WO2024045966A1 - 服务器冷却系统 - Google Patents

服务器冷却系统 Download PDF

Info

Publication number
WO2024045966A1
WO2024045966A1 PCT/CN2023/109644 CN2023109644W WO2024045966A1 WO 2024045966 A1 WO2024045966 A1 WO 2024045966A1 CN 2023109644 W CN2023109644 W CN 2023109644W WO 2024045966 A1 WO2024045966 A1 WO 2024045966A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipeline
liquid
server
cooling system
coolant
Prior art date
Application number
PCT/CN2023/109644
Other languages
English (en)
French (fr)
Inventor
胡航空
黄绍明
曾宏波
郝明亮
肖胜强
阮春郎
郑鹏飞
彭玉荣
李丰杰
祝鸿山
Original Assignee
北京比特大陆科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京比特大陆科技有限公司 filed Critical 北京比特大陆科技有限公司
Publication of WO2024045966A1 publication Critical patent/WO2024045966A1/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Definitions

  • the present application relates to the field of server heat dissipation technology, and in particular to a server cooling system.
  • the server generates a lot of heat when it is working. To ensure the normal operation of the server, the server needs to be cooled.
  • the inventor realized that currently, the layout of servers is scattered, and each server needs to be individually cooled. This will lead to problems such as high manufacturing costs, heavy maintenance workload, and large energy consumption of the server cooling system.
  • Embodiments of the present application provide a server cooling system, aiming to solve the problems of high manufacturing cost, heavy maintenance workload, and large energy consumption of existing server cooling systems.
  • the server cooling system includes:
  • a flow divider the flow divider includes a first liquid inlet and a plurality of first liquid outlets, and the first liquid outlets are used to connect with the liquid inlet of the server;
  • the heat exchange device includes a second liquid inlet and a second liquid outlet.
  • the second liquid inlet is used to connect with the liquid outlet of the server.
  • the second liquid outlet is connected to the liquid outlet through a pipeline.
  • the first liquid inlet is connected;
  • a first temperature sensor located in the pipeline between the second liquid inlet and the liquid outlet of the server, is used to detect the temperature of the cooling liquid flowing into the heat exchange device;
  • a second temperature sensor located in the pipeline between the second liquid outlet and the first liquid inlet, is used to detect the temperature of the cooling liquid flowing out of the heat exchange device;
  • a control device connected to the first temperature sensor, the second temperature sensor and the heat exchange device.
  • the control device is used to obtain the temperature detected by the first temperature sensor and the temperature detected by the second temperature sensor. temperature, and based on the temperature detected by the first temperature sensor and the second temperature sensor The temperature detected by the sensor controls the heat exchange device to cool the cooling liquid;
  • a circulation pump is provided in the pipeline between the liquid outlet of the server and the second liquid inlet.
  • the heat exchange device includes:
  • a plate heat exchanger the plate heat exchanger includes the second liquid inlet and the second liquid outlet;
  • a first electric three-way valve, the first electric three-way valve is provided in the pipeline between the first temperature sensor and the second liquid inlet;
  • Coolant shunt pipeline one end of the coolant shunt pipeline is connected to the liquid outlet of the first electric three-way valve, and the other end of the coolant shunt pipeline is connected to the second liquid outlet and the liquid outlet of the first electric three-way valve.
  • control device controls the opening of the first electric three-way valve according to the temperature detected by the first temperature sensor and the temperature detected by the second temperature sensor.
  • the heat exchange device includes:
  • a cooling tower includes a fan, and the control device controls the rotation speed of the fan of the cooling tower based on the temperature detected by the first temperature sensor and the temperature detected by the second temperature sensor.
  • the server cooling system further includes:
  • a liquid-adding pipe which includes a liquid-filling pump, an external interface, and a pipeline connected to the liquid-filling pump and the external interface.
  • the liquid-adding pipe is used to add cooling liquid to the server cooling system;
  • the coolant container includes a first liquid filling port and a liquid draining port.
  • the first liquid filling port is connected to the pipeline of the liquid outlet end of the liquid replenishing pump through a first pipeline.
  • the liquid draining port The second pipeline is connected to the pipeline between the liquid inlet end of the rehydration pump and the external interface;
  • the first pipeline is used to add coolant to the coolant container
  • the second pipeline is used to drain the coolant container or add coolant to the server cooling system.
  • the server cooling system further includes:
  • Evacuation pipeline one end of the evacuation pipeline is connected to the external interface, and the other end of the evacuation pipeline is connected to the liquid outlet of the server and the second liquid inlet. Connection or pipeline connection between the second liquid outlet and the first liquid inlet, the drain pipeline is used to drain the pipeline of the server cooling system.
  • the server cooling system further includes:
  • a first pressure sensor is provided in the pipeline between the second liquid inlet and the liquid outlet of the server, Used to detect the pressure of the coolant flowing into the heat exchange device;
  • a second pressure sensor is provided in the pipeline between the second liquid outlet and the first liquid inlet, and is used to detect the pressure of the cooling liquid flowing out of the heat exchange device.
  • the server cooling system further includes:
  • the expansion tank is connected to the liquid outlet of the server and the circulation pump through pipelines.
  • the coolant container further includes a second liquid filling port
  • the server cooling system further includes:
  • Safety valve one end of the safety valve is connected to the second pressure sensor and the first liquid inlet through a pipeline, and the other end of the safety valve is connected to the second pressure sensor through a pipeline.
  • Liquid port connection ;
  • the safety valve opens when the pressure in the pipeline of the server cooling system is greater than the set pressure of the safety valve, so as to discharge part of the cooling liquid in the pipeline of the server cooling system to the in the coolant container.
  • the server cooling system further includes:
  • a second electric three-way valve is provided in the pipeline between the circulation pump and the second liquid inlet, and the second electric three-way valve is connected to the control device;
  • Short-circuit pipeline one end of the short-circuit pipeline is connected to the liquid outlet of the second electric three-way valve, and the other end of the short-circuit pipeline is connected to the second liquid outlet and the second temperature sensor. pipeline connections between;
  • control device controls the opening of the second electric three-way valve to allow the coolant to flow through the short-circuit pipeline.
  • the server cooling system further includes:
  • a third electric three-way valve The liquid inlet of the third electric three-way valve is connected to the circulation pump through a pipeline. A liquid outlet of the third electric three-way valve is connected to the first electric three-way valve through a pipeline. The liquid inlet of the electric three-way valve is connected, and the other liquid outlet of the third electric three-way valve is connected to the second liquid inlet on the cooling tower through a pipeline.
  • the third electric three-way valve The valve is connected to the control device;
  • the server cooling system further includes a fifth valve and a sixth valve, the fifth valve is used to control the flow of coolant through the plate heat exchanger, and the sixth valve is used to control the flow of coolant through the plate heat exchanger. Cooling Tower.
  • the embodiment of the present application discloses a server cooling system.
  • the server cooling system includes a diverter, a switch A thermal device, a first temperature sensor, a second temperature sensor, a control device and a circulation pump.
  • the server cooling system is used to dissipate heat from the cluster server. Before the coolant cools the server, a diverter is used to divert the coolant, so that the cooling The liquid flows through each server in the server cluster through different pipelines to achieve centralized heat dissipation of the server, reducing the manufacturing cost of the server cooling system, and reducing the maintenance workload and energy consumption of the server cooling system.
  • Figure 1 is a schematic structural block diagram of a server cooling system provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural block diagram of yet another server cooling system provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural block diagram of yet another server cooling system provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural block diagram of yet another server cooling system provided by an embodiment of the present application.
