WO2023186132A1 - 射频天线制作方法及射频天线 - Google Patents

射频天线制作方法及射频天线 Download PDF

Info

Publication number
WO2023186132A1
WO2023186132A1 PCT/CN2023/085614 CN2023085614W WO2023186132A1 WO 2023186132 A1 WO2023186132 A1 WO 2023186132A1 CN 2023085614 W CN2023085614 W CN 2023085614W WO 2023186132 A1 WO2023186132 A1 WO 2023186132A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
radio frequency
frequency antenna
conductive medium
conductor
Prior art date
Application number
PCT/CN2023/085614
Other languages
English (en)
French (fr)
Inventor
黎理彬
邹大卡
黎理明
黎理杰
Original Assignee
深圳源明杰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳源明杰科技股份有限公司 filed Critical 深圳源明杰科技股份有限公司
Publication of WO2023186132A1 publication Critical patent/WO2023186132A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors

Definitions

  • the present application relates to the field of antenna manufacturing technology, and in particular to a radio frequency antenna manufacturing method and a radio frequency antenna.
  • the antenna is the main structure that makes up the material of the smart card.
  • Punching base material positioning holes and conductive sheet avoidance holes ⁇ Place the non-metal base material on the workbench of the ultrasonic wire embedding machine, and use the above positioning holes to position the material, and at the same time determine the position of the buried wire and the avoidance span of the wire end.
  • the main purpose of this application is to provide a radio frequency antenna manufacturing method and a radio frequency antenna, aiming to solve the problem of the existing technology using welding technology to manufacture smart cards.
  • the welding process causes the base material to be easily welded through because of the large number of welding points, thereby causing the production efficiency to decrease.
  • this application proposes a radio frequency antenna manufacturing method, including the following steps:
  • the enameled coil including a coil part implanted on the base material and at least two lead parts each electrically connected to the coil part;
  • the conductive coil is punched into the target area where the conductor is located to obtain a finished radio frequency antenna.
  • removing the insulation layer of the lead portion to expose the conductor of the enameled wire includes the following steps:
  • Milling or grinding removes the insulation layer of the lead portion to expose the conductor of the enameled wire.
  • the base material is at least one of non-metallic materials such as PVC, ABS, PET, PETG, PC, TESLIN, paper, etc.
  • punching the conductive coil into the target area where the conductor is located to obtain a finished radio frequency antenna includes the following steps:
  • the radio frequency antenna sub-body is laminated to conduct conduction between the conductive medium and the target area to obtain a finished radio frequency antenna.
  • the conductive medium includes at least one of solder paste, conductive glue, or ACF.
  • forming a conductive dielectric layer on a rolled conductive material to obtain a conductive rolled material includes the following steps:
  • the conductive medium layer is made of solder paste or conductive glue
  • the conductive medium is dropped or sprayed on the rolled conductive material
  • the roll material into which the conductive medium has been dropped or sprayed is heated and melted to form a conductive medium layer to obtain a conductive roll material;
  • the method of forming a conductive medium layer on a rolled conductive material to obtain a conductive rolled material includes the following steps:
  • the conductive medium layer is made of ACF
  • the conductive medium is bonded to the target area where the conductor is located to form a conductive medium layer and obtain a conductive coiled material.
  • forming a conductive dielectric layer on a rolled conductive material to obtain a conductive rolled material includes the following steps:
  • the conductive medium layer is made of solder paste or conductive glue
  • the conductive medium is dropped or sprayed on the rolled conductive material
  • the roll material into which the conductive medium has been dropped or sprayed is heated and melted to form a first conductive medium layer
  • ACF is bonded on the first conductive medium layer to form a second conductive medium layer.
  • the second conductive medium layer is electrically connected to the first conductive medium layer to obtain a conductive coil.
  • the surface of the conductive sheet is one of square, circular or polygonal.
  • the conductive sheet is any one of tin sheet, copper sheet or gold sheet;
  • the conductive sheet is a non-metallic material with conductive function.
  • this application proposes a radio frequency antenna, which is manufactured using the radio frequency antenna manufacturing method described above.
  • the technical solution of this application is to implant the enameled coil on the base material according to the target shape, and then remove the insulation layer of the lead part by milling or grinding to expose the conductor of the lead part, and then drop the conductive medium on the rolled conductive material.
  • Form a conductive roll press the conductive roll to the target area where the conductor of the lead part is located to form a structure that is electrically connected to the conductor, and integrate the conductor and the conductive medium layer into a finished radio frequency antenna that is electrically connected, allowing this application to be produced
  • Figure 1 is a schematic flow chart of a radio frequency antenna manufacturing method and a first embodiment of the radio frequency antenna of the present application;
  • Figure 2 is a schematic flow chart of the manufacturing process of a single radio frequency antenna in Figure 1;
  • FIG. 3 is a schematic flowchart of the S300 steps in the example in Figure 2;
  • Figure 4 is an enlarged structural schematic diagram of part A in Figure 2;
  • Figure 5 is an enlarged structural schematic diagram of part B in Figure 2.
  • connection can be a fixed connection, a detachable connection, or an integral body; it can It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two elements or an interactive relationship between two elements, unless otherwise clearly limited.
  • fixing can be a fixed connection, a detachable connection, or an integral body; it can It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two elements or an interactive relationship between two elements, unless otherwise clearly limited.
  • Wire embedding Place non-metal substrates such as PVC, ABS, PET, PETG, PC, TESLIN, paper, etc. on the workbench of the ultrasonic wire embedding machine, use positioning holes to position the materials, and determine the position of the coil embedding wire and the span of the wire ends. The location of the avoidance holes;
  • Filling the tin sheet Fill the conductive sheet (connected to the soldering station) such as tin sheet or copper sheet into the shelter hole.
  • the tape applied in the previous process will fix the conductive sheet in the hole to ensure that it does not shift;
  • Butt welding Through the welding process, the insulating layer of the antenna is melted and the wires are connected to the conductive sheet;
  • Lamination Cover the upper and lower sides of the middle material with a layer of fabric and perform high-temperature lamination.
  • this application provides a radio frequency antenna manufacturing method and a radio frequency antenna.
  • the enameled coil is implanted on the base material according to the target shape, and the coil part is set on the base material, and the lead part is set outside the base material, and then uses The insulation layer of the lead part is removed by milling or grinding to expose the conductor of the lead part. Then, a conductive medium is used to form a conductive medium layer that is electrically connected to the conductor in the target area where the conductor of the lead part is located. The conductive sheet is then placed on the target area.
  • the conductive sheet and the conductive medium layer are integrated and electrically connected to the finished radio frequency antenna, so that in the process of making the radio frequency antenna in this application, it is no longer necessary to use butt welding on the enameled coil as in the prior art.
