JP6083316B2 - 電子機器冷却システム - Google Patents

電子機器冷却システム Download PDF

Info

Publication number
JP6083316B2
JP6083316B2 JP2013099462A JP2013099462A JP6083316B2 JP 6083316 B2 JP6083316 B2 JP 6083316B2 JP 2013099462 A JP2013099462 A JP 2013099462A JP 2013099462 A JP2013099462 A JP 2013099462A JP 6083316 B2 JP6083316 B2 JP 6083316B2
Authority
JP
Japan
Prior art keywords
electronic device
cooling water
flow rate
pump
coolant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013099462A
Other languages
English (en)
Other versions
JP2014220419A (ja
Inventor
梅宮 茂良
茂良 梅宮
浩史 遠藤
浩史 遠藤
孝祐 有岡
孝祐 有岡
雅俊 小川
雅俊 小川
一明 柄澤
一明 柄澤
徳世 志野
志野 徳世
裕幸 福田
裕幸 福田
菊地 吉男
吉男 菊地
近藤 正雄
正雄 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2013099462A priority Critical patent/JP6083316B2/ja
Publication of JP2014220419A publication Critical patent/JP2014220419A/ja
Application granted granted Critical
Publication of JP6083316B2 publication Critical patent/JP6083316B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)

Description

本発明は、電子機器冷却システムに関する。
近年、高度情報化社会の到来にともなって計算機で多量のデータが扱われるようになり、データセンター等の施設において多数の計算機を同一室内に設置して一括管理することが多くなっている。例えば、データセンターでは、計算機室内に多数のラック(サーバラック)を設置し、各ラックにそれぞれ複数の計算機(サーバ)を収納している。そして、それらの計算機の稼動状態に応じて各計算機にジョブを有機的に配分し、大量のジョブを効率的に処理している。
計算機の稼動にともなって計算機から多量の熱が発生する。計算機内の温度が高くなると誤動作や故障又は処理能力の低下の原因となるため、計算機を冷却することが重要になる。一般的に、計算機の冷却には空冷システム又は水冷システムが採用されるが、発熱量が多い計算機の場合は水冷システムが採用されることが多い。
水冷システムには、直接水冷システムと間接水冷システムとがある。直接水冷システムでは、CPU(Central Processing Unit)等の発熱量が多い電子部品にクーリングプレートを取り付け、チラー等の冷凍機から供給される冷却水をクーリングプレート内に通流させて、電子部品を冷却する。
しかし、直接水冷システムでは、サーバ内で漏水が発生した場合にサーバの故障を招く可能性がある。また、現在主流の空冷式サーバが混載できなかったり、ラック内の水冷配管が複雑になるなどの問題もある。そのため、一般的なデータセンターでは直接水冷システムは採用されていない。そこで、サーバ内に熱交換機を搭載したラック一体型間接水冷システムが開発されている。
ところで、CPUの発熱量はCPUの稼働状態に応じて短時間で大きく変化する。そのため、冷凍機と熱交換器とを直接接続すると、冷凍機に戻る冷却水(以下、「還り水」という)の温度が大きく変化する。還り水の温度が大きく変化すると、冷凍機がその温度変化に追従できず、熱交換器に供給される冷却水の温度も変化してしまう。その結果、冷却水の流量制御が不安定になり、CPUの温度が許容温度を超えたり、CPUを過剰に冷却したりすることになる。
このような不具合を回避するために、一般的な冷却システムでは、冷凍機と熱交換器との間にバッファタンクと呼ばれる貯水槽を配置している。そして、冷凍機から供給される冷却水をバッファタンクに一時的に貯留し、バッファタンクから熱交換器に冷却水を供給している。
実開平3−80274号公報 特開2001−227780号公報
電力の無駄な消費を抑制できる電子機器冷却システムを提供することを目的とする。
