WO2023185384A1 - 单相浸没式液冷系统、液冷方法及存储介质 - Google Patents

单相浸没式液冷系统、液冷方法及存储介质 Download PDF

Info

Publication number
WO2023185384A1
WO2023185384A1 PCT/CN2023/079780 CN2023079780W WO2023185384A1 WO 2023185384 A1 WO2023185384 A1 WO 2023185384A1 CN 2023079780 W CN2023079780 W CN 2023079780W WO 2023185384 A1 WO2023185384 A1 WO 2023185384A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
pressure difference
pipe
liquid supply
supply sub
Prior art date
Application number
PCT/CN2023/079780
Other languages
English (en)
French (fr)
Inventor
陈前
巫跃凤
高阳
刘方宇
郭海丰
Original Assignee
深圳比特微电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳比特微电子科技有限公司 filed Critical 深圳比特微电子科技有限公司
Priority to CA3200797A priority Critical patent/CA3200797A1/en
Publication of WO2023185384A1 publication Critical patent/WO2023185384A1/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20218Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures
    • H05K7/20281Thermal management, e.g. liquid flow control

Definitions

  • the present application relates to the field of liquid cooling and heat dissipation technology, and in particular to a single-phase immersion liquid cooling system, a liquid cooling method and a storage medium.
  • the above-mentioned multiple liquid-cooling cabinets can be arranged in parallel on the liquid cooling system, that is, the liquid inlets of the multiple liquid-cooling cabinets are respectively connected to the liquid supply main pipes of the liquid cooling system.
  • the liquid return ports of multiple liquid cooling cabinets are respectively connected to the liquid return main pipe of the liquid cooling system.
  • the coolant circulates in the circulation pipeline composed of the liquid supply main pipe and the liquid return main pipe to achieve liquid cooling and heat dissipation of electronic equipment.
  • the required coolant flow is also different, which involves the adjustment of the coolant flow of the liquid-cooled cabinet, such as in the liquid supply branch pipe or A flow regulating valve is installed on the liquid return branch pipe, and then the coolant flow is adjusted manually.
  • embodiments of the present application provide a single-phase immersed liquid cooling system, a liquid cooling method and a storage medium, which help to improve the accuracy of flow adjustment.
  • An embodiment of the present application provides a single-phase immersed liquid cooling system.
  • the liquid cooling system includes:
  • each liquid-cooled cabinet includes a liquid inlet and a liquid return port, and the liquid inlet of each liquid-cooled cabinet is connected to the liquid supply main pipe through the liquid supply sub-pipe of each liquid-cooled cabinet, The liquid return port of each liquid-cooled cabinet is connected to the liquid return main pipe through the liquid return sub-pipe of each liquid-cooled cabinet;
  • a flow adjustment unit includes a pressure difference detection device and a flow adjustment device.
  • the pressure difference detection device is used to detect the pressure difference between the coolant flowing into the pressure difference detection device and the coolant flowing out of the pressure difference detection device,
  • the flow regulating device is used to regulate the flow of coolant;
  • the pressure difference detection device and the flow adjustment device are respectively connected to the control unit via signals;
  • the flow adjustment unit is provided on the liquid supply sub-pipe, so that the control unit adjusts the flow rate of the cooling liquid flowing into at least one of the liquid supply sub-pipes according to the pressure difference on at least one of the liquid supply sub-pipes. flow.
  • Embodiments of the present application also provide a liquid cooling method, which is applied to the above-mentioned liquid cooling system.
  • the liquid cooling method includes:
  • the opening of the respective flow adjustment unit of the at least one liquid supply sub-pipe is dynamically adjusted.
  • An embodiment of the present application also provides a computer-readable storage medium, including program instructions.
  • the control unit causes the control unit to execute the liquid cooling method according to the embodiment of the present application.
  • Figure 1 is a schematic structural diagram of a liquid cooling system according to an embodiment of the present application.
  • Figure 2 is a schematic structural diagram of the flow adjustment unit according to the embodiment of the present application.
  • Figure 3 is a schematic structural diagram of the signal connection between the pressure difference detection device and the flow adjustment unit of each parallel branch and the control unit respectively according to the embodiment of the present application.
  • Figure 4 is a schematic flow chart of the liquid cooling method according to the embodiment of the present application.
  • the reference signs are: 10-liquid supply main pipe, 11-liquid supply sub-pipe, 20-liquid return main pipe, 21-liquid return sub-pipe, 30-Balance tube, 40-Heat exchange unit, 50-power unit, 60-liquid cooling cabinet, 61-electronic equipment area, 62-liquid return tank, 70-Flow regulating unit, 71-Pressure difference detection device, 72-Flow regulating device, 711-first pressure sensor, 712-second pressure sensor, 713-pressure differential structural member, 80-Control unit.
  • At least one single-phase immersed liquid cooling cabinet can be arranged in parallel on the liquid supply/return main pipe.
  • the different positions of the liquid-cooled cabinets on the liquid supply/return pipes determine that the coolant flow is not exactly the same, which will cause inconsistencies in the coolant flow between the parallel branches. Balance.
  • each branch is connected in parallel.
  • the coolant flow requirements are also different between different branches, which also involves the regulation of the coolant flow of each branch.
  • the liquid inlet of the liquid-cooled cabinet In short, in order to adjust the coolant flow of each liquid-cooled cabinet on demand, it is necessary to adjust the liquid inlet of the liquid-cooled cabinet. The flow rate needs to be adjusted, and even the liquid flow rate from the liquid cooling cabinet needs to be adjusted.
  • the inlet/outlet valve of a liquid-cooled cabinet can be manually adjusted to control the coolant flow rate of the liquid-cooled cabinet.
  • the above method of manually adjusting coolant flow has limited adjustment accuracy for one or more liquid-cooled cabinets.
  • the coolant flow of other parallel branches in the entire system will appear. Flow imbalance. Therefore, the coolant flow rate of each parallel branch in the liquid cooling system also needs to be adjusted, which results in lower efficiency.
  • embodiments of the present application provide a single-phase immersed liquid cooling system, which can correlate the flow rate of the coolant of a liquid-cooled cabinet or multiple liquid-cooled cabinets with the pressure difference of the coolant, and This pressure difference facilitates accurate measurement, so that in a scenario that includes one or more liquid-cooled cabinets, the liquid cooling system can automatically adjust the coolant flow of one or more liquid-cooled cabinets based on the pressure difference of the coolant. Improved adjustment accuracy and efficiency.
  • Figure 1 is a schematic structural diagram of the liquid cooling system in the embodiment of the present application
  • Figure 2 is a schematic structural diagram of the flow adjustment unit.
  • a single-phase immersed liquid cooling system includes a liquid supply main pipe 10, a liquid return main pipe 20, at least one liquid cooling cabinet 60, a flow adjustment unit 70 and a control unit 80. It should be noted that although the liquid cooling system in Figure 1 includes multiple liquid cooling cabinets 60, the liquid cooling system The cooling system may also be implemented to include only one liquid-cooled cabinet 60. Among them, the liquid return main pipe 20 and the liquid supply main pipe 10 constitute a circulation circuit of the cooling liquid.
  • the liquid cooling cabinet 60 is connected between the liquid supply main pipe 10 and the liquid return main pipe 20 .
  • each liquid-cooling cabinet 60 includes a liquid inlet and a liquid return port.
  • the liquid inlet of each liquid-cooling cabinet 60 is connected to the liquid supply main pipe 10 through the liquid supply sub-pipe 11 of each liquid-cooling cabinet.
  • Each liquid-cooling cabinet 60 The liquid return port is connected to the liquid return main pipe 20 through the liquid return sub-pipe 21 of each liquid cooling cabinet 60;
  • the flow adjustment unit 70 includes a pressure difference detection device 71 and a flow adjustment device 72.
  • the pressure difference detection device 71 is used to detect the inflow pressure.
  • the pressure difference between the coolant of the difference detection device 71 and the coolant flowing out of the pressure difference detection device 71, the flow adjustment device 72 is used to adjust the flow of the coolant; wherein the pressure difference detection device 71 and the flow adjustment device 72 are respectively connected with signals to the control unit 80; the liquid supply sub-pipe 11 is provided with a flow adjustment unit 72, so that the control unit 80 adjusts the flow rate of the cooling liquid flowing into at least one liquid supply sub-pipe 11 according to the pressure difference on the at least one liquid supply sub-pipe 11.
  • the liquid supply main pipe 10 and the liquid return main pipe 20 form a circulation loop, and the cooling liquid circulates in the circulation loop.
  • Each liquid-cooled cabinet 60 is connected to the liquid supply main pipe 10 and the liquid return main pipe 20 through its own liquid supply sub-pipe 11 and liquid return sub-pipe 21, so that the cooling liquid can flow through the liquid-cooling cabinet 60, thereby cooling the liquid.
  • Cooling machine electronic equipment within 60 years old is liquid-cooled for heat dissipation.
  • a flow adjustment unit 70 is provided on the above-mentioned liquid supply sub-pipe 11.
  • the flow adjustment unit 70 is used to adjust the flow rate of the coolant according to the pressure difference of the coolant.
