WO2023185278A1 - 一种空心多孔型浓度梯度正极材料及其制备方法 - Google Patents

一种空心多孔型浓度梯度正极材料及其制备方法 Download PDF

Info

Publication number
WO2023185278A1
WO2023185278A1 PCT/CN2023/075794 CN2023075794W WO2023185278A1 WO 2023185278 A1 WO2023185278 A1 WO 2023185278A1 CN 2023075794 W CN2023075794 W CN 2023075794W WO 2023185278 A1 WO2023185278 A1 WO 2023185278A1
Authority
WO
WIPO (PCT)
Prior art keywords
ions
solution
positive electrode
cathode material
concentration
Prior art date
Application number
PCT/CN2023/075794
Other languages
English (en)
French (fr)
Inventor
杨灵伟
陈功
余春林
陈旭东
Original Assignee
宁波容百新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波容百新能源科技股份有限公司 filed Critical 宁波容百新能源科技股份有限公司
Publication of WO2023185278A1 publication Critical patent/WO2023185278A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This application belongs to the technical field of lithium-ion batteries, and specifically relates to a hollow porous concentration gradient positive electrode material and a preparation method thereof.
  • the main purpose of this application is to provide a hollow porous concentration gradient cathode material with hollow porous interior that can significantly improve the stability of the cathode material and a preparation method thereof.
  • a hollow porous concentration gradient positive electrode material The concentration of nickel ions, cobalt ions and manganese ions contained in the positive electrode material is gradiently distributed from its center to the surface. The concentration gradient of the nickel ions contained in the positive electrode material is determined by the concentration gradient of the positive electrode material.
  • the center decreases toward the surface of the cathode material.
  • the concentration of nickel ions located in the center of the cathode material is 90%-100%, and the concentration of nickel ions located on the surface of the cathode material is 60%-70%; the cathode material contains cobalt ions and manganese ions.
  • the concentration gradient increases from the center of the cathode material to the surface of the cathode material.
  • the concentration of cobalt ions and manganese ions located in the center of the cathode material is 0%-5%.
  • the concentration of cobalt ions and manganese ions on the surface is 15%-20%.
  • the acid ions of the nickel ions, cobalt ions and manganese ions are sulfate ions, nitrate ions, acetate ions or chlorate ions.
  • a second aspect of this application provides a method for preparing a cathode material, including the following steps:
  • Preparation of metal salt solution Prepare salt solution A containing nickel, and/or cobalt, and/or manganese metal ions, in which the molar ratio of nickel ions, cobalt ions, and manganese ions is (100-90): (0- 5): (0-5); Prepare salt solution B containing nickel, cobalt, and manganese metal ions, in which the molar ratio of nickel ions, cobalt ions, and manganese ions is (60-70): (20-15): (20 -15);
  • step (3) Wash and dry the nickel cobalt manganese hydroxide precipitate obtained in step (3) in sequence to obtain a hydroxide precursor, then mix it evenly with the lithium salt, and sinter it to obtain a hollow porous concentration gradient positive electrode material.
  • step (1) the sum of the metal ion molar concentrations of the salt solution A and the salt solution B is both 1.3mol/L-1.8mol/L; salt
  • the acid ions of solution A and salt solution B are sulfate ions, nitrate ions, acetate ions or chlorate ions.
  • the concentration of the precipitant is 5 mol/L, and the precipitant is NaOH, KOH, Na 2 CO 3 , NaHCO 3 , K 2 CO 3 or KHCO 3 ;
  • the concentration of the complexing agent is 10g/L, and the complexing agent is ammonia water, ammonium bicarbonate, ammonium carbonate or ammonium oxalate.
  • the rate at which the mixture of solution B and solution A is introduced into the reaction kettle is twice the rate at which solution B is introduced into solution A; preferably, The rate at which solution B is introduced into solution A is 10-50mL/min, the rate at which the mixture of solution B and solution A is introduced into the reaction kettle is 20-100mL/min, and the rate at which the precipitant solution is introduced into the reaction kettle is 5-50mL/min. 30mL/min, the rate at which the complexing agent solution is introduced into the reaction kettle is 1-10mL/min.
  • the inert condition is to fill the reaction kettle with inert gas nitrogen; the temperature of the co-precipitation reaction is 20-70°C, and the pH is 7.0 -11.0, the stirring speed is 300-2000r/min, and the reaction time under this condition is 20-100h.
  • the cleaning is: first rinse with an alkali solution at a temperature of 50-90°C, and then rinse with deionized water.
  • the lithium salt is at least one of lithium hydroxide, lithium carbonate, lithium nitrate, and lithium acetate, and the hydroxide
  • the molar ratio of the precursor to the lithium salt is 1:1-1.2.
  • the sintering is: first, heating to 500°C at a heating rate of 1 to 10°C/min, and then maintaining the temperature for 2 to 10 hours; Raise the temperature to 600°C at a heating rate of 1 to 10°C/min, and keep it for 1 to 2 hours; then raise the temperature to 800°C at a heating rate of 1 to 10°C/min, keep it for 1 to 20 hours, and then cool it to room temperature in the furnace; and then The temperature is raised to 300°C at a heating rate of 1 to 10°C/min, kept for 1 to 15 hours, and finally cooled to room temperature in the furnace to obtain a hollow porous concentration gradient cathode material.
  • the hollow porous concentration gradient cathode material described in this application has a concentration gradient structure and has higher material surface structure stability. Compared with ordinary homogeneous high-nickel cathode materials, it has better cycle performance and rate It has obvious advantages in terms of safety and performance.
  • the nickel ion concentration is larger at the center of the concentration gradient material.
  • a porous hollow structure can be formed through the diffusion of metal ions. This structure increases It increases the effective contact area, facilitates the penetration of electrolyte into the electrode material, shortens the diffusion distance of Li ions, and can also effectively buffer the volume expansion and contraction caused by repeated deintercalation of Li ions.
  • Figure 1 is a flow chart in which salt solution B flows into salt solution A, and the mixed solution of salt solution A and salt solution B flows into the reaction kettle in the preparation method of the cathode material described in the present application;
  • Figure 2 is an element distribution scan of the hydroxide precursor profile described in EPMA test example 1. picture;
  • Figure 3 is an SEM image of the cathode material described in Example 1 of the present application.
  • Figure 4 is an SEM image of the cathode material described in Example 2 of the present application.
  • Figure 5 is an SEM image of the cathode material described in Example 3 of the present application.
  • Figure 6 is an SEM image of the cathode material described in Example 4 of the present application.
  • Figure 7 is an SEM image of the cathode material described in Example 5 of the present application.
  • Figure 8 is an SEM image of the cathode material described in Comparative Example 1 of the present application.
  • Figure 9 is an SEM image of the cathode material described in Comparative Example 2 of the present application.
  • This application prepares a concentration gradient precursor by changing the concentration of metal nickel, cobalt and manganese ions flowing into the reaction kettle, and causing a co-precipitation reaction under the action of a complexing agent and a precipitating agent.
  • the nickel concentration inside the concentration gradient precursor gradually decreases from 90% to 100% in the center to 60% to 70% on the surface, while the cobalt and manganese concentrations gradually increase from 0 to 5% in the center to 15% to 20% on the surface. .
  • metal ions diffuse from the high concentration area to the low concentration area, forming an internal hollow and porous cathode material.
  • This special structure of the cathode material can significantly improve the stability of the cathode material, thereby improving the cycle performance of the lithium-ion battery prepared therefrom.
  • the preparation method of the hollow porous concentration gradient cathode material described in Example 1 includes the following steps:
  • the molar ratio of nickel ions, cobalt ions, and manganese ions in salt solution A is 90:5:5.
  • the molar ratio of nickel ions, cobalt ions, and manganese ions in salt solution A is The sum of the concentrations is 1.3 mol/L;
  • the molar ratio of nickel ions, cobalt ions, and manganese ions in salt solution B is 60:20:20, and the sum of the molar concentrations of nickel ions, cobalt ions, and manganese ions in salt solution B is 1.3 mol/L.
