WO2023185248A1 - 一种瓣叶捕获装置、系统及人工心脏瓣膜系统 - Google Patents

一种瓣叶捕获装置、系统及人工心脏瓣膜系统 Download PDF

Info

Publication number
WO2023185248A1
WO2023185248A1 PCT/CN2023/074283 CN2023074283W WO2023185248A1 WO 2023185248 A1 WO2023185248 A1 WO 2023185248A1 CN 2023074283 W CN2023074283 W CN 2023074283W WO 2023185248 A1 WO2023185248 A1 WO 2023185248A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
wrapping layer
stent
artificial heart
heart valve
Prior art date
Application number
PCT/CN2023/074283
Other languages
English (en)
French (fr)
Inventor
周刚
徐亚鹏
虞奇峰
Original Assignee
上海纽脉医疗科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海纽脉医疗科技股份有限公司 filed Critical 上海纽脉医疗科技股份有限公司
Publication of WO2023185248A1 publication Critical patent/WO2023185248A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2442Annuloplasty rings or inserts for correcting the valve shape; Implants for improving the function of a native heart valve
    • A61F2/246Devices for obstructing a leak through a native valve in a closed condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0058Additional features; Implant or prostheses properties not otherwise provided for
    • A61F2250/0096Markers and sensors for detecting a position or changes of a position of an implant, e.g. RF sensors, ultrasound markers
    • A61F2250/0098Markers and sensors for detecting a position or changes of a position of an implant, e.g. RF sensors, ultrasound markers radio-opaque, e.g. radio-opaque markers

