WO2023185178A1 - 中框组件、其制备方法及电子设备 - Google Patents

中框组件、其制备方法及电子设备 Download PDF

Info

Publication number
WO2023185178A1
WO2023185178A1 PCT/CN2023/070061 CN2023070061W WO2023185178A1 WO 2023185178 A1 WO2023185178 A1 WO 2023185178A1 CN 2023070061 W CN2023070061 W CN 2023070061W WO 2023185178 A1 WO2023185178 A1 WO 2023185178A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame
plating layer
carbon fiber
metal plating
fiber reinforced
Prior art date
Application number
PCT/CN2023/070061
Other languages
English (en)
French (fr)
Inventor
孟胤
高静
江成
Original Assignee
荣耀终端有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荣耀终端有限公司 filed Critical 荣耀终端有限公司
Priority to EP23739079.4A priority Critical patent/EP4283961A1/en
Publication of WO2023185178A1 publication Critical patent/WO2023185178A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/026Details of the structure or mounting of specific components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • H01Q1/244Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas extendable from a housing along a given path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/40Weight reduction

Definitions

  • the present application relates to the technical field of electronic equipment, and in particular, to a middle frame assembly, its preparation method and electronic equipment.
  • the weight of a mobile phone is about 150g to 200g, and the thickness is less than 9mm. It has a relatively comfortable hand feel. Being too heavy will make the hand feel uncomfortable, especially as the use time increases, the discomfort will increase.
  • the main factors that affect the weight of a mobile phone include the size of the mobile phone, the material of the body, the battery capacity and the functional modules. As the size of the mobile phone becomes larger, the battery capacity becomes larger, and the functional modules increase, the weight of the mobile phone will gradually increase. Therefore, the selection of mobile phone case materials is one of the current research directions for lightweight mobile phones.
  • middle frame of mobile phones Commonly used materials for the middle frame of mobile phones are metal alloys such as magnesium alloy, stainless steel, aluminum alloy, and zinc alloy. High-strength, high-toughness plastics such as glass fiber reinforced polyurethane (PC+GF) are used instead of metal alloys. Although the weight of the mobile phone can be reduced, However, plastic will cause the dielectric constant and loss tangent of the middle frame to increase, affecting the function of the antenna.
  • metal alloys such as magnesium alloy, stainless steel, aluminum alloy, and zinc alloy.
  • High-strength, high-toughness plastics such as glass fiber reinforced polyurethane (PC+GF) are used instead of metal alloys.
  • PC+GF glass fiber reinforced polyurethane
  • the present application provides a middle frame component, its preparation method and electronic equipment, which solves the problem of being unable to reduce the weight of the electronic equipment and maintain the antenna function at the same time.
  • a middle frame assembly includes a middle plate and a frame surrounding the outer edge of the middle plate; the middle plate includes a first carbon fiber reinforced resin composite material matrix and a first metal plating layer compounded on the surface of the matrix.
  • carbon fiber reinforced resin composite materials such as carbon fiber reinforced epoxy resin composite materials, carbon fiber reinforced phenolic resin composite materials or carbon fiber reinforced polytetrafluoroethylene resin composite materials, are used as the mid-plate matrix of the mid-frame assembly, which significantly reduces the cost of the mid-frame assembly.
  • the weight of the frame assembly has the advantages of good rigidity and high strength.
  • the composite metal plating on the surface of the carbon fiber reinforced resin composite material solves the problem of wave absorption and PIM of the carbon fiber reinforced resin composite material itself, thus not affecting the antenna function of electronic equipment.
  • the thickness of the first metal plating layer is greater than or equal to its skin depth. Furthermore, the resistivity of the first metal plating layer is 1 ⁇ 10 -4 ohm ⁇ cm or less, or even 1 ⁇ 10 -5 ohm ⁇ cm ⁇ 1 ⁇ 10 -8 ohm ⁇ cm, which is relatively close to that of a metal mid-plate such as an aluminum alloy. There is no loss in antenna performance when the resistivity of the board is reduced.
  • the middle plate in order to prevent the first metal plating layer on the middle plate from falling off, also includes a protective layer compounded on the surface of the first metal plating layer.
  • the protective layer can be treated by surface film treatment, passivation liquid treatment, Spraying, anodizing, micro-arc oxidation, electrophoresis and other methods are used to form the surface of the first metal coating to prevent the first metal coating from falling off under greater pressure.
  • the first metal plating layer can also be partially compounded on the carbon fiber reinforced resin composite matrix of the middle panel to prevent it from falling off, such as compounding the first metal plating layer on the portion of the carbon fiber reinforced resin composite matrix that is not connected to the frame.
  • electrical continuity between the upper and lower surfaces of the carbon fiber reinforced resin composite material matrix is achieved by arranging through holes on the carbon fiber reinforced resin composite material matrix and compounding a second metal plating layer on the surface of the through holes.
  • the middle frame assembly also includes an antenna radiator.
  • the antenna radiator can be formed by at least part of the frame of the metalized frame (that is, the antenna radiator is disposed on the outer surface of the frame), or can be disposed on the frame.
  • the side facing the middle panel that is, the antenna radiator is arranged on the inner surface of the frame).
  • the antenna radiator can be electrically connected to the first metal plating layer on the middle plate through a conductive layer or conductive auxiliary materials, such as metal springs, metal gaskets, conductive cloth, conductive glue or conductive foam, to achieve grounding of the antenna radiator. .
  • the antenna radiator may not be electrically connected to the midplane. Instead, when used in electronic equipment, it may be electrically connected to the screen assembly or printed circuit board of the electronic equipment to realize the grounding of the antenna radiator.
  • the electrical connection with the printed circuit board can be achieved by arranging wires on the printed circuit board, which can save structural costs.
  • the midplane and frame are made of carbon fiber reinforced resin composite material with a metal coating, which can further reduce the weight of the midframe assembly and electronic equipment.
  • Embodiments of the present application also provide a method for preparing a middle frame component, which includes the following steps:
  • a frame material is provided, and the frame material is connected to the middle panel to obtain a middle frame assembly.
  • the metallized surface treatment includes but is not limited to spraying, metal spray pattern (Metal Spray Pattern, MSP), direct printing.
  • Forming also known as pad printing, printing direct structuring, PDS
  • laser direct structuring Laser Direct Structuring, LDS
  • laser chemically activated metal plating Laser-Activating-Plating, LAP
  • chemical plating etc.
  • the frames of the mid-plane can be connected through mechanical means such as welding and snap-fitting to form a mid-frame assembly.
  • integrated injection molding can also be used, such as nano injection molding (Nano Molding Technology, NMT) or in-mold injection die casting (Metal Device Antenna, MDA).
  • NMT Nano Molding Technology
  • MDA Metal Device Antenna
  • Embodiments of the present application also provide an electronic device, including the middle frame assembly described in the above technical solution.
  • the electronic device is not only light in weight, but also has unaffected antenna performance.
  • the antenna radiator is electrically connected to the midplane. In some other possible embodiments, the antenna radiator can be electrically connected to the screen assembly or the printed circuit board to save structural costs.
  • the embodiment of the present application uses carbon fiber reinforced resin composite material with metal plating on the surface as the main material of the middle frame component, which not only achieves lightweighting of electronic equipment, but also does not affect the antenna function of the electronic equipment.
  • Figure 1 is a schematic diagram of the three-dimensional structure of a mobile phone
  • Figure 2 is a schematic diagram of the exploded structure of a mobile phone
  • Figure 3 is a schematic three-dimensional structural diagram of the middle frame assembly provided by the embodiment of the present application.
  • Figure 4 is a schematic diagram of the exploded structure of the middle frame assembly provided by the embodiment of the present application.
  • Figure 5 shows the decay life curve waveform of magnesium alloy fretting wear resistance test
  • Figure 6 is a waveform diagram of the attenuation life curve of aluminum-magnesium alloy fretting wear resistance test
  • Figure 7 is a schematic diagram of the stacked structure of the mid-plate provided by the embodiment of the present application.
  • Figure 8 shows the system composite efficiency curve of metal plating and metal materials at 1 to 3 GHz
  • Figure 9 shows the system composite efficiency curve of metal plating and metal materials at 3 to 6 GHz
  • Figure 10 is the S-parameter curve of silver plating and metal materials at 0.6 ⁇ 4GHz
  • Figure 11 shows the system composite efficiency curve of silver plating and metal materials at 0.6 ⁇ 4GHz
  • Figure 12 is a schematic structural diagram of a frame provided by an embodiment of the present application.
  • Figure 13 is a flow chart of the preparation process of the middle frame component provided by the embodiment of the present application.
  • Figure 14 is a schematic diagram of the connection structure of the middle frame assembly provided by the embodiment of the present application.
  • Figure 15 is a schematic cross-sectional structural diagram of the middle frame assembly provided by the second embodiment of the present application.
  • Figure 16 is a schematic cross-sectional structural diagram of the middle frame assembly provided by the third embodiment of the present application.
  • Figure 17 is a schematic diagram of the connection between the antenna radiator and the PCB board provided by the embodiment of the present application.
  • Figure 18 is a schematic diagram of the connection between the antenna radiator and the screen assembly provided by the embodiment of the present application.
  • Figure 19 is a schematic cross-sectional structural diagram of the middle frame assembly provided by the fourth embodiment of the present application.
  • Figure 20 is a schematic cross-sectional structural diagram of the middle frame assembly provided by the fifth embodiment of the present application.
  • Figure 21 is a schematic structural diagram of the first electrical connection of the midplane provided by the embodiment of the present application.
  • Figure 22 is a schematic structural diagram of the second electrical connection of the midplane provided by the embodiment of the present application.
  • Figure 23 is a schematic structural diagram of the third electrical connection of the midplane provided by the embodiment of the present application.
  • Figure 24 is a schematic structural diagram of the fourth electrical connection of the midplane provided by the embodiment of the present application.
  • Figure 25 is a schematic structural diagram of a middle frame assembly provided by the sixth embodiment of the present application.
  • FIG. 1 is a schematic diagram of the three-dimensional structure of the mobile phone
  • Figure 2 is a schematic diagram of the exploded structure of the mobile phone.
  • the mobile phone 100 mainly includes a display module 10, a middle frame assembly 20 and a back case 50.
  • the middle frame assembly 20 is located between the display module 10 and the back case 50.
  • the display module 10 is used to display images
  • the rear case 50 is connected with the middle frame assembly 20 to form a receiving cavity for accommodating electronic components such as printed circuit boards, cameras, and batteries.
  • a printed circuit board 30 and a battery 40 may also be disposed on the middle frame assembly 20.
  • the printed circuit board 30 and the battery 40 are disposed on a side of the middle frame 20 facing the rear shell 50, or the printed circuit board 30 and the battery 40 are disposed on the middle frame. 20 on the side facing the display module 10 .
  • an opening may be opened on the middle frame 20 for placing the components on the printed circuit board 30 at the opening of the middle frame 20 .
  • the mobile phone 100 may include more or fewer components than shown in the figures, or some combinations thereof. parts, or splitting some parts, or different parts arrangements.
  • the mobile phone 100 may also include a camera, including a front camera, a rear camera, a flash, and other devices.
  • the middle frame assembly 20 includes a middle panel 201 and a frame 202 surrounding the outer edge of the middle panel, as shown in Figures 3 and 4.
  • Figure 3 is a middle frame provided by an embodiment of the present application.
  • Figure 4 is a schematic diagram of the exploded structure of the middle frame component provided by the embodiment of the present application.
  • the middle plate 201 can use high-strength, high-toughness plastic instead of aluminum alloy and other metals, such as carbon fiber reinforced resin composite material.
  • Carbon fiber reinforced resin composite materials have the advantages of high strength, high toughness, and small specific gravity.
  • carbon fiber is a special fiber composed of carbon. Its carbon content varies with different types, generally above 90%.
  • Carbon fiber has the characteristics of general carbon materials, such as high temperature resistance, friction resistance, electrical conductivity, thermal conductivity and corrosion resistance. However, unlike general carbon materials, its shape is significantly anisotropic and soft, and can be processed into various fabrics. Carbon fiber can be processed into fabrics, felts, mats, tapes, paper and other materials. It is generally added as reinforcing materials to resin, metal, ceramics, concrete and other materials to form composite structural materials.
  • Carbon fiber reinforced resin composite materials have high specific strength, specific modulus and other comprehensive indicators, and have become a commonly used material in the aerospace field because of their small specific gravity, good rigidity and high strength. See Table 1. Table 1 shows carbon fiber reinforcement. Performance comparison of resin composites with other materials.
  • FIG. 5 is the decay life curve waveform of the magnesium alloy fretting wear resistance test (the number of tests is 14427 times), and Figure 6 is the decay life curve waveform of the aluminum-magnesium alloy fretting wear resistance test (the number of tests is 14379 times). ).
  • the impedance begins to rise, from 1ohm to about 20ohm. As the laser engraving surface wears, the powder continues to accumulate. By about 2,000 times, the impedance increases to about 45ohm.
  • the impedance rise time is short and the absolute value of the impedance is twice as large.
  • the density of carbon fiber reinforced resin composite materials is only 22% of stainless steel and 63% of aluminum alloy. Its strength is nearly 3 times that of stainless steel and 4 times that of aluminum alloy. It also has a low linear expansion coefficient, high dimensional accuracy, and good durability. Corrosive, inert in alkaline environments, and has good corrosion resistance to organic solvents, acids, alkalis, etc. It is suitable to replace metal materials to achieve lightweight electronic equipment. However, the carbon fiber reinforced resin composite material itself has hysteresis characteristics. Directly using it as a middle frame material will cause serious passive intermodulation (PIM) problems. See Table 2. Table 2 shows the carbon fiber reinforced resin composite material (Carbon Fiber Reinforced Polymer/Plastic, CFRP) equivalent dielectric constant and magnetic permeability.
  • CFRP passive intermodulation
  • carbon fiber reinforced resin composite material is used as the main material of the middle frame, and its surface is metallized to form a metal coating to solve the problem of wave absorption and PIM of the carbon fiber reinforced resin composite material itself.
  • Table 3 shows the power values of the 2nd and 3rd harmonics of carbon fiber reinforced resin composite materials and surface nickel-plated carbon fiber reinforced resin composite materials in the same scenario.
  • unnickel-plated sample 1 is a continuous carbon fiber phenolic resin composite material
  • unnickel-plated sample 2 is the same as sample 1
  • nickel-plated sample 1 is a 1 ⁇ m nickel layer compounded on unnickel-plated sample 1
  • nickel-plated sample 2 It is the 1 ⁇ m nickel layer composited on the unplated nickel sample 2.
  • the middle plate 201 provided by the embodiment of the present application includes a carbon fiber reinforced resin composite matrix 211 and a metal plating layer 212 compounded on the surface of the base body, as shown in Figure 7 .
  • Figure 7 is a diagram of the middle plate provided by the embodiment of the present application. Schematic diagram of the stacked structure.
  • the carbon fiber reinforced resin composite matrix 211 has the characteristics of high strength, high toughness, and small specific gravity, which can significantly reduce the weight of electronic equipment.