  • Ni, Co and Mn elements are Ni, Co and Mn elements.
  • the Ni element concentration distribution of nickel cobalt manganese hydroxide precipitate B gradually decreases from the center to the surface, while the concentration distribution of Co and Mn elements The concentration distribution gradually increases from the center to the surface, and the three elements Ni, Co and Mn show an obvious concentration gradient distribution.
  • the ternary cathode material obtained by sintering the precursor of this concentration gradient structure is similar to the ordinary homogeneous high-nickel cathode material. Ratio, cycle performance and thermal stability performance have been significantly improved).
  • Three-stage sintering includes: heating from room temperature to 500°C at a heating rate of 2°C/min, holding for 2 hours, then heating to 600°C at a heating rate of 2°C/min, holding for 6 hours, and continuing to heat at a heating rate of 2°C/min.
  • the temperature was maintained at 800°C for 12 hours, then the heating was stopped and the furnace was cooled to room temperature; then the temperature was raised to 300°C at a heating rate of 2°C/min and the temperature was kept for 10 hours, and finally the heating was stopped and the furnace was cooled to room temperature to obtain a hollow porous concentration gradient cathode material.
  • the preparation method of the hollow porous concentration gradient cathode material described in Example 2 includes the following steps:
  • the molar ratio of nickel ions, cobalt ions, and manganese ions in salt solution A is 100:0:0.
  • the molar ratio of nickel ions, cobalt ions, and manganese ions in salt solution A is The sum of the concentrations is 1.5 mol/L;
  • the molar ratio of nickel ions, cobalt ions, and manganese ions in salt solution B is 60:20:20, and the sum of the molar concentrations of nickel ions, cobalt ions, and manganese ions in salt solution B is 1.5 mol/L;
  • nickel cobalt manganese hydroxide precipitate is washed twice with hot alkali solution at a temperature of 70°C, washed five times with deionized water, and dried at 120°C for 15 hours to obtain the hydroxide Precursor; use EPMA to test the element distribution of the cross-section of the hydroxide precursor, see Figure 2.
  • Two-stage sintering includes: heating from room temperature to 500°C at a heating rate of 2°C/min, holding for 2 hours, then heating to 600°C at a heating rate of 2°C/min, holding for 6 hours, and continuing to heat at a heating rate of 2°C/min.
  • the temperature was maintained at 800°C for 12 hours, then the heating was stopped and the furnace was cooled to room temperature; then the temperature was raised to 300°C at a heating rate of 2°C/min and the temperature was kept for 10 hours, and finally the heating was stopped and the furnace was cooled to room temperature to obtain a hollow porous concentration gradient cathode material.
  • the preparation method of the hollow porous concentration gradient cathode material described in Example 3 includes the following steps:
  • the molar ratio of nickel ions, cobalt ions, and manganese ions in salt solution A is 90:5:5.
  • the molar ratio of nickel ions, cobalt ions, and manganese ions in salt solution A is The sum of the concentrations is 1.3 mol/L;
  • the molar ratio of nickel ions, cobalt ions, and manganese ions in salt solution B is 60:20:20, and the sum of the molar concentrations of nickel ions, cobalt ions, and manganese ions in salt solution B is 1.5 mol/L;
  • the pH value of the reaction solution is 10.8, the concentration of ammonia in the solution is 3.0g/L, the stirring rate is 1000r/min, and the nitrogen flow rate is 0.3m3 /h.
  • the reaction is carried out for 80h under these conditions, and finally hydrogenation is obtained.
  • Nickel cobalt manganese precipitate
  • Two-stage sintering includes: heating from room temperature to 500°C at a heating rate of 2°C/min, holding for 2 hours, then heating to 600°C at a heating rate of 2°C/min, holding for 6 hours, and continuing to heat at a heating rate of 2°C/min.
  • the temperature was maintained at 800°C for 12 hours, then the heating was stopped and the furnace was cooled to room temperature; then the temperature was raised to 300°C at a heating rate of 2°C/min and the temperature was kept for 10 hours, and finally the heating was stopped and the furnace was cooled to room temperature to obtain a hollow porous concentration gradient cathode material.
  • the preparation method of the hollow porous concentration gradient cathode material described in Example 4 includes the following steps:
  • the molar ratio of nickel ions, cobalt ions, and manganese ions in salt solution A is 100:0:0.
  • the molar ratio of nickel ions, cobalt ions, and manganese ions in salt solution A is The sum of the concentrations is 1.5 mol/L;
  • the molar ratio of nickel ions, cobalt ions, and manganese ions in salt solution B is 70:15:15, and the sum of the molar concentrations of nickel ions, cobalt ions, and manganese ions in salt solution B is 1.5 mol/L;
  • nickel cobalt manganese hydroxide precipitate is washed twice with hot alkali solution at a temperature of 70°C, washed 4 times with deionized water, and dried at 120°C for 15 hours to obtain hydroxide precursor body;
  • Two-stage sintering includes: heating from room temperature to 500°C at a heating rate of 2°C/min, holding for 2 hours, then heating to 600°C at a heating rate of 2°C/min, holding for 6 hours, and continuing to heat at a heating rate of 2°C/min.
  • the temperature was maintained at 800°C for 12 hours, then the heating was stopped and the furnace was cooled to room temperature; then the temperature was raised to 300°C at a heating rate of 2°C/min and the temperature was kept for 10 hours, and finally the heating was stopped and the furnace was cooled to room temperature to obtain a hollow porous concentration gradient cathode material.
  • the preparation method of the hollow porous concentration gradient cathode material described in Example 5 includes the following steps:
  • the molar ratio of nickel ions, cobalt ions, and manganese ions in salt solution A is 100:0:0.
  • the molar ratio of nickel ions, cobalt ions, and manganese ions in salt solution A is The sum of the concentrations is 1.8 mol/L;
  • the molar ratio of nickel ions, cobalt ions, and manganese ions in salt solution B is 60:20:20, and the sum of the molar concentrations of nickel ions, cobalt ions, and manganese ions in salt solution B is 1.8 mol/L;
  • Two-stage sintering includes: heating from room temperature to 500°C at a heating rate of 2°C/min, holding for 2 hours, then heating to 600°C at a heating rate of 2°C/min, holding for 6 hours, and continuing to heat at a heating rate of 2°C/min.
  • the molar ratio of nickel ions, cobalt ions, and manganese ions in sulfate solution C is 80:10:10.
  • the sum of the molar concentrations of nickel ions, cobalt ions, and manganese ions in salt solution C is 1.3mol/L;
  • Two-stage sintering includes: heating from room temperature to 500°C at a heating rate of 2°C/min, holding for 2 hours, then heating to 600°C at a heating rate of 2°C/min, holding for 6 hours, and continuing to heat at a heating rate of 2°C/min.
  • the molar ratio of nickel ions, cobalt ions, and manganese ions in salt solution A is 90:5:5.
  • the molar ratio of nickel ions, cobalt ions, and manganese ions in salt solution A is The sum of the concentrations is 1.3 mol/L;
  • the molar ratio of nickel ions, cobalt ions, and manganese ions in salt solution B is 60:20:20, and the sum of the molar concentrations of nickel ions, cobalt ions, and manganese ions in salt solution B is 1.3 mol/L.
  • the sintering process includes: heating from room temperature to 800°C at a heating rate of 2°C/min, holding for 20 hours, and finally stopping the heating and cooling the furnace to room temperature to obtain a non-concentration gradient material cathode material with a dense structure.
  • the cathode material and acetylene black prepared in the appeal were dispersed in the NMP solution dissolved with PVDF at a mass ratio of 98:2, and stirred evenly to obtain a slurry.
  • the slurry was evenly coated on a 15 ⁇ m thick aluminum foil and vacuum dried at 110°C for 4 hours, and then pressed into a circular electrode sheet with a diameter of 15 mm using a tablet press.
  • the electrolyte is a 1 mol/L LiPF6 solution (the solvent includes EC and DMC with a volume ratio of 1:1);
  • the separator is a PE film.
  • test voltage range is 3.0V ⁇ 5.0V.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本申请公开了一种空心多孔型浓度梯度正极材料,所述正极材料所含镍离子、钴离子和锰离子的浓度由其中心至表面呈梯度分布,所述正极材料所含镍离子的浓度梯度由正极材料的中心向正极材料的表面减小,位于正极材料中心镍离子的浓度为90%-100%,位于正极材料表面镍离子的浓度为60%-70%;正极材料所含钴离子和锰离子的浓度梯度均由正极材料的中心向正极材料的表面增大,位于正极材料中心钴离子和锰离子的浓度为0%-5%,位于正极材料表面钴离子和锰离子的浓度为15%-20%。本申请的有益效果为:本申请所述空心多孔型浓度梯度正极材料具有浓度梯度结构,具有更高的材料表面结构稳定性,与普通均相的高镍正极材料相比,在循环性能、倍率和安全性能等方面都具有明显的优势。