Definitions

  • the present invention relates to the field of medical devices for cardiac surgery, and in particular to a valve leaflet capturing device, system and artificial heart valve system.
  • the heart consists of four pumping chambers, the left and right atria and the left and right ventricles, each with a valve that controls its unidirectional outflow.
  • the mitral valve is located between the left atrium and the left ventricle. When the ventricle contracts, the mitral valve tightly closes the atrioventricular orifice to prevent blood from flowing back into the left atrium; the mitral valve is located between the right atrium and the right ventricle.
  • the tricuspid valve (tricuspid valve), when the right ventricle contracts, squeezes the blood in the chamber and impacts the tricuspid valve to close, preventing blood from flowing back into the right atrium.
  • mitral regurgitation occurs when the leaflets of the valve are unable to fully contact (couple) due to disease.
  • MR tricuspid regurgitation
  • abnormal heart structure may also be the cause of regurgitation, and the two processes may "synergize" to accelerate abnormal heart function.
  • Standard surgical treatment for valvular regurgitation usually requires surgery.
  • Standard surgical repair or replacement procedures require open-heart surgery, cardiopulmonary bypass, and cardiac arrest. Due to the invasive nature of these surgical procedures, death, Strokes, bleeding, breathing problems, kidney problems, and other complications are common, so patients are often denied or deemed unsuitable for traditional open surgery because of the high risks.
  • mitral/tricuspid valve replacement is much more difficult than aortic replacement in many aspects.
  • the mitral/tricuspid valve is not a traditional round shape in terms of spatial structure, and the mitral/tricuspid valve has a more complex structure.
  • mitral valve/tricuspid valve are larger than the aorta, and more slender in shape, mitral valve/tricuspid valve leaflets are soft in texture , compared with aortic valve stenosis or calcification, the mitral/tricuspid valve cannot provide good retention for the replacement valve.
  • mitral/tricuspid valve replacement to treat regurgitation requires not only to withstand large cyclic loads from the mitral/tricuspid valve, but more importantly, to establish stable and strong anchoring.
  • the invention discloses a valve leaflet capturing device, system and artificial heart valve, aiming to solve the technical problems existing in the prior art.
  • the invention provides a leaflet capturing device, including a capturing ring:
  • the fishing ring is spiral-shaped and can coil around the mitral/tricuspid valve chordae tendineae and locate the artificial heart valve stent implanted in the mitral/tricuspid valve;
  • the fishing ring includes the core body, the first wrapping layer and the second wrapping layer from the inside to the outside;
  • the core is made of pre-shaped memory metal, which is capable of elastic deformation at least in the radial and axial directions to adapt to changes in the shape of the myocardial tissue;
  • the first wrapping layer is configured as a fiber layer with smaller pores, the size of the pores allows tissue cells to grow in, and adjacent pores are connected to allow the extracellular matrix produced after the cells grow in to connect with each other;
  • the outer surface of the second wrapping layer is provided with a rough surface structure to provide friction for the fishing ring;
  • At least one second wrapping layer is provided outside the first wrapping layer, or the second wrapping layer is spaced outside the first wrapping layer.
  • the first wrapping layer continuously covers the outside of the core from the distal end to the proximal end.
  • the diameter of the pores in the first coating layer is 5-20 ⁇ m.
  • the first wrapping layer is prepared by weaving or 3D printing.
  • the first wrapping layer includes an ePTFE microporous film.
  • the second wrapping layer is configured as a braided layer with larger pores
  • the second wrapping layer is made of a polymer material with a high friction coefficient
  • the second wrapping layer is made of a polymer material with patterned hollows.
  • the polymer material includes PET film or PTFE film.
  • the core body includes nickel-titanium alloy.
  • the fishing ring is arranged into an atrial segment, a transitional segment, a functional segment and a ventricular segment in sequence from the proximal end to the distal end;
  • the atrial segments are positioned in the atria and are configured in a curve that generally follows the curvature of the atrial wall;
  • the transition segment is configured to extend from the functional segment to the atrial segment.
  • the functional segment is positioned at the native valve annulus and is coiled to support the implanted artificial heart valve stent;
  • the ventricular segment extends the ventricle from the functional segment and is configured in a curve that generally follows the curvature of the native chordee plexus.
  • the second wrapping layer covers the area where the functional segment is in contact with the artificial heart valve stent
  • the second wrapping layer covers the area where the atrial segment is in contact with the artificial heart valve stent
  • the second wrapping layer covers the area where the transition section contacts the artificial heart valve stent
  • the second wrapping layer covers the area where the ventricular segment contacts the artificial heart valve stent.
  • the second wrapping layer is continuously provided in the functional section.
  • the second wrapping layer covers the first wrapping layer corresponding to the functional segment at intervals.
  • the proximal end of the fishing ring is provided with a first connecting piece
  • the distal end of the fishing ring is provided with a distal protection piece
  • at least one developing ring is also provided on the fishing ring.
  • the present invention also provides a valve leaflet capturing system, which includes the valve leaflet capturing device as described in any one of the above items, and also includes a delivery device for delivering the valve leaflet capturing device, and the distal end of the delivery device is provided with a third Two connecting parts, the second connecting part is detachably connected to the first connecting part.
  • the present invention further relates to an artificial heart valve system, which includes the valve leaflet capturing device as described in any one of the above items, and also includes an artificial heart valve stent, the artificial heart valve stent is configured to be at the native mitral valve/tricuspid valve expands and interacts with the leaflet capture device.
  • the artificial heart valve stent includes a balloon-expandable stent.
  • the balloon-expandable stent is cylindrical, has a sealing film on its outer wall, and has artificial valve leaflets inside.
  • the artificial heart valve stent includes a self-expanding stent.
  • the self-expanding stent includes a flange and a cylindrical stent positioned in the atrium.
  • a sealing film is provided on the outer wall of the self-expanding stent.
  • the self-expanding stent There are artificial valve leaflets inside.
  • the fishing ring of the present invention is provided with a three-layer structure from the inside to the outside, which are a core body, a first wrapping layer and a second wrapping layer.
  • the core is used to position the artificial heart valve stent implanted in the mitral/tricuspid valve;
  • the first wrapping layer is smooth and can induce tissue cells to grow into it, reinforcing the connection between the fishing ring and the mitral/tricuspid valve.
  • the second wrapping layer is set on the outer surface of the fishing ring. Since it directly cooperates with the implanted artificial heart valve stent through the leaflets of the native mitral valve/tricuspid valve, it is selected with high friction performance.
  • the fishing ring of the present invention is also provided with a center
  • the atrial segment and the ventricular segment extend from the native valve annulus to the atrium and ventricle respectively, and have a curvature that matches the shape of the atrium and native chordae tendineae, which can effectively ensure the fixed position of the fishing ring and at the same time better Comply with the normal physiological functions of the mitral valve/tricuspid valve.
  • Figure 1 is a schematic cross-sectional structural diagram of a fishing ring in a preferred embodiment disclosed in Embodiment 1 of the present invention
  • Figure 2 is an expanded view of PET with a knitted pile surface in a preferred embodiment disclosed in Embodiment 1 of the present invention
  • Figure 3 is a schematic structural diagram of a leaflet capturing device in a preferred embodiment disclosed in Embodiment 1 of the present invention
  • Figure 4 is a schematic structural diagram of a leaflet capturing device in another preferred embodiment disclosed in Embodiment 1 of the present invention.
  • Figure 5 is a schematic diagram of a valve leaflet capturing device installed in the heart in a preferred embodiment disclosed in Embodiment 1 of the present invention