  • the insulating layer is removed, which solves the technical defects in the existing technology that use the butt welding method to remove the insulating layer on the enameled coil due to the large number of solder joints that cause the base material to be welded through, which in turn leads to low efficiency and affects the yield.
  • This application proposes a radio frequency antenna manufacturing method and a radio frequency antenna.
  • the radio frequency antenna manufacturing method includes the following steps:
  • the enameled coil 200 includes a coil part 201 implanted on the base material 100 and at least two coil parts 201 are electrically connected to each other.
  • the enameled coil 200 is implanted on the base material 100 according to the target shape, so that the enameled coil 200 and the base material 100 form an integral body.
  • the need to punch shelter holes in the base material 100 and the conductive sheet 400 and the need to bury the wires in the wire embedding process are eliminated. It is necessary to allow the coils of the enameled coil 200 to avoid or cross the avoidance holes. It can effectively reduce the operation time when embedding wires and improve production efficiency.
  • the enameled coil 200 is a coil structure formed by enclosing enameled wires according to a target shape.
  • the enameled wire in the example is a main type of winding wire. It consists of a conductor and an insulating layer. After the bare wire is annealed and softened, it is painted and baked multiple times. However, it is not easy to produce products that meet both standard requirements and customer requirements. It is affected by raw material quality, process parameters, production equipment, environment and other factors. Therefore, the quality characteristics of various enameled wires are different, but they all have Four major properties: mechanical properties, chemical properties, electrical properties, and thermal properties.
  • the example target shape is preset according to the type of smart card or radio frequency antenna.
  • the example target shape may be, but is not limited to, the following shapes: a circle, an ellipse, a square, a polygon, or a geometric shape with arcuate sides.
  • the preferred shape of the coil part 201 described in this embodiment is circular or square when laid flat on the base material 100 of the example, and the preferred shape of the lead part 202 of the example is flat on the base material 100 of the example.
  • the base material 100 is in a serpentine or S-shape.
  • a target area needs to be defined first, and the insulating layer of the enameled wire of the lead portion 202 is removed on the target area by milling or grinding, so as to achieve only the enameled wire.
  • the insulation layer in the designated area is removed, thereby avoiding damage to the base material 100 and effectively improving the yield.
  • a conductive medium is dripped onto the conductive material roll, so that the conductive material roll and the conductive medium layer 300 form an integrated conductive roll material, thus solving the need for shelter holes in the traditional process.
  • Tin sheets are filled inside, and the method of butt welding is required to realize the electrical connection between the tin sheets and the conductors of the enameled coil 200. This avoids the loss of the base material 100 during butt welding, improves the yield rate, and improves the production of smart cards or radio frequency. Antenna efficiency.
  • the conductive medium in the example can be an existing conventional conductive medium. It can be exemplified that in this embodiment, the conductive medium in the example is preferably solder paste, conductive glue or At least one of ACF.
  • the rolled conductive material exemplified in this embodiment can be, but is not limited to, the following types: metal materials such as tin sheets, copper sheets, gold sheets, non-metallic materials with conductive functions, and IC chips.
  • the conductive sheet 400 used in this application includes but is not limited to sheets made of metal materials such as copper sheets, gold sheets, and tin sheets. materials and sheets made of non-metallic materials with conductive functions.
  • a copper sheet or a tin sheet is preferably used as the conductive sheet 400 .
  • a further example is that in this embodiment, when laminating, the target temperature is usually controlled between 110°C and 150°C. In actual use, the specific temperature value at which the lamination process is performed needs to be followed up. The material type of the conductive medium is determined. In this embodiment, a further example is that if the conductive medium used is solder paste that fuses at 110°C, then.
  • the lamination temperature can be controlled at a fixed value between 115°C and 120°C or fluctuate within a range of about 5°C higher than the melting temperature of the conductive medium during actual use.
  • the advantage of using this control method is that in actual applications, the base material 100 will not be damaged due to the high lamination temperature, further improving the yield and quality of smart cards or radio frequency antennas.
  • the target pressure value is controlled to be able to laminate the conductive sheet 400 and the conductive medium layer 300 into a whole smart card or radio frequency antenna.
  • the example target pressure value is preferably 16 MPa, that is, one square centimeter corresponds to a pressure of 16 KG. Adopting this target pressure value allows those skilled in the art to effectively ensure that the base material 100 will not be damaged due to excessive pressure when using this application to make smart cards or radio frequency antennas, effectively improving the yield of smart cards or radio frequency antennas. .
  • the exemplary substrate 100, enameled coil 200, conductive dielectric layer 300 and conductive sheet 400 are placed sequentially from bottom to top. It can be further clarified that the base The material 100 is at the bottom layer, and from bottom to top are the enameled coil 200, the conductive dielectric layer 300 and the conductive sheet 400.
  • removing the insulation layer of the lead portion 202 to expose the conductor of the enameled wire includes the following steps:
  • Milling or polishing removes the insulation layer of the lead portion 202 to expose the conductor of the enameled wire.
  • the insulating layer of the lead portion 202 is removed by milling or grinding, so that the application no longer needs to use butt welding to remove the insulating layer like the prior art when used, effectively solving the problems in the prior art.
  • the base material 100 is at least one of non-metallic materials such as PVC, ABS, PET, PETG, PC, TESLIN, paper, etc.
  • the base material 100 before manufacturing the radio frequency antenna, the base material 100 needs to be selected.
  • the basis for selecting which type of base material 100 to use is to select a non-metallic material with a certain thickness as the base material 100 .
  • at least one of PVC, ABS, PET, PETG, PC, TESLIN, and paper can be preferably used.
  • the reason why the exemplary base material 100 needs to have a certain thickness is that in actual application, the enameled coil 200 needs to be implanted on the base material 100. If the base material 100 does not have a thickness , it will cause the enameled coil 200 to be unable to be implanted on the base material 100, or the base material 100 will be damaged after being implanted into the base material 100, ultimately affecting the yield.
  • punching the conductive coil into the target area where the conductor is located to obtain a finished radio frequency antenna includes the following steps:
  • the conductive coil is heated to melt the solidified conductive medium, so that the conductive sheet punched to the target area can be electrically connected to the conductor in the target area to form an integral structure, thus achieving the goal of promoting the conductive sheet.
