求めた。得られた結果をそれぞれ表3及び表4の「結合相の平均粒径[μm]」の項に記す。
 <クロムの含有率およびバナジウムの含有率の測定>
 試料No.1~21、25、27~34の超硬合金について、クロムの含有率を、実施形態1に記載の方法により求めた。得られた結果をそれぞれ表3及び表4の「Cr含有率[質量%]」の項に記す。また、試料No.1~21、25、27~34の超硬合金について、バナジウムの含有率を、実施形態1に記載の方法により求めた。得られた結果をそれぞれ表3及び表4の「V含有率[質量%]」の項に記す。
 <第1バナジウム含有粒子の粒子数および第1クロム含有粒子の粒子数の合計の測定>
 試料No.1~21、25、27~34の超硬合金について、第1バナジウム含有粒子の粒子数および第1クロム含有粒子の粒子数の合計を、実施形態1に記載の方法により求めた。得られた結果をそれぞれ表3及び表4の「第1V粒子+第1Cr粒子面積百分率[%]」の項に記す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 <切削試験>
 試料No.1~21、25、27~34の超硬合金からなる切削工具を用いて、以下の切削条件で切削試験を実行し、耐欠損性と耐溶着性とを評価した。耐欠損性は、欠損が100μmに達するまでの切削長(m)に基づいて評価した。該切削長が100m超である場合、耐欠損性が優れていることを意味する。また、耐溶着性は、欠損時点における平均の溶着幅(μm)に基づいて評価した。該溶着幅が40μm以下である場合、耐溶着性が優れていることを意味する。得られた結果(すなわち、切削長および溶着幅)を表3及び表4の「耐欠損性[m]」の項と「耐溶着性[μm]」の項とに記す。
 (切削条件)
 被削材:Ti-6Al-4V(チタン合金(チタン系難削材))
 切削速度:120m/min
 送り:0.1mm/刃
 軸方向切込み:2mm
 径方向切込み:0.5mm
 水溶性冷却液の有無:有り
 <結果>
 試料No.1~4、6~7、9~14、18~20、25、27~30、34の超硬合金は、実施例に該当する。一方、試料No.5、8、15~17、21、31~33は、比較例に該当する。試料No.1~4、6~7、9~14、18~20、25、27~30、34の超硬合金(実施例)からなる切削工具は、試料No.5、8、15~17、21、31~33の超硬合金(比較例)からなる切削工具に比べ、チタン系難削材の断続加工においても耐欠損性に優れ、長い工具寿命を有することが確認された。
 更に試料No.1~4、6~7、9~14、18~20、25、27~30、34の超硬合金(実施例)からなる切削工具は、試料No.5、8、15~17、21、31~33の超硬合金(比較例)からなる切削工具に比べ、特にチタン系難削材の断続加工においても耐溶着性に優れ、長い工具寿命を有することが確認された。
 よって、試料No.1~4、6~7、9~14、18~20、25、27~30、34の超硬合金は、チタン系難削材の断続加工においても、長い工具寿命を有することが分かった。
 以上のように本開示の実施の形態および実施例について説明を行なったが、上述の各実施の形態および実施例の構成を適宜組み合わせたり、様々に変形することも当初から予定している。
 今回開示された実施の形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した実施の形態および実施例ではなく請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。
 D10 10%累積粒径、D50 50%累積粒径、D90 90%累積粒径

Claims (3)

  1.  硬質相と結合相とからなる超硬合金であって、
     前記硬質相は、炭化タングステンを主成分として含み、
     前記結合相は、コバルトを主成分として含み、
     前記硬質相において、面積基準での90%累積粒径D90に対する、面積基準での10%累積粒径D10の割合D10/D90は、0.30以上であり、
     前記結合相において、面積基準での90%累積粒径D90に対する、面積基準での10%累積粒径D10の割合D10/D90は、0.23以上であり、
     前記結合相の平均粒径は、0.25μm以上0.50μm以下であり、
     前記硬質相の平均粒径は、0.30μm以上0.60μm以下である、超硬合金。
  2.  クロムの含有率とバナジウムの含有率とは合計で0.6質量%以上2.1質量%以下であり、
     クロムの含有率は、0.4質量%以上1.5質量%以下であり、
     バナジウムの含有率は、0質量%以上0.6質量%以下である、請求項1に記載の超硬合金。
  3.  前記超硬合金の断面に対しエネルギー分散型X線分析装置で元素マッピングを実行することにより得られた画像に設定された42.3μm×29.6μmの矩形の測定視野において、第1バナジウム含有粒子および第1クロム含有粒子の合計個数は2個以下であり、
     前記第1バナジウム含有粒子の粒径は、1μm以上であり、
     前記第1クロム含有粒子の粒径は、1μm以上である、請求項1または請求項2に記載の超硬合金。
PCT/JP2022/015577 2022-03-29 2022-03-29 超硬合金 WO2023188012A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2022550915A JP7367905B1 (ja) 2022-03-29 2022-03-29 超硬合金
EP22935160.6A EP4357474A1 (en) 2022-03-29 2022-03-29 Cemented carbide
CN202280050609.2A CN117677723A (zh) 2022-03-29 2022-03-29 硬质合金
PCT/JP2022/015577 WO2023188012A1 (ja) 2022-03-29 2022-03-29 超硬合金
TW112109513A TW202346615A (zh) 2022-03-29 2023-03-15 超硬合金