  • the flow adjustment unit 70 includes a pressure difference detection device 71 and a flow adjustment device 72.
  • the pressure difference detection device 71 is used to detect the pressure difference of the coolant
  • the flow adjustment device 72 is used to adjust the flow rate of the coolant.
  • the flow adjustment device 72 is, for example, Flow regulating valve, etc.
  • fluids such as coolant will generate a pressure difference before and after flowing through a certain fixed structure, and different flow rates of coolant will have different pressure differences before and after flowing through the same fixed structure. That is, the coolant with a large flow rate will generate a large pressure difference before and after flowing through the fixed structure, and the coolant with a small flow rate will generate a small pressure difference before and after flowing through the fixed structure.
  • the pressure difference detection device 71 of this embodiment is used to detect the pressure difference, and then the control unit 80 adjusts the flow adjustment device 72 according to the detected pressure difference, thereby achieving flow control of a liquid-cooled cabinet 60 Regulating or regulating the coolant flow of each parallel branch corresponding to the plurality of liquid-cooled cabinets 60 .
  • a pressure difference-flow relationship table can be determined according to the actual situation.
  • This pressure difference-flow relation table is affected by many factors, such as the structure of the pressure difference detection device, the composition of the coolant, Temperature etc.
  • the parallel branch will have a target flow value, and based on the above pressure difference-flow relationship table, the parallel branch will have a target pressure difference value, and the control unit 80
  • the flow rate can be adjusted by adjusting the opening of the flow regulating valve, etc., so that the detected pressure difference value detected by the pressure difference detection device 71 tends to be consistent with the above-mentioned target pressure difference value, which indicates that the cooling liquid in the parallel branch at this time
  • the actual flow value (corresponding to the pressure differential above) is the desired target flow value.
  • control unit 80 can automatically adjust the coolant flow of each branch, thereby realizing on-demand adjustment of the coolant of each branch with high adjustment accuracy and efficiency.
  • control unit 80 can also automatically regulate the coolant flow rate of one or several branches among the plurality of parallel branches.
  • the embodiment of the present application provides a single-phase immersed liquid cooling system and a liquid cooling method.
  • the liquid cooling system includes a liquid supply main pipe 10 and a liquid return main pipe 20.
  • the liquid supply main pipe 10 and the liquid return main pipe 20 constitute a circulation loop.
  • At least one Liquid-cooled cabinets each liquid-cooled cabinet includes a liquid inlet and a liquid return port, the liquid inlet of each liquid-cooled cabinet is connected to the liquid supply main pipe through the liquid supply sub-pipe of each liquid-cooled cabinet, each The liquid return port of the liquid-cooled cabinet is connected to the liquid return main pipe through the liquid return sub-pipe of each liquid-cooled cabinet; then, in the embodiment of the present application, a flow adjustment unit 70 is provided on the liquid supply sub-pipe 11.
  • the unit 70 includes a pressure difference detection device 71 and a flow adjustment device 72.
  • the pressure difference detection device 71 and the flow adjustment device 72 are respectively connected to the control unit 80 via signals.
  • the pressure difference detection device 71 is used to detect the pressure difference of the coolant flowing through itself, that is, , the pressure difference detection device 71 is used to detect the pressure difference between the cooling liquid flowing into the pressure difference detection device 71 and the cooling liquid flowing out of the pressure difference detection device 72 .
  • the pressure difference detection device 71 is used to detect the pressure difference between the inlet and the outlet.
  • the flow adjustment device 72 is used to adjust the flow rate of the coolant flowing through itself, so that for the corresponding liquid supply sub-pipe 11, the control unit 80 can adjust the flow rate flowing into the liquid supply sub-pipe 11 according to the pressure difference of the liquid supply sub-pipe 11. coolant flow;
  • the flow adjustment unit 70 can reflect the flow rate of the coolant through the pressure difference, so that it can be accurately known by measuring the pressure difference.
  • the flow rate of the coolant can be adjusted based on the pressure difference.
  • the liquid cooling system can adjust the flow rate in a single liquid cooling cabinet 60 on demand, and can improve the adjustment accuracy.
  • embodiments of the present application can adjust the cooling fluid flow of each parallel branch on demand, improve the adjustment accuracy, and avoid cooling in different branches. Liquid flow imbalance.
  • the pressure difference detection device 71 includes a pressure difference structural member 713 and a first pressure sensor 711 and a second pressure sensor 712 respectively provided at both ends of the pressure difference structural member 713.
  • the first pressure sensor 711 is provided at the pressure difference structural member 713.
  • the first end of the differential pressure structural member 713 and the second pressure sensor 712 are disposed at the second end of the differential pressure structural member 713; wherein the differential pressure structural member 713 is used to provide resistance to the flow of coolant.
  • the detected pressure difference value (ie, the pressure difference) obtained by subtracting the first detection value of the first pressure sensor 711 and the second detection value of the second pressure sensor 712 is equal to There is a positive correlation between the flow rate of the coolant flowing through the pressure difference structure 713 .
  • the pressure difference detection device 71 specifically includes a pressure difference structural member 713.
  • the pressure difference structural member 713 can be a resistance component that can create resistance to the flow of fluids such as coolant, for example, by shrinking the cooling This can be achieved by forming a liquid flow channel or arranging a blocking structure on the flow channel, so that the cooling liquid can generate a pressure loss after flowing through the pressure difference structure, that is, a pressure difference can be generated.
  • This embodiment uses the resistance coefficient ⁇ to represent this difference caused by different resistance structures. Resistance effect, that is, for a pressure difference structural member of a certain fixed structure, it has a fixed resistance coefficient ⁇ .
  • the coolant will have a pressure loss ⁇ P after flowing through the pressure difference structure.
  • C in formula 1 is a constant.
  • the flow rate Q of the coolant can be determined by measuring the pressure loss ⁇ P after the coolant flows through the pressure difference structural member.
  • a first pressure sensor 711 and a second pressure sensor 712 are respectively provided at both ends of the pressure difference structure 713.
  • the detected pressure difference value (i.e., the pressure difference above) obtained by subtracting the first detection value P1 of the first pressure sensor 711 and the second detection value P2 of the second pressure sensor 712 is equal to the coolant flow
  • the flow rate of the over-pressure difference structural member 713 has a positive correlation. That is, the greater the flow rate, the greater the detected pressure difference value. On the contrary, the smaller the flow rate, the smaller the detected pressure difference value.
  • the detected pressure difference value is directly proportional to the square of the flow rate Q.
  • the control unit 80 regulates the opening of the flow adjustment device 72 according to the received P1 and P2, so that the flow rate Q of the coolant can be adjusted to the target flow value.
  • the above pressure difference-flow relationship table can be calculated by formula 3 calculated.
  • the flow regulating device 72 includes an electric valve.
  • the electric valve is connected with a signal to the control unit 80.
  • the control unit 80 is used to dynamically adjust the opening of the electric valve according to the detected pressure difference value.
  • the flow regulating device 72 of this embodiment includes an electric valve, and the electric valve is connected with the control unit 80 via a signal, so that the control unit 80 can conveniently control the opening of the electric valve.
  • the opening degree is the degree or size of the electric valve opening; that is, the control unit 80 dynamically adjusts the opening degree of the electric valve according to the detected pressure difference value (the above-mentioned P2-P1).
  • the electric valve can be, for example, a two-way proportional control valve.
  • the opening of the two-way proportional control valve can be adjusted linearly and continuously, thereby improving the control accuracy of the coolant flow.
  • control unit 80 is specifically used to:
  • the opening of the electric valve corresponding to the liquid supply sub-pipe is controlled to decrease.
  • the control unit 80 can first obtain the target pressure difference value of each liquid supply sub-pipe (one liquid supply sub-pipe corresponds to a parallel branch); then the control unit controls the detected pressure difference value corresponding to the liquid supply sub-pipe to approach
  • the target pressure difference value is:
  • the control unit 80 should control the opening of the electric valve on the liquid supply sub-pipe 11 to increase to increase the flow rate of the coolant;
  • the control unit 80 should control the opening of the electric valve on the liquid supply sub-pipe 11 to decrease so that the flow rate of the coolant decreases.