  • the heated conductive coil is directly punched into the target area of the coil end where the coil has been implanted and has been milled or polished, so that the application can directly punch and form the target area in the actual operation.
  • RF antenna structure That is to say, the overall automation efficiency is improved and the overall process is optimized. It is simple and fast, and has high automation efficiency.
  • the punching head when punching the conductive coil to the target area, the punching head needs to be heated and appropriately pressurized. In this way, the application can punch the conductive coil to the target area.
  • the conductive coil needs to be preheated and pre-pressurized. In this way, the conductive coil can be punched to the target area to form a conductive sheet structure. Improved the automation efficiency of the overall process.
  • heating is performed again during lamination, so that the base material in the radio frequency antenna subbody is less likely to deform when it is laminated at high temperature under pressure, and thus The yield of the entire radio frequency antenna is guaranteed.
  • the conductive medium includes at least one of solder paste, conductive glue, or ACF.
  • solder paste in the example is a new type of soldering material that emerged with SMT.
  • Solder paste is a complex system, which is a paste mixed with solder powder, flux and other additives. Solder paste has a certain viscosity at room temperature and can initially stick electronic components to a predetermined position. At the soldering temperature, as the solvent and some additives evaporate, the components to be soldered and the printed circuit pads are welded together to form a Permanent connection.
  • solder paste is divided into low-temperature solder paste, medium-temperature solder paste and high-temperature solder paste.
  • the type of solder paste is selected based on the melting temperature of the base material 100.
  • the solder paste illustrated in this embodiment is preferably made of low-temperature solder paste.
  • the conductive adhesive is an adhesive that has a certain conductivity after curing or drying. It can connect a variety of conductive materials together to form an electrical path between the connected materials.
  • conductive adhesive has become an essential new material.
  • conductive adhesives can be divided into two categories: general conductive adhesives and special conductive adhesives.
  • General conductive adhesives only have certain requirements for conductive properties and bonding strength of conductive adhesives.
  • Special conductive adhesives also have certain special requirements in addition to certain requirements for conductive properties and bonding strength. Such as high temperature resistance, ultra-low temperature resistance, instant curing, anisotropy and transparency, etc.
  • conductive adhesives can be divided into silver-based conductive adhesives, gold-based conductive adhesives, copper-based conductive adhesives, and carbon-based conductive adhesives.
  • the most widely used is silver-based conductive adhesives.
  • the exemplary ACF is called anisotropic conductive film (ACF), which is a film structure with conductive function.
  • ACF anisotropic conductive film
  • the ACF is attached to Just fit it on the adhesive film.
  • forming the conductive dielectric layer 300 on the rolled conductive material to obtain the conductive rolled material includes the following steps:
  • the conductive medium layer 300 is made of solder paste or conductive glue, drop or spray the conductive medium on the rolled conductive material;
  • solder paste or conductive glue when solder paste or conductive glue is used as the conductive medium, it can be directly dropped into the target area by dripping method.
  • the purpose of using the dripping method is to make the conductive medium layer 300 in the target area where the conductor is located.
  • the application can control the amount of conductive medium.
  • automatic dripping equipment can also be set up in actual use to drip the conductive medium into the target area where the conductor is located, which ultimately enables the application to achieve The purpose of automating the production of the conductive dielectric layer 300 is achieved.
  • this application also makes the electrical connection effect between the conductive medium and the conductor more stable during actual use, ensuring the transmission effect of electrical signals or communication signals during actual use.
  • the conductive material in the roll and the conductive medium dropped onto the conductive material in the roll are heated and melted, so that the conductive medium solidifies on the conductive material in the roll to form a conductive medium layer.
  • A310 forming the conductive medium layer 300 on the rolled conductive material to obtain the conductive rolled material includes the following steps:
  • the conductive medium layer 300 is made of ACF, the conductive medium is bonded to the target area where the conductor is located to form the conductive medium layer 300 to obtain a conductive coil.
  • the advantage of using ACF as the conductive dielectric layer 300 is that the amount of the conductive dielectric material can be controlled, and the forming effect of the conductive dielectric layer 300 can be ensured in actual use.
  • forming the conductive dielectric layer 300 on the rolled conductive material to obtain the conductive rolled material includes the following steps:
  • the conductive medium layer 300 is made of solder paste or conductive glue, drop or spray the conductive medium on the rolled conductive material;
  • the second conductive medium layer 300 is electrically connected to the first conductive medium layer 300 to obtain a conductive coil.
  • solder paste or conductive glue is used as the conductive medium and is dropped into the target area to form the first conductive medium layer 300.
  • the conductive medium and the conductor are electrically connected, ensuring the conductivity of the conductive medium layer 300. Effect.
  • the ACF is then bonded to the first conductive medium layer 300 to form the second conductive medium layer 300, so that the application can more effectively ensure the conductive effect of the conductive medium layer 300 when used.
  • the surface of the conductive sheet 400 is one of square, circular or polygonal.
  • the conductive sheet 400 is any one of tin sheet, copper sheet or gold sheet;
  • the conductive sheet 400 is a non-metallic material with conductive function.
  • this application proposes a radio frequency antenna, which is manufactured using the radio frequency antenna manufacturing method described above.
  • example radio frequency antennas include:
  • the enameled coil 200 is arranged on the base material 100, and both ends of the enameled coil 200 are placed outside the base material 100;
  • a conductive medium body is disposed on the enameled coil 200, and the conductive medium body is electrically connected to the enameled coil 200;
  • Conductive sheet 400 is provided on the conductive medium body, and the conductive sheet 400 is electrically connected to the conductive medium body.
  • the enameled coil is implanted on the base material according to the target shape, and then the insulating layer of the lead part is removed by milling or polishing to expose the conductor of the lead part, and then the conductive medium is dripped on the rolled conductive material to form Conductive coiled material, press the conductive coiled material to the target area where the conductor of the lead part is located to form a structure, and allow the conductor and the conductive medium layer to form an integral and electrically connected radio frequency antenna finished product, making this application in the process of making radio frequency antennas , it is no longer necessary to use the butt welding method to remove the insulation layer on the enameled coil as in the existing technology, which solves the problem that the existing technology uses the butt welding method to remove the insulation layer on the enameled coil due to the large number of solder joints.
  • the base material is welded through, resulting in low efficiency and technical defects that affect yield.