Description

一种空心多孔型浓度梯度正极材料及其制备方法
本申请要求于2022年03月30日提交中国专利局、申请号为202210331422.1、申请名称为“一种空心多孔型浓度梯度正极材料及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于锂离子电池技术领域,具体涉及一种空心多孔型浓度梯度正极材料及其制备方法。
背景技术
目前能源紧张已经成为世界性问题,可作为动力能源的包括太阳能、氢燃料、风能等,其中最受人关注、应用范围最广的就是锂离子电池。近年来,新能源汽车产业快速蓬勃发展。其中,具备长续航能力的高镍三元锂电池电动汽车发展更为迅速,成为市场上的主力军。虽然Ni含量的增加会提升正极材料的比容量,但是也会造成材料的循环稳定性和安全性能的下降,目前高镍正极材料的倍率性能和循环性能仍然有较大的提升空间,成为研究的重点和难点。
申请内容
本申请的主要目的在于提供一种内部中空多孔,可显著提高正极材料稳定性的空心多孔型浓度梯度正极材料及其制备方法。
为了实现上述目的,本申请提供如下技术方案:
一种空心多孔型浓度梯度正极材料,所述正极材料所含镍离子、钴离子和锰离子的浓度由其中心至表面呈梯度分布,所述正极材料所含镍离子的浓度梯度由正极材料的中心向正极材料的表面减小,位于正极材料中心镍离子的浓度为90%-100%,位于正极材料表面镍离子的浓度为60%-70%;所述正极材料所含钴离子和锰离子的浓度梯度均由正极材料的中心向正极材料的表面增大,位于正极材料中心钴离子和锰离子的浓度为0%-5%,位于正极材料 表面钴离子和锰离子的浓度为15%-20%。
通过改变流入反应釜中金属镍钴锰离子的浓度的大小,在络合剂和沉淀剂的作用下发生共沉淀反应制得浓度梯度前驱体。再通过两步烧结工序,使得金属离子从高浓度区域扩散到低浓度区域,形成了内部中空多孔的正极材料。这种特殊结构的正极材料可以显著提高正极材料的稳定性,进而提高由其制备的锂离子电池的循环性能。
上述一种空心多孔型浓度梯度正极材料,作为一种优选的实施方案,所述镍离子、钴离子和锰离子的酸根离子为硫酸根离子、硝酸根离子、醋酸根离子或氯酸根离子。
本申请的第二方面,提供一种正极材料的制备方法,包括以下步骤:
(1)制备金属盐溶液:配制含镍,和/或钴,和/或锰金属离子的盐溶液A,其中镍离子、钴离子、锰离子的摩尔比为(100-90):(0-5):(0-5);配制含镍、钴、锰金属离子的盐溶液B,其中镍离子、钴离子、锰离子的摩尔比为(60-70):(20-15):(20-15);
(2)制备沉淀剂溶液和络合剂溶液;
(3)将步骤(1)所述溶液B通入溶液A中,再将溶液B和溶液A的混合液通入装有去离子水的反应釜中,同时向反应釜中通入沉淀剂溶液和络合剂溶液,在惰性条件下,进行共沉淀反应,得氢氧化镍钴锰沉淀物;
(4)将步骤(3)所得氢氧化镍钴锰沉淀物依次经清洗、烘干得氢氧化物前驱体,再与锂盐混合均匀,烧结得空心多孔型的浓度梯度正极材料。
上述一种正极材料的制备方法,作为一种优选的实施方案,步骤(1)中,盐溶液A和盐溶液B的金属离子摩尔浓度之和均为1.3mol/L-1.8mol/L;盐溶液A和盐溶液B的酸根离子为硫酸根离子、硝酸根离子、醋酸根离子或氯酸根离子。
上述一种正极材料的制备方法,作为一种优选的实施方案,所述沉淀剂的浓度为5mol/L,所述沉淀剂为NaOH、KOH、Na2CO3、NaHCO3、K2CO3或KHCO3;所述络合剂的浓度为10g/L,所述络合剂为氨水、碳酸氢铵、碳酸铵或草酸铵。
上述一种正极材料的制备方法,作为一种优选的实施方案,溶液B和溶液A的混合液通入反应釜中的速率是溶液B通入溶液A速率的2倍;优选地, 溶液B通入溶液A的速率是10-50mL/min,溶液B和溶液A的混合液通入反应釜中的速率是20-100mL/min,沉淀剂溶液通入反应釜中的速率为5-30mL/min,络合剂溶液通入反应釜中的速率为1-10mL/min。
上述一种正极材料的制备方法,作为一种优选的实施方案,步骤(3)中,惰性条件为向反应釜中充入惰性气体氮气;共沉淀反应的温度为20-70℃,pH为7.0-11.0,搅拌速度为300-2000r/min,在此条件下的反应时间为20-100h。
上述一种正极材料的制备方法,作为一种优选的实施方案,步骤(4)中,所述清洗为:先采用温度为50-90℃的碱液冲洗,再用去离子水清洗。
上述一种正极材料的制备方法,作为一种优选的实施方案,步骤(4)中,所述锂盐为氢氧化锂、碳酸锂、硝酸锂、醋酸锂中的至少一种,所述氢氧化物前驱体与所述锂盐的摩尔比为1:1-1.2。
上述一种正极材料的制备方法,作为一种优选的实施方案,步骤(4)中,所述烧结为:先以1~10℃/min的升温速率升温至500℃,保温2~10h;再以1~10℃/min的升温速率升温至600℃,保温1~2h;然后以1~10℃/min的升温速率升温至800℃,保温1~20h,后随炉冷却至室温;再以1~10℃/min的升温速率升温至300℃,保温1~15h,最后随炉冷却至室温,得空心多孔型浓度梯度正极材料。
本申请的有益效果为:本申请所述空心多孔型浓度梯度正极材料具有浓度梯度结构,具有更高的材料表面结构稳定性,与普通均相的高镍正极材料相比,在循环性能、倍率和安全性能等方面都具有明显的优势。