  • the control unit 80 dynamically adjusts the opening of the electric valve on the liquid supply sub-pipe 11 based on the detected pressure difference value of the liquid supply sub-pipe 11 and the target pressure difference value. Make the detected pressure difference value and the target pressure difference value tend to be equal. At this time, the flow rate of the cooling liquid on the liquid supply sub-pipe 11 is the required target flow value; then, for different parallel branches in the entire liquid cooling system In terms of circuits, the control unit can independently adjust different parallel branches.
  • a heat exchange unit 40 and a power unit 50 are also provided between the liquid supply main pipe 10 and the liquid return main pipe 20. The heat exchange unit 40 is used to cool the cooling liquid, and the power unit 50 is used to provide cooling liquid. flow (such as power circulating on a circulation loop), the power unit 50 is also signally connected to the control unit 80; wherein the control unit 80 is used for:
  • the operating power of the power unit 50 is dynamically adjusted based on the matching of the detected pressure difference value (ie pressure difference) of at least one liquid supply sub-pipe 11 with the corresponding target pressure difference value and the opening of at least one electric valve.
  • the power unit 50 is, for example, a power pump, which drives the coolant to circulate in the circulation loop;
  • the heat exchange unit 40 is, for example, a heat exchanger, which is used to cool the coolant, and then cool the coolant. Then it flows into the liquid cooling cabinet 60 to liquid cool and dissipate the electronic equipment.
  • control unit 80 is also connected with the power unit 50 through signals, that is, the control unit 80 can control the operating power of the power unit 50; specifically, the control unit 80 detects at least one liquid supply sub-pipe in the circulation loop.
  • the matching of the pressure difference value with the corresponding target pressure difference value and the opening of at least one electric valve dynamically adjust the operating power of the power unit 50, so that the power unit 50 of the liquid cooling system can always run in the most energy-saving state and save costs. .
  • control unit 80 is specifically used to:
  • the operating power of the power unit 50 is reduced.
  • control unit 80 first monitors the opening of the electric valve in at least one parallel branch and detects the pressure difference value.
  • the control unit 80 can also monitor the opening of the electric valve in each parallel branch. And detect the pressure difference value;
  • the control unit should increase the operating power of the power unit (that is, increase the frequency of the power unit and increase the rotation speed), and increase the total coolant circulation flow, so as to avoid this problem.
  • the coolant in the branch circuit cannot reach the target flow value, causing the electronic equipment to be unable to fully dissipate heat;
  • each parallel branch in the circulation loop can fully meet their respective target flow values.
  • the electric valves of each parallel branch are in a partially open state, that is, there may be a situation where the power unit 50 does useless work.
  • the control unit can reduce the operating power of the power unit (that is, reduce the frequency of the power unit and reduce the speed ), reduce the total coolant circulation flow, so that it is possible to avoid energy waste caused by useless work of the power unit.
  • control unit 80 will also adjust the opening of the electric valves of each parallel branch based on the new coolant circulation flow rate until all parallel branches are detected.
  • the differential pressure value is equal to the target differential pressure value.
  • control unit 80 of this embodiment performs dynamic control on the above-mentioned power unit 50 and the electric valves of each branch, and its purpose is to at least have When the electric valve of a parallel branch is at its maximum opening, the liquid cooling system is in a stable, accurate and most energy-saving control state.
  • the liquid supply sub-pipe 11 and the liquid return sub-pipe 21 are both provided with a flow adjustment unit 70, so that the control unit 80 adjusts the flow into at least one liquid supply sub-pipe 11 according to the pressure difference on the at least one liquid supply sub-pipe 11.
  • the flow rate of the cooling liquid in the sub-pipe 11 is adjusted according to the pressure difference on the at least one liquid return sub-pipe 21 .
  • the above-mentioned flow adjustment unit 70 can also be provided on the liquid return sub-pipe. In this way, not only the flow rate of the cooling liquid flowing into the liquid cooling cabinet 60 can be adjusted, but also the flow rate of the cooling liquid flowing out of the liquid cooling cabinet 60 can be adjusted. The flow rate is adjusted to improve the adjustment accuracy.
  • each liquid cooling cabinet 60 includes an electronic equipment area 61 and a liquid return tank 62.
  • the liquid inlet is provided in the electronic equipment area 61 and the liquid return port is provided in the liquid return tank 62; the liquid cooling system also includes a balance
  • the pipe 30 and the balance pipe 30 are connected to the liquid return tanks 62 of the multiple liquid cooling cabinets 60 to balance the liquid levels in the multiple liquid return tanks 62 .
  • the liquid-cooled cabinet is a single-phase immersed liquid-cooled cabinet.
  • the liquid-cooled cabinet 60 is provided with an electronic equipment area 61 and a liquid return tank 62.
  • the inlet is located at the bottom of the electronic equipment area 61
  • the liquid return port is located at the bottom of the liquid return tank 62.
  • the cooling liquid flows into the electronic equipment area 61 from the liquid inlet, and then overflows from the top to the liquid return after heat exchange with the electronic equipment. slot 62, and then flow out of the liquid cooling cabinet 60 from the liquid return port.
  • this embodiment is connected to multiple liquid return tanks 62 through balancing pipes, thereby using the connector principle to make the liquid levels in the multiple liquid return tanks 62 consistent, that is, balancing multiple liquid returns.
  • the liquid level in the tank 62 can be adjusted to avoid overflow of liquid in the liquid return tank 62 of a certain liquid-cooling cabinet 60 .
  • Embodioned one-way immersion liquid cooling system Based on the above-mentioned one-way immersion liquid cooling system, embodiments of the present application also provide a liquid cooling method. Please refer to Figure 4. This liquid cooling method is applied to the above-mentioned liquid cooling system.
  • the liquid cooling method includes:
  • Table 1 takes six parallel branches as an example), first obtain the target pressure difference value of each branch; then monitor the detected pressure difference on each branch value (i.e. pressure difference), where the detected pressure difference value is detected by a pressure difference detection device. Specifically, the detected pressure difference value is obtained by subtracting the detection values of the first pressure sensor and the second pressure sensor; and then according to The comparison between the target pressure difference value and the detected pressure difference value of each parallel branch dynamically adjusts the opening of the flow adjustment unit of the parallel branch; that is, for example, for the parallel branch (or liquid supply sub-pipe) S3 , the liquid cooling method of this embodiment dynamically adjusts the opening of M3 according to the comparison between PJ3 and PO3.
  • Table 1 takes six parallel branches as an example
  • Table 1 The correspondence between the target flow value, target pressure difference value, detection pressure difference value and the opening of the flow adjustment unit in each parallel branch
  • each target flow value and each target pressure difference value can be calculated by Formula 1.
  • step S30 includes:
  • the purpose of this embodiment is to make PJ3 tend to Equal to PO3.
  • the circulation loop of the liquid cooling system is also provided with a heat exchange unit 40 and a power unit 50.
  • the heat exchange unit 40 is used to cool down the cooling liquid circulating in the circulation loop
  • the power unit 50 is used to provide cooling liquid.
  • the power unit 50 is also signally connected to the control unit 80 for circulating power on the circulation loop; wherein, the liquid cooling method also includes:
  • control unit of this embodiment is also connected with the power unit through signals.
  • control unit dynamically adjusts the power unit according to the matching situation of each PJ and PO in each parallel branch of S1 to S6 and the opening M of each flow adjustment unit. operating power.
  • step S40 includes:
  • the operating power of the power unit is increased at this time; that is, for the six branches in Table 1
  • the coolant circulation volume in the circulation loop is small at this time, and the total coolant circulation flow should be increased, so as to avoid the failure of the coolant in this branch to reach the required level.
  • the target flow value causes the electronic equipment to be unable to dissipate heat sufficiently.
  • the operating power of the power unit should be reduced. ; That is to say, for the six parallel branches in Table 1, when all branches meet their respective target flow values, the opening of the flow adjustment unit of no branch is the maximum opening value. At this time This means that the power unit is doing wasted work. At this time, the control unit should reduce the operating power of the power unit and reduce the total coolant circulation flow, so as to avoid energy waste caused by the power unit doing wasted work.
  • the purpose is that when each parallel branch (S1 ⁇ S6) all meets their respective target flow values (Q1 ⁇ Q6), at least there should be When the electric valve of a parallel branch is at its maximum opening, the liquid cooling system is in a stable, accurate and most energy-saving control state.
  • each component or each step can be decomposed and/or recombined. These decompositions and/or recombinations shall be considered equivalent versions of this application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