開示の技術の一観点によれば、冷却液を冷却する冷凍機と、電子機器と、バッファタンクと、前記冷凍機と前記バッファタンクとの間に冷却液を循環させる第1のポンプと、前記バッファタンクと前記電子機器との間に冷却液を循環させる第2のポンプと、前記冷凍機と前記バッファタンクとの間に流れる冷却液の流量を検出する第1の流量計と、前記バッファタンクと前記電子機器との間に流れる冷却液の流量を検出する第2の流量計と、前記第1の流量計及び前記第2の流量計の出力に応じて前記第1のポンプの送液量を制御する制御部とを有する電子機器冷却システムが提供される。
上記一観点に係る電子機器冷却システムによれば、電子機器の稼働状態に応じて第1のポンプの送液量が変化するので、電力の無駄な消費を抑制できる。
図1は、電子機器冷却システムの一例を示す模式図である。 図2は、第1の実施形態に係る電子機器冷却システムの構成を示す模式図である。 図3は、第1の実施形態に係る電子機器冷却システムの動作を示すフローチャートである。 図4は、バッファタンクの仕切り板を断熱構造とした例を示す図である。 図5は、ポンプの送水量と消費電力との関係を示す図である。 図6は、ポンプに供給する信号の周波数とポンプの送水量との関係を示す図である。 図7は、図1に示す電子機器冷却システム(比較例)と実施形態に係る電子機器冷却システムのファシリティ電力及びCOPを比較して示す図(その1)である。 図8は、図1に示す電子機器冷却システム(比較例)と実施形態に係る電子機器冷却システムのファシリティ電力及びCOPを比較して示す図(その2)である。 図9は、第2の実施形態に係る電子機器冷却システムの構成を示す模式図である。 図10は、第2の実施形態に係る電子機器冷却システムの動作を説明するフローチャートである。
以下、実施形態について説明する前に、実施形態の理解を容易にするための予備的事項について説明する。
図1は、電子機器冷却システムの一例を示す模式図である。ここでは、データセンターにおいてラック14内に収納されたサーバ(電子機器)を冷却する冷却システムについて説明している。データセンターでは室内に複数(図1の例では3台)のラック14が配置されており、各ラック14にはそれぞれ複数のサーバが収納されている。
バッファタンク12内には仕切り板13が設けられており、この仕切り板13によりバッファタンク12内は高温槽12aと低温槽12bとに分割されている。但し、仕切り板13の下部には、高温槽12aと低温槽12bとを連絡する連通穴13aが設けられている。
チラー11の冷却水出口(OUT)とバッファタンク12の低温槽12bの冷却水入口(IN)との間は、第1の配管21により接続されている。また、チラー11の冷却水入口(IN)とバッファタンク12の高温槽12aの冷却水出口(OUT)との間は、第2の配管22により接続されている。
ポンプ15は第2の配管22の途中に設けられており、このポンプ15によりチラー11とバッファタンク12との間に冷却水を循環させる。以下、チラー11とバッファタンク12との間に流れる冷却水を、一次冷却水という。
バッファタック12の低温槽12bの冷却水出口(OUT)には第3の配管23が接続されており、バッファタンク12の高温槽12aの冷却水入口(IN)には第4の配管24が接続されている。
第3の配管23には、第3の配管23内を流れる冷却水の温度を検出する温度計18が設けられている。また、第3の配管23と第4の配管24との間には、バイパスバルブ17が接続されている。
第3の配管23と各ラック14の冷却水入口(IN)との間を接続する配管には、それぞれ流量調整バルブ(二方弁)19a,19b,19cが設けられている。また、各ラック14の冷却水出口(OUT)と第4の配管24との間を連絡する配管には、それぞれ温度計20a,20b,20cが設けられている。
ポンプ16は第4の配管24の途中に設けられており、バッファタンク12とラック14との間に冷却水を循環させる。以下、バッファタンク12から出て第3の配管23及び第4の配管24を通りバッファタンク12に戻る冷却水を、二次冷却水という。
上述の電子機器冷却システムでは、ポンプ15によりチラー11とバッファタンク12との間に常時冷却水を流している。また、ラック14から排出される冷却水の温度を温度計20a,20b,20cで検出し、ラック14から排出される冷却水の温度が所定の温度となるように流量調整バルブ19a,19b,19cの開度を調整している。更に、ラック14から排出される冷却水の温度が低下してバルブ19a,19b,19cの開度が小さくなったときにも、バイパスバルブ17を介して一定量以上の冷却水を配管24に流し、ポンプ16が過負荷となることを防止している。
しかし、上述の電子機器冷却システムでは、ラック14内に収納されているサーバの発熱量が小さい場合、ラック14内に導入される冷却水の流量が減少するにもかかわらず、一次冷却水の流量は変化しない。従って、ポンプ15が無駄に稼働しているということができ、ポンプ15で消費する電力の削減が望まれる。