  • FIG 1 is a schematic structural block diagram of a server cooling system 1000 provided by an embodiment of the present application.
  • the server cooling system 1000 provided by an embodiment of the present application includes at least one diverter 1020, a heat exchange device 1030, and a first temperature sensor. 1040, second temperature sensor 1050, control device 1060 and circulation pump 1220.
  • the server cooling system provided by the embodiment of the present application is used to dissipate heat from the cluster server. Before the coolant cools the server, the diverter 1020 is used to divert the coolant, so that the coolant flows through different pipelines in the server cluster 1010.
  • Each server realizes centralized heat dissipation for the server, reduces the manufacturing cost of the server cooling system 1000, and reduces the maintenance workload and energy consumption of the server cooling system 1000.
  • the diverter 1020 includes a first liquid inlet 1021 and a plurality of first liquid outlets 1022.
  • the first liquid outlets 1022 are used to connect with the liquid inlet 1011 of the server.
  • the heat exchange device 1030 includes a second liquid inlet 1031 and a second liquid outlet 1032.
  • the second liquid inlet 1031 is used to connect to the liquid outlet 1012 of the server.
  • the second liquid outlet 1032 is connected to the first liquid outlet 1032 through a pipeline. Liquid inlet 1021 connection. It can be understood that multiple pipelines connected to the liquid outlets 1012 of multiple servers and the second liquid inlets 1031 are merged into one pipeline.
  • the first temperature sensor 1040 is disposed in the pipeline between the second liquid inlet 1031 and the liquid outlet 1012 of the server.
  • the first temperature sensor 1040 is used to detect the temperature of the cooling liquid flowing into the heat exchange device 1030 .
  • the second temperature sensor 1050 is disposed in the pipeline between the second liquid outlet 1032 and the first liquid inlet 1021 , and the second temperature sensor 1050 is used to detect the temperature of the cooling liquid flowing out of the heat exchange device 1030 .
  • control device 1060 is connected to the first temperature sensor 1040, the second temperature sensor 1050 and the heat exchange device 1030.
  • the control device 1060 is used to obtain the temperature detected by the first temperature sensor 1040 and the temperature detected by the second temperature sensor 1050, and according to The temperature detected by the first temperature sensor 1040 and the temperature detected by the second temperature sensor 1050 control the heat exchange device 1030 to cool the cooling liquid.
  • the circulation pump 1220 is disposed in the pipeline between the liquid outlet 1012 and the second liquid inlet 1031 of the server.
  • the circulation pump 1220 is used to drive the cooling liquid circulation in the pipeline of the server cooling system 1000 .
  • the heat exchange device 1030 includes a plate heat exchanger 1033 , a first electric three-way valve 1034 and a coolant diverter pipeline 1035 .
  • the plate heat exchanger 1033 includes a second liquid inlet 1031 and a second liquid outlet 1032; a first electric three-way valve 1034 is provided in the pipeline between the first temperature sensor 1040 and the second liquid inlet 1031; cooling One end of the liquid shunt pipeline 1035 is connected to the liquid outlet of the first electric three-way valve 1034, and the other end of the coolant shunt pipeline 1035 is connected to the pipeline between the second liquid outlet 1032 and the second temperature sensor 1050.
  • the control device 1060 controls the opening of the first electric three-way valve 1034 according to the temperature detected by the first temperature sensor 1040 and the temperature detected by the second temperature sensor 1050 to adjust the flow rate of the cooling liquid flowing through the plate heat exchanger 1033 and the flow cooling.
  • the flow rate of the coolant in the liquid branch pipe 1035 is adjusted to keep the temperature of the coolant flowing into the server within a certain range.
  • the first electric three-way valve 1034 includes one liquid inlet and two liquid outlets.
  • the liquid inlet of the electric three-way valve 1034 is connected to the first liquid outlet 1012 through a pipeline.
  • One liquid outlet is connected to one end of the coolant diverting pipeline 1035, and the other liquid outlet of the electric three-way valve 1034 is connected to the third liquid inlet 1031 through the pipeline.
  • the higher-temperature coolant flowing through the coolant shunt pipe 1035 merges with the lower-temperature coolant flowing out from the second liquid outlet 1032 of the plate heat exchanger 1033 to maintain the temperature of the coolant flowing into the server within a certain range.
  • the plate heat exchanger includes a third pipeline 1037 and a fourth pipeline 1038.
  • the third pipeline 1037 is connected to the municipal water supply end
  • the fourth pipeline 1038 is connected to the municipal water supply end.
  • the municipal water source can be heated through the plate heat exchanger 1033.
  • the heat exchange device 1030 includes a cooling tower 1036, the cooling tower 1036 includes a fan, and the control device 1060 controls cooling according to the temperature detected by the first temperature sensor 1040 and the temperature detected by the second temperature sensor 1050.
  • the rotation speed of the fan of tower 1036 adjusts the heat dissipation rate to keep the temperature of the coolant flowing into the server within a certain range.
  • the second liquid inlet 1031 and the second liquid outlet 1032 are provided in the cooling tower 1036.
  • the heat exchange device 1030 includes both the heat exchange device involved in the plate heat exchanger 1033 , the electric three-way valve 1034 and the coolant diverter pipeline 1035 in the above embodiment, and also includes the above embodiment.
  • the example cooling tower 1036 involves a heat exchange device.
  • the server cooling system 1000 also includes a fifth valve 1200 and a sixth valve 1210.
  • the fifth valve 1200 is used to control the flow of coolant through the plate heat exchanger 1033.
  • Six valves 1210 are used to control coolant flow through the cooling tower 1036. cooling down When the liquid source is sufficient, the plate heat exchanger 1033 is used to cool the coolant.
  • the fifth valve 1200 is opened and the sixth valve 1210 is closed.
  • the cooling tower 1036 is used to cool the coolant, the fifth valve 1200 is closed, and the sixth valve 1210 is opened.
  • the coolant is ultrapure water, ethanol, ethylene glycol, glycerol, etc.
  • the type of coolant in There is no limit to this, as long as the liquid can cool the server. This embodiment may increase the flexibility of use of the server cooling system 1000 .
  • the server cooling system 1000 further includes a third electric three-way valve 1250.
  • the liquid inlet of the third electric three-way valve 1250 is connected to the circulation pump 1220 through a pipeline.
  • One liquid outlet of the through valve 1250 is connected to the liquid inlet of the first electric three-way valve 1034 through a pipeline, and the other liquid outlet of the third electric three-way valve 1250 is connected to the second inlet of the cooling tower 1036 through a pipeline.
  • the liquid port 1031 is connected, and the third electric three-way valve 1250 is connected to the control device 1060 (not shown in Figure 4).
  • the control device 1060 can control the cooling mode in which the heat exchange device 1030 cools the cooling liquid according to the temperature difference between the temperature detected by the first temperature sensor 1050 and the temperature detected by the second temperature sensor 1060 .
  • the cooling mode There are three cooling modes including plate heat exchanger 1033 for cooling, cooling tower 1036 for cooling, and plate heat exchanger 1033 and cooling tower 1036 for simultaneous cooling. It can be understood that the control device 1060 controls the cooling mode in which the heat exchange device 1030 cools the cooling liquid by controlling the opening of the third electric three-way valve 1250 .
  • the plate heat exchanger 1033 when the temperature difference is less than 20°C, the plate heat exchanger 1033 is used for cooling, and the control device 1060 controls the opening of the third electric three-way valve 1250 to allow all the cooling liquid to flow through the plate heat exchanger 1033;
  • the control device 1060 controls the opening of the third electric three-way valve 1250 to allow all the cooling liquid to flow through the plate heat exchanger 1033;
  • the plate heat exchanger 1033 and the cooling tower 1036 are used for simultaneous cooling.
  • the control device 1060 controls the opening of the third electric three-way valve 1250 according to the specific value of the temperature difference, so that part of the The coolant flows through the plate heat exchanger 1033, and the other part of the coolant flows through the cooling tower 1033; when the temperature difference is between 20°C and 50°C, the cooling tower 1036 is used for cooling, and the control device 1060 controls the third electric three-way valve