Abstract

本申请涉及天线制造技术领域,特别涉及一种射频天线制作方法及射频天线,通过将漆包线圈按照目标形状植入到基材上,然后采用铣削或者打磨的方式去除引线部的绝缘层,露出引线部的导体,接下来在卷装导电材料上滴入导电介质形成导电卷材,将导电卷材压制到引线部的导体所在的目标区域形成与导体电连接的结构,并且让导体与导电介质层形成整体且进行电连接的射频天线成品。

Description

射频天线制作方法及射频天线
本申请要求于2022年4月1日申请的、申请号为202210336497.9的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及天线制造技术领域,特别涉及一种射频天线制作方法及射频天线。
背景技术
目前,不同类型不同功能的智能卡在各大领域内得到广泛的应用。
而天线是组成智能卡中料的主要结构。
现有技术中,智能卡的生产工艺流程如下:
进行基材定位孔以及导电片材避空孔冲切→将非金属基材放置在超声波埋线机工作台上,并用上述定位孔把材料定好位,同时确定埋线的位置以及线头跨越的避空孔位→在完成埋线的非金属基材跨过导电片材的避空孔位置贴上胶带→将锡片或铜片等导电片材(连接焊台)填装到避空孔中→利用碰焊方式把天线的绝缘层融开并把导线与导电片材导通连接→撕掉胶带→在智能卡中料的上下两面各覆盖一层面料,进行高温层压,得到智能卡中料产品。
上述工艺流程中,在进行碰焊工序时,由于焊点较多,导致基材容易被焊穿,进而出现制作效率低以及不良率高等缺陷。
技术问题
本申请的主要目的是提供一种射频天线制作方法及射频天线,旨在解决现有技术在采用焊接工艺进行智能卡制造的焊接工艺因焊点较多导致基材容易被焊穿,进而出现制作效率低以及不良率高的技术问题。
技术解决方案
为实现上述目的,第一方面,本申请提出的一种射频天线制作方法,包括如下步骤:
将漆包线圈按照目标形状植入到基材上,所述漆包线圈包括植入到所述基材上的线圈部以及至少两个均分别与所述线圈部电连接的引线部;
去除所述引线部的绝缘层,露出所述引线部的导体;
在卷装导电材料上形成导电介质层,得到导电卷材;
将所述导电卷材冲切到所述导体所在的目标区域,得到射频天线成品。
在一实施例中,所述去除所述引线部的绝缘层,露出所述漆包线的导体,包括如下步骤:
铣削或打磨去除所述引线部的绝缘层,露出所述漆包线的导体。
在一实施例中,所述基材为的PVC、ABS、PET、PETG、PC、TESLIN、纸等非金属材料中的至少一种。
在一实施例中,所述将所述导电卷材冲切到所述导体所在的目标区域,得到射频天线成品,包括如下步骤:
对所述导电卷材进行加热,且使已加热的所述导电卷材与所述导体所在的目标区域完成定位;
将所述导电卷材冲切形成导电片材,且将所述导电片材压入所述目标区域,得到射频天线次体;
对所述射频天线次体进行层压,以使所述导电介质与所述目标区域的导通,得到射频天线成品。
在一实施例中,所述导电介质包括锡膏、导电胶或ACF中的至少一种。
在一实施例中,所述在卷装导电材料上形成导电介质层,得到导电卷材,包括如下步骤:
当导电介质层采用锡膏或导电胶制成时,在所述卷装导电材料上滴入或喷涂导电介质;
对已滴入或喷涂所述导电介质的所述卷装材料进行加热融化,形成导电介质层,得到导电卷材;
或者,
所述在卷装导电材料上形成导电介质层,得到导电卷材,包括如下步骤:
当所述导电介质层采用ACF制成时,在所述导体所在的目标区域上贴合导电介质,形成导电介质层,得到导电卷材。
在一实施例中,所述在卷装导电材料上形成导电介质层,得到导电卷材,包括如下步骤:
当导电介质层采用锡膏或导电胶制成时,在所述卷装导电材料上滴入或喷涂导电介质;
对已滴入或喷涂所述导电介质的所述卷装材料进行加热融化,形成第一导电介质层;
在所述第一导电介质层上贴合ACF,形成第二导电介质层,所述第二导电介质层与所述第一导电介质层电连接,得到导电卷材。
在一实施例中,所述导电片材的表面为方形、圆形或者多边形中的一种。
在一实施例中,所述导电片材为锡片、铜片或者金片中的任一种;
或者,
所述导电片材为具有导电功能的非金属材料。
第二方面,本申请提出一种射频天线,采用前文所述射频天线制作方法进行制造。
有益效果
本申请技术方案通过将漆包线圈按照目标形状植入到基材上,然后采用铣削或者打磨的方式去除引线部的绝缘层,露出引线部的导体,接下来在卷装导电材料上滴入导电介质形成导电卷材,将导电卷材压制到引线部的导体所在的目标区域形成与导体电连接的结构,并且让导体与导电介质层形成整体且进行电连接的射频天线成品,使得本申请在制作射频天线的过程中,不再像现有技术一样需要采用碰焊方式对漆包线圈上的绝缘层进行去除,解决了现有技术在采用碰焊方式对漆包线圈上的绝缘层进行去除时因焊点较多导致基材被焊穿,进而导致效率低以及影响成品率的技术缺陷。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本申请射频天线制作方法及射频天线第一实施例的流程示意图;
图2为图1中单个射频天线制作工艺的流程示意图;
图3为图2中示例的S300步骤流程示意图;
图4为图2中A部放大结构示意图;
图5为图2中B部放大结构示意图。
附图标号说明:
标号 名称 标号 名称
100 基材 201 线圈部
200 漆包线圈 202 引线部
300 导电介质层 400 导电片材
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明,本申请实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
在本申请中,除非另有明确的规定和限定,术语“连接”、“固定”等应做广义理解,例如,“固定”可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
另外,若本申请实施例中有涉及“第一”、“第二”等的描述,则该“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,全文中出现的“和/或”的含义,包括三个并列的方案,以“A和/或B”为例,包括A方案、或B方案、或A和B同时满足的方案。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本申请要求的保护范围之内。
目前,不同类型、不同功能的智能或者射频天线在各大领域中得到广泛应用。
智能卡或者射频天线中料的传统生产工艺流程如下:
在基材定位孔与导电片材避空孔冲切,在PVC、ABS、PET、PETG、PC、TESLIN、纸等非金属基材上冲出两个用于所有工序物料定位的两个孔,以及与芯片、导电片材形状大小相当的避空孔;
埋线:将PVC、ABS、PET、PETG、PC、TESLIN、纸等非金属基材放置在超声波埋线机工作台上,用定位孔把材料定好位,并确定线圈埋线的位置以及线头跨越的避空孔位;
贴胶带:在完成埋线的上述材料上,跨过导电片材的避空孔位置贴上胶带;
填装锡片:将锡片或铜片等导电片材(连接焊台)填装到避空孔中,上一个工序贴的胶带将导电片材固定在孔内保证不移位;
碰焊:通过焊接工序,把天线的绝缘层融开并把导线与导电片材导通连接;
撕胶带:碰焊后,此时导电片材与导线已经连接固定,将胶带撕掉;
叠张层压:在中料的上下两面各覆盖一层面料,进行高温层压。
上述工艺流程中,工序复杂,每个工序需要人工进行手动操作的工作量较多,无法实现全自动,且在进行碰焊工序时,由于焊点较多以及碰焊时的温度过高,易导致基材被焊穿,不良率以及成品率均极高。同时的,现有技术在进行撕胶带工艺时,多为人工撕除,严重影响了制作陈品的效率以及成品的产量。