また、上述の電子機器冷却システムでは、ラック14内に収納されているサーバの発熱量が大きい場合、バルブ19a,19b,19cが全開になり、一次冷却水の流量よりも二次冷却水の流量が多くなることがある。この場合、連通穴13aを介して高温槽12aから低温槽12bに多量の冷却水が流入し、低温槽12bの冷却水の温度が上昇する。従って、低温槽12bからラック14に供給される冷却水の温度が高くなる。その結果、チラー11の運転効率が低下し、冷却システムの消費電力が上昇する。
以下の実施形態では、電力の無駄な消費を抑制できる電子機器冷却システムについて説明する。
(第1の実施形態)
図2は、第1の実施形態に係る電子機器冷却システムの構成を示す模式図である。本実施形態では、データセンターのラック内に収納されたサーバを冷却する冷却システムについて説明している。
データセンターの室内には複数(図2の例では3台)のラック14が配置されており、各ラック14にはそれぞれ複数のサーバが収納されている。各サーバには熱交換器が搭載されており、ラック14の冷却水入口(IN)からラック14内に流入した冷却水は熱交換器内を通り、ラック14の冷却水出口(OUT)からラック14の外に排出される。なお、サーバが収納されたラック14は電子機器の一例であり、CPUは発熱部品の一例であり、冷却水は冷却液の一例である。
バッファタンク32内には仕切り板33が設けられており、この仕切り板33によりバッファタンク32内は高温槽32aと低温槽32bとに分割されている。但し、仕切り板33の高さはバッファタンク32の外壁よりも低く設定されている。このような構造とすることにより、何らかの原因で高温槽32a及び低温槽32bのいずれか一方の槽の水位が異常に低下したときに、他方の槽から一方の槽に冷却水が流れ込む。これにより、後述するポンプ35,36及びチラー31等の損傷が回避される。
チラー31の冷却水出口(OUT)とバッファタンク32の低温槽32bの冷却水入口(IN)との間は第1の配管41により接続されている。また、チラー31の冷却水入口(IN)とバッファタンク32の高温槽32aの冷却水出口(OUT)との間は第2の配管42により接続されている。なお、チラー31は冷凍機の一例である。
第2の配管42の途中には、ポンプ35(第1のポンプ)と流量計52(第1の流量計)とが設けられている。ポンプ35によりチラー31とバッファタンク32との間に冷却水を循環させる。このポンプ35はインバータ51から供給される信号により回転数が変化し、ポンプ35の回転数の変化にともなってポンプ35の送水量、すなわち第2の配管42に流れる冷却水(一次冷却水)の流量が変化する。また、流量計52により、第2の配管42を通る冷却水の流量が検出される。
バッファタンク32の低温槽32bの冷却水出口(OUT)には第3の配管43が接続されており、バッファタンク32の高温槽32aの冷却水入口(IN)には第4の配管44が接続されている。
第3の配管43には、第3の配管43内を流れる冷却水(二次冷却水)の流量を検出する流量計53(第2の流量計)と、冷却水の温度を検出する温度計38とが設けられている。また、第3の配管43と第4の配管44との間には、バイパスバルブ37が接続されている。
第3の配管43と各ラック14の冷却水入口(IN)との間を接続する配管には、それぞれ流量調整バルブ(二方弁)39a,39b,39cが設けられている。また、各ラック14の冷却水出口(OUT)と第4の配管44との間を連絡する配管には、それぞれ温度計40a,40b,40cが設けられている。
温度計40a,40b,40cの出力はそれぞれ温調器54a,54b,54cに伝達される。温調器54a,54b,54cは、ラック14から排出される冷却水の温度が一定となるように、流量調整バルブ39a,39b,39cの開度を調整する。温調器54a,54b,54cは、バルブ調整部の一例である。
ポンプ36(第2のポンプ)は第4の配管44の途中に設けられており、このポンプ36によりバッファタンク32からラック14に冷却水が供給させる。
流量計52,53の出力は制御部50に伝達される。制御部50は、これらの流量計52,53の出力に基づいてインバータ51を制御する。前述したように、このインバータ51から出力される信号によりポンプ35の回転数が変化し、チラー31とバッファタンク32との間に流れる冷却水(一次冷却水)の流量が変化する。
なお、本実施形態では、制御部50としてPLC(Programmable Logic Controller)を使用する。但し、制御部50として専用のコンピュータを用いてもよく、ラック14内の特定のサーバに専用プログラムを読み込ませて、制御部50としてもよい。
以下、本実施形態に係る電子機器冷却システムの動作について、図3のフローチャートを参照して説明する。なお、ここでは一次冷却水の流量の下限値を200L(リットル)/minとしている。また、一次冷却水の流量と二次冷却水の流量との差が10L/min以上になると、ポンプ35の回転数を減少している。
まず、ステップS11において、制御部50は、流量計52から一次冷却水の流量F1を取得する。また、ステップS12において、制御部50は、流量計53から二次冷却水の流量F2を検出する。