  • the opening degree of 1250 allows all the cooling liquid to flow through the cooling tower 1036.
  • the pipeline between the second liquid outlet 1032 and the first liquid inlet 1021, the pipeline between the first liquid outlet 1022 and the liquid inlet 1011 of the server, At least one of the pipelines between the liquid outlet 1012 and the second liquid inlet 1031 of the server is provided with a valve 1110 and a check valve 1120.
  • the valve 1110 is used to control the flow and interruption of the coolant in the pipeline.
  • the return valve 1120 is used to prevent the coolant from flowing back.
  • the server cooling system 1000 further includes a liquid filling pipe 1070 and a cooling liquid container 1080 .
  • the liquid filling pipe 1070 includes a liquid filling pump 1071, an external interface 1072, and a pipeline 1073 connected to the liquid filling pump 1071 and the external interface 1072.
  • the liquid filling pipe 1070 is used to add cooling liquid to the server cooling system 1000;
  • the cooling liquid container 1080 includes a first Liquid filling port 1081 and liquid draining port 1082.
  • the first liquid filling port 1081 is connected to the liquid outlet end 1078 of the fluid replacement pump 1071 through the first pipeline 1090.
  • the liquid draining port 1082 is connected to the fluid replacement pump 1071 through the second pipeline 1100.
  • the pipeline connection between the liquid inlet end 1077 and the external interface 1072, the first pipeline 1090 is used to add coolant to the coolant container 1080, and the second pipeline 1100 is used to drain the coolant container 1080 or cool the server.
  • Add coolant to system 1000 This embodiment can not only add coolant to the server cooling system 1000, but also can replenish the server cooling system 1000 with coolant when the liquid in the pipeline of the server cooling system 1000 is insufficient.
  • the pipeline of the liquid outlet end 1078 of the fluid replenishing pump 1071 is connected to the pipelines between the liquid outlet 1012 and the circulation pump 1220 of the server to realize adding liquid to the server cooling system 1000 .
  • the first pipeline 1090 is provided with a first valve 1091
  • the second pipeline 1100 is provided with a second valve 1101
  • the pipeline between the liquid inlet end 1077 of the rehydration pump 1071 and the external interface 1072 1073 is provided with a third valve 1074
  • the pipeline of the liquid outlet 1078 of the fluid replacement pump 1071 is provided with a fourth valve 1076
  • the second pipeline 1100 is connected to the pipeline between the liquid inlet end 1077 of the fluid replacement pump 1071 and the third valve 1074.
  • Cooling system 1000 plus coolant.
  • the coolant system also includes a flow sensor 1130.
  • the flow sensor 1130 is used to detect the flow rate of the liquid in the pipeline.
  • the flow sensor 1130 is located between the second liquid outlet 1032 and the first liquid inlet 1021.
  • the flow sensor 1130 is connected to the control device 1060 (not shown) in the pipeline.
  • the control device 1060 is used to obtain the flow rate of the liquid in the pipeline detected by the flow sensor 1130 in real time.
  • the control device 1060 controls the second valve 1101 and the fourth valve 1076 to open, and the first valve 1091 and the fourth valve 1076 are opened.
  • the three valves 1074 are closed, allowing the coolant in the coolant container 1080 to flow through the second pipeline 1100, the liquid filling pipe 1070, and the pipeline of the liquid outlet 1078 of the liquid replenishing pump 1071 to replenish coolant to the server cooling system 1000.
  • a filter 1075 is provided in the pipeline between the liquid inlet end 1077 of the fluid replenishing pump 1071 and the external interface 1072.
  • the filter 1075 is used to filter impurities in the coolant, such as sediment, Iron filings, etc., to prevent impurities from flowing into the pipeline and causing pipeline obstruction.
  • the server cooling system 1000 further includes a drain pipe 1140 , one end of the drain pipe 1140 is connected to the external interface 1072 through the pipe, and the other end of the drain pipe 1140 is connected to the server.
  • the drain pipeline 1140 is used to cool down the server cooling system. 1000 pipes are drained.
  • the emptying pipeline 1140 is provided with a drain valve 1141.
  • the liquid outlet 1012 and the second liquid inlet 1031 of the server can be A drain valve 1141 is provided in the pipeline between them, and a drain valve 1141 is provided in the pipeline between the second liquid outlet 1032 and the first liquid inlet 1021 .
  • the external interface 1072 when draining the pipelines of the server cooling system 1000, the external interface 1072 is not connected to any coolant source.
  • the coolant flowing out of the external interface 1072 can be directed to a waste liquid pool, or the waste liquid can be used.
  • the container collects the coolant flowing out of the external connection 1072 .
  • the server cooling system 1000 further includes a first pressure sensor 1150.
  • the first pressure sensor 1150 is provided in the pipeline between the second liquid inlet 1031 and the liquid outlet 1012 of the server. It is used to detect the pressure of the coolant flowing into the heat exchange device 1030.
  • the first pressure sensor 1150 is connected to the control device 1060.
  • the control device 1060 is used to obtain the pressure detected by the first pressure sensor 1150. When the pressure detected by the first pressure sensor 1150 is less than the preset pressure, the control device 1060 controls the second pressure sensor 1150.
  • the valve 1101 and the fourth valve 1076 are opened, and the first valve 1091 and the third valve 1074 are closed, allowing the coolant in the coolant container 1080 to flow through the second pipeline 1100, the liquid filling pipe 1070 and the liquid outlet end 1078 of the filling pump.
  • the pipeline replenishes the server cooling system 1000 with coolant.
  • the server cooling system 1000 further includes a second pressure sensing
  • the second pressure sensor 1160 is provided in the pipeline between the second liquid outlet 1032 and the first liquid inlet 1021, and is used to detect the pressure of the cooling liquid flowing out of the heat exchange device 1030.
  • the second pressure sensor 1160 is connected to the control device 1060.
  • the control device 1060 is used to obtain the pressure detected by the second pressure sensor 1160.
  • the control device 1060 controls the circulation pump. 1220 is closed to prevent the coolant pressure flowing into the server from being too high and causing damage to the server.
  • the server cooling system 1000 also includes an expansion tank 1230.
  • the expansion tank 1230 is connected to the liquid outlet 1012 of the server and the circulation pump 1220 through pipelines.
  • the expansion tank 1230 is The pressure of the liquid in the pipeline of the server cooling system 1000 is adjusted to maintain the stability of the cooling liquid circulation in the pipeline of the server cooling system 1000 .
  • the coolant container 1080 also includes a second liquid filling port 1083
  • the server cooling system 1000 further includes a safety valve 1170.
  • One end of the safety valve 1170 is connected to the second pressure sensor 1160 and 1160 through a pipeline.
  • the pipeline connection between the first liquid inlet 1021 and the other end of the safety valve 1170 is connected to the second liquid filling port 1083 through the pipeline.
  • the pressure of the safety valve 1170 in the pipeline of the server cooling system 1000 is greater than that of the safety valve 1170. When the pressure is set, it is opened to discharge part of the coolant in the pipeline of the server cooling system 1000 to the coolant container 1080 . To maintain the normal operation of the server cooling system 1000 and prevent failures.
  • the server cooling system 1000 further includes a liquid level sensor 1260 , which is used to detect the liquid level of the coolant in the coolant container 1080 .
  • the server cooling system 1000 also includes a second electric three-way valve 1240 and a short-circuit pipeline 1180, wherein the second electric three-way valve 1240 is provided between the circulation pump 1220 and the second liquid inlet.
  • the pipeline between ports 1031, the second electric three-way valve 1240 is connected to the control device 1060, one end of the short-circuit pipeline 1180 is connected to the liquid outlet of the second electric three-way valve 1240, and the other end of the short-circuit pipeline 1180 is connected to the second electric three-way valve 1240.
  • the pipeline connection between the second liquid outlet 1032 and the second temperature sensor 1050 is used.
  • the control device 1060 controls the opening of the second electric three-way valve 1240 to allow the coolant to pass through the short-circuit pipeline. 1180 in circulation.
  • circulating the coolant through the short-circuit pipeline 1180 means causing all the cooling liquid in the pipelines of the server cooling system 1000 to circulate through the short-circuit pipeline 1180 .
  • the server cooling system 1000 also includes a degassing tank 1190.
  • the degassing tank 1190 is a pipeline provided between the liquid outlet 1012 and the second liquid inlet 1031 of the server, and is used to remove gas from the coolant.