  • the metal plating layer 212 can solve the wave absorption effect and PIM problem of the matrix 211 itself, thereby not affecting the antenna of the electronic device. Function.
  • the middle plate 201 may be provided with openings for placing components on the circuit board at the openings of the middle plate 201 .
  • the carbon fiber reinforced resin composite material matrix 211 is formed of carbon fiber reinforced resin composite material.
  • the carbon fiber reinforced resin composite material includes but is not limited to carbon fiber reinforced epoxy resin composite material, carbon fiber reinforced phenolic resin composite material or carbon fiber reinforced polytetrafluoroethylene resin composite material. Among them, carbon fiber reinforced epoxy resin composite materials have higher specific strength and specific modulus and other comprehensive performance indicators. As a matrix, the mid-frame assembly has a lighter weight and better strength.
  • carbon fibers include but are not limited to continuous fibers or short fibers.
  • short fiber reinforced resin composite materials are also called forged carbon fiber composite materials. They have high strength, short production cycle, can be used on Class A surfaces, and have diverse properties. Specialized surface treatment technology and other advantages.
  • the amount of short fiber added does not exceed 50%, generally 10wt% to 30wt%.
  • Continuous fibers are also called long fibers. Continuous fiber reinforced resin composite materials are generally prepared by impregnating dry fiber cloth with resin and then hot pressing. The continuous fiber diameter is generally 2 to 5 ⁇ m, and each fiber bundle has 10,000 to 20,000 fibers.
  • the carbon fiber reinforced resin composite matrix 211 may be provided with openings for placing components and batteries on the circuit board.
  • a notch structure or a bite structure can be provided on the outer periphery of the carbon fiber reinforced resin composite matrix 211.
  • a carbon fiber reinforced resin composite side wall is formed on part of the periphery of the carbon fiber reinforced resin composite matrix 211, such as the periphery where the middle plate 201 is close to the battery, to increase the bonding between the frame 202 and the middle plate 201. force.
  • the carbon fiber reinforced resin composite material serves as the matrix of the middle plate 201, and its surface is composited with a metal plating layer 212. After the composite metal plating layer 212, the middle plate 201 is equivalent to a metal middle plate.
  • the current flows through the reference ground of the middle frame component, according to the electromagnetic wave Skin effect, the current distribution inside the conductor is uneven, and the current is concentrated in the thin layer outside the conductor (that is, the "skin" part). The closer to the conductor surface, the greater the current density, and the actual current inside the conductor is smaller.
  • the effect of the metal plating layer 212 is similar to that of an ordinary metal middle frame, and there is no loss in antenna performance.
  • Figure 8 shows the relationship between the metal coating and the metal material between 1 and 1. System composite efficiency curve at 3GHz.
  • Figure 9 shows the system composite efficiency curve of metal coating and metal materials at 3 to 6GHz.
  • Curve 2 is for aluminum alloy (Al content accounts for more than 80%, and the resistivity is about 3 ⁇ 10 - 7 ohm ⁇ cm) system composite efficiency (System Radiation Efficency in dB[Magnitude]) curve
  • Curve 1 is the system composite efficiency curve of phosphor copper plating (resistivity is about 2 ⁇ 10 -7 ohm ⁇ cm). It can be seen from Figures 8 and 9 that when the thickness of the metal coating meets the skin depth and the resistivity is equivalent to the resistivity of the metal material, there is almost no deterioration in performance.
  • Figure 10 is the S-parameters (S-parameters [Magnitude in dB]) curve of silver plating and metal materials at 0.6 ⁇ 4GHz.
  • Figure 11 is the S-parameters [Magnitude in dB] curve of silver plating and metal materials at 0.6 ⁇ 4GHz. System composite efficiency curve at 4GHz.
  • Curve 1 is the relevant curve of aluminum alloy (Al content accounts for more than 80%, resistivity is about 3 ⁇ 10 -7 ohm ⁇ cm), and curve 2 is the silver coating (formed by silver paste). , the silver paste includes silver and silicone resin, and its resistivity is about 10 -4 ⁇ 10 -5 ohm ⁇ cm). It can be seen from Figures 10 and 11 that when the thickness of the metal coating meets the skin depth and the resistivity is higher than the resistivity of the metal material, the performance deteriorates, but the degree of deterioration is low and within the acceptable range.
  • the metal plating layer 212 may be one or more metal alloys selected from zinc, copper, nickel, gold, silver, tin, aluminum and other metals, and the embodiments of the present application are not particularly limited.
  • the metal plating layer 212 can be a single-layer plating layer, and the single-layer plating layer can be a single metal layer or a metal alloy layer; the metal plating layer 212 can also be a multi-layer metal plating layer, and each layer of the multi-layer metal plating layer can be the same or different.
  • Each layer of the metal plating layer can be a single metal layer or a metal alloy layer.
  • the metal plating 212 is a single-layer plating, such as zinc-copper plating or copper plating, with a thickness of 30-40 ⁇ m; for example, a copper plating, with a thickness of 6-18 ⁇ m; for example, a nickel plating, with a thickness of 2 ⁇ 8 ⁇ m.
  • the metal plating layer 212 is a multi-layer metal plating layer, for example, including a sequentially composite copper plating layer and a nickel plating layer, or a sequential composite copper plating layer, a nickel plating layer, and a gold plating layer, wherein the thickness of the copper plating layer may be 6 ⁇ 18 ⁇ m, the thickness of nickel plating can be 2 ⁇ 8 ⁇ m, and the thickness of gold plating can be 0.2 ⁇ 0.4 ⁇ m. In a possible embodiment, the thickness of the metal plating layer is 12-20 ⁇ m.
  • the purpose of the metal plating layer 212 is to make the carbon fiber reinforced resin composite material matrix 211 equivalent to metal. Therefore, the metal plating layer 212 can be formed on the entire surface of the carbon fiber reinforced resin composite material matrix 211, or can be formed on part of the carbon fiber reinforced resin composite material matrix 211.
  • a metal plating layer 212 is formed on the surface, for example, a metal plating layer 212 is formed on a portion of the surface that is not connected to the frame 22 .
  • the metal plating layer 212 is formed on part of the surface of the carbon fiber reinforced resin composite matrix 211, the carbon fiber reinforced resin composite matrix 211 needs to be drilled or slotted at the edge of the part connected to the frame 202.
  • the metal plating layers on the upper surface and the lower surface are connected to ensure the electrical connection continuity of the metal plating layer 212.
  • the frame 202 is located around the outer edge of the middle panel 201.
  • the frame 202 includes a plastic frame 221 and a metallized frame 222 connected to the middle panel 201 through the plastic frame 221. See Figure 12.
  • Figure 12 is a schematic structural diagram of a frame provided by an embodiment of the present application.
  • the plastic frame 221 can reduce the weight of the electronic device on the one hand, and facilitate the connection between the metalized frame 222 and the middle plate 201 on the other hand.
  • the connection methods between the frame 202 and the middle panel 201 include but are not limited to welding, clamping, locking and integral injection molding. Those skilled in the art can understand that when the connection method between the frame 202 and the middle plate 201 is welding, snapping or locking, the middle plate 201 and the frame 202 are provided with areas for welding, locking or snapping. or hole slot.
  • the plastic frame 221 is made of plastic material, such as polycarbonate (PC), acrylonitrile-butadiene-styrene plastic (ABS), glass fiber reinforced polycarbonate (PC+GF), ABS reinforced polycarbonate (ABS+PC) or carbon fiber reinforced resin composite materials, etc.
  • PC polycarbonate
  • ABS acrylonitrile-butadiene-styrene plastic
  • PC+GF glass fiber reinforced polycarbonate
  • ABS+PC ABS reinforced polycarbonate
  • carbon fiber reinforced resin composite materials etc.
  • the plastic frame 221 may be a closed annular structure or a semi-closed annular structure. In other words, the plastic frame 221 may be a semi-frame structure. In this embodiment, the plastic frame 221 has a closed annular structure. In a possible embodiment, the plastic frame 221 has a semi-frame structure and is located in the clearance area of the antenna radiator.
  • the metal frame 222 is located around the outer edge of the plastic frame 221 and can be composed of a frame frame connected end to end, that is, the metal frame is an integral frame. It can also be composed of multiple frame segments connected end to end, or it can be composed of multiple discontinuous segments. Frame composition.
  • the metalized frame 222 may be a metal frame, including but not limited to aluminum, aluminum-magnesium alloy, etc.
  • the metalized frame 222 may be a plastic frame with a metal coating on the surface, such as glass fiber reinforced polycarbonate with a metal coating on the surface, carbon fiber reinforced resin composite material with a metal coating on the surface, etc. .
  • the frame 202 is a plastic frame; or includes a plastic frame and a ceramic frame or a glass frame.
  • the ceramic frame or glass frame is connected to the middle panel 201 through the plastic frame.
  • connection and arrangement methods of the ceramic frame and the glass frame are similar to the above-mentioned metallized frame 222 and the plastic frame, and will not be described in detail here.
  • the side of the frame 202 facing away from the middle panel 201 may be a vertical surface.
  • the outward side of the metalized frame 222 may be vertical to the display screen.
  • the outward side of the metalized frame 222 is an outwardly convex arc surface, which on the one hand facilitates holding the electronic device and on the other hand makes the outer edge of the metalized frame 222 more beautiful.
  • Figure 13 is a manufacturing process flow chart of the middle frame component provided in the embodiment of the present application.
  • the middle frame component described in the embodiment of the present application is prepared according to the following steps:
  • Step 1) Process the carbon fiber reinforced resin composite material to obtain the matrix 211 of the middle plate 201 that can be used as the middle frame.
  • the carbon fiber reinforced resin composite material is the same as described above, and will not be described again in this application.
  • the carbon fiber reinforced resin composite material is processed by stamping or computer numerical control (CNC) to form a matrix 211. Openings for placing components on the circuit board and a battery compartment for placing batteries can be formed on the matrix.
  • the edge of the base 211 is provided with a notch structure or a bite structure.
  • part of the periphery of the carbon fiber reinforced resin composite matrix 211 forms a carbon fiber reinforced resin composite side wall to increase the bonding force between the frame 202 and the middle panel 201 .
  • the metal plating layer 212 can be formed by performing metallized surface treatment on the carbon fiber reinforced resin composite matrix 211.
  • the metallized surface treatment includes but is not limited to spraying, metal spray pattern (Metal Spray Pattern, MSP), printing direct forming (also known as Pad printing, printing direct structuring, PDS), laser direct structuring (Laser Direct Structuring, LDS), laser chemically activated metal plating (Laser-Activating-Plating, LAP), chemical plating, etc., the metallization surface treatment methods are different, and the The metals and the resulting metal coatings also vary.
  • cold spraying uses compressed air to accelerate metal particles to a critical speed. After being ejected from a nozzle, the metal particles hit the surface of the substrate and undergo physical deformation. The metal particles deform after impact and are firmly attached to the surface of the substrate. The entire process is high and low-temperature, which is harmful to the substrate. The thermal impact is small and the coating is dense.
  • a cold spraying method is used to form a metal plating layer 212 on the substrate 211.
  • the metal plating layer 212 can be a single metal plating layer of zinc, copper, nickel, gold, silver, and tin or formed of multiple metals. Alloy plating.
  • the metal plating 212 is a single-layer plating, such as zinc-copper plating or copper plating, with a thickness of 30-40 ⁇ m; for example, a copper plating, with a thickness of 6-18 ⁇ m; for example, a nickel plating, with a thickness of 2 ⁇ 8 ⁇ m.
  • the metal plating layer 212 is a multi-layer metal plating layer, for example, including a sequentially composite copper plating layer and a nickel plating layer, or a sequential composite copper plating layer, a nickel plating layer, and a gold plating layer, wherein the thickness of the copper plating layer may be 6 ⁇ 18 ⁇ m, the thickness of nickel plating can be 2 ⁇ 8 ⁇ m, and the thickness of gold plating can be 0.2 ⁇ 0.4 ⁇ m.
  • PDS refers to the application of the principle of gravure printing.
  • the pad printing equipment transfers conductive ink containing metal powders such as silver powder, copper powder, aluminum powder, nickel powder, etc. directly to the substrate through a rubber head, and forms a metal coating after thermal curing.
  • conductive ink also includes silicone resin, epoxy resin, etc.
  • the resistivity of the conductive ink is 10 -4 to 10 -5 ohm ⁇ cm.
  • the thickness of the metal plating layer is 12-20 ⁇ m. In a possible embodiment, the thickness of the metal plating layer is 30-40 ⁇ m.
  • electroless plating is a process in which metal is deposited through a redox reaction under the catalysis of metal to form a metal coating.
  • a chemical plating method is used to form a metal plating layer 212 on the substrate 211.
  • the metal plating layer 212 may be a single metal plating layer of zinc, copper, nickel, or gold or an alloy plating layer formed of multiple metals.
  • the metal plating 212 is a single-layer plating, such as zinc-copper plating or copper plating, with a thickness of 30-40 ⁇ m; for example, a copper plating, with a thickness of 6-18 ⁇ m; for example, a nickel plating, with a thickness of 2 ⁇ 8 ⁇ m.
  • the metal plating layer 212 is a multi-layer metal plating layer, for example, including a sequentially composite copper plating layer and a nickel plating layer, or a sequential composite copper plating layer, a nickel plating layer, and a gold plating layer, wherein the thickness of the copper plating layer may be 6 ⁇ 18 ⁇ m, the thickness of nickel plating can be 2 ⁇ 8 ⁇ m, and the thickness of gold plating can be 0.2 ⁇ 0.4 ⁇ m.
  • Step 3) Connect the middle panel 201 to the frame 202.
  • the middle plate 201 and the frame 202 can be connected by mechanical means such as welding and clamping, or the middle plate 201 and the frame 202 can be connected by integral injection molding.
  • Figure 14 is a schematic diagram of the connection structure of the middle frame assembly provided by the embodiment of the present application. Corresponding screw holes are provided on the middle plate 201 and the frame 202 respectively, and the middle plate 201 and the frame 202 are fastened through nuts 91 .
  • the frame 202 may be a preformed metal frame.
  • the nut 91 is a hot-melt nut, and is combined with the carbon fiber reinforced resin composite matrix 211 through hot-melt glue 92 or the like, thereby achieving a higher locking strength between the middle panel 201 and the frame 202 .
  • the carbon fiber reinforced resin composite material matrix 211 may be directly tapped, or the carbon fiber reinforced resin composite material matrix 211 may be tapped and then metallized.
  • the frame 202 can be a plastic frame or a composite frame including a plastic frame and a metallized frame, a glass frame or a ceramic frame.
  • Integrated injection molding can include Nano Molding Technology (NMT) or In-mold Injection Molding (Metal Device Antenna, MDA).
  • a typical process of NMT is:
  • the middle plate 201 including a metal coating and a carbon fiber reinforced resin composite matrix is processed, and smaller honeycomb nanopores are etched on the surface of the metal coating, and then injection molded with plastic particles and a metal frame, a glass frame or a ceramic frame. Get the middle frame component.
  • NMT using a mid-plate including a metal coating and a carbon fiber reinforced resin composite matrix does not require stamping processing (i.e., modeling processing), and the surface of the metal coating is directly processed through T processing, E processing, etc. Smaller honeycomb nanopores are etched and then injection molded.
  • the middle plate can be directly injection molded with plastic particles; when the frame is a composite frame including a plastic frame and a metalized frame or a glass frame or a ceramic frame, plastic particles are used to combine the metalized frame and glass during injection molding.
  • the frame or ceramic frame is injection molded into a one-piece structure.
  • a typical process of MDA is:
  • the middle plate 201 which includes a metal coating and a carbon fiber reinforced resin composite matrix, is directly injection molded with plastic particles and a metal frame, glass frame or ceramic frame. After pressure-maintaining injection, a middle frame assembly is obtained.