由此,本申请提供了一种射频天线制作方法及射频天线,将漆包线圈按照目标形状植入到基材上,并且使得线圈部设置于基材上,引线部设置于基材外,然后采用铣削或者打磨的方式去除引线部的绝缘层,露出引线部的导体,接下来利用导电介质在引线部的导体所在的目标区域形成与导体电连接的导电介质层,再将导电片材放置在目标区域,并且让导电片材与导电介质层形成整体且进行电连接的射频天线成品,使得本申请在制作射频天线的过程中,不再像现有技术一样需要采用碰焊方式对漆包线圈上的绝缘层进行去除,解决了现有技术在采用碰焊方式对漆包线圈上的绝缘层进行去除时因焊点较多导致基材被焊穿,进而导致效率低以及影响成品率的技术缺陷。
下面结合一些具体实施方式进一步阐述本申请的发明构思。
本申请提出一种射频天线制作方法及射频天线。
如图1、图2所示,提出本申请射频天线制作方法的第一实施例。
本实施例中,该射频天线制作方法包括如下步骤:
S100、将漆包线圈200按照目标形状植入到基材100上,所述漆包线圈200包括植入到所述基材100上的线圈部201以及至少两个均分别与所述线圈部201电连接的引线部202;
在本实施例中,将漆包线圈200按照目标形状植入到基材100上,使得漆包线圈200与基材100形成一个整体。采用在基材100上进行植入的方式进行埋线时,省去了常规技术在进行埋线工艺时存在的需要对基材100意见导电片材400进行避空孔冲切以及需要在埋线时需要让漆包线圈200的线圈避开或者跨过避空孔位这一工序。能够起到有效缩减埋线时的操作时间,提升了制作效率。
需要特别和明确说明的是,在本实施例中,示例的漆包线圈200是将漆包线按照目标形状围合形成的线圈结构。可以进一步明确的是,示例的漆包线为漆包线是绕组线的一个主要品种,由导体和绝缘层两部组成,裸线经退火软化后,再经过多次涂漆,烘焙而成。但要生产出既符合标准要求,又满足客户要求的产品并不容易,它受原材料质量,工艺参数,生产设备,环境等因素影响,因此,各种漆包线的质量特性各不相同,但都具备机械性能,化学性能,电性能,热性能四大性能。
在本实施例中,示例的目标形状是根据智能卡或者射频天线的类型进行预设的。在实际实施过程中,示例的目标形状可以但不限于如下形状:圆形、椭圆形、方形、多边形或者具有弧形边的几何形状。
需要进一步明确和说明的是,本实施例中所述的线圈部201的优选形状为平铺至示例的基材100上时呈圆形或者方形,示例的引线部202的优选形状为平铺于所述基材100上时呈蛇形或者S型。当然,作为优选实施方式,本实施例中示例的引线部202优选为两个,其分别设置于本实施例示例的线圈部201的两端,并且均与线圈部201电连接。
S200、去除所述引线部202的绝缘层,露出所述引线部202的导体;
在本实施例中,在去除引线部202的绝缘层时,首先需划定目标区域,并且在目标区域上通过铣削或者打磨的方式去除引线部202的漆包线的绝缘层,进而实现仅对漆包线的指定区域的绝缘层进行去除,避免了对基材100的损伤,有效提升了成品率。
需要特别明确和说明的是,在本实施例中,对示例形状的引线部202的绝缘层进行去除时,仅去除引线部202的示例形状腰部的绝缘层即可。可以进一步明确说的是,请参阅图3,当引线部202为“蛇形”或者类“弓”字型时,仅去除形状的腰部即可,具有弯折的位置以及连接至少一个弯折位置的延伸漆包线的绝缘层不需要去除。这样设计的优点在于,在实际使用过程中,仅需将导电介质滴入或者贴合至导体上即可,并不需要与整个引线部202进行完全的电连接,同时的,通过这一设置方式,还使得本申请在实际使用时能够与导电介质层300具有更多的电信号或者通信信号传输点位,有效提升了智能卡或者射频天线的传输效率以及使用效果。
当然,在实际使用过程中,本领域技术人员也可根据实际需要确定去除引线部202的位置,无论是采用本申请记载的去除方法去除哪个位置的绝缘层,均落入本身的保护范围,故而此处不再赘述。
S300、在卷装导电材料上形成导电介质层300,得到导电卷材;
请参阅图3,在本实施例中,在卷装导电材料上滴入导电介质,使得卷装导电材料与导电介质层300形成整体的导电卷材,进而解决了传统工艺中需要在避空孔内填装锡片,并且需要采用碰焊的方式才能实现锡片与漆包线圈200的导体电连接的缺陷,避免了碰焊时对基材100造成的损耗,提升了成品率以及制作智能卡或者射频天线的效率。
需要特别明确和说明的是,在本实施例中,示例的导电介质采用现有常规的导电介质即可,可以示例的是,本实施例中,示例的导电介质优选采用锡膏、导电胶或者ACF中的至少一种。
可以进一步说明的是,本实施例中示例的卷装导电材料可以但不限于如下类型:锡片、铜片、金片等金属材料、具有导电功能的非金属材料以及IC芯片等。
S400、将所述导电卷材冲切到所述导体所在的目标区域,得到射频天线成品。
可以进一步明确和说明的是,在本实施例中,示例的具有导电功能的片材结构,本申请使用的导电片材400包括但不限于铜片、金片、锡片等金属材料制作的片材以及采用具有导电功能的非金属材料制作的片材等。在本实施例中优选采用铜片或者锡片作为导电片材400。
可以进一步示例的是,在本实施例中,进行层压时,目标温度通常控制在110℃-150℃之间,实际使用时,具体在何种温度值下进行层压工艺需跟进所选用的导电介质的材料类型进行确定,在本实施例中,可进一步示例的是,若采用的导电介质为110℃即发生融合的锡膏,那么。层压温度控制在115℃-120℃之间的一个定值或者在高于实际使用时的导电介质的融化温度约5℃范围内波动即可,
采用这一控制方式的优势在于,在实际应用时,不会因层压的温度较高而导致基材100被损坏,进一步提升了智能卡或者射频天线的成品率已经成品质量。
在本实施例中,同样可以示例的是,在进行层压时,目标压力值控制在能够将导电片材400与导电介质层300层压为一个整体的智能卡或者射频天线即可。在本实施例中,示例的目标压力值优选为16MPa,即每平方厘米对应16KG的压力即可。采用这一目标压力值使得本领域技术人员在采用本申请制作智能卡或者射频天线时,能够有效保证基材100不会因承受过高的压力而发生损坏,有效提升了智能卡或者射频天线的成品率。
在本实施例中,需要注意的是,示例的基材100、漆包线圈200、导电介质层300以及导电片材400的放置方式为:自下而上顺次放置,可以进一步明确的是,基材100在最底层,自下而上依次为漆包线圈200、导电介质层300以及导电片材400。
在一实施例中,所述去除所述引线部202的绝缘层,露出所述漆包线的导体,包括如下步骤:
S201、铣削或打磨去除所述引线部202的绝缘层,露出所述漆包线的导体。
在本实施例中,采用铣削或者打磨的方式去除引线部202的绝缘层,使得本申请在使用时不再像现有技术一样,需要采用碰焊方式去除绝缘层,有效解决了现有技术中采用碰焊方式去除绝缘层时导致的基材被损坏的技术缺陷。
在一实施例中,所述基材100为的PVC、ABS、PET、PETG、PC、TESLIN、纸等非金属材料中的至少一种。
在又一实施例中,在进行射频天线制作之前,需对基材100进行选型,选择采用哪种类型的基材100的基础是,选择具有一定厚度的非金属材料作为基材100。当然,在本实施例中,可以优选采用PVC、ABS、PET、PETG、PC、TESLIN、纸中的至少一种即可。
可以进一步说明的是,在本实施例中,示例的基材100需要具有一定厚度的原因为,在实际应用时,需将漆包线圈200植入至基材100上,如果基材100不具有厚度,则会导致漆包线圈200无法植入到基材100上,或者在植入到基材100之后导致基材100损坏,最终影响成品率。