Abstract

一种服务器冷却系统(1000),涉及服务器散热技术领域,解决了现有服务器冷却系统制造成本高、维护工作量大和能量消耗大的问题。服务器冷却系统(1000)包括分流器(1020)、换热装置(1030)、第一温度传感器(1040)、第二温度传感器(1050)、控制装置(1060)和循环泵(1220)。服务器冷却系统(1000)用于对集群服务器进行散热,在冷却液对服务器进行冷却之前采用分流器(1020)对冷却液进行分流,使冷却液经过不同的管路流经服务器集群中的每个服务器,实现对服务器的集中散热,降低了服务器冷却系统(1000)的制造成本,减小了服务器冷却系统(1000)的维护工作量和能量消耗。

Description

服务器冷却系统
本申请要求于2022年08月30日提交中国专利局、申请号为202222298236.0,发明名称为“服务器冷却系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及服务器散热技术领域,尤其涉及一种服务器冷却系统。
背景技术
服务器在工作的时候会产生大量的热量,为保证服务器的正常运行,需要对服务器进行散热。发明人意识到,目前,服务器的布置都是零散的,需要对每个服务器进行单独散热,这样会导致服务器冷却系统的制造成本高、维护工作量大和能量消耗大的问题。
申请内容
本申请实施例提供一种服务器冷却系统,旨在解决现有服务器冷却系统制造成本高、维护工作量大和能量消耗大的问题。该服务器冷却系统包括:
分流器,所述分流器包括一个第一进液口和多个第一出液口,所述第一出液口用于与服务器的进液口连接;
换热装置,所述换热装置包括第二进液口和第二出液口,所述第二进液口用于与服务器的出液口连接,所述第二出液口通过管路与所述第一进液口连接;
第一温度传感器,设于所述第二进液口、所述服务器的出液口之间的管路,用于检测流入所述换热装置的冷却液的温度;
第二温度传感器,设于所述第二出液口、所述第一进液口之间的管路,用于检测流出所述换热装置的冷却液的温度;
控制装置,与所述第一温度传感器、所述第二温度传感器及所述换热装置连接,所述控制装置用于获取所述第一温度传感器检测的温度和所述第二温度传感器检测的温度,并根据所述第一温度传感器检测的温度和所述第二温度传 感器检测的温度控制所述换热装置对冷却液进行冷却处理;
循环泵,设于所述服务器的出液口和所述第二进液口之间的管路。
在一种可能的实施方式中,所述换热装置包括:
板式换热器,所述板式换热器包括所述第二进液口和所述第二出液口;
第一电动三通阀,所述第一电动三通阀设于所述第一温度传感器、所述第二进液口之间的管路;
冷却液分流管路,所述冷却液分流管路的一端与所述第一电动三通阀的出液口连接,所述冷却液分流管路的另一端与所述第二出液口、所述第二温度传感器之间的管路连接;
其中,所述控制装置根据所述第一温度传感器检测的温度和所述第二温度传感器检测的温度控制所述第一电动三通阀的开度。
在一种可能的实施方式中,所述换热装置包括:
冷却塔,所述冷却塔包括风机,所述控制装置根据所述第一温度传感器检测的温度和所述第二温度传感器检测的温度控制所述冷却塔的风机的转速。
在一种可能的实施方式中,所述服务器冷却系统还包括:
加液管道,所述加液管道包括补液泵、外部接口以及连接所述补液泵、所述外部接口的管路,所述加液管道用于给所述服务器冷却系统加冷却液;
冷却液容器,所述冷却液容器包括第一加液口和排液口,所述第一加液口通过第一管路与所述补液泵的出液端的管路连通,所述排液口通过第二管路与所述补液泵的进液端、所述外部接口之间的管路连通;
其中,所述第一管路用于给所述冷却液容器加冷却液,所述第二管路用于给所述冷却液容器排液或给所述服务器冷却系统加冷却液。
在一种可能的实施方式中,所述服务器冷却系统还包括:
排空管路,所述排空管路的一端与所述外部接口连接,所述排空管路的另一端与所述服务器的出液口、所述第二进液口之间的管路连接或所述第二出液口、所述第一进液口之间的管路连接,所述排空管路用于对所述服务器冷却系统的管路进行排空。
在一种可能的实施方式中,所述服务器冷却系统还包括:
第一压力传感器,设于所述第二进液口、所述服务器的出液口之间的管路, 用于检测流入所述换热装置的冷却液的压力;
第二压力传感器,设于所述第二出液口、所述第一进液口之间的管路,用于检测流出所述换热装置的冷却液的压力。
在一种可能的实施方式中,所述服务器冷却系统还包括:
膨胀罐,通过管路与所述服务器的出液口、所述循环泵之间的管路连接。
在一种可能的实施方式中,所述冷却液容器还包括第二加液口,所述服务器冷却系统还包括:
安全阀,所述安全阀的一端通过管路与所述第二压力传感器、所述第一进液口之间的管路连接,所述安全阀的另一端通过管路与所述第二加液口连接,;
其中,所述安全阀在所述服务器冷却系统的管路内的压力大于所述安全阀的设定压力时打开,以将所述服务器冷却系统的管路内的部分冷却液排送至所述冷却液容器中。
在一种可能的实施方式中,所述服务器冷却系统还包括:
第二电动三通阀,设于所述循环泵与所述第二进液口之间的管路,所述第二电动三通阀与所述控制装置连接;
短路管路,所述短路管路的一端与所述第二电动三通阀的出液口连接,所述短路管路的另一端与所述第二出液口、所述第二温度传感器之间的管路连接;
其中,在外界温度低于预设温度时,所述控制装置通过控制所述第二电动三通阀的开度使冷却液通过所述短路管路流通。
在一种可能的实施方式中,所述服务器冷却系统还包括:
第三电动三通阀,所述第三电动三通阀的进液口通过管路与所述循环泵连接,所述第三电动三通阀的一个出液口通过管路与所述第一电动三通阀的进液口连接,所述第三电动三通阀的另一个出液口通过管路与所述冷却塔上的所述第二进液口连接,所述第三电动三通阀与所述控制装置连接;
和/或,所述服务器冷却系统还包括第五阀门和第六阀门,所述第五阀门用于控制冷却液流通所述板式换热器,所述第六阀门用于控制冷却液流通所述冷却塔。
本申请实施例公开了服务器冷却系统,该服务器冷却系统包括分流器、换 热装置、第一温度传感器、第二温度传感器、控制装置和循环泵,该服务器冷却系统用于对集群服务器进行散热,在冷却液对服务器进行冷却之前采用分流器对冷却液进行分流,使冷却液经过不同的管路流经服务器集群中的每个服务器,实现对服务器的集中散热,降低了服务器冷却系统的制造成本,减小了服务器冷却系统的维护工作量和能量消耗。
附图说明
为了更清楚地说明本申请实施例技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的服务器冷却系统的结构示意性框图;
图2为本申请实施例提供的又一服务器冷却系统的结构示意性框图;
图3为本申请实施例提供的再一服务器冷却系统的结构示意性框图;
图4为本申请实施例提供的再一服务器冷却系统的结构示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明,本申请实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
还需要说明的是,当元件被称为“固定于”或“设置于”另一个元件上时,它可以直接在另一个元件上或者可能同时存在居中元件。当一个元件被称为是“连接”另一个元件,它可以是直接连接另一个元件或者也可以是通过居中元件间接连接另一个元件。