  • Figure 6 is a schematic structural diagram of an artificial heart valve disclosed in Embodiment 3 of the present invention.
  • connection should be understood in a broad sense.
  • connection or integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two components.
  • connection or integral connection
  • connection or integral connection
  • connection can be a mechanical connection or an electrical connection
  • it can be a direct connection or an indirect connection through an intermediate medium
  • it can be an internal connection between two components.
  • specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
  • helical refers to the spring-like structure of the fishing ring, which is similar to a spiral, but is not an absolute/standard spiral because it contains multiple functional segments; “roughly follows the native chordae tendineae” “plexus curvature” refers to the ability of the lower segment of the fishing ring to match the shape of the mitral/tricuspid valve chordee plexus to enhance its stability, rather than its shape being exactly the same as the curvature of the native mitral/tricuspid valve chordee plexus. Matching; “roughly following the curvature of the atrial wall” means that the upper segment of the fishing ring can roughly match the shape of the atrial wall to effectively fix the position of the fishing ring, but not that its shape exactly matches the shape of the atrial wall.
  • the valve leaflet capturing device includes a fishing ring.
  • the fishing ring is roughly spiral-shaped and can be coiled around two The cusp/tricuspid valve chordae tendineae plexus, and locates the artificial heart valve stent implanted in the mitral valve/tricuspid valve;
  • the capture ring includes a core body, a first wrapping layer and a second wrapping layer from the inside to the outside;
  • the core body Made of pre-shaped memory metal that is capable of elastic deformation at least in the radial and axial directions to comply with changes in the shape of myocardial tissue;
  • the first wrapping layer is configured as a fiber layer with smaller pores, the size of which allows tissue Cells grow in, and adjacent pores are connected to allow the extracellular matrix produced after the cells grow in to connect with each other;
  • the outer surface of the second wrapping layer is provided with a rough surface structure to provide friction for the fishing ring ;
  • Embodiment 1 provides a valve leaflet capturing device to solve the technical problems existing in the prior art.
  • the leaflet capturing device includes a capturing ring 10, which is roughly spiral-shaped and can be implanted at the chordae tendineae of the human mitral valve and provide axial and radial forces.
  • the cooperation of the two can reduce the size of the natural mitral valve and reduce the mitral regurgitation of the natural valve leaflets.
  • the valve leaflet capture device can be more precise. Tightly anchoring the position of the implanted artificial heart valve stent 80 effectively prevents the artificial heart valve stent 80 from being displaced during myocardial movement.
  • the leaflet capturing device includes a fishing ring 10, a first connector 60 provided at the proximal end of the fishing ring 10, a distal protection member 70 provided at the distal end of the fishing ring 10, and a A plurality of developing rings 50 on the fishing ring 10.
  • the first connector 60 is used for detachable connection with the delivery device that delivers the leaflet capture device;
  • the distal protection member 70 is used to protect myocardial tissue during the delivery process of the leaflet capture device;
  • the developing ring 50 is used for observation and Determine the position of the fishing ring 10 during the operation and prompt its movement from the atrium side to the ventricular side.
  • the fishing ring 10 is surrounded outside the chordae tendineae of the mitral valve and is used to position the artificial heart valve stent implanted in the mitral valve. 80.
  • the capture ring 10 is provided with an atrial section 14, a transition section 13, a functional section 12 and a ventricular section 11 in order from the proximal end to the distal end, wherein:
  • the atrial segment 14 is curved and coiled in the left atrium 100, and its curvature is approximately the same as the curvature of the atrial wall to ensure that the atrial segment 14 of the fishing ring 10 can better match the left atrium 100. Furthermore, for different patients, the atrial segment 14 can be more closely matched with the left atrium 100. The shape and size of the atrium will be different. Those skilled in the art can understand that the specific curvature and size of the atrial segment 14 can be adaptively changed according to the patient's condition. In a preferred embodiment, for different Before the patient undergoes surgery, the patient's heart can be modeled through imaging methods to determine the appropriate shape and size of the fishing ring 10 .
  • the functional segment 12 is positioned in a coiled shape at the annulus of the native mitral valve, and is used to support the artificial heart valve stent 80 implanted in the mitral valve.
  • the transition section 13 is arranged between the atrial section 14 and the functional section 12, and its shape is configured to extend from the functional section 12 to the atrial section 14 located in the left atrium 100. Since the functional section 12 is arranged outside the mitral valve, the atrium The segment 14 is positioned in the left atrium 100, so after the capture ring 10 is inserted into the body, the transition segment 13 spirals up from outside the mitral valve through the leaflet space and extends to the atrial segment 14.
  • the ventricular segment 11 extends downwardly from the above-mentioned functional segment 12 to and joins the left ventricle 110 and is configured in a curved shape that generally follows the curvature of the native mitral valve chordae tendineae, as shown in FIG. 5 . Furthermore, since the ventricular segment 11 and the functional segment 12 are both located outside the mitral valve, there is no need to provide a transition segment 13; preferably, the specific size and curvature of the ventricular segment 11 can be adaptively changed according to the specific conditions of the patient.
  • the atrial segment 14 is positioned in the atrium, and the functional segment 12 and the ventricular segment 11 are placed outside the mitral valve, the atrial segment 14 is used to provide a radially outward expansion force to ensure that this segment can be stably positioned.
  • the functional segment 12 and the ventricular segment 11 provide a radially inward tightening force to anchor the artificial heart valve stent 80 located in the mitral valve to simultaneously tighten the artificial heart valve stent 80 and itself.
  • the mitral valve can also be tightened to reduce mitral regurgitation.
  • the roughly spiral fishing ring 10 can also provide axial deformation capability to adapt to the morphological changes of the left heart myocardial tissue throughout the cardiac cycle, and it is also more convenient during surgical insertion.
  • the functional section 12 The diameter of the ventricular segment 11 is smaller than the diameter of the ventricular segment 11, and the diameter of the ventricular segment 11 is smaller than the diameter of the atrial segment 14, in order to obtain the best fixation position.
  • a more appropriate size and proportion can be selected according to the actual situation.
  • the fishing ring 10 shown in FIG. 1 its structure includes three layers from the inside to the outside: the core 20 , the first wrapping layer 30 and the second wrapping layer 40 .
  • the above-mentioned core body 20 is made of at least one elastic wire spirally coiled, and it has at least the ability of radial and axial deformation, can adapt to changes in the shape of the mitral valve, and support and position the artificial implant implanted in the mitral valve.
  • Heart valve stent 80 preferred Since the core 20 is not in direct contact with myocardial tissue, there is no need to select biocompatible materials. Specifically, memory alloys, polymers, fibers or other polymer materials can be selected.
  • the core The body 20 is preferably made of heat-set memory alloy, and further preferably is a nickel-titanium alloy.
  • the nickel-titanium alloy Since the nickel-titanium alloy has a stretch rate of more than 20%, and has high damping, high elasticity and high fatigue life, it can be applied to the human body no matter it is It can maintain a stable shape during delivery or after implantation. More importantly, if the first wrapping layer 30 and the second wrapping layer 40 outside the core 20 are damaged, the core 20 may directly contact the myocardium. Tissue contact, and nickel-titanium alloy as a biocompatible material will be safer, has wear-resistant and corrosion-resistant properties, and will not produce rejection reactions.