在一实施例中,所述将所述导电卷材冲切到所述导体所在的目标区域,得到射频天线成品,包括如下步骤:
S410、对所述导电卷材进行加热,且使已加热的所述导电卷材与所述导体所在的目标区域完成定位;
在本实施例中,通过对导电卷材进行加热,使得已固化的导电介质融化,进而使得冲切至目标区域的导电片材能够与目标区域的导体电连接形成整体结构,达到了促使导电片材与导体导通的功能。
S420、将所述导电卷材冲切形成导电片材400,且将所述导电片材400压入所述目标区域,得到射频天线次体;
S430、对所述射频天线次体进行层压,以使所述导电介质与所述目标区域的导通,得到射频天线成品。
在本实施例中,向已植入线圈,且已经完成铣削或者打磨的线圈端头的目标区域直接冲切已经加热的导电卷材,使得本申请在实际操作时能够直接在目标区域冲切形成射频天线结构。即提升了整体的自动化效率,也优化了整体工艺。简便快捷,且自动化效率高。
可以进一步阐述的是,在本实施例中,将导电卷材冲切至目标区域时,需对冲切头进行加热和适当加压,通过这一方式,使得本申请将导电卷材冲切至目标区域时,需对导电卷材进行预加热以及预加压,采用这一方式使得导电卷材能够被冲切至目标区域形成导电片材结构。提升了整体工艺的自动化效率。
在作为优选实施方式,需要特别明确和说明的是,在本实施例中,层压时进行再次加热,使得射频天线次体中的基材在压力作用下被高温层压时不易发生变形,进而保障了整个射频天线的成品率。
在一实施例中,所述导电介质包括锡膏、导电胶或ACF中的至少一种。
需要特别和明确说的是,在本实施例中,示例的锡膏是伴随着SMT应运而生的一种新型焊接材料。焊锡膏是一个复杂的体系,是由焊锡粉、助焊剂以及其它的添加物混合而成的膏体。焊锡膏在常温下有一定的粘性,可将电子元器件初粘在既定位置,在焊接温度下,随着溶剂和部分添加剂的挥发,将被焊元器件与印制电路焊盘焊接在一起形成永久连接。
现有技术中,将常规锡膏分为低温锡膏、中温锡膏以及高温锡膏。在本实施例中,选用的锡膏的类型是根据基材100的融化温度进行选择的,为了确保在实际应用时能够选择更丰富的基材100,本实施例中示例的锡膏优选采用低温锡膏。
在本实施例中,可以进一步示例的是,示例的导电胶是一种固化或干燥后具有一定导电性的胶粘剂。它可以将多种导电材料连接在一起,使被连接材料间形成电的通路。在电子工业中,导电胶已成为一种必不可少的新材料。导电胶的品种繁多,从应用角度可以将导电胶分成一般型导电胶和特种导电胶两类。一般型导电胶只对导电胶的导电性能和胶接强度有一定要求,特种导电胶除对导电性能和胶接强度有一定要求外,还有某种特殊要求。如耐高温、耐超低温、瞬间固化、各向异性和透明性等。按导电胶中导电粒子的种类不同,可将导电胶分为银系导电胶、金系导电胶、铜系导电胶和炭系导电胶等,应用最广的是银系导电胶。
在本实施例中,可以更进一步示例的是,示例的ACF称为异方性导电胶膜(Anisotropic Conductive Film,ACF),是一种具有导电功能的胶膜结构,在使用时,将ACF贴合于胶膜上即可。
在一实施例中,所述在卷装导电材料上形成导电介质层300,得到导电卷材,包括如下步骤:
S310、当导电介质层300采用锡膏或导电胶制成时,在所述卷装导电材料上滴入或喷涂导电介质;
在本实施例中,当采用锡膏或者导电胶作为导电介质时,通过滴入的方法直接滴入到目标区域即可,采用滴入的方法在导体所在的目标区域制作导电介质层300的目的在于,通过这一方式使得本申请能够对导电介质的用量进行控制,同时的,也可以在实际使用时设置自动化的滴入设备将导电介质滴入到导体所在的目标区域,最终使得本申请实现了对自动化制作导电介质层300目的。同时还使得本申请在实际使用时让导电介质与导体之间的电连接效果更稳定,确保了实际使用过程中的电信号或者通信信号的传输效果。
S320、对已滴入或喷涂所述导电介质的所述卷装材料进行加热融化,形成导电介质层300,得到导电卷材;
在本实施例中,通过对卷装导电材料以及滴入到卷装导电材料上的导电介质进行加热融化,使得导电介质在卷装导电材料上固化形成导电介质层。
做又一改进实施例,A310、所述在卷装导电材料上形成导电介质层300,得到导电卷材,包括如下步骤:
A320、当所述导电介质层300采用ACF制成时,在所述导体所在的目标区域上贴合导电介质,形成导电介质层300,得到导电卷材。
在本实施例中,采用ACF作用导电介质层300的优点在于,在能够对导电介质材料的用量进行控制,且在实际使用时还可以确保导电介质层300的成形效果。
作为再一改进实施例,所述在卷装导电材料上形成导电介质层300,得到导电卷材,包括如下步骤:
B310、当导电介质层300采用锡膏或导电胶制成时,在所述卷装导电材料上滴入或喷涂导电介质;
B320、对已滴入或喷涂所述导电介质的所述卷装材料进行加热融化,形成第一导电介质层300;
B330、在所述第一导电介质层300上贴合ACF,形成第二导电介质层300,所述第二导电介质层300与所述第一导电介质层300电连接,得到导电卷材。
在本实施例中,采用锡膏或者导电胶作为导电介质滴入到目标区域形成第一导电介质层300,通过这一设置方式,使得导电介质与导体电连接,确保了导电介质层300的导电效果。在此基础上,再将ACF贴合到第一导电介质层300上形成第二导电介质层300,使得本申请在使用时能够更有效的保障导电介质层300的导电效果。
在一实施例中,所述导电片材400的表面为方形、圆形或者多边形中的一种。
在一实施例中,所述导电片材400为锡片、铜片或者金片中的任一种;
或者,
所述导电片材400为具有导电功能的非金属材料。
本领域技术人员采用本申请公开的方法在进行智能卡或者射频天线制作时,不再像现有常规技术一样,需要采用碰焊的方式才能实现让导电介质层300与导体进行电连接,有效解决了现有技术中因碰焊工艺导致基材100易损坏的技术缺陷。同时的,通过对工艺的改变,使得本申请在实际操作时能够实现自动化制作智能卡或者射频天线的目的,有效提升了智能卡或者射频天线的制作效率。
第二方面,如图4、图5所示,本申请提出一种射频天线,采用前文所述射频天线制作方法进行制造。
在本实施例中,示例的射频天线包括:
基材100,
漆包线圈200,所述漆包线圈200设置于所述基材100上,且所述漆包线圈200的两端均置于所述基材100外;
导电介质体,所述导电介质体设置于所述漆包线圈200上,所述导电介质体与所述漆包线圈200电连接;以及
导电片材400,所述导电片材400设置于所述导电介质体上,所述导电片材400与所述导电介质体电连接。
通过上述方案,将漆包线圈按照目标形状植入到基材上,然后采用铣削或者打磨的方式去除引线部的绝缘层,露出引线部的导体,接下来在卷装导电材料上滴入导电介质形成导电卷材,将导电卷材压制到引线部的导体所在的目标区域形成与的结构,并且让导体与导电介质层形成整体且进行电连接的射频天线成品,使得本申请在制作射频天线的过程中,不再像现有技术一样需要采用碰焊方式对漆包线圈上的绝缘层进行去除,解决了现有技术在采用碰焊方式对漆包线圈上的绝缘层进行去除时因焊点较多导致基材被焊穿,进而导致效率低以及影响成品率的技术缺陷。
以上所述仅为本申请的可选实施例,并非因此限制本申请的专利范围,凡是在本申请的发明构思下,利用本申请说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本申请的专利保护范围内。