一种单相浸没式液冷系统、液冷方法及存储介质。该液冷系统包括供液主管和回液主管;至少一个液冷机柜,每个液冷机柜包括进液口和回液口,每个液冷机柜的进液口通过每个液冷机柜的供液子管连通至供液主管,每个液冷机柜回液口通过每个液冷机柜的回液子管连通至回液主管;流量调节单元,包括压差检测装置和流量调节装置,压差检测装置用于检测流入压差检测装置的冷却液与流出压差检测装置的冷却液之间的压差,流量调节装置用于调节冷却液的流量;其中,压差检测装置和流量调节装置分别信号连接至控制单元;供液子管上设有流量调节单元,以使控制单元根据至少一个供液子管上的压差调节流入至少一个供液子管的;冷却液的流量。本申请实施例的液;冷方案有助于提高液;冷系统的流量调节精度。

Description

单相浸没式液冷系统、液冷方法及存储介质
本申请要求于2022年03月31日提交中国专利局、申请号为202210328486.6、申请名称为″单相浸没式液冷系统及液冷方法″的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及液冷散热技术领域,尤其涉及一种单相浸没式液冷系统、液冷方法及存储介质。
背景技术
针对电子设备的散热问题,目前可以将电子设备置于单相浸没式液冷机柜内进行液冷散热。并且,为了整体的成本考虑或效率考虑,可以将上述多个液冷机柜并联布置于液冷系统上,即,多个液冷机柜的进液口分别连通至液冷系统的供液主管上,多个液冷机柜的回液口分别连通至液冷系统的回液主管上,冷却液在供液主管和回液主管构成的循环管路内循环流动从而实现对电子设备的液冷散热。
此外,对于不同的液冷机柜而言,由于液冷机柜内电子设备的功率不同,需要的冷却液流量也不同,这就涉及到对液冷机柜冷却液流量的调节,例如在供液支管或回液支管上设置流量调节阀等,然后采用手动的方式对冷却液流量进行调节。
发明内容
针对上述技术问题的至少一个方面,本申请实施例提供了一种单相浸没式液冷系统、液冷方法及存储介质,有助于提高流量调节的精确性。
本申请实施例提供一种单相浸没式液冷系统,所述液冷系统包括:
供液主管;
回液主管;
至少一个液冷机柜,每个液冷机柜包括进液口和回液口,每个液冷机柜的所述进液口通过每个液冷机柜的供液子管连通至所述供液主管,每个液冷机柜的所述回液口通过每个液冷机柜的回液子管连通至所述回液主管;
流量调节单元,包括压差检测装置和流量调节装置,所述压差检测装置用于检测流入所述压差检测装置的冷却液与流出所述压差检测装置的冷却液之间的压差,所述流量调节装置用于调节冷却液的流量;
其中,所述压差检测装置和所述流量调节装置分别信号连接至控制单元;
所述供液子管上设有所述流量调节单元,以使所述控制单元根据至少一个所述供液子管上的所述压差调节流入至少一个所述供液子管的冷却液的流量。
本申请实施例还提供一种液冷方法,所述液冷方法应用于如上述的液冷系统,所述液冷方法包括:
获取至少一个供液子管的目标压差值;
监测所述至少一个供液子管上由压差检测装置得到的压差;
根据所述至少一个供液子管的所述目标压差值与所述压差的比对情况,动态调整所述至少一个供液子管各自的流量调节单元的开度。
本申请实施例还提供一种计算机可读存储介质,包括程序指令,当所述程序指令由控制单元执行时,使得所述控制单元执行根据本申请实施例的液冷方法。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例的描述中所需要使用的附图作简 单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例的液冷系统的结构示意图。
图2为本申请实施例的流量调节单元的结构示意图。
图3为本申请实施例的各并联支路的压差检测装置和流量调节单元分别与控制单元信号连接的结构示意图。
图4为本申请实施例的液冷方法的流程示意图。
其中,附图标记:
10-供液主管,11-供液子管,
20-回液主管,21-回液子管,
30-平衡管,
40-换热单元,
50-动力单元,
60-液冷机柜,61-电子设备区,62-回液槽,
70-流量调节单元,71-压差检测装置,72-流量调节装置,
711-第一压力传感器,712-第二压力传感器,713-压差结构件,
80-控制单元。
具体实施方式
为了更好的理解上述技术方案,下面将参考附图详细地描述本申请的示例实施例,显然,所描述的实施例仅仅是本申请的一部分实施例,而不是本申请的全部实施例,应理解,本申请不受这里描述的示例性实施例的限制。
在一些实施例中,在对电子设备采用单相浸没式液冷散热时,可以将至少一个单相浸没式液冷机柜并联布置于供/回液主管上。这种情况下,就会出现有关冷却液在一个液冷机柜上流量关系的调控问题或者多个液冷机柜对应的各并联支路上流量关系的调控问题。例如,在多个液冷机柜并联的场景中,液冷机柜在供/回液主管上不同的位置决定了冷却液的流程不完全一样,从而会引起各并联支路之间冷却液流量的不均衡,想要消除这种不均衡就涉及到对各支路冷却液流量的调控;或者,由于各液冷机柜内电子设备的功率不同,散热负荷也不同,为了节省成本考虑,各并联支路之间对冷却液的流量要求也不同,这也涉及到对各支路冷却液流量的调控;总之,为实现每个液冷机柜的冷却液流量按需调节,需要对液冷机柜的进液流量进行调节,甚至还需要对液冷机柜出液流量进行调节。
相关技术中,可以对液冷机柜的进/出液阀门进行手动调控,从而实现对液冷机柜冷却液流量的调控。然而,上述手动调节冷却液流量的方法对一个或多个液冷机柜的调节精度有限。另外,在多个液冷机柜并联的场景中,由于多个液冷机柜之间是并联关系,对其中一个液冷机柜的冷却液流量进行调节后,会出现整个系统中其它并联支路冷却液流量的不均衡。因此,还需要对液冷系统中每个并联支路的冷却液流量均进行调节,这就导致效率较低。针对上述情况,本申请实施例提供了一种单相浸没式液冷系统,该液冷系统可以将一个液冷机柜或者多个液冷机柜的冷却液的流量与冷却液的压差关联,并且该压差方便进行准确测量,从而在包括一个或多个液冷机柜的场景中,该液冷系统可根据冷却液的压差实现对一个或多个液冷机柜的冷却液流量的自动调节,提高了调节精度和调节效率。
图1为本申请实施例中液冷系统的结构示意图,图2为流量调节单元的结构示意图。
请结合图1和图2,一种单相浸没式液冷系统,包括供液主管10、回液主管20、至少一个液冷机柜60、流量调节单元70和控制单元80。需要说明的是,尽管图1的液冷系统包括多个液冷机柜60,但液 冷系统也可实施为仅包括一个液冷机柜60。其中,回液主管20与供液主管10构成冷却液的循环回路。
在液冷系统仅包括一个液冷机柜60的场景中,该液冷机柜60连接在供液主管10与回液主管20之间。