次に、ステップS13に移行し、制御部50は一次冷却水の流量F1が二次冷却水の流量F2以上か否かを判定する。一次冷却水の流量F1が二次冷却水の流量F2よりも少ない場合(NOの場合)はステップS14に移行し、一次冷却水の流量F1が二次冷却水の流量F2以上の場合(YESの場合)はステップS15に移行する。
ステップS13からステップS14に移行した場合、すなわち一次冷却水の流量F1が二次冷却水の流量F2よりも少ない場合は、バッファタンク32の高温槽32aの水位が上昇し、高温槽32aから低温槽32bに冷却水がオーバーフローするおそれがある。この場合、制御部50はインバータ51を制御してポンプ35の回転数を一定量増加させ、高温槽32aからチラー31に流れる冷却水の流量を増やす。これにより、高温槽32aの水位が低下し、高温槽32aから低温槽32bへの冷却水の流入が回避される。その後、ステップS11に戻り、処理を継続する。
一方、ステップS13からステップS15に移行した場合、制御部50は一次冷却水の流量F1と二次冷却水の流量F2との差を演算する。そして、一次冷却水の流量F1と二次冷却水の流量F2との差が10L/min未満の場合はステップS11に戻り、一次冷却水の流量F1と二次冷却水の流量F2との差が10L/min以上の場合はステップS16に移行する。
ステップS13からステップS15に移行した場合は、バッファタンク32の高温槽32aから低温槽32bに冷却水がオーバーフローするおそれはない。そこで、ステップS15で一次冷却水の流量F1と二次冷却水の流量F2との差が10L/min未満であると判定した場合は、そのままの状態を維持して、ステップS11に戻る。
一方、ステップS15からステップS16に移行した場合は、二次冷却水の流量に応じてポンプ35の回転数を減少することで、ポンプ35の消費電力を削減する。
すなわち、ステップS16において、制御部50は二次冷却水の流量F2が200L/min未満か否かを判定する。二次冷却水の流量F2が200L/min未満の場合(YESの場合)は、ラック14内のサーバの発熱量が小さいということができる。この場合、ステップS17に移行して、制御部50は、一次冷却水の流量F1が200L/min(一次冷却水の下限値)になるようにインバータ51を制御する。
一方、ステップS16において二次冷却水の流量F2が200L/min以上の場合(NOの場合)は、ステップS18に移行し、制御部50は、インバータ51を制御してポンプ35の回転数を一定量減少させる。
本実施形態では、図3のフローチャートからわかるように、一次冷却水の流量F1が二次冷却水の流量F2以上となるように一次冷却水側のポンプ35を制御している。このため、低温槽32bの水位は常に高温槽32aの水位と同じ又はそれよりも高くなり、高温槽32aから低温槽32bへの冷却水の流入に起因するチラー31の運転効率の低下が回避される。
また、本実施形態では、二次冷却水の流量F2の変化に連動して一次冷却水側のポンプ35の回転数が変化するので、二次冷却水の流量F2が少なくなるとポンプ35の回転数が減少する。これにより、ポンプ35で電力を無駄に消費することが回避され、消費電力が削減される。
なお、本実施形態では配管43,44間にバイパスバルブ37を設けて、バルブ39a,39b,39cの開度が小さいときにも一定量以上の冷却水が配管44に流れるようにしている。しかし、バルブ39a,39b,39cとして三方弁を使用し、バルブ39a,39b,39cを介して配管44に冷却水の一部が流れるようにすれば、バイパスバルブ37を省略することができる。
また、本実施形態ではポンプ36が一定の回転数で常時回転するものとしているが、制御部50によりポンプ36の回転数を制御できるようにしてもよい。これにより、ポンプ36で消費する電力を削減することが可能になる。
更に、本実施形態ではラック14から排出される冷却水の温度によりバルブ39a,39b,39cの開度を調整するものとしているが、ラック14内の温度を検出してバルブ39a,39b,39cの開度を調整するようにしてもよい。
更にまた、バッファタンク32の仕切り板33を図4のように断熱構造とし、高温槽32aと低温槽32bとの間の熱交換を抑制してもよい。図4に例示する仕切り板33では、断熱材33bを挟んだ構造としている。断熱材33bとして、発泡スチロール又はロックウールなどを用いることができる、また、仕切り板33を中空構造とし、仕切り板33内に空気、窒素又はアルゴン等のガスを封入してもよく、仕切り板33内を真空にしてもよい。壁材33aにはFRP(Fiber Reinforced Plastics)などが使用される。
以下、本実施形態の効果の具体例について説明する。
(例1)
図5は、横軸にポンプ35の送水量をとり、縦軸に消費電力をとって、ポンプ35の送水量と消費電力との関係を示す図である。この図5に示すように、ポンプ35の送水量が多くなるほど消費電力は急激に増加する。