本申请所述空心多孔型浓度梯度正极材料在制备过程中,浓度梯度材料中心处镍离子浓度较大,在烧结过程中,通过金属离子的扩散作用可以形成多孔中空型结构,这种结构增大了有效接触面积,有利于电解液渗透到电极材料中,缩短了Li离子的扩散距离,还可以有效缓冲Li离子反复脱嵌引起的体积膨胀和收缩。
附图说明
图1为本申请所述正极材料的制备方法中盐溶液B流入盐溶液A,盐溶液A和盐溶液B的混合液流入反应釜的流程图;
图2为用EPMA测试实施例1所述氢氧化物前驱体剖面的元素分布扫描 图;
图3为本申请实施例1所述正极材料的SEM图相;
图4为本申请实施例2所述正极材料的SEM图相;
图5为本申请实施例3所述正极材料的SEM图相;
图6为本申请实施例4所述正极材料的SEM图相;
图7为本申请实施例5所述正极材料的SEM图相;
图8为本申请对比例1所述正极材料的SEM图相;
图9为本申请对比例2所述正极材料的SEM图相。
具体实施方式
为了使本技术领域的人员更好地理解本申请方案,下面将结合案例对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本申请保护的范围。
本申请通过改变流入反应釜中金属镍钴锰离子的浓度的大小,在络合剂和沉淀剂的作用下发生共沉淀反应制得浓度梯度前驱体。浓度梯度前驱体内部的镍浓度从中心的90%~100%逐渐降低到表面的60%~70%,而钴和锰浓度从中心的0~5%逐渐升高到表面的15%~20%。再通过两步烧结工序,使得金属离子从高浓度区域扩散到低浓度区域,形成了内部中空多孔的正极材料。这种特殊结构的正极材料可以显著提高正极材料的稳定性,进而提高由其制备的锂离子电池的循环性能。
实施例1
实施例1所述空心多孔型浓度梯度正极材料的制备方法,包括以下步骤:
(1)配制硫酸盐溶液A和硫酸盐溶液B,盐溶液A中镍离子、钴离子、锰离子的摩尔比为90:5:5,盐溶液A中镍离子、钴离子、锰离子的摩尔浓度之和为1.3mol/L;盐溶液B中镍离子、钴离子、锰离子的摩尔比为60:20:20,盐溶液B中镍离子、钴离子、锰离子的摩尔浓度之和为1.3mol/L。
(2)分别配置沉淀剂氢氧化钠溶液和络合剂氨水,其中氢氧化钠的水溶液浓度为5mol/L,氨水溶液的浓度为10g/L;
(3)用恒温水箱加热装有去离子水的反应釜,使釜内溶液温度达到65℃并保持恒定,将100L盐溶液A以50mL/min的速率加入到装有去离子水的反应釜中,同时将100L盐溶液B以25mL/min的速率加入到盐溶液A中,同时向反应釜中分别以30mL/min和2mL/min的速率加入氢氧化钠水溶液和氨水溶液进行共沉淀反应;通入保护气体氮气,调节通入的氢氧化钠水溶液的流量控制反应溶液的pH值为10.9,溶液中氨的浓度为3.0g/L,搅拌速率为1000r/min,氮气流量为0.3m3/h,在此条件下反应80h,最终得到氢氧化镍钴锰沉淀物;
(4)所得氢氧化镍钴锰沉淀物用热碱液冲洗2次,碱液温度为70℃,再用去离子水清洗4次,在温度120℃的条件下烘干15h,得到氢氧化物前驱体;用EPMA测试氢氧化物前驱体的剖面的元素分布,见图2。(图2中从左到右依次为Ni、Co和Mn元素。从图2可以看出,氢氧化镍钴锰沉淀物B的Ni元素浓度分布从中心到表面逐渐降低,而Co和Mn元素的浓度分布从中心到表面逐渐增加,Ni、Co和Mn三种元素呈现出明显的浓度梯度分布。这种浓度梯度结构的前驱体烧结得到的三元正极材料与普通均相的高镍正极材料相比,循环性能和热稳定性能有明显的提升)。
(5)将氢氧化物前驱体与氢氧化锂按摩尔比1:1.04混合均匀后在马弗炉中进行两段式烧结,烧结过程保持充足的氧气气氛。三段式烧结包括:从室温以2℃/min的升温速率升温到500℃,保温2h,再以2℃/min的升温速率升温到600℃保温6h,继续以2℃/min的升温速率升温到800℃保温12h,然后停止加热随炉冷却到室温;再以2℃/min的升温速率升温到300℃保温10h,最后停止加热随炉冷却到室温,得空心多孔型浓度梯度正极材料。
实施例2
实施例2所述空心多孔型浓度梯度正极材料的制备方法,包括以下步骤:
(1)配制硝酸盐溶液A和硝酸盐溶液B,盐溶液A中镍离子、钴离子、锰离子的摩尔比为100:0:0,盐溶液A中镍离子、钴离子、锰离子的摩尔浓度之和为1.5mol/L;盐溶液B中镍离子、钴离子、锰离子的摩尔比为60:20:20,盐溶液B中镍离子、钴离子、锰离子的摩尔浓度之和为1.5mol/L;
(2)分别配置沉淀剂氢氧化钠溶液和络合剂氨水,其中氢氧化钠的水溶液浓度为5mol/L,氨水溶液的浓度为10g/L;
(3)用恒温水箱加热装有去离子水的反应釜,使釜内溶液温度达到60℃并保持恒定,将100L盐溶液A以50mL/min的速率加入到装有去离子水的反应釜中,同时将100L盐溶液B以25mL/min的速率加入到盐溶液A中,同时向反应釜中分别以25mL/min和3mL/min的速率加入氢氧化钠水溶液和氨水溶液进行共沉淀反应;通入保护气体氮气,调节通入的氢氧化钠水溶液的流量控制反应溶液的pH值为11.2,溶液中氨的浓度为3.0g/L,搅拌速率为800r/min,氮气流量为0.2m3/h,在此条件下反应75h,最终得到氢氧化镍钴锰沉淀物;
(4)所得氢氧化镍钴锰沉淀物用热碱液冲洗2次,碱液温度为70℃,再用去离子水清洗5次,在温度120℃的条件下烘干15h,得到氢氧化物前驱体;用EPMA测试氢氧化物前驱体的剖面的元素分布,见图2。