  • a mid-plate that includes a metal coating and a carbon fiber-reinforced resin composite matrix for MDA does not require die-casting and punching, and can be directly injection molded.
  • the middle plate can be directly injection molded with plastic particles;
  • the frame is a composite frame including a plastic frame and a metalized frame or a glass frame or a ceramic frame, plastic particles are used to combine the metalized frame and glass during injection molding.
  • the frame or ceramic frame is injection molded into a one-piece structure.
  • the plastic particles used in injection molding include but are not limited to polycarbonate (PC), acrylonitrile-butadiene-styrene plastic (ABS), glass fiber reinforced polycarbonate (PC+GF). ), ABS reinforced polycarbonate (ABS+PC) or carbon fiber reinforced resin composite materials, etc.
  • PC polycarbonate
  • ABS acrylonitrile-butadiene-styrene plastic
  • PC+GF glass fiber reinforced polycarbonate
  • ABS+PC ABS reinforced polycarbonate
  • carbon fiber reinforced resin composite materials etc.
  • At least one antenna component is provided in the electronic device.
  • the antenna component includes an antenna radiator, a feed point and a ground point electrically connected to the antenna radiator.
  • an antenna radiator is provided on the middle frame component, as shown in Figure 15.
  • Figure 15 is a schematic cross-sectional structural diagram of the middle frame component provided by the second embodiment of the present application.
  • the middle plate 301 passes through the plastic frame 321 and the metalized frame. 322 connection, at least part of the frame of the metalized frame 322 serves as the antenna radiator 324, and there are several gaps 323 on the metalized frame 322 as antenna gaps for separating two adjacent antenna radiators.
  • the feed point (not shown in the figure) of the antenna assembly can be located on the circuit board (not shown in the figure), and is electrically connected to the radio frequency chip or the main chip (not shown in the figure) on the circuit board through the feed source. connection, the feed source feeds high-frequency current to each antenna radiator 324 through the feed point, and the high-frequency current is emitted outward in the form of electromagnetic waves on the antenna radiator. Since the ground point of the circuit board is electrically connected to the middle board 301, one end of the ground point of the antenna assembly is electrically connected to the antenna radiator, and the other end is electrically connected to the middle board 301 to achieve grounding.
  • the antenna radiator 324 is electrically connected to the metal plating layer of the middle plate 301 through the conductive layer 325.
  • the conductive layer 325 electrically connects the antenna radiator 324 to the metal plating layer of the middle plate 301 to realize the antenna radiator 324. of grounding.
  • the conductive layer 325 can be formed by ultrasonic welding, silver paste printing or spraying, and the embodiments of the present application are not particularly limited.
  • the metal frame 322 and the plastic frame 321 are connected to the middle plate 301 by injection molding, and the metal frame 322 is processed to form the antenna gap 323 and the antenna radiator 324, and then printed with silver paste.
  • a conductive layer 325 is formed on the metal plating layer of the middle plate 301 and the antenna radiator 324 to realize the grounding of the antenna radiator 324.
  • the antenna radiator 424 is electrically connected to the metal plating 412 of the middle plate 401 through conductive auxiliary materials, such as metal springs, etc., to realize the grounding of the antenna radiator 424, as shown in Figure 16.
  • Figure 16 is a diagram of this application.
  • a schematic cross-sectional structural diagram of a middle frame assembly provided in the third embodiment. Corresponding screw holes are provided on the middle plate 401 and the frame 402 respectively, and the middle plate 401 and the frame 402 are fastened through nuts 131 .
  • a metal elastic piece 425 is provided between the antenna radiator 424 and the metal plating layer of the middle plate 401 to realize the electrical connection between the antenna radiator and the middle plate 401 .
  • the metal elastic piece 425 can be electrically connected by spot welding, and the welding area is provided on the antenna radiator 424 .
  • the metal elastic piece 425 can be in the form of a double-sided convex hull gasket.
  • four convex hulls form a group, and two convex hulls face the antenna radiator 424 and are in contact with the antenna radiator 424.
  • the two convex hulls face the metal plating layer 412 and are connected to the metal plating layer 412 to realize the electrical connection between the antenna radiator 424 and the middle plate 401 .
  • the clamping force between the middle plate 401 and the frame 402 needs to be above 100N.
  • the contact pressure increases, the two contact surfaces move closer to each other, and the contact The number of spots increases, thereby increasing the real contact area and reducing shrinkage resistance.
  • the deformation of some contact spots changes from elastic deformation to plastic deformation, causing the contact surface to permanently flatten, which can also reduce the shrinkage resistance of the metal shrapnel. See Table 4. Table 4 shows the change in shrinkage resistance caused by the contact form of the metal shrapnel.
  • the antenna radiator 424 can also be electrically connected to the metal plating layer of the middle plate 401 through convex hulls, conductive cloth, conductive glue, foam, etc.
  • FIG. 17 which is a schematic diagram of the connection between the antenna radiator and the PCB board provided by the embodiment of the present application; the antenna radiator 1701 can be electrically connected to the PCB board 1703 through the spring piece 1702 .
  • the antenna radiator 1801 can be electrically connected to the metal frame or copper foil of the screen 1803 through foam 1802 .
  • the number of antenna components is multiple, including a main antenna and a parasitic antenna; or it includes a low-frequency antenna (700 ⁇ 960MHz), a medium-frequency antenna (1.71 ⁇ 2.2GHz), a medium-high frequency antenna (1.805 ⁇ 2.69GHz) ) and high-frequency antennas (2.3 ⁇ 2.69GHz), which can also include 3300 ⁇ 3600MHz frequency band antennas and 4800 ⁇ 5000MHz frequency bands.
  • Antenna components can also include WIFI antennas, Global Positioning System (GPS) antennas, Bluetooth antennas, etc.
  • the antenna radiator can be formed by injection molding of the frame and the middle plate including the metal frame and the plastic frame, or it can also be formed by first connecting the plastic frame and the middle plate through electroplating, radium Formed by engraving, printing, etc.
  • the material of the antenna radiator includes but is not limited to silver, gold, nickel, stainless steel, etc.
  • the antenna radiator in the antenna assembly is disposed on the side of the plastic frame facing the midplane, that is, the antenna radiator is disposed inside the plastic frame.
  • the antenna radiator can be integrally formed by injection molding with the plastic frame and middle plate.
  • the injection pressure is close to 50 to 100MPa.
  • the joint surface of the metal coating and plastic particles on the middle plate is formed during the injection molding process. It will be subject to greater pressure, causing the metal plating on the mid-board to peel off, affecting the antenna performance or conductive performance of the electronic device.
  • FIG 19 is a schematic cross-sectional structural diagram of the middle frame assembly provided by the fourth embodiment of the present application.
  • the carbon fiber reinforced resin composite matrix 511, the metal plating layer 512 compounded on the surface thereof, and the protective layer 513 compounded on the surface of the metal plating layer constitute the middle plate 501, and the frame 502 is connected to the middle plate 501.
  • Providing a protective layer 513 on the surface of the metal plating layer 512 can prevent the metal plating layer 512 from falling off when the middle plate 501 is connected to the frame 502.
  • the carbon fiber reinforced resin composite matrix 511, the metal plating layer 512 compounded on its surface, and the frame 502 are as described above, and will not be described again in this application.
  • the protective layer 513 can be a metal oxide protective layer, a paint protective layer, a paint protective layer, etc., and functions to passivate the metal plating layer 512 and prevent the metal plating layer 512 from falling off.
  • the protective layer 513 may be provided on the entire surface of the metal plating layer 512, or the protective layer 513 may be provided on part of the surface.
  • the protective layer 513 may be provided on the part connected to the frame 502, and the protective layer 513 may be provided on part of the surface.
  • a metal plating layer without a protective layer There is no thickness requirement, which is beneficial to weight reduction of electronic equipment.
  • the protective layer 513 can be formed by surface film treatment, passivation liquid treatment, spraying, anodizing, micro-arc oxidation, electrophoresis, etc.
  • the surface film treatment refers to chemically immersing the middle plate 501 including the metal plating layer 512 and the carbon fiber reinforced resin composite matrix 511 to form an antioxidant protective layer on the surface of the metal plating layer 512.
  • the chemical immersion treatment can be phosphoric acid. Treatment, manganate treatment or vanadate treatment, this application has no special restrictions on this.
  • the passivation liquid treatment is similar to the surface film treatment. The difference is that the middle plate 501 containing the metal plating layer 512 and the carbon fiber reinforced resin composite matrix 511 is passivated in the passivation liquid, and a thin protective film is formed on the surface of the metal plating layer 512.
  • the metal coating is isolated from the external medium, preventing the metal coating from being corroded and preventing the metal coating from falling off.
  • the spraying process is to use a spray gun or a disc atomizer to disperse paint or other coverings into uniform and fine mist droplets with the help of pressure or centrifugal force, and apply them to the surface of the metal plating 512 to form a protective layer.
  • Anodizing uses the middle plate 501 including the metal plating layer 512 and the carbon fiber reinforced resin composite matrix 511 as an anode, and performs electrolysis in the electrolyte to form an oxide film on the surface of the metal plating layer 512 to protect the metal plating layer 512 .
  • Micro-arc oxidation also known as plasma electrolytic oxidation (PEO)
  • PEO plasma electrolytic oxidation
  • metal oxides are grown on the surface of the metal coating 512 supplemented by the electrolyte group.
  • the modified ceramic coating is used as a protective layer to protect the metal plating layer 512.
  • Electrophoresis uses a middle plate 501 containing a metal plating layer 512 and a carbon fiber reinforced resin composite matrix 511 as a cathode. Under the action of voltage, the electrophoretic paint reacts with the surface of the metal plating layer 512 to form insoluble matter, which is deposited on the surface of the metal plating layer 512 to achieve Protection of metal plating 512.
  • this application can also prevent the metal plating from falling off and affecting the performance of the middle frame by not compounding the metal plating on the part where the midplane and the frame are combined, as shown in Figure 20.
  • Figure 20 is the third page of this application.
  • the middle plate 601 includes a carbon fiber reinforced resin composite matrix 611 and a metal plating layer 612.
  • the metal plating layer 612 is compounded on the surface of the carbon fiber reinforced resin composite matrix 611 that is not in contact with the frame 602.
  • the frame 602 is directly connected to the carbon fiber reinforced resin composite matrix 611. .
  • the surface of the carbon fiber reinforced resin composite material matrix 611 is not compounded with the metal plating layer 612, and only in the part that is not in contact with the frame 602, the metal plating layer 612 is compounded.
  • a through hole 613 is opened in the composite material matrix 611 and the metal plating layer on the upper surface of the carbon fiber reinforced resin composite material matrix 611 and the metal plating layer on the lower surface are electrically connected through the composite metal plating layer and connecting the metal plating layer with the metal plating layer 612.
  • the number of through holes 613 may be multiple, as shown in FIG. 21 , or one, as shown in FIG. 22 .
  • electrical connection continuity can also be achieved by connecting a conductive material to the metal plating layer 612 on the through hole 613, such as a metal sheet or conductive ink.
  • the metal plating layer 714 on the upper surface of the carbon fiber reinforced resin composite matrix 711 can also be directly combined with the edge of the part where the frame 702 is directly connected to the carbon fiber reinforced resin composite matrix 711.
  • Metal plating on the lower surface provides electrical connection continuity, as shown in Figure 23.
  • the middle plate 701 includes a carbon fiber reinforced resin composite matrix 711 and a metal plating layer 712.
  • the metal plating layer 712 is compounded on the surface of the carbon fiber reinforced resin composite matrix 711 that is not in contact with the frame 702.
  • the frame 702 is directly connected to the carbon fiber reinforced resin composite matrix 711. .
  • the surface of the carbon fiber reinforced resin composite material matrix 711 is not compounded with the metal plating layer 712 , but only in the part that is not in contact with the frame 702 .
  • the metal plating layer 714 is directly connected to the frame 702 and the carbon fiber reinforced resin composite matrix 711, so that the carbon fiber reinforced resin composite matrix
  • the metal plating on the upper surface of 711 and the metal plating on the lower surface achieve electrical connection continuity.
  • conductive sheets or the like can also be directly connected to achieve electrical connection continuity between the metal plating on the upper surface of the carbon fiber reinforced resin composite matrix 711 and the metal plating on the lower surface.
  • the present application can further compound a second metal plating layer on the part where the midplane and the frame are combined, as shown in Figure 24 .
  • the middle panel 801 includes a carbon fiber reinforced resin composite matrix 811 and a metal plating layer 812.
  • the metal plating layer 812 is compounded on the surface of the carbon fiber reinforced resin composite matrix 811 that is not in contact with the frame 802.
  • the frame 802 is directly connected to the carbon fiber reinforced resin composite matrix 811. .
  • the surface of the carbon fiber reinforced resin composite material matrix 811 is not compounded with the metal plating 812, but is only compounded with the metal plating 812 in the part that is not in contact with the frame 802 to avoid contact during the subsequent injection molding process.
  • Part of the metal plating 812 falls off.
  • a through hole 813 is opened on the carbon fiber reinforced resin composite material matrix 811 and the carbon fiber reinforced resin composite is made by composite metal plating or other methods.
  • the metal plating layer on the upper surface and the metal plating layer on the lower surface of the material base 811 achieve electrical connection continuity.
  • the number of through holes 813 may be multiple or one.
  • the second metal plating layer 814 is compounded on the edge of the connecting portion of the frame 802 and the middle plate 801 to facilitate the metal reference ground coupling of the antenna assembly.
  • FIG. 25 is a schematic structural diagram of the middle frame assembly provided by the sixth embodiment of the present application.
  • the middle frame assembly includes a middle plate 901 and a frame 902.
  • the middle plate 901 includes a first carbon fiber reinforced resin composite material matrix and a first metal plating layer compounded on the first carbon fiber reinforced resin composite material matrix;
  • the frame 902 includes A plastic frame 921 and a metalized frame 922 connected to the middle plate 901 through the plastic frame 921.
  • the metalized frame includes a second carbon fiber reinforced resin composite matrix and a second metal compounded on the second carbon fiber reinforced resin composite matrix.
  • the plating layer that is, the middle panel 901 and the frame 902 are both made of carbon fiber reinforced resin composite material with a metal plating layer, which has high strength and low weight. At least part of the frame of the metalized frame 922 forms an antenna radiator, and the antenna radiator is connected to the middle plate 901 through a conductive layer.
  • the arrangement of the antenna radiator and the conductive layer can be referred to the above description, and will not be described in detail here.
  • the electronic device mentioned in this application can be any device with communication and storage functions, such as smart phones, cellular phones, cordless phones, Session Initiation Protocol (Session Initiation Protocol, SIP) phones, tablet computers, personal digital Processing (Personal Digital Assistant, PAD), notebook computers, digital cameras, e-book readers, portable multimedia players, handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearables equipment, 5G terminal equipment, etc., the embodiments of this application are not limited to this.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Casings For Electric Apparatus (AREA)
  • Laminated Bodies (AREA)