另外,在本申请中涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该 特征。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本申请要求的保护范围之内。
下面结合附图,对本申请的一些实施方式作详细说明。在不冲突的情况下,下述实施例及实施例中的特征可以相互结合。
请参阅图1,图1为本申请实施例提供的服务器冷却系统1000的结构示意性框图,本申请实施例提供的服务器冷却系统1000包括至少一个分流器1020、换热装置1030、第一温度传感器1040、第二温度传感器1050、控制装置1060和循环泵1220。本申请实施例提供的服务器冷却系统用于对集群服务器进行散热,在冷却液对服务器进行冷却之前采用分流器1020对冷却液进行分流,使冷却液经过不同的管路流经服务器集群1010中的每个服务器,实现对服务器的集中散热,降低了服务器冷却系统1000的制造成本,减小了服务器冷却系统1000的维护工作量和能量消耗。
其中,分流器1020包括一个第一进液口1021和多个第一出液口1022,第一出液口1022用于与服务器的进液口1011连接。
其中,换热装置1030包括第二进液口1031和第二出液口1032,第二进液口1031用于与服务器的出液口1012连接,第二出液口1032通过管路与第一进液口1021连接。可以理解地,多个服务器的出液口1012分别与第二进液口1031连接的多条管路汇流成一条管路。
其中,第一温度传感器1040设于第二进液口1031、服务器的出液口1012之间的管路,第一温度传感器1040用于检测流入换热装置1030的冷却液的温度。
其中,第二温度传感器1050设于第二出液口1032、第一进液口1021之间的管路,第二温度传感器1050用于检测流出换热装置1030的冷却液的温度。
其中,控制装置1060与第一温度传感器1040、第二温度传感器1050及换热装置1030连接,控制装置1060用于获取第一温度传感器1040检测的温度和第二温度传感器1050检测的温度,并根据第一温度传感器1040检测的温度和第二温度传感器1050检测的温度控制换热装置1030对冷却液进行冷却处理。
其中,循环泵1220设于服务器的出液口1012和第二进液口1031之间的管路,循环泵1220用于驱动服务器冷却系统1000的管路内的冷却液循环。
在一些实施例中,如图2所示,换热装置1030包括板式换热器1033、第一电动三通阀1034和冷却液分流管路1035。其中,板式换热器1033包括第二进液口1031和第二出液口1032;第一电动三通阀1034设于第一温度传感器1040、第二进液口1031之间的管路;冷却液分流管路1035的一端与第一电动三通阀1034的出液口连接,冷却液分流管路1035的另一端与第二出液口1032、第二温度传感器1050之间的管路连接,控制装置1060根据第一温度传感器1040检测的温度和第二温度传感器1050检测的温度控制第一电动三通阀1034的开度,以调节流通板式换热器1033的冷却液的流量,以及流通冷却液分流管路1035的冷却液的流量,来使流入服务器的冷却液的温度保持在一定范围内。
可以理解地,第一电动三通阀1034包括一个进液口和两个出液口,电动三通阀1034的进液口通过管路与第一出液口1012连接,电动三通阀1034的一个出液口与冷却液分流管路1035的一端连接,电动三通阀1034的另一个出液口通过管路与第三进液口1031连接。流通冷却液分流管路1035的温度较高的冷却液与从板式换热器1033的第二出液口1032流出的温度较低的冷却液汇流,以维持流入服务器的冷却液的温度在一定范围内。
在一些实施例中,如图2所示,板式换热器包括第三管路1037和第四管路1038,第三管路1037与市政供水端连接,第四管路1038与市政用水端连接,以该实施例可以通过板式换热器1033对市政水源加热。
在一些实施例中,如图3所示,换热装置1030包括冷却塔1036,冷却塔1036包括风机,控制装置1060根据第一温度传感器1040检测的温度和第二温度传感器1050检测的温度控制冷却塔1036的风机的转速,调节散热速率,来使流入服务器的冷却液的温度保持在一定范围内。
可以理解地,在该实施例中,第二进液口1031和第二出液口1032设于冷却塔1036。
在一些实施例中,如图4所示,换热装置1030既包括上述实施例板式换热器1033、电动三通阀1034和冷却液分流管路1035涉及到的换热装置,又包括上述实施例冷却塔1036涉及到的换热装置,在该实施例下,服务器冷却系统1000还包括第五阀门1200和第六阀门1210,第五阀门1200用于控制冷却液流通板式换热器1033,第六阀门1210用于控制冷却液流通冷却塔1036。在冷却 液源充足的情况下采用板式换热器1033对冷却液进行冷却,第五阀门1200打开,第六阀门1210关闭,例如,冷却液源为大江、大河中的水,在冷却液源受限的情况下采用冷却塔1036对冷却液进行冷却,第五阀门1200关闭,第六阀门1210打开,例如,冷却液为超纯水、乙醇、乙二醇和丙三醇等,关于冷却液的类型,在此不做限定,只要可以对服务器进行冷却的液体即可。该实施例可以提高服务器冷却系统1000使用的灵活性。
在一些实施例中,如图4所示,服务器冷却系统1000还包括第三电动三通阀1250,第三电动三通阀1250的进液口通过管路与循环泵1220连接,第三电动三通阀1250的一个出液口通过管路与第一电动三通阀1034的进液口连接,第三电动三通阀1250的另一个出液口通过管路与冷却塔1036上的第二进液口1031连接,第三电动三通阀1250与控制装置1060(图4未示)连接。在该实施例下控制装置1060可以根据第一温度传感器1050检测的温度和第二温度传感器1060检测的温度的温度差值控制换热装置1030对冷却液进行冷却的冷却模式,具体地,冷却模式共包括采用板式换热器1033冷却、采用冷却塔1036冷却、采用板式换热器1033和冷却塔1036同时冷却三种冷却模式。可以理解地,控制装置1060是通过控制第三电动三通阀1250的开度来控制换热装置1030对冷却液进行冷却的冷却模式。
示例性地,当所述温度差值小于20℃时,采用板式换热器1033冷却,控制装置1060通过控制第三电动三通阀1250的开度,使冷却液全部流通板式换热器1033;当所述温度差值大于50℃时,采用板式换热器1033和冷却塔1036同时冷却,控制装置1060根据所述温度差值的具体值控制第三电动三通阀1250的开度,使一部分冷却液流通板式换热器1033,另一部分冷却液流通冷却塔1033;所述温度差值在20℃至50℃之间时,采用冷却塔1036冷却,控制装置1060通过控制第三电动三通阀1250的开度,使冷却液全部流通冷却塔1036。
在一些实施例中,如图4所示,第二出液口1032和第一进液口1021之间的管路、第一出液口1022和服务器的进液口1011之间的管路、服务器的出液口1012和第二进液口1031之间的管路中至少有一个管路设有阀门1110和止回阀1120,阀门1110用于控制管路内冷却液的流通和中断,止回阀1120用于防止冷却液倒流。