図6は、横軸に周波数をとり、縦軸に送水量をとって、ポンプ35に供給する信号の周波数とポンプ35の送水量との関係を示す図である。この図6からわかるように、ポンプ35の送水量はポンプ35の回転数にほぼ比例する。
例えばポンプ35に供給する信号の周波数を27Hzとした場合、ポンプ35の送水量は410L/minとなる。図5から、ポンプ35の送水量が410L/minのときの消費電力は約2.9kWであることがわかる。
例えば図1に例示する電子機器冷却システムにおいて、ポンプ15としてポンプ35と同等のものを使用したとする。この場合、二次冷却水の流量にかかわらずポンプ15を送水量410L/minの条件で常時稼働すると、約2.9kWの電力を消費する。
一方、本実施形態の電子機器冷却システムでは、サーバが低負荷になって二次冷却水の流量が200L/minまで低下した場合、一次冷却水の流量は200L/min〜210L/minとなる。この場合のポンプ35の消費電力は、図5から約0.7kWであることがわかる。
従って、本実施形態に係る電子機器冷却システムは、サーバが低負荷の場合、図1に例示する電子機器冷却システムに比べて2.2kWの電力を削減することができる。
(例2)
図7,図8は、図1に示す電子機器冷却システム(比較例)と本実施形態に係る電子機器冷却システムのファシリティ電力及びCOP(Coefficient Of Performance:成績係数)を比較して示す図である。図7はサーバが高負荷時(110kW稼働時)のときのファシリティ電力及びCOPを示しており、図8はサーバが低負荷時(75kW稼働時)のときのファシリティ電力及びCOPを示している。
なお、COPは、冷房機器などのエネルギー消費効率の目安として使われる係数であり、COPの値が大きいほどエネルギー消費効率が高いということができる。
また、図7,図8中のポンプ電力1は一次冷却水側のポンプ15,35の消費電力であり、ポンプ電力2は二次冷却水側のポンプ16,36の消費電力である。更に、図7,図8中のファン電力はラック14内に搭載された集中ファンの消費電力であり、チラー電力はチラー11,31の消費電力である。ここでは、チラー11,31として、フリークーリングが可能な日立金属社製のチルドタワーを用いている。
図7からわかるように、サーバの稼働率が高いときには、比較例の電子機器冷却システムと実施形態の電子機器冷却システムとで消費電力及びCOPの差は殆どない。
しかし、図8からわかるように、比較例の電子機器冷却システムでは、サーバの負荷が低くなっても、二次冷却水側のポンプ16の消費電力(ポンプ電力2)が若干低下するだけである。このため、比較例の電子機器冷却システムでは、サーバの負荷が低くなってもファシリティ電力の減少割合は少なく、COPの値は大きく減少する。
これに対し、本実施形態の電子機器冷却システムでは、サーバの負荷が低くなると、一次冷却水側のポンプ35の消費電力(ポンプ電力2)が大幅に減少する。このため、本実施形態の電子機器冷却システムでは、サーバの負荷が低くなると、ファシリティ電力が大きく減少する。また、本実施形態の電子機器冷却システムの低負荷時のCOPの値は、高負荷時のCOPの値から若干減少するだけである。
(例3)
図1に例示する電子機器冷却システムにおいて、一次冷却水として常時380L/minの冷却水が流れるものとする。このとき、サーバの負荷が一時的に想定以上となり、二次冷却水の量が460L/min以上となるとする。この場合、バッファタンク12の高温槽12a側に流れ込む冷却水の流量が増加し、高温槽12a側から仕切り板13の連通穴13aを介して低温槽12b側に冷却水が流れ、低温槽12b側の冷却水の温度が上昇する。
例えば、チラー11から低温槽12bに流入する冷却水の温度が15℃であり、ラック14から高温槽12aに流入する冷却水の温度が20℃であるとする。この場合、一次冷却水と二次冷却水との流量比から、低温槽12b側の冷却水の温度が0.5℃程度上昇すると予想される。
これに対し、本実施形態に係る電子機器冷却システムでは、二次冷却水の流量が一時的に増加しても、二次冷却水の流量の増加に応じてポンプ35の送水量が増加する。これにより、高温槽32aから低温槽32bに冷却水が流れ込むことはなく、低温槽32b側の冷却水の温度上昇が回避される。
(第2の実施形態)
図9は、第2の実施形態に係る電子機器冷却システムの構成を示す模式図である。なお、図9において、図2と同一物には同一符号を付している。
第1の実施形態では、一次冷却水の流量F1が二次冷却水の流量F2と同じ又はそれ以上となるようにポンプ35を制御しているので、基本的にバッファタンク12の高温槽32aから低温槽32bに冷却水が流れ込むことはない。しかし、流量計52,53の測定誤差等の原因により一次冷却水の水量F1よりも二次冷却水の流量F2が多くなり、バッファタンク32の高温槽32a側の水面が上昇して、高温槽32a側から低温槽32b側に冷却水がオーバーフローすることが考えられる。