(5)将氢氧化物前驱体与氢氧化锂按摩尔比1:1.08混合均匀后在马弗炉中进行两段式烧结,烧结过程保持充足的氧气气氛。两段式烧结包括:从室温以2℃/min的升温速率升温到500℃,保温2h,再以2℃/min的升温速率升温到600℃保温6h,继续以2℃/min的升温速率升温到800℃保温12h,然后停止加热随炉冷却到室温;再以2℃/min的升温速率升温到300℃保温10h,最后停止加热随炉冷却到室温,得空心多孔型浓度梯度正极材料。
实施例3
实施例3所述空心多孔型浓度梯度正极材料的制备方法,包括以下步骤:
(1)配制硫酸盐溶液A和硫酸盐溶液B,盐溶液A中镍离子、钴离子、锰离子的摩尔比为90:5:5,盐溶液A中镍离子、钴离子、锰离子的摩尔浓度之和为1.3mol/L;盐溶液B中镍离子、钴离子、锰离子的摩尔比为60:20:20,盐溶液B中镍离子、钴离子、锰离子的摩尔浓度之和为1.5mol/L;
(2)分别配置沉淀剂氢氧化钠溶液和络合剂氨水,其中氢氧化钠的水溶液浓度为5mol/L,氨水溶液的浓度为10g/L;
(3)用恒温水箱加热装有去离子水的反应釜,使釜内溶液温度达到70℃并保持恒定,将100L盐溶液A以50mL/min的速率加入到装有去离子水的反应釜中,同时将100L盐溶液B以25mL/min的速率加入到盐溶液A中,同时向反应釜中分别以20mL/min和4mL/min的速率加入氢氧化钠水溶液和氨水溶液进行共沉淀反应;通入保护气体氮气,调节通入的氢氧化钠水 溶液的流量控制反应溶液的pH值为10.8,溶液中氨的浓度为3.0g/L,搅拌速率为1000r/min,氮气流量为0.3m3/h,在此条件下反应80h,最终得到氢氧化镍钴锰沉淀物;
(4)所得氢氧化镍钴锰沉淀物用热碱液冲洗2次,碱液温度为70℃,再用去离子水清洗5次,在温度120℃的条件下烘干15h,得到氢氧化物前驱体;
(5)将氢氧化物前驱体与氢氧化锂按摩尔比1:1.12混合均匀后在马弗炉中进行两段式烧结,烧结过程保持充足的氧气气氛。两段式烧结包括:从室温以2℃/min的升温速率升温到500℃,保温2h,再以2℃/min的升温速率升温到600℃保温6h,继续以2℃/min的升温速率升温到800℃保温12h,然后停止加热随炉冷却到室温;再以2℃/min的升温速率升温到300℃保温10h,最后停止加热随炉冷却到室温,得空心多孔型浓度梯度正极材料。
实施例4
实施例4所述空心多孔型浓度梯度正极材料的制备方法,包括以下步骤:
(1)配制硝酸盐溶液A和硝酸盐溶液B,盐溶液A中镍离子、钴离子、锰离子的摩尔比为100:0:0,盐溶液A中镍离子、钴离子、锰离子的摩尔浓度之和为1.5mol/L;盐溶液B中镍离子、钴离子、锰离子的摩尔比为70:15:15,盐溶液B中镍离子、钴离子、锰离子的摩尔浓度之和为1.5mol/L;
(2)分别配置沉淀剂氢氧化钠溶液和络合剂氨水,其中氢氧化钠的水溶液浓度为5mol/L,氨水溶液的浓度为10g/L;
(3)用恒温水箱加热装有去离子水的反应釜,使釜内溶液温度达到65℃并保持恒定,将100L盐溶液A以50mL/min的速率加入到装有去离子水的反应釜中,同时将100L盐溶液B以25mL/min的速率加入到盐溶液A中,同时向反应釜中分别以15mL/min和5mL/min的速率加入氢氧化钠水溶液和氨水溶液进行共沉淀反应;通入保护气体氮气,调节通入的氢氧化钠水溶液的流量控制反应溶液的pH值为10.9,溶液中氨的浓度为3.0g/L,搅拌速率为1000r/min,氮气流量为0.3m3/h,在此条件下反应80h,最终得到氢氧化镍钴锰沉淀物;
(4)所得氢氧化镍钴锰沉淀物用热碱液冲洗2次,碱液温度为70℃,再用去离子水清洗4次,在温度120℃的条件下烘干15h,得到氢氧化物前驱 体;
(5)将氢氧化物前驱体与氢氧化锂按摩尔比1:1.16混合均匀后在马弗炉中进行两段式烧结,烧结过程保持充足的氧气气氛。两段式烧结包括:从室温以2℃/min的升温速率升温到500℃,保温2h,再以2℃/min的升温速率升温到600℃保温6h,继续以2℃/min的升温速率升温到800℃保温12h,然后停止加热随炉冷却到室温;再以2℃/min的升温速率升温到300℃保温10h,最后停止加热随炉冷却到室温,得空心多孔型浓度梯度正极材料。
实施例5
实施例5所述空心多孔型浓度梯度正极材料的制备方法,包括以下步骤:
(1)配制硝酸盐溶液A和硝酸盐溶液B,盐溶液A中镍离子、钴离子、锰离子的摩尔比为100:0:0,盐溶液A中镍离子、钴离子、锰离子的摩尔浓度之和为1.8mol/L;盐溶液B中镍离子、钴离子、锰离子的摩尔比为60:20:20,盐溶液B中镍离子、钴离子、锰离子的摩尔浓度之和为1.8mol/L;
(2)分别配置沉淀剂氢氧化钠溶液和络合剂氨水,其中氢氧化钠的水溶液浓度为5mol/L,氨水溶液的浓度为10g/L;
(3)用恒温水箱加热装有去离子水的反应釜,使釜内溶液温度达到65℃并保持恒定,将100L盐溶液A以50mL/min的速率加入到装有去离子水的反应釜中,同时将100L盐溶液B以25mL/min的速率加入到盐溶液A中,同时向反应釜中分别以10mL/min和6mL/min的速率加入氢氧化钠水溶液和氨水溶液进行共沉淀反应;通入保护气体氮气,调节通入的氢氧化钠水溶液的流量控制反应溶液的pH值为10.9,溶液中氨的浓度为3.0g/L,搅拌速率为1000r/min,氮气流量为0.3m3/h,在此条件下反应80h,最终得到氢氧化镍钴锰沉淀物;