在一些实施例中,如图4所示,服务器冷却系统1000还包括加液管道1070和冷却液容器1080。其中,加液管道1070包括补液泵1071、外部接口1072以及连接补液泵1071、外部接口1072的管路1073,加液管道1070用于给服务器冷却系统1000加冷却液;冷却液容器1080包括第一加液口1081和排液口1082,第一加液口1081通过第一管路1090与补液泵1071的出液端1078的管路连通,排液口1082通过第二管路1100与补液泵1071的进液端1077、外部接口1072之间的管路连接,第一管路1090用于给冷却液容器1080加冷却液,第二管路1100用于给冷却液容器1080排液或给服务器冷却系统1000加冷却液。该实施例不仅可以对服务器冷却系统1000加冷却液,还可以在服务器冷却系统1000的管路内的液体不足时,对服务器冷却系统1000补充冷却液。
需要说明的是,补液泵1071的出液端1078的管路与服务器的出液口1012、循环泵1220之间的管路连接,以实现对服务器冷却系统1000加液。
具体地,如图4所示,第一管路1090设有第一阀门1091,第二管路1100设有第二阀门1101,补液泵1071的进液端1077、外部接口1072之间的管路1073设有第三阀门1074,补液泵1071的出液端1078的管路设有第四阀门1076,第一管路1090与补液泵1071的出液端1078、第四阀门1076之间的管路连接,第二管路1100与补液泵1071的进液端1077、第三阀门1074之间的管路连通,在服务器冷却系统1000内没有冷却液时,工作人员将外部接口1072与冷却液源连接,如与水龙头连接,第三阀门1074和第四阀门1076打开,第一阀门1091和第二阀门1101关闭,冷却液流经加液管道1070、补液泵1071的出液端1078的管路给服务器冷却系统1000加冷却液。
可以理解地,冷却液在流经服务器后温度升高,可能会导致冷却液的蒸发,从而造成服务器冷却系统1000的管路内冷却液流量不足,需要对服务器冷却系统1000补充冷却液。具体地,如图4所示,冷却液系统还包括流量传感器1130,流量传感器1130用于检测管路内液体的流量,流量传感器1130设于第二出液口1032和第一进液口1021之间的管路,流量传感器1130与控制装置1060(图未示)连接,控制装置1060用于实时获取流量传感器1130检测到的管路内液体的流量,当流量传感器1130检测到的液体的流量值小于预设液体流量值时,控制装置1060控制第二阀门1101和第四阀门1076打开,第一阀门1091和第 三阀门1074关闭,使冷却液容器1080内的冷却液流经第二管路1100、加液管道1070和补液泵1071的出液端1078的管路为服务器冷却系统1000补充冷却液。
可以理解地,对冷却液容器1080加液时,第三阀门1074和第一阀门1091打开,第二阀门1101和第四阀门1076关闭。
在一些实施例中,如图4所示,补液泵1071的进液端1077与外部接口1072之间的管路设有过滤器1075,过滤器1075用于过滤冷却液的杂质,如泥沙、铁屑等,以防止杂质流入管路,造成管路阻塞。
在一些实施例中,如图4所示,服务器冷却系统1000还包括排空管路1140,排空管路1140的一端通过管路与外部接口1072连接,排空管路1140的另一端与服务器的出液口1012、第二进液口1031之间的管路连接或第二出液口1032、第一进液口1021之间的管路连接,排空管路1140用于对服务器冷却系统1000的管路进行排空。
具体地,排空管路1140设有泄空阀1141,可以理解地,为提高对服务器冷却系统1000的管路进行排空的效果,可在服务器的出液口1012、第二进液口1031之间的管路设置泄空阀1141,以及在第二出液口1032、第一进液口1021之间的管路设置泄空阀1141。
可以理解地,在对服务器冷却系统1000的管路进行排空时,外部接口1072不与任何冷却液源连接,可以将外部接口1072流出的冷却液导流至废液池,也可以用废液容器收集外部接口1072流出的冷却液。
在一些实施例中,如图4所示,服务器冷却系统1000还包括第一压力传感器1150,第一压力传感器1150设于第二进液口1031、服务器的出液口1012之间的管路,用于检测流入换热装置1030的冷却液的压力。具体地,第一压力传感器1150与控制装置1060连接,控制装置1060用于获取第一压力传感器1150检测的压力,当第一压力传感器1150检测的压力小于预设压力时,控制装置1060控制第二阀门1101和第四阀门1076打开,第一阀门1091和第三阀门1074关闭,使冷却液容器1080内的冷却液流经第二管路1100、加液管道1070和补液泵的出液端1078的管路为服务器冷却系统1000补充冷却液。
在一些实施例中,如图4所示,服务器冷却系统1000还包括第二压力传感 器1160,第二压力传感器1160设于第二出液口1032、第一进液口1021之间的管路,用于检测流出换热装置1030的冷却液的压力。具体地,第二压力传感器1160与控制装置1060连接,控制装置1060用于获取第二压力传感器1160检测的压力,当第二压力传感器1160检测的压力大于预设压力时,控制装置1060控制循环泵1220关闭,以防止流入服务器的冷却液的压力过大,对服务器造成损伤。
在一些实施例中,如图4所示,服务器冷却系统1000还包括膨胀罐1230,膨胀罐1230通过管路与服务器的出液口1012、循环泵1220之间的管路连接,膨胀罐1230用于调节服务器冷却系统1000的管路内的液体的压力,以维持服务器冷却系统1000的管路内的冷却液循环的稳定性。
在一些实施例中,如图4所示,冷却液容器1080还包括第二加液口1083,服务器冷却系统1000还包括安全阀1170,安全阀1170的一端通过管路与第二压力传感器1160、第一进液口1021之间的管路连接,安全阀1170的另一端通过管路与第二加液口1083连接,安全阀1170在服务器冷却系统1000的管路内的压力大于安全阀1170的设定压力时打开,以将服务器冷却系统1000的管路内的部分冷却液排送至冷却液容器1080中。以维持服务器冷却系统1000的正常工作,防止出现故障。
在一些实施例中,如图4所示,服务器冷却系统1000还包括液位传感器1260,液位传感器1260用于检测冷却液容器1080中的冷却液的液位。
在一些实施例中,如图4所示,服务器冷却系统1000还包括第二电动三通阀1240和短路管路1180,其中,第二电动三通阀1240设于循环泵1220与第二进液口1031之间的管路,第二电动三通阀1240与控制装置1060连接,短路管路1180的一端与第二电动三通阀1240的出液口连接,短路管路1180的另一端与第二出液口1032、第二温度传感器1050之间的管路连接,在外界温度低于预设温度时,控制装置1060通过控制第二电动三通阀1240的开度使冷却液通过短路管路1180流通。
需要说明的是,本实施例中的使冷却液通过短路管路1180流通是指使服务器冷却系统1000的管路内的所有冷却液通过短路管路1180流通。
在一些实施例中,服务器冷却系统1000还包括脱气罐1190,脱气罐1190 设于服务器的出液口1012和第二进液口1031之间的管路,脱气罐1190用于将冷却液中的气体排除。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (10)