Abstract

本申请实施例提供了一种中框组件,包括中板和围设在所述中板外边缘的边框;所述中板包括第一碳纤维增强树脂复合材料基体和复合在所述基体表面的第一金属镀层。本申请实施例还提供了中框组件的制备方法以及包括该中框组件的电子设备。本申请实施例以碳纤维增强树脂复合材料,例如碳纤维增强环氧树脂复合材料、碳纤维增强酚醛树脂复合材料或碳纤维增强聚四氟乙烯树脂复合材料等作为中框组件的中板基体,显著降低了中框组件的重量,具有刚性好、强度高的优点。同时,在碳纤维增强树脂复合材料基体表面复合金属镀层,解决了碳纤维增强树脂复合材料自身的吸波效果和PIM问题,从而不会影响电子设备的天线功能。

Description

中框组件、其制备方法及电子设备
本申请要求于2022年4月1日提交中国国家知识产权局、申请号为202210339006.6、发明名称为“中框组件、其制备方法及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子设备技术领域,尤其涉及一种中框组件、其制备方法及电子设备。
背景技术
对于普通用户来说,手机重量在150g~200g左右,厚度在9mm以下,有较为舒适的手感,过重会使手感到不舒适,尤其是随着使用时间的增加,不舒适感会加重。影响手机重量的主要因素包括手机尺寸、机身材质、电池容量和功能模块,随着手机尺寸变大、电池容量变大、功能模块增加,手机的重量也会逐渐增加。因此,手机壳体材质的选择是目前手机轻量化的研究方向之一。
手机中框常用材料是镁合金、不锈钢、铝合金、锌合金等金属合金,使用高强度、高韧性的塑料,例如玻璃纤维增强的聚氨酯(PC+GF)代替金属合金,虽然能够降低手机重量,但是塑料会导致中框的介电常数和损耗角正切变大,影响天线的功能。
发明内容
本申请提供了一种中框组件、其制备方法及电子设备,解决了不能同时降低电子设备重量和保持天线功能的问题。
为了实现上述目的,本申请提供了以下技术方案:
一种中框组件,包括中板和围设在所述中板外边缘的边框;所述中板包括第一碳纤维增强树脂复合材料基体和复合在所述基体表面的第一金属镀层。
本申请实施例以碳纤维增强树脂复合材料,例如碳纤维增强环氧树脂复合材料、碳纤维增强酚醛树脂复合材料或碳纤维增强聚四氟乙烯树脂复合材料等作为中框组件的中板基体,显著降低了中框组件的重量,具有刚性好、强度高的优点。同时,在碳纤维增强树脂复合材料基体表面复合金属镀层,解决了碳纤维增强树脂复合材料自身的吸波效果和PIM问题,从而不会影响电子设备的天线功能。
在一些可能的实现方式中,所述第一金属镀层的厚度大于等于其趋肤深度。进一步的,第一金属镀层的电阻率为1×10 -4ohm·cm以下,甚至为1×10 -5ohm·cm~1×10 -8ohm·cm,较为接近金属中板例如铝合金中板的电阻率时,天线性能没有损失。
在一些实施例中,为了防止中板上的第一金属镀层脱落,所述中板还包括复合在所述第一金属镀层表面的保护层,保护层可以通过表面皮膜处理、钝化液处理、喷涂、阳极氧化、微弧氧化、电泳等方式形成在第一金属镀层表面,防止第一金属镀层在较大压力下脱落。
在一些实施例中,还可以通过在中板上的碳纤维增强树脂复合材料基体上部分复合第一金属镀层防止其脱落,如在碳纤维增强树脂复合材料基体不与边框连接的部分复合第一金属镀层,同时通过在碳纤维增强树脂复合材料基体上设置通孔,在通孔表面复合第二金属镀层实现碳纤维增强树脂复合材料基体上下表面的电连续性。或者在碳纤维增强树脂复合材料基体不与边框连接的部分复合第一金属镀层,在边框与中板相连接后再在碳纤维增强树脂复合材料基体与边框相连接的部分复合第二金属镀层实现电连续性,同时防止第一金属镀层脱落。
在一些可能的实现方式中,所述中框组件还包括天线辐射体,天线辐射体可以由金属化边框的至少部分框体形成(即天线辐射体设置在边框外表面),也可以设置在边框朝向中板的一侧(即天线辐射体设置在边框内表面)。所述天线辐射体可以通过导电层或导电辅料,例如金属弹片、金属垫片、导电布、导电胶或导电泡棉等与中板上的第一金属镀层进行电连接,实现天线辐射体的接地。
在其他可能的实现方式中,天线辐射体也可以不与中板电连接,而是在用于电子设备时,与电子设备的屏幕组件或印刷电路板进行电连接,实现天线辐射体的接地,与印刷电路板进行电连接时可以通过在印刷电路板上布置导线实现,能够节省结构成本。
在一些可能的实现方式中,中板和边框都由复合有金属镀层的碳纤维增强树脂复合材料形成,能够进一步减轻中框组件以及电子设备的重量。
本申请实施例还提供了一种中框组件的制备方法,包括以下步骤:
提供碳纤维增强树脂复合材料基体;
在所述碳纤维增强树脂复合材料基体表面复合第一金属镀层,得到中板;
提供边框材料,将所述边框材料与中板相连接,得到中框组件。
在一些可能的实现方式中,可以通过对碳纤维增强树脂复合材料基体进行金属化表面处理形成,所述金属化表面处理包括但不限于喷镀、金属熔喷(Metal Spray Pattern,MSP)、印刷直接成型(又称移印,printing direct structuring,PDS)、激光直接成型(Laser Direct Structuring,LDS)、激光化学活化金属镀(Laser-Activating-Plating,LAP)、化学镀等。
在一些可能的实现方式中,可以通过焊接、卡接等机械方式将中板的边框相连接,形成中框组件。在一些可能的实现方式中,为了简化工艺、提高性能,也可以通过一体化注塑成型,例如纳米注塑成型(Nano Molding Technology,NMT)或模内注塑压铸(Metal Device Antenna,MDA)的方式使中板和边框材料相连接,形成中框组件。
本申请实施例还提供了一种电子设备,包括上述技术方案所述的中框组件,所述电子设备不仅重量轻、而且天线性能不受影响。
在一些可能的实施例中,电子设备中,天线辐射体与中板电连接。在其他一些可能的实施例中,天线辐射体可以与屏幕组件或印刷电路板电连接,节省结构成本。
本申请实施例以表面复合有金属镀层的碳纤维增强树脂复合材料作为中框组件的主要材料,不仅实现了电子设备的轻量化,而且不会影响电子设备的天线功能。
附图说明
图1为手机的立体结构示意图;
图2为手机的爆炸结构示意图;
图3为本申请实施例提供的中框组件的立体结构示意图;
图4为本申请实施例提供的中框组件的爆炸结构示意图;
图5为镁合金微动耐磨测试的衰减寿命曲线波形图;
图6为铝镁合金微动耐磨测试的衰减寿命曲线波形图;
图7为本申请实施例提供的中板的叠层结构示意图;
图8为金属镀层与金属材料在1~3GHz下的系统复合效率曲线;
图9为金属镀层与金属材料在3~6GHz下的系统复合效率曲线;
图10为银镀层与金属材料在0.6~4GHz下的S-参数曲线;
图11为银镀层与金属材料在0.6~4GHz下的系统复合效率曲线;
图12为本申请实施例提供的边框的结构示意图;
图13为本申请实施例提供的中框组件的制备工艺流程图;
图14为本申请实施例提供的中框组件的连接结构示意图;
图15为本申请第二实施例提供的中框组件的剖面结构示意图;
图16为本申请第三实施例提供的中框组件的剖面结构示意图;
图17为本申请实施例提供的天线辐射体与PCB板的连接示意图;
图18为本申请实施例提供的天线辐射体与屏幕组件的连接示意图
图19为本申请第四实施例提供的中框组件的剖面结构示意图;
图20为本申请第五实施例提供的中框组件的剖面结构示意图;
图21为本申请实施例提供的中板的第一种电连接的结构示意图;
图22为本申请实施例提供的中板的第二种电连接的结构示意图;
图23为本申请实施例提供的中板的第三种电连接的结构示意图
图24为本申请实施例提供的中板的第四种电连接的结构示意图;
图25为本申请第六实施例提供的中框组件的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。以下实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本申请的限制。如在本申请的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”、“一种”、“所述”、“上述”、“该”和“这一”旨在也包括例如“一个或多个”这种表达形式,除非其上下文中明确地有相反指示。还应当理解,在本申请实施例中,“一个或多个”是指一个、两个或两个以上。
在本说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
本申请实施例以手机100为上述电子设备之例进行说明,如图1和图2所示,图1为手机的立体结构示意图,图2为手机的爆炸结构示意图。手机100主要包括显示模组10、中框组件20和后壳50,中框组件20位于显示模组10和后壳50之间。其中,显示模组10用于显示图像,后壳50与中框组件20相连接形成用于容纳印刷电路板、摄像头、电池等电子器件的容纳腔。中框组件20上还可以设置印刷电路板30和电池40,例如,印刷电路板30和电池40设置在中框20朝向后壳50的一面上,或者印刷电路板30和电池40设置在中框20朝向显示模组10的一面上。其中,印刷电路板30在中框20上设置时,中框20上可以开设开口,用于将印刷电路板30上的元件置于中框20的开口处。
可以理解的是,本申请实施例示意的结构并不构成对手机100的具体限定,在本申请另一些实施例中,手机100可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。例如,手机100还可以包括摄像头,包括前置摄像头和后置摄像头以及闪光灯等器件。
本申请第一实施例中,中框组件20包括中板201和围设在所述中板外边缘的边框202,如图3和图4所示,图3为本申请实施例提供的中框组件的立体结构示意图,图4为本申请实施例提供的中框组件的爆炸结构示意图。为了降低手机重量,中板201可以采用高强度、高韧性的塑料代替铝合金等金属,例如碳纤维增强树脂复合材料。
碳纤维增强树脂复合材料具有高强度、高韧性、比重小等优点,其中,碳纤维是由碳构成的特种纤维,其含碳量随种类不同而异,一般在90%以上。碳纤维具有一般碳材料的特性,如耐高温、耐摩擦、导电、导热及耐腐蚀等,但与一般碳材料不同的是,其外形有显著的各向异性、柔软,可加工成各种织物。碳纤维可加工成织物、毡、席、带、纸等材料,一般作为增强材料加入到树脂、金属、陶瓷、混凝土等材料中,构成复合结构材料。碳纤维增强树脂复合材料,具有较高的比强度、比模量等综合指标,且因为具有比重小、刚性好和强度高等优点而成为航空航天领域常用的材料,参见表1,表1为碳纤维增强树脂复合材料与其他材料的性能对比。
表1碳纤维增强树脂复合材料与其他材料的性能对比
Figure PCTCN2023070061-appb-000001
镁合金虽然也具有较低的密度,能够实现电子设备的轻量化,但是,镁合金不稳定,常温下就会发生电化学腐蚀,导致功能失效,且不耐磨损,如图5和图6所示,图5为镁 合金微动耐磨测试的衰减寿命曲线波形图(测试次数为14427次),图6为铝镁合金微动耐磨测试的衰减寿命曲线波形图(测试次数为14379次)。镁合金大约微动1000次左右,阻抗开始上升,从1ohm上升到20ohm左右,随着镭雕表面磨损,粉末继续堆积,到2000次左右,阻抗增加到45ohm左右,6000~9000次,随着粉末被球头划开,阻抗逐步下降。随着摩擦继续,新的粉末生成,9000次后,阻抗回到40ohm+。与常规铝合金相比,阻抗上升时间短,阻抗绝对值大一倍。
而碳纤维增强树脂复合材料密度仅为不锈钢的22%、铝合金的63%,强度接近不锈钢的3倍、铝合金的4倍,而且具有较低的线膨胀系数,尺寸精度高;具有良好的耐腐蚀性,在碱性环境下呈惰性,对有机溶剂、酸、碱等都具有良好的耐腐蚀性,适宜代替金属材料实现电子设备的轻量化。但是碳纤维增强树脂复合材料本身具有磁滞特性,直接以其作为中框材料会激发出较为严重的无源交调(PIM)问题,参见表2,表2为碳纤维增强树脂复合材料(Carbon Fiber Reinforced Polymer/Plastic,CFRP)的等效介电常数和磁导率。
表2横向CFRP的等效介电常数ε和磁导率μ
f/GHz ε' ε” μ' μ”
8 11.32 14.88 1.29 0
9 11.42 14.36 1.16 0
10 11.33 12.88 1.02 0
11 11.28 11.86 1.00 0
12 11.00 11.66 0.93 0
本申请以碳纤维增强树脂复合材料作为中框的主体材料,同时对其表面进行金属化处理形成金属镀层,以解决碳纤维增强树脂复合材料自身的吸波效果和PIM问题。参见表3,表3为碳纤维增强树脂复合材料和表面镀镍的碳纤维增强树脂复合材料在相同场景下,2次和3次谐波的功率值。
表3表面金属化的碳纤维增强树脂复合材料和未金属化的复合材料的性能参数
Figure PCTCN2023070061-appb-000002
表3中,未镀镍样品1为连续碳纤维酚醛树脂复合材料,未镀镍样品2与样品1相同,镀镍样品1为未镀镍样品1上复合有1μm后的镍层,镀镍样品2为未镀镍样品2上复合有1μm后的镍层。