在液冷系统包括多个液冷机柜60的场景中,多个液冷机柜60柜并联于供液主管10与回液主管20之间。每个液冷机柜60包括进液口和回液口,每个液冷机柜60的进液口通过每个液冷机柜的供液子管11连通至供液主管10,每个液冷机柜60的回液口通过每个液冷机柜60的回液子管21连通至回液主管20;流量调节单元70包括压差检测装置71和流量调节装置72,压差检测装置71用于检测流入压差检测装置71的冷却液与流出压差检测装置71的冷却液之间的压差,流量调节装置72用于调节冷却液的流量;其中,压差检测装置71和流量调节装置72分别信号连接至控制单元80;供液子管11上设有流量调节单元72,以使控制单元80根据至少一个供液子管11上的压差调节流入至少一个供液子管11的冷却液的流量。
首先,供液主管10和回液主管20构成一循环回路,冷却液在循环回路内循环流动。循环回路上可以仅有一个液冷机柜60,也可以并联有多个液冷机柜60。每个液冷机柜60通过其自身的供液子管11和回液子管21分别连通至供液主管10和回液主管20,这样,冷却液即可流经液冷机柜60,从而对液冷机,60内的电子设备进行液冷散热。
其次,本实施例在上述供液子管11上设有流量调节单元70,该流量调节单元70用于根据冷却液的压差来调节冷却液的流量。流量调节单元70包括压差检测装置71和流量调节装置72,其中,压差检测装置71用于检测冷却液的压差,流量调节装置72用于调节冷却液的流量,流量调节装置72例如为流量调节阀等。
具体而言,冷却液等流体在流过某一固定结构前后会产生压差,并且不同流量的冷却液在流过同一固定结构前后的压差也不同。即,流量较大的冷却液在流过该固定结构前后会产生较大的压差,流量较小的冷却液在流过该固定结构前后会产生较小的压差。基于上述原理,本实施例的压差检测装置71用于检测该压差,然后控制单元80根据检测到的该压差对流量调节装置72进行调节,从而实现对一个液冷机柜60的流量的调控或者对多个液冷机柜60对应的各并联支路冷却液流量的调控。
其中,关于上述压差与流量的关系可以根据实际情况确定一个压差-流量关系表,该压差-流量关系表受多种因素的影响,例如压差检测装置的结构,冷却液的成分、温度等。
举例来说,对于某一并联支路而言,该并联支路会有一个目标流量值,然后基于上述的压差-流量关系表,该并联支路对应有一个目标压差值,控制单元80可通过对流量调节阀等的开度大小进行流量调节,使压差检测装置71检测得到的检测压差值趋向于与上述目标压差值一致,即表明此时该并联支路中冷却液的实际流量值(对应于上文的压差)为所需的目标流量值。
进一步地,对于多个并联支路而言,该控制单元80可分别对每个支路的冷却液流量进行自动调控,从而实现各支路冷却液的按需调节,调节精度和调节效率高。另外,该控制单元80也可对多个并联支路中的某一个或几个支路的冷却液流量进行自动调控。
本申请实施例提供了一种单相浸没式液冷系统及液冷方法,该液冷系统包括供液主管10和回液主管20,供液主管10和回液主管20构成循环回路,至少一个液冷机柜,每个液冷机柜包括进液口和回液口,每个液冷机柜的所述进液口通过每个液冷机柜的供液子管连通至所述供液主管,每个液冷机柜所述回液口通过每个液冷机柜的回液子管连通至所述回液主管;然后,本申请实施例在供液子管11上设有流量调节单元70,该流量调节单元70包括压差检测装置71和流量调节装置72,压差检测装置71和流量调节装置72分别信号连接至控制单元80,压差检测装置71用于检测冷却液流过自身的压差,即,压差检测装置71用于检测流入压差检测装置71的冷却液与流出压差检测装置72的冷却液之间的压差。换言之,压差检测装置71用于检测入口与出口之间的压差。流量调节装置72用于调节冷却液流过自身的流量,从而对于相应的供液子管11,该控制单元80即可根据该供液子管11的压差调节流入该供液子管11的冷却液的流量;
综上,本申请实施例中,通过在供液子管11上设置流量调节单元70,该流量调节单元70可通过压差来反映冷却液的流量,从而通过对压差的测量即可准确知晓冷却液的流量,并且可以根据该压差实现对冷却液流量的调控。这样,在液冷系统仅包括一个液冷机柜60的场景中,液冷系统可以对单个液冷机柜60中流量进行按需调节,并且可以提高调节精度。在液冷系统包括多个液冷机柜60的场景中,本申请的实施例可以对各并联支路各自的冷却液流量进行按需调节,而且提高了调节精度,并避免了不同支路中冷却液流量的不平衡现象。
在一实施例中,压差检测装置71包括压差结构件713和分别设于压差结构件713两端的第一压力传感器711和第二压力传感器712,例如,第一压力传感器711设置于压差结构件713的第一端,第二压力传感器712设置于压差结构件713的第二端;其中,压差结构件713用于提供冷却液流动的阻力。这样,在冷却液流过压差结构件713时,由第一压力传感器711的第一检测值和第二压力传感器712的第二检测值相减得到的检测压差值(即压差)与冷却液流过压差结构件713的流量之间具有正相关性。
结合图2,本实施例中,该压差检测装置71具体包括压差结构件713,压差结构件713可以为一个可以对冷却液等流体的流动产生阻力的阻力部件,譬如可以通过缩小冷却液的流道或在该流道上设置阻挡结构等实现,从而可使冷却液在流过该压差结构件后产生压力损失,即产生压差。
可理解的,对于同一流量的冷却液等流体,不同的阻挡结构可以实现不同的阻力效果,表现为产生不同的压差,本实施例通过阻力系数ξ表示这种因不同阻力结构而产生的不同阻力效果,即,对于某一固定结构的压差结构件而言,其具有固定的阻力系数ξ。
并且,对于某一流量的冷却液而言,该冷却液在流过压差结构件后会有压力损失δP,该压力损失δP可表示为压差结构件的阻力系数ξ与冷却液的流量Q的函数,即:
δP=CξQ2                公式1
其中,公式1中C为常数。
由上述公式1可知,通过对冷却液流过压差结构件后的压力损失δP的测量即可确定冷却液的流量Q。
进一步,关于压力损失δP的测量,本实施例具体在压差结构件713的两端分别设置第一压力传感器711和第二压力传感器712,第一压力传感器的第一检测值P1与第二压力传感器的第二检测值P2相减即为压力损失δP,也就是:
P2-P1=δP                 公式2
从而将上述公式1和公式2结合即为:
P2-P1=δP=CξQ2             公式3
通过公式3可以看到,由第一压力传感器711的第一检测值P1和第二压力传感器712的第二检测值P2相减得到的检测压差值(即上文中压差)与冷却液流过压差结构件713的流量具有正相关性.即,流量越大,检测压差值越大,反之,流量越小,检测压差值越小。具体而言,该检测压差值与流量Q的平方呈正比例关系。并且,控制单元80根据接收的P1与P2对流量调节装置72的开度进行调控,即可将冷却液的流量Q调整为目标流量值,此外,上述的压差-流量关系表可通过公式3计算得到。
在一实施例中,该流量调节装置72包括电动阀,电动阀与控制单元80信号连接,控制单元80用于根据检测压差值动态调整电动阀的开度。
即,本实施例的流量调节装置72包括电动阀,电动阀与控制单元80信号连接,这样控制单元80即可方便实现对电动阀开度的调控。其中,开度即为电动阀的阀门打开的程度或大小;即,该控制单元80根据检测压差值(上述的P2-P1)动态调整电动阀的开度。
更具体的,该电动阀例如可为二通比例调节阀,二通比例调节阀的开度可以线性连续调节,从而提高了冷却液流量的控制精度。