(4)所得氢氧化镍钴锰沉淀物用热碱液冲洗2次,碱液温度为70℃,再用去离子水清洗4次,在温度120℃的条件下烘干15h,得到氢氧化物前驱体;
(5)将氢氧化物前驱体与氢氧化锂按摩尔比1:1.2混合均匀后在马弗炉中进行两段式烧结,烧结过程保持充足的氧气气氛。两段式烧结包括:从室温以2℃/min的升温速率升温到500℃,保温2h,再以2℃/min的升温速率升温到600℃保温6h,继续以2℃/min的升温速率升温到800℃保温 12h,然后停止加热随炉冷却到室温;再以2℃/min的升温速率升温到300℃保温10h,最后停止加热随炉冷却到室温,得空心多孔型浓度梯度正极材料。
对比例1
(1)配制硫酸盐溶液C,硫酸盐溶液C中镍离子、钴离子、锰离子的摩尔比为80:10:10,盐溶液C中镍离子、钴离子、锰离子的摩尔浓度之和为1.3mol/L;
(2)分别配置沉淀剂氢氧化钠溶液和络合剂氨水,其中氢氧化钠的水溶液浓度为5mol/L,氨水溶液的浓度为10g/L;
(3)用恒温水箱加热装有去离子水的反应釜,使釜内溶液温度达到65℃并保持恒定,将100L盐溶液C以50mL/min的速率加入到装有去离子水的反应釜中,同时向反应釜中分别以30mL/min和2mL/min的速率加入氢氧化钠水溶液和氨水溶液进行共沉淀反应;通入保护气体氮气,调节通入的氢氧化钠水溶液的流量控制反应溶液的pH值为10.9,溶液中氨的浓度为3.0g/L,搅拌速率为1000r/min,氮气流量为0.3m3/h,在此条件下反应80h,最终得到氢氧化镍钴锰沉淀物;
(4)所得氢氧化镍钴锰沉淀物用热碱液冲洗2次,碱液温度为70℃,再用去离子水清洗4次,在温度120℃的条件下烘干15h,得到氢氧化物前驱体;
(5)将氢氧化物前驱体与氢氧化锂按摩尔比1:1.04混合均匀后在马弗炉中进行两段式烧结,烧结过程保持充足的氧气气氛。两段式烧结包括:从室温以2℃/min的升温速率升温到500℃,保温2h,再以2℃/min的升温速率升温到600℃保温6h,继续以2℃/min的升温速率升温到800℃保温12h,然后停止加热随炉冷却到室温;再以2℃/min的升温速率升温到300℃保温10h,最后停止加热随炉冷却到室温,得结构密实的非浓度梯度正极材料。
对比例2
(1)配制硫酸盐溶液A和硫酸盐溶液B,盐溶液A中镍离子、钴离子、锰离子的摩尔比为90:5:5,盐溶液A中镍离子、钴离子、锰离子的摩尔浓度之和为1.3mol/L;盐溶液B中镍离子、钴离子、锰离子的摩尔比为60:20:20,盐溶液B中镍离子、钴离子、锰离子的摩尔浓度之和为1.3mol/L。
(2)分别配置沉淀剂氢氧化钠溶液和络合剂氨水,其中氢氧化钠的水溶液浓度为5mol/L,氨水溶液的浓度为10g/L;
(3)用恒温水箱加热装有去离子水的反应釜,使釜内溶液温度达到65℃并保持恒定,将100L盐溶液A以50mL/min的速率加入到装有去离子水的反应釜中,同时将100L盐溶液B以25mL/min的速率加入到盐溶液A中,同时向反应釜中分别以25mL/min和3mL/min的速率加入氢氧化钠水溶液和氨水溶液进行共沉淀反应;通入保护气体氮气,调节通入的氢氧化钠水溶液的流量控制反应溶液的pH值为10.9,溶液中氨的浓度为3.0g/L,搅拌速率为1000r/min,氮气流量为0.3m3/h,在此条件下反应80h,最终得到氢氧化镍钴锰沉淀物;
(4)所得氢氧化镍钴锰沉淀物用热碱液冲洗2次,碱液温度为70℃,再用去离子水清洗4次,在温度120℃的条件下烘干15h,得到氢氧化物前驱体;
(5)将氢氧化物前驱体与氢氧化锂按摩尔比1:1.04混合均匀后在马弗炉中进行烧结,烧结过程保持充足的氧气气氛。烧结过程包括:从室温以2℃/min的升温速率升温到800℃,保温20h,最后停止加热随炉冷却到室温,得结构密实的非浓度梯度材料正极材料。
从图3-7可以看出,烧结后得到的正极材料中心出现了面积较大的空洞,这是由于前驱体中心的镍元素含量较高,使得中心部分的晶须较为疏松。且在高温烧结过程中,浓度高的金属元素会向浓度低的金属元素扩散。这种结构缩短了Li离子的扩散距离,还可以有效地减缓了Li离子反复脱嵌引起的体积膨胀和收缩。
本申请所述正极材料的性能研究
将上诉制备的正极材料和乙炔黑按照质量比98:2分散在溶有PVDF的NMP溶液中,搅拌均匀后得到浆液。将浆液均匀涂布在15μm厚的铝箔上,并在110℃下真空烘干4h,然后采用压片机将其压成直径为15mm的圆形电极片。在手套箱中按照正极壳、正极片、电解液、隔膜、锂片、电解液、泡沫镍、负极壳进行组装封口,得到扣式电池。其中,电解液为1mol/L的LiPF6溶液(溶剂包括体积比为1:1的EC和DMC);隔膜为PE膜。
对上述扣式电池进行恒流充放电测试和倍率测试,测试电压范围为 3.0V□5.0V。
结果如表1所示:
表1本申请所述正极材料的容量和循环300容量保持率
从表1中可以看出,在0.2C倍率下放电比容量均达到了较高水平,最高可达199.8mAh/g。50℃下300次充放电循环容量保持率比普通的高镍正极材料有了明显的提升,最高可达93.6%。由此可知,这种内部空心多孔的浓度梯度正极材料能够提高材料的循环性能。
以上所述仅是本申请的优选实施方式,应当指出,对于本技术领域的普通技术人员,在不脱离本申请方法的前提下,还可以做出若干改进和补充,这些改进和补充也应视为本申请的保护范围。