基于此,本申请实施例提供的中板201包括碳纤维增强树脂复合材料基体211和复合 在所述基体表面的金属镀层212,如图7所示,图7为本申请实施例提供的中板的叠层结构示意图。碳纤维增强树脂复合材料基体211具有高强度、高韧性、比重小等特点,能够显著降低电子设备重量,金属镀层212能够解决基体211自身的吸波效果和PIM问题,从而不会影响电子设备的天线功能。中板201上可以设有开口,用于将电路板上的元件置于中板201的开口处。
碳纤维增强树脂复合材料基体211由碳纤维增强树脂复合材料形成,碳纤维增强树脂复合材料包括但不限于碳纤维增强环氧树脂复合材料、碳纤维增强酚醛树脂复合材料或碳纤维增强聚四氟乙烯树脂复合材料等,其中,碳纤维增强环氧树脂复合材料具有更高的比强度和比模量等综合性能指标,作为基体使得中框组件具有更轻的重量和更好的强度。
碳纤维增强树脂复合材料中,碳纤维包括但不限于连续纤维或短纤维,其中,短纤维增强树脂复合材料又称为锻造碳纤维复合材料,具有强度高、生产周期短、可用于A级表面、具有多样化的表面处理工艺等优势。短纤维增强树脂复合材料中,短纤维的添加量不超过50%,一般为10wt%~30wt%。连续纤维又称长纤维,连续纤维增强树脂复合材料一般采用干纤维布浸润树脂然后热压的方式制备,其中,连续纤维直径一般在2~5μm,每束纤维束为10000~20000根。
在一种可能的实现方式中,碳纤维增强树脂复合材料基体211上可以设有开口,用于放置电路板上的元件和电池等。
在一种可能的实现方式中,为了增大边框202与中板201之间的结合力,碳纤维增强树脂复合材料基体211的外周上可以开设缺口结构或者咬合结构。或者在其他可能的实现方式中,碳纤维增强树脂复合材料基体211的部分外周,例如中板201与电池靠近的外周上形成碳纤维增强树脂复合材料侧壁,增加边框202和中板201之间的结合力。
碳纤维增强树脂复合材料作为中板201的基体,其表面复合有金属镀层212,复合金属镀层212后,中板201等效于金属中板,当电流流过中框组件参考地时,根据电磁波的趋肤效应,导体内部的电流分布不均匀,电流集中在导体外部的薄层(即“皮肤”部分),越靠近导体表面,电流密度越大,导体内部实际上电流较小。也就是说,金属镀层212的厚度大于频率对应的趋肤深度时,且电阻率与金属近似的话,金属镀层212的效果和普通金属中框效果相近,天线性能没有损失。
例如,以磷铜作为金属镀层212时,其厚度达到趋肤深度后,性能恶化<0.4dB,对天线性能几乎无影响,参见图8和图9,图8为金属镀层与金属材料在1~3GHz下的系统复合效率曲线,图9为金属镀层与金属材料在3~6GHz下的系统复合效率曲线,其中,曲线2为铝合金(Al含量占80%以上,电阻率约为3×10 -7ohm·cm)的系统复合效率(System Radiation Efficency in dB[Magnitude])曲线,曲线1为磷铜镀层(电阻率约为2×10 -7ohm·cm)的系统复合效率曲线。由图8和图9可知,金属镀层厚度满足趋肤深度,电阻率与金属材料电阻率相当时,性能几乎无恶化。
又例如,以银浆形成银镀层作为金属镀层212时,其厚度达到趋肤深度后,由于银浆电阻率高于金属材料,其性能会有所恶化,但是恶化程度较低,约为0.1~0.2dB,参见图10和图11,图10为银镀层与金属材料在0.6~4GHz下的S-参数(S-parameters[Magnitude in dB])曲线,图11为银镀层与金属材料在0.6~4GHz下的系统复合效率曲线,其中,曲线1为铝 合金(Al含量占80%以上,电阻率约为3×10 -7ohm·cm)的相关曲线,曲线2为银镀层(由银浆形成,银浆包括银和硅树脂,其电阻率约为10 -4~10 -5ohm·cm)的相关曲线。由图10和图11可知,金属镀层厚度满足趋肤深度,电阻率高于金属材料电阻率时,性能有所恶化,但该恶化程度较低,在可接受的范围之内。
金属镀层212的厚度在达到趋肤深度后,电阻率低于10 -4ohm·cm时,其对天线性能基本无影响或者影响不大。具体而言,金属镀层212可以为锌、铜、镍、金、银、锡、铝等金属中的一种或多种金属的合金,本申请实施例并无特殊限制。金属镀层212可以为单层镀层,单层镀层可以为单金属层,可以为金属合金层;金属镀层212也可以为多层金属镀层,多层金属镀层的每层可以相同也可以不同,多层金属镀层的每层镀层可以为单金属层,也可以为金属合金层。在一个可能的实施例中,金属镀层212为单层镀层,例如锌铜镀层或铜镀层,其厚度为30~40μm;例如铜镀层,其厚度为6~18μm;例如镍镀层,其厚度为2~8μm。在一个可能的实施例中,金属镀层212为多层金属镀层,例如包括依次复合的铜镀层和镍镀层,或者依次复合的铜镀层、镍镀层和金镀层,其中,铜镀层的厚度可以为6~18μm,镍镀层的厚度可以为2~8μm,金镀层的厚度可以为0.2~0.4μm。在一个可能的实施例中,金属镀层的厚度为12~20μm。
金属镀层212的目的在于将碳纤维增强树脂复合材料基体211与金属等效,因此,可以在碳纤维增强树脂复合材料基体211的全部表面形成金属镀层212,也可以在碳纤维增强树脂复合材料基体211的部分表面形成金属镀层212,如在不与边框22相连接的部分表面形成金属镀层212。但是,需要注意的是,碳纤维增强树脂复合材料基体211的部分表面形成金属镀层212时,需要在与边框202相连接部分的边缘通过打孔或开槽等方式,将碳纤维增强树脂复合材料基体211上表面和下表面的金属镀层相连通,保证金属镀层212的电连接连续性。
边框202围设在所述中板201外边缘,在一种可能的实现方式中,边框202包括塑胶边框221和通过塑胶边框221与所述中板201相连的金属化边框222,参见图12,图12为本申请实施例提供的边框的结构示意图。其中,塑胶边框221一方面能够减电子设备的重量,一方面有利于金属化边框222与中板201的连接。边框202与中板201之间的连接方式包括但不限于为焊接、卡接、锁接和一体注塑成型。本领域技术人员可以理解的是,边框202与中板201之间的连接方式为焊接、卡接或锁接时,中板201和边框202上设置有用于实现焊接、锁接或卡接的区域或孔槽。
塑胶边框221由塑胶材料制成,例如聚碳酸酯(PC)、丙烯腈-丁二烯-苯乙烯塑料(ABS)、玻璃纤维增强的聚碳酸酯(PC+GF)、ABS增强的聚碳酸酯(ABS+PC)或者碳纤维增强树脂复合材料等。塑胶边框221为碳纤维增强树脂复合材料时,其可以与中板21的碳纤维增强树脂复合材料主体相同,也可以不同。塑胶边框221可以为封闭的环形结构,也可以为半封闭的环形结构,或者说,塑胶边框221为半框结构。在本实施例中,塑胶边框221为封闭的环形结构。在一个可能的实施例中,塑胶边框221为半框结构,其位于天线辐射体的净空区内。
金属化边框222围设在塑胶边框221外边缘,可以由一段框体首尾相连构成,即金属化边框为整体式框体,也可以由多段框体首尾依次相连构成,也可以由不连续的多段框体 构成。在一个可能的实施例中,金属化边框222可以为金属边框,包括但不限于铝、铝镁合金等。在其他可能的实施例中,金属化边框222可以为表面复合有金属镀层的塑胶边框,例如表面复合有金属镀层的玻璃纤维增强的聚碳酸酯、表面复合有金属镀层的碳纤维增强树脂复合材料等。
在其他可能的实现方式中,边框202为塑胶边框;或者包括塑胶边框和陶瓷边框或者玻璃边框,陶瓷边框或玻璃边框通过塑胶边框与所述中板201相连。本领域技术人员可以理解的是,陶瓷边框和玻璃边框与上文所述的金属化边框222与塑胶边框的连接方式、设置方式相似,本申请在此不再赘述。
在一个可能的实现方式中,电子设备中,边框202背向中板201的一面可以为竖直面,例如,金属化边框222朝外的一面可以与显示屏垂直。或者,电子设备中,金属化边框222朝外的一面为向外凸起的弧面,一方面便于用于手握电子设备,另一方面使得金属化边框222的外边更美观。
如图13所示,图13为本申请实施例提供的中框组件的制备工艺流程图,本申请实施例中所述的中框组件按照以下步骤制备得到:
步骤1):将碳纤维增强树脂复合材料进行加工,得到可以作为中框的中板201的基体211。
其中,碳纤维增强树脂复合材料与上文所述相同,本申请在此不再赘述。将碳纤维增强树脂复合材料通过冲压或者计算机数字控制机床(Computer number control,CNC)加工形成基体211,基体上可形成用于放置电路板上的元件的开口以及可供电池设置的电池仓。在一个可能的实现方式中,基体211边缘设置有缺口结构或咬合结构。或者,在其他可能的实现方式中,碳纤维增强树脂复合材料基体211的部分外周形成碳纤维增强树脂复合材料侧壁,增加边框202和中板201之间的结合力。
步骤2):在碳纤维增强树脂复合材料基体表面形成金属镀层212,得到中板;
金属镀层212可以通过对碳纤维增强树脂复合材料基体211进行金属化表面处理形成,所述金属化表面处理包括但不限于喷镀、金属熔喷(Metal Spray Pattern,MSP)、印刷直接成型(又称移印,printing direct structuring,PDS)、激光直接成型(Laser Direct Structuring,LDS)、激光化学活化金属镀(Laser-Activating-Plating,LAP)、化学镀等方式,金属化表面处理方式不同,采用的金属及形成的金属镀层也有所不同。
例如,冷喷涂采用压缩空气加速金属粒子到临界速度,经喷嘴喷出,金属粒子打击到基体表面后发生物理形变,金属粒子撞击后形变并牢固附着在基体表面,整个过程高度且低温,对基体的热影响小,且涂层致密。在一个可能的实施例中,采用冷喷涂法在基体211上形成金属镀层212,所述金属镀层212可以为锌、铜、镍、金、银、锡的单种金属镀层或多种金属形成的合金镀层。在一个可能的实施例中,金属镀层212为单层镀层,例如锌铜镀层或铜镀层,其厚度为30~40μm;例如铜镀层,其厚度为6~18μm;例如镍镀层,其厚度为2~8μm。在一个可能的实施例中,金属镀层212为多层金属镀层,例如包括依次复合的铜镀层和镍镀层,或者依次复合的铜镀层、镍镀层和金镀层,其中,铜镀层的厚度可以为6~18μm,镍镀层的厚度可以为2~8μm,金镀层的厚度可以为0.2~0.4μm。
例如,PDS是指应用凹版印刷的原理,由移印设备将包含银粉、铜粉、铝粉、镍粉等 金属粉末的导电油墨通过胶头直接转移在基体,热固化后形成金属镀层。导电油墨除了包括金属粉末,还包括硅树脂、环氧树脂等。在一个可能的实施例中,导电油墨的电阻率为10 -4~10 -5ohm·cm。在一个可能的实施例中,金属镀层的厚度为12~20μm。在一个可能的实施例中,金属镀层的厚度为30~40μm。
例如,化学镀是在金属的催化作用下,通过氧化还原反应使金属沉积形成金属镀层的过程。在一个可能的实施例中,采用化学镀法在基体211上形成金属镀层212,所述金属镀层212可以为锌、铜、镍、金的单种金属镀层或多种金属形成的合金镀层。在一个可能的实施例中,金属镀层212为单层镀层,例如锌铜镀层或铜镀层,其厚度为30~40μm;例如铜镀层,其厚度为6~18μm;例如镍镀层,其厚度为2~8μm。在一个可能的实施例中,金属镀层212为多层金属镀层,例如包括依次复合的铜镀层和镍镀层,或者依次复合的铜镀层、镍镀层和金镀层,其中,铜镀层的厚度可以为6~18μm,镍镀层的厚度可以为2~8μm,金镀层的厚度可以为0.2~0.4μm。
步骤3):将中板201与边框202相连接。
具体而言,可以通过焊接、卡接等机械方式将中板201与边框202相连接,也可以通过一体注塑成型将中板201与边框202相连接。
在一个可能的实现方式中,通过螺丝紧固的方式将上述中板201与边框202相连接,如图14所示,图14为本申请实施例提供的中框组件的连接结构示意图。分别在中板201和边框202设置相应的螺丝孔,通过螺母91实现中板201与边框202的紧固连接。此时,边框202可以为预先成型的金属边框。在一个可能的实施例中,螺母91为热熔螺母,与碳纤维增强树脂复合材料基体211通过热熔胶92等结合,从而实现中板201和边框202之间较高的锁接强度。在其他可能的实施例中,可以在碳纤维增强树脂复合材料基体211上直接攻牙,或者在碳纤维增强树脂复合材料基体211上攻牙后进行金属化处理。
通过一体注塑成型将中板201与边框202相连接时,边框202可以为塑胶边框或者包括塑胶边框和金属化边框或者玻璃边框或者陶瓷边框的复合边框。一体注塑成型可以包括纳米注塑成型(Nano Molding Technology,NMT)或模内注塑压铸(Metal Device Antenna,MDA)。
NMT的一个典型流程为:
将包括金属镀层和碳纤维增强树脂复合材料基体的中板201进行处理,在金属镀层表面刻蚀出尺寸较小的蜂窝状纳米孔,然后与塑胶粒子和金属边框、玻璃边框或陶瓷边框注塑成型,得到中框组件。
与直接以金属中板进行NMT处理相比,以包括金属镀层和碳纤维增强树脂复合材料基体的中板进行NMT无需进行冲压处理(即造型处理),直接通过T处理、E处理等在金属镀层表面刻蚀出尺寸较小的蜂窝状纳米孔后进行注塑成型。边框为塑胶边框时,中板直接与塑胶粒子进行注塑成型即可;边框为包括塑胶边框和金属化边框或者玻璃边框或者陶瓷边框的复合边框时,注塑成型时采用塑胶粒子将金属化边框、玻璃边框或陶瓷边框注塑成为一体结构。
MDA的一个典型流程为:
将包括金属镀层和碳纤维增强树脂复合材料基体的中板201直接与塑胶粒子和金属边 框、玻璃边框或陶瓷边框注塑成型,保压射压后得到中框组件。
与直接以金属中板进行MDA处理相比,以包括金属镀层和碳纤维增强树脂复合材料基体的中板进行MDA无需进行压铸和冲切处理,直接进行注塑成型。边框为塑胶边框时,中板直接与塑胶粒子进行注塑成型即可;边框为包括塑胶边框和金属化边框或者玻璃边框或者陶瓷边框的复合边框时,注塑成型时采用塑胶粒子将金属化边框、玻璃边框或陶瓷边框注塑成为一体结构。
在一个可能的实现方式中,注塑成型采用的塑胶粒子包括但不限于聚碳酸酯(PC)、丙烯腈-丁二烯-苯乙烯塑料(ABS)、玻璃纤维增强的聚碳酸酯(PC+GF)、ABS增强的聚碳酸酯(ABS+PC)或者碳纤维增强树脂复合材料等。
为了实现信号发射和接收,电子设备内设置至少一个天线组件,天线组件包括天线辐射体以及与天线辐射体电连接的馈电点和接地点。本申请实施例在中框组件上设置天线辐射体,如图15所示,图15为本申请第二实施例提供的中框组件的剖面结构示意图,中板301通过塑胶边框321与金属化边框322连接,金属化边框322至少部分框体作为天线辐射体324,金属化边框322上具有若干缝隙323作为天线缝隙,用于将相邻两个天线辐射体间隔开。
天线组件的馈电点(未在图中示出)可以位于电路板(未在图中示出)上,通过馈源与电路板上的射频芯片或主芯片(未在图中示出)电连接,馈源通过馈电点向各个天线辐射体324馈入高频电流,高频电流在天线辐射体上以电磁波方式向外发射。由于电路板的接地点与中板301电连接,所以,天线组件的接地点一端与天线辐射体电连接,另一端与中板301电连接实现接地。
在一个可能的实现方式中,天线辐射体324通过导电层325与中板301的金属镀层实现电连接,导电层325将天线辐射体324与中板301的金属镀层电连接,实现天线辐射体324的接地。导电层325可以通过超声焊接、银浆印刷或喷涂等方式形成,本申请实施例对其并无特殊限制。在一个可能的实现方式中,金属边框322和塑胶边框321通过注塑的方式与中板301相连接,将金属边框322进行加工,形成天线缝隙323和天线辐射体324,再通过银浆印刷的方式在中板301的金属镀层和天线辐射体324上形成导电层325,实现天线辐射体324的接地。
在其他可能的实现方式中,天线辐射体424通过导电辅料,例如金属弹片等与中板401的金属镀层412电连接,实现天线辐射体424的接地,如图16所示,图16为本申请第三实施例提供的中框组件的剖面结构示意图。分别在中板401和边框402设置相应的螺丝孔,通过螺母131实现中板401与边框402的紧固连接。在天线辐射体424和中板401的金属镀层之间设置金属弹片425,实现天线辐射体与中板401的电连接。金属弹片425可以是一个,也可以是两个或多个,金属弹片为多个时,多个金属弹片之间电连接。
在一些可能的实现方式中,金属弹片425可以是点焊的方式实现电连接,焊接区设置在天线辐射体424上。在一些可能的实现方式中,金属弹片425可以是双面凸包垫片的形式,例如,4个凸包为一组,两个凸包面向天线辐射体424与天线辐射体424相接触,另外两个凸包面向金属镀层412与金属镀层412相连接,实现天线辐射体424与中板401的电连接。
采用金属弹片425实现电连接时,为了减小金属弹片425的收缩电阻,中板401和边框402之间的夹紧力需要在100N以上,当接触压力增加时,两接触表面相互移近,接触斑点数随之增加,从而使真实的接触面积增加,使收缩电阻降低。另外,一些接触斑点的变形从弹性变形变成塑性变形,使接触表面发生永久变平,也能够减少金属弹片的收缩电阻,参见表4,表4为金属弹片接触形式导致的收缩电阻变化。
表4金属弹片接触形式导致的收缩电阻变化
Figure PCTCN2023070061-appb-000003
在其他可能的实现方式中,天线辐射体424还可以通过凸包、导电布、导电胶、泡棉等与中板401的金属镀层电连接。
在其他可能的实现方式中,参见图17,图17为本申请实施例提供的天线辐射体与PCB板的连接示意图;天线辐射体1701可以通过弹片1702与PCB板1703实现电连接。弹片1702可以是一个、两个或多个,通过PCB板实现电连接可以节省结构成本。或者,参见图18,图18为本申请实施例提供的天线辐射体与屏幕组件的连接示意图;天线辐射体1801可以通过泡棉1802与屏幕1803的金属框或铜箔实现电连接。
在本申请实施例中,天线组件的个数为多个,包括主天线和寄生天线;或者包括低频天线(700~960MHz)、中频天线(1.71~2.2GHz)、中高频天线(1.805~2.69GHz)和高频天线(2.3~2.69GHz),还可以包括3300~3600MHz频段天线和4800~5000MHz频段。天线组件还可以包括WIFI天线、全球定位系统(Global Positioning System,GPS)天线、蓝牙天线等。
金属化边框至少部分框体作为天线辐射体时,天线辐射体可以在包括金属边框和塑胶边框的边框和中板注塑后经过加工形成,也可以首先将塑胶边框和中板相连后通过电镀、镭雕、印刷等方式形成。在本申请实施例中,天线辐射体的材料包括但不限于银、金、镍、不锈钢等。
在其他可能的实现方式中,天线组件中的天线辐射体设置在塑胶边框朝向中板的一侧,即天线辐射体设置在塑胶边框内侧。此时,天线辐射体可以与塑胶边框和中板一体注塑形成。
在将边框与包括金属镀层和碳纤维增强树脂复合材料基体的中板采用一体注塑成型的方式进行连接时,注塑压力接近50~100MPa,中板上的金属镀层和塑胶粒子的结合面在注塑过程中会受到较大的压力,导致中板上的金属镀层剥落,影响电子设备的天线性能或者导电性能。
为了避免中板上的金属镀层脱落,本申请实施例提供的中框组件可以增加保护层,如图19所示,图19为本申请第四实施例提供的中框组件的剖面结构示意图。碳纤维增强树脂复合材料基体511、复合在其表面的金属镀层512和复合在金属镀层表面的保护层513构成中板501,边框502与中板501相连接。在金属镀层512表面设置保护层513能够防 止将中板501与边框502进行连接时,金属镀层512的脱落。
在本实施例中,碳纤维增强树脂复合材料基体511、复合在其表面的金属镀层512以及边框502参见上文所述,本申请在此不再赘述。保护层513可以为金属氧化物保护层、油漆保护层、涂料保护层等,作用在于使金属镀层512钝化,防止金属镀层512的脱落。
金属镀层512的全部表面可以设置保护层513,也可以部分表面设置保护层513,例如在与边框502相连接的部分设置保护层513,在部分表面设置保护层513对于不设保护层的金属镀层的厚度没有要求,有利于电子设备减重。
一般而言,保护层513可以通过采用表面皮膜处理、钝化液处理、喷涂、阳极氧化、微弧氧化、电泳等方式形成。具体而言,表面皮膜处理是指将包含金属镀层512和碳纤维增强树脂复合材料基体511的中板501进行化学浸泡处理,在金属镀层512表面形成抗氧化保护层,其中,化学浸泡处理可以为磷酸处理、锰酸盐处理或钒酸盐处理,本申请对此并无特殊限制。
钝化液处理与表面皮膜处理类似,区别在于将包含金属镀层512和碳纤维增强树脂复合材料基体511的中板501在钝化液中进行钝化处理,在金属镀层512表面形成薄的保护膜使金属镀层与外界介质隔绝,避免金属镀层受到腐蚀的同时防止金属镀层脱落。
喷涂处理是通过喷枪或碟式雾化器,借助于压力或离心力,将油漆或其他覆盖物分散成均匀而微细的雾滴,施涂于金属镀层512表面形成一层保护层。
阳极氧化是以包含金属镀层512和碳纤维增强树脂复合材料基体511的中板501为阳极,在电解液中进行电解,使金属镀层512表面形成氧化物薄膜,实现对金属镀层512的保护。
微弧氧化,也称为等离子体电解氧化(PEO),在电解液中,在弧光放电产生的瞬时高温高压作用下,在金属镀层512表面生长出以金属氧化物为主并辅以电解液组分的改性陶瓷涂层作为保护层,实现对金属镀层512的保护。
电泳是以包含金属镀层512和碳纤维增强树脂复合材料基体511的中板501作为阴极,电泳涂料在电压作用下,与金属镀层512的表面发生反应形成不溶解物,沉积于金属镀层512表面,实现对金属镀层512的保护。
在一个可能的实现方式中,本申请还可以通过在中板与边框结合的部分不复合金属镀层的方法避免金属镀层的脱落,影响中框性能,如图20所示,图20为本申请第五实施例提供的中框组件的剖面结构示意图。中板601包括碳纤维增强树脂复合材料基体611和金属镀层612,金属镀层612复合在不与边框602接触的碳纤维增强树脂复合材料基体611的表面,边框602直接与碳纤维增强树脂复合材料基体611相连接。也就是说,在中板601与边框602接触的部分,碳纤维增强树脂复合材料基体611表面不复合金属镀层612,只在不与边框602接触的部分复合金属镀层612。为了实现碳纤维增强树脂复合材料基体611上表面和下表面金属镀层的电连接连续性,在金属镀层612边缘,即边框602直接与碳纤维增强树脂复合材料基体611相连接部分的边缘,在碳纤维增强树脂复合材料基体611上开设通孔613并通过复合金属镀层并使该金属镀层与金属镀层612相连接等方式,使碳纤维增强树脂复合材料基体611上表面的金属镀层和下表面的金属镀层实现电连接连续性。通孔613的数量可以是多个,如图21所示,也可以是一个,如图22所示。在其他可能的 实现方式中,也可以通过在通孔613上连接导电材料与金属镀层612相连接,例如金属片或导电油墨等方式实现电连接连续性。
在一个其他可能的实现方式中,还可以通过直接复合金属镀层714的方式在边框702直接与碳纤维增强树脂复合材料基体711相连接部分的边缘使碳纤维增强树脂复合材料基体711上表面的金属镀层和下表面的金属镀层实现电连接连续性,如图23所示。中板701包括碳纤维增强树脂复合材料基体711和金属镀层712,金属镀层712复合在不与边框702接触的碳纤维增强树脂复合材料基体711的表面,边框702直接与碳纤维增强树脂复合材料基体711相连接。也就是说,在中板701与边框702接触的部分,碳纤维增强树脂复合材料基体711表面不复合金属镀层712,只在不与边框702接触的部分复合金属镀层712。为了实现碳纤维增强树脂复合材料基体711上表面和下表面金属镀层712的电连接连续性,直接在边框702与碳纤维增强树脂复合材料基体711相连接部分复合金属镀层714,使碳纤维增强树脂复合材料基体711上表面的金属镀层和下表面的金属镀层实现电连接连续性。在其他可能的实现方式中,也可以直接连接导电片等实现碳纤维增强树脂复合材料基体711上表面的金属镀层和下表面的金属镀层实现电连接连续性。
在一个可能的实现方式中,在天线组件需要金属参考地耦合时,本申请还可以进一步在中板与边框结合的部分复合第二金属镀层,如图24所示。中板801包括碳纤维增强树脂复合材料基体811和金属镀层812,金属镀层812复合在不与边框802接触的碳纤维增强树脂复合材料基体811的表面,边框802直接与碳纤维增强树脂复合材料基体811相连接。也就是说,在中板801与边框802接触的部分,碳纤维增强树脂复合材料基体811表面不复合金属镀层812,只在不与边框802接触的部分复合金属镀层812,避免后续注塑过程中相接触部分金属镀层812的脱落。在金属镀层812边缘,即边框802直接与碳纤维增强树脂复合材料基体811相连接部分的边缘,在碳纤维增强树脂复合材料基体811上开设通孔813并通过复合金属镀层等方式,使碳纤维增强树脂复合材料基体811上表面的金属镀层和下表面的金属镀层实现电连接连续性。通孔813的数量可以是多个,也可以是一个。在边框802与中板801相连接部分的边缘复合第二金属镀层814,便于实现天线组件金属参考地耦合。
为了进一步减轻电子设备重量,在本申请第五实施例中,参见图25,图25为本申请第六实施例提供的中框组件的结构示意图。中框组件包括中板901和边框902,所述中板901包括第一碳纤维增强树脂复合材料基体和复合在所述第一碳纤维增强树脂复合材料基体上的第一金属镀层;所述边框902包括塑胶边框921和通过塑胶边框921与中板901相连接的金属化边框922,金属化边框包括第二碳纤维增强树脂复合材料基体和复合在所述第二碳纤维增强树脂复合材料基体上的第二金属镀层,即中板901和边框902都由复合有金属镀层的碳纤维增强树脂复合材料形成,具有高强度的同时具有低重量。金属化边框922的至少部分框体形成天线辐射体,天线辐射体通过导电层与中板901相连接。天线辐射体以及导电层的设置可参见上文所述,本发明在此不再赘述。
应当理解的是,本申请提及的电子设备可以是任何具备通信和存储功能的设备,例如智能手机、蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、平板电脑、个人数字处理(Personal Digital Assistant,PAD)、笔记本电脑、数码相机、电子 书籍阅读器、便携多媒体播放器、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其他处理设备、车载设备、可穿戴设备、5G终端设备等,本申请实施例对此并不限定。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (42)