  • the surface of the above-mentioned first wrapping layer 30 is relatively smooth, which can induce the ingrowth of myocardial tissue, thereby further strengthening the cooperative relationship between the fishing ring 10 and the mitral valve; preferably, both the surface of the first wrapping layer 30 and the layer structure
  • the diameter of the pores is 5-20 ⁇ m to allow a single cell to pass through.
  • the pores set in the 30-layer structure are all interconnected to allow the extracellular matrix produced after tissue cells grow in to connect with each other.
  • the first wrapping layer 30 can be prepared by weaving, 3D printing, electrospinning, laser etching; when weaving, electrospinning, etc. are used, it is necessary to ensure that the materials used have a certain degree of elasticity. to prevent it from being torn or damaged following the shrinkage or expansion of the core 20; when using 3D printing, laser etching and other processes, the inner diameter of the first wrapping layer 30 should be slightly smaller than the outer diameter of the core 20, so that the two can Interference fit in order to obtain a more stable combined structure.
  • the first wrapping layer 30 can be made of smooth and dense polymer materials, preferably polyurethane, polytetrafluoroethylene, expanded polytetrafluoroethylene, alginic acid/alginate, silk protein, and chitin.
  • the first wrapping layer 30 is made of expanded polytetrafluoroethylene (ePTFE) microporous film.
  • ePTFE expanded polytetrafluoroethylene
  • the ePTFE microporous film is a film formed by expanding and stretching polytetrafluoroethylene as raw material, it already has countless The micropores facilitate the entry of cells, eliminating the need to create pores through weaving or 3D printing. Moreover, it is lightweight and will not add additional burden after the mitral valve is inserted.
  • the surface of the above-mentioned second wrapping layer 40 is relatively rough, which is used to provide a certain friction force for the fishing ring 10 and reduce the risk of displacement of the fishing ring 10 during the cardiac cycle; preferably, the material of the second wrapping layer 40 can be selected to have a larger Porous woven materials, polymer materials with high friction coefficient, or polymer materials with patterned hollows; preferably, PTFE can be selected as the material for making the second wrapping layer 40; more preferably, because the PET film has stretchability Because of its high strength, thin thickness, high friction coefficient, and large surface tension, PET film is selected as the material for the second wrapping layer 40; in a In a more preferred embodiment, when disposing the PET film, the surface is provided with patterned hollows in advance, such as stripe patterns, wavy dot patterns, zigzag linear patterns or other patterns, to further improve its friction performance.
  • the outer surface of the second wrapping layer 40 is also provided with a loosely arranged rough surface structure to provide a certain buffering effect and prevent the fishing ring 10 from tearing the valve leaflets during the cardiac cycle.
  • the second wrapping layer 40 continuously covers the outside of the first wrapping layer 30; preferably, since only the functional section 12 of the fishing ring 10 is in contact with the artificial heart valve stent 80, only the functional section of the fishing ring 10 is in contact with the artificial heart valve stent 80.
  • the second wrapping layer 40 is provided at intervals on the functional section 12 , but the second wrapping layer 40 is not provided in the partial area of the functional section 12 that is in contact with the chordae tendineae, so as to avoid the process of implanting the fishing ring 10 Medium pressure or friction on the chordae tendineae to avoid shearing force due to excessive friction, which may cause chordae tendineae rupture. More preferably, in the functional segment 12, the distribution density of the second wrapping layer 40 at the proximal atrial segment 14 is greater than the distribution density at the proximal ventricular segment 11, ensuring reduction of paravalvular leakage while reducing damage to the chordae tendineae.
  • the second wrapping layer 40 is continuously provided in the area of the functional segment 12 close to the valve annulus, and then is provided at intervals, and the distance becomes larger as it approaches the ventricular segment 11, until the second wrapping layer 40 is no longer provided near the chordae tendineae area.
  • the second wrapping layer 40 is continuously provided in the area of the functional section 12 close to the valve union, and the second wrapping layer 40 is no longer provided in other areas, or the second wrapping layer 40 is provided at intervals.
  • the doctor needs to determine whether the placement position is accurate through the developing ring 50 provided on the capturing ring 10.
  • the heart valve is a three-dimensional structure , it is usually necessary to determine whether the spatial position is accurate, so it is necessary to determine whether the spatial position is accurate through the positions of multiple developing rings 50 .
  • the above-mentioned developing ring 50 is provided at the upper and lower ends of the transition section 13 of the capture ring 10 to prompt the capture ring 10 from the left atrium 100 side to the left during the operation.
  • the developing ring 50 can be any biocompatible metal or developing polymer material, preferably nickel titanium, stainless steel or an injection molded part with barium sulfate added; specifically, developing The ring 50 can be fixed on the fishing ring 10 by gluing or sewing.
  • the above-mentioned distal protection member 70 is hemispherical and fixed to the distal end of the fishing ring 10.
  • Its material can be any biocompatible metal or developing polymer material, and the same material as the developing ring 50 can be selected. s material.
  • the above-mentioned first connector 60 is a snap-joint structure with the distal end of the delivery device that delivers the leaflet capture device, and is used to limit and release the capture ring 10 during delivery.
  • valve leaflet capturing device when the above-mentioned valve leaflet capturing device is used, after the capturing ring 10 is released at the chordae tendineae of the mitral valve through the delivery device, its functional section 12 is positioned at the annulus of the native mitral valve, and the transition section 13 extends upward from the annulus through the leaflet space.
  • the atrial segment 14 has a radial expansion force to prevent the leaflet capture device from being displaced.
  • the ventricular segment 11 extends downward from the functional segment 12 and surrounds the mitral valve. At the chordae tendineae plexus, both the ventricular segment 11 and the functional segment 12 have a radial tightening force, further strengthening the positioning of the valve leaflet capture device.
  • the artificial heart valve stent 80 is implanted into the native mitral valve, and the stent expands radially outward and interacts with the radially tightened functional segment 12 to anchor the stent to prevent its displacement.
  • the fishing ring 10 has a three-layer structure
  • the first wrapping layer 30 wrapped around the core 20 has a tight, smooth texture and is full of pores, which can induce tissue cells to grow into it and strengthen the anchoring effect of the core 20;
  • the second wrapping layer 40 is in direct contact with the stent, and its outer surface is also provided with a rough surface structure, which not only prevents the capture ring 10 from being displaced, but also provides a certain buffer to avoid tearing the leaflets, causing the mitral valve leaflets to The cooperation with the leaflet capture device is more secure and stable.
  • Embodiment 2 provides a valve leaflet capture system. Based on the structure of Embodiment 1, this embodiment also adds a delivery device for delivering the valve leaflet capture device. A second connection is provided at the distal end of the delivery device. piece for detachable connection with the first connecting piece 60 at the proximal end of the fishing ring 10, and the second connecting piece of the delivery device passes through the guide catheter together with the fishing ring 10 to reach a predetermined position on the left heart, and releases the fishing ring 10.
  • Embodiment 3 provides an artificial heart valve system. Based on the structure of Embodiment 1, this embodiment also includes an artificial heart valve stent 80, as shown in the embodiment As described in 1, the prosthetic heart valve stent 80 is configured to expand at the native mitral valve and interact with the leaflet capture device described above to eliminate mitral regurgitation.
  • the artificial heart valve stent 80 may be a balloon-expandable stent or a self-expanding stent.
  • the outer wall of the stent is provided with a sealing film, and the artificial valve leaflets are provided inside.
  • the artificial heart valve stent 80 is fixed at the native mitral valve, and is specifically anchored by the functional segment 12 of the fishing ring 10.
  • the atrial segment 14 of the fishing ring 10 is fixed in the left atrium 100, and the ventricular segment 11 is surrounded by the left atrium 100.