  1. 一种服务器冷却系统,其中,所述服务器冷却系统包括:
    分流器,所述分流器包括一个第一进液口和多个第一出液口,所述第一出液口用于与服务器的进液口连接;
    换热装置,所述换热装置包括第二进液口和第二出液口,所述第二进液口用于与服务器的出液口连接,所述第二出液口通过管路与所述第一进液口连接;
    第一温度传感器,设于所述第二进液口、所述服务器的出液口之间的管路,用于检测流入所述换热装置的冷却液的温度;
    第二温度传感器,设于所述第二出液口、所述第一进液口之间的管路,用于检测流出所述换热装置的冷却液的温度;
    控制模块,与所述第一温度传感器、所述第二温度传感器及所述换热装置连接,所述控制装置用于获取所述第一温度传感器检测的温度和所述第二温度传感器检测的温度,并根据所述第一温度传感器检测的温度和所述第二温度传感器检测的温度控制所述换热装置对冷却液进行冷却处理;
    循环泵,设于所述服务器的出液口和所述第二进液口之间的管路。
  2. 根据权利要求1所述的服务器冷却系统,其中,所述换热装置包括:
    板式换热器,所述板式换热器包括所述第二进液口和所述第二出液口;
    第一电动三通阀,所述第一电动三通阀设于所述第一温度传感器、所述第二进液口之间的管路;
    冷却液分流管路,所述冷却液分流管路的一端与所述第一电动三通阀的出液口连接,所述冷却液分流管路的另一端与所述第二出液口、所述第二温度传感器之间的管路连接;
    其中,所述控制装置根据所述第一温度传感器检测的温度和所述第二温度传感器检测的温度控制所述第一电动三通阀的开度。
  3. 根据权利要求1所述的服务器冷却系统,其中,所述换热装置包括:
    冷却塔,所述冷却塔包括风机,所述控制装置根据所述第一温度传感器检测的温度和所述第二温度传感器检测的温度控制所述冷却塔的风机的转速。
  4. 根据权利要求1所述的服务器冷却系统,其中,所述服务器冷却系统还包括:
    加液管道,所述加液管道包括补液泵、外部接口以及连接所述补液泵、所述外部接口的管路,所述加液管道用于给所述服务器冷却系统加冷却液;
    冷却液容器,所述冷却液容器包括第一加液口和排液口,所述第一加液口通过第一管路与所述补液泵的出液端的管路连通,所述排液口通过第二管路与所述补液泵的进液端、所述外部接口之间的管路连通;
    其中,所述第一管路用于给所述冷却液容器加冷却液,所述第二管路用于给所述冷却液容器排液或给所述服务器冷却系统加冷却液。
  5. 根据权利要求4所述的服务器冷却系统,其中,所述服务器冷却系统还包括:
    排空管路,所述排空管路的一端与所述外部接口连接,所述排空管路的另一端与所述服务器的出液口、所述第二进液口之间的管路连接或所述第二出液口、所述第一进液口之间的管路连接,所述排空管路用于对所述服务器冷却系统的管路进行排空。
  6. 根据权利要求4所述的服务器冷却系统,其中,所述服务器冷却系统还包括:
    第一压力传感器,设于所述第二进液口、所述服务器的出液口之间的管路,用于检测流入所述换热装置的冷却液的压力;和/或
    第二压力传感器,设于所述第二出液口、所述第一进液口之间的管路,用于检测流出所述换热装置的冷却液的压力。
  7. 根据权利要求1所述的服务器冷却系统,其中,所述服务器冷却系统还包括:
    膨胀罐,通过管路与所述服务器的出液口、所述循环泵之间的管路连接。
  8. 根据权利要求6所述的服务器冷却系统,其中,所述冷却液容器还包括第二加液口,所述服务器冷却系统还包括:
    安全阀,所述安全阀的一端通过管路与所述第二压力传感器、所述第一进液口之间的管路连接,所述安全阀的另一端通过管路与所述第二加液口连接,;
    其中,所述安全阀在所述服务器冷却系统的管路内的压力大于所述安全阀的设定压力时打开,以将所述服务器冷却系统的管路内的部分冷却液排送至所述冷却液容器中。
  9. 根据权利要求1所述的服务器冷却系统,其中,所述服务器冷却系统还 包括:
    第二电动三通阀,设于所述循环泵与所述第二进液口之间的管路,所述第二电动三通阀与所述控制装置连接;
    短路管路,所述短路管路的一端与所述第二电动三通阀的出液口连接,所述短路管路的另一端与所述第二出液口、所述第二温度传感器之间的管路连接;
    其中,在外界温度低于预设温度时,所述控制装置通过控制所述第二电动三通阀的开度使冷却液通过所述短路管路流通。
  10. 根据权利要求2或3所述的服务器冷却系统,其中,所述服务器冷却系统还包括:
    第三电动三通阀,所述第三电动三通阀的进液口通过管路与所述循环泵连接,所述第三电动三通阀的一个出液口通过管路与所述第一电动三通阀的进液口连接,所述第三电动三通阀的另一个出液口通过管路与所述冷却塔上的所述第二进液口连接;
    和/或,所述服务器冷却系统还包括第五阀门和第六阀门,所述第五阀门用于控制冷却液流通所述板式换热器,所述第六阀门用于控制冷却液流通所述冷却塔。
PCT/CN2023/109644 2022-08-30 2023-07-27 服务器冷却系统 WO2024045966A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202222298236.0U CN218851184U (zh) 2022-08-30 2022-08-30 服务器冷却系统
CN202222298236.0 2022-08-30