  1. 一种中框组件,包括中板和围设在所述中板外边缘的边框;所述中板包括第一碳纤维增强树脂复合材料基体和复合在所述基体表面的第一金属镀层。
  2. 根据权利要求1所述的中框组件,其特征在于,所述第一金属镀层的厚度大于等于其趋肤深度。
  3. 根据权利要求2所述的中框组件,其特征在于,所述第一金属镀层的电阻率为1×10 -4ohm·cm以下。
  4. 根据权利要求3所述的中框组件,其特征在于,所述第一金属镀层的电阻率为1×10 -5ohm·cm~1×10 -8ohm·cm。
  5. 根据权利要求4所述的中框组件,其特征在于,所述第一金属镀层选自锌、铜、镍、金、银、锡和铝中的一种或其合金。
  6. 根据权利要求1~5任意一项所述的中框组件,其特征在于,所述第一碳纤维增强树脂复合材料基体不与边框连接的部分复合有第一金属镀层;
    所述碳纤维增强树脂复合材料基体上设置有通孔,所述通孔表面复合有第二金属镀层,所述第二金属镀层与所述第一金属镀层相连接。
  7. 根据权利要求1~5任意一项所述的中框组件,其特征在于,所述第一碳纤维增强树脂复合材料基体不与边框连接的部分复合有第一金属镀层;
    所述碳纤维增强树脂复合材料基体与边框相连接的部分复合有第二金属镀层,所述第二金属镀层与所述第一金属镀层相连接。
  8. 根据权利要求1~5任意一项所述的中框组件,其特征在于,所述中板还包括复合在所述第一金属镀层表面的保护层。
  9. 根据权利要求1所述的中框组件,其特征在于,还包括设置在所述边框上的天线辐射体。
  10. 根据权利要求9所述的中框组件,其特征在于,所述边框包括塑胶边框和通过塑胶边框与所述中板相连的金属化边框。
  11. 根据权利要求9所述的中框组件,其特征在于,所述边框包括塑胶边框和通过塑胶边框与中板相连接的金属化边框,所述金属化边框包括第三碳纤维增强树脂复合材料基体和复合在所述第三碳纤维增强树脂复合材料基体上的第三金属镀层。
  12. 根据权利要求10或11所述的中框组件,其特征在于,所述金属化边框至少部分框体作为天线辐射体。
  13. 根据权利要求12所述的中框组件,其特征在于,所述天线辐射体通过导电层与所述中板电连接。
  14. 根据权利要求12所述的中框组件,其特征在于,所述天线辐射体通过导电辅料与所述中板电连接。
  15. 根据权利要求14所述的中框组件,其特征在于,所述导电辅料为金属弹片、金属垫片、导电布、导电胶或导电泡棉。
  16. 根据权利要求10或11所述的中框组件,其特征在于,所述天线辐射体设置在所 述边框朝向中板的一侧。
  17. 根据权利要求16所述的中框组件,其特征在于,所述天线辐射体通过导电层与所述中板电连接。
  18. 根据权利要求16所述的中框组件,其特征在于,所述天线辐射体通过导电辅料与所述中板电连接。
  19. 根据权利要求1所述的中框组件,其特征在于,所述第一碳纤维增强树脂复合材料基体为碳纤维增强环氧树脂复合材料基体、碳纤维增强酚醛树脂复合材料基体或碳纤维增强聚四氟乙烯树脂复合材料基体。
  20. 一种中框组件的制备方法,包括以下步骤:
    提供碳纤维增强树脂复合材料基体;
    在所述碳纤维增强树脂复合材料基体表面复合第一金属镀层,得到中板;
    提供边框材料,将所述边框材料与中板相连接,得到中框组件。
  21. 根据权利要求20所述的制备方法,其特征在于,将所述边框材料与中板进行注塑。
  22. 根据权利要求20所述的制备方法,其特征在于,将所述边框材料与中板进行机械连接。
  23. 根据权利要求20~22任意一项所述的制备方法,其特征在于,还包括:在所述边框上形成天线辐射体。
  24. 根据权利要求23所述的制备方法,其特征在于,还包括将所述天线辐射体与所述中板电连接。
  25. 一种电子设备,包括权利要求1~19任意一项所述的中框组件。
  26. 一种电子设备,至少包括屏幕组件、印刷电路板和权利要求1~8任意一项所述的中框组件,所述边框上设置有天线辐射体,所述天线辐射体与所述屏幕组件或所述印刷电路板电连接。
  27. 一种电子设备,至少包括屏幕组件、印刷电路板和权利要求9~12、16任意一项所述的中框组件,所述天线辐射体与所述屏幕组件或所述印刷电路板电连接。
  28. 一种中框组件,包括中板和围设在所述中板外边缘的边框;所述中板包括第一碳纤维增强树脂复合材料基体和复合在所述基体表面的第一金属镀层;
    所述第一金属镀层的厚度大于等于其趋肤深度;
    其中,所述第一碳纤维增强树脂复合材料基体不与边框连接的部分复合有第一金属镀层;所述碳纤维增强树脂复合材料基体上设置有通孔,所述通孔表面复合有第二金属镀层,所述第二金属镀层与所述第一金属镀层相连接;
    或者,所述第一碳纤维增强树脂复合材料基体不与边框连接的部分复合有第一金属镀层;所述碳纤维增强树脂复合材料基体与边框相连接的部分复合有第二金属镀层,所述第二金属镀层与所述第一金属镀层相连接;
    或者,所述中板还包括复合在所述第一金属镀层表面的保护层。
  29. 根据权利要求28所述的中框组件,其特征在于,所述第一金属镀层的电阻率为1×10 -4ohm·cm以下。
  30. 根据权利要求29所述的中框组件,其特征在于,所述第一金属镀层的电阻率为1 ×10 -5ohm·cm~1×10 -8ohm·cm。
  31. 根据权利要求30所述的中框组件,其特征在于,所述第一金属镀层选自锌、铜、镍、金、银、锡和铝中的一种或其合金。
  32. 根据权利要求28所述的中框组件,其特征在于,还包括设置在所述边框上的天线辐射体。
  33. 根据权利要求32所述的中框组件,其特征在于,所述边框包括塑胶边框和通过塑胶边框与所述中板相连的金属化边框。
  34. 根据权利要求32所述的中框组件,其特征在于,所述边框包括塑胶边框和通过塑胶边框与中板相连接的金属化边框,所述金属化边框包括第三碳纤维增强树脂复合材料基体和复合在所述第三碳纤维增强树脂复合材料基体上的第三金属镀层。
  35. 根据权利要求33或34所述的中框组件,其特征在于,所述金属化边框至少部分框体作为天线辐射体。
  36. 根据权利要求35所述的中框组件,其特征在于,所述天线辐射体通过导电层与所述中板电连接。
  37. 根据权利要求35所述的中框组件,其特征在于,所述天线辐射体通过导电辅料与所述中板电连接。
  38. 根据权利要求37所述的中框组件,其特征在于,所述导电辅料为金属弹片、金属垫片、导电布、导电胶或导电泡棉。
  39. 根据权利要求33或34所述的中框组件,其特征在于,所述天线辐射体设置在所述边框朝向中板的一侧。
  40. 根据权利要求39所述的中框组件,其特征在于,所述天线辐射体通过导电层与所述中板电连接。
  41. 根据权利要求39所述的中框组件,其特征在于,所述天线辐射体通过导电辅料与所述中板电连接。
  42. 根据权利要求28所述的中框组件,其特征在于,所述第一碳纤维增强树脂复合材料基体为碳纤维增强环氧树脂复合材料基体、碳纤维增强酚醛树脂复合材料基体或碳纤维增强聚四氟乙烯树脂复合材料基体。
PCT/CN2023/070061 2022-04-01 2023-01-03 中框组件、其制备方法及电子设备 WO2023185178A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP23739079.4A EP4283961A1 (en) 2022-04-01 2023-01-03 Middle frame assembly, manufacturing method therefor, and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210339006.6 2022-04-01
CN202210339006.6A CN114466094B (zh) 2022-04-01 2022-04-01 中框组件、其制备方法及电子设备