そこで、第2の実施形態では、図9に示すように、バッファタンク32の高温槽32a側に液面センサ55を設置する。この液面センサ55は、高温槽32a側の水面が仕切り板33の上端よりも若干下の位置まで上昇したときに、制御部50に所定の信号を出力する。制御部50は、液面センサ55から所定の信号が出力されると、インバータ51を制御して、ポンプ35の回転数を上昇させる。
図10は、第2の実施形態に係る電子機器冷却システムの動作を説明するフローチャートである。図10において、ステップS11〜ステップS18は第1の実施形態で説明した通りであるので、ここでは重複する部分の説明を省略する。
まず、ステップS21において、制御部50は液面センサ55から所定の信号が出力されているか否かを調べる。そして、制御部50が液面センサ55から所定の信号が出力されていないと判定した場合(NOの場合)は、ステップS21からステップS11に移行する。
一方、ステップS21において制御部50が液面センサ55から所定の信号が出力されていると判定した場合は、ステップS14に移行する。そして、制御部50は、インバータ51を制御してポンプ35の回転数を一定量増加した後、ステップS21に戻る。
本実施形態では、液面センサ55により高温槽32a側の水位を監視しているので、高温槽32aから低温槽32bへの冷却水の流入を確実に防止することができる。
なお、上述の実施形態ではラック14内に収納されたサーバを冷却する場合について説明したが、開示の技術は種々の電子機器の冷却に適用できる。
以上の諸実施形態に関し、更に以下の付記を開示する。
(付記1)冷却液を冷却する冷凍機と、
電子機器と、
バッファタンクと、
前記冷凍機と前記バッファタンクとの間に冷却液を循環させる第1のポンプと、
前記バッファタンクと前記電子機器との間に冷却液を循環させる第2のポンプと、
前記冷凍機と前記バッファタンクとの間に流れる冷却液の流量を検出する第1の流量計と、
前記バッファタンクと前記電子機器との間に流れる冷却液の流量を検出する第2の流量計と、
前記第1の流量計及び前記第2の流量計の出力に応じて前記第1のポンプの送液量を制御する制御部と
を有することを特徴とする電子機器冷却システム。
(付記2)前記制御部は、前記第1の流量計により検出した流量が前記第2の流量計で検出した流量と同じ又はそれ以上となるように、前記第1のポンプの送液量を制御することを特徴とする付記1に記載の電子機器冷却システム。
(付記3)前記バッファタンクは仕切り板により分割された高温槽及び低温槽を備え、
前記冷凍機の冷却液出口と前記低温槽の冷却液入口との間を接続する第1の配管と、
前記冷凍機の冷却液入口と前記高温槽の冷却液出口との間を接続する第2の配管と、
前記低温槽の冷却液出口に接続されて前記電子機器に供給する冷却液が通る第3の配管と、
前記高温槽の冷却液入口に接続されて前記電子機器から排出される冷却液が通る第4の配管と、
前記第3の配管と前記電子機器の冷却液入口との間に設けられて前記電子機器に供給する前記冷却液の流量を調整する流量調整バルブと、
前記電子機器の稼働状態に応じて前記流量調整バルブの開度を調整するバルブ調整部と、
を有することを特徴とする付記1又は2に記載の電子機器冷却システム。
(付記4)前記バルブ調整部が、前記電子機器から排出される冷却液の温度に応じて前記流量調整バルブの開度を変更する温調器であることを特徴とする付記3に記載の電子機器冷却システム。
(付記5)前記バッファタンクの前記高温槽と前記低温槽とを分離する仕切り板の高さが、前記バッファタンクの外壁の高さよりも低いことを特徴とする付記3に記載の電子機器冷却システム。
(付記6)前記仕切り板には断熱材が設けられていることを特徴とする付記3に記載の電子機器冷却システム。
(付記7)前記バッファタンクには前記高温槽の水位が設定値以下か否かを検出する液面センサが設けられ、前記制御部は前記液面センサにより前記高温槽の水位が設定値を超えたときに前記第1のポンプの送液量を増加させることを特徴とする付記3に記載の電子機器冷却システム。
(付記8)前記電子機器が、計算機を収納したラックであることを特徴とする付記1乃至7のいずれか1項に記載の電子機器冷却システム。
11…チラー、12…バッファタンク、12a…高温槽、12b…低温槽、13…仕切り板、13a…連通穴、14…ラック、15,16…ポンプ、17…バイパスバルブ、18,20a,20b,20c…温度計、19a,19b,19c…流量調整バルブ、21…第1の配管、22…第2の配管、23…第3の配管、24…第4の配管、31…チラー、32…バッファタンク、32a…高温槽、32b…低温槽、33…仕切り板、35,36…ポンプ、37…バイパスバルブ、38…温度計、39a,39b,39c…流量調整バルブ、40a,40b,40c…温度計、41…第1の配管、42…第2の配管、43…第3の配管、44…第4の配管、50…制御部、51…インバータ、52,53…流量計、54a,54b,54c…温調器、55…液面センサ。