在一具体实施例中,关于动态调整电动阀的开度,该控制单元80具体用于:
获取至少一个供液子管的目标压差值;
在一个供液子管的检测压差值小于该供液子管的目标压差值的条件下,控制与该供液子管对应的电动阀的开度增大;
在一个供液子管的检测压差值大于该供液子管的目标压差值的条件下,控制与该供液子管对应的电动阀的开度减小。
即,对于循环回路中某一个并联支路而言,该并联支路的压差检测装置确定后,由公式3可知,该并联支路的目标流量值对应的目标压差值即确定;该控制单元80可以首先获取每一个供液子管(一个供液子管即对应一个并联支路)的目标压差值;然后该控制单元即控制该供液子管对应的检测压差值趋近于该目标压差值;即为:
在某一个供液子管11的检测压差值(即压差)小于该供液子管11的目标压差值时,即表明该供液子管11中冷却液的流量小于目标流量值,此时该控制单元80应控制该供液子管11上的电动阀的开度增大,使冷却液的流量增加;
在某一个供液子管11的检测压差值大于该供液子管11的目标压差值时,即表明该供液子管11中冷却液的流量大于目标流量值,此时该控制单元80应控制该供液子管11上的电动阀的开度减小,使冷却液的流量减小。
总之,对于某一个供液子管而言,控制单元80基于该供液子管11的检测压差值与目标压差值的大小情况动态调整该供液子管11上电动阀的开度,使该检测压差值与目标压差值趋于相等,此时,该供液子管11上冷却液的流量即为所需的目标流量值;然后,对于整个液冷系统中不同的并联支路而言,控制单元可以对不同的并联支路独立调节。在一具体实施例中,供液主管10与回液主管20之间还设有换热单元40和动力单元50,换热单元40用于对冷却液进行降温,动力单元50用于提供冷却液流动(例如在循环回路上循环的动力),动力单元50还与控制单元80信号连接;其中,控制单元80用于:
根据至少一个供液子管11的检测压差值(即压差)与相应目标压差值的匹配情况以及至少一个电动阀的开度动态调整动力单元50的运行功率。在一个实施例中,动力单元50例如为动力泵,动力泵驱使冷却液在循环回路进行循环;换热单元40例如为换热器,换热器用于对冷却液降温,然后降温后的冷却液再流入液冷机柜60从而对电子设备进行液冷散热。
本实施例中,该控制单元80还与动力单元50信号连接,即,控制单元80可以控制动力单元50的运行功率;具体的,该控制单元80根据循环回路中至少一个供液子管的检测压差值与相应的目标压差值的匹配情况以及至少一个电动阀的开度动态调整动力单元50的运行功率,这样可以使液冷系统的动力单元50始终运行在最节能的状态,节约成本。
在一具体实施例中,关于动态调整动力单元50的运行功率,该控制单元80具体用于:
监测至少一个供液子管的电动阀的开度和检测压差值(即压差);
在至少一个电动阀的开度为最大值并且检测压差值小于与相应的目标压差值的条件下,提高动力单元50的运行功率;
在至少一个供液子管11中各自的检测压差值均达到相应的目标压差值并且全部的电动阀的开度均未达到各自的最大值的条件下,降低动力单元50的运行功率。
本实施例中,根据实际情况,控制单元80首先监测至少一个并联支路中电动阀的开度以及检测压差值,当然,控制单元80也可监测每一个并联支路中电动阀的开度以及检测压差值;
然后,当出现某一个并联支路中电动阀的开度为最大值并且该支路的检测压差值仍然小于目标压差值时,表明此时该支路中已无法通过增大电动阀的开度进而使冷却液的流量达到目标流量值,这时控制单元应提高动力单元的运行功率(即对动力单元升频,增加转速),提高总的冷却液循环流量,这样就可避免由于该支路的冷却液出现无法达到目标流量值而导致的电子设备无法充分散热的情况;
另外,当循环回路中各支路的检测压差值均达到各自对应的目标压差值并且各支路的电动阀的开度均未达到各自的最大值时,或者说当循环回路中各支路的检测压差值均达到各自对应的目标压差值并且没有一个支路的电动阀的开度达到最大值时,表明此时循环回路中各并联支路在全部满足各自的目标流量值的情况下,各并联支路的电动阀均处于部分打开的状态,即可能存在动力单元50做无用功的情况,这时控制单元可以降低动力单元的运行功率(即对动力单元降频,减小转速),减少总的冷却液循环流量,这样就可能可以避免动力单元做无用功导致的能源浪费。
总之,在控制动力单元50提高运行功率或降低运行功率后,控制单元80还会基于新的冷却液循环流量分别对各并联支路的电动阀的开度进行调整,直至所有并联支路的检测压差值与目标压差值相等。
应理解的,本实施例的控制单元80通过对上述动力单元50和各支路电动阀分别进行动态控制,其目的在于在各并联支路全部满足各自的目标流量值的情况下,至少应有一个并联支路的电动阀处于开度为最大值的状态,此时该液冷系统才是稳定精确且最节能的控制状态。
在一实施例中,该供液子管11和回液子管21上均设有流量调节单元70,以使控制单元80根据至少一个供液子管11上的压差调节流入至少一个供液子管11的冷却液的流量,以及根据至少一个回液子管21上的压差调节流出至少一个回液子管21的冷却液的流量。
即,本实施例还可在回液子管上设置上述的流量调节单元70,这样,不仅对于流入液冷机柜60的冷却液的流量进行调节,还可以对流出液冷机柜60的冷却液的流量进行调节,提高了调节精度。
在一实施例中,每个液冷机柜60包括电子设备区61和回液槽62,进液口设于电子设备区61,回液口设于回液槽62;该液冷系统还包括平衡管30,平衡管30连通多个液冷机柜60的回液槽62,以平衡多个回液槽62内的液位。
本实施例中,具体而言,该液冷机柜例如为单相浸没式液冷机柜,请结合图1,方便理解的,液冷机柜60设有电子设备区61和回液槽62,进液口设于电子设备区61的底端,回液口设于回液槽62的底端,冷却液从进液口流入电子设备区61,然后与电子设备热交换后从顶端溢流到回液槽62,再从回液口流出液冷机柜60。
对于循环回路中若干液冷机柜60,本实施例通过平衡管连通至多个回液槽62,从而利用连通器原理使多个回液槽62内的液位趋于一致,即平衡多个回液槽62内的液位,这样可以避免某一液冷机柜60的回液槽62内液体偏多而溢出的现象。
基于上述单向浸没式液冷系统,本申请实施例还提供一种液冷方法,请结合图4,该液冷方法应用于上述的液冷系统,该液冷方法包括:
S10、获取至少一个供液子管的压差;
S20、监测至少一个供液子管上由压差检测装置得到的压差;
S30、根据至少一个供液子管的目标压差值与相应的压差的比对情况,动态调整至少一个供液子管各自的流量调节单元的开度。
本实施例提供的液冷方法中,请结合如下表1(表1以六个并联支路为例),首先获取每一支路的目标压差值;然后监测每一个支路上的检测压差值(即压差),其中,该检测压差值由压差检测装置检测得到,具体的,该检测压差值是由第一压力传感器和第二压力传感器的检测数值相减得到;再根据每一个并联支路的目标压差值与检测压差值的比对情况动态调整该并联支路的流量调节单元的开度;即,例如对于并联支路(或供液子管)S3而言,本实施例的液冷方法根据PJ3与PO3的比对情况动态调整M3的开度。