Landscapes

  • Health & Medical Sciences (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Prostheses (AREA)

Abstract

一种瓣叶捕获装置、系统及人工心脏瓣膜系统,瓣叶捕获装置包括捕捞环(10),捕捞环(10)呈螺旋状并能够盘绕于二尖瓣/三尖瓣腱索丛,捕捞环(10)由内向外包括芯体(20)、第一包裹层(30)及第二包裹层(40);芯体(20)由预成形的记忆金属制成,用于顺应心肌组织的变形;第一包裹层(30)为表面较光滑的微孔膜,用于诱导组织细胞向内生长;第二包裹层(40)表面粗糙,用于为植入二尖瓣/三尖瓣内的人工心脏瓣膜支架(80)提供摩擦力。瓣叶捕获装置能够与植入的人工心脏瓣膜支架(80)稳定的相互配合,并将其稳定的锚定于适当的位置,避免二者在心动周期中发生相互移位,降低手术失败的风险。

Description

一种瓣叶捕获装置、系统及人工心脏瓣膜系统 技术领域
本发明涉及心脏术用医疗器械领域,尤其涉及一种瓣叶捕获装置、系统及人工心脏瓣膜系统。
背景技术
心脏包括四个泵腔,分别为左心房和右心房以及左心室和右心室,每个泵腔都具有控制其单向流出的瓣膜。其中位于左心房和左心室之间的是二尖瓣(mitral valve),心室收缩时,二尖瓣即严密关闭房室口,防止血液逆流入左心房;位于右心房和右心室之间的是三尖瓣(tricuspid valve),当右心室收缩时,挤压室内血液冲击三尖瓣使其关闭,防止血液倒流入右心房。
功能完善的二尖瓣或三尖瓣能够保证在心脏周期中保持正确的血液循环,但是在瓣膜的叶瓣因为疾病而无法达到完全接触(接合)的时候,就会发生二尖瓣反流(MR)或三尖瓣反流(TR);另一方面,异常的心脏结构也可能是反流的原因,并且这两个过程可因“协同作用”而加速异常的心脏功能。
目前,标准的心脏瓣膜反流治疗的通常需要选择外科手术的方式,标准的外科修复或替换操作需要开心手术、使用心肺旁通术、以及心脏停止术,由于这些外科手术的侵入性质,死亡、中风、出血、呼吸问题、肾脏问题、以及其他并发症都很多见,因此患者往往会因为高风险而拒绝或被判定为不适合进行传统的开放手术。
近年来,由于主动脉瓣置换术成功推进,激发了对经导管二尖瓣/三尖瓣置换治疗反流的探索。但是二尖瓣/三尖瓣置换在诸多方面要比主动脉置换困难的多,比如二尖瓣/三尖瓣在空间结构上并非传统的圆形状、二尖瓣/三尖瓣具有更复杂的组织结构(瓣环、瓣叶、腱索、乳头肌)、二尖瓣/三尖瓣要比主动脉大,并且在形状上要更细长、二尖瓣/三尖瓣的瓣叶质地软,相比于主动脉瓣狭窄或钙化,二尖瓣/三尖瓣无法为置换瓣膜提供良好的固位,同时由于当心室收缩时,心室中的压力会急剧上升,如果置换瓣膜未能在二尖瓣/三尖瓣的瓣环处建立足够的锚定则会发生移位风险。因此,有效的进行二尖瓣/三尖瓣置换治疗反流,不仅要承受来自二尖瓣/三尖瓣大的周期性载荷,更重要的是建立稳定和坚固的锚定。
为了增强原生瓣叶提供给瓣膜支架的径向支撑力,使瓣膜支架牢固固定在瓣叶处,通常 需要在瓣叶的外部的腱索丛处增加一个捕捞环,捕捞环能够将瓣叶和支撑架环抱在一起。但是由于捕捞环的材质较滑,且无法保证其形状与瓣膜支架能够稳定的相互配合,因此在心动周期中捕捞环与瓣膜支架二者可能会发生相互移位,使得置换的瓣膜无法持续稳定的固定在适当的位置,存在发生瓣膜移位的风险。
发明内容
本发明公开了一种瓣叶捕获装置、系统及人工心脏瓣膜,旨在解决现有技术中存在的技术问题。
本发明采用下述技术方案:
一方面,本发明提供了一种瓣叶捕获装置,包括捕捞环:
捕捞环呈螺旋状,能够盘绕于二尖瓣/三尖瓣腱索丛,并定位被植入二尖瓣/三尖瓣内的人工心脏瓣膜支架;
捕捞环由内向外包括芯体、第一包裹层及第二包裹层;
芯体由预成形的记忆金属制成,其至少能够在径向和轴向发生弹性形变,以顺应心肌组织形状的改变;
第一包裹层被配置为具有较小孔隙的纤维层,孔隙的大小允许组织细胞长入,且相邻的孔隙之间相连通,以允许细胞长入后产生的细胞外基质相互联接;
第二包裹层外表面设有毛面结构,用于为所述捕捞环提供摩擦力;
第一包裹层外至少有一处设有第二包裹层,或者,第二包裹层间隔设置于第一包裹层外。
作为优选的技术方案,第一包裹层自芯体的远端至近端连续覆盖于芯体外。
作为优选的技术方案,第一包裹层中孔隙的直径为5-20μm。
作为优选的技术方案,第一包裹层由编织或3D打印制备而成。
作为优选的技术方案,第一包裹层包括ePTFE微孔薄膜。
作为优选的技术方案,第二包裹层被配置为具有较大孔隙的编织层;
或者,第二包裹层由具备高摩擦系数的高分子材料制成;
或者,第二包裹层由设有图案化镂空的高分子材料制成。
作为优选的技术方案,高分子材料包括PET膜或PTFE膜。
作为优选的技术方案,芯体包括镍钛合金。
作为优选的技术方案,捕捞环由近端至远端依次设置为心房段、过渡段、功能段及心室段;
心房段定位于心房中,并被配置为大致遵循心房壁曲率的弯曲状;
过渡段被配置为由功能段延伸至心房段。
功能段定位于原生瓣环处,呈盘卷状,用于支撑植入的人工心脏瓣膜支架;
心室段由功能段延伸心室,并被配置为大致遵循原生腱索丛曲率的弯曲状。
作为优选的技术方案,第二包裹层覆盖于功能段与人工心脏瓣膜支架相接触的区域;
和/或,第二包裹层覆盖于心房段与人工心脏瓣膜支架相接触的区域;
和/或,第二包裹层覆盖于过渡段与人工心脏瓣膜支架相接触的区域;
和/或,第二包裹层覆盖于心室段与人工心脏瓣膜支架相接触的区域。
作为优选的技术方案,第二包裹层在功能段连续设置。
作为优选的技术方案除与腱索接触的区域外,第二包裹层间隔覆盖于功能段对应的第一包裹层外。
作为优选的技术方案,捕捞环的近端设有第一连接件,捕捞环的远端设有远端保护件,在捕捞环上还设有至少一个显影环。
另一方面,本发明还提供了一种瓣叶捕获系统,包括如上任一项所述的瓣叶捕获装置,还包括用于递送瓣叶捕获装置的输送装置,输送装置的远端设有第二连接件,第二连接件与所述第一连接件可拆卸连接。
本发明还进一步涉及了一种人工心脏瓣膜系统,包括如上任一项所述的瓣叶捕获装置,还包括人工心脏瓣膜支架,人工心脏瓣膜支架被配置为在原生二尖瓣/三尖瓣处扩张,并与瓣叶捕获装置相互作用。
作为优选的技术方案,人工心脏瓣膜支架包括球囊扩张式支架,球囊扩张式支架呈柱形,其外壁上设有密封膜,其内部设置人工瓣叶。
作为优选的技术方案,人工心脏瓣膜支架包括自膨胀式支架,自膨胀式支架包括定位于心房的法兰盘及柱形支架,在自膨胀式支架的外壁上设有密封膜,自膨胀式支架的内部设有人工瓣叶。
本发明采用的技术方案能够达到以下有益效果:本发明的捕捞环由内向外分别设置了三层结构,分别为芯体、第一包裹层和第二包裹层。其中的芯体用于定位被植入二尖瓣/三尖瓣的人工心脏瓣膜支架;第一包裹层较光滑,可以诱导组织细胞长入其中,加固捕捞环与二尖瓣/三尖瓣之间的配合关系;第二包裹层设置于捕捞环的外表面,由于其隔着原生二尖瓣/三尖瓣的瓣叶与植入的人工心脏瓣膜支架直接配合,因此选择有高摩擦性能的高分子材料或大孔隙的编织材料,可以提供较大的摩擦力,在一定程度上减少捕捞环的移位风险;第二包裹层的外表面还设置有毛面结构,能够提供一定的缓冲作用,防止因瓣叶与捕捞环之间的摩擦力过大而在心动周期中发生瓣叶撕裂等情况。进一步地,本发明的捕捞环还设置了心 房段和心室段,二者分别由原生瓣环处向心房和心室延伸,且具有与心房及原生腱索丛的形状相匹配的弯曲曲率,能够有效的保证捕捞环的固定位置,同时更好地顺应二尖瓣/三尖瓣的正常生理功能。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,构成本发明的一部分,本发明的示意性实施例及其说明解释本发明,并不构成对本发明的不当限定。在附图中:
图1为本发明实施例1公开的一种优选实施方式中捕捞环的剖面结构示意图;
图2为本发明实施例1公开的一种优选实施方式中针织绒毛面的PET的展开图;
图3为本发明实施例1公开的一种优选实施方式中瓣叶捕获装置的结构示意图;
图4为本发明实施例1公开的另一种优选实施方式中瓣叶捕获装置的结构示意图;
图5为本发明实施例1公开的一种优选实施方式中瓣叶捕获装置安置于心脏中的示意图;
图6为本发明实施例3公开的人工心脏瓣膜的结构示意图。
附图标记说明:
捕捞环10,心室段11,功能段12、过渡段13、心房段14,芯体20,第一包裹层30,
第二包裹层40,针织绒毛面41,显影环50,第一连接件60,远端保护件70,人工心脏瓣膜支架80,二尖瓣90,左心房100,左心室110。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明具体实施例及相应的附图对本发明技术方案进行清楚、完整地描述。在本发明的描述中,需要说明的是,术语“或”通常是以包括“和/或”的含义而进行使用的,除非内容另外明确指出外。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
另外,在本申请的描述中,术语“第一”、“第二”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
如本文所述的,“螺旋状”指的是捕捞环的结构类似于螺旋的弹簧状,但由于其含有多个功能区段,因此并非绝对的/标准的螺旋状;“大致遵循原生腱索丛曲率”指的是捕捞环下段能够和二尖瓣/三尖瓣腱索丛的形状相匹配,以增强其稳定性,而并非其形状与原生二尖瓣/三尖瓣腱索丛曲率完全吻合;“大致遵循心房壁曲率”指的是捕捞环上段能够和心房壁的形状大致匹配,以有效固定捕捞环的位置,而并非其形状与心房壁的形状完全吻合。
显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为解决现有技术中存在的问题,本申请实施例提供了一种瓣叶捕获装置、系统及人工心脏瓣膜系统,其中瓣叶捕获装置包括捕捞环,捕捞环呈大致螺旋状,能够盘绕于二尖瓣/三尖瓣腱索丛,并定位被植入二尖瓣/三尖瓣内的人工心脏瓣膜支架;捕捞环由内向外包括芯体、第一包裹层及第二包裹层;芯体由预成形的记忆金属制成,其至少能够在径向和轴向发生弹性形变,以顺应心肌组织形状的改变;第一包裹层被配置为具有较小孔隙的纤维层,孔隙的大小允许组织细胞长入,且相邻的孔隙之间相连通,以允许细胞长入后产生的细胞外基质相互联接;第二包裹层外表面设有毛面结构,用于为所述捕捞环提供摩擦力;第一包裹层外至少有一处设有第二包裹层,或者,第二包裹层间隔设置于第一包裹层外。
实施例1
以二尖瓣植入为例,本实施例1提供了一种瓣叶捕获装置,以解决现有技术中存在的技术问题。根据图3-图6,瓣叶捕获装置包括捕捞环10,所述捕捞环10大致呈螺旋状,可植入人体二尖瓣的腱索丛处,并提供轴向和径向的作用力,以配合植入二尖瓣内的人工心脏瓣膜支架并与其相互作用,二者的配合能够减小天然二尖瓣的尺寸、减少天然瓣膜小叶的二尖瓣反流,同时瓣叶捕获装置可以更紧固的锚定植入的人工心脏瓣膜支架80的位置,有效避免人工心脏瓣膜支架80在心肌运动过程中发生移位。
根据图3及图4所示,上述瓣叶捕获装置包括捕捞环10、设置于捕捞环10近端的第一连接件60、设置于捕捞环10远端的远端保护件70,以及布置于捕捞环10上的多个显影环50。其中第一连接件60用于与递送所述瓣叶捕获装置的输送装置可拆卸连接;远端保护件70用于在瓣叶捕获装置的递送过程中保护心肌组织;显影环50用于观察与确定捕捞环10在手术过程中的位置,并提示其从心房侧至心室侧的移动,捕捞环10环抱于二尖瓣腱索丛外,用于定位植入二尖瓣内的人工心脏瓣膜支架80。
优选的,为了将瓣叶捕获装置更加稳定的固定于二尖瓣处,捕捞环10由近端向远端依次设置有心房段14、过渡段13、功能段12及心室段11,其中:
心房段14弯曲盘绕于左心房100中,且其弯曲的曲率与心房壁的曲率大致相同,以保证捕捞环10的心房段14可以与左心房100更加匹配,进一步地,对于不同的患者,其心房的形状、尺寸会有所不同,本领域技术人员可以理解的是,心房段14的具体弯曲曲率及尺寸可以根据患者的情况而适应性的改变,在一种优选实施方式中,在对不同的患者进行手术前,可以通过影像学的方法对患者的心脏进行建模,以确定捕捞环10合适的形状与尺寸。
参考图5,功能段12呈盘卷状定位于原生二尖瓣的瓣环处,用于支撑被植入二尖瓣内的人工心脏瓣膜支架80。
优选的,过渡段13设置于心房段14与功能段12之间,其形状被配置为由功能段12延伸至位于左心房100的心房段14,由于功能段12设置于二尖瓣外,心房段14定位于左心房100内,因此捕捞环10在置入体内后过渡段13由二尖瓣外穿过瓣叶间隙螺旋上升,并延伸至心房段14。
心室段11由上述功能段12向下延伸至并接合至左心室110,并被配置为大致遵循原生二尖瓣腱索丛曲率的弯曲状,如图5所示。进一步地,由于心室段11和功能段12均位于二尖瓣外,因此无需再设置过渡段13;优选的,心室段11的具体尺寸及曲率可以根据患者的具体情况做出适应性改变。
进一步地,由于心房段14定位于心房中,而功能段12及心室段11放置于二尖瓣外,因此心房段14用于提供径向向外扩张的力,以保证该段可以稳定的定位于左心房100中,而功能段12及心室段11则提供径向向内收紧的力,以锚定位于二尖瓣内的人工心脏瓣膜支架80,以同时对人工心脏瓣膜支架80和自身进行固定,同时也可以对二尖瓣进行收紧,以减少二尖瓣反流。
更进一步的,呈大致螺旋状的捕捞环10还可以提供轴向变形能力,以顺应左心心肌组织在整个心动周期中形态的改变,同时在进行手术置入时也更加便利。
由于心房的空间较大,二尖瓣瓣环处最狭窄,二尖瓣下的腱索丛逐渐扩张,因此在一种优选实施例中,在捕捞环10的多个区段中,功能段12的直径小于心室段11的直径,心室段11的直径小于心房段14的直径,以期获得最佳的固定位点。在其他实施例中,若术前对患者的心脏进行影像学检查后发现上述实施例中的比例关系不适用,则可以根据实际情况选择更加合适的尺寸及比例。
根据图1所显示的上述捕捞环10的横切面,其结构由内向外包括三层:芯体20、第一包裹层30和第二包裹层40。
上述芯体20由至少一根弹性丝螺旋盘绕而成,并且其至少具有径向和轴向变形的能力,能够顺应二尖瓣形状的改变,并支撑和定位被植入二尖瓣内的人工心脏瓣膜支架80;优选 的,由于芯体20不直接与心肌组织接触,因此无需一定选择生物相容性材料,具体可以选择记忆合金、聚合物、纤维或其他高分子材料,在一种优选实施方式中,所述芯体20优选为记忆合金热定型而成,更进一步的优选为镍钛合金,由于镍钛合金具备20%以上的伸缩率,且具有高阻尼、高弹性和高疲劳寿命,因此无论是在向人体递送过程中亦或是植入后都能保持稳定的形状,更重要的是,如果芯体20外的第一包裹层30及第二包裹层40受损,芯体20有可能会直接与心肌组织接触,而镍钛合金作为生物相容性材料会更加安全,及具备耐磨和抗腐蚀的性能,还不会产生排异反应。