Claims (10)

  1. 一种射频天线制作方法,其中,包括如下步骤:
    将漆包线圈按照目标形状植入到基材上,所述漆包线圈包括植入到所述基材上的线圈部以及至少两个均分别与所述线圈部电连接的引线部;
    去除所述引线部的绝缘层,露出所述引线部的导体;
    在卷装导电材料上形成导电介质层,得到导电卷材;
    将所述导电卷材冲切到所述导体所在的目标区域,得到射频天线成品。
  2. 根据权利要求1所述的射频天线制作方法,其中,所述去除所述引线部的绝缘层,露出所述漆包线的导体,包括如下步骤:
    铣削或打磨去除所述引线部的绝缘层,露出所述漆包线的导体。
  3. 根据权利要求1所述的射频天线制作方法,其中,所述基材为PVC、ABS、PET、PETG、PC、TESLIN、纸中的至少一种。
  4. 根据权利要求2或3所述的射频天线制作方法,其中,所述将所述导电卷材冲切到所述导体所在的目标区域,得到射频天线成品,包括如下步骤:
    对所述导电卷材进行加热,且使已加热的所述导电卷材与所述导体所在的目标区域完成定位;
    将所述导电卷材冲切形成导电片材,且将所述导电片材压入所述目标区域,得到射频天线次体;
    对所述射频天线次体进行层压,以使所述导电介质与所述目标区域的导通,得到射频天线成品。
  5. 根据权利要求4所述的射频天线制作方法,其中,所述导电介质包括锡膏、导电胶或ACF中的至少一种。
  6. 根据权利要求5所述的射频天线制作方法,其中,所述在卷装导电材料上形成导电介质层,得到导电卷材,包括如下步骤:
    当导电介质层采用锡膏或导电胶制成时,在所述卷装导电材料上滴入或喷涂导电介质;
    对已滴入或喷涂所述导电介质的所述卷装材料进行加热融化,形成导电介质层,得到导电卷材;
    或者,
    所述在卷装导电材料上形成导电介质层,得到导电卷材,包括如下步骤:
    当所述导电介质层采用ACF制成时,在所述导体所在的目标区域上贴合导电介质,形成导电介质层,得到导电卷材。
  7. 根据权利要求5所述的射频天线制作方法,其中,所述在卷装导电材料上形成导电介质层,得到导电卷材,包括如下步骤:
    当导电介质层采用锡膏或导电胶制成时,在所述卷装导电材料上滴入或喷涂导电介质;
    对已滴入或喷涂所述导电介质的所述卷装材料进行加热融化,形成第一导电介质层;
    在所述第一导电介质层上贴合ACF,形成第二导电介质层,所述第二导电介质层与所述第一导电介质层电连接,得到导电卷材。
  8. 根据权利要求5所述的射频天线制作方法,其中,所述导电片材的表面为方形、圆形或者多边形中的一种。
  9. 根据权利要求5所述的射频天线制作方法,其中,所述导电片材为锡片、铜片或者金片中的任一种;或者,所述导电片材为具有导电功能的非金属材料。
  10. 一种射频天线,其中,采用权利要求1-9中任一项所述的射频天线制作方法进行制造。
PCT/CN2023/085614 2022-04-01 2023-03-31 射频天线制作方法及射频天线 WO2023186132A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210336497.9A CN114421139B (zh) 2022-04-01 2022-04-01 射频天线制作方法及射频天线
CN202210336497.9 2022-04-01