表1各并联支路中目标流量值、目标压差值、检测压差值与流量调节单元的开度之间的对应关系表
其中表1中,各目标流量值与各目标压差值可以通过公式1计算。
当然,在实际使用时,根据实际情况,也可仅对上述六个并联支路中的一个或几个支路的流量进行调控。
在一实施例中,步骤S30包括:
S301、在一个供液子管的检测压差值小于该供液子管的目标压差值的条件下,控制与该供液子管对应的流量调节单元的开度增大;
S302、在一个供液子管的检测压差值大于该供液子管的目标压差值的条件下,控制与该供液子管对应的流量调节单元的开度减小。
即,还以并联支路S3来说,当PJ3小于PO3,调整M3的开度增大,当PJ3大于PO3,调整M3的开度减小,总之,本实施例的目的即在于使PJ3趋于与PO3相等。
在一实施例中,液冷系统的循环回路上还设有换热单元40和动力单元50,换热单元40用于对循环回路上循环的冷却液进行降温,动力单元50用于提供冷却液在循环回路上循环的动力,该动力单元50还与控制单元80信号连接;其中,该液冷方法还包括:
S40、根据至少一个供液子管的压差与相应的目标压差值的匹配情况以及至少一个流量调节单元的开度,动态调整动力单元的运行功率。
即,本实施例的控制单元还与动力单元信号连接,这样,控制单元即根据S1~S6各并联支路中各PJ与PO的匹配情况以及各流量调节单元的开度M动态调整动力单元的运行功率。
在一实施例中,步骤S40包括:
S401、监测至少一个供液子管的流量调节单元的开度和压差;
S402、在流量调节单元的开度为最大值并且压差小于与该压差对应的目标压差值的条件下,提高动力单元的运行功率;
S403、在全部的压差均达到各自对应的目标压差值并且全部的电动阀的开度均未达到各自的最大值的条件下,降低动力单元的运行功率。
具体而言,仍然参看如上表1,首先检测上表1中各检测压差值PJ和各流量调节单元的开度M;
例如对于某一并联支路S5而言,在监测到M5已经为最大开度值时,并且PJ5仍然小于PO5,此时即提高动力单元的运行功率;也就是说,对于表1中的六个并联支路,只要其中一个支路出现上述情况即表明此时循环回路中的冷却液循环量较少,应提高总的冷却液循环流量,这样就可避免由于该支路的冷却液出现无法达到目标流量值而导致的电子设备无法充分散热的情况。
然后,在全部的PJ均与各自的PO相等时,并且全部的M均未达到各自的最大值时,即M1~M6均未达到各自的最大开度值,此时应降低动力单元的运行功率;也就是说,对于表1中的六个并联支路,在全部支路均满足各自的目标流量值的情况下,没有一个支路的流量调节单元的开度为最大开度值,此时即表明动力单元存在做无用功的情况,这时控制单元应降低动力单元的运行功率,减少总的冷却液循环流量,这样就可以避免动力单元做无用功导致的能源浪费。
这样,通过对上述动力单元和各支路电动阀分别进行动态控制,其目的在于在各并联支路(S1~S6)全部满足各自的目标流量值(Q1~Q6)的情况下,至少应有一个并联支路的电动阀处于开度为最大值的状态,此时该液冷系统才是稳定精确且最节能的控制状态。
进一步的,应理解,在将动力单元的运行功率降低之后,由于供液主管和回液主管内总的冷却液循环 流量减少,这种情况下,各支路的电动阀在原来的开度状态下并不能保持原来的流量,即,各支路电动阀的开度需要重新进行调整并建立一个动态平衡,在动态平衡建立后,控制单元会再次根据各支路电动阀的开度情况调整动力单元的运行功率;也就是说,控制单元对动力单元和各支路电动阀的控制不是完全独立的,需要相互配合调节才能实现目标。以上结合具体实施例描述了本申请的基本原理,但是,需要指出的是,在本申请中提及的优点、优势、效果等仅是示例而非限制,不能认为这些优点、优势、效果等是本申请的各个实施例必须具备的。另外,上述公开的具体细节仅是为了示例的作用和便于理解的作用,而非限制,上述细节并不限制本申请为必须采用上述具体的细节来实现。
本申请中涉及的器件、装置、设备、系统的方框图仅作为例示性的例子并且不意图要求或暗示必须按照方框图示出的方式进行连接、布置、配置。如本领域技术人员将认识到的,可以按任意方式连接、布置、配置这些器件、装置、设备、系统。诸如″包括″、″包含″、″具有″等等的词语是开放性词汇,指″包括但不限于″,且可与其互换使用。这里所使用的词汇″或″和″和″指词汇″和/或″,且可与其互换使用,除非上下文明确指示不是如此。这里所使用的词汇″诸如″指词组″诸如但不限于″,且可与其互换使用。
还需要指出的是,在本申请的装置、设备和方法中,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本申请的等效方案。
提供所公开的方面的以上描述以使本领域的任何技术人员能够做出或者使用本申请。对这些方面的各种修改对于本领域技术人员而言是非常显而易见的,并且在此定义的一般原理可以应用于其他方面而不脱离本申请的范围。因此,本申请不意图被限制到在此示出的方面,而是按照与在此公开的原理和新颖的特征一致的最宽范围。
为了例示和描述的目的已经给出了以上描述。此外,此描述不意图将本申请的实施例限制在此公开的形式。尽管以上已经讨论了多个示例方面和实施例,但是本领域技术人员将认识到其某些变型、修改、改变、添加和子组合均应包含在本申请保护的范围之内。