Claims (5)

  1. 冷却液を冷却する冷凍機と、
    電子機器と、
    バッファタンクと、
    前記冷凍機と前記バッファタンクとの間に冷却液を循環させる第1のポンプと、
    前記バッファタンクと前記電子機器との間に冷却液を循環させる第2のポンプと、
    前記冷凍機と前記バッファタンクとの間に流れる冷却液の流量を検出する第1の流量計と、
    前記バッファタンクと前記電子機器との間に流れる冷却液の流量を検出する第2の流量計と、
    前記第1の流量計及び前記第2の流量計の出力に応じて前記第1のポンプの送液量を制御する制御部と
    を有することを特徴とする電子機器冷却システム。
  2. 前記制御部は、前記第1の流量計により検出した流量が前記第2の流量計で検出した流量と同じ又はそれ以上となるように、前記第1のポンプの送液量を制御することを特徴とする請求項1に記載の電子機器冷却システム。
  3. 前記バッファタンクは仕切り板により分割された高温槽及び低温槽を備え、
    前記冷凍機の冷却液出口と前記低温槽の冷却液入口との間を接続する第1の配管と、
    前記冷凍機の冷却液入口と前記高温槽の冷却液出口との間を接続する第2の配管と、
    前記低温槽の冷却液出口に接続されて前記電子機器に供給する冷却液が通る第3の配管と、
    前記高温槽の冷却液入口に接続されて前記電子機器から排出される冷却液が通る第4の配管と、
    前記第3の配管と前記電子機器の冷却液入口との間に設けられて前記電子機器に供給する前記冷却液の流量を調整する流量調整バルブと、
    前記電子機器の稼働状態に応じて前記流量調整バルブの開度を調整するバルブ調整部と、
    を有することを特徴とする請求項1又は2に記載の電子機器冷却システム。
  4. 前記バッファタンクの前記高温槽と前記低温槽とを分離する仕切り板の高さが、前記バッファタンクの外壁の高さよりも低いことを特徴とする請求項3に記載の電子機器冷却システム。
  5. 前記バッファタンクには前記高温槽の水位が設定値以下か否かを検出する液面センサが設けられ、前記制御部は前記液面センサにより前記高温槽の水位が設定値を超えたときに前記第1のポンプの送液量を増加させることを特徴とする請求項3に記載の電子機器冷却システム。
JP2013099462A 2013-05-09 2013-05-09 電子機器冷却システム Active JP6083316B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013099462A JP6083316B2 (ja) 2013-05-09 2013-05-09 電子機器冷却システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013099462A JP6083316B2 (ja) 2013-05-09 2013-05-09 電子機器冷却システム