Publications (1)

Publication Number Publication Date
WO2024045966A1 true WO2024045966A1 (zh) 2024-03-07

Family

ID=87292310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/109644 WO2024045966A1 (zh) 2022-08-30 2023-07-27 服务器冷却系统

Country Status (2)

Country Link
CN (1) CN218851184U (zh)
WO (1) WO2024045966A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN218851184U (zh) * 2022-08-30 2023-04-11 北京比特大陆科技有限公司 服务器冷却系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012054499A (ja) * 2010-09-03 2012-03-15 Sohki:Kk 電子機器の冷却システム
CN104501648A (zh) * 2014-12-11 2015-04-08 北京星达科技发展有限公司 一种数据机房机柜冷却系统
CN215121663U (zh) * 2021-04-09 2021-12-10 广东西江数据科技有限公司 一种工作稳定可靠的大型服务器液冷系统
CN114144045A (zh) * 2021-12-13 2022-03-04 长城超云(北京)科技有限公司 一种液冷循环系统
CN114390851A (zh) * 2020-10-22 2022-04-22 广东美的暖通设备有限公司 一种机房散热降温系统、机房
CN115279122A (zh) * 2022-07-14 2022-11-01 南京佳力图机房环境技术股份有限公司 一种风液式液体冷量分配装置
CN218851184U (zh) * 2022-08-30 2023-04-11 北京比特大陆科技有限公司 服务器冷却系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012054499A (ja) * 2010-09-03 2012-03-15 Sohki:Kk 電子機器の冷却システム
CN104501648A (zh) * 2014-12-11 2015-04-08 北京星达科技发展有限公司 一种数据机房机柜冷却系统
CN114390851A (zh) * 2020-10-22 2022-04-22 广东美的暖通设备有限公司 一种机房散热降温系统、机房
CN215121663U (zh) * 2021-04-09 2021-12-10 广东西江数据科技有限公司 一种工作稳定可靠的大型服务器液冷系统
CN114144045A (zh) * 2021-12-13 2022-03-04 长城超云(北京)科技有限公司 一种液冷循环系统
CN115279122A (zh) * 2022-07-14 2022-11-01 南京佳力图机房环境技术股份有限公司 一种风液式液体冷量分配装置
CN218851184U (zh) * 2022-08-30 2023-04-11 北京比特大陆科技有限公司 服务器冷却系统

Also Published As

Publication number Publication date
CN218851184U (zh) 2023-04-11

Similar Documents

Publication Publication Date Title
WO2024045966A1 (zh) 服务器冷却系统
WO2023185384A1 (zh) 单相浸没式液冷系统、液冷方法及存储介质
CN212677604U (zh) 服务器的液冷换热机组以及液冷换热系统
WO2023016206A1 (zh) 散热及供暖系统
TWI822890B (zh) 雙冷卻器
CN215121663U (zh) 一种工作稳定可靠的大型服务器液冷系统
WO2021114878A1 (zh) 具有冗余相变传热元件的服务器水冷散热系统及控制方法
CN211297477U (zh) 一种服务器用的循环水降温系统
CN209845599U (zh) 一种冷却装置及服务器机柜系统
CN114449857B (zh) 液冷系统
CN110285574A (zh) 一种基于间接加热与多级冷却的精确控温系统
CN105704986A (zh) 一种供回水双环路冷却循环系统
CN211557802U (zh) 一种服务器用的双路水冷散热系统
CN111491482A (zh) 一种冷却装置、服务器机柜系统及故障处理方法
CN110849205B (zh) 一种水冷定压补液水箱系统及其使用方法
TWM567674U (zh) Heat exchange system with multiple heat exchange hosts
CN111077957B (zh) 一种多途径服务器冷却系统
CN210663446U (zh) 一种制冷及热量回收装置
CN110170881A (zh) 机床冷却机装置和数控机床系统
CN208845313U (zh) 海上风力发电机组塔底冷却除湿系统
CN112235995A (zh) 一种用于数据中心制冷的冷水系统
CN220693612U (zh) 数据中心机柜液冷装置
CN211128738U (zh) 一种基于相变传热元件的水冷散热双通道系统
CN212713742U (zh) 一种溅射镀膜冷却水循环系统
CN220206133U (zh) 冷却水循环水箱

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23859001

Country of ref document: EP

Kind code of ref document: A1