Claims (14)

  1. 一种单相浸没式液冷系统,所述液冷系统包括:
    供液主管;
    回液主管;
    至少一个液冷机柜,每个液冷机柜包括进液口和回液口,每个液冷机柜的所述进液口通过每个液冷机柜的供液子管连通至所述供液主管,每个液冷机柜所述回液口通过每个液冷机柜的回液子管连通至所述回液主管;
    流量调节单元,包括压差检测装置和流量调节装置,所述压差检测装置用于检测流入所述压差检测装置的冷却液与流出所述压差检测装置的冷却液之间的压差,所述流量调节装置用于调节冷却液的流量;
    其中,所述压差检测装置和所述流量调节装置分别信号连接至控制单元;
    所述供液子管上设有所述流量调节单元,以使所述控制单元根据至少一个所述供液子管上的所述压差调节流入至少一个所述供液子管的冷却液的流量。
  2. 根据权利要求1所述的液冷系统,其中,所述回液子管上设有所述流量调节单元,以使所述控制单元根据至少一个所述回液子管上的所述压差调节流出至少一个所述回液子管的冷却液的流量。
  3. 根据权利要求1所述的液冷系统,其中,所述液冷系统包括多个液冷机柜,所述多个液冷机柜并联于所述供液主管与所述回液主管之间。
  4. 根据权利要求1至3中任一项所述的液冷系统,其中,所述液冷机柜包括电子设备区和回液槽,所述进液口设于所述电子设备区,所述回液口设于所述回液槽;
    所述液冷系统还包括:
    平衡管,所述平衡管连通至多个所述液冷机柜的所述回液槽,以平衡多个所述回液槽内的液位。
  5. 根据权利要求1所述的液冷系统,其中,所述压差检测装置包括压差结构件和设于所述压差结构件第一端的第一压力传感器和设于所述压差结构件第二端的第二压力传感器;其中,
    所述压差结构件用于提供冷却液流动的阻力,以使在冷却液流过所述压差结构件期间,由所述第一压力传感器的第一检测值和所述第二压力传感器的第二检测值相减得到的所述压差与冷却液流过所述压差结构件的流量具有正相关性。
  6. 根据权利要求5所述的液冷系统,其中,所述流量调节装置包括电动阀,所述电动阀与所述控制单元信号连接,所述控制单元用于根据所述压差动态调整所述电动阀的开度。
  7. 根据权利要求6所述的液冷系统,其中,所述控制单元用于:
    获取至少一个所述供液子管的目标压差值;
    在一个所述供液子管的所述压差小于该供液子管的目标压差值的条件下,控制与该供液子管对应的所述电动阀的开度增大;
    在一个所述供液子管的所述压差大于该供液子管的目标压差值的条件下,控制与该供液子管对应的所述电动阀的开度减小。
  8. 根据权利要求7所述的液冷系统,其中,所述供液主管与所述回液主管之间还设有换热单元和动力单元,所述换热单元用于对冷却液进行降温,所述动力单元用于提供冷却液流动的动力,所述动力单元还与所述控制单元信号连接;其中,所述控制单元用于:
    根据至少一个所述供液子管的所述压差与所述目标压差值的匹配情况以及至少一个所述电动阀的开度动态调整所述动力单元的运行功率。
  9. 根据权利要求8所述的液冷系统,其中,所述控制单元用于:
    监测至少一个所述供液子管的所述电动阀的开度和所述压差;
    在所述电动阀的开度为最大值并且所述压差小于与相应的所述目标压差值的条件下,提高所述动力单元的运行功率;
    在所述至少一个供液子管各自的所述压差均达到相应的所述目标压差值并且全部的所述电动阀的开度均未达到各自的最大值的条件下,降低所述动力单元的运行功率。
  10. 一种液冷方法,所述液冷方法应用于如权利要求1~8中任一项所述的液冷系统,所述液冷方法包括:
    获取至少一个供液子管的目标压差值;
    监测所述至少一个供液子管上由压差检测装置得到的压差;
    根据所述至少一个供液子管的所述目标压差值与所述压差的比对情况,动态调整所述至少一个供液子管各自的流量调节单元的开度。
  11. 根据权利要求10所述的液冷方法,其中,所述根据所述至少一个供液子管的所述目标压差值与所述压差的比对情况,动态调整所述至少一个供液子管各自的流量调节单元的开度的步骤包括:
    在一个所述供液子管的所述压差小于该供液子管的所述目标压差值的条件下,控制与该供液子管对应的所述流量调节单元的开度增大;
    在一个所述供液子管的所述压差大于该供液子管的所述目标压差值的条件下,控制与该供液子管对应的所述流量调节单元的开度减小。
  12. 根据权利要求11所述的液冷方法,其中,所述液冷系统还设有换热单元和动力单元,所述换热单元用于对冷却液进行降温,所述动力单元用于提供冷却液流动的动力,所述动力单元还与控制单元信号连接;其中,所述液冷方法还包括:
    根据至少一个所述供液子管的所述压差与所述目标压差值的匹配情况以及至少一个所述流量调节单元的开度,动态调整所述动力单元的运行功率。
  13. 根据权利要求12所述的液冷方法,其中,所述流量调节单元包括电动阀;所述根据至少一个所述供液子管的所述压差与所述目标压差值的匹配情况以及至少一个所述流量调节单元的开度动态调整所述动力单元的运行功率的步骤包括:
    监测至少一个所述供液子管的所述电动阀的开度和所述压差;
    在至少一个所述电动阀的开度为最大值并且所述压差小于与相应的所述目标压差值的条件下,提高所述动力单元的运行功率;
    在所述至少一个供液子管各自的所述压差均达到相应的所述目标压差值并且全部的所述电动阀的开度均未达到各自的最大值的条件下,降低所述动力单元的运行功率。
  14. 一种计算机可读存储介质,包括程序指令,当所述程序指令由控制单元执行时,使得所述控制单元执行如权利要求9-13中任一项所述的方法。
PCT/CN2023/079780 2022-03-31 2023-03-06 单相浸没式液冷系统、液冷方法及存储介质 WO2023185384A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA3200797A CA3200797A1 (en) 2022-03-31 2023-03-06 Single-phase immersion liquid cooling system, liquid cooling method, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210328486.6 2022-03-31
CN202210328486.6A CN114423264B (zh) 2022-03-31 2022-03-31 单相浸没式液冷系统及液冷方法

Publications (1)

Publication Number Publication Date
WO2023185384A1 true WO2023185384A1 (zh) 2023-10-05

Family

ID=81263091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/079780 WO2023185384A1 (zh) 2022-03-31 2023-03-06 单相浸没式液冷系统、液冷方法及存储介质

Country Status (2)

Country Link
CN (1) CN114423264B (zh)
WO (1) WO2023185384A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117154290A (zh) * 2023-10-27 2023-12-01 突破电气(天津)有限公司 冷却液自动分配系统、电池组以及数据中心

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114423264B (zh) * 2022-03-31 2022-07-15 深圳比特微电子科技有限公司 单相浸没式液冷系统及液冷方法
CN114980666B (zh) * 2022-05-13 2023-03-24 佛山市液冷时代科技有限公司 一种数据中心液冷散热系统的控制方法及其系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040238040A1 (en) * 2003-05-28 2004-12-02 Shimadzu Corporation Gas chromatograph
CN102369398A (zh) * 2008-12-16 2012-03-07 霍尼韦尔国际公司 用于分散平衡液体循环加热或冷却网络的系统和方法
CN104822242A (zh) * 2015-04-08 2015-08-05 华为技术有限公司 一种液体冷却设备控制系统、方法和装置
CN215073550U (zh) * 2021-01-19 2021-12-07 深圳绿色云图科技有限公司 一种冷却系统
CN114423264A (zh) * 2022-03-31 2022-04-29 深圳比特微电子科技有限公司 单相浸没式液冷系统及液冷方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201620128U (zh) * 2009-12-04 2010-11-03 河南省顺成集团煤焦有限公司 平衡式连通管水位控制装置
US10939580B2 (en) * 2019-03-25 2021-03-02 Baidu Usa Llc Control strategy for immersion cooling system
CN110757243A (zh) * 2019-09-25 2020-02-07 纽威数控装备(苏州)股份有限公司 一种非等强度冷却系统及其使用方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040238040A1 (en) * 2003-05-28 2004-12-02 Shimadzu Corporation Gas chromatograph
CN102369398A (zh) * 2008-12-16 2012-03-07 霍尼韦尔国际公司 用于分散平衡液体循环加热或冷却网络的系统和方法
CN104822242A (zh) * 2015-04-08 2015-08-05 华为技术有限公司 一种液体冷却设备控制系统、方法和装置
CN215073550U (zh) * 2021-01-19 2021-12-07 深圳绿色云图科技有限公司 一种冷却系统
CN114423264A (zh) * 2022-03-31 2022-04-29 深圳比特微电子科技有限公司 单相浸没式液冷系统及液冷方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117154290A (zh) * 2023-10-27 2023-12-01 突破电气(天津)有限公司 冷却液自动分配系统、电池组以及数据中心
CN117154290B (zh) * 2023-10-27 2024-03-22 突破电气(天津)有限公司 冷却液自动分配系统、电池组以及数据中心

Also Published As

Publication number Publication date
CN114423264B (zh) 2022-07-15
CN114423264A (zh) 2022-04-29

Similar Documents

Publication Publication Date Title
WO2023185384A1 (zh) 单相浸没式液冷系统、液冷方法及存储介质
US8583290B2 (en) Cooling system and method minimizing power consumption in cooling liquid-cooled electronics racks
CN111552359B (zh) 浸没式液体冷却槽及冷却装置
TW201928586A (zh) 冷卻液分佈系統
US11612083B2 (en) System and method for phase-change cooling of an electronic rack
WO2022048547A1 (zh) 一种控温系统、通讯设备及温度控制方法
WO2024045966A1 (zh) 服务器冷却系统
CN109743866B (zh) 一种用于大功率充电站用户终端的冷却系统
CN108334124B (zh) 设备供水温度控制装置及控制方法
TW201947350A (zh) 用於機櫃伺服器的液冷系統
CA3200797A1 (en) Single-phase immersion liquid cooling system, liquid cooling method, and storage medium
US11660816B2 (en) Regulating resin temperature by recirculating on hot or cold side of peltier effect block
JP6083316B2 (ja) 電子機器冷却システム
CN110993539B (zh) 温控装置及半导体加工设备
CN209586836U (zh) 一种高温液压系统的压力控制装置
CN217160292U (zh) 一种能同时调节供液压力、流量及供液温度的液冷系统
TWI828578B (zh) 液冷機櫃設備及其控制方法
CN217563997U (zh) 一种液冷系统
CN216924901U (zh) 一种冷却液控制系统
CN220355607U (zh) 一种温控系统和空调
US20230301027A1 (en) Flow rate sensing system for liquid coolant flow management of an immersion cooling system
CN214194741U (zh) 一种集成精密恒温水系统
CN113031727B (zh) 一种服务器风液综合散热系统的耦合散热控制方法及系统
CN218352964U (zh) 集装箱液冷数据中心
CN212645082U (zh) 一种高低温液体循环系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23777762

Country of ref document: EP

Kind code of ref document: A1