Claims (11)

  1. 一种空心多孔型浓度梯度正极材料,其中,所述正极材料所含镍离子、钴离子和锰离子的浓度由其中心至表面呈梯度分布,所述正极材料所含镍离子的浓度梯度由正极材料的中心向正极材料的表面减小,位于正极材料中心镍离子的浓度为90%-100%,位于正极材料表面镍离子的浓度为60%-70%;所述正极材料所含钴离子和锰离子的浓度梯度均由正极材料的中心向正极材料的表面增大,位于正极材料中心钴离子和锰离子的浓度为0%-5%,位于正极材料表面钴离子和锰离子的浓度为15%-20%。
  2. 根据权利要求1所述的空心多孔型浓度梯度正极材料,其中,所述镍离子、钴离子和锰离子的酸根离子为硫酸根离子、硝酸根离子、醋酸根离子或氯酸根离子。
  3. 权利要求1或2所述正极材料的制备方法,其中,包括以下步骤:
    (1)制备金属盐溶液:配制含镍,和/或钴,和/或锰金属离子的盐溶液A,其中镍离子、钴离子、锰离子的摩尔比为(100-90):(0-5):(0-5);配制含镍、钴、锰金属离子的盐溶液B,其中镍离子、钴离子、锰离子的摩尔比为(60-70):(20-15):(20-15);
    (2)制备沉淀剂溶液和络合剂溶液;
    (3)将步骤(1)所述溶液B通入溶液A中,再将溶液B和溶液A的混合液通入装有去离子水的反应釜中,同时向反应釜中通入沉淀剂溶液和络合剂溶液,在惰性条件下,进行共沉淀反应,得氢氧化镍钴锰沉淀物;
    (4)将步骤(3)所得氢氧化镍钴锰沉淀物依次经清洗、烘干得氢氧化物前驱体,再与锂盐混合均匀,烧结得空心多孔型的浓度梯度正极材料。
  4. 根据权利要求3所述正极材料的制备方法,其中,步骤(1)中,盐溶液A和盐溶液B的金属离子摩尔浓度之和均为1.3mol/L-1.8mol/L;盐溶液A和盐溶液B的酸根离子为硫酸根离子、硝酸根离子、醋酸根离子或氯酸根离子。
  5. 根据权利要求3或4所述正极材料的制备方法,其中,所述沉淀剂的浓度为5mol/L,所述沉淀剂为NaOH、KOH、Na2CO3、NaHCO3、K2CO3或KHCO3;所述络合剂的浓度为10g/L,所述络合剂为氨水、碳酸氢铵、碳酸铵或草酸铵。
  6. 根据权利要求3-5任一项所述正极材料的制备方法,其中,溶液B和溶 液A的混合液通入反应釜中的速率是溶液B通入溶液A速率的2倍。
  7. 根据权利要求6所述正极材料的制备方法,其中,溶液B通入溶液A的速率是10-50mL/min,溶液B和溶液A的混合液通入反应釜中的速率是20-100mL/min,沉淀剂溶液通入反应釜中的速率为5-30mL/min,络合剂溶液通入反应釜中的速率为1-10mL/min。
  8. 根据权利要求3-7任一项所述正极材料的制备方法,其中,步骤(3)中,惰性条件为向反应釜中充入惰性气体氮气;共沉淀反应的温度为20-70℃,pH为7.0-11.0,搅拌速度为300-2000r/min,在此条件下的反应时间为20-100h。
  9. 根据权利要求3-8任一项所述正极材料的制备方法,其中,步骤(4)中,所述清洗为:先采用温度为50-90℃的碱液冲洗,再用去离子水清洗。
  10. 根据权利要求3-9任一项所述正极材料的制备方法,其中,步骤(4)中,所述锂盐为氢氧化锂、碳酸锂、硝酸锂、醋酸锂中的至少一种,所述氢氧化物前驱体与所述锂盐的摩尔比为1:1-1.2。
  11. 根据权利要求3-10任一项所述正极材料的制备方法,其中,步骤(4)中,所述烧结为:先以1~10℃/min的升温速率升温至500℃,保温2~10h;再以1~10℃/min的升温速率升温至600℃,保温1~2h;然后以1~10℃/min的升温速率升温至800℃,保温1~20h,后随炉冷却至室温;再以1~10℃/min的升温速率升温至300℃,保温1~15h,最后随炉冷却至室温,得空心多孔型浓度梯度正极材料。
PCT/CN2023/075794 2022-03-30 2023-02-14 一种空心多孔型浓度梯度正极材料及其制备方法 WO2023185278A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210331422.1A CN114649521A (zh) 2022-03-30 2022-03-30 一种空心多孔型浓度梯度正极材料及其制备方法
CN202210331422.1 2022-03-30