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/015577 WO2023188012A1 (ja) 2022-03-29 2022-03-29 超硬合金

Publications (1)

Publication Number Publication Date
WO2023188012A1 true WO2023188012A1 (ja) 2023-10-05

Family

ID=88200122

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/015577 WO2023188012A1 (ja) 2022-03-29 2022-03-29 超硬合金

Country Status (5)

Country Link
EP (1) EP4357474A1 (ja)
JP (1) JP7367905B1 (ja)
CN (1) CN117677723A (ja)
TW (1) TW202346615A (ja)
WO (1) WO2023188012A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006328452A (ja) * 2005-05-24 2006-12-07 Hitachi Tool Engineering Ltd 微粒超硬合金製造用混合粉の製造方法及びその製造方法による微粒超硬合金粉
JP2009024214A (ja) 2007-07-19 2009-02-05 Tungaloy Corp 超硬合金およびその製造方法
JP2012052237A (ja) * 2011-10-07 2012-03-15 Kyocera Corp 超硬合金およびその製造方法、並びにそれを用いた回転工具
JP2013060666A (ja) 2007-07-11 2013-04-04 Sumitomo Electric Hardmetal Corp 超硬合金
JP2017171971A (ja) * 2016-03-22 2017-09-28 三菱マテリアル株式会社 熱伝導性にすぐれたwc基超硬合金およびwc基超硬合金製工具
JP2020094277A (ja) * 2018-11-28 2020-06-18 株式会社Moldino Wc基超硬合金およびこれを用いた被覆切削工具
JP2021134364A (ja) 2020-02-21 2021-09-13 三菱マテリアル株式会社 耐塑性変形性、耐欠損性にすぐれたwc基超硬合金製切削工具および表面被覆wc基超硬合金製切削工具

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006328452A (ja) * 2005-05-24 2006-12-07 Hitachi Tool Engineering Ltd 微粒超硬合金製造用混合粉の製造方法及びその製造方法による微粒超硬合金粉
JP2013060666A (ja) 2007-07-11 2013-04-04 Sumitomo Electric Hardmetal Corp 超硬合金
JP2009024214A (ja) 2007-07-19 2009-02-05 Tungaloy Corp 超硬合金およびその製造方法
JP2012052237A (ja) * 2011-10-07 2012-03-15 Kyocera Corp 超硬合金およびその製造方法、並びにそれを用いた回転工具
JP2017171971A (ja) * 2016-03-22 2017-09-28 三菱マテリアル株式会社 熱伝導性にすぐれたwc基超硬合金およびwc基超硬合金製工具
JP2020094277A (ja) * 2018-11-28 2020-06-18 株式会社Moldino Wc基超硬合金およびこれを用いた被覆切削工具
JP2021134364A (ja) 2020-02-21 2021-09-13 三菱マテリアル株式会社 耐塑性変形性、耐欠損性にすぐれたwc基超硬合金製切削工具および表面被覆wc基超硬合金製切削工具

Also Published As

Publication number Publication date
TW202346615A (zh) 2023-12-01
JPWO2023188012A1 (ja) 2023-10-05
JP7367905B1 (ja) 2023-10-24
CN117677723A (zh) 2024-03-08
EP4357474A1 (en) 2024-04-24

Similar Documents

Publication Publication Date Title
WO2018194018A1 (ja) 超硬合金、それを含む切削工具および超硬合金の製造方法
WO2020090280A1 (ja) 超硬合金、切削工具および超硬合金の製造方法
JP2017014084A (ja) 立方晶窒化硼素焼結体、立方晶窒化硼素焼結体の製造方法、工具、および切削工具
JP7103565B1 (ja) 超硬合金およびそれを基材として含む切削工具
WO2019220533A1 (ja) サーメット、それを含む切削工具およびサーメットの製造方法
JP6931202B2 (ja) 炭窒化チタン粉末、及び炭窒化チタン粉末の製造方法
WO2023228328A1 (ja) 超硬合金及びそれを用いた切削工具
JP7367905B1 (ja) 超硬合金
JP6928196B2 (ja) 立方晶窒化硼素焼結体
JP7215806B1 (ja) 超硬合金及びそれを用いた切削工具
JP7283636B1 (ja) 超硬合金およびそれを含む工具
WO2023175720A1 (ja) 超硬合金
WO2023175721A1 (ja) 超硬合金
JP7452762B1 (ja) 超硬合金およびそれを含む工具
JP6957828B1 (ja) 超硬合金及びそれを備える切削工具
WO2023139726A1 (ja) 超硬合金およびそれを含む工具
WO2022209336A1 (ja) 超硬合金及び切削工具
JP2022158173A (ja) 超硬合金及び切削工具
TW201839145A (zh) 切削工具

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022550915

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22935160

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022935160

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 202280050609.2

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2022935160

Country of ref document: EP

Effective date: 20240116