Publications (1)

Publication Number Publication Date
WO2023185178A1 true WO2023185178A1 (zh) 2023-10-05

Family

ID=81417979

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/070061 WO2023185178A1 (zh) 2022-04-01 2023-01-03 中框组件、其制备方法及电子设备

Country Status (3)

Country Link
EP (1) EP4283961A1 (zh)
CN (1) CN114466094B (zh)
WO (1) WO2023185178A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114466094B (zh) * 2022-04-01 2022-09-09 荣耀终端有限公司 中框组件、其制备方法及电子设备
CN116055603A (zh) * 2022-08-24 2023-05-02 荣耀终端有限公司 一种中框组件及包括其的电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105827759A (zh) * 2016-05-06 2016-08-03 东莞劲胜精密组件股份有限公司 碳纤维陶瓷复合材料的电子产品框体结构及其制作方法
WO2021047659A1 (zh) * 2019-09-12 2021-03-18 华为技术有限公司 一种中框、后盖及其制备方法和电子设备
CN113542458A (zh) * 2020-04-16 2021-10-22 华为机器有限公司 一种中框及其制作方法和电子设备
CN113747718A (zh) * 2021-09-09 2021-12-03 维沃移动通信有限公司 框体组件和电子设备
CN114075344A (zh) * 2020-08-19 2022-02-22 华为机器有限公司 复合基材、电子设备以及复合基材的制作方法
CN114466094A (zh) * 2022-04-01 2022-05-10 荣耀终端有限公司 中框组件、其制备方法及电子设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102514206B (zh) * 2011-12-07 2014-02-05 长春工业大学 酚醛环氧乙烯基酯树脂碳纤维复合材料的生产方法
CN206004723U (zh) * 2016-08-16 2017-03-08 东莞劲胜精密组件股份有限公司 一种不锈钢碳纤维复合材料手机框架
CN107815854B (zh) * 2017-09-30 2020-04-14 中车青岛四方机车车辆股份有限公司 镀镍碳纤维膜、其制作方法、屏蔽结构与其制备方法
CN114040587A (zh) * 2021-11-12 2022-02-11 维沃移动通信有限公司 框体的加工方法、框体以及电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105827759A (zh) * 2016-05-06 2016-08-03 东莞劲胜精密组件股份有限公司 碳纤维陶瓷复合材料的电子产品框体结构及其制作方法
WO2021047659A1 (zh) * 2019-09-12 2021-03-18 华为技术有限公司 一种中框、后盖及其制备方法和电子设备
CN113542458A (zh) * 2020-04-16 2021-10-22 华为机器有限公司 一种中框及其制作方法和电子设备
CN114075344A (zh) * 2020-08-19 2022-02-22 华为机器有限公司 复合基材、电子设备以及复合基材的制作方法
CN113747718A (zh) * 2021-09-09 2021-12-03 维沃移动通信有限公司 框体组件和电子设备
CN114466094A (zh) * 2022-04-01 2022-05-10 荣耀终端有限公司 中框组件、其制备方法及电子设备

Also Published As

Publication number Publication date
EP4283961A1 (en) 2023-11-29
CN114466094A (zh) 2022-05-10
CN114466094B (zh) 2022-09-09

Similar Documents

Publication Publication Date Title
WO2023185178A1 (zh) 中框组件、其制备方法及电子设备
US11272646B2 (en) Electromagnetic interference (EMI) shielding film, circuit board, and preparation method for EMI shielding film
US20220345552A1 (en) Middle frame, battery cover, and electronic device
US20170019510A1 (en) Cover for electronic device, antenna assembly, electronic device, and method for manfuacturing the same
TWI435954B (zh) Heat resistant copper foil and its manufacturing method, circuit board, copper clad laminate substrate and manufacturing method thereof
CN202979570U (zh) 一种屏蔽罩及其电子产品
CN108323140A (zh) 一种电磁波屏蔽膜及其制备方法和应用
JP2010187361A (ja) 機構物一体型ルーフアンテナ及びその製造方法
CN102290631A (zh) 电子装置壳体及其制作方法
CN110769587A (zh) 电磁屏蔽膜、线路板及电磁屏蔽膜的制备方法
CN108541204A (zh) 复合式高遮蔽性薄型化电磁干扰屏蔽膜及其制备方法
CN201898676U (zh) 一种终端设备
CN113097728B (zh) 一种高强度双曲面共形微带缝隙天线的制作方法
KR20130014784A (ko) 이동통신 단말기용 케이스 안테나 및 그를 채용한 이동통신 단말기
CN115036717B (zh) 电连接单元、制造方法及电子设备
CN107333462B (zh) 导电层、电磁屏蔽膜及电磁屏蔽膜的加工方法
CN111106450A (zh) 一种喇叭阵列天线
JP2007043236A (ja) 誘電体アンテナ
CN115863959A (zh) 一种终端设备、主板天线支架及其制备方法
CN103135673B (zh) 信息处理设备以及对其金属边框表面进行处理的方法
CN114075344A (zh) 复合基材、电子设备以及复合基材的制作方法
JPH11112182A (ja) 電磁波シールド筐体及びその製造方法
CN103945662A (zh) 电子设备外壳用装置
CN111031434A (zh) 蓝牙耳机及蓝牙耳机组件
CN202805801U (zh) 覆铜板和印刷电路板

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2023739079

Country of ref document: EP

Effective date: 20230720