Publications (1)

Publication Number Publication Date
WO2023185278A1 true WO2023185278A1 (zh) 2023-10-05

Family

ID=81995106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/075794 WO2023185278A1 (zh) 2022-03-30 2023-02-14 一种空心多孔型浓度梯度正极材料及其制备方法

Country Status (2)

Country Link
CN (1) CN114649521A (zh)
WO (1) WO2023185278A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117558904A (zh) * 2024-01-11 2024-02-13 河南科隆新能源股份有限公司 一种多孔核壳结构无钴正极材料及其制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114649521A (zh) * 2022-03-30 2022-06-21 宁波容百新能源科技股份有限公司 一种空心多孔型浓度梯度正极材料及其制备方法
CN117525386B (zh) * 2024-01-08 2024-05-14 宁波容百新能源科技股份有限公司 高镍正极材料及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103904318A (zh) * 2012-12-28 2014-07-02 惠州比亚迪电池有限公司 一种锂电池正极材料及其制备方法
CN105609759A (zh) * 2016-03-25 2016-05-25 中国科学院长春应用化学研究所 一种具有高镍系全浓度梯度锂离子电池正极材料及其制备方法
JP2020004506A (ja) * 2018-06-25 2020-01-09 住友金属鉱山株式会社 リチウムイオン二次電池用の正極活物質とその製造方法、およびチウムイオン二次電池
CN114649521A (zh) * 2022-03-30 2022-06-21 宁波容百新能源科技股份有限公司 一种空心多孔型浓度梯度正极材料及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110931772B (zh) * 2020-02-12 2020-06-19 湖南长远锂科股份有限公司 一种高功率型的锂离子电池用正极材料的制备方法
CN112250091A (zh) * 2020-10-30 2021-01-22 浙江帕瓦新能源股份有限公司 一种高镍三元前驱体、正极材料以及制备方法
CN112768685B (zh) * 2021-04-09 2021-07-13 湖南长远锂科股份有限公司 一种锂离子电池正极材料及其制备方法
CN113889615A (zh) * 2021-08-30 2022-01-04 中南大学 一种无钴高镍三元浓度梯度核壳结构锂离子电池正极材料及其制备方法
CN113830844B (zh) * 2021-09-28 2023-07-14 蜂巢能源科技有限公司 空心多孔三元正极材料及其制备方法、锂离子电池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103904318A (zh) * 2012-12-28 2014-07-02 惠州比亚迪电池有限公司 一种锂电池正极材料及其制备方法
CN105609759A (zh) * 2016-03-25 2016-05-25 中国科学院长春应用化学研究所 一种具有高镍系全浓度梯度锂离子电池正极材料及其制备方法
JP2020004506A (ja) * 2018-06-25 2020-01-09 住友金属鉱山株式会社 リチウムイオン二次電池用の正極活物質とその製造方法、およびチウムイオン二次電池
CN114649521A (zh) * 2022-03-30 2022-06-21 宁波容百新能源科技股份有限公司 一种空心多孔型浓度梯度正极材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIANG LONGWEI; HU GUORONG; CAO YANBING; DU KE; PENG ZHONGDONG: "Synthesis and characterization of full concentration-gradient LiNi0.7Co0.1Mn0.2O2cathode material for lithium-ion batteries", JOURNAL OF ALLOYS AND COMPOUNDS, ELSEVIER SEQUOIA, LAUSANNE., CH, vol. 635, 11 February 2015 (2015-02-11), CH , pages 92 - 100, XP029213027, ISSN: 0925-8388, DOI: 10.1016/j.jallcom.2015.02.032 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117558904A (zh) * 2024-01-11 2024-02-13 河南科隆新能源股份有限公司 一种多孔核壳结构无钴正极材料及其制备方法

Also Published As

Publication number Publication date
CN114649521A (zh) 2022-06-21

Similar Documents

Publication Publication Date Title
WO2023185278A1 (zh) 一种空心多孔型浓度梯度正极材料及其制备方法
CN104157831B (zh) 一种核壳结构的尖晶石镍锰酸锂、层状富锂锰基复合正极材料及其制备方法
CN113178566B (zh) 一种尖晶石型单晶无钴高电压镍锰酸锂正极材料、其制备方法及锂离子电池
CN108172799A (zh) 一种核壳结构锂离子电池的三元正极材料及其制备方法
CN113651373A (zh) 一种均匀多孔结构的正极材料及其制备方法
CN106784790B (zh) 一种镍钴锰酸锂三元正极材料的制备方法
CN109301189B (zh) 一种类单晶型高镍多元材料的制备方法
CN112047399B (zh) 一种网状结构前驱体和复合氧化物粉体及其制备方法和应用
CN114162881A (zh) 一种阴离子原位掺杂高镍三元正极材料的制备方法
CN113060773A (zh) 一种全浓度梯度高镍三元材料的制备方法及应用
CN110233261A (zh) 一种单晶三元锂电池正极材料的制备方法及锂离子电池
CN110767879B (zh) 一种基于高活性镍正极的镍锌电池的制备方法
CN114804235A (zh) 一种高电压镍钴锰酸锂正极材料及其制备方法和应用
CN108390050B (zh) 一种锂电池用尖晶石型锰酸锂正极材料的包覆方法
CN113594446A (zh) 纳米结构双包覆的镍钴锰三元正极材料的制备方法、制得的三元正极材料
CN110676440A (zh) 复合材料及其制备方法
WO2024066173A1 (zh) 一种表面双层包覆的富锂锰基正极材料及其制备方法和应用
CN114715956B (zh) 改性多孔富镍正极材料及其制备方法
WO2023179613A1 (zh) 一种复合正极材料及其制备方法和应用
CN107834054B (zh) 一种锂离子电池用镍锰酸锂-石墨烯复合材料的制备方法
CN115954451A (zh) 一种全固态电池用核壳结构三元正极材料及其制备方法和全固态电池
CN104795557A (zh) 多孔金属掺杂锰酸锂/碳复合锂电池正极材料及制备方法
CN112142123B (zh) 一种镍钴锰网状结构前驱体和镍钴锰复合氧化物粉体及其制备方法和应用
CN112125340B (zh) 一种锰酸锂及其制备方法和应用
CN113745478A (zh) 一种电极材料及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23777657

Country of ref document: EP

Kind code of ref document: A1