Publications (1)

Publication Number Publication Date
WO2023186132A1 true WO2023186132A1 (zh) 2023-10-05

Family

ID=81263692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/085614 WO2023186132A1 (zh) 2022-04-01 2023-03-31 射频天线制作方法及射频天线

Country Status (2)

Country Link
CN (1) CN114421139B (zh)
WO (1) WO2023186132A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114421139B (zh) * 2022-04-01 2022-07-26 深圳源明杰科技股份有限公司 射频天线制作方法及射频天线

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1484343A (zh) * 2002-09-19 2004-03-24 上海浦江智能卡系统有限公司 一种双界面卡天线植入的制造方法
CN1993703A (zh) * 2004-06-18 2007-07-04 艾利丹尼森公司 射频识别装置与形成方法
CN101165967A (zh) * 2006-10-16 2008-04-23 连展科技(深圳)有限公司 天线的连续制作方法
CN102324056A (zh) * 2011-08-17 2012-01-18 上海祯显电子科技有限公司 一种天线隐藏型非接触智能卡
CN109214494A (zh) * 2018-10-25 2019-01-15 上海东方磁卡信息股份有限公司 非接触智能卡及其制造方法
CN110689105A (zh) * 2018-09-26 2020-01-14 湖北用芯物联科技有限公司 超薄rfid智能卡封装方法
CN111382828A (zh) * 2019-05-20 2020-07-07 上海东方磁卡信息股份有限公司 非接触智能卡及其制造方法和制造设备
CN114421139A (zh) * 2022-04-01 2022-04-29 深圳源明杰科技股份有限公司 射频天线制作方法及射频天线

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6940408B2 (en) * 2002-12-31 2005-09-06 Avery Dennison Corporation RFID device and method of forming
US7224278B2 (en) * 2005-10-18 2007-05-29 Avery Dennison Corporation Label with electronic components and method of making same
US20070163704A1 (en) * 2006-01-18 2007-07-19 Upm Rafsec Oy Method for manufacturing a label comprising a transponder
FR2899000B1 (fr) * 2006-03-24 2008-10-17 Arjowiggins Security Soc Par A Dispositif radiofrequence comportant un composant electronique pourvu d'une antenne integree et couplee electromagnetiquement a une antenne d'amplification
CN101609514B (zh) * 2008-06-20 2013-04-24 上海中京电子标签集成技术有限公司 一种高效电子标签制作方法
CN101877072B (zh) * 2009-04-28 2013-02-13 吴军华 射频不干胶标签制造方法及系统
US8128000B2 (en) * 2009-09-25 2012-03-06 Avery Dennison Corporation Method, system and apparatus for manufacturing a radio frequency identification device
US8613132B2 (en) * 2009-11-09 2013-12-24 Feinics Amatech Teoranta Transferring an antenna to an RFID inlay substrate
US9272370B2 (en) * 2010-08-12 2016-03-01 Féinics Amatech Teoranta Laser ablating structures for antenna modules for dual interface smartcards
CN103943962B (zh) * 2014-04-03 2017-05-17 上海安费诺永亿通讯电子有限公司 一种线圈型天线及其制作工艺
CN104361381A (zh) * 2014-11-17 2015-02-18 深圳市华鑫精工机械技术有限公司 一种双界面卡和双界面卡的封装方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1484343A (zh) * 2002-09-19 2004-03-24 上海浦江智能卡系统有限公司 一种双界面卡天线植入的制造方法
CN1993703A (zh) * 2004-06-18 2007-07-04 艾利丹尼森公司 射频识别装置与形成方法
CN101165967A (zh) * 2006-10-16 2008-04-23 连展科技(深圳)有限公司 天线的连续制作方法
CN102324056A (zh) * 2011-08-17 2012-01-18 上海祯显电子科技有限公司 一种天线隐藏型非接触智能卡
CN110689105A (zh) * 2018-09-26 2020-01-14 湖北用芯物联科技有限公司 超薄rfid智能卡封装方法
CN109214494A (zh) * 2018-10-25 2019-01-15 上海东方磁卡信息股份有限公司 非接触智能卡及其制造方法
CN111382828A (zh) * 2019-05-20 2020-07-07 上海东方磁卡信息股份有限公司 非接触智能卡及其制造方法和制造设备
CN114421139A (zh) * 2022-04-01 2022-04-29 深圳源明杰科技股份有限公司 射频天线制作方法及射频天线

Also Published As

Publication number Publication date
CN114421139B (zh) 2022-07-26
CN114421139A (zh) 2022-04-29

Similar Documents

Publication Publication Date Title
CN1744375B (zh) 连接用基板、连接结构、连接方法和电子仪器
WO2023186132A1 (zh) 射频天线制作方法及射频天线
WO2012061964A1 (zh) 一种智能双界面卡及其焊接封装工艺
CN102360443B (zh) 一种生产双界面卡的方法
CN105530017A (zh) 一种宽带收发系统接收前端的制作方法
JP4674710B2 (ja) 無線icタグの製造方法
CN109214494B (zh) 非接触智能卡及其制造方法
CN112331074A (zh) 显示模组、邦定方法、显示装置和显示终端
CN111382828B (zh) 非接触智能卡及其制造方法和制造设备
CN104881701A (zh) 一种智能卡及其制造方法
JP4847499B2 (ja) 無線icタグの製造方法
US7900808B2 (en) Soldering method and system thereof
CN206293600U (zh) 一种改良型射频天线
CN102789589B (zh) 一种智能双界面卡及其焊接封装工艺
CN102035120B (zh) 一种双界面卡的电流脉冲平行点焊连接方法
CN105956652B (zh) 一种智能卡及其制造方法
CN211184425U (zh) 一种电路板结构及电子设备
CN100541774C (zh) 内引脚接合封装
CN102049580A (zh) 一种引线框架的焊接方法
JP2008003682A (ja) 無線icタグ
CN107660085B (zh) 一种电路板组件及其制作方法、电路板拼板、移动终端
CN209328683U (zh) 一种全陶瓷高可靠性射频变压器
JP2005070915A (ja) 複合icカードと複合icカードの製造方法
CN108098092A (zh) 一种采用焊锡膏对射频基板与壳体进行烧结的方法
CN114361048A (zh) 金属裸线中料制备方法及金属裸线中料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23778496

Country of ref document: EP

Kind code of ref document: A1