上述第一包裹层30表面较光滑,可以诱导心肌组织向内生长,以此来进一步加固捕捞环10与二尖瓣的配合关系;优选的,在第一包裹层30表面和层体结构中都遍布有较小的孔隙,孔隙的大小应设置为允许组织细胞长入,在一种优选实施例中,孔隙的直径为5-20μm,以满足单个细胞能够通过,进一步地,在第一包裹层30的层体结构中设置的孔隙之间均互相连通,以允许组织细胞长入后产生的细胞外基质相互联接。
在一种优选实施方式中,第一包裹层30可通过编织、3D打印、静电纺丝、激光蚀刻能方式制备;当采用编织、静电纺丝等工艺时,需要保证使用的材料具备一定的弹性,以避免其跟随芯体20收缩或扩张发生撕裂或破损;当采用3D打印、激光蚀刻等工艺时,需第一包裹层30的内径应略小于芯体20的外径,使得二者能够过盈配合,以期获得更稳定的组合结构。
在一种优选实施方式中,第一包裹层30可以选择光滑致密的高分子材料制作,优选聚氨酯、聚四氟乙烯、膨体聚四氟乙烯、海藻酸/海藻酸盐、蚕丝蛋白、甲壳素、明胶、胶原、透明质酸、壳聚糖、聚己内酯、聚乳酸、聚对苯二甲酸乙二醇酯、聚乙烯、聚氯乙烯、聚羟基乙酸、聚甲基丙烯酸、聚乳酸-聚羟基乙酸、羧甲基淀粉、醋酸淀粉、羧甲基壳聚糖、羧甲基纤维素、聚乙烯醇、聚丙烯酰胺、聚丙烯酸和聚乙烯吡咯烷酮等材料;在一种更优选的实施方式中,第一包裹层30选择使用膨体聚四氟乙烯(ePTFE)微孔薄膜进行制作,由于ePTFE微孔薄膜是以聚四氟乙烯为原料经膨化拉伸形成的薄膜,本身已经具有无数个微孔便于细胞进入,无须再通过编织或3D打印的方式制作孔隙,而且其体量轻,在置入二尖瓣后不会额外增加负担。
上述第二包裹层40表面较为粗糙,用于为捕捞环10提供一定的摩擦力,降低捕捞环10在心动周期中发生位移的风险;优选的,第二包裹层40的材料可选择具有较大孔隙的编织材料、具备高摩擦系数的高分子材料或者设有图案化镂空的高分子材料;优选的,可以选择PTFE作为制作第二包裹层40的材料;更优选的,由于PET膜具备拉伸强度大、厚度薄、摩擦系数高、表面张力大等特点,因此选择PET膜作为第二包裹层40的制作材料;在一种 更优选的实施方式中,在设置PET膜时预先将其表面设置图案化镂空,如条纹型图案、波点状图案、锯齿线状图案或其他图案,以进一步提高其摩擦性能。
如果第二包裹层40与瓣叶之间的摩擦力过大,则瓣叶有可能在心动周期中发生撕裂等情况,为了避免或减少这种事情的发生,在一种更优选的实施方式中,在第二包裹层40的外表面还设有疏松排列的毛面结构,以提供一定的缓冲作用,防止捕捞环10在心动周期中对瓣叶造成撕裂。具体在选择第二包裹层40的材料时,可以选择附有针织绒毛面41的PET膜,如图1-2,在保证一定柔韧性的同时亦能起到缓冲的作用,以取得保护瓣叶与定位人工心脏瓣膜支架80间的平衡。
在一种实施方式中,第二包裹层40连续覆盖于第一包裹层30外;优选的,由于捕捞环10只有功能段12与人工心脏瓣膜支架80接触,因此仅在捕捞环10的功能段12设置第二包裹层40,如图3;在一种更优选的实施方式中,在植入人工心脏瓣膜支架80后,捕捞环10的功能段12无法和支架完全匹配,而仅有部分区域相互接触,因此仅在捕捞环10功能段12与人工心脏瓣膜支架80相接触的区域间隔覆盖第二包裹层40即可,如图4;同时为了防止捕捞环10在心动周期中发生局部的移位,因此在设置第二包裹层40时可稍大于捕捞环10与人工心脏瓣膜支架80的接触面积。
在另外一种优选实施方式中,第二包裹层40在功能段12间隔设置,但与腱索接触的功能段12的部分区域不设置第二包裹层40,避免在植入捕捞环10的过程中压迫或摩擦腱索,避免因摩擦力过大而产生剪切力,造成腱索断裂。更优选地,在功能段12中,第二包裹层40在近心房段14处的分布密度大于近心室段11处的分布密度,在保证减小瓣周漏的同时降低对腱索的损伤,可选的,第二包裹层40在功能段12靠近瓣环的区域连续设置,而后间隔设置,且越靠近心室段11间隔越大,直至靠近腱索区域不再设置第二包裹层40。在一种更优选的实施方式中,在功能段12靠近瓣膜联合处的区域连续设置第二包裹层40,其他区域不再设置第二包裹层40,或间隔设置第二包裹层40。
进一步地,在手术过程中,将瓣叶捕获装置递送到二尖瓣位置时,医生需要通过设置于捕捞环10上的显影环50来确定安置的位置是否准确,而且,由于心脏瓣膜是立体结构,通常需要确定其空间位置是否准确,因此需要通过多个显影环50的位置判断其空间位置是否准确。为了便于植入过程中瓣叶捕获装置的空间位置的确定,上述显影环50设置于捕捞环10过渡段13的上下两端,用于在手术过程中提示捕捞环10从左心房100侧向左心室110侧位置的移动;优选的,显影环50可以是任何生物相容性金属或是有显影性的高分子材料,优选为镍钛、不锈钢或添加有硫酸钡的注塑件;具体的,显影环50可以通过胶水粘接或缝合的方式固定于捕捞环10上。
优选的,上述远端保护件70为半球状固接于捕捞环10的远端,其材料可以是任何生物相容性金属或是有显影性的高分子材料,可以选择使用和显影环50相同的材料。
优选的,上述第一连接件60为与递送所述瓣叶捕获装置的输送装置的远端互为卡接结构,用于对捕捞环10递送过程中的限位及释放。
在本实施例中,上述瓣叶捕获装置在使用时,通过输送装置将捕捞环10释放于二尖瓣腱索丛处后,其功能段12定位于原生二尖瓣的瓣环处,过渡段13由瓣环处穿过瓣叶间隙向上延伸,心房段14具有径向扩张的力,以防止瓣叶捕获装置发生移位,心室段11由功能段12向下延伸,并环抱于二尖瓣腱索丛处,心室段11与功能段12均具有径向收紧的力,进一步加强对瓣叶捕获装置的定位。进一步地,将人工心脏瓣膜支架80植入原生二尖瓣内,支架径向向外扩张,与径向收紧的功能段12相互作用,以锚定支架以防止其移位。由于捕捞环10具有三层结构,其中包裹于芯体20外的第一包裹层30质地紧密光滑且遍布孔隙,能够诱导组织细胞向其中生长,加强芯体20的锚定作用;最外层的第二包裹层40直接与支架接触,其外表面还设有毛面结构,不仅可以防止捕捞环10发生移位,还提供了一定的缓冲,避免撕裂瓣叶,使得二尖瓣的瓣叶与瓣叶捕获装置的配合更加安全和稳定。
实施例2
实施例2提供了一种瓣叶捕获系统,本实施例在实施例1结构的基础上,还增加了用于递送瓣叶捕获装置的输送装置,在该输送装置的远端设有第二连接件,用于和捕捞环10近端的第一连接件60可拆卸连接,输送装置的第二连接件与捕捞环10一同穿过导引导管到达左心预定位置,并释放捕捞环10。
实施例3
仍以二尖瓣植入为例,参考图6,实施例3提供了一种人工心脏瓣膜系统,本实施例在实施例1的结构基础上,还包括了人工心脏瓣膜支架80,如实施例1中所述,人工心脏瓣膜支架80被配置为在原生二尖瓣处扩张,并与上述瓣叶捕获装置相互作用,以消除二尖瓣反流。人工心脏瓣膜支架80可以是球囊扩张式支架或者自膨胀式支架,支架外壁上设有密封膜,内部设置人工瓣叶。
具体地,人工心脏瓣膜支架80固定于原生二尖瓣处,并具体被捕捞环10的功能段12所锚定,捕捞环10的心房段14固定于左心房100中,心室段11环抱于二尖瓣腱索丛处。
上面结合附图对本发明的实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本发明的保护之内。