Publications (2)

Publication Number Publication Date
JP2014220419A JP2014220419A (ja) 2014-11-20
JP6083316B2 true JP6083316B2 (ja) 2017-02-22

Family

ID=51938603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013099462A Active JP6083316B2 (ja) 2013-05-09 2013-05-09 電子機器冷却システム

Country Status (1)

Country Link
JP (1) JP6083316B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7266400B2 (ja) * 2018-04-25 2023-04-28 三菱重工業株式会社 冷却システム並びにその制御方法、制御プログラム、及び廃熱利用システム
KR102661342B1 (ko) * 2022-12-29 2024-04-26 (주)우전시스템 데이터센터 냉각장치

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4512161A (en) * 1983-03-03 1985-04-23 Control Data Corporation Dew point sensitive computer cooling system
JPH0522777Y2 (ja) * 1987-03-20 1993-06-11
JPH05141831A (ja) * 1991-11-15 1993-06-08 Nec Corp 液体冷媒循環量制御構造
JP2905443B2 (ja) * 1996-06-14 1999-06-14 オリオン機械株式会社 水槽を備えた冷却装置
JP2001066034A (ja) * 1999-08-27 2001-03-16 Orion Mach Co Ltd 冷却装置
JP4795454B2 (ja) * 2009-08-02 2011-10-19 好和 勝田 冷却装置
JP5614756B2 (ja) * 2010-05-19 2014-10-29 オリオン機械株式会社 多系統冷却システム

Also Published As

Publication number Publication date
JP2014220419A (ja) 2014-11-20

Similar Documents

Publication Publication Date Title
US10238009B2 (en) Coolant and ambient temperature control for chillerless liquid cooled data centers
US10015912B2 (en) Data center with liquid immersion tank and control method of the data center based on temperature difference
JP4594276B2 (ja) 冷温熱源機の冷温水制御方法及びこれに用いる空調システム
US10716245B2 (en) Provisioning cooling elements for chillerless data centers
JP5234435B2 (ja) フリークーリング用の冷熱源装置並びに冷却システム及び冷却方法
JP6334230B2 (ja) 冷凍機システム
US11240937B2 (en) Modular chiller for data centers
JPWO2013125650A1 (ja) 一体型空調システム、その制御装置
JP6644559B2 (ja) 熱源制御システム、制御方法および制御装置
JP2006038379A (ja) 冷温熱源機の冷温水制御方法
CN114423264B (zh) 单相浸没式液冷系统及液冷方法
US10248142B2 (en) Cooling apparatus, cooling method, and data processing system
JP6083316B2 (ja) 電子機器冷却システム
JP2009063290A (ja) 冷水循環システム
JP2011226680A (ja) 冷却水製造設備
JP2006132918A (ja) 空調装置及びその制御方法
JP2008180504A (ja) 冷水循環システム
JP2008180505A (ja) 冷水循環システム
JP2011052892A (ja) 冷水循環システム
WO2016157895A1 (ja) 相変化冷却装置およびその制御方法
CN219955771U (zh) 一种冷却水调节系统
US20240172402A1 (en) Cooling system with in-series high-temperature and low-temperature circuits
JP2018147963A (ja) 冷却装置
WO2024112687A1 (en) Cooling system with in-series high-temperature and low-temperature circuits
JP4046060B2 (ja) 極低温ケーブルの循環冷却システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170109

R150 Certificate of patent or registration of utility model

Ref document number: 6083316

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150