Claims (17)

  1. 一种瓣叶捕获装置,包括捕捞环,其特征在于:
    所述捕捞环呈螺旋状,能够盘绕于二尖瓣/三尖瓣腱索丛,并定位被植入二尖瓣/三尖瓣内的人工心脏瓣膜支架;
    所述捕捞环由内向外包括芯体、第一包裹层及第二包裹层;
    所述芯体由预成形的记忆金属制成,其至少能够在径向和轴向发生弹性形变,以顺应心肌组织形状的改变;
    所述第一包裹层被配置为具有较小孔隙的纤维层,孔隙的大小允许细胞长入,且相邻的孔隙之间相连通,以允许细胞长入后产生的细胞外基质相互联接;
    所述第二包裹层外表面设有毛面结构,用于为所述捕捞环提供摩擦力;
    所述第一包裹层外至少有一处设有所述第二包裹层,或者,所述第二包裹层间隔设置于所述第一包裹层外。
  2. 根据权利要求1所述的瓣叶捕获装置,其特征在于,所述第一包裹层自所述芯体的远端至近端连续覆盖于所述芯体外。
  3. 根据权利要求1所述的瓣叶捕获装置,其特征在于,所述孔隙的直径为5-20μm。
  4. 根据权利要求3所述的瓣叶捕获装置,其特征在于,所述第一包裹层由编织或3D打印制备而成。
  5. 根据权利要求4所述的瓣叶捕获装置,其特征在于,所述第一包裹层包括ePTFE微孔薄膜。
  6. 根据权利要求1所述的瓣叶捕获装置,其特征在于,所述第二包裹层被配置为具有较大孔隙的编织层;
    或者,所述第二包裹层由具备高摩擦系数的高分子材料制成;
    或者,所述第二包裹层由设有图案化镂空的所述高分子材料制成。
  7. 根据权利要求6所述的瓣叶捕获装置,其特征在于,所述高分子材料包括PET膜或PTFE膜。
  8. 根据权利要求1所述的瓣叶捕获装置,其特征在于,所述芯体包括镍钛合金。
  9. 根据权利要求1-8任一项所述的瓣叶捕获装置,其特征在于,所述捕捞环由近端至远端依次设置为心房段、过渡段、功能段及心室段;
    所述心房段定位于心房中,并被配置为大致遵循心房壁曲率的弯曲状;
    所述过渡段被配置为由所述功能段延伸至所述心房段;
    所述功能段定位于原生瓣环处,呈盘卷状,用于支撑植入的人工心脏瓣膜支架;
    所述心室段由所述功能段延伸心室,并被配置为大致遵循原生腱索丛曲率的弯曲状。
  10. 根据权利要求9所述的瓣叶捕获装置,其特征在于,所述第二包裹层覆盖于所述功能段与人工心脏瓣膜支架相接触的区域;
    和/或,所述第二包裹层覆盖于所述心房段与人工心脏瓣膜支架相接触的区域;
    和/或,所述第二包裹层覆盖于所述过渡段与人工心脏瓣膜支架相接触的区域;
    和/或,所述第二包裹层覆盖于所述心室段与人工心脏瓣膜支架相接触的区域。
  11. 根据权利要求9所述的瓣叶捕获装置,其特征在于,所述第二包裹层至少在所述功能段连续设置。
  12. 根据权利要求9所述的瓣叶捕获装置,其特征在于,除与腱索接触的区域外,所述第二包裹层间隔覆盖于所述功能段对应的所述第一包裹层外。
  13. 根据权利要求1所述的瓣叶捕获装置,其特征在于,所述捕捞环的近端设有第一连接件,所述捕捞环的远端设有远端保护件,在所述捕捞环上还设有至少一个显影环。
  14. 一种瓣叶捕获系统,其特征在于,包括如权利要求1-13任一项所述的瓣叶捕获装置,还包括用于递送所述瓣叶捕获装置的输送装置,所述输送装置的远端设有第二连接件,所述第二连接件与第一连接件可拆卸连接。
  15. 一种人工心脏瓣膜系统,其特征在于,包括如权利要求1-13任一项所述的瓣叶捕获装置,还包括人工心脏瓣膜支架,所述人工心脏瓣膜支架被配置为在原生二尖瓣/三尖瓣处扩张,并与所述瓣叶捕获装置相互作用。
  16. 根据权利要求15所述的人工心脏瓣膜系统,其特征在于,所述人工心脏瓣膜支架包括球囊扩张式支架,所述球囊扩张式支架呈柱形,所述球囊扩张式支架的外壁上设有密封膜,所述球囊扩张式支架的内部设置人工瓣叶。
  17. 根据权利要求15所述的人工心脏瓣膜系统,其特征在于,所述人工心脏瓣膜支架包括自膨胀式支架,所述自膨胀式支架包括定位于心房的法兰盘及柱形支架,在所述自膨胀式支架的外壁上设有密封膜,所述自膨胀式支架的内部设有人工瓣叶。
PCT/CN2023/074283 2022-03-31 2023-02-02 一种瓣叶捕获装置、系统及人工心脏瓣膜系统 WO2023185248A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210345616.7A CN114869545A (zh) 2022-03-31 2022-03-31 一种瓣叶捕获装置、系统及人工心脏瓣膜
CN202210345616.7 2022-03-31

Publications (1)

Publication Number Publication Date
WO2023185248A1 true WO2023185248A1 (zh) 2023-10-05

Family

ID=82670175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/074283 WO2023185248A1 (zh) 2022-03-31 2023-02-02 一种瓣叶捕获装置、系统及人工心脏瓣膜系统

Country Status (2)

Country Link
CN (1) CN114869545A (zh)
WO (1) WO2023185248A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114869545A (zh) * 2022-03-31 2022-08-09 上海纽脉医疗科技股份有限公司 一种瓣叶捕获装置、系统及人工心脏瓣膜

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106572905A (zh) * 2014-02-20 2017-04-19 米特拉尔维尔福科技有限责任公司 用于支撑人工心脏瓣膜的旋绕的锚固件、人工心脏瓣膜和部署装置
US20180177594A1 (en) * 2016-08-26 2018-06-28 Edwards Lifesciences Corporation Heart valve docking devices and systems
CN109803610A (zh) * 2016-08-26 2019-05-24 爱德华兹生命科学公司 心脏瓣膜对接系统
US20200107930A1 (en) * 2018-10-05 2020-04-09 Shifamed, Llc Prosthetic cardiac valve devices, systems, and methods
CN111110403A (zh) * 2020-01-14 2020-05-08 启晨(上海)医疗器械有限公司 一种带锚定环的心脏瓣膜装置及其使用方法
CN112315626A (zh) * 2020-11-06 2021-02-05 上海纽脉医疗科技有限公司 一种人工心脏瓣膜及医用装置
CN113303947A (zh) * 2021-06-17 2021-08-27 上海臻亿医疗科技有限公司 一种心脏瓣膜的锚固装置
CN114869545A (zh) * 2022-03-31 2022-08-09 上海纽脉医疗科技股份有限公司 一种瓣叶捕获装置、系统及人工心脏瓣膜

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106572905A (zh) * 2014-02-20 2017-04-19 米特拉尔维尔福科技有限责任公司 用于支撑人工心脏瓣膜的旋绕的锚固件、人工心脏瓣膜和部署装置
US20180177594A1 (en) * 2016-08-26 2018-06-28 Edwards Lifesciences Corporation Heart valve docking devices and systems
CN109803610A (zh) * 2016-08-26 2019-05-24 爱德华兹生命科学公司 心脏瓣膜对接系统
US20200107930A1 (en) * 2018-10-05 2020-04-09 Shifamed, Llc Prosthetic cardiac valve devices, systems, and methods
CN111110403A (zh) * 2020-01-14 2020-05-08 启晨(上海)医疗器械有限公司 一种带锚定环的心脏瓣膜装置及其使用方法
CN112315626A (zh) * 2020-11-06 2021-02-05 上海纽脉医疗科技有限公司 一种人工心脏瓣膜及医用装置
CN113303947A (zh) * 2021-06-17 2021-08-27 上海臻亿医疗科技有限公司 一种心脏瓣膜的锚固装置
CN114869545A (zh) * 2022-03-31 2022-08-09 上海纽脉医疗科技股份有限公司 一种瓣叶捕获装置、系统及人工心脏瓣膜

Also Published As

Publication number Publication date
CN114869545A (zh) 2022-08-09

Similar Documents

Publication Publication Date Title
CN106420114B (zh) 一种心脏瓣膜假体
US6572533B1 (en) Cardiac disease treatment and device
US6582355B2 (en) Cardiac disease treatment method
US6896652B2 (en) Cardiac disease treatment and device
US6174279B1 (en) Cardiac constraint with tension indicator
US6230714B1 (en) Cardiac constraint with prior venus occlusion methods
CN209091745U (zh) 分体式心脏瓣膜支架及其假体
EP1102567A1 (en) Cardiac disease treatment device and method
WO2023246278A1 (zh) 一种人工心脏瓣膜
CN117100459B (zh) 瓣膜支架及瓣膜假体
WO2023185248A1 (zh) 一种瓣叶捕获装置、系统及人工心脏瓣膜系统
CN214549745U (zh) 用于植入心脏的瓣膜假体装置
CN212395132U (zh) 一种心脏瓣膜假体
CN218458212U (zh) 一种人工心脏瓣膜
CN114869544A (zh) 一种瓣叶捕获装置、系统及人工心脏瓣膜
CN115212010A (zh) 一种人工心脏瓣膜
CN112438826A (zh) 一种用于植入心脏的瓣膜假体装置
WO2022105055A1 (zh) 一种用于植入心脏的瓣膜假体装置
CN115212009A (zh) 一种人工心脏瓣膜
CN115607336A (zh) 一种人工心脏瓣膜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23777627

Country of ref document: EP

Kind code of ref document: A1